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Abstract. In this paper, we consider the problem of multi-issue multi-lateral
negotiation. We assume that each agent may be interested only in a subset
of issues at stake. They nevertheless have to make a collective choice that
addresses all issues. We propose a heuristics-based negotiation model where the
agents’reasoning mechanisms may be very complex as a result of multiple issues
being negotiated. Given this complexity, we propose a distributed negotiation
mechanism drawn on divide and rule. The proposed protocol consists of two itera-
tive steps: the partitioning of the agents into groups and the negotiation step where
the agents in each group interact without a central controller (no mediator). Our
negotiation protocol converges and leads to efficient outcomes, as demonstrated
by our empirical results.

Keywords: Collective decision-making · Negotiation · Hierarchical clustering

1 Introduction

Negotiation complexity significantly grows when self-interested agents must make a
choice involving several issues and when each agent may be interested only in a subset
of the issues at stake. Previous studies [1,3–5] propose multi-lateral negotiation proto-
cols, but they typically rely on a mediator that facilitates the negotiation by suggesting
contracts or by preventing fraud. Those solutions are centralised and suffer from a sin-
gle point of failure. Additionally, designing a mediator with such skill may be compu-
tationally prohibitive. In the alternating affers protocol [2], the agents negotiate without
mediator they sequentially take a turn. The first agent submits an offer, the next evalu-
ates it and makes a decision by accepting, counter-offering or walking. However, in a
context where agents may have (non) overlapping subsets of issues they are interested
in, each agent makes offers which concern its issues of interest and it could happen
that the agent who’s turn it is to evaluate an offer may have to evaluate issues it is not
interested in. Thus, this may affect the negotiation convergence and the agents’ order
turn-taking has a major influence on the negotiation outcome. Our solution aims to
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overcome these limitations by structuring the process in terms of the multi-agent organ-
isation and agents’ tactics to make offers [6]. In decentralized negotiation settings of
the sort we study, agent communication and reasoning may be prohibitively complex.
We relax this complexity via careful design of organizational aspects of the multi-agent
system, as organisational relationships may have a significant effect on complexity,
flexibility and reactivity, and impose computation and communication overheads [7,8].

We propose a novel negotiation model based on a multi-step approach that fully
distributes the negotiation and facilitates the search for agreements. The underlying
approach is based on the “divide and rule” approach. It consists of two iterative steps:
Firstly, we partition agents into groups based on their overlapping subsets of issues
(not the values of the issues) and this is done in a centralized way. We search through
this decomposition to gather the agents which share the maximum number of issues.
In this way, they can construct partial solutions by focusing on their common issues.
Each agent can evaluate an offer from its group’s member. So we explicitly decompose
the agents into groups and implicitly the issues, in contrast to existing works which
focus only on decomposing the issues into groups [1,9]. Secondly, after the partitioning,
agents in each group negotiate in a fully decentralized way (with no mediator) to find
partial solutions over their overlapping issues. The motivation of our approach is to limit
the scope of the agents’ interactions and hence to reduce agent reasoning complexity.
The agents progressively build a solution by merging their solutions throughout their
interactions and form alliances.

2 Negotiation Framework

We focus on self-interested agents that negotiate over multiple issues1. To illustrate the
problem at hand, we consider a scenario where a set of households decide to join a
bundled offer to reduce their energy costs. So they must agree upon the energy con-
tract, they will subscribe for. Issues for an energy contract could be energy type, energy
provider, contract duration, tariff type, conditions for retracting, and so on. Each of
these issues is effectively an attribute of the collective contract. The energy consumers
may wish to focus only on a subset of the issues above, depending on their consumption
profiles and their needs and preferences.

Let A = {a1, ..., an} be the set of agents and E the set of issues at stake. Each
agent ai chooses the attributes it wants to negotiate; we denote these by Ei. Let Di

e be
a subset of values for e which are acceptable for ai. Each agent ai assigns a weight
wi

e ∈]0, 1] to each attribute e ∈ Ei which represents its importance in the negotiation.
The value of each attribute’s weight is defined such that

∑

e∈Ei

wi
e = 1.

