Nick Bassiliades

Georgios Chalkiadakis
Dave de Jonge (Eds.)

Multi-Agent Systems
and Agreement Technologies

17th European Conference, EUMAS 2020

and 7th International Conference, AT 2020
Thessaloniki, Greece, September 14-15, 2020
Revised Selected Papers

LNAI 12520

@ Springer

Lecture Notes in Artificial Intelligence

Subseries of Lecture Notes in Computer Science

Series Editors

Randy Goebel
University of Alberta, Edmonton, Canada

Yuzuru Tanaka
Hokkaido University, Sapporo, Japan

Wolfgang Wahlster
DFKI and Saarland University, Saarbriicken, Germany
Founding Editor

Jorg Siekmann
DFKI and Saarland University, Saarbriicken, Germany

12520

More information about this subseries at http://www.springer.com/series/1244

http://www.springer.com/series/1244

Nick Bassiliades - Georgios Chalkiadakis -
Dave de Jonge (Eds.)

Multi-Agent Systems
and Agreement Technologies

17th European Conference, EUMAS 2020
and 7th International Conference, AT 2020
Thessaloniki, Greece, September 14-15, 2020
Revised Selected Papers

@ Springer

Editors

Nick Bassiliades Georgios Chalkiadakis
Aristotle University of Thessaloniki Technical University of Crete
Thessaloniki, Greece Chania, Greece

Dave de Jonge
MIA-CSIC
Bellaterra, Spain

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Artificial Intelligence
ISBN 978-3-030-66411-4 ISBN 978-3-030-66412-1 (eBook)

https://doi.org/10.1007/978-3-030-66412-1
LNCS Sublibrary: SL7 — Artificial Intelligence

© Springer Nature Switzerland AG 2020

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0001-6035-1038
https://orcid.org/0000-0002-0716-2972
https://orcid.org/0000-0003-2364-9497
https://doi.org/10.1007/978-3-030-66412-1

Preface

This volume constitutes the revised post-conference proceedings of the 17th European
Conference on Multi-Agent Systems (EUMAS 2020) and the 7th International Con-
ference on Agreement Technologies (AT 2020). The conferences were originally
planned to be held in Thessaloniki, Greece, in April 2020, but were eventually held
online between September 14-15, 2020. The 38 full papers presented in this volume
were carefully reviewed and selected from a total of 53 submissions. The papers report
on both early and mature research and cover a wide range of topics in the field of multi-
agent systems.

EUMAS 2020 followed the tradition of previous editions (Oxford 2003, Barcelona
2004, Brussels 2005, Lisbon 2006, Hammamet 2007, Bath 2008, Agia Napa 2009,
Paris 2010, Maastricht 2011, Dublin 2012, Toulouse 2013, Prague 2014, Athens 2015,
Valencia 2016, Evry 2017, Bergen 2018) in aiming to provide the prime European
forum for presenting and discussing agents research as the annual designated event
of the European Association for Multi-Agent Systems (EURAMAS).

AT 2020 was the seventh instalment in a series of events (after Dubrovnik 2012,
Beijing 2013, Athens 2015, Valencia 2016, Evry 2017, Bergen 2018) that focus on
bringing together researchers and practitioners working on computer systems in which
autonomous software agents interact, typically on behalf of humans, in order to come
to mutually acceptable agreements. A wide scope of technologies can help provide the
support needed for reaching mutually acceptable agreements, such as argumentation
and negotiation, trust and reputation, computational social choice, coalition and team
formation, coordination and distributed decision-making, and semantic alignment, to
name a few.

This year, for the fifth time, the two events were co-located and run as a single, joint
event. This joint organization aimed to encourage and continue cross-fertilization
among the broader EUMAS and the more specialized AT communities, and to provide
a richer and more attractive program to participants. While the technical program was
put together by their independent committees, the conferences shared keynote talks and
aligned their schedules to minimize overlap and enable participants to make the best
possible use of the combined program of the two conferences. Traditionally, both
conference series have always followed a spirit of providing a forum for discussion and
an annual opportunity for primarily European researchers to meet and exchange ideas.
For this reason, they have always encouraged submission of papers that report on both
early and mature research.

The peer-review processes carried out by both conferences put great emphasis on
ensuring the high quality of accepted contributions. The 90-person EUMAS Program
Committee accepted 32 submissions as full papers. The AT review process resulted in
the acceptance of six full papers by the 54-person AT program committee.

This volume is structured in sections mirroring the presentation sessions of the joint
event (https://eumas2020.csd.auth.gr/). In addition to the papers included in this

https://eumas2020.csd.auth.gr/

vi Preface

volume, the program was highlighted by two great keynote talks, the first one by
Professor Sarvapali (Gopal) Ramchurn of the Department of Electronics and Computer
Science, University of Southampton, UK, on “Emerging Challenge Areas for Al and
Multi-Agent Systems: From Sports to Maritime”, and the second one by Professor
Pavlos Moraitis of the Department of Mathematics and Computer Science, University
of Paris, France, on “Computational Argumentation: From Theory to Market”. Two
papers of EUMAS stood out from the rest and were nominated by the EUMAS Pro-
gram Chairs as candidates for the best paper award. These two papers were presented in
a special session and then a committee composed of all the EUMAS and AT program
chairs and one of the keynote speakers, Prof. Pavlos Moraitis, decided that the award
should be shared between them.

The editors would like to thank all authors for submitting to EUMAS and AT, all
participants, the invited speakers, the members of the Program Committees, and the
additional reviewers for putting together a strong joint program. We also thank the
local organizers for their hard work organizing the events. Finally, we would like to
express our gratitude to the sponsors of the conferences: Aristotle University of
Thessaloniki for providing technical and human resources, the MDPI journal Com-
puters for sponsoring the EUMAS Best Paper Award, the journal Autonomous Agents
and Multi-Agent Systems for agreeing to publish extended versions of the EUMAS best
and runner-up papers, and the journal SN Computer Science for agreeing to publish a
special issue with selected extended EUMAS papers.

November 2020 Nick Bassiliades
Georgios Chalkiadakis
Dave de Jonge

Organization

EUMAS 2020 Program Chairs

Nick Bassiliades
Georgios Chalkiadakis

Aristotle University of Thessaloniki, Greece
Technical University of Crete, Greece

AT 2020 Program Chair

Dave de Jonge

Spanish National Research Council (CSIC), Spain

EUMAS 2020 Program Committee

Stergos Afantenos

Thomas Agotnes

Juan Antonio Rodriguez
Aguilar

Stéphane Airiau

Charilaos Akasiadis

Samir Aknine

Fred Amblard

Merlinda Andoni

Costin Badica

Ana L. C. Bazzan

Antonis Bikakis

Filippo Bistaffa

Olivier Boissier

Vicent Botti

loana Boureanu

Nils Bulling

Cristiano Castelfranchi

Alberto Castellini

Sofia Ceppi

Angelos Chliaoutakis

Massimo Cossentino

Natalia Criado

Aleksander Czechowski

Mathijs De Weerdt

Catalin Dima

Dragan Doder

Sylvie Doutre

Edith Elkind

Alessandro Farinelli

IRIT, CNRS/Université Paul Sabatier
University of Bergen
IIA-CSIC

LAMSADE - Université Paris-Dauphine
NCSR Demokritos

Université Claude Bernard Lyon 1

IRIT - Université Toulouse 1 Capitole
Heriot-Watt University

University of Craiova

Universidade Federal do Rio Grande do Sul
University College London

IIA-CSIC

Mines Saint-Etienne

Universitat Politécnica de Valéncia
University of Surrey

Technische Universitidt Clausthal and BCG Platinion

Institute of Cognitive Sciences and Technologies
Verona University

PROWLER.io

Technical University of Crete
National Research Council of Italy
King’s College London

Delft University of Technology

Delft University of Technology
LACL, Université Paris-Est Créteil
University of Belgrade

Université Toulouse 1 Capitole - IRIT
University of Oxford

Verona University

viii Organization

Nicoletta Fornara
Malvin Gattinger
Benoit Gaudou
Nina Gierasimczuk
Gianluigi Greco
Davide Grossi
Andreas Herzig
Magdalena Ivanovska
Antonis Kakas
Petros Kefalas
Franziska Kliigl
Michat Knapik
DusSan Knop

Nadin Kokciyan
Manolis Koubarakis
Kalliopi Kravari
Michail Lagoudakis
Jérdme Lang
Dominique Longin
Maite Lopez-Sanchez
Emiliano Lorini
Marin Lujak
John-Jules Meyer
Sanjay Modgil
Frederic Moisan
Pavlos Moraitis
Stefano Moretti

Svetlana Obraztsova
Andrea Omicini
Nir Oren
Nardine Osman
Sascha Ossowski
Athanasios Aris
Panagopoulos
Theodore Patkos
Giuseppe Perelli
Euripides Petrakis
Maria Polukarov
Zinovi Rabinovich
Sarvapali Ramchurn
Alessandro Ricci
Emmanouil Rigas
Valentin Robu
Michael Rovatsos
Jordi Sabater Mir

Universita della Svizzera italiana

University of Groningen

UMR 5505 CNRS, IRIT, Université de Toulouse

Technical University of Denmark

University of Calabria

University of Groningen

CNRS, IRIT, Univ. Toulouse

University of Oslo

University of Cyprus

The University of Sheffield

Orebro University

ICS PAS

TU Berlin

The University of Edinburgh

National and Kapodistrian University of Athens

Aristotle University of Thessaloniki

Technical University of Crete

CNRS, LAMSADE, Université Paris-Dauphine

IRIT-CNRS

University of Barcelona

IRIT

IMT Lille Douai

Utrecht University

King’s College London

Carnegie Mellon University

LIPADE, Paris Descartes University

CNRS UMR7243 — LAMSADE, Université
Paris-Dauphine

Hebrew University of Jerusalem

Alma Mater Studiorum-Universita di Bologna

University of Aberdeen

Artificial Intelligence Research Institute (IITA-CSIC)

University Rey Juan Carlos

California State University, Fresno

Institute of Computer Science, FORTH
University of Gothenburg
Technical University of Crete
King’s College London

Nanyang Technological University
University of Southampton
University of Bologna

Aristotle University of Thessaloniki
Heriot-Watt University

The University of Edinburgh
IITA-CSIC

Ilias Sakellariou
Sebastian Sardina
Marija Slavkovik

Nikolaos Spanoudakis

Sebastian Stein
Nimrod Talmon
Ingo J. Timm
Paolo Torroni
Paolo Turrini
Laurent Vercouter
Angelina Vidali

Vasilis Vlachokyriakos

George Vouros
Pinar Yolum

Neil Yorke-Smith
Leon van der Torre

Organization

University of Macedonia

RMIT University

University of Bergen

Technical University of Crete

University of Southampton

Ben-Gurion University of the Negev
University of Trier

University of Bologna

The University of Warwick

LITIS lab, INSA de Rouen

University of Athens and IOHK Research
Newcastle University and Open Lab Athens
University of Piraeus

Utrecht University

Delft University of Technology
University of Luxembourg

AT 2020 Program Committee

Estefania Argente
Reyhan Aydogan
Holger Billhardt
Elise Bonzon
Annemarie Borg

Henrique Lopes Cardoso

Carlos Chesiievar
Sylvie Doutre
Alberto Fernandez
Katsuhide Fujita
Adriana Giret
Stella Heras
Mirjana Ivanovic
Vicente Julian
Mario Kusek
Emiliano Lorini
Yasser Mohammad
Viorel Negru

Eva Onaindia
Marcin Paprzycki
Jordi Sabater Mir
Milos Savic
Francesca Toni
Laszl6 Zsolt Varga
Marin Vukovic
Remi Wieten

Universitat Politécnica de Valencia
Delft University of Technology
Universidad Rey Juan Carlos
LIPADE - Université Paris Descartes
Utrecht University

University of Porto

UNS (Universidad Nacional del Sur)
IRIT

University Rey Juan Carlos

Tokyo University of Agriculture and Technology

Universitat Politécnica de Valéncia
Universitat Politécnica de Valencia
University of Novi Sad
Universitat Politécnica de Valéncia
University of Zagreb

IRIT

Assiut University

West University of Timisoara
Universitat Politécnica de Valéncia
IBS PAN and WSM

MIA-CSIC

University of Novi Sad

Imperial College London

ELTE IK

University of Zagreb

Utrecht University

ix

X Organization

EUMAS 2020 External Reviewers

Toannis Antonopoulos
Thanasis Baharis
Benoit Barbot

Jinke He

Can Kurtan

Salvatore Lopes

Ouri Poupko
Dimitrios Troullinos
Onuralp Ulusoy
Xingyu Zhao

Heriot-Watt University

Technical University of Crete
LACL, Université Paris-Est Créteil
TU Delft

Utrecht University

National Research Council of Italy
Weizmann Institute of Science
Technical University of Crete
Utrecht University

Heriot-Watt University

Local Organizing Committee

Konstantinos Gounis
Kalliopi Kravari
Ioannis Mollas
Emmanouil Rigas
Alexandros Vassiliades

Aristotle University of Thessaloniki
Aristotle University of Thessaloniki
Aristotle University of Thessaloniki
Aristotle University of Thessaloniki
Aristotle University of Thessaloniki

Contents

EUMAS 2020 Session 1: Intelligent Agents and MAS Applications

Towards a Theory of Intentions for Human-Robot Collaboration.
Rocio Gomez, Mohan Sridharan, and Heather Riley

Decentralised Control of Intelligent Devices: A Healthcare Facility Study . . .
Sacha Lhopital, Samir Aknine, Vincent Thavonekham, Huan Vu,
and Sarvapali Ramchurn

Decentralised Multi-intersection Congestion Control for Connected
Autonomous Vehicles
Huan Vu, Samir Aknine, Sarvapali Ramchurn, and Alessandro Farinelli

Congestion Management for Mobility-on-Demand Schemes that Use
Electric Vehicles.
Emmanouil S. Rigas and Konstantinos S. Tsompanidis

Disaster Response Simulation as a Testbed for Multi-Agent Systems.
Tabajara Krausburg, Vinicius Chrisosthemos, Rafael H. Bordini,
and Jiirgen Dix

EUMAS 2020 Session 2: Mechanisms, Incentives, Norms, Privacy

Rewarding Miners: Bankruptcy Situations and Pooling Strategies
Marianna Belotti, Stefano Moretti, and Paolo Zappala

A Game-Theoretical Analysis of Charging Strategies for Competing
Double Auction Marketplaces.
Bing Shi and Xiao Li

Agents for Preserving Privacy: Learning and Decision Making
Collaboratively
Onuralp Ulusoy and Pmar Yolum

Nardine Osman, Carles Sierra, Ronald Chenu-Abente, Qiang Shen,
and Fausto Giunchiglia

A Faithful Mechanism for Privacy-Sensitive Distributed Constraint
Satisfaction Problems. L
Farzaneh Farhadi and Nicholas R. Jennings

Xii Contents

Incentivising Exploration and Recommendations for Contextual Bandits
with Payments 159
Priyank Agrawal and Theja Tulabandhula

Emotional Agents Make a (Bank) Run. 171
Konstantinos Grevenitis, Ilias Sakellariou, and Petros Kefalas

EUMAS 2020 Session 3: Autonomous Agents

An Interface for Programming Verifiable Autonomous Agents in ROS 191
Rafael C. Cardoso, Angelo Ferrando, Louise A. Dennis,
and Michael Fisher

Integrated Commonsense Reasoning and Deep Learning for Transparent
Decision Making in Robotics 206
Tiago Mota, Mohan Sridharan, and Ales Leonardis

Combining Lévy Walks and Flocking for Cooperative Surveillance Using
Aerial Swarms 226
Hugo Sardinha, Mauro Dragone, and Patricia A. Vargas

Single-Agent Policies for the Multi-Agent Persistent Surveillance Problem
via Artificial Heterogeneity 243
Thomas Kent, Arthur Richards, and Angus Johnson

Explaining the Influence of Prior Knowledge on POMCP Policies 261
Alberto Castellini, Enrico Marchesini, Giulio Mazzi,
and Alessandro Farinelli

EUMAS 2020 Best Papers Session

Approximating Voting Rules from Truncated Ballots. 279
Manel Ayadi, Nahla Ben Amor, and Jérome Lang

Privacy-Preserving Dialogues Between Agents: A Contract-Based Incentive
Mechanism for Distributed Meeting Scheduling 299
Boya Di and Nicholas R. Jennings

EUMAS-AT 2020 Joint Session

An Argumentation-Based Approach to Generate Domain-Specific

EXplanations.ottt e 319
Nadin Kokciyan, Simon Parsons, Isabel Sassoon, Elizabeth Sklar,
and Sanjay Modgil

Contents

Distributed Multi-issue Multi-lateral Negotiation Using a Divide and Rule

Approach.

Ndeye Arame Diago, Samir Aknine, Sarvapali Ramchurn,
and El hadji Ibrahima Diago

Increasing Negotiation Performance at the Edge of the Network

Sam Vente, Angelika Kimmig, Alun Preece, and Federico Cerutti

Challenges and Main Results of the Automated Negotiating Agents

Competition (ANAC) 2019

Reyhan Aydogan, Tim Baarslag , Katsuhide Fujita, Johnathan Mell,
Jonathan Gratch, Dave de Jonge, Yasser Mohammad, Shinji Nakadai,
Satoshi Morinaga, Hirotaka Osawa, Claus Aranha,

and Catholijn M. Jonker

Optimal Majority Rule Versus Simple Majority Rule.

Vitaly Malyshev

Evaluating Crowdshipping Systems with Agent-Based Simulation.

Jeremias Dotterl, Ralf Bruns, Jiirgen Dunkel, and Sascha Ossowski

EUMAS 2020 Session 4: Agent-Based Models, Social Choice,
Argumentation, Model-Checking

Measuring the Strength of Rhetorical Arguments.

Mariela Morveli-Espinoza, Juan Carlos Nieves,
and Cesar Augusto Tacla

Understanding the Role of Values and Norms in Practical Reasoning

Jazon Szabo, Jose M. Such, and Natalia Criado

Predicting the Winners of Borda, Kemeny and Dodgson Elections

with Supervised Machine Learning

Hanna Kujawska, Marija Slavkovik, and Jan-Joachim Riickmann

From Virtual Worlds to Mirror Worlds: A Model and Platform for Building

Agent-Based eXtended Realities

Angelo Croatti and Alessandro Ricci

Model-Checking Information Diffusion in Social Networks with PRISM

Louise A. Dennis and Marija Slavkovik

“Roads? Where We’re Going We Don’t Need Roads.” Using Agent-Based
Modeling to Analyze the Economic Impact of Hyperloop Introduction

onaSupply Chain

Francesco Bertolotti and Riccardo Occa

Xiii

X1v Contents

Sensitivity to Initial Conditions in Agent-Based Models. 501
Francesco Bertolotti, Angela Locoro, and Luca Mari

EUMAS 2020 Session 5: Agent-Oriented Software Engineering,
Game Theory, Task Allocation, Learning

Statecharts and Agent Technology: The Past and Future 511
Nikolaos 1. Spanoudakis

A Game of Double Agents: Repeated Stackelberg Games
with Role Switch e 529
Matteo Murari, Alessandro Farinelli, and Riccardo Sartea

Learning Summarised Messaging Through Mediated Differentiable

Inter-Agent Learning 546
Sharan Gopal, Rishabh Mathur, Shaunak Deshwal,
and Anil Singh Parihar

Integrating Deep Learning and Non-monotonic Logical Reasoning
for Explainable Visual Question Answering 558
Mohan Sridharan and Heather Riley

Multiagent Task Coordination as Task Allocation Plus

Task Responsibility. 571
Vahid Yazdanpanah, Mehdi Dastani, Shaheen Fatima,
Nicholas R. Jennings, Devrim M. Yazan, and Henk Zijm

Anytime and Efficient Coalition Formation with Spatial
and Temporal Constraints.ottt it et e 589
Luca Capezzuto, Danesh Tarapore, and Sarvapali Ramchurn

Author Index e 607

EUMAS 2020 Session 1: Intelligent
Agents and MAS Applications

®

Check for
updates

Towards a Theory of Intentions
for Human-Robot Collaboration

Rocio Gomez!, Mohan Sridharan?®) @, and Heather Riley"

! Electrical and Computer Engineering, The University of Auckland,
Auckland, New Zealand
m.gomez@auckland.ac.nz, hril230Qaucklanduni.ac.nz
2 School of Computer Science, University of Birmingham, Birmingham, UK
m.sridharan@bham.ac.uk

Abstract. The architecture described in this paper encodes a theory of
intentions based on the principles of non-procrastination, persistence,
and relevance. The architecture reasons with transition diagrams at
two different resolutions, with the fine-resolution description defined
as a refinement of, and hence tightly-coupled with, a coarse-resolution
description. For any given goal, non-monotonic logical reasoning with
the coarse-resolution description computes an activity, i.e., a plan, com-
prising a sequence of abstract actions to be executed to achieve the goal.
Each abstract action is implemented as a sequence of concrete actions
by automatically zooming to and reasoning with the part of the fine-
resolution transition diagram relevant to the coarse-resolution transition
and the goal. Each concrete action is executed using probabilistic mod-
els of the uncertainty in sensing and actuation, and the corresponding
coarse-resolution observations are added to the coarse-resolution history.
Experimental results in the context of simulated and physical robots indi-
cate improvements in reliability and efficiency compared with an archi-
tecture that does not include the theory of intentions, and an architecture
that does not include zooming for fine-resolution reasoning.

1 Introduction

Consider a robot! assisting humans in dynamic domains, e.g., a robot help-
ing a human arrange objects in different configurations on a tabletop, or a
robot delivering objects to particular places or people—see Fig. 1. These robots
often have to reason with different descriptions of uncertainty and incomplete
domain knowledge. This information about the domain often includes common-
sense knowledge, especially default knowledge that holds in all but a few excep-
tional circumstances, e.g., “books are usually in the library but cookbooks may
be in the kitchen”. The robot also receives a lot more sensor data than it can
process, and it is equipped with many algorithms that compute and use a prob-
abilistic quantification of the uncertainty in sensing and actuation, e.g., “I am

1 A journal article based on this work has been accepted for publication in the Annals
of Mathematics and Artificial Intelligence [11].
© Springer Nature Switzerland AG 2020

N. Bassiliades et al. (Eds.): EUMAS 2020/AT 2020, LNAI 12520, pp. 3-19, 2020.
https://doi.org/10.1007/978-3-030-66412-1_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-66412-1_1&domain=pdf
http://orcid.org/0000-0001-9922-8969
https://doi.org/10.1007/978-3-030-66412-1_1

4 R. Gomez et al.

90% certain the robotics book is on the table”. Furthermore, while it is difficult
to provide robots comprehensive domain knowledge or elaborate supervision,
reasoning with incomplete or incorrect information can provide incorrect or sub-
optimal outcomes. This loss in performance is more pronounced in scenarios
corresponding to unexpected success or failure, which are common in dynamic
domains. For instance, consider a robot trying to move two books from an office
to a library. After moving the first book to the library, if the robot observes the
second book in the library, or if it observes the second book in the kitchen on the
way back to the office, it should stop executing its plan, reason about what may
have happened, and compute a new plan if necessary. One way to achieve this
behavior is to augment a traditional planning approach with the ability to rea-
son about observations of all domain objects and events during plan execution,
but this approach is computationally intractable in complex domains. Instead,
the architecture described in this paper seeks to enable a robot pursuing a par-
ticular goal to automatically reason about the underlying intention and related
observations of its domain during planning and execution. It does so by building
on an architecture that uses declarative programming to reason about intended
actions to achieve a given goal [5], and on an architecture that reasons with
tightly-coupled transition diagrams at different levels of abstraction [18]. This
work has been described in detail in a recently published journal article [11].
Here, we describe the following key characteristics of the architecture:

— An action language is used to describe the tightly-coupled transition diagrams
of the domain at two different resolutions. At the coarse resolution, non-
monotonic logical reasoning with commonsense knowledge, including default
knowledge, produces a sequence of intentional abstract actions for any given
goal.

— Each intended abstract action is implemented as a sequence of concrete
actions by automatically zooming to and reasoning with the relevant part of
the fine-resolution system description defined as a refinement of the coarse-
resolution system description. The outcomes of executing the concrete actions
using probabilistic models or uncertainty are added to the coarse-resolution
history.

In this paper, the coarse-resolution and fine-resolution action language descrip-
tions are translated to programs in CR-Prolog, an extension of Answer Set Prolog
(ASP) [9], for commonsense reasoning. The execution of each concrete action
using probabilistic models of uncertainty in sensing and actuation is achieved
using existing algorithms. The architecture thus reasons about intentions and
beliefs at two resolutions. We demonstrate the capabilities of our architecture
in the context of (i) a simulated robot assisting humans in an office domain;
(ii) a physical robot (Baxter) manipulating objects on a tabletop; and (iii) a
wheeled robot (Turtlebot) moving objects in an office domain. Experimental
results indicate that the proposed architecture improves reliability and compu-
tational efficiency of planning and execution in dynamic domains in comparison
with an architecture that does not support reasoning about intentional actions.

Theory of Intentions for Human-Robot Collaboration 5

(a) Baxter robot. (b) Turtlebot.

Fig. 1. (a) Baxter robot manipulating objects on a tabletop; and (b) Turtlebot moving
objects to particular locations in a lab.

2 Related Work

There is much work in the modeling and recognition of intentions. Belief-desire-
intention (BDI) architectures model the intentions of reasoning agents and guide
reasoning by eliminating choices inconsistent with current intentions [6,14]. How-
ever, such architectures do not learn from past behavior, adapt to new situations,
or include an explicit representation of (or reasoning about) goals. Other work
has reasoned with domain knowledge or used models learned from training sam-
ples to recognize intentions [13].

An architecture formalizing intentions based on declarative programming
was described in [3]. It introduced an action language that can represent inten-
tions based on two principles: (i) non-procrastination, i.e., intended actions are
executed as soon as possible; and (ii) persistence, i.e., unfulfilled intentions per-
sist. This architecture was also used to enable an external observer to recognize
the activity of an observed agent, i.e., for determining what has happened and
what the agent intends to do [8]. However, this architecture did not support the
modeling of agents that desire to achieve specific goals. The Theory of Inten-
tions (TT) [4,5] builds on [3] to model the intentions of goal-driven agents. 7Z
expanded transition diagrams that have physical states and physically executable
actions to include mental fluents and mental actions. It associated a sequence
of agent actions (called an “activity”) with the goal it intended to achieve, and
introduced an intentional agent that only performs actions that are intended to
achieve a desired goal and does so without delay. This theory has been used to
create a methodology for understanding of narratives of typical and exceptional
restaurant scenarios [20], and goal-driven agents in dynamic domains have been
modeled using such activities [15]. A common requirement of such theories and
their use is that all the domain knowledge, including the preconditions and effects
of actions and potential goals, be known and encoded in the knowledge base,
which is difficult to do in robot domains. Also, the set of states (and actions,
observations) to be considered can be large in robot domains, which makes effi-
cient reasoning a challenging task. In recent work [20], the authors attempt to

6 R. Gomez et al.

Logician

Controller

fine resolution observations] \ fine resolution action

Executor

Fig. 2. Architecture combines the complementary strengths of declarative program-
ming and probabilistic reasoning, representing intentions and beliefs as coupled transi-
tion diagrams at two resolutions; may be viewed as interactions between a controller,
logician, and executor.

address this problem by clustering indistinguishable states [16] but these clusters
need to be encoded in advance. Furthermore, these approaches do not consider
the uncertainty in sensing and actuation.

Logic-based methods have been used widely in robotics, including those that
also support probabilistic reasoning [12,21]. Methods based on first-order logic
do not support non-monotonic logical reasoning or the desired expressiveness for
capabilities such as default reasoning, e.g., it is not always meaningful to express
degrees of belief by attaching probabilities to logic statements. Non-monotonic
logics such as ASP address some of these limitations, and they have been used
in cognitive robotics applications by an international research community [7].
However, classical ASP formulations do not support the probabilistic models of
uncertainty that are used by algorithms for sensing and actuation in robotics.
Approaches based on logic programming also do not support one or more of the
capabilities such as incremental addition of probabilistic information or variables
to reason about open worlds. Towards addressing these limitations, prior work in
our group developed a refinement-based architecture that reasoned with tightly-
coupled transition diagrams at two resolutions; each abstract action in a coarse-
resolution plan computed using ASP was executed as a sequence of concrete
actions computed by probabilistic reasoning over the relevant part of the fine-
resolution diagram [18]. This paper explores the combination of these ideas with
those drawn from 7 Z; specific differences from prior work are described in the
relevant sections below.

Theory of Intentions for Human-Robot Collaboration 7

3 Cognitive Architecture

Figure2 presents a block diagram of the overall architecture. Similar to prior
work [18], this architecture may be viewed as consisting of three components: a
controller, a logician, and an executor. In this paper, the controller is responsi-
ble for holding the overall beliefs regarding domain state, and for the transfer of
control and information between all components. For any given goal, the logician
performs non-monotonic logical reasoning with the coarse-resolution represen-
tation of commonsense knowledge to generate an activity, i.e., a sequence of
intentional abstract actions. Each abstract action is implemented as a sequence
of concrete actions by zooming to and reasoning with a fine-resolution repre-
sentation defined as a refinement of the coarse-resolution representation. The
executor uses probabilistic models of the uncertainty in sensing and actuation
to execute each concrete action, with the outcomes being communicated to the
controller and added to the coarse-resolution history of the logician. These com-
ponents of the architecture are described below, along with differences from prior
work, using variants of the following illustrative domain.

Example Domain 1 [Robot Assistant (RA) Domain]. Consider a robot assist-
ing humans in moving particular objects to desired locations in an indoor office
domain with:

— Sorts such as place, thing, robot, object, and book, arranged hierarchically,
e.g., object and robot are subsorts of thing.

— Places: {of ficeq, of fices, kitchen, library} with a door between neighboring

places—see Fig. 3; only the door between kitchen and library can be locked.

Instances of sorts, e.g., 7oby, booky, books.

— Static attributes such as color, size and parts (e.g., base and handle) of
objects. Other agents that may change the domain are not modeled.

Office 1 Office 2 Kitchen Library

N

Fig. 3. Four rooms considered in Example 1, with a human in the kitchen and two
books in of fice;. Only the library’s door can be locked; all other rooms remain open.

3.1 Action Language and Domain Representation

We first describe the action language encoding of domain dynamics, and its
translation to CR-~Prolog programs for knowledge representation and reasoning.

8 R. Gomez et al.

Action Language: Action languages are formal models of parts of natural lan-
guage used for describing transition diagrams of dynamic systems. We use action
language AL, [10] to describe the transition diagrams at different resolutions.
AL, has a sorted signature with statics, fluents and actions. Statics are domain
attributes whose truth values cannot be changed by actions, whereas fluents are
domain attributes whose truth values can be changed by actions. Fluents can
be basic or defined. Basic fluents obey the laws of inertia and can be changed
by actions. Defined fluents do not obey the laws of inertia and are not changed
directly by actions—their values depend on other fluents. Actions are defined
as a set of elementary operations. A domain attribute p or its negation —p is a
literal. ALy allows three types of statements: causal law, state constraint, and
executability condition.

Coarse-Resolution Knowledge Representation: The coarse-resolution
domain representation consists of system description D, a collection of state-
ments of ALy, and history H,.. System description D, has a sorted signature X,
and axioms that describe the transition diagram 7.. X, defines the basic sorts,
domain attributes and actions. Example 1 introduced some basic sorts and ground
instances of the RA domain. X, also includes the sort step for temporal rea-
soning. Domain attributes (i.e., statics and fluents) and actions are described
in terms of their arguments’ sorts. In the RA domain, statics include relations
such as next_to(place, place), which describes the relative location of places in
the domain; and relations representing object attributes such as color and size,
e.g., obj_color(object, color). Fluents include loc(thing, place), the location of
the robot or domain objects; in_hand(robot, object), which denotes a particu-
lar object is in the robot’s hand; and locked(place), which implies a particular
place is locked. The locations of other agents, if any, are not changed by the
robot’s actions; these locations are inferred from observations obtained from other
sensors. The domain’s actions include move(robot, place), pickup(robot, object),
putdown(robot, object), and unlock(robot,place); we also consider exogenous
actions exo_move(object, place) and exo_lock(place), which are used for diagnos-
tic reasoning. X, also includes the relation holds(fluent, step) to imply that a
particular fluent holds true at a particular time step. Axioms for the RA domain
include causal laws, state constraints and executability conditions such as:

move(roby, P) causes loc(roby, P)
loc(O, P) if loc(roby, P), in_hand(roby, O)
impossible pickup(roby,O) if loc(roby, L), loc(O, Ls), Ly # Lo

The history H. of the domain contains the usual record of fluents observed to
be true or false at a particular time step, i.e., obs(fluent,boolean, step), and
the execution of an action at a particular time step, i.e., occurs(action, step).
In [18] this notion was expanded to represent defaults describing the values of
fluents in the initial state, e.g., “books are usually in the library and if it not
there, they are normally in the office”. We can also encode exceptions to these
defaults, e.g., “cookbooks are in the kitchen”. This representation, which does
not quantitatively model beliefs in these defaults, supports elegant reasoning
with generic defaults and their specific exceptions.

Theory of Intentions for Human-Robot Collaboration 9

Reasoning: The coarse-resolution domain representation is translated into a
program II(D.,H.) in CR-Prolog?, a variant of ASP that incorporates con-
sistency restoring (CR) rules [2]. ASP is based on stable model semantics and
supports concepts such as default negation and epistemic disjunction, e.g., unlike
“=a” that states a is believed to be false, “not a” only implies a is not believed
to be true. ASP can represent recursive definitions and constructs that are dif-
ficult to express in classical logic formalisms, and it supports non-monotonic
logical reasoning, i.e., it is able to revise previously held conclusions based on
new evidence. An ASP program I includes the signature and axioms of D.,
inertia axioms, reality checks, and observations, actions, and defaults from H..
Every default also has a CR rule that allows the robot to assume the default’s
conclusion is false to restore consistency under exceptional circumstances. Each
answer set of an ASP program represents the set of beliefs of an agent associ-
ated with the program. Algorithms for computing entailment, and for planning
and diagnostics, reduce these tasks to computing answer sets of CR-Prolog pro-
grams. We compute answer sets of CR-Prolog programs using the system called
SPARC [1].

3.2 Adapted Theory of Intention

For any given goal, a robot using ASP-based reasoning will compute a plan
and execute it until the goal is achieved or a planned action has an unexpected
outcome; in the latter case, the robot will try to explain the outcome (i.e.,
diagnostics) and compute a new plan if necessary. To motivate the need for a
different approach in dynamic domains, consider the following scenarios in which
the goal is to move book; and books to the library; these scenarios have been
adapted from scenarios in [5]:

— Scenario 1 (planning): Robot rob; is in the kitchen holding book;, and
believes book, is in the kitchen and the library is unlocked. The plan
is: move(roby, library), put_down(roby,booky), move(roby, kitchen), pickup
(roby, books), followed by move(roby, library) and put_down(roby, books).

— Scenario 2 (unexpected success): Assume that rob; in Scenario-1 has
moved to the library and put book; down, and observes books. The robot
should explain this observation (e.g., books was moved there) and realize the
goal has been achieved.

— Scenario 3 (not expected to achieve goal, diagnose and replan, case
1): Assume robl in Scenario-1 starts moving book; to library, but observes
books is not in the kitchen. The robot should realize the plan will fail to
achieve the overall goal, explain the unexpected observation, and compute a
new plan.

— Scenario 4 (not expected to achieve goal, diagnose and replan, case
2): Assume robl is in the kitchen holding bookl, and believes book2 is in
of fices and library is unlocked. The plan is to put book; in the library

2 We use the terms “ASP” and “CR-Prolog” interchangeably.

10 R. Gomez et al.

before fetching books from of fices. Before roby moves to library, it observes
books in the kitchen. The robot should realize the plan will fail and compute
a new plan.

— Scenario 5 (failure to achieve the goal, diagnose and replan): Assume
roby in Scenario-1 is putting books in the library, after having put book; in
the library earlier, and observes that book; is no longer there. The robot’s
intention should persist; it should explain the unexpected observation, replan
if necessary, and execute actions until the goal is achieved.

One way to support the desired behavior in such scenarios is to reason with
all possible observations of domain objects and events (e.g., observations of all
objects in the sensor’s field of view) during plan execution. However, such an
approach would be computationally intractable in complex domains. Instead, we
build on the principles of non-procrastination and persistence and the ideas from
TZ. Our architecture enables the robot to compute actions that are intended
for any given goal and current beliefs. As the robot attempts to implement each
such action, it obtains all observations relevant to this action and the intended
goal, and adds these observations to the recorded history. We will henceforth use
ATT to refer to this adapted theory of intention that expands both the system
description D, and history H, in the original program II(D., H.). First, the
signature Y. is expanded to represent an activity, a triplet of a goal, a plan to
achieve the goal, and a specific name, by introducing relations such as:

activity(name), activity_goal(name, goal), activity_length(name,length)

activity_component(name, number, action)

These relations represent each named activity, the goal and length of each activ-
ity, and actions that are components of the activity; when ground, these relations
are statics.

Next, the existing fluents of X' are considered to be physical fluents and the
set of fluents is expanded to include mental fluents such as:

active_activity(activity), in_progress_goal(goal), next_action(activity, action),
in_progress_activity(activity), active_goal(goal), next_activity_name(name),

current_action_index(activity, index)

where the first four relations are defined fluents, and other relations are basic flu-
ents. These fluents represent the robot’s belief about a particular activity, action
or goal being active or in progress. None of these fluents’ values are changed
directly by executing any physical action. The value of current_action_index
changes if the robot has completed an intended action or if a change in the
domain makes it impossible for an activity to succeed. The values of other men-
tal fluents are changed by expanding the set of existing physical actions of X
to include mental actions such as start(name), stop(name), select(goal), and
abandon(goal), where the first two mental actions are used by the controller to

Theory of Intentions for Human-Robot Collaboration 11

start or stop a particular activity, and the other two are exogenous actions that
are used (e.g., by human) to select or abandon a particular goal.

In addition to the signature X, history H, is also expanded to include rela-
tions such as attempt(action, step) and — hpd(action, step), which denote that
a particular action was attempted at a particular time step, and that a particu-
lar action was not executed successfully at a particular time step. Figuring out
when an action was actually executed (or not executed) requires reasoning with
observations of whether an action had the intended outcome(s).

We also introduce new axioms in D, e.g., to represent the effects of the
physical and mental actions on the physical and mental fluents, e.g., starting
(stopping) an activity makes it active (inactive), and executing an action in an
activity keeps the activity active. The new axioms also include state constraints,
e.g., to describe when a particular activity or goal is active, and executability con-
ditions, e.g., it is not possible for the robot to simultaneously execute two mental
actions. In addition, axioms are introduced to generate intentional actions, build
a consistent model of the domain history, and to perform diagnostics.

The revised system description D’ and history H/, are translated automati-
cally to CR-Prolog program IT(D.,H.,) that is solved for planning or diagnostics.
The complete program for the RA domain is available online [17]. Key differences
between A7 7Z and prior work on 77 are:

— 77 becomes computationally expensive, especially as the size of the plan
or history increases. It also performs diagnostics and planning jointly, which
allows it to consider different explanations during planning but increases com-
putational cost in complex domains. A7 Z, on the other hand, first builds a
consistent model of history by considering different explanations, and uses
this model to guide planning, significantly reducing computational cost in
complex domains.

— 77 assumes complete knowledge of the state of other agents (e.g., humans
or other robots) that perform exogenous actions. In many robotics domains,
this assumption is rather unrealistic. A7 Z instead makes the more realistic
assumption that the robot can only infer exogenous actions by reasoning with
the observations that it obtains from sensors.

— ATT does not include the notion of sub-goals and sub-activities (and associ-
ated relations) from 77Z, as they were not necessary. Also, the sub-activities
and sub-goals will need to be encoded in advance, and reasoning with these
relations will also increase computational complexity in many situations. The
inclusion of sub-activities and sub-goals will be explored in future work.

Any architecture with A7Z, 77, or a different reasoning component based on
logic-programming or classical first-order logic, has two key limitations. First,
reasoning does not scale well to the finer resolution required for many tasks to
be performed by the robot. For instance, the coarse-resolution representation
discussed so far is not sufficient if the robot has to grasp and pickup a particular
object from a particular location, and reasoning logically over a sufficiently fine-
grained domain representation will be computationally expensive. Second, we
have not yet modeled the actual sensor-level observations of the robot or the

12 R. Gomez et al.

uncertainty in sensing and actuation. Section 2 further discusses the limitations
of other approaches based on logical and/or probabilistic reasoning for robotics
domains. Our architecture seeks to address these limitations by combining A77
with ideas drawn from work on a refinement-based architecture [18].

3.3 Refinement, Zooming and Execution

Consider a coarse-resolution system description D, of transition diagram 7. that
includes ATZ. For any given goal, reasoning with IT(D., H.) will provide an
activity, i.e., a sequence of abstract intentional actions. In our architecture, the
execution of the coarse-resolution transition corresponding to each such abstract
action is based on a fine-resolution system description Dy of transition diagram
Tr, which is a refinement of, and is tightly coupled to, D.. We can imagine
refinement as taking a closer look at the domain through a magnifying lens,
potentially leading to the discovery of structures that were previously abstracted
away by the designer [18]. Dy is constructed automatically as a step in the design
methodology using D!, and some domain-specific information provided by the
designer.

First, the signature Xy of Dy includes each basic sort of D, whose ele-
ments have not been magnified by the increase in resolution, or both the coarse-
resolution copy and its fine-resolution counterparts for sorts with magnified ele-
ments. For instance, sorts in the RA domain include cells that are components
of the original set of places, and any cup has a base and handle as components;
any book, on the other hand, is not magnified and has no components. We also
include domain-dependent statics relating the magnified objects and their coun-
terparts, e.g., component(cup_base, cup). Next, domain attributes of X'y include
the coarse-resolution version and fine-resolution counterparts (if any) of each
domain attribute of X.. For instance, in the RA domain, Yy include domain
attributes, e.g.: loc*(thing*, place®), next_to* (place*, place*), loc(thing, place),
and next_to(place, place), where relations with and without the “*” represent the
coarse-resolution counterparts and fine-resolution counterparts respectively. The
specific relations listed above describe the location of each thing at two different
resolutions, and describe two places or cells that are next to each other. Actions of
Yt include (a) every action in X, with its magnified parameters replaced by fine-
resolution counterparts; and (b) knowledge-producing action test(robot, fluent)
that checks the value of a fluent in a given state. Finally, X't includes knowledge
fluents to describe observations of the environment and the axioms governing
them, e.g., basic fluents to describe the direct (sensor-based) observation of the
values of the fine-resolution fluents, and defined domain-dependent fluents that
determine when the value of a particular fluent can be tested. The test actions
only change the values of knowledge fluents.

The axioms of Dy include (a) coarse-resolution and fine-resolution counter-
parts of all state constraints of D,, and fine-resolution counterparts of all other
axioms of D,, with variables ranging over appropriate sorts from X; (b) general
and domain-specific axioms for observing the domain through sensor inputs; and
(¢) axioms relating coarse-resolution domain attributes with their fine-resolution

Theory of Intentions for Human-Robot Collaboration 13

counterparts. If certain conditions are met, e.g., each coarse-resolution domain
attribute can be defined in terms of the fine-resolution attributes of the corre-
sponding components, there is a path in 7y for each transition in 7.—see [18] for
formal definitions and proofs.

Reasoning with Dy does not address the uncertainty in sensing and actua-
tion, and becomes computationally intractable for complex domains. We address
this problem by drawing on the principle of zooming introduced in [18]. Specif-
ically, for each abstract transition T to be implemented at fine resolution, we
automatically determine the system description Df(T') relevant to this transi-
tion; we do so by determining the relevant object constants and restricting Dy
to these object constants. To implement 7', we then use ASP-based reasoning
with IT(D;(T), Hy) to plan a sequence of concrete (i.e., fine-resolution) actions.
In what follows, we use “refinement and zooming” to refer to the use of both
refinement and zooming as described above. Note that fine-resolution reasoning
does not (need to) reason with activities or intentional actions.

The actual execution of the plan of concrete action is based on existing imple-
mentations of algorithms for common robotics tasks such as motion planning,
object recognition, grasping and localization. These algorithms use probabilistic
models of uncertainty in sensing and actuation. The high-probability outcomes
of each action’s execution are elevated to statements associated with complete
certainty in H; and used for subsequent reasoning. The outcomes from fine-
resolution execution of each abstract transition, along with relevant observations,
are added to H, for subsequent reasoning using A7 Z. The CR-Prolog programs
for fine-resolution reasoning and the program for the overall control loop of the
architecture are available online [17].

Key differences between the current representation and use of fine-resolution
information, and the prior work on the refinement-based architecture [18] are:

— Prior work used a partially observable Markov decision process (POMDP)
to reason probabilistically over the zoomed fine-resolution system descrip-
tion Dy (T) for any coarse-resolution transition T'; this can be computation-
ally expensive, especially when domain changes prevent reuse of POMDP
policies [18]. In this paper, CR-Prolog is used to compute a plan of con-
crete actions from Df(T); each concrete action is executed using algorithms
that incorporate probabilistic models of uncertainty, significantly reducing the
computational costs of fine-resolution planning and execution. The disadvan-
tage is that the uncertainty associated with each algorithm is not considered
explicitly during planning at the fine-resolution.

— Prior work did not (a) reason about intentional actions; (b) maintain any
fine-resolution history; or (c) extract and exploit all the information from fine-
resolution observations. The architecture described in this paper keeps track
of the relevant fine-resolution observations and adds appropriate statements
to the coarse-resolution history to use all the relevant information. It also
explicitly builds a consistent model of history at the finer resolution.

14 R. Gomez et al.

4 Experimental Setup and Results

This section reports the results of experimentally evaluating the capabilities of
our architecture in different scenarios. We evaluated the following hypotheses:

— H1: using A77 improves the computational efficiency in comparison with
not using it, especially in scenarios with unexpected success.

— H2: using A7 7 improves the accuracy in comparison with not using it, espe-
cially in scenarios with unexpected goal-relevant observations.

— H3: the architecture that combines A7 Z with refinement and zooming sup-
ports reliable and efficient operation in complex robot domains.

We report results of evaluating these hypotheses experimentally: (a) in a simu-
lated domain based on Example 1; (b) on a Baxter robot manipulating objects
on a tabletop; and (c) on a Turtlebot finding and moving objects in an indoor
domain. We also provide some execution traces as illustrative examples of the
working of the architecture. In each trial, the robot’s goal was to find and move
one or more objects to particular locations. As a baseline for comparison, we
used an ASP-based reasoner that does not include A7 Z—we refer to this as
the “traditional planning” (7P) approach in which only the outcome of the
action currently being executed is monitored. Note that this baseline still uses
refinement and zoom, and probabilistic models of the uncertainty in sensing and
actuation. Also, we do not use 7Z as the baseline because it includes components
that make it much more computationally expensive than A7 Z—see Sect. 3.2 for
more details. To evaluate the hypotheses, we used one or more of the follow-
ing performance measures: (i) total planning and execution time; (ii) number of
plans computed; (iii) planning time; (iv) execution time; (v) number of actions
executed; and (vi) accuracy.

4.1 Experimental Results (Simulation)

We first evaluated hypotheses H1 and H2 extensively in a simulated world that
mimics Example 1, with four places and different objects. Please also note the
following:

— To fully explore the effects of A7 7, the simulation-based trials did not include
refinement, i.e., the robot only reasons with the coarse-resolution domain rep-
resentation. We also temporarily abstracted away uncertainty in perception
and actuation.

— We conducted paired trials and compared the results obtained with 7P and
ATT for the same initial conditions and for the same dynamic domain changes
(when appropriate), e.g., a book is moved unknown to the robot and the robot
obtains an unexpected observation.

— To measure execution time, we assumed a fixed execution time for each con-
crete action, e.g., 15 units for moving from a room to the neighboring room, 5
units to pick up an object or put it down; and 5 units to open a door. Ground
truth is provided by a component that reasons with complete domain knowl-
edge.

Theory of Intentions for Human-Robot Collaboration 15

Table 1. Experimental results comparing A7 Z with 7P in different scenarios. Values
of all performance measures (except accuracy) for 7P are expressed as a fraction of
the values of the same measures for A7Z. AT Z improves accuracy and computational
efficiency, especially in dynamic domains.

Scenarios Average ratios Accuracy
Total Number | Planning | Exec. Exec. TP |ATT
time plans time time steps

1 0.81 1.00 0.45 1.00 1.00 100% | 100%

2 3.06 2.63 1.08 5.10 3.61 100% | 100%

3 0.81 0.92 0.34 1.07 1.12 72% | 100%

4 1.00 1.09 0.40 1.32 1.26 73% | 100%

5 0.18 0.35 0.09 0.21 0.28 0% | 100%

All 1.00 1.08 0.41 1.39 1.30 74% | 100%

3 - no failures | 1.00 1.11 0.42 1.32 1.39 100% | 100%

4 - no failures |1.22 1.31 0.49 1.61 1.53 100% | 100%

All - no failures | 1.23 1.30 0.5 1.72 1.60 100% | 100%

Table 1 summarizes the results of ~800 paired trials in each scenario described
in Sect.3.2; all claims made below were tested for statistical significance. The
initial conditions, e.g., starting location of the robot and objects’ locations, and
the goal were set randomly in each paired trial; the simulation ensures that
the goal is reachable from the chosen initial conditions. Also, in suitable sce-
narios, a randomly-chosen, valid (unexpected) domain change is introduced in
each paired trial. Given the differences between paired trials, it does not make
sense to average the measured time or plan length across different trials. In each
paired trial, the value of each performance measure (except accuracy) obtained
with 7P is thus expressed as a fraction of the value of the same performance
measure obtained with A7 7Z; each value reported in Table1 is the average of
these computed ratios. We highlight some key results below.

Scenario-1 represents a standard planning task with no unexpected domain
changes. Both 7P and ATZ provide the same accuracy (100%) and compute
essentially the same plan, but computing plans comprising intentional actions
takes longer. This explains the reported average values of 0.45 and 0.81 for
planning time and total time (for 7P) in Tablel. In Scenario-2 (unexpected
success), both 7P and AT Z achieve 100% accuracy. Here, AT Z stops reasoning
and execution once it realizes the desired goal has been achieved unexpectedly.
However, 7P does not realize this because it does not consider observations not
directly related to the action being executed; it keeps trying to find the objects
of interest in different places. This explains why 7P has a higher planning time
and execution time, computes more plans, and executes more plan steps.

Scenarios 3-5 correspond to different kinds of unexpected failures. In all
trials corresponding to these scenarios, A7 Z leads to successful achievement of

16 R. Gomez et al.

the goal, but there are many instances in which 7P is unable to recover from
the unexpected observations and achieve the goal. For instance, if the goal is to
move two books to the library, and one of the books is moved to an unexpected
location when it is no longer part of an action in the robot’s plan, the robot may
not reason about this unexpected occurrence and thus not achieve the goal. This
phenomenon is especially pronounced in Scenario-5 that represents an extreme
case in which the robot using 7P is never able to achieve the assigned goal
because it never realizes that it has failed to achieve the goal. Notice that in the
trials corresponding to all three scenarios, A7Z takes more time than 7P to
plan and execute the plans for any given goal, but this increase in time is more
than justified given the high accuracy and the desired behavior that the robot
is able to achieve in these scenarios using A77Z.

The row labeled “All” in Table 1 shows the average of the results obtained in
the different scenarios. The following three rows summarize results after remov-
ing from consideration all trials in which 7P fails to achieve the assigned goal.
We then notice that A7 Z is at least as fast as 7P and often faster, i.e., takes
less time (overall) to plan and execute actions. In summary, 7 P results in faster
planning but results in lower accuracy and higher execution time than A7 7 in
dynamic domains, especially in the presence of unexpected successes and failures
that are common in dynamic domains. All these results provide evidence in sup-
port of hypotheses H1 and H2. For extensive results in more complex domains,
including a comparison with an architecture that does not use zooming at the
fine-resolution, please see [11].

4.2 Execution Trace

The following execution trace illustrates the differences in the decisions made by
a robot using A7 Z in comparison with a robot using 7 P. This trace corresponds
to scenarios in which the robot has to respond to the observed effects of an
exogenous action.

Execution Example 1 [Example of Scenario-2]
Assume that robot rob; is in the kitchen initially, holding book; in its hand, and
believes that books is in of fices and the library is unlocked.

— The goal is to have book; and books in the library. The computed plan is the
same for A77Z and 7P, and consists of actions:

move(roby, library), put_-down(roby,book,), move(roby, kitchen),
move(roby, of fices), pickup(roby, books), move(roby, kitchen)

move(roby, library), putdown(roby,books)

— Assume that as the robot is putting book; down in the library, someone has
moved booky to the library.

— With AT Z, the robot observes books in the library, reasons and explains the
observation as the result of an exogenous action, realizes the goal has been
achieved and stops further planning and execution.

Theory of Intentions for Human-Robot Collaboration 17

— With 7P, the robot does not observe or does not use the information encoded
in the observation of book,. It will thus waste time executing subsequent steps
of the plan until it is unable to find or pickup books in the library. It will
then replan (potentially including prior observation of books) and eventually
achieve the desired goal. It may also compute and pursue plans assuming
books is in different places, and take more time to achieve the goal.

4.3 Robot Experiments

We also ran experimental trials with the combined architecture, i.e., A7Z with
refinement and zoom, on two robot platforms. These trials represented instances
of the different scenarios in variants of the domain in Example 1.

First, consider the experiments with the Baxter robot manipulating objects
on a tabletop. The goal is to move particular objects between different “zones”
(instead of places) or particular cell locations on a tabletop. After refinement,
each zone is magnified to obtain grid cells. Also, each object is magnified into
parts such as base and handle after refinement. Objects are characterized by
color and size. The robot cannot move its body but it can use its arm to move
objects between cells or zones.

Next, consider the experiments with the Turtlebot robot operating in an
indoor domain. The goal is to find and move particular objects between places
in an indoor domain. The robot does not have a manipulator arm; it solicits
help from a human to pickup the desired object when it has reached the desired
source location and found the object, and to put the object down when it has
reached the desired target location. Objects are characterized by color and type.
After refinement, each place or zone was magnified to obtain grid cells. Also,
each object is magnified into parts such as base and handle after refinement.

Although the two domains differ significantly, e.g., in the domain attributes,
actions and complexity, no change is required in the architecture or the under-
lying methodology. Other than providing the domain-specific information, no
human supervision is necessary; most of the other steps are automated. In ~50
experimental trials in each domain, the robot using the combined architecture is
able to successfully achieve the assigned goal. The performance is similar to that
observed in the simulation trials. For instance, if we do not include A7 Z, the
robot has lower accuracy or takes more time to achieve the goal in the presence
of unexpected success or failure; in other scenarios, the performance with A77Z
and 7P is comparable. Also, if we do not include zooming, the robot takes a
significantly longer to plan and execute concrete, i.e., fine-resolution actions. In
fact, as the domain becomes more complex, i.e., there are many objects and
achieving the desired goal requires plans with multiple steps, there are instances
when the planning starts becoming computationally intractable. All these results
provide evidence in support of hypothesis H3.

Videos of the trials on the Baxter robot and Turtlebot corresponding to
different scenarios can be viewed online [19]. For instance, in one trial involving
the Turtlebot, the goal is to have both a cup and a bottle in the library, and
these objects and the robot are initially in of fices. The computed plan has the

18 R. Gomez et al.

robot pick up the bottle, move to the kitchen, move to the library, put the bottle
down, move back to the kitchen and then to of fices, pick up the cup, move to
the library through the kitchen, and put the cup down. When the Turtlebot is
moving to the library holding the bottle, someone moves the cup to the library.
With A7 7Z, the robot uses the observation of the cup, once it has put the bottle
in the library, to infer the goal has been achieved and thus stops planning and
execution. With just 7P, the robot continued with its initial plan and realized
that there was a problem (unexpected position of the cup) only when it went
back to of fices and did not find the cup.

5 Discussion and Future Work

In this paper we presented a general architecture that reasons with intentions
and beliefs using transition diagrams at two different resolutions. Non-monotonic
logical reasoning with a coarse-resolution domain representation containing com-
monsense knowledge is used to provide a plan of abstract intentional actions
for any given goal. Each such abstract intentional action is implemented as
a sequence of concrete actions by reasoning with the relevant part of a fine-
resolution representation that is a refinement of the coarse-resolution represen-
tation. Also, the architecture allows the robot to automatically and elegantly
consider the observations that are relevant to any given goal and the underly-
ing intention. Experimental results in simulation and on different robot plat-
forms indicate that this architecture improves the accuracy and computational
efficiency of decision making in comparison with an architecture that does not
reason with intentional actions and/or does not include refinement and zooming.

This architecture opens up directions for future research. First, we will
explore and formally establish the relationship between the different transition
diagrams in this architecture, along the lines of the analysis provided in [18].
This will enable us to prove correctness and provide other guarantees about
the robot’s performance. We will also instantiate the architecture in different
domains and to further demonstrate the applicability of the architecture. The
long-term goal will be enable robots to represent and reason reliably and effi-
ciently with different descriptions of knowledge and uncertainty.

References

1. Balai, E., Gelfond, M., Zhang, Y.: Towards answer set programming with sorts.
In: International Conference on Logic Programming and Nonmonotonic Reasoning,
Corunna, Spain, 15-19 September 2013 (2013)

2. Balduccini, M., Gelfond, M.: Logic programs with consistency-restoring rules. In:
AAAT Spring Symposium on Logical Formalization of Commonsense Reasoning,
pp. 9-18 (2003)

3. Baral, C., Gelfond, M.: Reasoning about intended actions. In: Proceedings of the
National Conference on Artificial Intelligence, vol. 20, p. 689 (2005)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Theory of Intentions for Human-Robot Collaboration 19

Blount, J., Gelfond, M., Balduccini, M.: Towards a theory of intentional agents. In:
Knowledge Representation and Reasoning in Robotics. AAAT Spring Symposium
Series, pp. 10-17 (2014)

Blount, J., Gelfond, M., Balduccini, M.: A theory of intentions for intelligent agents.
In: Calimeri, F., Tanni, G., Truszczynski, M. (eds.) LPNMR 2015. LNCS (LNAI),
vol. 9345, pp. 134-142. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
23264-5_12

Bratman, M.: Intention, Plans, and Practical Reason. Center for the Study of
Language and Information (1987)

Erdem, E., Patoglu, V.: Applications of ASP in robotics. Kunstliche Intelligenz
32(2-3), 143-149 (2018)

Gabaldon, A.: Activity recognition with intended actions. In: International Joint
Conference on Artificial Intelligence (IJCAI), Pasadena, USA, 11-17 July 2009
(2009)

Gelfond, M., Kahl, Y.: Knowledge Representation, Reasoning, and the Design of
Intelligent Agents: The Answer-Set Programming Approach. Cambridge University
Press, Cambridge (2014). https://books.google.co.nz/books?id=99XSAgAAQBAJ
Gelfond, M., Inclezan, D.: Some properties of system descriptions of AL4. J. Appl.
Non-Class. Log. Spec. Issue Equilibr. Logic Answ. Set Program. 23(1-2), 105-120
2013

E}ome)z, R., Sridharan, M., Riley, H.: What do you really want to do? Towards
a theory of intentions for human-robot collaboration. Ann. Math. Artif. Intell.
(2020). https://doi.org/10.1007/s10472-019-09672-4

Hanheide, M., et al.: Robot task planning and explanation in open and uncertain
worlds. Artif. Intell. 247, 119-150 (2017)

Kelley, R., Tavakkoli, A., King, C., Nicolescu, M., Nicolescu, M., Bebis, G.: Under-
standing human intentions via hidden Markov models in autonomous mobile
robots. In: International Conference on Human-Robot Interaction (HRI), Ams-
terdam, Netherlands, 12-15 March 2008 (2008)

Rao, A.S., Georgeff, M.P.: BDI agents: from theory to practice. In: 1st International
Conference on Multiagent Systems, San Francisco, CA, pp. 312-319 (1995)
Saribatur, Z.G., Baral, C., Eiter, T.: Reactive maintenance policies over equalized
states in dynamic environments. In: Oliveira, E., Gama, J., Vale, Z., Lopes Cardoso,
H. (eds.) EPIA 2017. LNCS (LNAI), vol. 10423, pp. 709-723. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-65340-2_58

Saribatur, Z.G., Eiter, T.: Reactive policies with planning for action languages. In:
Michael, L., Kakas, A. (eds.) JELIA 2016. LNCS (LNAI), vol. 10021, pp. 463—480.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48758-8_30

Software and results corresponding to the evaluation of our architecture (2019).
https://github.com/hril230/theoryofintentions/tree/master /code

Sridharan, M., Gelfond, M., Zhang, S., Wyatt, J.: REBA: a refinement-based archi-
tecture for knowledge representation and reasoning in robotics. J. Artif. Intell. Res.
65, 87-180 (2019)

Videos demonstrating the use of our architecture on robot platforms (2019).
https://drive.google.com/open?id=1m-jVV25vFvi35Ai9NTRYFFOPNaZIUdpZ
Zhang, Q., Inclezan, D.: An application of ASP theories of intentions to under-
standing restaurant scenarios. In: International Workshop on Practical Aspects of
Answer Set Programming (2017)

Zhang, S., Khandelwal, P., Stone, P.: Dynamically constructed (PO)MDPs for
adaptive robot planning. In: AAAT Conference on Artificial Intelligence (AAAI),
San Francisco, USA, February 2017 (20)

https://doi.org/10.1007/978-3-319-23264-5_12
https://doi.org/10.1007/978-3-319-23264-5_12
https://books.google.co.nz/books?id=99XSAgAAQBAJ
https://doi.org/10.1007/s10472-019-09672-4
https://doi.org/10.1007/978-3-319-65340-2_58
https://doi.org/10.1007/978-3-319-48758-8_30
https://github.com/hril230/theoryofintentions/tree/master/code
https://drive.google.com/open?id=1m-jVV25vFvi35Ai9N7RYFFOPNaZIUdpZ

l‘)

Check for
updates

Decentralised Control of Intelligent
Devices: A Healthcare Facility Study

Sacha Lhopital®, Samir Aknine?, Vincent Thavonekham', Huan Vu?®)®,

and Sarvapali Ramchurn®

! VISEO Technologies, Lyon, France
{sacha.lhopital,vincent.thavonekham}@viseo.com
2 Université de Lyon, CNRS, Université Lyon 1, LIRIS, UMR5205,
69622 Lyon, France
samir.aknine@univ-lyonl.fr, huan.vu@liris.cnrs.fr
3 University of Southampton, Southampton, UK
sdrl@soton.ac.uk

Abstract. We present a novel approach to the management of notifica-
tions from devices in a healthcare setting. We employ a distributed con-
straint optimisation (DCOP) approach to the delivery of notification for
healthcare assistants that aims to preserve the privacy of patients while
reducing the intrusiveness of such notifications. Our approach reduces
the workload of the assistants and improves patient safety by automat-
ing task allocation while ensuring high priority needs are addressed in a
timely manner. We propose and evaluate several DCOP models both in
simulation and in real-world deployments. Our models are shown to be
efficient both in terms of computation and communication costs.

Keywords: IoT + Healthcare - DCOP - DPOP

1 Introduction

The penetration of novel Internet-of-things technology in the healthcare setting
is growing rapidly. Many of these devices serve to monitor patients and alert
healthcare professionals whenever abnormalities are detected (for instance, a
syringe pump is going to ring when it detects an air bubble in its mechanism)
or when routine checks are needed (about every four hours).

Nevertheless, operating and monitoring these devices take a considerable
amount of time ranging from 5 to 10% a day. As a result, a healthcare provider
has to check all those devices on a regular basis. As part of this project, a series
of interviews with hospital staff were conducted. The following conclusions were
drawn from these interviews. Every time a device encounters a technical problem
(e.g. running out of power) or the device is ending its program (e.g. the syringe
pump will finish its program in less than ten minutes), the device produces a
very loud tone in order to alert the medical staff. Attending to such notifications
rapidly becomes intractable with large departments with hundreds of patients.

© Springer Nature Switzerland AG 2020
N. Bassiliades et al. (Eds.): EUMAS 2020/AT 2020, LNATI 12520, pp. 20-36, 2020.
https://doi.org/10.1007/978-3-030-66412-1_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-66412-1_2&domain=pdf
http://orcid.org/0000-0002-0785-6907
http://orcid.org/0000-0001-9686-4302
https://doi.org/10.1007/978-3-030-66412-1_2

Decentralised Control of Intelligent Devices: A Healthcare Facility Study 21

Thus, when a device rings, the medical staff cannot remember which one it is
and what action is expected. Therefore, the staff needs to: (1) go in the room (2)
notice the defective equipment (3) act accordingly (for instance: get a medication
stored in another room). Limiting these tasks (by only checking rooms requiring
an intervention, where it used to be every room of the department every x hours
for instance) can improve healthcare professionals’ work conditions. With this
in mind, several issues were noticed: (1) most of the devices are not integrated
into an information system, thus forcing healthcare professionals to individually
check them regularly, thereby wasting precious time on monitoring actions; (2)
audible notifications from multiple devices at the same time can raise levels of
stress and confusion among staff.

Against this background, in this paper we propose a novel approach that
looks to minimise the intrusiveness of such devices. Specifically, we develop a
solution that: (1) Detects anomalies and manages tasks division by combin-
ing data from multiple sources; (2) Constructs and suggests an action plan for
healthcare provider. The aim is to provide staff with situational awareness and
help them anticipate future interventions. The purpose of our system is to warn
the medical staff before devices ring, but without increasing the frequency of
their interventions. We formulate the problem as a Distributed Constraint Opti-
mization Problem (DCOP) which has been shown to be effective in itinerary
optimization [6,15] and scheduling problems [7]. This decentralized approach has
the benefit of distributing the main computations across all available devices.
Specifically, this paper advances the state of the art in the following ways.

1. We propose a DCOP approach that limits the amount of data transmitted to
a central node.

2. Our DCOP approach allows the seamless integration or removal of IToT
devices.

3. We show that a DCOP approach is a natural way of modelling the problem.
Our system was simulated using Raspberry Pi’s to help represent the problem
in a more realistic way. This specific deployment method is very important
since it adds development constraints to our system (execution time, machine
resources, interactions with the staff).

The remainder of this article is organized as follows. First, the paper intro-
duces the problem statement. After that, we describe the DCOP model we pro-
pose to solve this problem. Then, we detail the proposed solution. We pursue
with an evaluation of our work. In the conclusion, we summarize the work done
and we provide some perspectives.

2 Related Work

MobiCare [1], designed by Chakravorty in 2006, provides a wide-area mobile
patient monitoring system to facilitate continuous monitoring of the patients
physiological status. Like CodeBlue [9,11] is a popular healthcare project based
on BSN framework (Body Sensor Network). In this system, sensors on the

22 S. Lhopital et al.

patient’s body transmit information wirelessly to other devices for further anal-
ysis (like laptops and personal computers). While CodeBlue is using a wireless
architecture, there have been many efforts in the medical field to design gate-
ways for specific applications. For example, [2,16] suggest the use of gateways
instead of wireless or Ethernet to connect networks with different protocols.

Beyond these first solutions, DCOP algorithms have already been tested in
practical scenarios such as travel optimization [6,15] or planning [7]. Among the
DCOP algorithms, three are particularly well known: ADOPT [12], DPOP [14],
OptAPO [10].

[6] compared these main algorithms in situations where the environment
changes dynamically. Their study shows that these algorithms offer good per-
formance but also highlight some limitations. DPOP is the fastest algorithm at
runtime, but it is extremely greedy about the size of the messages exchanged.
ADOPT gives variable results depending on the constraints. Indeed, if the sys-
tem is not subject to many conflicting constraints, the algorithm will be efficient.
On the other hand, if many constraints conflict, ADOPT does not provide effi-
cient results. OptAPO was proven to be incomplete and therefore, a complete
variant has been proposed [5]. Both variants are based on a mediator agent, so
the resolution is not fully distributed. [7] proposed another algorithm to solve
dynamic problems called DCDCOP (Dynamic Complex DCOP) based on a case
study of time use optimization in a medical context. This algorithm - mainly
based on the addition of a Degree of Unsatisfaction measure - dynamically guides
agents through the resolution process. This method is more appropriate where
agents try to optimize several variables at the same time.

The mechanism we propose is based on the DPOP algorithm [13]. We pro-
pose an improved version of the algorithm proposed by [13]. We have designed
new heuristics for the Depth First Search (DFS) tree generation to improve the
execution speed. This is the first model for device management using DCOPs.

3 Problem Statement

We consider a hospital facility made up of several departments. Each department
includes a set of rooms. Within a room, several devices are deployed to monitor
the status of each patient. Each room has a neighborhood formed by a set of
rooms. The objective of the system is to determine the times when healthcare
providers pass through each of these rooms and prioritize them in order to per-
form the operations required for each patient (e.g. recharging a syringe pump,
etc.). The intervention time consists of a number of minutes before the situation
becomes critical. Thus, we prioritize the rooms depending on which one is the
most urgent. The emergency “level” is calculated dynamically and depends on
several parameters. A room deadline is the time when a device of this room will
ring. We define, a configuration O; as the set of times for all the rooms in the
department for a time step t. Each configuration O, must satisfy the following
rules: (1) a room must have only one intervention time at a time ¢;; (2) the cur-
rent configuration must be accessible by all rooms so that they share the same

Decentralised Control of Intelligent Devices: A Healthcare Facility Study 23

information; (3) all the rooms should not call the healthcare providers at the
same time, except the rooms in the same neighbourhood. In order to build this
configuration, we model the problem as follows. Let A = {a1,...,a,} be the set
of agents (which manage the rooms) with n the total number of rooms. Each
room ¢ is modeled by an agent a;. For a room i, each agent a; will compute a
value v; which represents the time (in minutes) before the next intervention. Let
D = {dy,...,d,} be all the possible values for v;. If d; = +00, then no interven-
tion is required in the room i. Let ¢ be the current time step. A configuration
O; = {v1,...,v,} is optimal if, and only if, it respects all the constraints of each
room in the department. The system’s inputs are the agents A and the previous
configuration O;_1. Thus, the O; configuration is optimal if F', the interventions
cost function, is minimal according to the next intervention dates v;. Our goal
is to seek a minimization:

argomin F(Oy) = Z o (1)
¢ i=1

For a specific v;, C; returns a global cost € R U {oo}. This global cost, to
satisfy F', is defined regarding all the following structural constraints.

— c¢l. Device number constraint: If there are no devices in the room, the
agent will not ask for intervention: Let M; = {mg,...,m;} be the set of all
the devices of the room i.

VaiEA,‘Mi|:0:>’Ui=+OO (2)

— c2.a Simple device rescheduling constraint: Healthcare professionals
have to check the room just before a device ends its program. We define
the function isInCriticState(m;) which returns true if the device m; is in a
critical state.

Va; € A,le e M;, (3)
isInCriticState(m;) = v; < 10
— ¢2.b Critical device rescheduling constraint: Healthcare professionals
have to reschedule machines when they come to a critical state. Therefore, we
define the function programsState(m;) to return the remaining time (minutes)
before m; ends its program. If the remaining time is not computable (i.e.
the device does not require an intervention), the function returns +oo. As a
consequence, if a device in the room 4 ends its program in less than 30 min
than v; has to be less than this value.

Va; € A,Elml S Mi,
= isInCriticState(m;) A programState(m;) < 30 (4)
= v; < programState(m;)

24 S. Lhopital et al.

— ¢3. Neighbourhood constraint: If two rooms are in the same location,
they can synchronize their decisions to avoid multiple interventions in a short
time. In other words: two neighbours should not ask for interventions with
less than tsynchro minutes interval (except if they both call at the same time).
We define the function neighbours(a;,a;) as a function returning true when
the agents a; and a; are neighbours.

Va;,a; € A% neighbours(a;,a;) =

()

(|1}7; — ’Uj‘ > tsynchro V |117; — ’Uj| = O)

— c4.a Patient’s condition constraint: If a patient uses multiple devices
(more than five), we consider that he needs more attention than others. His
state should be checked at least every three hours instead of four otherwise.
Let 7; be the elapsed time since a medical staff came into the room 1.

vaiEA,ﬂMi‘>5/\7‘i2180)=>’0i<30 (6)

— c4.b Time between two visits constraint: The elapsed time between two
interventions in a room cannot exceed four hours. This constraint is derived
from the interviews we made. If more than 3h and 30 min have passed since
the last visit, the system should plan another visit within 30 min.

Va;, € A, (|M;| > 1 A7 > 210) = v; < 30 (7)

— ¢5. Quietness constraint: Each agent a; verifies if there is no device in the
room ¢ that needs intervention. If it is the case, healthcare staff can ignore
the room:

Va; € A,le S Mi,
(misInCriticState(mg) A
programState(m;) > 30 A 7; < 180)
= v; > 240

(8)

Example 1. Consider the following scenario with 6 rooms (a1, a2, as, a4, as
and ag) in a medical department. None of the rooms has devices to monitor
except the room az which is monitoring 3 devices programmed to end respectively
n 40min, 60min, and the last is in a critical state. The neighbourhood is the
following: ay is surrounded by a3 and as; ayq is surrounded by az and as; And as
s also meighbour with ag. Therefore, a1, as, a4, as have two neighbours, while
as and ag have only one neighbour (cf. Fig. 1).

Decentralised Control of Intelligent Devices: A Healthcare Facility Study 25

2] [z
003 ﬁO 1 ??:

[
B ol

i =
1 O _oos

g !
(=4
o
SN

Fig. 1. Illustration scenario with the 6 rooms in the medical department. None of
the rooms have devices to monitor except agent as which is monitoring 3 devices
programmed to end respectively in 40 min, 60 min, and the last (in red) is in a critical
state. All adjacent rooms are neighbours. Therefore, a1, as, a4, as have two neighbours,
while a2 and as have only one neighbour. (Color figure online)

Also, assuming that:

~ M3 = {mg1,m32,m33}
with isInCriticState(mss) = True (the device is in a critical state),
programState(mgy) = 60 and
programState(mgs) = 40.

~ My = Ms = M, = My = Mg = {0}.

- T3 = 60.

—~ We also set tsynchro = 30.

The structural constraints can be described as:

cl: vy, vs, v1, vo and vg will take the value +00.

c2: The device m3o needs intervention. Thus, vs < 10. The device mg, ends its
program in 60 min and the device mssz in 40min. Hence: v3 < 60; vs < 40.

c3: Given the neighbourhood in the scenario, we deduce that |vz — v4| > tsynchro
and |U3 - ’I}1| > tsynchro-

c4: The last intervention is very recent (because T3 < 180 and |Ms| < 5), so this
constraint will not be applied.

c5: This constraint does not apply here.

Next, we formalize the problem as a distributed constraint optimization problem.
Centralized solutions to scheduling have a lack of scalability and adaptabil-
ity to dynamic events such as the arrival of an emergency. In such a dynamic

26 S. Lhopital et al.

context, using a decentralized approach allows to be proactive to any change of
the devices.

4 DCOPs for Device Management

We formalise the Device Management DCOP as a tuple {A,V,D,C} , where:
A={a,as,...,a,}is aset of n agents; V = {vy,vs,...,v,} are variables owned
by the agents, where variable v; is owned by agent a;; D = {d;,ds,...,d,} is
a set of finite-discrete domains. A variable v; takes values in d,, = v1,...,vk;
C ={c1,...,cm} is a set of constraints, where each ¢; defines a cost € NU {co}.
A solution to the DCOP is an assignment to all variables that minimizes y ;. ¢;.

DCOP is a preferred solution to deal with stochastic and dynamic environ-
ments with data gathered from different agents. It is applied to numerous differ-
ent applications in multi-agent systems such as disaster management, meeting
scheduling, sensor network [3].

There are several ways to formalize our problem as a DCOP, depending on
what agents, variables and constraints are representing. Here we present three
approaches to formalize the medical optimization problem as a DCOP: a fully
decentralized room-based approach (Room Approach), a semi-decentralized
area-based approach (Area Approach) and finally a semi-decentralized multi-
variable approach (Multi-variable Area-based Approach). We intend to
show the effect of different levels of decentralization on the quality of time com-
puting. We evaluate and show the performance of each approach which may be
suitable for different medical device conditions.

4.1 Room-Based Approach

The Room Approach consists of modelling all the rooms as agents. The num-
ber of agents corresponds to the number of rooms to monitor. Each agent has
a variable that corresponds to the desired intervention time, depending on the
devices conditions in the room. The domain of the variables varies from 0, which
is the most critical call, to co which means that no call is planned. We then map
the structural constraints described in the Egs. (2) to (8) as follows:

Device number constraint

o1 (vn) = oo, if |M;] =0 and v; # +00
R 0, otherwise

Device rescheduling constraint

oo, if dmy € M;,
isInCriticState(m;) and v; > 10
1, if Imy € M;, (misInCriticState(my)

10
and programState(m;) < 30) (10)

C2 ('Ul) =

and v; > programState(m;)

0, otherwise

Decentralised Control of Intelligent Devices: A Healthcare Facility Study 27

Neighbourhood constraint

, if neighbours(a;,a;)
and "Ui - Uj| S tsynchro
and |v; —v;| # 0

0, otherwise

c3(vi, vj) =

Patient’s condition and time between two visits constraint

oo, if ((|M;] > 5 and 7; > 180)
ca(v;) = or (|[M;] > 1 and 7; > 210)) and v; > 30 (12)
0, otherwise

Quietness constraint

R if le € Mi, v < 240
and —isInCriticState(my)

cs(v;) = 13
5(vi) and programState(m;) > 30 and 7; < 180 (13)

0, otherwise

The objective of our DCOP is to minimize), ¢;. This optimization repre-
sents the goal of the system (i.e. minimizing the number of rooms making calls
without violating any structural constraint).

4.2 Area-Based Approach

Instead of considering each room as an agent, we can consider a hospital area
as an agent which monitors multiple rooms. We consider that the department
is divided into several areas. As an area agent, it holds a unique variable v
that contains the most critical intervention time among all monitored rooms.
By gathering information from several rooms in this way, the system solves the
problem using the same constraints as in the previous approach. However, these
constraints are applied to all the rooms instead of a single room. On the other
hand, the neighbourhood constraint no longer concerns the rooms, but rather
the areas. Therefore, the global cost C; is also computed by area as follows:

00, if 3rx € R;, Imy € My,
Ci = isInCriticState(my) (14)

b1 Dgeo Cq(vi), otherwise

In this approach, the device number constraint is no more used. We define a
similar constraint to take all rooms R; into account and no longer a single one.

This approach also requires us to consider the impact on privacy and, more
specifically, the transit of data. For security and data protection reasons, the
centralization of data is very sensitive.

28 S. Lhopital et al.

4.3 Multi-variable Area-Based Approach

To go further in the area-based modelling, a slightly more specific approach was
also considered where each area defines an intervention time for each room. In
this last approach, we still consider that each one of the rooms in the area has
the knowledge on all the other rooms. Thus, we still have a single area agent,
but this agent will calculate a time set V,, = {v,,,Vpy, ..., 0y, } Where k is the
number of rooms of the area i. This approach also requires us to consider the
impact on privacy, like the area-based approach.

Now that we have formalized the problem as a DCOP, we discuss the quality
of the solution and the usefulness of the method.

5 A DPOP Solution for the Device Management Problem

To solve the DCOP presented above, we use the DPOP algorithm (Dynamic
Parameter Optimization Problem) [14], based on the exchange of messages
between agents. We chose to use DPOP as it is one of the fastest DCOP algo-
rithms [6], working by tree aggregation [4]. In more details, DPOP operates on
a matrix handling algorithm. To communicate agents use a tree graph (DFS):
an undirected graph, which contains a variable node v; for each agent, and an
edge connecting a variable node v; with another variable node v; if and only if
v; is a neighbour of v;. Each agent in DPOP takes the role of the variable node
which represents its own variable. Figure 2 shows the tree graph of the room-
based approach for the scenario presented in the Example 1. The main process of
DPOP consists in computing and exchanging messages between variable nodes
through the tree graph constructed. At each iteration & of the process, all agents
execute 3 phases. In the first phase, a proper tree graph is generated to serve as
a communication structure for the next steps. To do so, agents exchange mes-
sages through their neighbourhood in order to generate the tree graph. When
this graph is complete, the second phase starts: starting from the leaves of the
tree, each agent a; computes its own cost matrix Util; (depending on its v; value
and on its children v values) and propagates it upward through the tree edges.
Those matrices summarize the influence of the sending agent and its neighbours
on the next steps. The third phase is started by the root when phase 2 is over.
Each agent computes its optimal value for v based on the Util matrix and the
Value message it received from its parent. Then it sends this value as a Value
message to its own children.