An agent assigns a score to a value of an attribute according to its evaluation criteria.
For example, a household may evaluate an energy provider according to its reliability
and its service levels. Before the negotiation, ai sets for each attribute e ∈ Ei a range
of acceptable score values denoted by [minV i

e ,maxV i
e ]. So Di

e matches to the set of
values for e such that the score values belong to this interval. minV i

e , maxV i
e are,

1 Here, the negotiated issues match the attributes of the solution. Thus we may use these con-
cepts interchangeably.



340 N. A. Diago et al.

respectively, the minimal and maximal expected scores agent wants to obtain for e
during the negotiation. Thus, ai could offer or accept over time every value of attribute
e whose the score is between [minV i

e ,maxV i
e ].

EXAMPLE 1. We consider a set of households which negotiate to decide upon the
energy provider (attribute e). Let {p1, p2, p3, p4, p5} be the set of energy providers
and (0.9, 0.7, 0.8, 0.3, 0.5) be, respectively, the scores that ai assigns to each energy
provider. For example, an agent ai aims to contract with a provider whose the score
value is between minV i

e = 0.5 and maxV i
e = 0.9. Its Di

e = {p1, p2, p3, p5}. Thus, the
value that ai offers at each time depends on the score it wants to get for this attribute
at this time. The first value ai proposes when the negotiation starts is p1 and the last
value (reservation value) ai proposes when the deadline is almost reached is p5.

At the beginning of the negotiation process, each agent forms a singleton alliance and
defines for each attribute e ∈ Ei a negotiation tactic [6]. A negotiation tactic is a deci-
sion function which allows to determine the values of an attribute e to be offered when
negotiation progresses. This value can be computed by considering multiple criteria
such as time and resource [6]. Here, we focus on a time-dependent tactic. It consists of
deciding for each attribute e ∈ Ei an acceptable value in Di

e to be offered according to
the remaining negotiation time.

3 Negotiation Protocol

Our solution approach draws on hierarchical agglomerative clustering [10] and allows
the agents to progressively build an agreement while limiting their reasoning complex-
ity. The proposed protocol is a multi-step process. At each round, it clusters pairs of
alliances. Pairing is based on similarity among the alliances over their issues. Specifi-
cally, alliances whose subsets of issues of interest overlap are paired in order to allow
them to progress the negotiation. Agents in each cluster negotiate in order to build a
solution about their common attributes. They form a new alliance when they reach an
agreement for each negotiated attribute. The protocol builds incrementally, over multi-
ple steps, the grand alliance (including all or the majority of the agents) that supports a
proposal that addresses all issues, i.e complete proposal (Fig. 1). The negotiation termi-
nates with an agreement or a disagreement over the set of issues at stake. In summary,
the proposed protocol involves two key steps that are executed iteratively: clustering
phase and negotiation phase.

3.1 Clustering Phase

This phase consists of clustering pairs of alliances. The partitioning is done by the sys-
tem based on the subsets of issues from the agents. We define similarity functions over
overlapping issues which are used to identify candidates for clustering. Each alliance is
characterised by the number of agents and the number of attributes it holds. We present
two similarity functions named SimL and SimL+ .

– SimL is based on a simple Jaccard index, named SimL. LetLx, Ly be two alliances,
ELx

, ELy
represent, respectively, their sets of attributes they hold. The similarity
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Fig. 1. 6 agents a1 to a6 negotiate over the issues e1 to e5. s1 to s5 are the different rounds.

function between alliances is defined as follows:

SimL = J(ELx
, ELy

) = ELx ∩ELy

ELx ∪ELy
.

– SimL+ takes into account additional criteria, e.g.., the fact that each alliance aims
to get the maximum number of agents via an offer that addresses a maximal number
of attributes. We define a gain function gain which gives a real value representing
the gain obtained by cluster’s alliances when they merge.

SimL+ = SimL + gain gain(Lx, Ly) =
|ELx

∪ ELy
|

k
× |Lx ∪ Ly|

n
n, k represent, respectively, the number of agents in the system and the number of
all attributes at stake.

Alliances are clustered according to the following rules:

– R1: only the alliances that have overlapping attributes are clustered.
– R2: when an alliance does not find another with which it forms a cluster, it will not
participate in the negotiation at this round. But at the next round, it will be considered
to generate new clusters.

These rules facilitate efficient negotiation and help limit the negotiation time.