Fig. 2. Room-based approach tree graph for the scenario presented in Example 1. There
are 6 agents (v1 to vg), each is connected to its neighbours.

Decentralised Control of Intelligent Devices: A Healthcare Facility Study 29

Example 2. Consider the tree graph presented in Fig. 2. Let D = {0, 30,241}.

The message that the variable vy sends to its parent vi for the iteration k is the
a

following: Utily = | b|, where each matriz value is the result of a cost (2?:1).
c

The abscissa axis represents the lowest possible value for ve, while the ordinate

represents all possible values for vy in D. When vy is set up with the best value

for this iteration (let us say b), vi sends this value back to vs.

During the propagation of messages, an agent is able to calculate locally its
next intervention time that minimizes the sum of the costs over all neighbours
functions. Classic DPOP does not always guarantee convergence at the end of an
iteration. In our context, we overcome this issue with the use of the Quietness
constraint.

FEvent Detection and Management. Dynamic events should be taken into account
during the resolution. For instance, we need to detect when a medical staff is
in a room (or when she is near). Every event will dynamically impact some
constraints. Thus, the system will detect healthcare staff interventions and can
update the different constraints parameters, for instance, the time since the last
intervention (7), the states of the devices, the number of interventions (|M|,
isInCriticState(m), programState(m)).

Event detection is essential when a device enters in a critical state. The
healthcare provider needs to be called right away because the situation corre-
sponds to an emergency.

Priority Management. After each iteration, all agents set their next intervention
time v depending on their knowledge about their devices. However, if an agent
i asks for a quicker intervention than its neighbours, ¢ will not necessarily be
satisfied if it is not the most critical in the system.

In order to deal with this issue, we define the concept of priority for the
DCOP solver. The classic DPOP algorithm generates a DF'S tree for the problem
to solve. But for the same problem, several DFS trees may be generated. Yet,
depending on the generated tree, the algorithm finds a local solution (possibly
the best solution, but not necessarily).

Yet, in our case study, finding a local solution is not enough. We therefore
search for the best solution because healthcare providers need to check on the
most urgent patients first. To do so, we define some specific rules for the DPOP
that allow agents to declare themselves as more important. More precisely, those
rules impact the tree graph construction in the first phase of DPOP by putting
the most important agents at the top of the DSF tree. This allows them to choose
their intervention time first. Three specific priority rules are defined:

— Critical Priority is triggered when a device enters a critical state. The
concerned agent will ask other agents to start a new DCOP computation
handling its condition. This priority is the most important. When this rule

30 S. Lhopital et al.

applies, it overcomes all the others. When triggered, all agents will start a
new computation of the DCOP algorithm.

— Time Priority is triggered when a device needs intervention since the last
iteration, but no healthcare provider has been able to intervene. At each iter-
ation, the agent will increase its priority until a healthcare provider answers
the call.

— Intervention Consequence Priority is triggered after a healthcare assis-
tant provides an intervention. When triggered, the priority of the concerned
agent is reduced to the lowest value.

6 Empirical Evaluation

We have evaluated the performance of our method using the DPOP algorithm.
The algorithm was implemented in Python 3.6 and deployed on Raspberry Pi
devices, using Broadcom BCM2837 64-bit processor with four ARM Cortex-A53
hearts - 1,2 GHz. The use of Raspberry pi allows us to physically distribute our
agents - as it will be the case in a real situation. DPOP was also implemented
using Frodo [8]. In order to communicate, the Mqtt protocol was used with a
Mqtt Server running on a local gateway. All compared values are averages on
up to 10 to 50 consecutive simulations (the exact number depends on the used
method with the Frodo simulator or with the deployed system and their multiple
parameters). All algorithms are evaluated according to their execution time. We
ran our experiments with all our different approaches: room-based approach,
area-based approach and the multi-variable area-based approach.

6.1 Benchmarking

The Fig. 3a represents the execution time of each approach: Room Approach
in solid line; Area Approach in big dots; and Multi-variable Area-based
Approach with dashed lines. Multiple curves are shown for different numbers of
agents in the system. Whatever the situation, these curves show that the fastest
approach is the Area Approach (execution time between 1,29 and 2,68s by
agent). The Room Approach also gives good results (between 3,75 and 5,6s).
This evaluation shows that the Area Approach can offer faster results but it
will be at the detriment of the precision of the results. The Fig. 3b summarizes
these results. Figures 5a and 6a present the results with 6 agents. Among them, 3
agents run on Raspberry Pi devices and 3 agents run on Windows 10 computers.
Figures 5b and 6b show a similar situation but with 10 agents (3 agents on
Raspberry Pi devices and others on Windows 10 computers). Also, dotted lines
represent a specific simulation performed with simulated Raspberry Pi devices
(QEMU). The use of this simulator drastically increased the execution time
because this simulator uses more computer resources. Therefore, we will focus
on the analysis of the results represented in solid lines. The total execution time
of our deployed system is higher than the execution time we observed with the
DPOP simulation (cf. Fig.4). For 6 agents (cf. Fig. 5a), we provide a solution in

Decentralised Control of Intelligent Devices: A Healthcare Facility Study 31

Algorithm 1. Scheduling Agent pseudo-code
Require: root = NULL
for all agents do
if root == NULL then
send starting signal
else
send starting signal with root as a parameter
end if
end for
while results size < number of agents do
wait
end while
for all results do
if result == 0 then
root = agent
Start over
end if
if result < 30 and agent.priority > 0 then
agent.priority = agent.priority + 1
end if
if result > 30 and agent.priority > 0 then
agent.priority = 0
end if
end for

Algorithm 2. DPOP Agent pseudo-code when receiving a message to start
if root != NULL then
run DPOP algorithm with root as the DFS Tree root
else
run DPOP classic algorithm
end if
return result

less than 1s using the simulator and in less than 5s with our deployed system.
This can be explained by the fact that our system provides an optimal solution,
whereas FRODO provides a local optimum. This is the case because the “priority
constraint” cannot be taken into account by Frodo without completely rewriting
the DPOP algorithm. Secondly, regardless of the number of agents, the execution
time is quite similar. Against the Room Approach, the Area Approach runs
the algorithm much faster. For instance, 10 rooms divided into 4 areas give
results in 1,64s, and 10 rooms divided into 6 areas give results in 2,15s. This
semi-decentralized approach allows the system to produce more relevant results
for great numbers of rooms (more than 30). Furthermore, the algorithm gives
4,64 s for 50 rooms divided into 4 areas and 9,29 s for 6 areas. This is consistent
since the system only has 4 to 6 agents instead of 50 agents for the Room
Approach.

32 S. Lhopital et al.

50
50 S.e -t —— ay: Area-based Approach (6 Areas)
~ —— ~ -
- S - a: Area-based Approach (4 Areas)
g 40 { — @ Multivariable Area-based Approach (2 Areas)
= 40 4 —— as: Room Approach
E g —— as: Multivariable Area-based Approach (6 Areas)
% 5 Room Approach (6 agents) 23
< Area-based Approach (4 agents) 5
£ —a— Area-based Approach (6 agents) s
= —-= Multivariable Area-based Approach (2 agents) E]
.§ 20 —-- Multivariable Area-based Approach (6 agents) 220
3
b v
% &
a g
g
el Z 10
0 0 n N |
1 2 3 4 5 6 & & &] L3
Agent ID AyEn L
(@) (b)

Fig. 3. Evaluations of our algorithm. (a) Execution time of the system deployed on
Raspberry Pi devices depending on the approach for a medical department of 6 rooms.
(b) Average execution time of the system deployed on Raspberry Pi devices depending
on the approach for a medical department of 6 rooms.

17500

15000

12500

10000

7500

5000

Execution time (seconds)

2500

o

o 10 20 30 40 50
Number of agents

Fig. 4. Execution time depending on the number of agents using FRODO.

Table 1 gives the execution times for the Multi-variable Area-based App-
roach. If the method takes more time to execute, we observed some consider-
able differences between two agents, execution times for the same iteration. For
instance, in the Table 1, agent 6 takes 1571 s to execute and agent 4 takes 129s
while others take less than 65s. Those major differences can be explained by
the new data structure that the agents use. Indeed, instead of using matri-
ces of |D| dimensions, the agents are computing matrices of | D|N0FeomsArea(ai)
dimensions where NbRoomsArea(a;) is the number of rooms managed by the
agent a;. Therefore, depending on their positions in the tree graph in the
DPOP algorithm, some agents will have to deal with much more data because
each parent in the tree will receive as much matrix |D|NbRoomsAreaai) a4 i
has children. The resulting matrix will then have the following dimension:
| D|NbRoomsArea(ai) 5 NpChildren(a;) where NbChildren(a;) is the number of
children for the agent a; in the DFS tree.

Decentralised Control of Intelligent Devices: A Healthcare Facility Study 33

Table 1. Execution time for 12 Rooms and 6 Areas (with a Multi-variable Area-
based Approach).

Area 1 2 3 4 5 6
Time (s) | 66.95 | 66.67 | 66.91 | 129.3 | 60.99 | 1571.99

6.2 Message Size

Our algorithm (and DPOP in general) requires a linear number of messages. This
is explained by the DFS construction which requires 2 x [messages, where [is
the number of edges in the tree graph. For n agents, Util DPOP phase requires
n — 1 messages (from the bottom to the top of the tree). The Value propagation
requires n — 1 messages (from the top to the bottom of the tree). The maximum
message size and memory requirements grow exponentially with the number of
agents. More precisely, DFS and Value messages are size and memory linear.
But the complexity lies in the size of the Util messages, which is space and time
exponential. Figures6a and b give the size of the exchanged messages between
the agents (respectively for 6 agents in the system, and for 10 agents). Those
curves show the average size of the received messages for each agent depending on
different tested situations. Our system exchanges very tiny messages compared
to a Frodo simulation. For example with 10 agents (plain curves), the agent
number 3 is the one receiving huge messages (average of 3800 bytes). But with
Frodo, average messages size is in the order of 102 Kbytes. These results are
explained by the fact that we use the Mqtt communication protocol, which
allows to define a specific message structure. Also, regarding the Figs. 6a and b,
we observe important variations from one agent to another. Those results are
explained by the algorithm processing method. Indeed, depending on the DFS
tree generated during the first phase, the agents at the top of this tree will receive
bigger messages because their children will send them bigger matrices during the
Util propagation phase. The Util matrix is a multidimensional matrix, with one
dimension for each variable of the problem to solve. Therefore, every time an
agent received a Util matrix from one of its children, the current agent increases
the dimensions of the matrix (because the agent adds its own variable to solve to
the matrix). In the DPOP algorithm as described by A. Petcu, each dimension
of the matrix corresponds to the possible value of an agent. Each agent who
receives a matrix from one of these children (in the DFS tree) actually receives
a cost matrix based on the value the child will take. The more the matrix goes
up in the DFS tree, the more children are to be taken into account, so the more
dimensions there are. For instance, in the Fig. 6b, agents 1 to 3 received bigger
messages than other agents because they are at the top of the tree and they
have to compute more data. The same effect is observed for the agent 2 in the
Fig. 6b.

34 S. Lhopital et al.

&
/
\,
/
/
\

~. - ~ — 5001 ——n - \

w

a

e
~

8
8
S
-
~
~

- -
s -
3 Raspberry + 7 Windows Machines
—-= 3 Raspberry + 7 QEMU Machines

N
a

—— 3 Raspberry + 3 Windows Machines
—-= 3 Raspberry + 3 QEMU Machines

N
5
N

S g

Execution time (seconds)
Execution time (seconds)

-
o

-
5]

100

<

1 2 3 4 5 6 2 4 6 8 10
Agent ID Agent number

(a) (b)

Fig. 5. Execution time comparison between our system and QEMU simulations. (a)
Comparison for 6 agents. The figure shows the quality of the solutions and that our
system performed better on Raspberry Pi devices. (b) Comparison for 10 agents.

4000
—— 3 Raspberry + 3 Windows Machines 3 Raspberry + 7 Windows Machines

—-= 3 Raspberry + 3 QEMU Machines —:- 3 Raspberry + 7 QEMU Machines

w
&
3

3500

w
3
s

3000

N
o
=

2500

N
=1
3

2000

&
3

1500

Message (bytes)
Message (bytes)

1000

S
3

500

)
8

0

Agent ID Agent ID

(a) (b)

Fig. 6. Evaluation of the messages size. (a) Average received messages size comparison
between our system deployed on Raspberry Pi devices and our system deployed with
QEMU simulator (for 6 agents). (b) Average received messages size comparison between
our system deployed on Raspberry Pi devices and our system deployed with QEMU
simulator (for 10 agents).

7 Conclusion

In this paper, we have proposed an intelligent system to ease the daily work of
the medical staff in helping patients. Our work offers a new method to supervise
and monitor the various devices running in the rooms of the medical department
and leaves the medical staff to focus on their patients. We provided a DCOP for-
malization of the problem and showed how we use the DPOP algorithm to solve
it. Our method produces an efficient solution in terms of alerting healthcare
professionals in intervention times. We showed the robustness of this solution
to dynamic events. We also provided different formulations of the model with
different degrees of privacy preservation when it comes to the messages passed

Decentralised Control of Intelligent Devices: A Healthcare Facility Study 35

around. While our work has shown the potential of the DCOPs to solve the med-
ical device management problem, in the future, we aim to extend our method to
consider a more sophisticated system with cameras to detect healthcare providers
movements in the medical department. More precisely, we want to deploy our
system on Arduino instead of the Raspberry to follow up on this work. We also
alm to test our system with real devices like syringe pumps and multi-parameter
monitor as they are the most common ones in most medical services.

References

10.

11.

12.

Chakravorty, R.: A programmable service architecture for mobile medical care.
In: Proceedings of the 4th IEEE Annual Conference on Pervasive Computing and
Communications Workshops (PERSOMW), Pisa, Italy, March 2006, pp. 531-536.
IEEE Computer Society (2006)

Emara, K., Abdeen, M., Hashem, M.: A gateway-based framework for transparent
interconnection between WSN and IP network. In: Proceedings of the EUROCON,
pp- 1775-1780 (2009)

Fioretto, F., Pontelli, E., Yeoh, W.: Distributed constraint optimization problems
and applications: a survey. J. Artif. Intell. Res. 61, 623-698 (2018)

Freuder, E.C.: A sufficient condition for backtrack-bounded search. J. ACM
(JACM) 32, 755-761 (1985). JACM Homepage archive

Grinshpoun, T., Meisels, A.: Completeness and performance of the APO algorithm.
J. Artif. Intell. Res. 33, 223-258 (2008)

Junges, R., Bazzan, A.L.C.: Evaluating the performance of DCOP algorithms in a
real world, dynamic problem. In: Padgham, L., Parkes, D.C., Miiller, J.P., Parsons,
S. (eds.) Proceedings of the of 7th International Conference on Autonomous Agents
and Multiagent Systems, AAMAS 2008, Estoril, Portugal, May 2008, pp. 599-606
(2008)

Khanna, S., Sattar, A., Hansen, D., Stantic, B.: An efficient algorithm for solving
dynamic complex DCOP problems. In: Proceedings of the 2009 IEEE/WIC/ACM
International Conference on Intelligent Agent Technology, IAT 2009, October 2009
(2009)

Léauté, T., Ottens, B., Szymanek, R.: FRODO 2.0: an open-source framework for
distributed constraint optimization. In: Proceedings of the IJCAI’09 Distributed
Constraint Reasoning Workshop, DCR, 2009, Pasadena, California, USA, pp. 160—
164 (2009)

Lorincz, K., et al.: Sensor networks for emergency response: challenges and oppor-
tunities. IEEE Pervasive Comput. 3, 16-23 (2004)

Mailler, R., Lesser, V.: Solving distributed constraint optimization problems using
cooperative mediation. In: Proceedings of the International Joint Conference on
Autonomous Agents and Multiagent Systems, New York, USA, pp. 438-445. IEEE
Computer Society (2004)

Malan, D., Fulford-Jones, T., Welsh, M., Moulton, S.: CodeBlue: an ad hoc sensor
network infrastructure for emergency medical care. In: Proceedings of the MobiSys
Workshop on Applications of Mobile Embedded Systems (WAMES), Boston, MA,
USA, June 2004, pp. 1-8 (2004)

Modi, P.J., Shen, W., Tambe, M., Yokoo, M.: Adopt: asynchronous distributed
constraint optimization with quality guarantees. Artif. Intell. 161, 149-180 (2005)

36

13.

14.

15.

16.

S. Lhopital et al.

Petcu, A.: DPOP, a dynamic programming optimization protocol for DCOP. In:
A Class of Algorithms for Distributed Constraint Optimization, pp. 52-57. I0S
Press BV, Amsterdam (2009)

Petcu, A., Faltings, B.: A scalable method for multiagent constraint optimization.
In: Proceedings of the 19th International Joint Conference on Artificial Intelligence,
Edinburgh, Scotland, pp. 266-271. Professional Book Center (2005)

Vu, H., Aknine, S., Ramchurn, S.D.: A decentralised approach to intersection traffic
management. In: International Joint Conference on Artificial Intelligence (IJCAI),
Stockholm, Sweden (2018)

Zhu, Q., Wang, R., Chen, Q., Liu, Y., Qin, W.: IOT gateway: bridging wireless sen-
sor networks into internet of things. In: 2010 IEEE/IFIP International Conference
on Embedded and Ubiquitous Computing, December 2010, pp. 347-352 (2010)

®

Check for
updates

Decentralised Multi-intersection
Congestion Control for Connected
Autonomous Vehicles

Huan Vu'®)®, Samir Aknine!, Sarvapali Ramchurn?®,
and Alessandro Farinelli®

! Université de Lyon, CNRS, Université Lyon 1, LIRIS, UMR5205,
69622 Lyon, France
huan.vu@liris.cnrs.fr, samir.aknine@univ-1lyonl.fr
2 University of Southampton, Southampton, UK
sdri@soton.ac.uk
3 Department of Computer Science, University of Verona, Verona, Italy
alessandro.farinelli@univr.it

Abstract. This paper presents a decentralised mechanism for traffic
control of connected autonomous vehicles in settings where multiple road
intersections have to be managed and optimised. We propose a solution
based on the distributed constraint optimisation approach (DCOP). We
build upon state of the art algorithm for single-intersection management
in order to manage congestion both across and within intersections. Fur-
thermore, to solve the DCOP, we propose an improved node ordering
policy for the Max-sum_AD_VP algorithm. Empirical evaluation of our
model and algorithm demonstrate that our approach outperforms exist-
ing benchmarks by up to 32% in terms of average delay for both single
and multiple intersection setup.

Keywords: Congestion control - Connected vehicles - Distributed
constraints optimisation

1 Introduction

Autonomous cars are predicted to number several millions by 2025. Crucially,
these cars will be able to communicate and coordinate with vehicles in range,
opening up opportunities to mitigate congestion and the risk of accidents.
This ability to communicate and coordinate underpins the notion of Connected
Autonomous Vehicles (CAVs).

Specifically, previous works from the Al community as well as the transporta-
tion community have considered different strategies to use CAVs to mitigate
traffic congestion. Some notable ones are [2,4,16,18,19]. They either use First
Come First Served (FCFS) [4], alternating [16], Distributed Constraint Opti-
misation Problem (DCOP) [18] to optimise traffic at an intersection. However,
the lack of communication and coordination between intersections can result,

© Springer Nature Switzerland AG 2020
N. Bassiliades et al. (Eds.): EUMAS 2020/AT 2020, LNATI 12520, pp. 37-51, 2020.
https://doi.org/10.1007/978-3-030-66412-1_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-66412-1_3&domain=pdf
http://orcid.org/0000-0002-0785-6907
http://orcid.org/0000-0001-9686-4302
http://orcid.org/0000-0002-2592-5814
https://doi.org/10.1007/978-3-030-66412-1_3

38 H. Vu et al.

as we show in this paper, in highly congested situations across neighbouring
intersections, and thus, reduce the overall performance. [4] is further extended
in [17], a market-based approach where drivers constantly submit bids to get
the permission to cross the intersection. This mechanism can be applied to the
road network, however, it turns the network into a competitive set up with no
guarantees on performance as the bids are not optimised in any way. Recent
work [1] proposes a solution to deal with multi-intersection traffic management.
However, at a single intersection, this model relies on the one proposed earlier
[7], in which, the computation is centralised in an intersection controller, which
results in having a single point of failure.

Against this background, we propose a congestion management model based
on a DCOP representation, both at the intersection and the network level. In
more detail, this paper advances the state of the art in the following ways.
First, we propose a more efficient way to model space inside an intersection
than previous models. Second, we propose a novel mechanism that makes it
possible for intersections to distribute vehicles and reduce congestion across the
network, while avoiding computationally expensive global optimisation. Third,
we propose an improvement to the Max-sum_AD_VP algorithm [20], one of the
best incomplete DCOP algorithms, to account for the particular structure of our
problem. Finally, we empirically evaluate the performance of each proposition
and show the potential of using such approach for traffic management.

The remainder of the paper is organised as follows: Section 2 discusses existing
intersection models while Sect.3 extends one of these models using a precise
approach. Section4 presents a novel solution to the multi-intersection problem.
Section 5 formalises our problem as a DCOP and presents a variant of the Max-
sum_AD_VP algorithm, along with an improvement to the algorithm by ordering
nodes using priority levels. Section 6 evaluates our model on a single and multiple
intersection setup, and Sect. 7 concludes the paper.

2 Background on Intersection Model and Rules
for Vehicles

To be able to understand our multi-intersection approach, we need to first under-
stand the existing single intersection microscopic transportation model. Most of
these models aim to propose a regulation method for an individual intersection.
To deal with the lack of coordination between intersections, we will propose in
latter sections, a novel method that enables the use of the information in the
global traffic conditions to improve the overall performance.

CAVs, each guided by an agent, will replace the current flow-centric control
based on optimising the traffic light system [11]. In future CAV-based road net-
works, an intersection will no longer be regulated by traffic lights, but by using
intelligent agents that manage the right-of-way of each individual vehicle so that
we can optimise the use of resources (e.g. space and time, infrastructure, fuel).

When opting for intelligent intersection management, one crucial step is to
model the intersection area and define rules for vehicles crossing this area. In

Decentralised Multi-intersection Congestion Control for CAVs 39

most works proposed earlier in multi-agent systems, cellular-based presenta-
tions are often the authors’ choice [4,17,18]. However, using cellular-based model
might lead to a higher use of space than necessary (e.g. in the model proposed
by [4], the area that a vehicle reserved is always higher than its exact length and
width), or a lack of precision (e.g. in the model proposed by [18], each vehicle is
counted as one cell, regardless of their length).

In every existing intersection model, rules for vehicles are the same. They
aim to give each vehicle a reservation [4,17], which is a set of cells for each time
step or an admission time [18], which is the time that the vehicle can enter the
intersection. The rules for reservations or admission times to be accepted is that
vehicles can cross the intersection without stopping and without any conflict
between them. Conflicts are often detected if vehicles try to use the same cell at
the same time.

In reality, depending on the infrastructure installed at the intersection level,
vehicles might be able to know their exact position. They also have information
about their velocity and their length. Thus, instead of using a cellular model
and checking for conflict between vehicles using their reserved cells, they might
be able to apply the exact formula computed based on this information. Before
heading to our main contribution, namely the multi-intersection problem, we
will first define how to check for conflicts between vehicles by proposing this
exact formula.

3 A Space-Efficient Intersection Model

We notice that when using the cellular model, vehicles are often not precisely
represented. Therefore, a vehicle can occupy multiple cells at a time based on its
position. This may lead to an inefficient way of using space and thus, can reduce
the performance of the model. In this section, we will present a precise way to
model trajectories of vehicles to avoid conflict, while being more space-efficient.

Definition 1. Let t be the current time step and Vi the set of all vehicles
approaching the intersection. Fach vehicle v; € V; is modelled with: its relative
distance to the intersection d;, its velocity s; and its length ¢;.

Definition 2. An intersection is modelled with several incoming lanes, several
outgoing lanes, and a central zone called conflict zone. The path of a vehicle
across the intersection is called a trajectory. The shared area between two tra-
jectories is called a conflict spot (cf. Fig. 1).

3.1 Structural Constraints

We model each intersection using a DCOP model described in [18], as it is a
recent model that can outperform existing approaches at the intersection level.
This model aims to find, for each time step ¢, a configuration @;, which consists
of one admission time for each vehicle. Vehicles are able to cross the intersection

40 H. Vu et al.

12 11 10
P O
H H -
___________________________ d; | T
____________________________________ o |8
H e
1 d2.| 7
L ... SO o D 55 S|
- Y R R
3
—a—
£y d

45 6
Fig. 1. Intersection with 12 incoming lanes, 12 outgoing lanes and a conflict zone.
Incoming lanes are numbered from 1 to 12. The conflict zone is crossed by various
trajectories. There are 3 vehicles v1 (light blue), v2 (green) and vs (orange). The tra-
jectories 11 of v1 and 73 of vg are the same and are coloured in light blue, and 75 of v

in green. The conflict spot between the two trajectories is coloured in red (Color figure
online).

at a constant speed at their admission time. The conflict free property is guar-
anteed. As mentioned earlier, we extend the existing model by using the exact
information about vehicle location, velocity and length. Thus, the rules in that
model can be rewritten as follows:

Let L be the set of incoming lanes and [, € L be lane k. For each v; € V,
let I, € L be the lane in which the vehicle v; is present and 7; be v;’s trajectory
inside the conflict zone. Let d; ; the distance between the beginning of 7; and
the starting point of the conflict spot between 7; and 7; and df ; the distance
between 7; and the end of this conflict spot. Let varphi; be the time v; starts
crossing the intersection.

cl. Distance constraint. A vehicle has to cross the distance separating it from
the conflict zone before entering it:

d.
Vo, € Vipi >t + — (1)
5
c2. Anteriority constraint. A vehicle v; cannot enter the conflict zone before
the vehicle v; preceding it on its lane completely enters the conflict zone.
In our model, we consider the area close to an intersection. Therefore, no
overtaking is possible. Thus a vehicle v; cannot enter the conflict zone before

Decentralised Multi-intersection Congestion Control for CAVs 41

the vehicle v; preceding it on its lane completely enters the conflict zone. We

have: ’
V’Ui,vjEVtQ,lUiZlvj,di>dj:><pi><pj+sfj (2)

J
c3. Conflict constraint. Two vehicles must not be present at the same time
in their conflict spot. Given all the information, if the trajectories of v; and
v;j have a conflict spot, v; has to leave it before v; arrives or vice-versa'. Note
that the time it takes for v; to completely leave the conflict spot is the time

it travels the distance df ; + ¢;. We have:

Vv, vj € V2,
df,j d;,i+‘€j
(i + 22) > (g + 2) (3)
ds, d; ;+4;
Vig; +52) > (pi + =5—)

£ Si

3.2 Objective of Each Intersection and Discussion

The average delay of vehicles has been the common benchmark at the intersec-
tion level [4,17,18]. Let w; be the waiting time of v;, this minimisation can be
described as finding the minimum value for qu,th w;. However, from a network
point-of-view, simply evacuating vehicles in front of the intersection as quickly
as possible can create high density traffic in the outgoing lanes. Indeed, several
studies [9,10,14] have shown that traffic flow speed in a lane is not linear in
the lane’s density, but rather follows complex rules. Hence, in a road network,
continuing to send vehicles to a lane that has a high density may result in a
significant slowdown. In the market-based regulation system [17], authors have
introduced a dynamic pricing policy to improve the performance of the network.
Building upon that policy, we will next introduce a priority setting technique
that can be used to regulate traffic in a multi-intersection settings.

4 Priority Levels for Multi-intersection Settings

To date, intersection management algorithms have mainly been shown to opti-
mise traffic flow for individual intersections. However, they do not acknowledge
the fact that it is not always possible to evacuate vehicles through the outgoing
lanes as they might be the neighbouring intersections’ incoming lane and thus
might have a long queue. This leads to the fact that optimising traffic at an inter-
section might lead to further conflict at another intersection. In this section, we
present a novel dynamic individual priority level, that can be used to distribute
vehicles among intersections, or even guide vehicles to a better trajectory.
Similar to a dynamic pricing problem [3,6] where resources might have dif-
ferent costs each time, a vehicle’s delay should be continuously evaluated using

! This solution aims to work for settings with a large number of CAVs. In transi-
tional periods where non-autonomous vehicles are presented, this constraint can be
extended by adding a time lapse between the two vehicles to keep a safe distance.

42 H. Vu et al.

several criteria. Formally, we define for each vehicle v; a strictly positive real
value priority level p;. This priority level is updated using traffic information
such as the vehicle’s past trajectories, the current traffic density at its desti-
nation and the nature of the vehicle. A priority is defined by its type (e.g.,
emergency vehicles, buses, road maintenance vehicle) whilst a dynamic factor
is added using the other information (e.g., trajectory, destination, delay). Next
we propose two ways to update vehicles’ priority level, namely the Priority by
history and the Priority by destination.

4.1 Calculating Priority Levels

The priority of a vehicle represents the contribution of its delay in the solution
(i.e. a vehicle with higher priority contributes more to the quality of the solu-
tion). Therefore, dynamically updating this priority can guide the mechanism
to different solutions as time progresses. In this paper, we propose two ways to
calculate and update a vehicle’s priority based on its information and on the
global traffic condition.

Priority by History: Priority by history is computed based on the total delay of a
vehicle from the beginning of its trajectory. Assuming that every ordinary vehicle
that enters the road network has the same priority level and each intersection will
try to minimise average delays, the method would favour the more crowded lanes.
This makes vehicles that travel in a less crowded trajectory wait for an extremely
long time in dense traffic. To be able to balance a vehicle’s waiting time and the
global objective of the intersection, we dynamically change vehicles’ priority by
history. In this paper, we consider the distribution of priority by history, ranging
from 0 for vehicles that recently entered the system to 10 for vehicles that are
suffering lots of delay (cf. Fig.2a). In certain cases, this priority can also help
evacuating vehicles from a congested area as they tend to have higher delays and
thus, higher priority than others.

Priority by Destination: Priority by destination is computed based on the den-
sity of the next destination of a vehicle to avoid sending vehicles to a congested
area. In a simple intersection model, it is often assumed that the outgoing lanes
are always free and capable of taking vehicles. However, this assumption breaks
down in real-world settings as the conditions at the neighbouring intersections
will determine how fast cars can move along. For example, if an intersection
cannot shift vehicles from one of its incoming lanes, a neighbouring intersection
cannot and should not shift more vehicles to this lane. Such situation can also
create a deadlock if the first CAV in the lane has to stop because its destination
doesn’t have enough free space. Hence, redistributing priority so that an inter-
section can avoid sending vehicles to a more congested intersection can also be
useful. Furthermore, giving a priority bonus to a certain direction also encour-
ages vehicles to take a less congested route when they have multiple options

Decentralised Multi-intersection Congestion Control for CAVs 43

12 Priority by history —— 12 riority by destination
8 8
7 7
2 6 > 6
s 5 s 5
Ty, oy
3 3
2 2
1 1
0 0
0O 10 20 30 40 50 60 70 80 0 01 02 03 04 05 06 07 08
Delay Density of the destination
(a) (b)

Fig. 2. Priority distribution (a) Priority by history (b) Priority by destination

to complete their journey. The bonus priority by destination is also distributed
from 0 to 10, according to the expected density of their destination communi-
cated by the neighbouring intersection (cf. Fig.2b). Furthermore, intersections
can exchange information with their neighbours in case of blocked lanes due to
unpredictable events so that traffic flows can be eased.

Optimising Weighted Delay. Since each vehicle has its priority level, we will
build, for each time step t, a configuration @; for all vehicles in V; in front of the
intersection that minimises their total weighted delay whilst being able to satisfy
all the structural constraints described above. The input is the set of vehicles
Vi presented in front of an the intersection at the current time step and the
configuration at the last time step @;_1. Let w; be the waiting time of vehicle
v; (i.e. the difference between the admission time of v; in fluid condition and its
actual admission time) and @ be the set of all possible configurations, our goal
can be expressed as follows:

f: (@ Ve, ®4—1) — arg min Z w; * p; (4)

PrED v €V

We next discuss the formalisation of the model using a DCOP and show how
existing DCOP solution algorithms can be optimised to consider the parameters
of our problem.

5 DCOPs for Intersection Management

Distributed constraint optimisation is a general way to formulate multi-agent
coordination problems. A Distributed Constraint Optimisation Problem (or
DCOP) is a tuple {4, X,D,C}, where: A = {aj,...,a,} is a set of n agents;

44 H. Vu et al.

X = {x1,...,2,}? are variables owned by the agents, where variable x; is owned
by agent a;; D = {D,,,..., Dy, } is a set of finite-discrete domains. A variable x;
takes values in D,, = v1,...,vk; C = {c1,...,¢cn} is a set of constraints, where

each ¢; defines a cost € RU {oc0}. A solution to the DCOP is an assignment to
all variables that minimise), ¢;.

There are several ways in which we can formalise our problem as a DCOP,
depending on what we choose to represent with agents, variables and constraints.
The choices have an impact in both computational load and communication
overhead of agents. Here we evaluate our model using two formalisations, namely
the vehicle-based approach where each vehicle is considered as an agent and the
lane-based approach where the sub-problem of the lane is solved before the global
optimisation problem.

To give some more details, in the vehicle-based approach, each vehicle partic-
ipates in the DCOP formulation as an agent. They each have one variable rep-
resenting their admission time. The vehicles then perform a fully decentralised
process in order to find a global solution that does not cause any conflict, and
that optimises the overall delay.

On the other hand, in the lane-based approach, each lane is represented by
an agent. This solution sacrifices some decentralisation in exchange for less com-
putational time. Vehicles in the same lane are affected with the anteriority con-
straint, and may often cross the intersection using the same trajectory. Thus, the
lane agent can solve the sub-problem of only exchanging solutions that do not vio-
late the anteriority constraint. The lane agent uses a pseudo variable which is the
Cartesian product of the admission time of all the vehicles in the lane.

The lane-based approach has been shown to outperform the vehicle-based
approach in standard Max-sum setting [18]. However, when switching to a recent
variant of the algorithm, the Max-sum_AD_VP [20], the success rate becomes
higher and thus we reevaluate their performances and notice that each approach
is preferred in different traffic densities.

As can be seen, most of our constraints are hard constraints. Since the state of
the intersection constantly changes and the number of vehicles at rush hours can
be quite high, it is important to produce solutions rapidly, trading off optimality
for robustness to changes in traffic condition. Hence, instead of optimal DCOP
algorithms, we opt for heuristic, anytime algorithms that have been shown to
produce solutions of relatively high quality. In what follows, we first propose our
adaptations of the Max-sum algorithm [5] to improve performance on the traffic
management problem.

5.1 Optimisation

To exploit the two models presented above, we use message-passing approaches.
We chose a variant of the Max-sum algorithm [5] as it has been shown to be
one of the fastest and most efficient algorithms in many multi-agent domains

2 The number of variables can be different. In this paper, we assume only one variable
per agent.

Decentralised Multi-intersection Congestion Control for CAVs 45

[12,13,15]. The Max-sum algorithm uses two kinds of messages. At each iteration
i of the process, a message is sent from each variable node = to a factor node c,
including for each value d € D,, the sum of the costs for this value she received
from all factor node neighbours apart from c in iteration ¢ — 1. Formally, for each
value d € D, the message R._ (d) includes: 2eec\e ost(f'.d) — o, where Cy
is the set of factor neighbours of variable z and cost(c’.d) is the cost for value d
included in the message received from ¢’ in iteration 7 — 1. « represents a scalar
to prevent the message to increase endlessly in cyclic factor graphs. The message
sent from a factor node ¢ to a variable node x contains for each possible value
d € D, the minimum cost that can be achieved from any combination of other
variables involved in c. Formally, for each value d € D,, the message Q}éx (d)
includes minpa__cost({x,d), PA_,) where PA_, is a possible combination of
assignments to all variables involved in ¢ except . The cost of an assignment
a= ({z,d),PA_,) is c(a) + Zx'exf\x cost(x’.d"). c¢(a) is the original cost in the
constraint ¢ for the assignment a and cost(z’,d’) is the cost which was received
from variable node z’ during iteration i—1, for the value d’ which is assigned to z’
in a. These messages are exchanged between graph nodes until the convergence
criteria is reached?®.

5.2 The Max-Sum_AD_VP Algorithm and the Importance of Node
Ordering

Max-sum_AD_VP is a recent variant of Max-sum and is empirically proven to
converge faster and to a better solution than the standard version [20]. It oper-
ates on a directed factor graph. The transformation between these two graphs is
produced by giving each agent a unique index to create an order. At each phase,
messages are only computed and sent in one direction (e.g. upstream direction in
odd phases and downstream direction in even phases). From the third phase, Max-
sum_AD_VP adds value propagation, a technique where each variable node selects
a currently optimal assignment and sends it alongside the standard message. Fac-
tor nodes then, based on the value chosen, compute messages by minimising only
over assignments that are consistent with the value chosen.

To transform the original factor graph into an acyclic directed graph, Max-
sum_AD_VP has no preference and often uses the variable indices. Since the
solution quality of Max-sum_AD_VP is highly related to the initial assignments,
we aim to find a good way to organise nodes to improve its performance. In our
system, vehicles come with different priorities and we can see that the optimal
solution is more likely to favour vehicles with high priority. Thus, we conjecture
that by arranging the nodes in the priority order so that the algorithm can
converge faster to a better solution. This is due to the fact that during the value
propagation phases, the nodes with higher priority propagate their values first.
In Sect. 6.2 we will evaluate the performance of ordering nodes in different traffic
conditions.

3 In our experiments the algorithm stops when convergence is achieved or when the
timeout is reached.

46 H. Vu et al.

In the lane-based approach, instead of the priority of the vehicles, lane agents
use the sum of the priorities over the vehicles presented in the lane.

6 Empirical Evaluation

In this section, we evaluate the performance of our mechanism and the efficiency
of the improvements that we proposed for the Max-sum_AD_VP algorithm. The
experiments were performed using an Intel Core i5 clocked at 2.9 GHz with 32 GB
RAM, under Ubuntu 16.04. The Max-sum_AD_VP algorithm is implemented in
Java as per [20]. We compare values from at least 50 simulations, with 95%
confidence interval as error bars. The insertion rate of vehicles to the intersection
ranges from 0.1 (off-peak) to 0.5 (rush hour) [8].

6.1 Evaluating Space Efficiency at Individual Intersections

In this first benchmark, we aim to compare the performance of our model and
the standard cellular model used in [18]. The intersection evaluated is the one
from Fig.1. Each incoming lane has a width of 3m. We decided to use such
intersections as they are one of the most complicated scenarios in urban settings.
Vehicles are generated without any priority and both models are evaluated using
the lane-based approach with the same standard Max-sum algorithm. A time
step is set at 2s and is also the timeout of the DCOP algorithms. If the algorithm
fails to provide a solution before timing out, the intersection will automatically
apply the FCF'S solution as it is very simple to compute and advance to the next
time step. Based on the results in Fig. 3a, we observe an improvement in dense
traffic only from using space more efficiently, without changing the algorithm.

6.2 Evaluating the Efficiency of the Max-Sum_AD_VP Algorithm
at Individual Intersections

Next, we evaluate in detail our mechanism at a single intersection. Here we
evaluate all combinations of the approaches: Vehicle-based approach with node
ordering (VB-NO), Lane-based approach with node ordering (LB-NO), standard
vehicle-based approach (VB) and standard lane-based approach (LB). Vehicles
are generated with a random priority ranging from 1 to 10. We measure the
quality of the solution (i.e. the total weighted delay of vehicles) during off-peak
and rush hours. For reference we also put the results from the model proposed
by [18] on the same weighted delay problem (i.e. using a cellular, standard Max-
sum resolution). The intersection and timeout conditions stay the same as the
first experiment.

Figure 3b shows the average success rate of each approach (i.e. the percent-
age of iterations where the algorithm converges to a better solution than the
one provided by FCFS). We can see that in dense traffic, VB fails to respond
to the 2-s timeout and thus, has the worst success rate of about 24% whilst
LB converges about 80% of the time with node ordering and 70% of the time

Decentralised Multi-intersection Congestion Control for CAVs

30

Average delay (s)

Cellular Model —+—
Space-Efficient Model + -x -+

0
01 015 02 025 03 035 04 045 05
Insertion rate
(a)
400 Vg — ‘
5 350 VBNO i
? LB-NO —&—- [
8 300 LI
S |
s |
o 250
[}
<
2 200
>
©
g 150
el
Q
£ 100
=
[
= 50
0
01 015 02 025 0.3 0.35 0.4 045 05
Insertion rate
(c)
2200
2000
1800
. 1600
g *
< 1400
£
€ 1200
=}
T 1000
800 {5/
600 St
400

0.1 015 02 025 0.3 035 04 045 0.5

Insertion rate

()

Weighted delay Success rate

Anytime solution quality

1

47

0.9
0.8
0.7
0.6
0.5
0.4
VB ——
03 VB-NO - x -
LB r-%-«
0.2 LB-NO —&- ~
01 Vuetal. (2018) - -=- -
" 01 015 02 025 03 0.35 04 045 0.5
Insertion rate
(b)
500 VB
450 VB-NO -~ x -
LB r-%-«
400 LB-NO —& ~
Vuetal. (2018) - =& -
350
300
250
200
150
100
50
0
0.1 0.15 0.2 025 0.3 035 04 045 05
Insertion rate
(d)
1000 T . Node Ordering — —
1 ' Standard - - - -
, .
800 Lo
, .
v
600 ! .
I
I
I
400 |
see T
200 T L -~

0
0 100 200 300 400 500 600 700 800 900 1000

Iteration

(f)

Fig. 3. Empirical evaluations on the single intersection setting. Figure (a) shows the
performance of our space efficient model. Figure (b) shows success rate of each app-
roach on a weighted delay problem. Figure (c) shows the average solution quality when
successful. Figure (d) shows the average weighted delay. Figure (e) shows the aver-
age runtime of each algorithm when successful. Figure (f) shows the anytime cost
of Ordered and Standard versions of Max-sum_-AD_VP running on the lane-based

approac

h.

48 H. Vu et al.

without. Figure 3c shows the average solution quality when successful. We note
that VB tends to converge to a better solution in off-peak conditions. In VB,
the solution is less likely to favour vehicles with high priority since it depends
more on the number of vehicles in the lane. Therefore, using node ordering with
this approach does not always result in a better outcome, and at times pushes
Max-sum_AD_VP to greedily pick a worse solution. For LB, since lanes with
more vehicles/higher priority are more likely to have shorter delays, using node
ordering causes Max-sum_AD_VP to converge faster with higher success rate,
especially in dense traffic. Figure 3d shows the overall quality of the solution, i.e.
the average weighted delay of all vehicles. VB is the solution that gives the best
performance in off-peak conditions. In dense traffic, since it often has to take the
FCFS solution when it fails to converge, its overall cost is higher than the cost
of LB. LB-NO provides a fairly good result in dense traffic and is the best one in
rush hour. It outperforms the existing approach by up to 32%. Hence, switching
between approaches for different traffic conditions could lead to a better solution
for single intersection traffic management. Figure 3f shows the anytime quality of
the solution to compare the performance between the ordered and the standard
versions of the lane-based approach Max-sum_AD_VP. We can clearly observe a
better convergence when ordering nodes using priority levels.

6.3 Multi-intersection Efficiency

To be able to measure the effect of dynamic vehicle priorities, we evaluate our
mechanism in two different scenarios using a 2 X 2 intersection model. In the
scenario A, we consider the East-West direction through I; and I in the rush

11 12 11 12

L Iy I Iy

(a) (b)

Fig. 4. Multi-intersection scenario (a) The east-west direction through I and I (in
red) is more crowded than the other directions. (b) The east and south outgoing lanes
of I4 (in red) have a limited capacity (Color figure online).

Decentralised Multi-intersection Congestion Control for CAVs 49

hour conditions whilst the other directions in normal conditions (cf. Fig.4a).
This is a common scenario during rush hours in urban traffic.
In the scenario B, we consider the east and south outgoing lanes of I, can
only evacuate 1 vehicle every 3 time steps and get crowded (cf. Fig. 4b).
Table1 shows results achieved using each individual priority, a combined
version using the sum of the priorities, and the standard version.

Table 1. Average delay of vehicles in different scenarios.

Priority by Priority by Combined No priority
history only destination only priority
Scenario A | 24.74 + 3.13 | 27.88 4+ 3.86 21.25 + 2.25|32.19 &+ 6.29
Scenario B | 21.98 + 3.01 12.85 + 2.66 13.12 £ 3.84 |21.16 £ 4.42

In the scenario A, both priorities contribute to the improvement of the overall
solution. Indeed, when we take a closer look at the intersections I3 and I, their
north lanes often have to evacuate more vehicles. The priority by history speeds
up this evacuation since the vehicles in these lanes have suffered from higher
delays. On the other hand, the priority by destination prevents I3 and I to
send vehicles to the north, since the northern outgoing lanes might not be able
to evacuate a large number of vehicles.

In the scenario B, we noticed that the priority by destination contributes
much more to the congestion avoidance. In fact, without the priority by desti-
nation, vehicles continue to be sent to the intersection I4, creating a congested
situation. This congestion further leads to the impossibility of sending vehicles
from I5 and I3 to the east and south directions respectively, thus blocked vehicles
from entering I and I3. The average delay grows rapidly due to deadlocks. The
priority by history makes the performance slightly worse (but not significant)
while sending unnecessary vehicles to Iy. In this simulation, we consider that
vehicles have a fixed trajectory before entering the network but to extend the
model, vehicles might choose to go from I to I3 or vice-versa through I instead
of I, to reduce their delays and optimise the use of traffic network.

6.4 Discussion on the Lane-Based Approach

As shown in the empirical results, the lane-based approach can sometimes be
outperformed by the vehicle-based approach, especially in the lower density set-
tings. However, there is also another aspect we should take a closer look at,
namely the communication range of the vehicles. Communication between vehi-
cles can be achieved via the infrastructures installed at the intersection level.
However, there are always areas where intersections may not have any computa-
tion capability (e.g., in rural areas or non-urban settings). This can be important
in mass evacuations following fires or floods [13].

50 H. Vu et al.

B P 9

to anteriority constraint 19

<--» Communication due
to confiict constraint

P
O

» 0'; ; —» Road marks g v
A fi

=5

Fig. 5. Communication range required for (a) the vehicle-based approach. (b) the lane-
based approach.

In Figs. 5a and b we can see that the lane-based approach also helps reducing
communication range, because only the vehicle representing the lane is required
to communicate with vehicles representing conflicting lanes. Therefore, in the
lane-based approach, the lane agent should be the first vehicle in the lane due
to the reduction of communication range.

7 Conclusions

In this paper, we proposed a novel approach for managing CAVs to reduce traf-
fic congestion. Our results show that we outperform benchmark solutions by
up to 32% at a single intersection. Our dynamic priority assignment technique is
proven to be efficient in multi-intersection settings. Since the combined version
might not be the best in some cases, future work will look at a detailed eval-
uation of combination between several priority distribution functions to adapt
to traffic conditions. Other performance metrics such as fuel consumption and
comfortability of passengers (due to acceleration, deceleration and stop-and-go)
can also be used for evaluation.

References

1. Ashtiani, F., Fayazi, S.A., Vahidi, A.: Multi-intersection traffic management for
autonomous vehicles via distributed mixed integer linear programming. In: 2018
Annual American Control Conference (ACC), pp. 6341-6346 (2018)

2. Azimi, R., Bhatia, G., Rajkumar, R., Mudalige, P.: Ballroom intersection protocol:
synchronous autonomous driving at intersections. In: IEEE International Confer-
ence on Embedded and Real-Time Computing Systems and Applications (2015)

10.

11.

12.

13.

14.
15.

16.

17.

18.

19.

20.

Decentralised Multi-intersection Congestion Control for CAVs 51

Do Chung, B., Yao, T., Friesz, T.L., Liu, H.: Dynamic congestion pricing
with demand uncertainty: a robust optimization approach. Transp. Res. Part B
Methodol. 46, 1504-1518 (2012)

Dresner, K., Stone, P.: A multiagent approach to autonomous intersection man-
agement. JAIR 31(1), 591-656 (2008)

Farinelli, A., Rogers, A., Petcu, A., Jennings, N.R.: Decentralised coordination of
low-power embedded devices using the max-sum algorithm. In: AAMAS 2008, pp.
639-646 (2008)

Faruqui, A., Sergici, S.: Household response to dynamic pricing of electricity: a
survey of 15 experiments. J. Regul. Econ. 38, 193-225 (2010). https://doi.org/10.
1007/s11149-010-9127-y

Fayazi, S.A., Vahidi, A., Luckow, A.: Optimal scheduling of autonomous vehicle
arrivals at intelligent intersections via MILP. In: 2017 American Control Conference
(ACC), pp. 4920-4925 (2017)

Junges, R., Bazzan, A.L.C.: Evaluating the performance of DCOP algorithms in a
real world, dynamic problem. In: AAMAS 2008, pp. 599-606 (2008)

Lighthill, M.J., Whitham, G.B.: On kinematic waves. I. Flood movement in long
rivers. Proc. Roy. Soc. Lond. A 229, 281-316 (1995)

Lighthill, M.J., Whitham, G.B.: On kinematic waves. II. A theory of traffic flow
on long crowded roads. Proc. Roy. Soc. Lond. Ser. A 229, 317-345 (1955)
Litman, T.: Autonomous vehicle implementation predictions. Victoria Transport
Policy Institute (2013)

Macarthur, K., Stranders, R., Ramchurn, S., Jennings, N.R.: A distributed anytime
algorithm for dynamic task allocation in multi-agent systems. In: AAAI 2011, pp.
701-706 (August 2011)

Ramchurn, S.; Farinelli, A., Macarthur, K., Jennings, N.R.: Decentralized coordi-
nation in RoboCup rescue. Comput. J. 53, 1447-1461 (2010)

van Rijn, J.: Road capacities. Indevelopment (2014)

Stranders, R., Farinelli, A., Rogers, A., Jennings, N.R.: Decentralised coordination
of mobile sensors using the max-sum algorithm. In: IJCAI 2009, pp. 299-304 (2009)
Tlig, M., Buffet, O., Simonin, O.: Decentralized traffic management: a
synchronization-based intersection control. In: ICALT 2014 (2014)

Vasirani, M., Ossowski, S.: A market-inspired approach for intersection manage-
ment in urban road traffic networks. JAIR 43, 621-659 (2012)

Vu, H., Aknine, S., Ramchurn, S.D.: A decentralised approach to intersection traffic
management. In: IJCAI 2018, pp. 527-533 (2018)

Xu, B., et al.: Distributed conflict-free cooperation for multiple connected vehicles
at unsignalized intersections. Transp. Res. Part C Emerg. Technol. 93, 322-334
(2018)

Zivan, R., Parash, T., Cohen, L., Peled, H., Okamoto, S.: Balancing exploration
and exploitation in incomplete min/max-sum inference for distributed constraint
optimization. JAAMAS 31(5), 1165-1207 (2017)

https://doi.org/10.1007/s11149-010-9127-y
https://doi.org/10.1007/s11149-010-9127-y

l‘)

Check for
updates

Congestion Management
for Mobility-on-Demand Schemes that
Use Electric Vehicles

1) and Konstantinos S. Tsompanidis?

Emmanouil S. Rigas
! Department of Informatics, Aristotle University of Thessaloniki,
54124 Thessaloniki, Greece
erigas@csd.auth.gr
2 Department of Computing, The University of Northampton,
Northampton NN1 5PH, UK
ktsompanidis@hotmail.com

Abstract. To date the majority of commuters drive their privately
owned vehicle that uses an internal combustion engine. This transporta-
tion model suffers from low vehicle utilization and causes environmental
pollution. This paper studies the use of Electric Vehicles (EVs) operating
in a Mobility-on-Demand (MoD) scheme and tackles the related manage-
ment challenges. We assume a number of customers acting as cooperative
agents requesting a set of alternative trips and EVs distributed across
a number of pick-up and drop-off stations. In this setting, we propose
congestion management algorithms which take as input the trip requests
and calculate the EV-to-customer assignment aiming to maximize trip
execution by keeping the system balanced in terms of matching demand
and supply. We propose a Mixed-Integer-Programming (MIP) optimal
offline solution which assumes full knowledge of customer demand and
an equivalent online greedy algorithm that can operate in real time.
The online algorithm uses three alternative heuristic functions in decid-
ing whether to execute a customer request: (a) The sum of squares of
all EVs in all stations, (b) the percentage of trips’ destination location
fullness and (c) a random choice of trip execution. Through a detailed
evaluation, we observe that (a) provides an increase of up to 4.8% com-
pared to (b) and up to 11.5% compared to (c) in terms of average trip
execution, while all of them achieve close to the optimal performance.
At the same time, the optimal scales up to settings consisting of tenths
of EVs and a few hundreds of customer requests.

Keywords: Electric vehicles - Mobility-on-demand - Scheduling -
Heuristic search - Cooperative

1 Introduction

We live in a world where the majority of the population is living in, or around,
large cities. Given that this trend tends to increase, the current personal trans-
portation model is not sustainable as this is based to a large extend on privately

© Springer Nature Switzerland AG 2020
N. Bassiliades et al. (Eds.): EUMAS 2020/AT 2020, LNATI 12520, pp. 52-66, 2020.
https://doi.org/10.1007/978-3-030-66412-1_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-66412-1_4&domain=pdf
https://doi.org/10.1007/978-3-030-66412-1_4

Congestion Management for MoD Schemes that Use EVs 53

owned internal combustion engine vehicles [1]. These vehicles cause high air and
sound pollution and usually have low utilization rates [21]. Electric Vehicles
(EVs) can be an efficient alternative to those using internal combustion engines
in terms of running costs [8], quality of driving, and environmental impact. At
the same time, their main disadvantages are their short ranges and long charg-
ing times. To address such issues, cities aim to build many charging stations.
Charging facilities though, are only worth building if there are enough EVs to
use them. However, drivers will not buy EVs if charging stations are not first
available, leading to a catch-22 situation.

Mobility-on-Demand (MoD) schemes [14] are considered as a way to increase
vehicle utilization. MoD involves vehicles that are used by either individuals, or
small groups of commuters, and provides them with an alternative from using
their privately owned vehicles. Such systems have the potential to reduce traffic
congestion in urban areas, as well as the need for large numbers of parking
spots and increase the vehicle utilization rates as few vehicles will cover the
transportation needs of many commuters.

Given these benefits of EVs and MoD schemes, in this paper we study a
setting where EVs are used within MoD schemes, and propose solutions for the
related optimization challenges. By addressing these challenges, the advantages
of the two transportation modes can be combined [3,14]. Moreover, the use of
EVs in MoD schemes offers an opportunity to better market EVs to potential
car owners as they get to try the technology before buying it. In this way, EV-
equipped MoD schemes would help popularize EVs, while at the same time
having a positive impact in urban traffic conditions as well as the environment.

Against this background, we model the MoD scheme for EVs and develop
novel algorithms to solve the problem of scheduling trips for MoD consumers in
order to maximize the number of trip requests serviced while coping with the
limited range of EVs. We step upon the work presented in [17] and study the
problem of assigning EVs to customers in a MoD scheme and we solve it offline
and optimally using Mixed Integer Programming (MIP) techniques, as well as
online using heuristic search. In doing so, we advance the state of the art as
follows:

1. We extend the optimal scheduling algorithm “Off-Opt-Charge” presented
in [17] which considers single travel requests by customers, by covering the
option for customers to express their demand for more than one tasks, where
as a task we consider a trip between a pair of locations starting a particular
point in time.

2. We develop an online greedy scheduling algorithm for the problem of selecting
the tasks to execute and the assignment of EVs to customers and we propose
three alternative heuristic functions.

The rest of the paper is structured as follows: Section 2 presents related work,
Sect. 3 formally defines the problem, Sect. 4 presents the optimal offline solution
of the problem and Sect. 5 the equivalent online one. Section 6 provides a detailed
evaluation of the algorithms and finally, Sect. 7 concludes and presents ideas for
future work.

54 E. S. Rigas and K. S. Tsompanidis

2 Related Work

In this context, Pavone et al. propose mathematical programming-based rebal-
ancing mechanisms to decide on the relocation of vehicles to restore imbalances
across a MoD network, either using robotic autonomous driving vehicles [16], or
human drivers [15], while Smith et al. [19] use mathematical programming to
optimally route such rebalancing drivers. Moreover, Carpenter et al. [4] develop
solutions for the optimal sizing of shared vehicle pools. These works assume
normal cars, while EVs present new challenges for MoD schemes as EVs have
a limited range that requires them to charge regularly. Moreover, if such MoD
schemes are to become popular, it is important to ensure that charging capac-
ity is managed and scheduled to allow for the maximum number of consumer
requests to be serviced across a large geographical area. In addition, in order
for MoD schemes to be economically sustainable, and given the higher cost of
buying EVs compared to conventional vehicles, it is important to have them
working at maximum capacity and servicing the maximum number of customers
around the clock.

In such a setting, Drwal et al. [10] consider on-demand car rental systems
for public transportation. To balance the demand across the stations and to
maximise the operator’s revenue, they adjust the prices between origin and des-
tination stations depending on their current occupancy, probabilistic information
about the customers’ valuations and estimated relocation costs. Using real data
from an existing on-demand mobility system in a French city, they show that
their mechanisms achieve an up to 64% increase in revenue for the operator and
at the same time up to 36% fewer relocations. In addition, Rigas et al. [17] use
mathematical programming techniques and heuristic algorithms to schedule EVs
in a MoD scheme taking into consideration the limited range of EVs and the
need to charge their batteries. The goal of the system is to maximize serviced
customers. Cepolina and Farina [5] study the use of single-sitter compact-sized
EVs in a MoD scheme operating in a pedestrian zone. The vehicles are shared
throughout the day by different users and one way trips are assumed. However,
here the authors also assume open ended reservation to exist (i.e., the drop-off
time is not fixed), thus adding one more dimension to the problem. Given this,
they propose a methodology that uses a random search algorithm to optimize
the fleet size and distribution to maximize the number of serviced customers.
Moreover, Turan et al. [22] study the financial implications of smart charging in
MoD schemes and they conclude that investing in larger battery capacities and
operating more vehicles for rebalancing reduces the charging costs, but increases
the fleet operational costs. Finally, Gkourtzounis et al. [12] propose a software
package that allows for efficient management of a MoD scheme from the side of
a company, and easy trip requests for customers.

From an algorithmic point of view, similarities can be found with problems
such as the capacitated vehicle routing problem [6] which is a special case of the
Vehicle Routing Problem [7], where each vehicle has a limited carrying capacity,
the project scheduling problem [20], and the machine scheduling problem [13].

Congestion Management for MoD Schemes that Use EVs 55

Overall, the need for battery charging as well as the strict order of task
execution differentiate our problem compared to the majority of the works pre-
sented so far, and make it harder to find the optimal solution. Also the efficient
online algorithms make it more applicable in real-world deployments. In the next
section, the problem is formally defined.

3 Problem Definition

In a MoD scheme which uses EVs, customers may choose to drive between pairs
of predefined locations. They can choose at least one starting point and at least
one end point. Since the MoD company’s aim is to serve as many requests as
possible, the system selects to execute the task which keeps the system in balance
(i.e., trying to match demand across supply). A task is defined as a trip from
a pick-up to drop-off location starting a particular point in time. Thus, based
on the number of start and end points the customer has defined, all possible
combinations are calculated and the equivalent tasks are created. We consider
a network of pick-up and drop-off stations where the EVs can park and charge
their batteries. The stations are considered as nodes aiming to be kept neither
empty nor overloaded. The system needs to be in balance since the overloading
of one station may cause major disruption to the network. A summary of all
notations can be found in Table1.

We consider a fully connected directed graph G(L, FE) where [€ L C N is the
set of locations where the stations exist and e € E C N are the edges connecting
all locations combinations. Each station has a maximum capacity ¢;"** € N
declaring the number of EVs that can reside at it simultaneously. We assume a
set of discrete time points ¢ € T C N where the time is global for the system
and the same for all agents. We have a set of tasks r € R C N where a task is a
trip initiating a particular point in time. Thus, each task has a starting location
Istart an end location 1¢"¢, as well as a starting time ¢5¢¢"* a duration 7, and
an equivalent energy demand e, € N.

We denote the set of EVs ¢« € A C N. Each EV has a current location
lo,t € L, a current battery level e, ; € N, a maximum battery level e¢'** € N,
an energy consumption rate con, € N where con, =(energy unit/time point), a
maximum travel time 7, = e"*®/con,, and a charging rate ch, € N. Note that
an EV changes location only when being driven by a customer and no relocation
of vehicles exists.

Finally, we have a set of customers ¢ € I C N where a customer needs to travel
between one or more pairs of locations dem; C R. Customers act as fully coop-
erative agents when communicating their demand to the MoD company. After
the demand is communicated to the company, an EV-to-customer assignment
algorithm is applied. In doing so, a set of assumptions are made:

1. The MoD company is a monopoly. At this point competition between compa-
nies is not taken into consideration. This would introduce different approaches

56

E. S. Rigas and K. S. Tsompanidis

in decision making strategy and should include more variables into the prob-
lem domain (energy and labor cost, building rents, taxes, etc.), which are not
the case in this paper.

The MoD company uses the same EV model. For simplification reasons it is
considered that all EVs are of the same make and model.

All stations have one charger for each parking spot. This means that if there is
a parking spot available, there is also a charger available. There is no waiting
queue for charging.

EVs’ full battery capacity is sufficient to make a journey from one station
to any other without extra charge needed. No stops are required, and no
charging time needs to be spent in between two locations. Travelling to loca-
tions beyond the maximum range of an EV needs a different formulation and
induce challenges which will be solved in future work.

Table 1. Notations used in problem definition and algorithms.

Notation | Explanation

l Location of a station

e Edge connecting two stations
ot Maximum capacity of a station
t Time point

r A task

[start Start location of a task

jend End location of a task

start Start time of a task

T Duration of a task

er Energy demand of a task

a An EV

lat Current location of EV

€a,t Energy level of EV

eq Max battery capacity of EV
chq Charging rate of EV

cong Consumption rate of EV

Ta Max travel time of EV

i A customer

dem; Travel demand of customer

Ar Task r accomplished (Boolean)
€a,rt True if EV a is working on task r at time t (Boolean)
prkas; | True if EV a is parked at location 1 at time t (Boolean)
bcha+ Charging rate of EV a at time t

Congestion Management for MoD Schemes that Use EVs 57

4 Optimal Offline Scheduling

In this section, we assume that customer requests are collected in advance and
we propose an optimal offline algorithm for the assignment of EVs to customers.
This formulation aims to maximize the number of tasks that are completed
(i.e., customer service) (Eq.1). To achieve this, we present a solution based on
Mixed Integer Programming (MIP), where we use battery charging to cope with
the EVs’ limited range. MIP techniques have been particularly useful to solve
such large combinatorial problems (e.g., combinatorial auctions [2,18], travelling
salesman problem [9]). We will refer to this algorithm as Optimal. As a solver we
have selected the IBM ILOG CPLEX 12.10. In this formulation, we define four
decision variables: 1) A, € {0,1} denoting whether a task r is accomplished or
not, 2) €q ¢ € {0,1} denoting whether EV a is executing task r at time ¢ or not,
3) prkq.; € {0,1} denoting whether EV a is parked at time point ¢ at location [
or not and 4) beh, ¢ € [0, chy] which denotes whether an EV a is charging at time
point ¢ and at which charging rate (i.e., the charging rate can be any between 0
and the maximum charging rate - ch,).

Objective Function:
maz Y (A (1)

Subject to:
— Completion constraints:

Z Z €art = Tr X Ap, VT (2)

acA tf‘tartSt<t$‘nd

Z Z €a,rt = O,VT (3)

a€EA tit"’rt >t,t2t$."d

€arttl = €artVa,Vr, V5197 <t < tf."d -1 (4)
bchas <Y prkass X che, Va, vt (5)
leL

t t
0<eqi=0+ Z behg,p — Z Z €ra,t7 X cOng < 100,Va, vt (6)

t'=0 rcR t”:tf;t‘”'t

> oA <1V (7)

reédem;

The completion constraints ensure the proper execution of tasks. Thus, for
each executed task, the time traveled must be equal to the duration of the trip

58 E. S. Rigas and K. S. Tsompanidis

concerned (Eq.2), and no traveling must take place when a task is not executed
(Eq. 3). Moreover, each task is executed by exactly one EV at a time (Eq. 4) and
Eq.9). Equation 5 ensures that each EV a can charge only while being parked.
When an EV is parked, it can charge with a charging rate up to its maximum
one. However, when it is driving and prk,:; = 0 it cannot charge. Regarding
the time points the EV will charge, the solver will choose any time points, as
long as the available range will not compromise the task execution ability. At
the same time, Eq. 6 ensures that the battery level of an EV a never goes above
100%, or below 0%. Thus, no EV a will execute a task r for which it does not
have enough range, nor will it charge more than its battery capacity. Note that
we assume all EVs to have the same fixed average consumption. Finally, for each
customer at most one of her alternative tasks dem; must be executed (Eq. 7).

— Temporal, spatial, and routing constraints:

Zprkau =1- Z €art, Va, VT (8)

leL reR
2 % Z €q i tstart = Z Z lprkasr11 — prkail,Va (9)
reR leL teT—1

prka’titart,]_’litart > Ga,r,tﬁmﬁ;vr, Ya (10)
prka’tgndJ’e‘nd 2 Ea’r’tTe‘nd7vr7 Va (11)
D (prkas) < " VLV (12)

a€A
prka.i—o; = 15" Va, VI (13)
€q,rt=0 = 0,Va,Vr (14)

The temporal, spatial and routing constraints ensure the proper placement of
the EVs over time. Equation 8 ensures that for each time point at which an EV
is executing a task, this EV cannot be parked at any location and also assures
(together with Eq.4) that any time point, each EV executes at most one task.
Moreover, Eq. 9 ensures that no EVs change location without executing a task
(the sum of all changes of EVs’ locations as denoted in prk decision variable,
must be double the total number of tasks that are executed). Note that, this
constraint is linearized at run time by CPLEX. This is usually done by adding
two extra decision variables and two extra constraints.

Now, whenever a task is to be executed, the EV that will execute this task
must be at the task’s starting location one time point before the task begins
(Eq. 10), and similarly, whenever a task has been executed, the EV that has
executed this task must be at the task’s end location the time point the task

Congestion Management for MoD Schemes that Use EVs 59

ends (Eq.11). Moreover, at every time point, the maximum capacity of each
location must not be violated (Eq.12). Finally, at time point ¢ = 0, all EVs
must be at their initial locations (Eq.13), which also means that no tasks are
executed at t = 0 (Eq. 14).

— Clut constraints:

S prkasi =Y prha-ik+ D A= D ALVEVL (1)

acA acA Rstart(t]) Rend (t,1)

Equation 15 ensures that for every location, the total number of EVs at charg-
ing stations changes only when EVs depart or arrive to execute a task, or after
executing tasks. Although this constraint is covered by Eq. 9, when added to the
formulation, it significantly speeds up the execution time. In fact, it is known
that the introduction of additional cut constraints into a MIP problem may cut
off infeasible solutions at an early stage of the branch and bound searching pro-
cess and thus reduce the time to solve the problem [11]. Given that MoD schemes
should also work in a dynamic setting, in the next section we present an online
greedy scheduling algorithm that uses alternatively three heuristic functions to
solve the task execution problem.

5 Greedy Online Scheduling

In the previous section, we presented an optimal offline solution for the EV
to customer assignment problem in a MoD setting. However, this algorithm
assumes full knowledge of supply and demand in advance. In this section, in
order to have a more complete set of tools to tackle the pre-defined problem we
propose a greedy online algorithm that calculates an EV to task assignment in
real time as requests arrive to the system. This algorithm applies a one-step look
ahead heuristic search mechanism and achieves near optimal performance and
scales to thousands of EVs and tasks.

Given that EVs change locations only when being driven by customers, the
tasks that an EV will be able to execute in the future are directly related to the
ones it has already executed in the past (i.e., the end location of one task will be
the start location for the next one). In large settings, normally not all tasks can
be executed. Thus the selection of the ones to execute is of great importance,
since each decision can affect future task execution.

The proposed scheduling algorithm uses three heuristic functions in deciding
on whether to execute a task or not. The first is the sum of squares of parked
EVs at each station (see Eq. 16). The larger this number, the more imbalance for
the system. In this case, we select to execute the task that will lead the EV to the
location that minimizes this sum and causes the least imbalance to the system.
For example if we consider two stations each having three parking spots, and
three EVs. If all three EVs are parked in one station (when a task/request will
be accomplished), the outcome would be: 3%+ 0% = 9. However, if two EVs were

60 E. S. Rigas and K. S. Tsompanidis

parked at one station and one at the other, the outcome would be: 22 + 12 = 5.
We refer to this heuristic as Square.

The second heuristic is the destination station capacity percentage (see
Eq.17). In this case, we divide the sum of the parked EVs at location [by
its total capacity and we select to execute the task that will lead an EV to the
location with the highest current capacity (i.e., the lower number of existing
EVs). This calculation is used to discover each location’s capacity percentage
separately and aims to move EVs to locations where the supply is low. We refer
to this heuristic as Destination.

Finally, the third heuristic is a simple random choice of the task to execute.
We refer to this heuristic as Random.

sq; = Z(Z ea7t,l)2,t ceT (16)

leL acA

depry = (Z €a,t)/ " (17)

a€A

In what follows, we provide a step-by-step description of the greedy schedul-
ing algorithm (see Algorithm 1). Based on the online execution of the algorithm,
if at time point ¢ a new customer i arrives and expresses her demand, then the
set dem; of all possible tasks is created (line 2). Then, we update the energy
level for all EVs. EVs are assumed to charge their battery every time point they
are parked unless the battery is fully charged (lines 3-8). Note that in contrast
to the optimal algorithm, here the EVs charge with the maximum rate. For each
task in dem;, we check whether the end location of it has enough capacity to
receive one vehicle. If this is true, then we search the set of EVs to find the ones
that are parked at the starting location of the task and have enough energy to
execute the task. If at least one such EV exists, then this task is added to the
set dem that contains the list of feasible tasks (lines 9-23). The next step is to
calculate for each of the feasible tasks, the score, using one of the three heuristic
functions (lines 24-27). These scores are later sorted on ascending order and the
task with the lower score is selected to be executed (lines 27-28). Once the task
has been selected, the EV is assigned to it and its location is updated accord-
ingly (lines 29-39). In the next section we present a detailed evaluation of our
algorithms.

6 Evaluation

In this section, we present a detailed evaluation of our algorithms using a number
of different settings. In doing so, we use real locations of pick-up and drop-off
points owned by ZipCar' in Washington DC, USA which are available as open
data.? The distance and duration of all trips were calculated using Google maps.
The evaluation of our algorithms takes place in two main parts:

! https://www.zipcar.com/washington-dc.
2 http://opendata.dc.gov/datasets/.

https://www.zipcar.com/washington-dc
http://opendata.dc.gov/datasets/

Congestion Management for MoD Schemes that Use EVs 61

Algorithm 1. EV-to-Customer assignment algorithm.

Require: A, T, L,dem;,Ya,l,r: €qt,€at,i, Wat,r,
1:

»

16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:

start jend
lr) lr s €ry Tr

{If a new customer ¢ arrives at time point ¢ then:}
Create dem; which consists of the combination of all start and end points defined
by the customer.
for all (a € A) do

forall (' €eT:t' <t)do
{Update the energy level of each EV}

€at = €at + (D cp €airl) X Cha — (02, c g Wa,ir,r) X CONg

end for
end for
for all (r € dem;) do

: {If the end location of the task has enough capacity for an incoming vehicle:}
11:
12:
13:
14:
15:

if (ciend yyr, < Ciend 4y,) then
FoundEV «— False
a=20
while (Found = False AND a < |A]) do
{Search the set of EVs until an EV with current location equal to the initial location
of the task that has enough energy to execute the task is found.}
if (ea,t,limm =1 AND eyt > er) then

Found «— True
end if
a=a+1

end while{Update the set of feasible tasks.}
(demj «— demj + 1)
end if
end for
for all (r € dem;) do
Calculate score for each task using one of the three heuristic functions.
end for
Sort score in ascending order.
Select to execute task r that minimizes the heuristic function.
forall (' €T :¢ >7.) do
{Set the new location of the EV after the execution of the task.}
E(L’t/’lcnd =1
end for
for allt' € T:¢ >t do
€a,tr istart =0
end for
forall ' €eT:¢' >t AND ¢ <t+7.) do
{Set the EV to be working on the task for the equivalent time points. }
Wt p = 1
end for

EXP1: The performance of the online and offline algorithms in terms of the
average number of serviced customers (i.e., executed tasks).
EXP2: The execution time and the scalability of the algorithms.

62 E. S. Rigas and K. S. Tsompanidis

To perform the experiments we used the following setting: 1) One time point
is equal to 15min and totally 58 time points exist which is equivalent to the
execution of the MoD service from 7:00 to 18:00. 2) 8 locations exist and tasks
can be formulated based on one of 56 possible trips (i.e., the trips are the combi-
nations of the locations that form the MoD scheme. However, locations too close
to each other were ignored) and trips as well as starting times were randomly
selected. Each location has a maximum capacity ¢;*** = 10. 3) Each customer ¢
has a demand dem; of up to three alternative tasks. 4) The energy consumption
rate for each EV a is selected to be con, = 10 and the charging rate ch, = 25.
This means that for each time point that an EV is working the battery level is
reduced by 10 units of energy, and for each time point an EV is charging the
battery level is increased by up to 25 units of energy (fast battery charging):
The average range of an EV is currently at around 150 km. We assume an aver-
age speed of 40 km/hour which means that an EV can drive for 3.75h. In our
evaluation setting, one time point is equal to 15 min, and 3.75h equal to 15 time
points. Thus, con, = 10% of battery for each time point. A fast charger can
fully charge an EV at around one hour. Thus, ch, = 25% of the battery for each
time point. Both con, and ch, are configuration parameters and can be selected
by the user. All experiments were executed on a Windows PC using an Intel
i7-4790K CPU and 16 GB of RAM running at 2400 MHz.

6.1 EXP1: Customer Service

Here we investigate the performance trade-off incurred by the online algorithms
in terms of average customer service against the optimal offline one. Initially, we
study a setting with 15 EVs and up to 70 customers. Note that each customer
expresses her demand for up to 3 alternative tasks, with an average number of 2,
so the average number of tasks is approximately double the number of customers.
As we observe in Fig. 1, all online algorithms are close to the optimal with the
best being the Squared having a 94.2% efficiency in the worst case, then is the
Destination with a 93.3% efficiency in the worst case and last is the Random
with a 86.9% efficiency in the worst case.

Aiming to see how the number of EVs affects the performance of the online
algorithms, we set up an experiment with 100 customers and up to 35 EVs. As
we can observe in Fig. 2 the overall image is similar to the previous case with the
Squared being the best, the Destination second and the Random third. However,
it is interesting to notice that when the number of EVs is low (5 EVs) or large (35
EVs) the performance deficit of the Destination and Random is smaller compared
to the case where 20 EVs exist. This can be explained by the fact that when
the number of EVs is low the heuristics, as they are connected to the number of
EVs, cannot make a big difference, while when the number of EVs is high the
problem becomes easier to solve. Finally, in order to evaluate the performance
of the online algorithms in larger settings, we set up an experiment with 100

Congestion Management for MoD Schemes that Use EVs 63

80

T T
| |—%—Optimal i
70 -& —Square
—-F-— Destination

60 I —&— Random

i |‘ 1
o

Serviced customers

! 020 25 30 35 40 45 50 55 60 65 70
Number of customers
Fig. 1. Average number of serviced customers
110 T T T T T
100

. y
LA™ |

90

% Serviced customers
o]
o
T

70
I 4 — & —sSquare
604 —-f-—Destination |
—&— Random
50 1 1 1 1 1
5 10 15 20 25 30 35

Number of EVs

Fig. 2. Average number of serviced customers- Varying number of EVs

EVs, 100 time points and up o 1200 customers. As we can observe in Fig. 3,
up to around 500 customers all three algorithms have a similar performance,
but later the Squared and Destination have a better performance and for 1200
customer the Destination has a 95.4% efficiency compared to the Squared and
the Random a 89.7% efficiency compared to the Squared.

64 E. S. Rigas and K. S. Tsompanidis

1200 T T T T T
— & —Square
1000 | |—-F-— Destination _ e—_:_:f_
—&— Random -

L 4

800

600

400

Serviced customers

200

0 1 1 1 1 1
0 200 400 600 800 1000 1200

Number of customers

Fig. 3. Average number of serviced customers- Online algorithms

1400 T T T T T T
1200
1000
800
600
400

Execution time (Secs)

200 |

o ——

20 40 60 80 100 120 140 160
Average number of tasks

Fig. 4. Execution time of the Optimal algorithm

6.2 EXP2: Execution Time and Scalability

Execution time and scalability are typical metrics for scheduling algorithms. In
a setting with 15 EVs and up to around 140 tasks (i.e., 70 customers), we see in
Fig. 4 that the execution time of the Optimal algorithm increases polynomially.
Using MATLAB’s Curve Fitting Toolbox we see that the Optimal’s execution
time is second degree polynomial with R2 = 97.11. At the same time, the online
algorithms have a very low execution time, as they all run in well under 0.05s
even in large settings.

Congestion Management for MoD Schemes that Use EVs 65

7 Conclusions and Future Work

In this paper, we studied the problem of scheduling a set of shared EVs in a MoD
scheme. We proposed an offline algorithm which collects the customers’ demand
in advance and calculates an optimal EV to customer assignment which max-
imizes the number of serviced customers. This algorithm scales up to medium
sized problems. We also proposed three variations of an online algorithm which
operates in a customer-by-customer basis and has shown to achieve near opti-
mal performance while it can scale up to settings with thousands of EVs and
locations.

Currently, we assume that the customer-agents are cooperative when com-
municating their demand to the system. As future work we aim to extend this
by including non-cooperative agents and to apply mechanism design techniques
in order to ensure truthful reporting. Moreover, we aim to improve the charging
procedure of the EVs by trying to maximize the use of limited and intermittent
energy from renewable sources. Finally, we want to enhance our algorithms in
handling possible uncertainties in arrival and departure times, while aiming to
maximize customer satisfaction and their profit.

Acknowledgment. This research is co-financed by Greece and the European Union
(European Social Fund - ESF) through the Operational Programme “Human Resources
Development, Education and Lifelong Learning” in the context of the project “Rein-
forcement of Postdoctoral Researchers - 2nd Cycle” (MIS-5033021), implemented by
the State Scholarships Foundation (IKY).