EXAMPLE 2. Consider the agents in Fig. 1. Tables in Fig. 2 show, respectively, the
set of attributes chosen by each agent (Table 1) and their similarity matrix computed
according to SimL (Table 2) and SimL+ (Table 3). These agents form clusters g1 =
{a4, a6}, g2 = {a3, a5}, g3 = {a1, a2}.
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Fig. 2. Similarity matrix

3.2 Negotiation Phase

We denote by S = {S1, ..., SQ} the set of negotiation rounds. At each Sq, alliances
are paired into several clusters in which negotiations take place simultaneously. We
denote by Gsq

= {gx} the set of clusters at the round Sq. Agents in each cluster gx

negotiate to reach a partial agreement over their common issues named Egx
. To make

more flexible the negotiation and to facilitate the research of agreements, the proposed
protocol allows the agents to have more flexibility about the offers they submit.

Offer Types: An attribute may be negotiated in a cluster holding either all agents or a
part of the agents which are interested in this attribute. Thus, for these both cases, we
distinguish two offer types. In each cluster, the set of attributes Egx

is divided into two
subsets Ef

gx
, Ed

gx
which represent, respectively, the attributes for which all of the agents

which are interested in this attribute belong to this cluster and the attributes for which a
part of these agents belong to this cluster.

– When an attribute is negotiated in a cluster which holds all agents which are inter-
ested in this attribute, these latter must find a final solution. This is because this
attribute will not be negotiated in future rounds when an agreement is found. We
denote byOf a fixed offer which consists of assigning a single value to each attribute
in Ef

gx
.

– When an attribute is negotiated in a cluster which holds a part of the agents which are
interested in this attribute, these latter must find a partial solution since this attribute
interests other agents outside this cluster. We denote by Od a partial offer which
consists of assigning a range of values over the attributes in Ed

gx
.

The range of values of attributes supported by different alliances may overlap and this
may facilitate agreements among the alliances.

The decomposition of Egx
into Ef

gx
and Ed

gx
may be performed by every agent

in the cluster since the subset of issues for each agent is a public information. Each
agent ai knows the set of agents whose subset of issues overlap with theirs. In a cluster,
for each attribute in Egx

an agent may verify if all of the agents with which it shares
this attribute are present in the cluster. If so, then there exists no agent outside the
cluster which is interested in this attribute. Otherwise, this attribute is susceptible to be
negotiated outside the cluster.
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Making an Offer: Alliances in a cluster gx exchange offers in a round-robin way. They
make offers about the attributes inEgx

. For each attribute e, each alliance must compute
either a point value or a range of values to be proposed. For the example in Fig. 1, let
L1,2, L3,5 be the alliances formed, respectively, by {a1, a2} and {a3, a5} during the
round S1. EL1,2 = {e1, e2, e3, e4} EL3,5 = {e3, e4, e5}. L1,2, L3,5 are clustered during
the round S2 and they negotiate over their common attributes EL1,2 ∩EL3,5 = {e4, e5}.
Before the negotiation in the round S2 : alliance {a1, a2} has already agreed on a final
solution (fixed value) for e1 but {e2, e3, e4} have not been negotiated in the previous
round. Alliance {a3, a5} has already agreed on partial solutions for {e3, e5} and the
agents have defined a common negotiation tactic for these attributes. Attribute e4 has
not been negotiated in the previous round.

• When an alliance holds an attribute not negotiated, this attribute interests only one
agent in this alliance. This is because a cluster holds two alliances which become
one alliance when they agree on all of their common attributes.

When an alliance submits an offer in a cluster gx:

– for each attribute e ∈ Egx
already negotiated, the value or range of values to be

offered is computed by using the common negotiation tactic they defined.
– for each attribute e ∈ Egx

not negotiated, the value or range of values is proposed
by the agent which holds this attribute. It uses its own negotiation tactic.

Decision-Making: Alliances interact between them by using speech acts: Propose,
Accept and Refuse. Each ai uses its utility function ui to evaluate an offer and to make
a decision. When an alliance receives an offer, each agent in this alliance evaluates it.

Accepting an Offer: An alliance Lk accepts an offer OLr,t made by an alliance
Lr at time t, if every agent in Lk accepts this offer. An agent accepts an offer
if its utility is superior or equal to the utility of its alliance’s offer at time t + 1,
ui(OLk,t+1) ≤ ui(OLr,t) otherwise the offer is refused.