References

1. U.S. Energy Information Administration: Annual energy outlook 2020. Technical
report (2020)

2. Andersson, A., Tenhunen, M., Ygge, F.: Integer programming for combinato-
rial auction winner determination. In: 2000 Proceedings of the 4th International
Conference on MultiAgent Systems, pp. 39-46 (2000). https://doi.org/10.1109/
ICMAS.2000.858429

3. Burns, L.D.: Sustainable mobility: a vision of our transport future. Nature
497(7448), 181-182 (2013)

4. Carpenter, T., Keshav, S., Wong, J.: Sizing finite-population vehicle pools. IEEE
Trans. Intell. Transp. Syst. 15(3), 1134-1144 (2014). https://doi.org/10.1109/
TITS.2013.2293918

5. Cepolina, E.M., Farina, A.: A new shared vehicle system for urban areas. Transp.
Res. Part C Emerg. Technol. 21(1), 230-243 (2012). https://doi.org/10.1016/j.trc.
2011.10.005

6. Chandran, B., Raghavan, S.: Modeling and solving the capacitated vehicle rout-
ing problem on trees. In: Golden, B., Raghavan, S., Wasil, E. (eds.) The
Vehicle Routing Problem: Latest Advances and New Challenges. Operations
Research/Computer Science Interfaces, vol. 43, pp. 239-261. Springer, Boston
(2008). https://doi.org/10.1007/978-0-387-77778-8_11

7. Dantzig, G.B., Ramser, J.H.: The truck dispatching problem. Manage. Sci. 6(1),
80-91 (1959)

https://doi.org/10.1109/ICMAS.2000.858429
https://doi.org/10.1109/ICMAS.2000.858429
https://doi.org/10.1109/TITS.2013.2293918
https://doi.org/10.1109/TITS.2013.2293918
https://doi.org/10.1016/j.trc.2011.10.005
https://doi.org/10.1016/j.trc.2011.10.005
https://doi.org/10.1007/978-0-387-77778-8_11

66

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

E. S. Rigas and K. S. Tsompanidis

Densing, M., Turton, H., Baduml, G.: Conditions for the successful deployment of
electric vehicles-a global energy system perspective. Energy 47(1), 137-149 (2012)
Dorigo, M., Gambardella, L.M.: Ant colony system: a cooperative learning app-
roach to the traveling salesman problem. IEEE Trans. Evol. Comput. 1(1), 53-66
(1997). https://doi.org/10.1109/4235.585892

Drwal, M., Gerding, E., Stein, S., Hayakawa, K., Kitaoka, H.: Adaptive pricing
mechanisms for on-demand mobility. In: Proceedings of the 16th Conference on
Autonomous Agents and MultiAgent Systems, pp. 1017-1025. International Foun-
dation for Autonomous Agents and Multiagent Systems (2017)

Floudas, C.A., Lin, X.: Mixed integer linear programming in process scheduling:
modeling, algorithms, and applications. Ann. Oper. Res. 139(1), 131-162 (2005)
Gkourtzounis, I., Rigas, E.S., Bassiliades, N.: Towards online electric vehicle
scheduling for mobility-on-demand schemes. In: Slavkovik, M. (ed.) EUMAS 2018.
LNCS (LNAI), vol. 11450, pp. 94-108. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-14174-5_7

Lomnicki, Z.A.: A “branch-and-bound” algorithm for the exact solution of the
three-machine scheduling problem. J. Oper. Res. Soc. 16(1), 89-100 (1965).
https://doi.org/10.1057 /jors.1965.7

Mitchel, W.J., Borroni-Bird, C.E., Burns, L.D.: Reinventing the Automobile: Per-
sonal Urban Mobility for the 21st Century. MIT Press, Cambridge (2010)
Pavone, M., Smith, S.L., Emilio, F., Rus, D.: Robotic load balancing for mobility-
on-demand systems. Robot. Sci. Syst. 31, 839-854 (2011)

Pavone, M., Smith, S.L., Frazzoli, E., Rus, D.: Robotic load balancing for mobility-
on-demand systems. Int. J. Robot. Res. 31(7), 839-854 (2012). https://doi.org/
10.1177/0278364912444766

Rigas, E.S., Ramchurn, S.D., Bassiliades, N.: Algorithms for electric vehicle
scheduling in large-scale mobility-on-demand schemes. Artif. Intell. 262, 248278
(2018). https://doi.org/10.1016/j.artint.2018.06.006

Sandholm, T., Suri, S., Gilpin, A., Levine, D.: Winner determination in combina-
torial auction generalizations. In: Proceedings of the 1st International Joint Con-
ference on Autonomous Agents and Multiagent Systems: Part 1, AAMAS 2002,
pp- 69-76. ACM, New York (2002). https://doi.org/10.1145/544741.544760
Smith, S., Pavone, M., Schwager, M., Frazzoli, E., Rus, D.: Rebalancing the rebal-
ancers: optimally routing vehicles and drivers in mobility-on-demand systems. In:
2013 American Control Conference (ACC), pp. 2362-2367 (2013). https://doi.org/
10.1109/ACC.2013.6580187

Talbot, F.B., Patterson, J.H.: An efficient integer programming algorithm with
network cuts for solving resource-constrained scheduling problems. Manage. Sci.
24(11), 1163-1174 (1978)

Tomic, J., Kempton, W.: Using fleets of electric-drive vehicles for grid support. J.
Power Sources 168(2), 459-468 (2007). https://doi.org/10.1016/j.jpowsour.2007.
03.010

Turan, B., Tucker, N., Alizadeh, M.: Smart charging benefits in autonomous mobil-
ity on demand systems. In: 2019 IEEE Intelligent Transportation Systems Confer-
ence (ITSC), pp. 461-466 (2019)

https://doi.org/10.1109/4235.585892
https://doi.org/10.1007/978-3-030-14174-5_7
https://doi.org/10.1007/978-3-030-14174-5_7
https://doi.org/10.1057/jors.1965.7
https://doi.org/10.1177/0278364912444766
https://doi.org/10.1177/0278364912444766
https://doi.org/10.1016/j.artint.2018.06.006
https://doi.org/10.1145/544741.544760
https://doi.org/10.1109/ACC.2013.6580187
https://doi.org/10.1109/ACC.2013.6580187
https://doi.org/10.1016/j.jpowsour.2007.03.010
https://doi.org/10.1016/j.jpowsour.2007.03.010

®

Check for
updates

Disaster Response Simulation as a
Testbed for Multi-Agent Systems

Tabajara Krausburg' (™)@, Vinicius Chrisosthemos'®, Rafacl H. Bordini'®,
and Jiirgen Dix?

! School of Technology, Pontifical Catholic University of Rio Grande do Sul,
Porto Alegre, Brazil
{tabajara.rodrigues,vinicius.teixeira99}@edu.pucrs.br,
rafael.bordini@pucrs.br
2 Department of Informatics, Clausthal University of Technology,
Clausthal-Zellerfeld, Germany
dix@tu-clausthal.de

Abstract. We introduce a novel two-dimensional simulator for disaster
response on maps of real cities. Our simulator deals with logistics and
coordination problems and allows to plug-in almost any approach devel-
oped for simulated environments. In addition, it (1) offers functionali-
ties for further developing and benchmarking, and (2) provides metrics
that help the analysis of the performance of a team of agents during
the disaster. Our simulator is based on software made available by the
multi-agent programming contest, which over the years has provided
challenging problems to be solved by intelligent agents. We evaluate the
performance of our simulator in terms of processing time and memory
usage, message exchange, and response time. We apply this analysis to
two different approaches for dealing with the mining dam disaster that
occurred in Brazil in 2019. Our results show that our simulator is robust
and can work with a reasonable number of agents.

Keywords: Disaster response + MAS - Testbed

1 Introduction

Disaster Response has long been used as a scenario for multi-agent systems, but
it remains a relevant problem to be addressed by real-world applications. Each
year, many countries suffer from devastating natural disasters [2,13,14]. Such
disaster events often overwhelm local authorities in dealing with the many tasks
that must be accomplished in order to recover quickly. With that in mind, we
have developed a new disaster response simulator where agents control simulated
entities that represent autonomous vehicles, human professional rescuers, and
volunteers. The simulation happens on a realistic map, where affected areas and
victims are placed.

In the beginning of 2019, a dam for mining tailings collapsed, inundating with
mud all over a sparse area; in fact, 12 million cubic meters of mining tailings were

© Springer Nature Switzerland AG 2020
N. Bassiliades et al. (Eds.): EUMAS 2020/AT 2020, LNATI 12520, pp. 67-81, 2020.
https://doi.org/10.1007/978-3-030-66412-1_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-66412-1_5&domain=pdf
http://orcid.org/0000-0002-8252-4099
http://orcid.org/0000-0001-9620-0493
http://orcid.org/0000-0001-8688-9901
http://orcid.org/0000-0002-8528-1440
https://doi.org/10.1007/978-3-030-66412-1_5

68 T. Krausburg et al.

spread out over more than 46 kilometres [2]. Buildings, cars, animals, and people
were swamped by mud. Then, a massive operation was carried out to respond
to that disaster event. Three months after the disaster, confirmed fatal victims
toll was 225 with 68 missing people [2]. In our simulator, which was mostly
being used for flooding scenarios, a new type of scenario based on mud events is
introduced in order to analyse and experiment with Multi-Agent System (MAS)
approaches that could support tactical response of such disasters.

We aim to provide a realistic simulation environment for benchmarking intel-
ligent software agents in disaster response context. Although this topic has
already been addressed in the Agent-Based Modelling (ABM) community [8,9],
in most approaches decision-making is limited to reactive reasoning (e.g., rule-
based system) [11], and in others, AI techniques are constrained to a few situa-
tions in a given scenario [15]. However, simulation tools should not constrain, in
any way, decision-making capabilities of agents in coping with the posed prob-
lem. In contrast with this, authors in [1] decoupled agents from the environ-
ment to evaluate different MAS frameworks in a challenging scenario. By doing
so, they let agents act freely to fully exploit their reasoning capabilities. With
that in mind, we apply the concepts introduced in [1] to simulations in disaster
response episodes in which developers are free to choose the degree of agent’s
reasoning and Al techniques that fit them best. Therefore techniques are not
evaluated in isolation, but as part of a complex system.

This paper is organised as follows. Section 2 describes relevant related work
in disaster environments and explains why we need a new simulator for this par-
ticular domain. In Sect. 3, the reasoning engine and all features of our simulator
are described using several examples illustrating the core ideas. Section4 con-
tains some experiments performed in order to evaluate our simulator. Finally,
Sect. 5 concludes with future directions.

2 Related Work

Disaster response simulation has been addressed in the multi-agent systems lit-
erature for a long time. We review some of the main work and discuss the
differences with respect to our simulator.

Different disaster response scenarios have been proposed in the literature,
most of them use an ABM approach. Mancheva et al. [9] model a bushfire episode
in which Belief Desire Intention (BDI) agents simulate human behaviour and
interactions. Hilljegerdes and Augustijn [6] explore a hurricane season to simu-
late a evacuee procedure during two consecutive hurricane events. In both work,
a general platform for simulating ABM is used, GAMA! and NetLogo? respec-
tively. By contrast, Klein et al. [8] implement a resilience scenario considering
a cross-border disaster event using Repast® framework, which is based on Java.
This scenario demands coordination between parties that have differences in the

! http://gama-platform.org.
2 https://ccl.northwestern.edu/netlogo/.
3 https:/ /repast.github.io/.

http://gama-platform.org
https://ccl.northwestern.edu/netlogo/
https://repast.github.io/

Disaster Response Simulation as a Testbed for Multi-Agent Systems 69

way they are organised and even in their cultural collective behaviour. The main
focus of those approaches is to simulate some predefined behaviour, for this pur-
pose, they take advantage of a ABM tool to implement and solve their designed
problem.

Another approach is to provide a problem and ask for solutions from the MAS
community: RoboCup-Rescue [15] is one of the most successful simulators which
intends to simulate disaster response episodes. It offers two major competitions
for participants. The first one focuses on virtual robots working together to assess
the situation of a devastated area. The second one is a agent-based simulation
of an earthquake in which agents try to minimise the impact of the disaster.
Teams implement their algorithms in ADF modules [7]. This enables modularity
in team’s code and organisers are then able to run the code and swap modules
of same purpose around to collect performance results. RoboCup-Rescue, in the
agent-based simulation, focuses on certain aspects of the scenario (e.g., task allo-
cation, team formation, and route planning), in which teams develop techniques
for those isolated problems.

An even more general approach is to simply provide the problem and leave
it entirely open to the MAS community to choose strategies and techniques of
how to solve it. In the Multi-Agent Programming Contest (MAPC) [1], the aim
is to identify key problems, collect suitable benchmarks, and gather test cases
for MAS community, in particular to MAS programming languages. Agents are
decoupled from the environment server and interact with it by sending actions
and receiving perceptions. Doing so, agents chose strategies and Al techniques
that fit them best. The environment is designed to enforce coordinated actions
and to be highly dynamic; which means it changes as new events are announced
and as teams of agents act upon the shared environment.

Our simulator is inspired by MAPC; in particular by the contests of 2016,
2017, and 2018, with the “Agents in the City” scenario [1]. In that scenario
agents of two different teams control various autonomous vehicles to solve logistic
problems simulated on the map of a real city. We leave it to the developers of
agents to choose and apply what are the possibly best approaches to address the
overall disaster response problem. Doing so, we work to shift MAS community’s
attention to relevant problems of real-world in which developers can fully exploit
the entire potential that MAS solutions can offer.

3 A Simulator for Disaster Response Episodes

In a disaster episode, usually, a sparse area is affected [10] and the experts,
robots, and volunteers accomplish certain tasks in order to minimise the suffering
and loss caused by the disaster event. We simulate some tasks related to a
collapse of a dam for mining tailings occurred in Brumadinho in 2019.

70 T. Krausburg et al.

In our setting, tasks for rescuing victims, collecting mud samples, and tak-
ing photographs*: These are announced by the Centre for Disaster Management
(CDM). Some victims may have their location already revealed and others are
hidden in the middle of the mud. Information about the area is collected and
then analysed in order to decide whether there might be or not victims at that
location. The CDM also tags specific locations in which the mud must be sam-
pled. As new information is received during the disaster response operation, new
tasks are announced and require further investigation.

In disaster response episodes volunteers support disaster response in many
ways (e.g., as a workforce) [3]. For this reason, recent work concentrates on
integrating those persons into the operation [12]. To represent that need, we
define the idea of social assets that represents volunteers in disaster response
context. We distinguish between agents that connect before the simulation starts
(i.e., regular agents) and agents that connect after the simulation has begun (i.e.,
social assets) to help some other agent. For instance, if an agent has to finish a
task but it does not have the skill to do so, it can try to find some social assets
that are able to perform that particular task. The reader can find the code and
additional information about this simulator in our repository®.

3.1 Problem Set-Up

The disaster response simulator generates an environment model (where agents
will be situated) based on the parameters established in a configuration file. It
is organised into five sections:

— Map: contains all the information regarding the simulator itself and the map
in which the simulation will take place (Open Street Map (OSM)).

— Regular Agents: sets how many agents should be instantiated at the begin-
ning of the simulation as well as their skills and resources.

— Social Assets: similar to regular agents in which one can define the amount
of social assets and their skills and resources.

— Actions: specifies the actions available to the agents stating which skills and
resources are needed in order to perform them in the environment.

— Events: sets the chance to occur, size, and number of occurrences of mud
events. Such events are noticed by the CDM that announces tasks (i.e., pho-
tos, samples, and rescuing victims) to be accomplished by the agents. A photo
task has a chance of an agent finding out victims at that location.

Agents have physical and virtual storage in addition to their move capability.
Three types of movement are supported in our simulated environment: by air,
ground, or water. The skill of an agent indicates which movement the simulation

4 Photo in our context is an abstraction that represents a further investigation that
must be carried out in order to find out whether a victim is or is not hidden under
the mud. Usually, experts may use some device that provides data that must be
analysed to draw a conclusion.

5 https://github.com /smart-pucrs/MASiRe.

https://github.com/smart-pucrs/MASiRe

Disaster Response Simulation as a Testbed for Multi-Agent Systems 71

engine should perform for that agent (e.g., skill airMovement). Air movement
enables agents to reach any coordinate in the map (i.e., latitude and longitude).
The underlying map is compounded by a set of nodes that could form a route
from one place to another. These nodes are affected by the disaster events, for
instance, in a mud episode, spawned nodes are tagged and pose speed constraints
on the agents’ locomotion to represent the effects of mud on the ground surface.
Note that agents’ skills and resources should match (i.e., a string match) the
skills and resources required by an action in order to be performed.

Agents interact with the simulator through actions. Actions are designed to
meet the model of the mud episode in which the CDM announces tasks that
must be accomplished by the agents. The actions available for the agents are:

pass does nothing in the environment;

move moves an agent towards a specific coordinate;

charge recharges, at the CDM, the agent’s energy used by other actions (e.g.,
move action);

rescue achieves task rescue victim and puts a volume in the agent’s physical
storage;

collect achieves task collect sample and puts a volume in the agent’s physical
storage;

take-photo achieves task take photo and puts a volume in the agent’s virtual
storage;

analyse-photo analyses a photo, at the CDM, to figure out whether there is or
not a victim at that location;

search-social-asset searches for a social asset in a given perimeter;

request-social-asset asks for opening a connection for a social asset;

provide-retrieve-physical synchronised actions between agents to exchange
physical volume;

provide-retrieve-virtual synchronised actions between agents to exchange vir-
tual volume;

carry-becarried synchronised actions that put one agent into the physical stor-
age of another;

deliver delivers an item from the agent’s storage in the agent’s current position
(it could be an physical item, virtual item, or even an agent).

Agents that are being carried by other agent cannot perform any action but
pass. This feature us useful when an agent is out of battery or cannot move at
the current terrain.

Agents play in discrete steps, in which at each step an action is expected from
each connected agent. A step represents a notion of time unit in the simulation
(i.e., seconds, minutes, etc.) and it also has a timeout for waiting for actions from
the agents. We call a match a run of n steps (set in the configuration file) for a
team of agents in the simulated disaster environment. Events, and consequently
tasks, may have a duration span (in steps) that poses time constraints to the
agents. This is also the case for the people stuck in the mud, once the duration
is set to 0 in the environment model the victim is considered dead.

72 T. Krausburg et al.

3.2 Architecture of the Disaster Response Simulator
The architecture of our simulator is divided into three components:

— Simulation Engine: responsible for creating the environment, events,
agents, processing the actions received from agents, and computing metrics
at the end of the simulation;

— Application Program Interface (API) interfaces the communication
between agents and the simulation engine, as well as refreshes the graphi-
cal interface with new data;

— Monitor: receives data from the API and shows it in the browser.

Figure 1 gives an overview of the components and libraries used in our simulator.

Websocket Pyroute

. HTTP Post - HTTP Post N .
R (gl I R | Simulation
. Websocket 1 ... HTTP Post Engine

1

Fig. 1. Architecture of the simulator.

I

i

i

!

! socket.io
i ©)

1

1

1

1

Although for agents a graphical interface is not needed during the simulation,
for humans carrying out the experimentation, it is a very useful tool to see what
is going on. Experts can visually analyse the behaviour adopted by a team of
agents and it is also useful in order to find flaws in strategies.

3.3 Communication with Multi-Agent Platforms

The communication between the simulator and a MAS is established by a well-
defined protocol similar to the one in MAPC [1]. The protocol consists of four
types of messages:

Initial Percepts: Sent to an agent as soon as it connects to the API. It contains
all percepts related to the map and the agent’s role in the simulation. These
percepts do not change during a match.

Percepts: Sent to the agent at each new simulation step. It contains all the
percepts for the current state of the environment and of the agents (an agent
does not receive percepts of other agents).

End: Sent to the agent at the end of a match. It contains a report of the per-
formance of the team of agents during the match (this is further discussed in
Sect. 3.5).

Disaster Response Simulation as a Testbed for Multi-Agent Systems 73

Bye: Received by all agents when all matches have finished. It contains the report
of the performance of the agents in all matches; similar to the end message
but for when the whole simulation is finished.

All the messages of the protocol are in JSON object format and can be easily
parsed by a MAS to Prolog-like syntax. Note that any Multi-Agent System plat-
form is able to connect and interact with our simulator as long as it implements
the communication protocol described above. All the messages are generated by
the simulation engine which is detailed in the next section.

3.4 Simulation Cycle

So far we have illustrated the configuration of the simulator and how to exchange
messages. We are now introducing how the simulator itself works.

The simulation engine first checks the configuration file and generates all
events that will take place in the simulated environment as well as all the social
assets options. Note that a social asset is available for a period (e.g., it can
be called from step 120 to 150). Once this phase is finished, the API begins
accepting connections from agents. When a request is made, the API generates
a token that will be used during the whole simulation to represent that agent,
and sends to the agent the initial percepts. When all agents get connected
(or the timeout is reached), the simulator enters the cycle until the end of the
match. The cycle consists of:

sending percepts for the current step (Simulation Engine — API — MAS);
updating the graphical interface (API to Monitor);

waiting for the connected agents’ actions (API);

sending actions to the simulator (API to Simulation Engine);

Simulation Engine processes actions;

goes back to the first step.

oG o=

If no action is received from an agent in time (i.e., before the timeout for that
simulation step be reached), the API assigns a pass action to it. If all steps are
processed the simulation engine sends an end message and disconnects all social
assets. If there are no more matches to simulate (i.e., other maps), it sends the
bye message and disconnects all agents.

A special treatment is needed when a social asset is requested by a regular
agent. This action is processed by the simulation engine that asks to the API to
wait for a new connection. If a timeout is reached, a failure is returned to the
requester agent. This social asset is always linked to a regular agent and can be
disposed of at any time by its creator. After being connected, a social asset is
considered a regular agent: It receives perceptions and performs actions in the
environment,.

At the beginning of a simulation a mud event is always generated (i.e., at the
first step), after that, other events may occur dynamically over the simulation.
A mud event only disappears when there are no more tasks to be completed
in the affected area. Our simulation focuses only on the response phase of a
disaster [10].

74 T. Krausburg et al.

3.5 Simulation Metrics

A final but important part of the simulation are the results generated about the
performance of the team(s) of agents. We collect during the simulation some
metrics that help developers of the MAS and experts to analyse the advantages
and drawbacks of the adopted strategies.

At the end of each match, we record the performance of team of agents in
accomplishing all the tasks announced by the CDM. The simulator provides
metrics for:

Victims: This metric states the total number of victims in the simulation, includ-
ing both the victims already known in the mud events as well as victims hid-
den under the mud. We also count the number of victims delivered to the
CDM, alive or dead. Finally, we count all the generated victims (i.e., in the
mud events and in the photo events) that were not rescued by the agents.

Photos: This metric refers to the total number of photo tasks that were gen-
erated. It represents locations of the affected area that should have been
evaluated by the agents in order to look for new victims. Every time an agent
takes a photo or analyses a photo, we record that information. Photo tasks
that were not completed are also counted.

Samples: For this metric we show the quantity of mud-sample tasks requested by
the disaster response command. Although this kind of task has not the same
priority as rescuing a victim in disaster operations, it represents secondary
tasks that agents should also take into account during their activities. We
also keep track of how many these tasks were completed by the agents.

The simulator also allows the user to record matches for future replay. This
enables further analysis of what happened during the simulation and is a very
powerful feature during the development of MAS teams.

4 Evaluating the Simulator

After introducing how our simulator works, we present some results regarding
its performance. We start describing the simulator performance over a range of
parameter in the configuration file. Then we illustrate how to compare different
approaches using the metrics provided by the simulator’s report.

4.1 Simulator Performance

We experiment with some configuration parameters in order to monitor memory
usage, processing time, message exchange and response time. As the experiments
were directed to the assessment of the simulator engine, we decided not to con-
sider the influence of graphic monitoring. In addition, the connection with a MAS
platform will not be considered in these experiments, that is, we instantiate “fake
agents”® that connect to the simulator to experiment with its performance only.

5 Fake agents are agents that do not perform any reasoning; they just send a predefined
action at each step.

Disaster Response Simulation as a Testbed for Multi-Agent Systems 75

Simulator to Api

120000 —— 10% event occurrence
—— 50% event occurrence

—— 100% event occurrence

100000 -
80000 -
60000 -
40000 -
20000 -

Size of the package (Bytes)

04

80000 A —— 10% event occurrence

—— 50% event occurrence
—— 100% event occurrence

60000 -
40000 A

20000 -

Size of the package (Bytes)

o

Step

Fig. 2. Package size of the messages exchanged between the sim-engine, API, and MAS.

All experiments were executed in a MacPro 5 server with 32 Gigabyte of RAM
and two hexa core Intel Xeon of 2.4 GHz processor.

To clearly explain the experiments, we define a basic setting of the parameters
used during all the simulations (in the following we only state the parameters
that have different values in this setting). In the basic configuration, the number
of steps is set to 100, the chance of a event to occur to 10%, the number of agents
to one, and the number of mapped nodes to 49634 (i.e., subset of nodes from
the map that are loaded into the simulation). The mud events have a duration
of 30 to 50 steps.

We start describing the experiments with package size and response time
for sent actions. All the messages exchanged between the simulation engine and
the API, and also between the API and the MAS, are evaluated. We set the
simulation to 100 steps and only one agent is instantiated. We experiment with
the chance of a mud event to occur in the simulation. We remind the reader
that mud events lead the CDM to announce tasks for rescuing victims, taking
photos, and collecting samples. The results are depicted in Fig. 2.

At the end of each step, percepts and activated events are sent to the API; this
is depicted in the first chart of Fig. 2. As the simulation progresses, we can notice
a growth in the size of the packages as new events are being announced. However,
the growth gets stable around step 40. This is due to the configured duration
of an event, at that point, as new events are announced, others disappear. We
can see that the size of packages depends on the number of events occurring
in the disaster scenario as well as on the number of agents. If we instantiate
more agents, the size of the packages exchanged between the simulation engine
and API will increase only in the part that represents the agents’ current states.

76 T. Krausburg et al.

Pass actions.

5
3

—— 20 agents connected
—— 60 agents connected
—— 100 agents connected

N ow s @ oo
s 8 & & 3

,_.
S

Time to process actions (milliseconds)

o

Search social asset actions.

—— 20 agents connected
—— 60 agents connected
—— 100 agents connected

40 4

Time to process actions (milliseconds)

Step

Fig. 3. Response time of the simulation engine considering two different actions; pass
is the least expensive action and searchSocialAssets is the most expensive one.

However, from the API to MAS we have to multiply the package size by the
number of agents, as agents need to receive their own state and the state of the
environment (see the second chart in Fig.2). Disaster scenarios in which new
events are announced frequently are unlikely, for instance, in a simulation of
100 steps, 100 events being announced. By observing the simulation with 10%
event occurrence, a more realistic value, we have acceptable packet sizes for the
communication between the components of the overall simulation.

Next, we experiment with the actions sent by the agents in order to evaluate
the simulation engine’s response time. Agents send the same action at each
step. We analyse a simulation instance in which all agents send a pass action.
The pass action is the least expensive action in terms of computation for the
simulator; it changes nothing in the environment. We also analyse the response
time when the agents send the searchSocialAsset action. This action is the
most expensive one, because the engine must go through all the elements of the
set of social assets, evaluating their distance to the requesting agent in order
to send back only the assets that are within the specified perimeter. For this
experiment, we set the incidence of events to 100% in which they stay activated
throughout the simulation. Each mud event will contain only one task of each
type and one new social asset will be made available at each step. We vary the
number of agents between 20, 60, and 100. The results are depicted in Fig. 3.

Disaster Response Simulation as a Testbed for Multi-Agent Systems 7

—— 20 agents —— 100 agents —— 100 steps —— 1000 steps
—— 60 agents —— 500 steps —— 1500 steps

,_.
ol
£y

,_.
>
IS

% of memory consumption
=
S

% of memory consumption
=
Y

o S 10 15 20 5 30 35 0 20 40 60 80 100 120
Time (seconds) Time (seconds)

—— 10% event occurrence —— 100% event occurrence —— 10000 mapped nodes —— 50000 mapped nodes
—— 50% event occurrence —— 30000 mapped nodes

14.6

14.4

14.2

% of memory consumption
o
S
b

% of memory consumption

4 5 10 15 20 25 30 35 0 10 20 30 40 50 60
Time (seconds) Time (seconds)

Fig. 4. Memory usage: varying # of agents, steps, event occurrence, and mapped nodes.

The first chart in Fig. 3 depicts the time taken to process the pass action.
In order to advance a step, the simulator performs the agents’ actions in the
environment, updates the current status of the other entities (i.e., victims’ life-
time), generates the new state, and sends the information back to the agents.
For both actions the simulation response time grows linearly, as expected; this
is due to the number of events generated at each step (i.e., one new event being
announced). However, when comparing the response time for both actions, we
can see that the search action is slightly slower than the pass action.

The next two experiments are for memory usage and processing time. We
instantiate simulations varying the number of connected agents (20, 60, and 100
agents), the number of steps that a match takes (100, 500, 1000, and 1500 steps),
the complexity of the simulated problem which means the incidence of events
throughout the simulation (10%, 50%, 100% chance that a new mud event occurs
in a step), and the number of nodes mapped in the OSM file (10000, 30000, and
50000 nodes). We analyse from the moment the simulator is instantiated, going
through the generation of events, loading the map, and getting agents connected
until the initial percepts are sent to the agents (i.e., before the first simulation
step). We depict the results for memory usage in Fig. 4.

When the simulator is started, all events that will occur in the simulation
are generated and stored in memory; the event only gets activated at the step
indicated by the event generation procedure. In this sense, the number of steps
could indeed have an impact on the performance of the simulation initialisation.
However, as we can see in Fig. 4, as we change the parameters of the simulation,
the memory usage increases linearly. Moreover, we can see that the size of the
map (i.e., mapped nodes) has not a significant impact on memory usage. The
memory used by the simulator increases a little as we change the configuration
settings, therefore we can conclude that simulating more complex scenarios seems
to be feasible.

78 T. Krausburg et al.

—— 20 agents —— 100 agents —— 100 steps —— 1000 steps
—— 60 agents —— 500 steps —— 1500 steps

| me=

0 5 10 15 20 25 30 35 0 20 40 60 80 100 120
Time (seconds) Time (seconds)

g
©
3

g

o

2
N
S
>

~
o
vy

% of cpu consumption
~
S
3

% of cpu consumption
~
Iy
>

N
o
N

~

o

N

—— 10% event occurrence —— 100% event occurrence —— 10000 mapped nodes —— 50000 mapped nodes
—— 50% event occurrence —— 30000 mapped nodes

2.920 21
2,915 ——— 2.70

2.910

2.69

/ = 268 /

0 5 10 15 20 25 30 35 0 10 20 30 40 50 60
Time (seconds) Time (seconds)

% of cpu consumption

~
o
S
]

% of cpu consumption

Fig. 5. Processing time: varying # of agents, steps, event occurrence, mapped nodes.

In addition to memory usage, we analyse the processing time required to
generate the shared environment. We used the same parameters as in the mem-
ory experiment to run those simulation instances. The results are depicted in
Fig. 5. We can see a similar behaviour for the number of agents, steps, and event
occurrences. The processing time requirement grows linearly with increasing the
parameters. For the size of the map, we still notice a small increase when com-
pared with the memory usage experiment.

4.2 Comparison Between Different MAS Approaches

Having shown that our simulator is robust, we now aim to demonstrate how
MAS researchers can use our simulator metrics to analyse the performance of
a team of agents’. We evaluate two approaches in the same disaster scenario:
(i) a MAS with only very simple reasoning; and (ii) a MAS using a coalition
formation approach to partition the set of agents. Both approaches are developed
using the JaCaMo platform [4] in which the communication protocol (Sect. 3.3)
is implemented in a CArtAgO artefact.

In this scenario, we consider a mud disaster environment in which 30 experts
receive tasks from the CDM and must establish a coordination between them-
selves to perform all announced tasks. We assume experts are able to teleoperate
robots. The configuration file is set as the following:

— 500 steps in a match;

— two types of regular agents: drone for aerial locomotion (7 agents), and
Unmanned Ground Vehicles (UGV) for ground locomotion (23 agents);

— ground vehicles suffer speed reduction of 50% in a zone affected by mud;

7 Although we compare the two approaches to show how to use our metrics, our main
goal does not lie to state which approach is better.

Disaster Response Simulation as a Testbed for Multi-Agent Systems 79

— new mud events occur at each step with chance of 2% containing: four to
eight mud sample tasks; four to ten photo tasks; and one to three victims.

— each photo has a chance of 80% to reveal one to three victims in that area;

— victims stay alive in the simulation for 50 to 100 steps.

Any change in the disaster scenario can be easily set in our configuration file.
For instance, it is completely feasible to declare other types of agents and skills
according to the range of experts and unmanned (or manned) vehicles that are
available in the operation. However, to better illustrate the use of simulator’s
metrics, we prefer to keep the experiment simple.

Both approaches have some characteristics in common related to the agents’
reasoning. Drones are capable of taking photos, analysing them, and collecting
mud samples. They always prefer collecting photos and analysing them rather
than collecting mud samples. UGV are capable of rescuing victims and collecting
mud samples; both must be delivered at the CDM. They always prefer rescuing
victims rather than collecting mud samples. Note that the agents are not aware
of the current health situation of the victim, they try to save the first victim
they find in the disaster zone. After completing a task, an agent always returns
to the CDM to report on what was done, to recharge, and to choose a new task.
Agents use a simple coordination mechanism in order to pick a task. An agent
queries if there is no other agent performing that task, then it broadcasts to the
other agents that it is now attempting to achieve that particular task.

In the simple MAS team, agents always consider all the active mud events in
order to pick a task. They only attempt to execute the first task returned when
querying its belief base for known events (preserving the preferences of each role
over the tasks).

In the MAS team that uses coalition formation, we use the C-Link algorithm
introduced by Farinelli et al. [5]%. It is a heuristic algorithm for coalition forma-
tion based on hierarchical clustering. We aim to partition the agents for the set
of active mud events. An agent post as contribution to act upon a mud event the
number of tasks it could accomplish in that event, plus the distance to get there
(long distances have smaller contributions). The characteristic function evalu-
ates the contribution of each agent divided by the number of agents of that same
type in the coalition. For instance, in a mud event in which two mud samples
must be collected, a drone agent would have contribution value of two for that
event (we ignore the distance values in this example). However, if a coalition
contains two drone agents, each will contribute only one to the total value, so
the coalition value will still be two. After the coalition structure is formed, coali-
tion members only act upon the mud event related to the coalition they belong.
We generate a new coalition structure every time a new mud event occurs in the
scenario, and agents may be reallocated to work on different areas.

8 As our main goal is not to evaluate the technique itself but to demonstrate how to
compare different approaches, we omit implementation details.

80

T. Krausburg et al.
Approach

I No Coalitions

. With Coalitions

200 4

Amount

w wv ©

g £ 8 £ 3 % § 3 ¢ & § ¢
S § 5§ 5 &5 £ &5 2 § §
kY = £ 1 ¢ & = 2 £ o <
= 5 % 8§ 0§ 2 o &£ & § 35 9
= £ < 3 g I o < I] ¥ 1
8 =, = 3 3 %] P~ 1 “ kel 1 I
S %) %)] P £ o & 2 I~ Q K
< g £ ¢ ¢ £ § £ © g ¢ =3
S S S5 8 e 5 1 2 £

ke o1 v o 5 £ o £ T

s s £ g Q g I “

= = L -

L o o I~

s s g £

Fig. 6. Metrics for the mud disaster response considering two MAS approaches.

We execute both teams in the same scenario (i.e., same events at the same

steps) and collect their performance results which are depicted in Fig. 6. For this

setting, the simple reasoning MAS team rescued more victims alive, but it did

not accomplish many mud sample tasks. Drones and UGV always try to achieve
their most preferred tasks (i.e., taking photos and rescuing victims respectively),
and ignore the rest. In contrast, the coalition formation MAS team accomplished

more of the tasks announced by CDM, however, the priority system for rescuing

victims was applied only locally in the mud regions which led to a higher number
of rescued bodies. This shows how to use the simulator’s metrics as a guide for

decision-making.
5 Conclusions and Future Work

In this paper, we have introduced a new disaster response simulator to be
used by the scientific community during the design and benchmark of different
MAS approaches for coordinating autonomous agents. It differs from previous
approaches in the literature about simulating disaster response environments
by not constraining the MAS approach to a few reasoning mechanisms or Al

techniques: Any methods can be plugged-in and evaluated in a long-term sim-
ulation. The present simulator was first designed to cope with floods, but with

the occurrence of a collapse of a dam for mining tailings in Brumadinho in 2019,

we adapted it to suit better some characteristics of this disaster.

Disaster Response Simulation as a Testbed for Multi-Agent Systems 81

For future work, we aim to expand the range of disasters that our simulator is

capable of simulating. We also intend to improve the tasks and actions provided
by our simulator, in particular providing other predefined actions that require
agents to cooperate and coordinate themselves. Moreover, we want to bring
also the recovery phase [10, described therein] into the simulations, in order to
investigate how we can improve disaster preparation and response. We aim to
work along with experts and professionals that act on various types of disasters,
taking into account the usability of our simulator.

References

1.

2.

10.
11.

12.

13.

14.

15.

Ahlbrecht, T., Dix, J., Fiekas, N.: Multi-agent programming contest 2017. Ann.
Math. Artif. Intell. 84, 1-16 (2018). https://doi.org/10.1007/s10472-018-9594-x
Armada, C.A.S.: The environmental disasters of mariana and brumadinho and
the brazilian social environmental law state (2019). https://doi.org/10.2139/ssrn.
3442624

Betke, H.J.: A volunteer coordination system approach for crisis committees. In:
Proceedings of 15th ISCRAM, pp. 786-795 (2018)

Boissier, O., Bordini, R.H., Hiibner, J.F., Ricci, A., Santi, A.: Multi-agent oriented
programming with JaCaMo. Sci. Comput. Program 78, 747-761 (2013). https://
doi.org/10.1016/j.scico.2011.10.004

Farinelli, A., Bicego, M., Bistaffa, F., Ramchurn, S.D.: A hierarchical clustering
approach to large-scale near-optimal coalition formation with quality guarantees.
Eng. Appl. Artif. Intell. 59, 170-185 (2016). https://doi.org/10.1016/j.engappai.
2016.12.018

Hilljegerdes, M., Augustijn, P.: Evaluating the effects of consecutive hurricane hits
on evacuation patterns in dominica. In: Proceedings of 16th ISCRAM, pp. 462—-472
(2019)

Iwata, K., Jaishy, S., Ito, N., Takami, S., Takayanagi, K.: Agent-development
framework based on modular structure to research disaster-relief activities. Int.
J. Softw. Innov. 6, 1-15 (2018). https://doi.org/10.4018/1JS1.2018100101

Klein, M., et al.: A multi-agent system for studying cross-border disaster resilience.
In: Proceedings of 15th ISCRAM, pp. 135-144 (2018)

Mancheva, L., Adam, C., Dugdale, J.: Multi-agent geospatial simulation of human
interactions and behaviour in bushfires. In: Proceedings of 16th ISCRAM (2019)
Murphy, R.R.: Disaster Robotics. The MIT Press, Cambridge (2014)
Ramchandani, P., Paich, M., Rao, A.: Incorporating learning into decision making
in agent based models. In: Oliveira, E., Gama, J., Vale, Z., Lopes Cardoso, H.
(eds.) EPIA 2017. LNCS (LNAI), vol. 10423, pp. 789-800. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-65340-2_64

Ramsell, E., Granberg, T.A., Pilemalm, S.: Identifying functions for smartphone
based applications in volunteer emergency response. In: Proceedings of 16th
ISCRAM (2019)

UNESCAP: Asia-pacific disaster report 2019 (August 2019). https://www.unescap.
org/publications/asia-pacific-disaster-report-2019

UNISDR: Global assessment report on disaster risk reduction 2019. technical
report, United Nations (2019)

Visser, A., Ito, N., Kleiner, A.: Robocup rescue simulation innovation strategy. In:
RoboCup 2014: Robot World Cup XVIII, pp. 661-672 (2015). https://doi.org/10.
1007/978-3-319-18615-3_54

https://doi.org/10.1007/s10472-018-9594-x
https://doi.org/10.2139/ssrn.3442624
https://doi.org/10.2139/ssrn.3442624
https://doi.org/10.1016/j.scico.2011.10.004
https://doi.org/10.1016/j.scico.2011.10.004
https://doi.org/10.1016/j.engappai.2016.12.018
https://doi.org/10.1016/j.engappai.2016.12.018
https://doi.org/10.4018/IJSI.2018100101
https://doi.org/10.1007/978-3-319-65340-2_64
https://www.unescap.org/publications/asia-pacific-disaster-report-2019
https://www.unescap.org/publications/asia-pacific-disaster-report-2019
https://doi.org/10.1007/978-3-319-18615-3_54
https://doi.org/10.1007/978-3-319-18615-3_54

EUMAS 2020 Session 2: Mechanisms,
Incentives, Norms, Privacy

Rewarding Miners: Bankruptcy
Situations and Pooling Strategies

Marianna Belotti»2(®) Stefano Moretti*®), and Paolo Zappala®®®&)

! CEDRIC, CNAM, 75003 Paris, France
2 Caisse des Dépéts, 75013 Paris, France
marianna.belotti@caissedesdepots.fr
3 LAMSADE, CNRS, Université Paris-Dauphine, Université PSL,
75016 Paris, France
stefano.moretti@dauphine.fr
4 LIP6, CNRS, Sorbonne Université, 75005 Paris, France
paolo.zappala@lip6.fr
5 Politecnico di Milano, 20133 Milan, Italy

Abstract. InProof-of-Work (PoW)based blockchains (e.g., Bitcoin), min-
ing is the procedure through which miners can gain money on regular basis
by finding solutions to mathematical crypto puzzles (i.e., full solutions)
which validate blockchain transactions. In order to reduce the uncertainty
of the remuneration over time, miners cooperate and form pools. Each pool
receivesrewards which havetobesplitamongpool’s participants. Theobjec-
tive of this paper is to find an allocation method, for a mining pool, aimed
at redistributing the rewards among cooperating miners and, at the same
time, preventing some malicious behaviours of the miners.

Recently, Schrijvers et al. (2017) have proposed a rewarding mecha-
nism that is incentive compatible, ensuring that miners have an advan-
tage to immediately report full solutions to the pool. However, such a
mechanism encourages a harmful inter-pool behaviour (i.e., pool hop-
ping) when the reward results insufficient to remunerate pool miners,
determining a loss in terms of pool’s computational power.

By reinterpreting the allocation rules as outcomes of bankruptcy sit-
uations, we define a new rewarding system based on the well-studied
Constrained Equal Losses (CEL) rule that maintains the incentive com-
patible property while making pool hopping less advantageous.

Keywords: Blockchain - Mining - Mining pool - Reward - Bankruptcy
situation

1 Introduction

®

Check for
updates

In the blockchain systems transactions are collected in blocks, validated and pub-
lished on the distributed ledger. Nakamoto [5] proposed a Proof-of-Work system
based on Back’s Hashcash algorithm [1] that validates blocks and chains them

© Springer Nature Switzerland AG 2020
N. Bassiliades et al. (Eds.): EUMAS 2020/AT 2020, LNATI 12520, pp. 85-99, 2020.
https://doi.org/10.1007/978-3-030-66412-1_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-66412-1_6&domain=pdf
https://doi.org/10.1007/978-3-030-66412-1_6

86 M. Belotti et al.

one to another. The Proof-of-Work system requires finding an input of a prede-
fined one-way function (e.g., hash function) generating an output that meets the
difficulty target. More precisely, the goal for the block validators (miners) is to
find a numerical value (nonce) that added to an input data string and “hashed”
gives an output which is lower than the predefined threshold. A miner who finds
a full solution (i.e., a nonce meeting the difficulty target) broadcasts it across
the network.

Miners compete to be the first to find a full solution in order to publish the
block and gain a reward consisting in new minted crypto-currencies. Mining is a
competitive crypto puzzle (a mining race) that participants try to solve as fast
as possible. The difficulty D of the crypto puzzle limits the rate at which new
transaction blocks are generated by the blockchain (e.g., it takes approximately
10min to find a full solution in the Bitcoin network). This difficulty value is
adjusted periodically in order to meet the established validation rate. At the
time of writing, in order to validate a block in the Bitcoin blockchain, miners
needs to generate (on average) a number D = 15,47T of hashes.

Mining is a procedure through which miners can gain a substantial amount
of money. Nowadays, due to the high difficulty values, solo miners (i.e., miners
who work alone with a personal device) find a full solution with a time variance
range of billions of years. Small miners survive in this new industry by joining
mining pools. A mining pool is a cooperative approach in which multiple miners
share their efforts (i.e., their computational power) in order to validate blocks
and gain rewards. Once a full solution is found, pool’s reward is split among the
miners. In this way small miners, instead of waiting for years to be rewarded,
gain a fraction of the reward on a regular basis.

Miners’ reward is based on their contribution in finding a full solution. In
order to give proof of their work, miners submit to the pool partial solutions, i.e.,
nonces that do not meet the original threshold, but a higher one. The solutions
of this easier crypto puzzle are considered “near to valid” solutions and called
shares. For those blockchains that adopt a SHA-256 function, every hash value
(i.e., output of the hash function) is a full solution with probability ﬁ7 and
each hash has a probability of 2% to be a share. Hence, a share is a full solution
with probability p := %.

Miners are rewarded according to the number of shares that they provide.
Whenever a share is also a full-solution a block is validated and the pool gains a
reward that is split among pool participants according to the number of shares
that they have reported.

Mining pools are managed by a pool manager that establishes the way in
which miners should be rewarded. Each pool adopts its own rewarding system.
There exist several rewarding approaches that can be more or less attractive to
miners (see for instance [6]).

1.1 Mining Pool Attacks

An attack to a mining pool refers to any miner’s behavior which differs from the
default practice (the honest one) and that jeopardizes the collective welfare of the

Rewarding Miners: Bankruptcy Situations and Pooling Strategies 87

pool. Rosenfeld provided in [6] an overview of the possible malicious behaviours
regarding pools whose profitability depends on their own rewarding mechanism.
Miners may attack their pool at the time of reporting their Proof-of-Work. More
precisely they can (¢) delay in reporting a share (i.e., block withholding) and/or
(i) report a share elsewhere (i.e., pool-hopping).

The former is a practice consisting in delaying in reporting shares and full
solutions to a mining pool. This practice implies delaying a block validation and
the consequent possession of the reward, that in some cases may be profitable for
attackers. Pool-hopping consists in an attack where miners “hop” from a pool
to another one according to pools’ attractiveness.

1.2 Related Works on Rewarding Mechanisms

The problem for a pool manager is to establish how to redistribute the rewards
among pool participants in order to prevent malicious behaviours (as the ones
listed above). In other words, the pool manager must choose an “appropriate”
rewarding mechanism preventing (possibly, all) different types of attacks. Con-
cerning the block withholding practice, Schrivers et al. [7] make use of non-
cooperative game theory to propose a rewarding mechanism (denoted as incen-
tive compatible) that prevents this attack. This specific rewarding system is
robust against malicious actions operated inside a pool, however it does not
behave as well in an inter-pool environment since it cannot prevent pool-hopping.
In this case, Rosenfeld [6] shows that malicious miners can gain at the expenses
of the honest ones, who receive a lower reward than the expected one. In [4] the
authors use cooperative games to prove that pool-hopping is not preventable,
thus mining pools are not stable coalitions.

Our contribution. Starting from the model in [7], the goal of this work is to
propose an alternative incentive compatible rewarding mechanism discouraging
the pool-hopping practice. By reinterpreting the reward function in [7] as an out-
come of a bankruptcy situation, we construct, analyze and test a new rewarding
mechanism adoptable by pools to remunerate contributing miners.

The paper is structured as follows. Section 2 presents the basic model for
mining pool and some definitions about bankruptcy situations. In Sect. 3, we
introduce a reward function from the literature, we compare it with a new one
(based on a modified version of the CEL rule for bankruptcy situation) and we
show that the two are equivalent with respect to incentives in reporting shares or
full solutions. Then, in Sect. 4, we compare these two methods from a multi-pool
perspective by showing (also with the aid of simulations) that the CEL-based
reward function performs better than the one from the literature in discouraging
miners to hop from a pool to another. Section5 concludes the paper.

88 M. Belotti et al.

2 Preliminaries

2.1 The Model

Let N ={1,...,n} be a finite set of miners. Time is split into rounds, i.e., the
period it takes any of the miner in the pool to find a full solution. During a
round miners participate in the mining race and report their shares (and the
full solution) to the pool manager. Once the full solution is submitted, the pool
manager broadcasts the information to the network and receives the block reward
B. Then, the pool manager redistributes the block reward B among the miners
according to a pre-defined reward function. The round is then concluded and a
new one starts. For the sake of simplicity we set B = 1.

The situation is represented by the vector s = (s1, 82, ..., 5,) € NV, defined as
history transcript, that contains the number of shares s; reported by each miner
i € N in a round. Letting S =),y s; be the total number of reported shares,
the reward function R : NV — [0, 1], according to [7], is a function assigning to
each history transcript s an allocation of the reward (R;(s), ..., R,(s)), where R;
denotes the fraction of reward gained by the single miner i € N and),y R; =
B=1.

Following the approach in [7], under the assumption of rationality, miners
want to maximize their individual revenues over time. Let K be the numbers of
rounds that have been completed at time ¢ and let s; be the transcript history for
any round j € K. Given a reward function R, a miner i € N will adopt a strategy
(i.e., the number of reported shares at each round j) aimed at maximizing her
total reward given by

tl}{knoo R; (Sj)a
JjeK

where a strategy affects both the number of completed rounds and the number
of reported shares. In [7], a reward function R is said to be incentive compatible
if each miner’s best response strategy is to immediately report to the pool a
share and a full solution. Assuming that (i) one single pool represents the total
mining power (normalized to 1) of the network and that (ii) each miner i € N
has a fraction «; of the hashing power, then the probability for a miner ¢ to
find a full solution is a;. Under this assumption, Schrijvers et al. [7] show that
a miner 4 € N has an incentive to immediately report her shares if and only if
the reward function R is monotonically increasing (i.e., R;(s + e') > R;(s) for
all history transcripts s, where e’ = (el,...,e!) € {0,1}" is a vector such that
€5 =0 for each j € N\ {i} and €] = 1.). Moreover, they show that a miner
i € N, finding a full solution at time ¢, has an incentive to immediately report
it if and only if the following condition holds:

Do (Rils' +ef) = Ri(s") < @ (1)

Jj=1

for all vectors of mining powers (a;)"_; and all history transcripts s!, where
Es[R;i(s)] is the expected reward for miner ¢ over all possible history transcripts.

Rewarding Miners: Bankruptcy Situations and Pooling Strategies 89

Condition (1) results from the comparison of the withholding strategy — i.e.,
> .51 P(find s) - (R;(s' +s)) — with the honest one — i.e., R;(s’) + %{éf”
— knowing the fact that the total number of submitted shares in a round,
S = Y icn i, follows a geometrical distribution of parameter p = % (i.e.,
the probability for a share to be a full solution), where D is the difficulty of
the crypto puzzle. Therefore, the value of the parameter D corresponds to the
average number of submitted shares in a round.

2.2 Bankruptcy Situations

We now provide some game-theoretical basic definitions. A bankruptcy situation
arises whenever there are some agents claiming a certain amount of a divisible
estate, and the sum of the claims is larger than the estate. Formally, a bankruptcy
situation on the set N consists of a pair (¢, E) € RV xR with ¢; > 0 Vi € N and
0 < E <} ;cyc = C. The vector c represents agents’ demands (each agent
i € N claims a quantity ¢;) and F is the estate that has to be divided among
them (and it is not sufficient to satisfy the total demand C).

We denote by BY the class of all bankruptcy situations (c, E) € RY x R
with 0 < E < Y.y ¢ A solution (also called allocation rule or allocation
method) for bankruptcy situations on N is a map f : BV — R assigning to
each bankruptcy situation in BY an allocation vector in RY, which specifies the
amount f;(c, E) € R of the estate E that each agent ¢ € N receives in situation
(c, E).

A well-known allocation rule in the literature is the Constrained Equal Losses
(CEL) rule, which is defined in the following definition (see, for instance, [3,8]
for more details on bankruptcy situations and the CEL rule).

Definition 1 (Constrained equal losses rule (CEL)). For each bankruptcy
situation (c,E) € BN, the constrained equal losses rule is defined as
CEL;i(c, E) = max(c; — A, 0) where the parameter X is such that), max(c; —
A 0)=E.

3 Incentive Compatible Reward Functions

Schrijvers et al. [7] introduce a reward mechanism that fulfills the property of
incentive compatibility using the identity of the full solution discoverer w. Given
a vector eV = (e%,...,e?) € {0,1}" such that e¥ = 0 for each i € N \ {w} and

e =1, the incentive compatible reward function R is the following:

%+e;~v(1—%)7 if S <D

Vi € N, (2)
&, if S>D

R;(s;w) = {

where s; is the number of shares reported by miner ¢, S is the total number
of reported shares in a round and D is the crypto puzzle difficulty. This function
rewards miner ¢ proportionally to the submitted shares in the case S > D. On

90 M. Belotti et al.

the other hand, in the case S < D, each miner receives a fixed reward-per-
share equal to % and the discoverer w of the full solution receives, in addition,
all the remaining amount 1 — 3. So, in both cases, >,y Ri(s;w) = B = 1.
Roughly speaking, the reward function R is the combination of two distinct
allocation methods. In a short round, i.e., when the total amount of reported
shares is smaller than the difficulty D of the original problem, the reward function
allocates a fixed amount-per-share to all agents equal to %, but the agent w who
finds a solution is rewarded with an extra prize. Instead, in a long round, i.e.,
when the total amount of reported shares exceeds the difficulty of the problem,
the reward function allocates the reward proportionally to the individual shares.

Remunerating miners in a per-share fashion, for long rounds, would lead
pool going bankrupt since the reward B results insufficient to pay out all the
reported shares. For long rounds, the rewarding mechanism proposed in [7] is
nothing more than a solution to a bankruptcy situation. Therefore, it is possible
to create new reward functions by simply substituting in long rounds (i.e., in
bankruptcy situations) different bankruptcy solutions.

Let us now create a new rewarding mechanism based on the CEL rule defined
in Sect.2.2 and let us compare the properties of the two allocation methods in
long rounds. In order to preserve incentive compatibility we define a CEL-based
reward function.

Definition 2. Given the identity of the full solution discoverer w, for all i € N
the CEL-based reward function R is defined as follows:

" %“l'“(l*%)a if S <D
R;(s; =93 e¥))) ,
(s;w) é+max<%—)\,0),)\:Zmax(%—)\70>:1_%’ if S>D

where e = (e, ..., e%) € {0,1} is a vector such that e¥ =1 and e =0 Vi €

N\{w}, s; is the number of shares reported by mineri, S =, s; is the total
number of reported shares in a round and D is the crypto puzzle difficulty.

We assign to agent w, who finds the solution during a long round, an extra
prize of % to add to the allocation established by the classical CEL rule for the

bankruptcy situation (c, E) = (A% -s,1 — %), with the estate recl}uced by %.
More precisely, in long rounds R;(s;w) = 65 + C’ELi(% -s,1 — e[i)) In other
words, it means that 1 is added to the count of the shares s; reported by the full

Si

solution discoverer w. If the value 7 — X is negative, by default, the agent w is
receiving %. This incentive is sufficient to make the reward function incentive
compatible.

Before proving this statement, let us compare the allocations provided by the
classical CEL rule and R through an example with n =3, D =10 and £ = 1.

Ezample 1. Given the following bankruptcy situation: s = (2,7, 8), miner 1 finds
the full solution (w = 1) and (¢, E) = ((0.2,0.7,0.8),1). By Definition 1, it is
easy to check that A = 0.25, hence:

CEL(c, E) = (0,0.45,0.55).

Rewarding Miners: Bankruptcy Situations and Pooling Strategies 91

Now, consider the new CEL-based rule ITE, a prize of % = 0.1 is allocated to miner

1, and a new bankruptcy situation (c, E’) arises where the estate is reduced by
0.1; (c, ') = ((0.2,0.7,0.8),0.9). By Definition 2, now A = 0.3 and we have that:

~

R((2,7,8);1) = (0.1,0,0) + CEL((0.2,0.7,0.8),0.9) =
= (0.1,0,0) + (0,0.4,0.5) = (0.1,0.4,0.5).

In order to prove that the CEL-based rule is incentive compatible we need
to present some preliminary results. More precisely, to express Condition (1) for
this new reward function we need to focus on the parameter A\ of the definition.
This parameter depends on miners’ demands and it changes value from round
to round. It is important to analyze how the parameter varies if an additional
share is found. Let us denote by:

(i) A1 the value of the parameter A when miner ¢ finds the full solution and
immediately reports it to the pool and,

(ii) Az the value of the parameter after delaying in reporting the full solution
by one additional share. By convention, if miner ¢ finds the additional share
the parameter is denoted as A, while if any other miner finds it we have \3.

By analyzing the different values of the parameter X it is possible to derive the
following result:

Proposition 1. Let us consider CEL;(c, E) = max(¢; — A1,0) and CEL;(c +
e;, B) = max(c; — X2,0). For each (c, E) € BN i,j € N we have that Ay <).

Proof. Let us report the efficiency condition for the two allocations:

max(c; — A1,0) + Z max(c; — A1, 0)
ieN\{j}
=max(c; +1— X2,0) + Z max(c; — Az, 0).
ieN\{j}

If ¢; < M\, efficiency condition implies that EiGN\{j} max(¢; — A1,0) >
ZieN\{j} max(c; — A2, 0). Hence, Ay < Ag. For ¢; > Aq let us assume, by contra-
diction, that A\; > A\s. The assumption implies that ZieN\{j} max(c; — Ap,0) <
ZieN\{j} max(c; — Ag,0). However, max(c; — A1,0) = ¢; — A1 < ¢j — Ay <
¢j +1— Ao =max(c; + 1 — A2,0) and this leads to contradiction.

Corollary 1. Given the situation of Proposition 1 we have that: Ay — % <A <
Ag.

Now, we are ready to prove the incentive compatibility of the new reward
function based on the CEL rule.

Proposition 2. The CEL-based reward function R of Definition 2 satisfies the
property of incentive compatibility.

92 M. Belotti et al.

Proof. Let us write down Condition (1) for R:

1 s+ 1 1 Si
Q; <D—|—max< D —A%,O) —D—maX(D—)\l,O))

~

Since the average reward E[R;(s; w)] is positive, the right hand side is positive.
Therefore, the condition is fulfilled if the left hand side is not positive.

Due to Proposition 1 and Corollary 1 we have that: % — A3 < —M <
stl AL
If all the terms in the form max(-,0) are positive, then the condition is fulfilled:

1 1
Q; (D—)\%-i-)q) + (1 — o) (—A%— D+)\1> <
< max(ag, 1 — ;) (=5 — A3 4+2X;) <0.

If —)\%g()gsi—)\lweget:

1 i 1
Q; <D>\§+/\1>+(1Oéi) <2D+>\1) <

< max(a, 1 — a;)(— A — % +2X1) <0.

ol
ol

s;+1 1 N
on:(D)\%)WL(IOMI) <D)§max(ai,1ai)(D>\%)S
5
< max(« ;) 5) 0

In the end, if all the terms in the form max(-, 0) are equal to 0, then the condition
is fulfilled, since the left hand side is negative.

4 A Multi-pool Analysis

Pool-hopping consists of a practice in which miners leave a pool to join another
one that is considered more attractive in terms of remuneration. More precisely,
during a round a miner performing pool hopping (i.e., a hopper) stops submitting
shares to the pool she was working with at the beginning of the round and starts
submitting shares to a different one. A hopper leaves, during a mining race, a
pool entering (or already in) a long round for a pool that is currently in a short
round. The hopping miner receives an increasing reward from the brand new pool
(in short round) and a decreasing reward from the pool left (facing a bankruptcy
situation where the resource B is insufficient to remunerate the working miners).

Rewarding Miners: Bankruptcy Situations and Pooling Strategies 93

In a multi-pool framework, the total mining power of the network is repre-
sented by different mining pools each with its own computational power. Differ-
ently from Sect. 2.1, each miner ¢ € N is characterized by «; that now represents
a fraction of the pool hashing rate. Indeed, in the single-pool framework, we
denote with «; the fraction of the total hashing power.

Hopping affects the actual rewards of a pool. If a miner performs pool hopping
the pool loses computational power and so on average the full solution is found
later, i.e., the rounds become longer.

In our multi-pool analysis, we assume that pool hopping is performed at the
very beginning of a long round and that miners hop between two pools adopting
the same rewarding mechanism. Every mean denoted as E[-] is considered con-
ditioned to the fact that the miner is in a long round: Eg[-|S > D]. From now
on, we mark with an asterisk (*) every variable defining the reward of miners
once pool hopping is performed.

4.1 Hopping Analysis on Schrijver’s Rewarding Function

When miner i is remunerated with reward function R her incentive to perform
pool hopping can be measured as the difference between (i) the average reward
when hopping E[R}] and (ii) the average reward E[R;] when working for the
pool:

5hop = E[R:] - E[RZ}

Proposition 3. The reward function R proposed by Schrijvers et al. always
gives miners a positive incentive Opop > 0 to perform pool hopping.

Proof. As shown in [7], the average reward of an honest miner ¢ € N, i.e., not
hopping, is:
E[RZ] = Q4.

A hopper (hopping at time ¢) receives an increasing reward from the new pool
in a short round and a decreasing one from the pool left. The sum of the two
represents the total reward. On average at the end of a short round (S = D) a
miner has found «; - D shares. The round finishes after D + ¢ shares are found,
with ¢ € [0, +00), hence the reward for the miner who performs pool hopping is
the following:

* s Oé,;t Oéz'D (673
E[R;]=) (D +D+t>p’(1 -t > o > %
t=0

where p/ = 159 ig the probability that a share found by an honest miner is a

full solution, ¢ is the time taken by an honest miner (working for the old pool)
to find a new share and R; is the reward obtained by a miner who hops from a
pool rewarding with R to another pool using the same reward function. Hence,
the incentive to perform pool hopping is always positive:

6hop =]E[R:] — E[RZ} >a; —a; = 0.

94 M. Belotti et al.

A second result deriving from Proposition 3 is the fact that, on average, the
hopping miners gain more than their hashing ratio «;. This has been empirically
verified on the Bitcoin network in [2]. The average reward for a hopper, between
pools adopting R, can be analytically computed according to the following result.

Proposition 4. The average reward of miner i € N hopping between two dif-
ferent pools remunerating miners according to the reward function R is the fol-
lowing:

E[R;] =

where of = a;(1 — a;)e! =% (= Ei(a; — 1)) with Ei(z) = [*_ et—t denoting the
exponential integral.

Proof. On average, a miner with computational power «; who performs pool
hopping receives:

N = it > «;D
B[R] =) 5p' (=0 4> 5p 0 -p)
t=0 t=0

The first term represents the reward received by the new pool in short round
that can be easily computed as follows:

EYNEIIEY S
P Dl—ozz 1—ai'

The second term (denoted as «) corresponds to the reward assigned by the pool
left by the hopping miner. In order to compute this term we need to consider an
approximation for D — oo:

o0

a; D 1— o 1— 0o =1 Sl
* _ i i 1— 7 ~ zl_ i 1041 - t
“TZDyi D < D) ail —) tzt

The computations can be solved by defining:

flr) = Jim)= lm > e B
t=D
Using Lebesgue’s theorem and given the constraint lim, o f(z) = 0 we get:
f(z) = —FEi(—x).
Hence:
oaf a1 —o)e " f(1 — a;) = (1 — oy)e! = (= Fiay; — 1)).

Thanks to the result provided by Proposition 4 we note that the shares
submitted in the pool left by the hopping miner («) represent an important
part of her average reward. More precisely, for values of a; < 0.39, o is more
than the 50% of the average reward a miner would have got by not leaving the
pool (i.e., her computational power «;). For instance, if a miner has o; = 0.2 as
computational power, she will get o} ~ 0.11.

Rewarding Miners: Bankruptcy Situations and Pooling Strategies 95

4.2 Hopping Analysis on CEL-Based Rewarding Function

Following similar arguments, we can analyze the incentive to perform pool hop-
ping when adopting the CEL-based rule R. We can, then, compare the results
obtained for the reward function R with the ones provided by R. We denote as f3;
the average reward of function R (corresponding to «; for function R) that can
be computed as follows since the probability for a miner ¢ to find a full solution
and to receive the extra prize % is ay:

ﬁi:E[ﬁi] 5+E[max<D /\0)} A:Zmax(%—/\ﬁ):l—%.

Like in Sect. 4.1, let us define the incentive to perform pool hopping Shop =
E[R}] — E[R;] and let us compute the average reward received by a hopper:

E[R;] :i(
=0

1—0(7;

a; D / ne Qi o
s (47 = 2,0)) (1) = 120 4 B fmax(as ~ 0],

where p’ =

, t is the time taken by an honest miner to find a new share and

E;‘ is the reward obtained by a hopping miner. Analogously to o for function
R, we denote by 3} the reward given by the pool the hopper left:

B = E[max(a; — A, 0)].
Hence we have that:

Snop = E[R}] — E[R;] =

1-—

4.3 Comparison of the Two Rewarding Functions in a Multi-pool
Framework

We have, now, the metrics to compare the performance of the reward functions
R and R in hopping situations. Both rewarding systems present an incentive to
hop in long rounds, however the miner rewarded with the CEL-based reward
function are less incentivized. It is possible to compare the incentives dpop, 5h0p
given by the two functions R,E through the variables introduced in Sect. 4.2
since: R

6hop < 6hop @51_5: > Ofi_a;,f-

In order to show that the hopping incentive for the CEL-based reward function
is lower with respect to the incentive given by R it is sufficient to prove that

Bi — B = a; —aj.

Proposition 5. Let N be the ordered set of miners: a1 < ag < --- < ap, let
us define a~; = Ej>iaj, as the global computational powers of the miners
that are more powerful than o;. Then, B; — B > a; — af if (1 — ay)(as; —
a)e~ it e>i—e) ™ (L RBi(q; — 1)) > 1 where Ei(-) is the exponential integral
Sfunction.

96 M. Belotti et al.

Proof. Given the definitions of 3; and 3;:

P it
,%Jr max <ai+aD)\,O) p(1—p)t and

Zmax - 20)p'(1=p),

let us recall that p = 5 is the probability for a share to be a full solution and
that p’ = % represents the probability for a share reported by an honest
miner to be a full solution.

For t — oo (i.e., for very long rounds) the function max(-,0) either tends to
0 or to 1 since in long rounds eventually the most powerful miner is receiving
all the reward (max(-,0) — 1) and the other miners are receiving none of it
(max(-,0) — 0). The limit value 0 is reached for ¢ = ;- D, where v; € RU{+o00}
is defined as follows; ~; := argminﬁy{aﬁt — A <0, Vt >~D}. Roughly speaking,
~; - D represents the number of shares after which miner i is not rewarded.

Hence, it is possible to rewrite 3; and 3} in this form:

v D
+ Z (az — /\> pl—p)' and BF =) (ai—XNp'(1-p)"
t=0
The value of ~; might change if the miner is performing pool hopping, but for
the sake of simplicity we approximate by considering the same ~y; in both cases.
Assuming that Y, A-p(1 —p)' = >, A-p(1 —p')" we can approximate the
difference between 3; and 3] as follows:

ﬂﬁw—

Due to the value of the difficulty D, we can consider the limit for D — oo, then:

TR ok 1 o R
BB~ Y B = o ke P (1 (1),
k=0 k=0

Let us now compute explicitly v;. If i = N (i.e., a; = argmax;{a;}) then ; = oc.
Otherwise at time ¢t = ; - D the miners who receive a positive reward are all
the j € N : aj > «y, i.e., all the ones having larger computational power than
i. According to the CEL rule definition we get the following balance equation:

t 1
Z(og(l—l—D)—)\):l—Dzl.
Jj>t

Since the time ¢ = ; - D is the moment when the value max(a;(1 + %) - A0)
turns from positive to null, we can say that «;(1 + %) — A =~ 0. Therefore we
have that:

Rewarding Miners: Bankruptcy Situations and Pooling Strategies 97

£ (v 5)n)

j>i

Replacing the value of ¢ with «; - D we get (as; — (N —i)a;)(1 + ;) = 1, then:
v = ((asi — (N —i)ay) "t = 1).
Now we can find a lower bound for v; (since N — ¢ > 1) and so for 3; — G;:
Vi 2= ((asi —a) = 1) = Bi = B > ai(1—e 7 (1 + 7).
The sufficient condition for 8; — 3] > a; — o is:
ai(l—e M (1+74) >a; —al.

We get the statement of the proposition by replacing 4; and o with their explicit
formulas.

Thanks to Proposition 5, given miner 4’s hashing ratio (i.e., ;) and the power
of the miners who are stronger than i (i.e., as;), we can check whether R is
giving a lower hopping incentive than the one given by R (i.e., check whether
Shop < Jhop) by simply applying the sufficient condition introduced above that
we denote as f(;, as;):

Flai, as) = (1 — a)(as; — az)e @ e>ime) ™ (_Bi(q; — 1)) > 1.

Let us analyze the hopping performance of R and R in the following example.

Ezxample 2. Given 5 miners ordered according to their hash rates: a; = 0.10
as = 0.15, ag = 0.20, ay = 0.25, a5 = 0.30, using the condition provided by
Proposition 5 we get:

o flag,a~1) = f(0.10,0.90) = 0.59 < 1, miner 1 has a greater incentive to
perform pool hopping if rewarded with R rather than with R;

o f(ag,as2) = f(0.15,0.75) = 0.66 < 1, miner 2 has a greater incentive to
perform pool hopping if rewarded with R rather than with R;

o f(as,as3) = f(0.20,0.55) = 1.24 > 1, miner 3 has a greater incentive to hop
if rewarded with R rather than with]TE;

o f(ag,as4) = f(0.25,0.30) > 10° > 1, miner 4 has a greater incentive to hop
if rewarded with R rather than with E;

o f(as,as5) = f(0.30,0) — oo > 1, miner 5 has a really low incentive to
perform pool hopping if rewarded with R.

We can see that miners representing the 75% of the pool’s computational power
have a lower incentive to perform pool hopping when the CEL-based rewarding
mechanism is adopted.

98 M. Belotti et al.

By analyzing function f(-, as;) — i.e., fixing as; — we can identify the cases in
which Shop < Ohop (Where R performs better than R). For instance, f(-, as;) > 1
for every as; < 0.4, means that with R not only the miners representing the
most powerful 40% of the pool have a lower incentive to perform pool hopping,
but also the miner ¢ who just follows in the ranking.

To compare the two reward functions, it is necessary to estimate the percent-
age of miners who have a lower incentive to perform pool hopping. In Example 2
this percentage is p(o = {0.1,0.15,0.2,0.25,0.3}) = 75%. Formally we would
like to estimate:

pla) == i 1is_poa,-ar}
i

We know that p(«) > 40% thanks to the analysis of function f. In order to get
a better idea of the range of the value of function p we perform a simulation.

Simulation. Due to the unpredictability of o, we assume that it comes from a
random distribution. More precisely, given X; ~ U[0, 1], «; is defined as follows:

We run a simulation with 100 different samples of a for n miners, with
n € {3,10,20, 30,50}, and estimate the CDF of p, («) for every n. We compute
explicitly 3; and 3}, without using the approximation above introduced.

101 — pn=3
n=10
— n=20
0.8
— n =30
— n=50
0.6
a
freg
8
04
0.2
0.0
00 02 04 06 038 10

p

Fig. 1. CDF of every p,(a), with n € {3, 10, 20, 30,50}.

The functions p,(a) have almost always values over 0.5 (i.e., in just two cases
out of 100 with n = 3, ps(a) achieves value between 0.47 and 0.5) (Fig. 1).

This means that in most of the cases the majority of the miners have a lower
incentive to perform pool-hopping with R rather than R.

Rewarding Miners: Bankruptcy Situations and Pooling Strategies 99

5 Conclusion

The paper analyzes the robustness of two different rewarding mechanisms in
both intra-pool and inter-pool environments. Schrijvers et al. introduce in [7] a
reward function R that is incentive compatible. However, this rule gives miners
an incentive to leave pools in long rounds to join pools in short rounds that
adopt the same rewarding system (i.e., pool-hopping).

By reinterpreting R, in long rounds, as an allocation rule for a bankruptcy
situation, we create a new rewarding function R inspired to the well-known
Constrained Equal Loss (CEL) rule.

We show that this CEL-based rule is incentive compatible as R but it provides
to most of the miners a lower incentive to perform pool hopping in long rounds. In
conclusion, if a pool wants to tackle this issue, the proposed rewarding function
R is the one to be recommended.

References

1. Back, A.: Hashcash - a denial of service counter-measure (2002)

2. Belotti, M., Kirati, S., Secci, S.: Bitcoin pool-hopping detection. In: 2018 IEEE 4th
International Forum on Research and Technology for Society and Industry (RTSI),
pp. 1-6. IEEE (2018)

3. Herrero, C., Villar, A.: The three musketeers: four classical solutions to bankruptcy
problems. Math. Soc. Sci. 42(3), 307-328 (2001)

4. Lewenberg, Y., et al.: Bitcoin mining pools: a cooperative game theoretic analysis.
In: Proceedings of the 2015 International Conference on Autonomous Agents and
Multiagent Systems, pp. 919-927. Citeseer (2015)

5. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system (2008)

6. Rosenfeld, M.: Analysis of bitcoin pooled mining reward systems. arXiv preprint
arXiv:1112.4980 (2011)

7. Schrijvers, O., Bonneau, J., Boneh, D., Roughgarden, T.: Incentive compatibility
of bitcoin mining pool reward functions. In: Grossklags, J., Preneel, B. (eds.) FC
2016. LNCS, vol. 9603, pp. 477-498. Springer, Heidelberg (2017). https://doi.org/
10.1007/978-3-662-54970-4_28

8. Thomson, W.: Axiomatic and game-theoretic analysis of bankruptcy and taxation
problems: an update. Math. Soc. Sci. 74, 41-59 (2015)

http://arxiv.org/abs/1112.4980
https://doi.org/10.1007/978-3-662-54970-4_28
https://doi.org/10.1007/978-3-662-54970-4_28

q

Check for
updates

A Game-Theoretical Analysis of Charging
Strategies for Competing Double Auction
Marketplaces

Bing Shi’»?3®) and Xiao Li'

! Wuhan University of Technology, Wuhan 430070, China
{bingshi,xiaoli}@whut.edu.cn
2 Shenzhen Research Institute of Wuhan University of Technology,
Shenzhen 518000, China
3 State Key Laboratory for Novel Software Technology at Nanjing University,
Nanjing 210023, China

Abstract. The double auction marketplaces usually charge fees to
traders to make profits, but little work has been done on analyzing how
marketplaces charge appropriate fees to make profits in multiple market-
places competing environment. In this paper, we investigate this problem
by using game theory. Specifically, we consider four typical types of fees,
and use Fictitious Play algorithm to analyze the Nash equilibrium market
selection and bidding strategy of traders in competing environment when
different types of fees are charged. Building on this, we draw insights
about how the marketplaces charge strategies in equilibrium when sell-
ers and buyers have made the choice of the marketplace and bid in Nash
equilibrium. Furthermore, we investigate which type of fees is more com-
petitive in terms of maximizing profits while keeping traders staying in
the marketplaces. Our experimental results provide useful insights on
setting charging strategies for competing double auction marketplaces.

Keywords: Double auction - Market fee - Game theory - Bidding
strategy - Nash equilibrium - Fictitious play

1 Introduction

Double auction [14] is a particular two-sided market mechanism with multiple
buyers (one side) and multiple sellers (the other side). In such a mechanism,
traders can submit offers at any time in a specified trading round and they
will be matched by the marketplace at a specified time. The advantages of this
mechanism are that traders can enter the marketplace at any time and they can
trade multiple homogeneous or heterogeneous items simultaneously [7]. Due to
its high allocative efficiency between buyers and sellers of goods [23], this market
mechanism has been widely adopted by realistic exchanges, such as commodities
exchanges. The high efficiency has also led many online marketplaces to use this
format, including stock exchanges, business-to-business commerce, bandwidth

© Springer Nature Switzerland AG 2020
N. Bassiliades et al. (Eds.): EUMAS 2020/AT 2020, LNAI 12520, pp. 100-115, 2020.
https://doi.org/10.1007/978-3-030-66412-1_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-66412-1_7&domain=pdf
https://doi.org/10.1007/978-3-030-66412-1_7

A Game-Theoretical Analysis of Charging Strategies for Competing 101

allocation [12], spectrum allocation [25], and smart grid energy exchange [1].
In the real world, such double auction marketplace is often run by commercial
enterprise that seeks to maximize profit by charging fees to traders such as eBay
makes profit by charging sellers [20]. Nevertheless, in today’s global economy,
each marketplace needs to compete with other homogeneous marketplaces. For
example, stock exchanges compete with each other worldwide [18]. Therefore,
it’s crucial to set optimal charging strategy for double auction marketplaces. In
this paper, we will analyze how the double auction marketplaces charge fees to
maximize profits in a competing environment.

In the real world, the marketplaces can charge different types of fees to make
profits. For example, with respect to the time of charging fees, the marketplaces
can charge fees before sellers and buyers make any transactions (i.e. ex-ante fees)
or charge fees after they have made transactions (i.e. ez-post fees). The double
auction markets’ charging strategies play an important role on affecting traders’
profits. Thus it will affect the traders’ market choices and bidding strategies,
which in turn affect the competition result of double auction markets. Hence, we
need to analyze how to determine the charging strategies for competing double
auction marketplaces. Furthermore, some traders may leave the marketplaces if
they can’t trade when market fees are charged.

Specifically, in this paper, we assume that marketplaces adopt a so-called
clearing-house double auction mechanism, where matching of sellers and buyers
occurs once all sellers and buyers have submitted their offers, and the trans-
action price is set in the middle of the matched sellers and buyers. We also
assume that traders are heterogeneous with continuous privately known types
(the type is traders’ preferences on the goods). According to the time of charg-
ing fees and fee values, in this paper, we will analyze four typical types of fees
that marketplaces usually charge, such as registration fee, transaction fee, profit
fee and transaction price percentage fee [4,24]. In such a context, intuitively, we
know that the behavior of traders and marketplaces are affected by each other.
Therefore, game theory [8], which mathematically studies such strategies inter-
actions between self-interested agents, is appropriate to be used to analyze this
system (where an individual’s success in making choices depends on the choices
of others). Specially, we consider the competing environment where there exist
two marketplaces competing with each other and then analyze the marketplaces’
charging strategies in this environment in detail.

The structure of the rest of the paper is as follows. In Sect.2 introduced
the related work about this field. In Sect. 3, we describe the basic settings, and
derive the expected utilities of traders and marketplace in this setting. In Sect. 4,
we describe the algorithm used in this paper. In Sect. 5, we analyze how differ-
ent types of fees can affect the sellers and buyers’ market selection and bidding
strategies. In Sect. 6, we analyze how the marketplace charges fees in Nash equi-
librium. Finally, we conclude in Sect. 7.

102 B. Shi and X. Li

2 Related Works

Since the charging strategies of the marketplaces are affected by traders’ bidding
strategies, first we introduce the related work about traders’ bidding strategies
in the double auction marketplace, then we introduce the related works about
marketplaces charging strategies.

Firstly, many heuristic bidding strategies have been proposed for traders bid-
ding in double auction, such as [9,10,13]. Besides, there are also research works
related to traders’ bidding strategies based on game theory. Phelps et al. [16] use
evolutionary game theory to investigate the Nash equilibrium given a restricted
strategy space. However, these restricted strategies do not necessarily consti-
tute a Nash equilibrium when considering the entire space of possible strategies.
Jackson et al. [11] show the existence of a non-trivial mixed-strategy equilibrium
for double auctions in a variety of settings given a finite set of offers, and Reny
et al. [19] show that when there are sufficiently many buyers and sellers with
a finite set of discrete offers, there exists a monotonic pure equilibrium bidding
strategy for traders. Chowdhury et al. [6] proposed a dynamic Monte Carlo Tree
Search (MCTS) bidding strategy that preforms a more comprehensive search
of the policy space using an anytime algorithm. But when the bidding space is
large, this algorithm may not longer been suitable. However, these researches
are not suitable for traders to bid across multiple marketplaces because they do
not consider the choice of marketplaces.

Next, In the context of multiple double auctions, Cai et al. [3] experimen-
tally analyze how standard economic measures are affected by the presence of
multiple marketplaces when traders select marketplaces and submit offers in a
heuristic way, and then Miller et al. [15] experimentally analyse traders’ mar-
ket selection strategies in the competing marketplaces trading environment. Shi
et al. [22] analyse the Nash equilibrium market selection strategy in the context
of multiple competing double auction marketplaces using evolutionary game the-
ory(EGT), but they emphasise traders adpot a fixed bid factor for the bidding
strategy rather than Nash equilibrium bidding strategy. All the above works
do not consider interaction between the markets’ charging strategies and the
traders’ trading strategies, and only a small number of traders are considered.

There also exist works on analyzing how the competing marketplaces charge
fees to make profits. Caillaud et al. [5] analyze the competition between two
marketplaces. They assume that traders are homogeneous and the market selec-
tion only depends on the number of traders of the other side, the result show
that when traders can only enter one marketplace at a time, by adopting the
”divide-and-conquer” strategy, in equilibrium, one marketplace will attract all
traders, but it has to give up all profit. however, the number of traders of the own
side also affects traders’ bidding strategies, but they don’t consider this factor.
Shi et al. [22] investigate how the competing double auction marketplaces make
profits by charging fees, the results show that when competing marketplaces
charging different type of fees, the competing marketplaces are more likely to
co-exist in equilibrium. But when the marketplaces charge the same type of fees,
competing marketplaces can’t co-exist any more.

A Game-Theoretical Analysis of Charging Strategies for Competing 103

However, the above works only consider a small number of traders, and they
don’t consider how competing marketplaces set fees to make profits while keep
traders. Our work investigates the problem from another perspective. We inves-
tigate how competing marketplaces charge appropriate fees to make profits while
keep traders in Nash equilibrium, by the way, due to the number of traders have
an impact on the traders’ bidding strategies, which in turn affect the markets’
competitive results. Thus, we will also consider the situation of a large number
of traders with continuous privately known types, and analyze traders’ bidding
strategies in Nash equilibrium.