Merging Alliances: When in a cluster, the pairs of alliances agree on an offer they
merge and become a new alliance formed by the agents of this cluster. For each attribute
e ∈ Ed

gx
whose range of values has been negotiated, they define a common negotiation

tactic they use in the next round. For each attribute e ∈ Ef
gx
, a final solution has been

found and it will not be negotiated in the next round.

4 Negotiation Tactics

In the beginning, each agent tries to reach a maximum score value for each attribute it
negotiates. The proposed protocol allows the agents to make concessions. This consists
of reducing its maximal expected score values over time in order to facilitate the search
of agreements.
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A negotiation tactic defined by an agent ai for an attribute e is a function V i
e (t)

which determines at time t the expected score value ai wants to get at this time.

V i
e (t) = minV i

e + (1−αi
e(t))×[maxV i

e − minV i
e ].

αi
e(t) is a time-dependent function. [6] describes a range of time-dependent functions

which can be defined by varying the strategies to compute αi
e(t).

αi
e(t) is defined such that:

0 ≤ αi
e(t) ≤ 1, αi

e(0) = ki
e, αi

e(t
i
max) = 1

timax is the deadline at which the reservation value is proposed, dl is the negotiation
deadline. 0 ≤ t ≤ timax ≤ dl.

Each ai chooses a constant ki
e ∈ [0, 1] for each of its attributes. This constant ke

i

determines the first score value the agent wants to get and hence the first value of the
attribute e it will propose or accept. αi

e(t) may be a polynomial or exponential function
parameterized by a value βi

e ∈ R+ which determines the convexity degree of V i
e curve.

Polynomial and exponential functions are significantly different in the way they model
concessions according to the value of βi

e [6]. As part of this paper, we work on a range
of families of functions with arbitrary values for βi

e ∈ [0, 50]. This covers different ways
to concede, showing significant differences.

– The case of βi
e < 1 is denoted the Boulware tactic. It maintains the initially offered

value until the time is almost exhausted, where it concedes by proposing the reser-
vation value.

– The case of βi
e > 1 is denoted Conceder tactic, in which case the agent will offer

very quickly its reservation value.

We present below polynomial and exponential functions we consider.

αi
e(t) = ki

e + (1 − ki
e)(

min(t, timax)
timax

)
1

βi
e

αi
e(t) = e

(1− min(t,ti
max)

ti
max

)βi
e ln ki

e

In our framework, we propose some methods to compute the βi
e parameter according

to the weight of attribute e. Intuitively, a higher weight is associated with lower agent
willingness to compromise its initial value; a lower weight indicates the opposite. For
each of its issues of interest, an agent holds a negotiation tactic according to the weight
it assigns to that issue.

4.1 Methods to Compute βi
e

Let βmin, βmax the domain of βi
e. Here, we set βmin = 0, βmax = 50.

We present below some ways to compute βi
e according to the weight of the

attribute wi
e:

– Method A: βi
e = βmin + (βmax − βmin) × (1 − wi

e), 0 < wi
e ≤ 1
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Fig. 3. agents a1, a2, a3, a4 negotiate over an attribute e. They assign a same weight equal to 0.9
to e but they use different methods and parameters (ki

e, k
i) to define their negotiation tactic. This

table presents the parameters for each agent.

– Method B: βi
e =

{
1 + (βmax − 1) × (1 − 2wi

e), 0 < wi
e ≤ 0.5

1 + (1 − βmin) × (1 − 2wi
e), 0.5 ≤ wi

e ≤ 1

The difference between strategies A and B is such that in B the range of weight [0, 1]
is split into two ranges [0, 0.5], [0.5, 1] and it assigns them, respectively, a family of
tactics with βi

e > 1 and family of tactics with βi
e < 1. This means that the agent assigns

a Boulware tactic [14] to the attributes whose the weight is in [0.5, 1] and a Conceder
[15] to the attributes whose the weight is in [0, 0.5].

4.2 Methods to Compute a Range of Values for an Attribute

Making a partial offer consists of proposing for each concerned attribute a range of
values to be offered. However, a negotiation tactic produces a single value. Hence, for
each attribute e, we define a couple of parameters (βim

e , βiM
e ) to define a couple of time-

depending functions αim
e (t), αiM

e (t) and hence a couple of functions V im
e (t), V iM

e (t)
which allow to compute a range of score values ai wants to get at time t.