3 Framework

In this section, we first introduce the basic setting for analysing our problems.
Then in order to undertake the theoretical analysis, we derive the equations to
calculate the expected utilities of the traders in this setting, which the FP algo-
rithm needs to approximate the Nash equilibrium bidding strategy. Furthermore,
we also derive the equations to calculate the expected profit and the expected
number of traders when the marketplaces charge fees.

3.1 Basic Setting

We assume that there is a set of buyers, B = {1,2,...B}, and a set of sellers,
S ={1,2,...5}. Each buyer and each seller can only trade a single unit of the
goods in one marketplace. All goods are identical. Each buyer and seller has a
type!, which is denoted as #° and #° respectively. We assume that the types of
all buyers are i.i.d drawn from the cumulative distribution function F®, with
support [0,1], and the types of all sellers are i.i.d drawn from the cumulative
distribution function F*, with support [0, 1]. The distributions F* and F* are
assumed to be common knowledge and differentiable. The probability density
functions are f° and f* respectively. In our setting, the type of each specific
trader is not known to the other traders, i.e. private information.

According to the time of charging fees and the fee value, we consider four
typical fees: registration fee r, which is charged to traders when they enter the
marketplace (ex-ante and flat fee); transaction fee ¢, which is charged to buyers
and sellers when they make transactions (ex-post and flat fee); profit fee ¢, which
is charged on profits made by buyers and sellers (ex-post and percentage fee);
and transaction price percentage fee o, which is charged on the transaction price
of buyers and sellers (ex-post and percentage fee). Note that the ex-ante and
percentage fee usually does not exist. Moreover, we further make an assumption
that traders will incur a small cost ¢ when they enter the marketplace (such as
time cost for trading online). We do this so that they slightly prefer choosing
no marketplace than choosing a marketplace but making no transactions (even

! The type of a buyer is its limit price, the highest price it is willing to buy the item
for, and the type of a seller is its cost price, the lowest price it is willing to sell the
item for.

104 B. Shi and X. Li

if 7 = 0). This small cost will help us to distinguish buyers’ behaviour between
bidding the lowest allowed offer and not choosing the marketplace, and sell-
ers’ behaviour between bidding the highest allowed offer and not choosing the
marketplace.

Furthermore, we assume that the marketplace adopts a clearing-house mech-
anism, which means that the marketplace matches sellers with buyers when all
sellers and buyers have submitted their offers. We also assume that the mar-
ketplace matches buyers with sellers according to the equilibrium matching
policy, which means that the marketplace matches the buyer with v-th highest
offer with the seller with v-th lowest offer if the seller’s offer is not greater than
the buyer’s offer. By adopting the clearing-house mechanism and the equilib-
rium matching policy, the marketplace can match sellers and buyers in a highly
efficient way. Moreover, we assume that the transaction price of a successful
transaction in the marketplace is determined by a parameter k € [0,1] (i.e. a
discriminatory k-pricing policy), which sets the transaction price of a matched
buyers and sellers at the point determined by k in the interval between their
offers.

We now describe the offers that sellers and buyers take in this setting. In
this paper, we call the offers of the buyers bids and the offers of the sellers
asks. Specifically, we make the assumption that there is a finite number of bids
and asks and that these are discrete. The ranges of possible bids and asks con-
stitute the bid space and ask space respectively. For convenience, we further
assume that buyers and sellers have the same offer space, which is given by
A =0, %, %, ceey %, 1} U {&}, i.e. the bid(ask) space comprises D + 1 allow-
able bids(asks) from 0 to 1 with step size 1/D (D is a natural number), and
© means not submitting an offer in the marketplace (i.e. not choosing the mar-
ket). Note that the expected utility of a seller or buyer is directly dependent
on its beliefs about other sellers or buyers’ offer choices. Therefore, instead of
looking at their strategies, in what follows, the expected utility is expressed
directly in terms of sellers and buyers’ offer distributions. Specifically, we use
wf to denote the probability of bid dg being chosen by a buyer, and use w; to
denote the probability of ask dj being chosen by a seller. Furthermore, we use

20 = (wf, b, ..., wle‘), Z‘zﬂ w? = 1, to represent the probability distribution of
buyers’ bids, and 2° = (wf, ws, ...,w‘sA‘) for the sellers’ ask distribution.

3.2 Trader’s Expected Utility

Before analysing the strategies of the traders, we first need to derive the equa-
tions to calculate their expected utilities. Which are defined as the expected
profits that traders can make in the marketplaces. In what follows, we derive the
expected utility of a buyer, but the seller’s is calculated analogously. A buyer’s
expected utility depends on its type, its own bid, and its beliefs about offer
choices of other sellers and buyers. In the following, we calculate the expected
utility of a buyer with type 6° bidding d” given other buyers’ bid distribution
2° and sellers’ ask distribution £2°, and the market fees.

A Game-Theoretical Analysis of Charging Strategies for Competing 105

Since the marketplace adopts the equilibrium matching policy, we need to
know the position of the buyer’s bid in the marketplace, which determines its
matching with sellers. When knowing other buyers’ bid choices, we can know
the buyer’s position. Specifically, we use a |Al-tuple z = (x1,...7)4|) € X to
represent the number of buyers choosing different bids, where x; is the number
of buyers choosing bid d?, X is the set of all such possible tuples and we have
ZlA‘l x; = B — 1 (note that we need to exclude the buyer for which we are
calculating the expected utility). The probability of exactly x; buyers choosing
bid d? is (wb)xi, and then the probability of the tuple Z, which denotes the

3
number of buyers choosing different bids, is:

sor= (20) I g

Now for a particular z, we determine the buyer’s position as follows. Firstly, we
obtain the number of other buyers whose bids are greater than the buyer’s bid
d®, which is given by:

x> (zd)= > (2)

dbeA:dl>db

Similarly, we use X=(Z,d") to represent the number of buyers whose bids are
equal to the buyer’s bid (excluding the buyer itself):

X=@d)= > (3)

dbeA:db=db

Due to having discrete bids and given X~ (z, d®) buyers bidding higher than the
buyer’s bid d® and X=(#,d") buyers bidding equal to d°, the buyer’s position
vz given T could be anywhere from X~ (z,d%) + 1 to X~ (Z,d?) + X~ (z,d") +
1, which constitutes the buyer’s position range. We use Vi = {X>(z,d") +
1., X>(2,d")+X=(z,d°)+1} to denote the position range. Since X~ (z,d")+1
buyers have the same bid, as we said previously, a tie-breaking rule is needed
to determine the buyer’s position. Here we adopt a standard rule where each of
these possible positions occurs with equal probability, i.e. 1/(X=(z,d’) + 1).

The buyer’s expected utility also depends on sellers’ ask choices. Specifically,
we use a |Al-tuple § = (y1,...yja|) € Y to represent the number of sellers choosing
different asks, where y; is the number of sellers choosing ask d;, and Y is the
set of all such possible tuples and we have Zﬁ‘l y; = S. The probability of the
tuple g, which indicates the number of sellers choosing different asks, is:

P = (yl,. ,y4|> . H())

i=1

Now given the buyer’s positions vz and the number of sellers choosing dif-
ferent asks g, next we calculate the buyer’s expected utility. Given the tuple ¥,

106 B. Shi and X. Li

we can sort the asks of the sellers descendingly. The ask which is vz-th highest
will be matched with the buyer’s bid. We denote this ask as d°. Now the buyer’s
expected utility can be calculated:

0 if db =
U (vz,9,0°,d", 28, 02% rt,q0) = 0" = TP —P if d® > d° (5)
—r—1 if d® < d°

where P =7 +t+ (d* — TP) x ¢+ TP x o+ ¢ is the seller and buyer’s payment
in the transaction and TP = d® x k + d® x (1 — k) is the transaction price.

Finally, by considering all possible numbers of sellers choosing different asks,
all possible positions and all possible numbers of buyers choosing different bids,
the buyer’s expected utility is given by:

- 1
ob db Qb 03 t _ b
U(, &y y Ty aQ7O) Zp Z X= (x db)—|—1
TEX vz E€EVz
x> p*(§) x U (vs,5,0°,d", 25, 2% (6)
yeY
rvtaQaO)

3.3 The Marketplace’s Expected Utility

After deriving equations to calculate the expected utilities of sellers and buyers,
we now calculate the expected utility of the marketplace (i.e. its profit) when
it charges fees. Specifically, in the following, we derive equations to calculate
the marketplace’s expected utility given the offer distributions of buyers and
sellers, £2° and £2°. Intuitively, we can see that the expected utility depends on
the number of sellers and buyers choosing each allowed offer. Similarly, we use a
|Al-tuple 7 = (21, ..., 214)) € &7, Z‘All x; = B, to denote the number of buyers
choosing different bids, where x; is the exact number of buyers choosing bid
d?, and X' is the set of all such possible tuples. We use § = (y1, wsYa) €Y,

Zlml y; = 5, to denote the number of sellers choosing different asks. Given the
number of buyers and sellers choosing different offers, z and 7, we will know
what exact bids and asks are placed in the marketplace. Then the marketplace’s
expected utility is calculated as follows. Since the marketplace uses equilibrium
matching to match sellers and buyers, we first sort the bids descendingly and
asks ascendingly in the marketplace, and then match high bids with low asks.
Specifically, we assume that there are T' transactions in total in the marketplace,
and in transaction t, we use d’ and d§ to represent the matched bid and ask.
Then the transaction price of this transaction is TP, = d§ x k + d? x (1 — k).
The marketplace’s utility is:

A Game-Theoretical Analysis of Charging Strategies for Competing 107

U(Tataq7oaj7g): Z xixr—i_ Z Yi XT

A€ A:db£O d3 €A #S
d b . (7)
+3 (2t + (df — TP,) x g+ (TP, — dy)
t=1

x q+ TPy x 0 x2)

In this equation, the former two parts are profits from charging registration fees
to buyers and sellers respectively, and the last part is the profit from charging
transaction fees, profit fees and transaction price percentage fees.

Now we have obtained the marketplace’s expected utility given the number
of buyers and sellers choosing different offers, which are denoted by Z and g
respectively. Furthermore, the probability of Z appearing is:

f@=<m xm)xﬁ() (8)

and the probability of § appearing is:

f@=<wVWM)xg() (9)

At this moment, we can compute the marketplace’s expected utility given offer
distributions £2° and £2°:

U(r,t,q,0,02°,02°) = > ") x Y_ 0°(§) x U(r,t,q,0,%,7) (10)

zex’ yey

4 Solving the Nash Equilibrium Charging Strategy

In this section, we describe how to solve the Nash equilibrium charging strategy
of the marketplace when competing with other marketplaces. As we mentioned
before, we analyze the Nash equilibrium of charging strategies given all sell-
ers and buyers adopting Nash equilibrium marketplace selection and bidding
strategies in different types of fees. Therefore, we first need to obtain the Nash
equilibrium strategies of sellers and buyers. Given sellers and buyers having pri-
vately known types, we can only approximate the Nash equilibrium strategies
when the marketplaces charge different types of fees. In Sect.4.1 we introduce
how to use Fictitious Play algorithm (FP) to do this. After knowing sellers and
buyers’ Nash equilibrium strategies, i.e. offer distribution 2° and £2° in Nash
equilibrium, we can compute the expected utility of the competing marketplace
using Eq. 10 when marketplaces charge different fees. Then the expected utilities
of competing marketplaces in different fees consists of a payoff matrix, and we
can use Gambit? to find Nash equilibrium charging strategies in this matrix, and
the payoff matrix is shown in three-dimensional graph.

2 http://gambit-project.org.

http://gambit-project.org

108 B. Shi and X. Li

4.1 The Fictitious Play Algorithm

In game theory, fictitious play (FP) is a learning rule first introduced by George
W. Brown [2]. In it, each player presumes that the opponents are playing sta-
tionary (possibly mixed) strategies. Each player selects an action according to a
probability distribution that represents that player’s strategy, then each player
could, via repeated play, learn this distribution by keeping a running average of
opponent actions [21]. Based on there own distribution, each player thus best
responds to the empirical frequency of play of their opponent. However, The
standard FP algorithm is not suitable for analyzing Bayesian games where the
player’s type is not known to other players. To ameliorate this, we adopt a gen-
eralized FP algorithm [17] to derive the strategies of the Bayesian game with
continuous types and incomplete information, and it is often used to approxi-
mate the Bayes-Nash equilibrium (i.e. deriving the e-Bayes-Nash equilibrium)
by running the FP algorithm for a limited number of rounds.

We first describe how to compute the best response actions against current
FP beliefs. Previously, we used £2° and £2° to denote the probability distributions
of buyers’ and sellers’ offers respectively. In the FP algorithm, we use them to
represent FP beliefs about the buyers and sellers’ offers respectively. Then, given
their beliefs, we compute the buyers’ and the sellers’ best response functions.
In the following, we describe how to compute the buyers’ best response func-
tion 0¥, where a?* (6%, 2%, 02° r,t,q,0) = argmaxdbeAﬁ(Qb,db, 2°02° r.t,q,0)
is the best response action of the buyer with type 6° against FP beliefs
2" and 2°. The optimal utility that a buyer with type #° can achieve is
U*(6°,02°,02% r,t,q,0) = mazge aU(O°,d°, 2°, 2%, r.t, q,0). From the equations
to calculate the buyer’s expected utility in Sect. 3.2, we find the buyer’s expected
utility Tj(@b, d?, 2%, 02°) is linear in its type 6° for a given bid. Given this, and
given a finite number of bids, the best response function is the upper envelope
of a finite set of linear functions, and thus is piecewise linear. Each line segment
corresponds to a type interval, where the best response action of each type in
this interval is the same. We can create the set of distinct intervals I°, which
constitute the continuous type space of buyers, i.e. Jgocpe vt = [0,1], which
satisfy the following conditions:

— For any interval ¥, if 6,05 € Wb, then o®* (6%, 2, 02%) = o (65, 2%, %), i.e.
types in the same interval have the same best response action.

— For any distinct WP, W8 € I°, if 6% € WP, 05 € We, then o (0%, 2%, 02%) +
O.b*(og7 _Qb7 QS)

Based on the above computation, we can calculate the best response action
distribution of buyers, which is done as follows. We know that given the buyers’
type distribution function F® and probability density function f°, the proba-
bility that the buyer has the type in the interval ¥ is fwb f(z)dz, denoted by
FP(W?). When the best response action corresponding to the interval Ll'/ib is dﬁ-’*,
the probability that the bid di?* is used by buyers is wf =F b(%b). By calculating
the probability of each bid being used, we obtain the current best response action

A Game-Theoretical Analysis of Charging Strategies for Competing 109

distribution of buyers, denoted by £2¢ | which is against current FP beliefs. We
can then update the FP beliefs of buyers’ bids, which is given by:

-
b = x b
T4 T+7’

x O, (11)

where (2, is the updated FP beliefs of the buyers’ bids for the next iteration
round 7 + 1, £2° is the FP beliefs on the current iteration round 7, and 2 is
the probability distribution of best response actions against FP beliefs £2°. This
equation actually gives the FP beliefs on the current round as the average of
FP beliefs of all previous rounds. The computation of the sellers’ best response
function and belief updates is analogous.

Since we approximate the Nash equilibrium, if the difference between the
expected utility of a buyer (seller) in current best response action distributions
and its expected utility of adopting best response action against current best
response action distributions is not greater than e, the FP algorithm stops the
iteration process, and the current best response actions with corresponding type
intervals constitute an e-Bayes-Nash equilibrium. Specifically, we set e = 0.00001.

5 Nash Equilibrium Strategies of Sellers and Buyers

In this section, we will use the FP algorithm to analyse traders’ Nash equilib-
rium bidding strategies when the marketplaces charge different types of fees. The
reason why we first analyze the traders’ bidding strategies is that traders’ Nash
equilibrium bidding strategies can directly affect marketplace’s utility according
to Sect. 3.3. Therefore, in order to investigate how each fee type combination can
affect bidding strategies, in the following analysis, we assume that the market-
place only charges one type of fees at a time. For illustrative purposes, we show
our results in a specific setting with 50 buyers and 50 sellers, and 11 allowable
bids(asks) unless mentioned otherwise®. Furthermore, we assume that the small
cost for traders entering a marketplace is ¢ = 0.0001. For the transaction price,
we assume k = 0.5, i.e. the transaction price is set in the middle of the matched
bid and ask, which means the marketplace has no bias in favor of buyers or
sellers. Finally, we assume that both buyers and sellers’ types are independently
drawn from a uniform distribution.

We now consider sellers and buyers’ equilibrium strategies when there are
two competing marketplaces?. We first consider the case where the marketplaces
charge no fees to seller and buyers. By using FP, we find that, sellers and buyers
eventually converge to one marketplace in equilibrium. The result is shown in
Fig. 1(a). The gray line represents buyers’ bids in equilibrium and the black line
represents sellers’ asks in equilibrium. From this figure, We find that buyers shade

3 We also tried other settings. However, we still obtained the similar results.

4 Note that our algorithms allow more than two competing marketplaces and more
sellers and buyers. However, in this paper, we focus on the typical setting with two
marketplaces.

110 B. Shi and X. Li

their bids by decreasing their bids, and sellers shade their asks by increasing their
asks, in order to keep profits. We also find that when buyers’ (sellers’) types are
lower (higher) than a certain point they will not enter the marketplace because
of the small cost «.

Now we consider the case where marketplace 1 charges a profit fee and mar-
ketplace 2 charges a registration fee. For example, marketplace 1 charges a very
high profit fee of 90%, and marketplace 2 charges a registration fee of 0.1. If
initial beliefs are uniform (i.e. all actions are chosen with the same possibility),
we find that all traders eventually converge to marketplace 1 and the equilibrium
bidding strategies are shown in Fig. 1(b). there exists a bigger range of types of
sellers and buyers not choosing the marketplace, sellers and buyers only ask or
bid for 0.5. The reason of they converging to marketplace 1, is as follows. When a
high profit fee is charged, the traders shade their offers more to keep profits, they
will both bid (ask) 0.5 offers, and won’t pay for profit fee. However, shading has
no effect in the case of registration fees. Therefore, sellers and buyers will prefer
the marketplace charging profit fees compared to registration fees. Furthermore,
we also run simulations with many other fee combinations, and always find that
all sellers and buyers converge to one marketplace.

1.0 10
0.8 1 0.8
w» 06 o 0.6
© 0.99 o 0.4
0.2 1 0.2
0.0 0.0
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Types of Traders Types of Traders
(a) Marketplace charges no fee (b) Marketplace charges 90% profit fee

Fig. 1. Equilibrium strategies with 50 sellers and 50 buyers.

6 Equilibrium Analysis of Marketplace’s Charging
Strategies

In Sect. 5, we have analyzed sellers and buyers’ strategies when competing mar-
ketplaces charge different types of fees. Based on this, we now start to analyze
the Nash equilibrium charging strategies of marketplaces.

In more detail, in the following analysis, we discretize fees from 0 to 1 with
step size 0.01. Then we obtain different fee combinations. For each fee combina-
tion, we repeat the experiments by trying different initial FP beliefs. For each
set of initial FP beliefs, we run the FP algorithm and obtain the sellers and buy-
ers’ Nash equilibrium offer distributions £2° and 2° (i.e. converged FP beliefs).
By using Eq. 10, we compute the marketplace’ expected utilities for the given

A Game-Theoretical Analysis of Charging Strategies for Competing 111

fee combination when starting from a particular FP beliefs. When repeating the
experiments from different initial FP beliefs, we obtain the average utilities (i.e.
profits) of marketplaces for this given fee combination. We repeat this process for
different possible fee combinations, and consists of a profit matrix, from which
we can use Gambit to compute the Nash equilibrium charging strategies. In the
following, we analyze how to set fees in equilibrium in ten different cases. The
marketplaces’ profits in different fee combinations when sellers and buyers have
used Nash equilibrium strategies are shown in Fig. 2.

Registration Fee and Registration Fee: Firstly, we analyze the case of both
marketplaces charging registration fees. The results are shown in Fig.2(a). We
can see that their profits are symmetric, and both marketplaces charging 0.15
registration fees constitutes a Nash equilibrium charging strategy.

Transaction Fee and Transaction Fee: In the second case, we consider that
both charges transaction fees. The results are shown in Fig.2(b). Both mar-
ketplaces charging 0.05 transaction fee constitutes a Nash equilibrium charging
strategy. Note that comparing this result to Fig. 2(a), both marketplaces charge
a lower value of transaction fee.

Profit Fee and Profit Fee: In the third case marketplaces charge profit fees.
The results are shown in Fig.2(c). We find that both marketplaces charging a
11% profit fee constitutes a Nash equilibrium charging strategy.

Transaction Price Percentage Fee and Transaction Price Percentage
Fee: In this case marketplaces charge transaction price percentage fees. The
results are shown in Fig.2(d). Both marketplaces charging a 5% transaction
price percentage fee constitutes a Nash equilibrium charging strategy.

In the above four cases, both marketplaces charge the same types of fees.
We can find that two marketplaces’ payoff are symmetrical. In the following, we
analyze the cases of marketplaces charging different types of fees.

Registration Fee and Transaction Fee: In the fifth case, marketplace 1
charges a registration fee and 2 charges a transaction fee. The results are shown
in Fig. 2(d). We find that marketplace 1 charges 0.1 registration fee, marketplace
2 charges 0.15 transaction fee, constitutes a Nash equilibrium charging strategy.

Registration Fee and Profit Fee: In the sixth case, marketplace 1 charges a
registration fee and marketplace 2 charges a profit fee. The results are shown in
Fig. 2(f), we can see that the payoff of marketplace 2 is higher than marketplace
1. This is because compared with registration fee, sellers and buyers prefer to
enter the marketplace which charges a profit fee since they can hide their true
profit by shading their offers, and thus reduce the absolute payment of profit
fees. Marketplace 1 charging 0.23 registration fee and Marketplace 2 charging
31% profit fee constitutes a Nash equilibrium charging strategy.

Registration Fee and Transaction Price Percentage Fee: In this case,
marketplace 1 charges a registration fee and marketplace 2 charges a transaction
price percentage fee. The results are shown in Fig. 2(g). Marketplace 1 charging

112 B. Shi and X. Li

profit
profit

S H
e i)

0.6

08 08 <
Fee of Marketplace 1 Fee of Marketplace 2 1

Fee of Marketplace 2 1 Fee of Marketplace 1

(a) Both marketplaces charge registration fees. (b) Both marketplaces charge transaction fees.

profit

-
e
il i
\\{‘T\fé@m\\m\}\\mm\\
|

profit

2 0
04 06 i X

08 !
Fee of Marketplace 2

Fee of Warketplace 1 * w6
ee of Narketplace Fee of Marketplace 2 T Fee of Marketplace 1

(c) Both marketplaces charge profit fees. (d) Both marketplaces charge transaction price

percentage fees.

profit

! \\\\\\m ““3“
i

06 L
08
Fee of Marketplace 2

0
Fee of Marketplace 1

04
0§ 08

Fee of Marke!plac:; v Fee of Marketplace 1
(e) marketplace 1 charges a registration fee (f) marketplace 1 charges a registration fee and
and marketplace 2 charges a transaction fee. ~ marketplace 2 charges a profit fee.

profit

(S
B

06 06 06

08 08
Fee of Marketplace 2 T Fee of Marketplace 1
(g) marketplace 1 charges a registration fee (h) marketplace 1 charges a transaction fee and

and marketplace 2 charges a transaction price marketplace 2 charges a profit fee.
percentage fee.

08 .
Fee of Marketplace 2 ' Fee of Marketplace 1

profit

i
i

03 o8

04
08
1
Fee of Marketplace 2 Fee of Marketplace 1

04
06 op 08 06

Fee of Marketplace 2 t Fee of Marketplace 1
(i) marketplace 1 charges a transaction fee and (j) marketplace 1 charges a profit fee and mar-

marketplace 2 charges a transaction price per- ketplace 2 charges a transaction price percent-
centage fee. age fee.

Fig. 2. Marketplaces’ profits when sellers and buyers have adopted Nash equilibrium
strategies in different fee combinations.

A Game-Theoretical Analysis of Charging Strategies for Competing 113

0.05 registration fee and marketplace 2 charging 15% transaction price percent-
age fee constitutes a Nash equilibrium strategy, and marketplace 2 charging a
transaction price percentage fees is more attractive to sellers and buyers.

Transaction Fee and Profit Fee: In this case, marketplace 1 charges a trans-
action fee and marketplace 2 charges a profit fee. The results are shown in
Fig. 2(h). Marketplace 1 charging 0.05 transaction fee and marketplace 2 charg-
ing 28% profit fee constitutes a Nash equilibrium charging strategy. Sellers and
buyers prefer the marketplace charging a profit fee.

Transaction Fee and Transaction Price Percentage Fee: In the ninth case,
the results are shown in Fig. 2(i). When marketplace 1 charges 0.05 transaction
fee and marketplace 2 charges 8% transaction price percentage fee, it constitutes
a Nash equilibrium charging strategy. We find that when marketplace 1 charges
0.5 or above, no sellers and buyers will enter marketplace 1.

Profit Fee and Transaction Price Percentage Fee: Finally, we consider
that marketplace 1 charges a profit fee and marketplace 2 charges a transaction
price percentage fee, and the results are shown in Fig.2(j). We find that the
profit of marketplace 2 increases quickly and then decreases rapidly. This is
because when marketplace’s fee increases, sellers and buyers will leave quickly
to enter marketplace 1. Marketplace 1 charging 18% profit fee and marketplace
2 charging 5% transaction price percentage fee constitutes a Nash equilibrium
charging strategies.

Furthermore, what we can see from Fig. 2(g) is that if the marketplace charges
a registration fee, traders need to pay regardless of whether or not the trans-
action is successful, which will cause the traders to be reluctant to enter this
marketplace. Therefore, in a competitive market environment, the marketplace
charges registration fee will not be competitive. Then, comparing Fig. 2(c), (f),
(h) and (j) where profit fees are charged, with other figures where no profit fees
are charged, we find marketplaces make less profits when profit fee is charged.
This is because in this situation, sellers and buyers can hide their actual profits
by shading their offers, and thus make less payments to marketplaces. Further-
more, when one marketplace charges a profit fee, its opponent, who charges
another type of fees, has to charge a lower fee in order to attract sellers and
buyers. This result further indicates that charging profit fee is better to keep
sellers and buyers, but is worse of making profit. Moreover, in Fig. 2(g) and (i),
we find that the transaction price percentage fee is better than the registration
fee and transaction fee to attract sellers and buyers, and makes profits at a good
level.

7 Conclusion

In this paper, we use game theory to analyze how double auction marketplaces
charge fees in Nash equilibrium when competing with other homogeneous mar-
ketplaces. We first use FP algorithm to derive the Nash equilibrium marketplace

114 B. Shi and X. Li

selection and bidding strategies of seller and buyers in competitive double auc-
tion marketplaces. We find that in our setting, all sellers and buyers will con-
verge to one marketplace in Nash equilibrium, i.e. another marketplace cannot
survive, moreover, traders shade their offers in equilibrium and the degree to
which they do this depend on the amount and types of fees that are charged by
marketplaces. Based on the sellers and buyers’ Nash equilibrium behavior, we
further analyze the Nash equilibrium charging strategies of marketplaces when
charging different types of fees. We find that different fees can affect market-
places’ profits significantly. In a competitive environment, the marketplace that
charges a registration fee will not be competitive, and traders will not choose
to enter this marketplace. The profit fee and transaction price percentage fee
are more competitive to attract sellers and buyers than another two types of
fees. This result provides a theoretical basis for how competing double auction
marketplaces charge fees to maximize their profits in real economic world.

Acknowledgement. This paper was funded by the Humanity and Social Science
Youth Research Foundation of Ministry of Education (Grant No. 19YJC790111),
the Philosophy and Social Science Post-Foundation of Ministry of Education (Grant
No. 18JHQO060), Shenzhen Basic Research Foundation (General Program, Grant No.
JCYJ20190809175613332) and the Innovation Foundation for Industry, Education and
Research in Universities of Science and Technology Development Center of Ministry of
Education (Grant No. 2018 A02030).

References

1. An, D., Yang, Q., Yu, W., Yang, X., Fu, X., Zhao, W.: Soda: strategy-proof
online double auction scheme for multimicrogrids bidding. IEEE Trans. Syst. Man
Cybern. Syst. 48(7), 1177-1190 (2017)

2. Brown, G.W.: Iterative solution of games by fictitious play. Act. Anal. Prod. Alloc.
13(1), 374-376 (1951)

3. Cai, K., Niu, J., Parsons, S.: On the economic effects of competition between double
auction markets. In: Ketter, W., La Poutré, H., Sadeh, N., Shehory, O., Walsh,
W. (eds.) AMEC/TADA -2008. LNBIP, vol. 44, pp. 88-102. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-15237-5_7

4. Cai, K., Niu, J., Parsons, S.: On the effects of competition between agent-based
double auction markets. Electron. Comm. Res. Appl. 13(4), 229-242 (2014)

5. Caillaud, B., Jullien, B.: Chicken & egg: competition among intermediation service
providers. RAND J. Econ. 34, 309-328 (2003)

6. Chowdhury, M.M.P., Kiekintveld, C., Son, T.C., Yeoh, W.: Bidding strategy for
periodic double auctions using Monte Carlo tree search. In: Proceedings of the
17th International Conference on Autonomous Agents and Multi-agent Systems,
pp- 1897-1899. International Foundation for Autonomous Agents and Multi-agent
Systems (2018)

7. Friedman, D., Rust, J.: The Double Auction Market: Institutions. Santa Fe Insti-
tute Studies in the Science of Complexity, vol. XIV. Theories And Evidence.
Perseus Publishing, New York (1993)

8. Fudenberg, D., Tirole, J.: Game Theory. The MIT Press, Cambridge (1991)

https://doi.org/10.1007/978-3-642-15237-5_7

10.

11.

12.

13.

14.
15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

A Game-Theoretical Analysis of Charging Strategies for Competing 115

Gjerstad, S., Dickhaut, J.: Price formation in double auctions. Games Econ. Behav.
22, 1-29 (1998)

Gode, D.K., Sunder, S.: Allocative efficiency of markets with zero-intelligence
traders: Market as a partial substitute for individual rationality. J. Polit. Econ.
101(1), 119-137 (1993)

Jackson, M.O., Swinkels, J.M.: Existence of equilibrium in single and double private
value auctions 1. Econometrica 73(1), 93-139 (2005)

Kelly, F.P., Maulloo, A.K., Tan, D.K.: Rate control for communication networks:
shadow prices, proportional fairness and stability. J. Oper. Res. Soc. 49(3), 237—
252 (1998)

Ma, H., Leung, H.F.: An adaptive attitude bidding strategy for agents in continuous
double auctions. Electron. Comm. Res. Appl. 6(4), 383-398 (2007)

Milgrom, P.: Auctions and bidding: a primer. J. Econ. Perspect. 3(3), 3-22 (1989)
Miller, T., Niu, J.: An assessment of strategies for choosing between competitive
marketplaces. Electron. Comm. Res. Appl. 11(1), 14-23 (2012)

Phelps, S., McBurney, P., Parsons, S.: Evolutionary mechanism design: a review.
Auton. Agents Multi-Agent Syst. 21(2), 237-264 (2010)

Rabinovich, Z., Gerding, E.H., Polukarov, M., Jennings, N.R.: Generalised ficti-
tious play for a continuum of anonymous players. In: Proceedings of the 21st Joint
Conference on Artificial Intelligence, pp. 245-250 (2009)

Ramos, S.B.: Competition between stock exchanges: a survey. In: FAME Research
Paper (77) (2003)

Reny, P.J., Perry, M.: Toward a strategic foundation for rational expectations equi-
librium. Econometrica 74(5), 1231-1269 (2006)

Rogers, A., David, E., Jennings, N.R., Schiff, J.: The effects of proxy bidding and
minimum Bid increments within eBay auctions. ACM Trans. Web (TWEB) 1(2),
9 (2007)

Shamma, J.S., Arslan, G.: Dynamic fictitious play, dynamic gradient play, and
distributed convergence to Nash equilibria. IEEE Trans. Autom. Control 50(3),
312-327 (2005)

Shi, B., Gerding, E.H., Vytelingum, P., Jennings, N.R.: An equilibrium analysis of
market selection strategies and fee strategies in competing double auction market-
places. Autonom. Agents Multi-Agent Syst. 26(2), 245-287 (2013)

Smith, V.L.: An experimental study of competitive market behavior. J. Polit. Econ.
70, 111-137 (1962)

Tatur, T.: On the trade off between deficit and inefficiency and the double auction
with a fixed transaction fee. Econometrica 73(2), 517-570 (2005)

Wang, S., Xu, P., Xu, X., Tang, S., Li, X., Liu, X.: Toda: Truthful online double
auction for spectrum allocation in wireless networks. In: 2010 IEEE Symposium
on New Frontiers in Dynamic Spectrum (DySPAN), pp. 1-10. IEEE (2010)

q

Check for
updates

Agents for Preserving Privacy: Learning
and Decision Making Collaboratively

Onuralp Ulusoy®™ and Piar Yolum

Utrecht University, Utrecht, The Netherlands
{o.ulusoy,p.yolum}@uu.nl

Abstract. Privacy is a right of individuals to keep personal information
to themselves. Often online systems enable their users to select what
information they would like to share with others and what information
to keep private. When an information pertains only to a single indi-
vidual, it is possible to preserve privacy by providing the right access
options to the user. However, when an information pertains to multi-
ple individuals, such as a picture of a group of friends or a collabora-
tively edited document, deciding how to share this information and with
whom is challenging as individuals might have conflicting privacy con-
straints. Resolving this problem requires an automated mechanism that
takes into account the relevant individuals’ concerns to decide on the pri-
vacy configuration of information. Accordingly, this paper proposes an
auction-based privacy mechanism to manage the privacy of users when
information related to multiple individuals are at stake. We propose to
have a software agent that acts on behalf of each user to enter privacy
auctions, learn the subjective privacy valuations of the individuals over
time, and to bid to respect their privacy. We show the workings of our
proposed approach over multiagent simulations.

Keywords: Multiagent systems * Online social networks - Privacy

1 Introduction

Collaborative systems enable users to interact online while sharing content that
pertains to more than one user. Consider an online social network (OSN), where
a user can share pictures that include other users, who are many times able to
tag themselves or others, comment on it, and even reshare it with others. Or,
an IoT system, in which one security camera would like to share footage of a
setting to guarantee security for the people, while one individual would prefer
to keep the location of herself secret. In both of these cases, the content being
in question relates to multiple entities, who have different privacy concerns or
expectations from each other. Even though the content is meant to be shared
by a single entity, the content is related to more than the uploader and hence is
actually co-owned by others [11,21].

When co-owners have different privacy constraints, they should be given the
means to make a decision as to either share or not to share the content. However,

© Springer Nature Switzerland AG 2020
N. Bassiliades et al. (Eds.): EUMAS 2020/AT 2020, LNAI 12520, pp. 116-131, 2020.
https://doi.org/10.1007/978-3-030-66412-1_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-66412-1_8&domain=pdf
https://doi.org/10.1007/978-3-030-66412-1_8

Agents for Preserving Privacy 117

current systems enable only the uploader to set privacy settings while publishing
contents, but does not allow co-owners to state their constraints. As a result,
individuals are left to resolve conflicts via offline methods [14].

Ideally, systems should provide privacy management mechanisms to regulate
how content will be shared. Recently, multiagent agreement techniques, such as
negotiation [12,21] and argumentation [13] have been used. These approaches
have been successful but require heavy computations; that is, they can only
be used when the entities can reason on its privacy policies and communicate
with others intensively. Moreover, the agents in these systems follow predefined
rules but do not learn better ways to preserve their users’ privacy over time.
An alternative to this is to use auctions [20] where each user bids based on how
much she wants to see a content public or private. The decisions are then made
based on the winning bids [4,6].

Accordingly, this paper first explains an agent-based approach PANO for col-
laborative privacy management. When a content is about to be shared, agents of
co-owners interact over a mechanism to reach a decision. Similar to Squicciarini
et al. [20], PANO uses Clarke-Tax mechanism, but adapts it to protect users
against abuses, and at the same time encourages users to share content online.
PANO incorporates a group-wise budget system that ensures that advantages
gained by interactions with certain individuals can only be used against the
same individuals. Thus, the agents support users in biding automatically for
their behalf. Next, we propose an agent architecture called PRIVACY AUCTION-
ING LEARNING AGENT (PANOLA) that uses user’s privacy policy as an initial
point to bid but then learns to adjust its bidding strategy over time. Learning
has been used in context of privacy before, mostly to enable agents to clas-
sify whether a user would consider a content private or not [7,18]. However, the
learning problem addressed here is different. First, since the content to be shared
is co-owned, other agents’ actions influence the outcome of a privacy decision.
Second, what needs to be learned is not whether a content is private or not, but
what the agent would bid to share or not to share the content, given what it has
observed and shared before.

Our main contributions in this paper are as follows:

— We provide a fair privacy respecting auctioning method based on Clarke-Tax
mechanism, where software agents represent users’ privacy requirements and
appropriately bid on behalf of the users.

— We develop a privacy-aware bidding strategy for the agents based on rein-
forcement learning. This gives them the ability to fine-tune their auction bids
according to previous experiences and adjust their privacy respecting strate-
gies over time.

— We evaluate the proposed approach over multiagent simulations and show
that it achieves superior privacy protection than non-learning cases.

The rest of this paper is organized as follows: Sect. 2 explains PANO in detail,
with a focus on how automatic bidding is done for protecting privacy. Section 3
proposes an agent architecture that learns bidding strategies over time. Section 4

118 O. Ulusoy and P. Yolum

describes our multiagent simulation environment and evaluates the effectiveness
of learning. Finally, Sect. 5 discusses our work in relation to existing methods in
the literature.

2 Agent-Based Auctioning for Privacy: PANO

To enable decisions on co-owned content, we propose co-owners to be represented
with software agents. Agents keep track of the privacy preferences of entities and
act on behalf of them to reach a decision. We propose PANO, an agent-based
privacy decision system, where agents employ auctioning mechanisms to reach
decisions on privacy conflicts [24]. PANO uses an extended version of Clarke-Tax
Mechanism as an underlying mechanism.

2.1 Background: Clarke-Tax Mechanism

Clarke-Tax mechanism [4] provides an auction mechanism, where participants
bid for different, possible actions in the environment. The action that receives
the highest total bids from the participants wins and is executed. Different from
an English auction, participants who aid in the winning action to be chosen,
i.e., that bid towards it, are taxed according to the value they put on it. This
is achieved by subtracting the bid values of every single user from the overall
values. If the subtraction of a single user’s bid changes the overall decision, it
shows that the user’s bid on this action had a decisive value. Thus, the user
is taxed with the difference of the actual action’s score and the score of action
to be taken if that user were not present in the auction [4]. In the context of
collaborative privacy, Clarke-Tax mechanism is used to decide on how a content
is going to be shared. Squicciarini et al. [20] consider three types of sharing
actions: no share, limited share, and public share. We follow the same scheme
here. When an image is about to be shared, all the relevant participants bid on
these three possible actions.

2.2 PANO Auctions

The Clarke-Tax auctions are beneficial for decision making for multiple partic-
ipants with different opinions, as they support truthfulness [20]. If Clarke-Tax
auctions are applied in commerce, then each participant would have their own
budget (e.g., money) to bid with. However, since we are emulating the auction
idea, the participants are given budgets at the beginning of each auction, which
they can use to bid in the current auction or save to bid later. As usual, a
participant cannot bid more than her current budget.

When Clarke-Tax auctions are applied in privacy as opposed to commerce,
there are two points that need attention: First, users can enter into arbitrary
auctions in arbitrary groups to increase their budgets. If budgets earned with
one group of users is used to set the privacy in a second group by overbidding,
then the system is abused. Second, it is not clear to assign a bid value for privacy.

Agents for Preserving Privacy 119

In commerce, the valuation for an item can be identified more easily, however,
for privacy, the difference between values is not easily interpreted. Without clear
boundaries to specify the range for bids, agents are left with an uncertainty to
express their preferences accurately. We address these two points by offering only
group-wise budgets and ensuring boundaries for bid ranges [24].