V im
e (t) = minVe + (1−αim

e (t))×[maxVe − minVe]

V iM
e (t) = minve

+ (1−αiM
e (t))×[maxVe − minVe]

. The values of βim
e , βiM

e for an attribute e are determined according to βi
e:

– Method A’: βim
e = βi

e, βiM
e = βi

e+ki(βmax−βi
e), βmin≤ βi

e≤ βmax

– Method B’: βim
e = βe, βiM

e =
{

βi
e + ki(1 − βi

e)), βi
e ≤ 1

βi
e + ki(βmax − βi

e), βi
e ≥ 1

ki is a constant in ]0, 1] defined by each agent.
V im

e (t) ≥ V iM
e (t) because βiM

e leads to concession more quickly than βim
e . Thus

the range of values to be offered at time t is the set of attribute’s values such that the
score values are between V iM

e and V im
e (t) (Fig. 3).

4.3 Common Tactic Defined by an Alliance

When the alliances in gx agree on an offer and form a new alliance Lk, they establish
common negotiation tactics to be used at the next round. This is done by computing the
average weight across all agents belonging to this alliance. Specifically, βL

e is computed

according to wL
e with wL

e =

∑

i∈L

wi
e

2 . The couple of parameters (βLm
e , βLM

e ) to be used
when they must negotiate a partial solution for e is determined according to βL

e .
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Fig. 4. a1, a2 use, respectively, methods A, A′ and B, B′ to compute, respectively, parameters
β1
e , β1m

e , β1M
e and β2

e , β2m
e , β2M

e for attribute e. a1 will concede faster than a2.

Fig. 5. a3, a4 use, respectively, methods A, A′ and B, B′ to compute, respectively, parameters
β1
e , β1m

e , β1M
e and β2

e , β2m
e , β2M

e for attribute e. They use, respectively, k3
e = 0.5 and k4

e = 0.5.
Thus, they first expected score value is equal to 0.63. a1 will concede faster than a2.

4.4 Negotiation Outcome

At the end of the negotiation, it could happen that several alliances are formed. These
alliances may share attributes of which values may be different. To determine the
negotiation outcome, only alliances that share no attributes are merged. There may
exist several alternatives to merge alliances. The merging process we propose aims
to determine the alliances to be merged in order to get an effective and fair solution.
A solution is acceptable when it is supported by more than 50% of the agents (i.e.
the majority) and holds all of the attributes at stake. In Fig. 1, the solution supported by
{a1, a2, a3, a5, a6} is acceptable. The merging process may generate several acceptable
solutions which are compared in order to determine a unique effective solution.
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5 Theoretical Analyse

To analyse the complexity of our negotiation mechanism, we focus on evaluating the
number of formed clusters during the negotiation process. Each attribute at stake may
interest one or more agents. We denote by ne the number of agents which negotiate
over the attribute e. To reach a final solution for this attribute, all of the ne agents must
meet to exchange in different clusters when the negotiation progresses. Each agent must
negotiate with all of the agents with which it shares its attributes. We analysed the
number of clusters in which attribute e is negotiated. We consider two situations: the
negotiation in both best and worst cases (Fig. 5).

5.1 Negotiation in the Best Case

The best case: whenever the agents in a cluster negotiate, they find an agreement and
become one alliance (see Fig. 6).

– In the best case, the number of clusters to be formed to reach a final solution for e
is the sum of geometrical sequence’s terms with a common ratio 1

2 and a first term
equal to � 1

2 × ne�.
At round S1 of the negotiation, the number of formed clusters is: US1 = � 1

2 × ne�.

USq
= � 1

2q
× ne� if

1
2q

× ne − � 1
2q

× ne� ≤ 0.5 with 1 ≤ q ≤ Q

USq
= 	 1

2q
× ne
 if

1
2q

× ne − � 1
2q

× ne� > 0.5 with 1 ≤ q ≤ Q

Q is the number of negotiation rounds. USq
is the number of clusters to be formed at the

round Sq. The expression of USq
allows taking into account the case where the number

of alliances to be clustered is an odd number. The total number of clusters to be formed
during all of the negotiation rounds is the sum of the Q first terms of the geometrical
sequence. Q is such that USQ+1 = 0.

5.2 Negotiation in the Worst Case

The worst case: whenever the agents in a cluster negotiate no agreement is found. The
cluster will be split (see Fig. 6).

– In the worst case, the number of formed clusters is the number of 2-combinations
that can be formed from the ne. More formally, the number of 2-combinations is
equal to the binomial coefficient.

(
ne

2

)
= ne!

2!(ne−2)! .

– For each attribute e, the number of clusters where it is negotiated is limited. This

number is between
Q∑

q=1
USq

and ne!
2!(ne−2)! .

In our protocol, several attributes may be negotiated in a cluster.
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Fig. 6. Example of a negotiation between 4 agents over an attribute e.

– When all of the attributes interest all of the agents the number of clusters in which

these attributes are negotiated is limited. This number is between
Q∑

q=1
USq

and

ne!
2!(ne−2)! .

In each round, the agents in each cluster negotiate over the set of attributes at stake. So
the number of clusters to be formed does not depend on the number of attributes but it
depends on the number of agents.

– When each agent is interested in a part of the attributes at stake and their subset of
attributes are disjoint no cluster will be formed. This case is not interesting because
there is no negotiation.

– When each agent is interested in a part of the attributes at stake and the subsets of
attributes from these agents overlap, the number of clusters to be formed depends
on the degree of the similarity of the agents according to their subsets of attributes.

6 Experimental Results

We have implemented our model in Java/Jade. We considered a set of agents A which
negotiate over multiple attributes E. Each agent ai selects randomly its attributes in E

and randomly assigns a weight to each one. It computes, for each chosen attribute e, the
parameters βi

e,βim
e ,βiM

e . Each agent selects randomly the criteria that it uses to generate
its offers. We tested our protocol with each of these strategies and we analyse their
effect on the results of the negotiation. To evaluate the convergence of our protocol we
performed several tests by varying negotiation parameters such as the deadline and the
strategies used to compute the negotiation tactics.

We performed several tests by varying the number of agents and the strategies they
use to compute negotiation tactics. We tested our protocol with up to 50 agents. We
compared our protocol with a negotiation model where all of the agents form only one
group to negotiate. We ran the protocol several times and computed the average of the
obtained convergence rates for each execution. In these tests, the number of issues at
stake was not varied. The graphs in Fig. 7 show the convergence rate obtained for each



Distributed Multi-issue Multi-lateral Negotiation Using a Divide and Rule Approach 349

Fig. 7. Comparison between our model and the centralized model (all of the agents form one
group) according to agreement rate. In our model the agents use with strategies A,A’ and B,B’.

Fig. 8. The rate of agreement reached by varying number of agents and issues. Text in grey and
bold represent, respectively, the best rate of agreement and the worst rate of agreement. This
table shows the rate of agreement reached by agents after three negotiation rounds. Columns 2

to 4 represent, respectively, the results for 20 agents, 40 agents and 50 agents while varying the
number of issues from 5 to 20.

pair of strategies A,A′ and B,B′ used to compute the negotiation tactics. The empirical
results in Fig. 4 show that agents concede more quickly when they use A,A′ than when
B,B′ are used. The graph in Fig. 7 proves that when the agents concede, this facilitates
the convergence of the negotiation. We observe that our protocol converges faster when
strategies A,A′ are used. Figure 7 shows also the convergence rate obtained when a cen-
tralized model is used (where all of the agents form one group to negotiate) by varying
the number of agents. Our protocol allows the agents to reach more agreements when
the number of agents grows. The results show that our protocol allows the agents to
reach more agreements than the centralized mechanism as the number of agents and
issues grow. We also observe that when the ratio between the number of agents and the
number issues grows the number of agreements reached is lower (Fig. 8).

7 Conclusion

This paper presented a multi-lateral negotiation model over multiple issues. Our app-
roach allows the agents to progressively build a collective solution addressing all of the
issues at stake. We present various negotiation tactics that enable the agents to deter-
mine the offers to be proposed and to make concessions. In our empirical analysis,
we tested the influence of the negotiation tactics on the negotiation outcome. We have
additionally evaluated the convergence of the negotiation under various settings and
have demonstrated promising convergence rates.
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