Group-wise Spending: To prevent abuse of using budgets for trivial auctions
with different users, earned budgets can only be used in new contents with the
same co-owners. With this, we improve robustness of the system, where malicious
users cannot collaborate for increasing their budget and forcing the other users
about their own choices. For example, without group-wise Spending, two agents
might share arbitrary content over a social network without spending budget for
privacy actions, thus increasing their total budget. When they co-own a content
with others, they will have extra budget from these previous efforts, and can
bid high amounts to force sharing a content over on OSN, while in fact it is a
sensitive content for another user that can’t outbid the malicious users. With
group-wise spending, each agent would have a separate budget for each co-owner
group, hence cannot use previously earned budget against a co-owner group if
the earned previously budget was with another co-owner group.

Boundaries: Boundaries enable all the agents to bid inside a predefined range.
This is beneficial for preventing users that are richer in the budget from domi-
nating the decisions. This also helps agents that participate in the auctions to
have better evaluation functions, because they can have a better opinion about
the other participants’ bids. When the agents know what would be the maxi-
mum bid from the others, they can set their bidding strategy accordingly. For
example, without the boundaries in place, when an agent considers a content
for a privacy action, she would try to bid as much as possible since she would
considers others doing the same for the opposite action. But with boundaries,
the agent would have a clearer idea about how much to bid, since she will know
the amount to outbid in the worse case scenario, where all the agents bid the
amount of the maximum boundary for the opposite action.

Definition 1 PANO: PANO auction is defined as a 6-tuple:

AUC = {c¢,AC,A,m,M,BD}, which consists of the auction’s related content ¢, a
set of privacy actions (AC), the set of agents (A) that participate in the auction,
minimum possible bid (m), maximum possible bid (M) and the set of placed bids
(BD), where each bid by o (by o € BD) is related to one single action t (t € AC)
and one single agent a (a € A).

Given a PANO auction defined as in Definition 1, a system can compute the
outcome for the agents, and update their budgets accordingly. At the end of
each auction, each participant is given an amount that is equal to the half of
the maximum possible bid. This prohibits the agent to bid for the maximum
possible bid for each auction. That is, the agent would need to save its acquired
budget for the next auction to be able to bid higher than average possible bid.
Our reason to employ this half of the maximum boundary is that if an agent

120 O. Ulusoy and P. Yolum

acquires more budget than she should use, she would be able to bid the maximum
allowed amount for every auction. In this case, it would not make sense for an
agent to deliberate the bid amount, since a higher bid would increase her chances
to force the action she wants, regardless of the significance of the action. On the
extreme opposite case, if the agents would earn very little amount for every
auction, they would not be able to bid for many decisions when they consider
the content sensitive. In this situation, many privacy violations might occur, and
agents would be forced to save their budget for many cases to be able to have a
decision in one. Our decision to give half the amount of the maximum possible
bid aims to find a balance between these two extreme cases, where agents should
deliberate about placing their bids to be able to enforce their decisions only when
necessary, but they would still be able to enforce their decisions in the sensitive
cases, if they bid reasonably.

2.3 Privacy Policy

Each agent should have an evaluation mechanism on the importance of a content,
and how much it is willing to bid for its preferred actions. Since the action
set can differ significantly in terms of size, the evaluation mechanism of the
agents should rely on some generic, but still comprehensive representation of the
represented individuals’ privacy preferences. Thus, we propose a 5-tuple privacy
policy structure to represent the privacy related choices of the individuals.

Definition 2 PANO Policy: A PANO policy P is a 5-tuple P = {a,n,p,q,i},
where a is the agent that the policy belongs to, n is the audience of the policy
who are the users affected by the outcome, p is the contextual properties for the
content that the policy will be applied, q is the privacy related action and i is the
importance of the policy, which is a rational value between 0 and 1.

An example policy of an agent that represents Alice, who wants to share
its blood pressure information received from an IoT device with her doctor and
nurse can be defined as:

P = {Alice,{doctor[Alice],nurse[Alice]} ,info[Blood Pressure],share, 0.9} .

3 Learning to Bid

Existing work in PANO assumes that the agents are homogeneous and bid in a
predefined manner. However, this is rarely the case in real life. First, different
users have different privacy understandings that can affect their bidding strate-
gies. Second, users do not know their valuations accurately. Third, some users’
privacy expectations can change over time, requiring them to bid differently for
the same content at two different time points.

In general, users (and thus agents) are not experts of privacy domains. Even
though users claim that they care about privacy and can express their privacy
concerns, they tend to act differently and their actions can possibly contradict
with their privacy requirements [1]. Hence, presenting privacy related actions in

Agents for Preserving Privacy 121

a way that users can understand and fit their privacy requirements with ease
becomes essential. For a privacy auctioning mechanism, agents would find it
difficult to place an exact bid on a privacy action, but presenting a range from
which they can provide their bids, rather than a single value could be easier.
Depending on the context, the extent of the range can vary and providing bids
on one end of the range versus the other can significantly change the outcome of
the bid. For this reason, it is best if an agent can learn over time a range from
which it can generate its bids.

In order to facilitate this, we use reinforcement learning [22]. With reinforce-
ment learning, agents can learn how to improve their privacy actions over time
by making use of the only few possible visible outcomes in the system and with
simple computations. In our adoption of reinforcement learning to PANO; over
time, agents’ desired actions are rewarded or their bad choices are penalized.
According to these, agents explore their set of actions, in order to adapt and act
in the best possible way for the current state of the environment. The conver-
gence to learn the best possible action depends on the exploration/exploitation
balance of the agents. An adventurous agent can explore from a wider range
of actions while risking being penalized, while a conservative agent can avoid
taking risk and adapt slowly, but might get stuck in local minima since the best
possible action has a bigger probability of never being explored.

In light of the aspects mentioned above that can affect the privacy deci-
sions, we introduce our learning agent, called Privacy Auctioning Learning Agent
(PANOLA). PANOLA employs reinforcement learning to learn the bidding
ranges, build strategies using defined coefficients and adapt its bidding according
to the outcome of previous decisions. In addition, we ensure that PANOLA can
act coherently with agents’ privacy policies even when previous decisions are not
available.

3.1 Bidding Ranges

With the given minimum and maximum boundaries for PANO, we introduce
bidding ranges, where the agents can pick from the possible ranges within the
boundaries and bid integers between the picked ranges. All the possible bidding
ranges within boundaries are stored by the agents themselves; each of them
accompanied by a rational utility value, in the range of [0-1] that denotes how
suitable a range is for bidding for a privacy action; 0 meaning the least suitable
and 1 the most suitable. Since the agents cannot have any previous experience
when first introduced to a domain, the initial utilities are computed according
to the distance of the ranges’ mean values to the agents’ initial bid evaluations
extracted from their privacy policies.

Example 1 Figure 1 depicts two bidding range examples (r, = [4,12] and ro =
[14,18]) for action ¢ between minimum and maximum boundaries (m and M
respectively), assigned as 0 and 20. The set of ranges contains more than these
two, since we include all possible integer ranges between m and M. b, shows
the initial bidding evaluation for action ¢, which is given as 6 and means that
the agent would initially bid 6 for ¢ for the incoming content.

122 O. Ulusoy and P. Yolum

m M
b."a Iy rp |
0 4 6 12 14 18 20

Fig. 1. A depiction of two ranges between minimum (m) and maximum (M) bidding
boundaries and the initial bidding evaluation of agent a for action ¢

In time, utility values of bidding ranges change according to success or failure
of the picked bids. Agents do not share the utility values with the environment
or other agents. Each agent updates its utilities independently according to the
outcome of the auctions. Reinforcement learning is used to make agents learn
to pick the most suitable range for a given content type, using information that
results from PANO auctions, such as the amount they paid from their budget
according to their bids, the deducted tax amount if any tax was paid and the
action chosen by the auction, which can be considered as the most important
factor for the learning process. We employ all these factors in our computations
for learning the suitability of the ranges. The agents pick the range with the
highest utility for a given content and bid an integer value inside this range
according to their bidding strategy for their preferred action.

3.2 Effective Auctions

An important aspect in facilitating reinforcement learning is to balance explo-
ration of new bid ranges with exploitation of already found ones. The explo-
ration/exploitation balance is not binary in most of the real life domains, since
the uncertainty and non-determinism is usually present. Therefore, we make use
of continuous utility ranges with several coefficients that represent properties of
the auction outcomes to compute the balance.

Like most of the approaches in reinforcement learning [3,5,23], the unsuc-
cessful range pickings are penalized with a decrease in the utility value, while
the successful ones have an increase in the utility. In our approach, the utilities
are based on the effectiveness of the previous auctions. Intuitively, an auction
has been effective for an agent if a preferred action has been decided, while
the agent did not bid too high and was not taxed too much. We formalize this
intuition below using three coefficient values. Table 1 summarizes the important
parameters for the proposed approach.

— Bid Coeflicient (BC') captures the preference of winning an auction with lower
bids. Having a higher BC' means that spending less is more important while
winning. This is essential when an agent has a limited budget, since winning
with a lower bid would enable the agent to have spare budget for the future
auctions. In contrast, a rich agent would prefer a lower BC' value since bidding
more than it should would still leave budget for the future auctions, without
the need to search of another winning bid with a lower value.

Agents for Preserving Privacy 123

Table 1. Coefficients and values for utility calculations

Name Short description Equation/Function Range
Abbreviation
Bid Coef. BC' | Used for distinguishing | BC' — 0 : decrease | [0-0.5
between winning with | effect of BC
lower and higher bids BC — 0.5 : increase
effect of BC
Tax Coef. TC' | Changes the TC — 0 : decrease [0-0.5]
importance of taxes in | effect of T'C'
utility calculation TC — 0.5 : increase
effect of TC
Action Coef. | Assigned by the agents | AC — BC +TC : (BC+TC)-1]
AC according to their decrease effect of AC
action choice AC — 1 : increase
preferences effect of AC
Distance D Used in the initial D=(M- [0-1]
utility value |Mean(rng) — bs,o|) /M
calculations
Effectiveness | Calculates agent’s E= [0-1]
E effectiveness in an AC — (BC x bg,o /JM+
auction TC «Tax/M)

— Tax Coefficient T'C' has a similar purpose to BC, but it focuses on the amount
of taxed budget on winning bids instead of the bids themselves. Similar to
BC, a higher T'C increases the importance of taxes in utility computation.

— AC enables each agent to decide the importance order of the privacy actions.
Agents assign coefficient values between BC' 4+ TC and 1 to each action
according to their action ordering preferences, the highest coefficient value
being the AC of the most important action.

These three aforementioned coefficients are used in computing the final effec-
tiveness. For the Effectiveness (E) value, a higher amount means that the agent’s
preferred action has been chosen with lower bidding and lower taxing. The ratio
of b 4 to the maximum possible bid M gives the magnitude of the bid. The higher
this value, the less effective the auction will be. This magnitude is adjusted with
BC to account for the fact that different agents would care about this differently.
The ratio of T'ax to maximum possible bid M gives the magnitude of the budget
loss for the agent. Again, the higher this amount, the less effective the auction
would be. Adjusting it with T'C enables the agent to account for different con-
texts, e.g., when the agent has high budget and would not be affected by being
taxed. The effectiveness of the auction is then the difference between the value
gained by the decided action AC and the cost of bidding and taxing as shown
in Table 1. The sum of Tax Coefficient TC' and the Bid Coeflicient BC' should
be lower than the Action Coefficient AC, so that when an auction is successful,

124 O. Ulusoy and P. Yolum

E will have a positive value and can increase the utility of the picked range for
the auction.

The effectiveness of an auction will determine the likelihood of a bidding
range to be picked again. However, at the beginning, the agent does not have
any effectiveness values, as it has not participated in any previous auctions. Yet,
they still need a mechanism to assign bids. Distance (D) formula is used for this
purpose of initial utility value calculations. This formula favors bidding ranges
that are closer to the agent’s initial privacy policy. That is, the distance for-
mula assigns higher utility values to the ranges that have a close mean value
to the agents’ initial bid evaluations, and lower values to the distant ranges.
According to D (in Table 1), if the mean of all the integer values within a range
is equal to the initial bid evaluation of the agent, D will be equal to 1, which
will be a top pick for the first auction for a related content. The normalization
according to the maximum auction boundary ensures that the furthest differ-
ence between the range mean and initial bid evaluation would be the difference
between the maximum boundary and the minimum boundary (zero for our sim-
ulation), since the furthest distance could be the initial bid evaluation to be at
one end of the boundary and the mean of the range on the other end. In such
case, |[Mean(range) — by o| part of the D calculation will always be equal to the
maximum boundary M, thus the D value will be computed as 0. In addition
to enabling first time utilities with D, we also ensure that initial bids are as
close as possible to the agents’ intended privacy requirements. A utility value
closer to 1 would mean that the agent is indeed willing to bid around the mean
of the picked range, and the privacy action outcome of the first auction would
be similar with when the agent does not employ a learning strategy and bids a
value according to its own privacy policies.

Example 2 Referring back to the examples of two ranges in Fig. 1, the mean
of 1 and 79 are 8 and 16 respectively. If we assume that there are no previous
auctions for agent a, the initial bid b; , is given as 6, which is the amount a is
willing to bid for action ¢, if the learning process with ranges are not available.
According to the equation of D, ry has the initial utility of 0.9 and ry has 0.5.
As the mean of ry is closer to b ,, it has a higher D value than ry and can be
considered a better candidate for a bidding range of ¢ for an incoming auction.

3.3 Utility Update

After the initialization with the Distance value, utility computation depends on
the Effectiveness value and the total number of auctions entered. Utility for a
range called r, is simply computed with the formula below:

Utilit = = 1
ility{ry} Y (1)

According to Formula 1, utility value of r, after n auctions is the sum of
all previous F values and the initial D value divided by the number of entered
auctions plus one, considering D.

Agents for Preserving Privacy 125

Example 3 According to the example in Fig. 1, the initial utilities of the ranges
according to D value would be [0—1] : 0.725,[0—2] : 0.75, ...,[4—12] : 0.9, ..., [14—
18] : 0.5, ..., [18 — 20] : 0.35,[19 — 20] : 0.325.

If we ignore the ranges that are not shown in the examples above, 7y ([4-12])
is the one to be picked for the next bid, since it has the highest utility. Assume
that the agent picked r1, won the auction with a bid within the range, and got
an E value of 0.8 out of it. The utility of 1 will become (0.9 + 0.8)/2, equaling
to 0.85. Since this value is still higher than other ranges above, it will have the
highest probability to be picked for the next auction.

4 Evaluation of Learning for Preserving Privacy

The above setup shows us how reinforcement learning can be used by the agents
to generate bids. Some important questions that follow are: does this approach
enable agents to learn accurately, do the agents that learn bidding ranges perform
better in PANO auctions, do other personal values affect preserving privacy and
if so, how.

In order to answer these questions, we design and implement a multiagent
simulation environment, where PANO and PANOLA agents with different pri-
vacy policies enter PANO auctions. The environment consists of a set of agents,
and different types of contents, where the agents have predetermined evaluations
to rely on. According to these content evaluations, agents have an initial opinion
about which privacy actions to support in an auction, and how much they are
willing to bid for it. The environment also keeps track of the budget balances
of the agents, and their success rate (i.e., the percentage of won auctions in all
entered auctions) for further performance evaluations. The content types and
the number of actions may vary in the environment, and the required informa-
tion is fully observable to the agents so they can evaluate on how to bid for a
given content type and the set of privacy actions. As in the original Clarke-Tax
algorithm, the agents cannot see the bids of the other agents before or after an
auction, but they are informed of the winning action as well as the amount of
tax to pay, in case they are taxed.

4.1 Simulation System

We have developed a simulation system to evaluate the performance of
PANOLA agents in different setups. The environment supports both
PANO agents, which do not employ any learning for bidding and
PANOLA agents, which learn how to bid over time. The simulation includes
multiple action choices and all the agents have predetermined evaluations about
how important they consider different action types and how much their initial
bid should be accordingly. After the agents are loaded into environment, the
simulation cycles for all the contents, and agents enter PANO auctions to col-
laboratively decide which action to take for the given auctions.

126 O. Ulusoy and P. Yolum

To understand whether an agent is successful, we use a success metric, which
calculates the percentage of auctions for which an agent’s preferred privacy
action is chosen. Recall that the auctions are set up in a such a way that the pri-
vacy expectations of the agents conflict. As a result, if an agent’s most preferred
action is the result of the auction, then this agent has won and the remaining
agents have lost. That said, it is possible to have two privacy actions that end
with the same highest bid. In those cases, we disregard the auction from calcu-
lations of success. Thus, the total wins of all the agents equals the total count
of the auctions. This simple metric enables us to see which agents have been
the most successful in selecting privacy actions as measured by the percentage
of total auctions.

4.2 PANOLA vs. PANO Agents

In our multiagent simulations, there are PANOLA agents that learn how to
bid over time and the remaining agents are opposing PANO agents that have
different action choices than PANOLA agents. These opposing PANO agents
have a static strategy, meaning that they always bid the same pre-evaluated
amount for the same type of content.

We perform ten simulation runs of 100 contents for each to evaluate preser-
vation of total budget, amount spent for each content and success for entered
auctions (e.g. successful if the first action choice of the agent is the outcome
of an auction and unsuccessful if not). The experiments where we include both
PANO agents and PANOLA are executed with a single PANOLA against a
PANO agent setup, since we aim to measure PANOLA’s success with differ-
ent characteristics against PANO agent opponents that do not learn how to
bid over time. The experiments for comparing PANOLA agents with different
values against each other are conducted with one-against-one auctions, since
our purpose for this comparison is to measure a learning characteristic against
another one.

In our first experiment, we evaluate the success of PANOLA against PANO
agents in terms of privacy decisions. For all 100 content, our scenario sets the
privacy actions of PANOLA and PANO agents always in conflict, thus in each
auction the agents oppose each other to ensure their own privacy action becom-
ing the final privacy decision. One of the goals of PANO auctions is to enable
every agent to participate for making privacy decisions in the long run, by taxing
the winners of the auctions to give a higher chance for the losing agents for the
future auctions. Referring back to Sect. 2.2, since we allow agents to earn limited
budget (i.e., half of the maximum possible bid) after each auction, even when the
agent learns the right bidding range, they might not be able to bid due to lack
of budget. Hence, we evaluate whether PANOLA agents learn the right bid-
ding range, we perform auctions with and without budget restrictions. Figure 2
shows the privacy success percentages of PANOLA against PANO agent in
both conditions.

As expected, PANOLA learns to outbid the PANO agent after a few auc-
tions, and wins every auction afterwards for the unlimited budget condition.

Agents for Preserving Privacy 127

100

80 7 /

Success (%)
o
o

8

20 4

-— Unlimited Budget
- Regulated Budget

T T T T T
0 20 40 60 80 100
Auctioned content #

Fig. 2. Privacy success of PANOLA against PANO agents in unlimited and regulated
budget scenarios.

This shows that PANOLA indeed learns the correct range to bid from and if
PANOLA owns enough budget, it will always choose the correct amount to bid
for its privacy actions. When the budget regulation is in place, it is expected
for both agents to decide on some privacy actions in the long run, as this is a
desired outcome in our mechanism. For the evaluation with the regulated bud-
get, PANOLA still performs better in the long run than PANO agent (760%
privacy success after 100 auctions); but this time PANO agent is able to give
the decisive privacy action for some auctions. The main reason for this is that
even though PANOLA learns how to outbid the opponent, it will run out of
budget after winning some auctions, and in that case the opponent can win the
auction. However, we can also conclude that learning how to bid is beneficial for
agents, since adapting the bids for their desired privacy actions enables them to
obtain significantly more desired collaborative privacy decisions in their favor
than the agents that do not adapt over time.

4.3 Exploration Within Bid Ranges

While learning which range a bid will be given from is the first step, deciding
on the actual bid is an important second step. Intuitively, the agent can pick
a bid from the range based on a given distribution. Currently, we implement
two types of agents, namely adventurous and conservative. Adventurous agents
bid randomly within the picked bidding range, while conservative agents bid
according to normal distribution in Gaussian.

We compare the performance of the adventurous and conservative PANOLA
agents against each other. We investigate the success rate and total owned budget
of the agents over 100 auctions. Figure 3 shows the success rates and total owned
budget over 100 auctions for both agents.

According to Figure3, it can be seen that conservative bidding achieves
slightly more successful results after the agent learns the environment through

128 O. Ulusoy and P. Yolum

100 120
-—- Adventurous agent -—- Adventurous agent
Conservative agent : Conservative agent
80 o1 A
'v.\
2 80 :
F 60] \
e Ao 4
§ Ao i o el el e 3 60 \f\
M il K |
3 4 ’ g \
O 4 i '
VAR ~
20 Voo /
20 _/‘__ sl g
‘”.f'ﬂ./ '\r. v '\/
0 0

0 20 40 60 80 100 o 20 40 60 80 100
Auctioned content # Auctioned content #
(a) (b)

Fig.3. Success (a) and Owned Budget (b) of adventurous and conservative
PANOLA against each other

some auctions. It is also more successful at the first few auctions, while spend-
ing more reasonably than the adventurous bidding with random distribution.
Around the tenth auction, adventurous agent’s success passes conservative, since
the adventurous agent tries to increase its bids to beat conservative, while con-
servative does not increase its bids since it already wins auctions. But after the
next few auctions, conservative agent also adjusts its bids accordingly, and stays
steadily around 4% more successful than the adventurous agent. The main reason
for this difference relies on the Clarke-Tax mechanism; when a conservative agent
outbids the adventurous, the tax amount payed tends to be a small amount, since
the conservative agent sticks closer to its winning range and not reaching the
maximum boundaries. In the opposite position, an adventurous agent can win
by trying bids closer to the maximum boundary, but get taxed with a bigger
amount which decreases its budget significantly for the next auction. According
to this evaluation, it can be said that when two learning agents have the same
importance evaluation for an incoming content, using a conservative approach
leads to more successful bids in the long run.

With these results, we can conclude that employing conservative strategy in
biddings is more beneficial than the adventurous strategy in most cases. How-
ever, the learning curve of an adventurous agent while losing is steeper than
the conservative one. Thus, when the agent loses most of the bids, trying an
adventurous strategy while trying to pick from higher ranges could be useful to
find out the winning privacy bids over opponents.

5 Discussion

Privacy in ubiquitous systems started to receive attention around early2000s,
with the Internet becoming accessible to most of the people in the world and
enabling easy sharing and access of private information over the web. Langhein-
rich [15] is one of the first works that investigate the open issues for privacy-
respecting approaches for ubiquitous computing. Spiekermann and Cranor [17]
and Gtirses et al. [10] study the grounds of engineering privacy, explaining how

Agents for Preserving Privacy 129

information related domains can be designed to employ privacy-preserving meth-
ods. Paci et al. [16] provide an extensive survey for literature about access control
over community centric collaborative systems; laying down the key issues and
giving a roadmap for future challenges. Bahri et al. [2] show the challenges of
preserving privacy over decentralized OSNs, and provides a review of previous
work done for overcoming these challenges. These studies all show that privacy is
an important aspect of collaborative information systems and address the need
for effective mechanisms.

Even though the systems the main goal is intended to satisfy the general
good for the collaborative privacy decisions, the agents that represent entities
naturally have the goal to force their privacy requirements to the others.

Collaborative privacy management is investigated in the literature for differ-
ent domains. Fong [9] introduce Relationship Based Access Control (ReBAC)
mechanism, and provides a model to make it applicable to OSNs, where users
can define their privacy constraints related to the relations that are available in
OSNs, such as friends or colleagues. Multi-party Access Control Model by Hu
et al. [11] is another work which focuses on determining a single final policy
according to privacy requirements of the users. PANO offers [24] a fair mech-
anism to decide on which action to take, which uses Clarke-Tax auctions at its
core with some economic modifications such as group-wise spending, bidding
boundaries and income-expenditure balance levels. For the competitiveness of
the agents, we introduce a learning mechanism that is based on reinforcement
learning, where agents can adapt according to the visible information result-
ing from the outcome of previous auctions. We also use an evaluation distance
coefficient to overcome the cold start problem for the agents that have no prior
information about auctions or their opponents.

The use of machine learning for privacy is gaining momentum and the
research area is still open for further improvement. Fogues et al. [8] provide an
agent-based approach which requires user input when required to learn incremen-
tally about user policies, and recommends privacy policies for sharing content
for multiuser scenarios. Vanetti et al. [25] propose a machine learning approach
for filtering unwanted textual contents in OSNs. Squicciarini et al. [19] infer pri-
vacy policies of OSN users for photographic contents. Zhong et al. [26] employ
contextual image properties in a different way: they extract and learn from the
image features in a way to detect possible privacy conflicts to take further action.

Our work on this paper opens up interesting research directions. The first
direction is to use the findings of this paper to build an agent that can change
its behavior as needed as well as build models of other agents’ in the auctions to
make better decisions. The second direction is to capture the dynamics between
agents, especially that of trust. When agents trust each other more, they could
reflect that differently when bidding, leading to better overall decisions. The
third direction is understanding and derivation of social norms into PANO,
which could be beneficial to create learning agents according to their normative
behavior.

130 O. Ulusoy and P. Yolum
References
1. Acquisti, A., Brandimarte, L., Loewenstein, G.: Privacy and human behavior in

10.

11.

12.

13.

14.

15.

16.

17.

18.

the age of information. Science 347(6221), 509-514 (2015)

. Bahri, L., Carminati, B., Ferrari, E.: Decentralized privacy preserving services for

online social networks. Online Soc. Netw. Media 6, 18-25 (2018)

Barto, A.G., Mahadevan, S.: Recent advances in hierarchical reinforcement learn-
ing. Discr. Event Dyn. Syst. 13(4), 341-379 (2003)

Clarke, E.: Multipart pricing of public goods. Pub. Choice 11(1), 17-33 (1971)
Diuk, C., Cohen, A., Littman, M.L.: An object-oriented representation for efficient
reinforcement learning. In: Proceedings of the 25th International Conference on
Machine Learning, pp. 240-247. ICML 2008, ACM, New York, NY, USA (2008)
Ephrati, E., Rosenschein, J.S.: The clarke tax as a consensus mechanism among
automated agents. In: Proceedings of the Ninth National Conference on Artificial
Intelligence, Vol. 1, pp. 173-178. AAAI 1991, AAAT Press (1991)

Fang, L., LeFevre, K.: Privacy wizards for social networking sites. In: Proceedings
of the 19th International Conference on World Wide Web, pp. 351-360. WWW
2010, ACM, New York, NY, USA (2010)

Fogues, R.L., Murukannaiah, P.K., Such, J.M., Singh, M.P.: SoSharP: recommend-
ing sharing policies in multiuser privacy scenarios. IEEE Internet Comput. 21(6),
28-36 (2017)

Fong, P.W.: Relationship-based access control: protection model and policy lan-
guage. In: Proceedings of the First ACM Conference on Data and Application
Security and Privacy, pp. 191-202. CODASPY 2011, ACM (2011)

Giirses, S., Troncoso, C., Diaz, C.: Engineering privacy by design. Comput. Priv.
Data Prot. 14(3), 25 (2011)

Hu, H., Ahn, G.J., Jorgensen, J.: Multiparty access control for online social net-
works: model and mechanisms. IEEE Trans. Knowl. Data Eng. 25(7), 1614-1627
(2013)

Kekulluoglu, D., Kokciyan, N., Yolum, P.: Preserving privacy as social responsi-
bility in online social networks. ACM Trans. Internet Technol. 18(4), 42:1-42:22
(2018)

Kokciyan, N., Yaglikci, N., Yolum, P.: An argumentation approach for resolving
privacy disputes in online social networks. ACM Trans. Internet Technol. 17(3),
27:1-27:22 (2017)

Lampinen, A., Lehtinen, V., Lehmuskallio, A., Tamminen, S.: We’re in it together:
interpersonal management of disclosure in social network services. In: Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems, pp. 3217—
3226. CHI 2011, ACM, New York, NY, USA (2011)

Langheinrich, M.: Privacy by design — principles of privacy-aware ubiquitous sys-
tems. In: Abowd, G.D., Brumitt, B., Shafer, S. (eds.) UbiComp 2001. LNCS, vol.
2201, pp. 273-291. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-
45427-6_23

Paci, F., Squicciarini, A., Zannone, N.: Survey on access control for community-
centered collaborative systems. ACM Comput. Surv. 51(1), 6:1-6:38 (2018)
Spiekermann, S., Cranor, L.F.: Engineering privacy. IEEE Trans. Softw. Eng.
35(1), 67-82 (2009)

Squicciarini, A., Caragea, C., Balakavi, R.: Toward automated online photo privacy.
ACM Trans. Web 11(1), 2:1-2:29 (2017)

https://doi.org/10.1007/3-540-45427-6_23
https://doi.org/10.1007/3-540-45427-6_23

19.

20.

21.

22.

23.

24.

25.

26.

Agents for Preserving Privacy 131

Squicciarini, A.C., Lin, D., Sundareswaran, S., Wede, J.: Privacy policy inference
of user-uploaded images on content sharing sites. IEEE Trans. Knowl. Data Eng.
27(1), 193-206 (2015)

Squicciarini, A.C., Shehab, M., Paci, F.: Collective privacy management in social
networks. In: Proceedings of the 18th International Conference on World Wide
Web, pp. 521-530. WWW 2009, ACM, New York, NY, USA (2009)

Such, J.M., Rovatsos, M.: Privacy policy negotiation in social media. ACM Trans.
Auton. Adapt. Syst. 11(1), 41-429 (2016)

Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press,
Cambridge (2018)

Tan, M.: Multi-agent reinforcement learning: Independent vs. cooperative agents.
In: Proceedings of the Tenth International Conference on Machine Learning, pp.
330-337. Morgan Kaufmann (1993)

Ulusoy, O., Yolum, P.: Collaborative privacy management with auctioning mecha-
nisms. In: Ito, T., Zhang, M., Aydogan, R. (eds.) ACAN 2018. SCI, vol. 905, pp.
45-62. Springer, Singapore (2021). https://doi.org/10.1007/978-981-15-5869-6_4
Vanetti, M., Binaghi, E., Ferrari, E., Carminati, B., Carullo, M.: A system to filter
unwanted messages from OSN user walls. IEEE Trans. Knowl. Data Eng. 25(2),
285-297 (2013)

Zhong, H., Squicciarini, A., Miller, D.: Toward automated multiparty privacy con-
flict detection. In: Proceedings of the 27th ACM International Conference on Infor-
mation and Knowledge Management, pp. 1811-1814. CIKM 2018, ACM, New York,
NY, USA (2018)

https://doi.org/10.1007/978-981-15-5869-6_4

l‘)

Check for
updates

Open Social Systems

Nardine Osman', Carles Sierra!, Ronald Chenu-Abente?, Qiang Shen?,
and Fausto Giunchiglia®(®)

! Artificial Intelligence Research Institute (ITTA-CSIC), Barcelona, Spain
{nardine,sierra}@iiia.csic.es
2 Dipartimento di Ingegneria e Scienza dell’Informazione, Univeritd di Trento,
Trento, Italy
{chenu, fausto}@disi.unitn.it
3 College of Computer Science and Technology, Jilin University, Changchun, China
shenqiang19@mails.jlu.edu.cn

Abstract. While normative systems have excelled at addressing issues
such as coordination and cooperation, they have left a number of open
challenges. The first is how to reconcile individual goals with community
goals, without breaching the individual’s privacy. The evolution of norms
driven by individuals’ behaviour or argumentation have helped take the
individual into consideration. But what about individual norms that one
is not willing to share with others? Then there are the ethical consid-
erations that may arise from our interactions, such as, how do we deal
with stereotypes, biases, or racism, or how to avoid the abuse of commu-
nity resources. This paper is concerned with accounting for individual
needs while respecting privacy and adhering to the community’s ethi-
cal code. We propose a decentralised architecture for normative systems
that, along with the community norms, introduces individual’s require-
ments to help mediate the interaction between members.

Keywords: Normative systems + Privacy by design

1 Introduction

Normative systems have attracted a lot of attention in the multi agent systems
community as one approach to maintain the autonomy of agents while ensuring
community goals and aspirations are fulfilled. Norms essentially specify the rules
of interaction: what one can (or cannot) do, when, under what conditions, etc.
Normative systems copy how human societies function, and they can be com-
pared to social norms that govern society’s behaviour or organisational norms
that mediate interactions in organisations [8].

While normative systems have excelled at addressing issues such as coordi-
nation and cooperation [1], they have left a number of open challenges. The first
is how to reconcile individual goals with community goals, without breaching
the individual’s privacy. A number of approaches have been studied to take the
individual into consideration, such as norm synthesis techniques that would help
© Springer Nature Switzerland AG 2020

N. Bassiliades et al. (Eds.): EUMAS 2020/AT 2020, LNAT 12520, pp. 132-142, 2020.
https://doi.org/10.1007/978-3-030-66412-1_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-66412-1_9&domain=pdf
https://doi.org/10.1007/978-3-030-66412-1_9

Open Social Systems 133

norms evolve based on individuals’ behaviour [6], or norm evolution that would
allow the individuals to reason about norms through argumentation [7]. But
what about individual norms that one is not willing to share with their fellow
community member? For example, imagine a community norm that states that
a donation cannot be below 5€ and an individual norm that states that a dona-
tion cannot exceed 50€. Another open challenge are the ethical considerations
that may arise from our interactions, such as, how do we deal with stereotypes,
biases, or racism, or how to avoid the abuse of community resources, to name a
few.

In other words, the question this paper addresses is how can we make sure
that an individual will have their needs taken into consideration while we ensure
their privacy is respected and the community’s ethical code is not violated.
To address these issues, this paper proposes a decentralised architecture for
normative systems that, along with the community norms, introduces individ-
ual’s requirements to help mediate the interaction between members. Section 2
presents our proposal in brief, Sect. 3 introduces the notation used in this paper,
Sect. 4 introduces the decentralised architecture addressing the challenges dis-
cussed above, while Sect.5 provides a motivating example, before concluding
with Sect. 6.

2 Proposal

To address the issues presented above, we first say that in addition to community
norms, there are also individual norms that describe the individual’s rules of
interaction with others.

Norms, as illustrated earlier, specify what actions are acceptable for that
specific individual, who can the individual interaction with, and under what
circumstances. While normative systems have focused a lot on the action, ‘what’
can one do, we highlight in this paper the other crucial aspect of interactions:
‘who’ can one interact with. The ‘who’ aspect has been implicit until now, usually
hidden under the ‘what’ action specification. In an increasingly hyperconnected
world, we choose to make the ‘who’ more explicit in our proposal. To achieve
this, we require users to have profiles describing them, such as describing their
gender, their age, their relationships, etc. With such profiles, rules on who to
interact with can then be specified. For example, one individual norm can then
say ‘only seek the support of female friends during my breakup period’, while
another can say ‘never ask my ex-husband for help’. As such, and in addition to
community norms and individual norms, the individual profile becomes another
crucial element for mediating our interactions.

Both the individual’s norms and profile may be divided into a private and
shared part. In what follows, we present the norms and the profiles in more
detail.

134 N. Osman et al.

2.1 Norms

As per the above we distinguish between community norms and individual
norms.

— Community norms. These norms are the community’s agreed upon norms.

Any action (represented by a message exchange) in the peer-to-peer network
must be coherent with them. We consider an action acceptable by the com-
munity when it doesn’t violate any of the community’s norms.
We note community norms can be categorised into a number of groups
(Fig. 1). For example, institutional norms can describe the rules of behaviour
in the given community (following the concept of electronic institutions [2]).
Governance norms can describe the rules of who has the right to change exist-
ing norms and how. Ethical norms can describe what is considered ethical and
what actions are deemed unethical, and hence, unacceptable in the commu-
nity. Incentivising norms can help provide incentives for community members
to behave in a certain way, such as encouraging benevolent behaviour, say to
help maintaining the community and fulfilling its objectives. One can even
imagine re-using, adapting, or building on top of existing norms. For example,
a new social network may re-use the institutional norms of an existing social
network and adapt them to their community’s particular needs.

Community Norms
Institutional | Governance Ethical Incentivising .
Norms Norms Norms Norms

Fig. 1. Community norms

— Individual norms. These norms represent particular aspects of the relation-
ship of the human with her machine and with the community. For instance, a
prohibition to pop-up a message during a siesta unless coming from a relative.
Or one can filter messages coming from people that they do not deem trust-
worthy. As most individual norms are private, some ‘unethical’ behaviour
may be codified at this level and remain unnoticed, such as a private norm
requiring to never show messages coming from old men.

In general, individual norms may implement certain behaviour that may not
be fully aligned with the community values and norms. In cases of conflict
between community norms and individual private ones, community norms
prevail concerning actions within the community. For example, if community
norms prohibit discriminating against women, then an action like excluding
females from a given activity will be prohibited. However, individual private
norms prevail when concerning actions local to one’s machine. For instance,
while community norms may prohibit discriminating against women, one’s
private norms can enforce requests coming from women to be suppressed

Open Social Systems 135

(ignored).
We note that individual norms can further be divided into two parts: private
norms and shared norms.

e Private norms are norms that are private and are never shared with other
machines (e.g. ‘never show messages coming from old men’). Their impact
is restricted as other machines do not have access to these norms.

e Shared norms are norms that travel with messages so that other people’s
machines can take them into consideration (e.g. when specifying ‘do not ask
the help of people outside Barcelona’, the receiving machine can check the
location of its human, even if this data is private as this data never leaves
the machine and is not shared with others).

2.2 Profiles

Generally speaking we assume we have two types of profiles that we can intu-
itively describe as follows.

— Private profile. This is the set of features that are private to (and
hence, accessible only by) the human’s own machine. For instance, if
gender ("A",female) is part of Alice’s private profile this means that Alice’s
machine has permission to use Alice’s gender in the reasoning.

— Shared profile. This is a set of features that can be shared with (or made
accessible to) others, both the humans and their machines. There are several
approaches, both centralised and decentralised, that one can choose from for
making information public. However, in this proposal, we suggest sharing the
public profile by communicating it to other machines on an as-needed basis.

Of course, humans decide what part of their profile is public and what part is
kept private.

The notion of private profile is quite intuitive. We want to keep private what
we do not want the others to know. This issue of privacy has always been around
but it has become of paramount importance with the pervasive use of the Web
and the Social Media. In the past we were protected for free by our space and
time limitations: it would take some time to from place A to place B and this
time would increase with distance. The phone lifted some time barriers, but the
propagation of information would still be limited by the fact that we were able
to choose who to interact with and, in any case, the communication would only
happen in pairs. Television lifted other barriers, allowing for zero time one-to-
many communication, but still information was very much verified and under
control and in many cases regulated by law. The Social Media have lifted the last
barrier: now everybody can talk with everybody and say whatever they prefer
with basically no limitations (the first limitations being established by the most
recent legislation, for instance, GDPR in Europe).

The social media have made it possible to replicate and hugely expand what
has always been the case in the real world. Now anybody can share information
with anybody, virtually the entire world population, in zero time and no space

136 N. Osman et al.

constraints. This motivates the focus on privacy and hence the need for a private
profile.

But this is only part of the story. First of all, the notion of privacy is not
an absolute motion. There is information that I may be willing to share with
my family but not with my friends and even less with my enemies. For example
people are usually very happy to share information about the location of their
children in a certain moment of time, for instance the fact that they go to a
school with a certain address and that lectures will end at 1pm, with a person
with a car that maybe has a child who goes to the same school. But they would
never be willing to share this information with a person they do not fully trust.
In social relations, the notion of privacy is fully contextual in the sense that it
depends on the current situation and also in the objectives that one wants to
achieve.

The contextuality, and therefore non-absoluteness, of privacy brings up the
key observation which underlies the need for both a public and a private profile.
To provide another example which integrates the one about the child who needs
to be picked up from school, suppose I have a certain disease, e.g., diabetes. This
is sensitive information, namely information with many more constraints for its
circulation. In general, most people would not talk about their disease, but, for
instance, a person with diabetes, if too low in her level of sugar in the blood,
would be very happy to let others know about this. And not only of the need for
sugar but also of the fact that the reason is diabetes, as this would increase the
urgency of the intervention. In social relations there is always a tension between
privacy and transparency. In almost any interaction with other people we trade-
off some privacy (about us, about our family, friends, ..., anybody) as a key
enabler for obtaining information, support, information from others.

The notion of public profile captures exactly this need of transparency, mean-
ing by this the sharing information as key to enabling social interactions. Clearly,
the public profile is contertual, where the person we interact with is a crucial
component of the relevant context, and mostly dynamic. There is in fact very
little information, if any, that we are willing to always share with others; maybe
our name, but also in this case it is easy to think of exceptions. Furthermore
the public profile, like the private profile, will change in time because of multiple
reasons, e.g., change of one’s job or of the place where one lives. The contex-
tuality and dynamicity of the public profile will require its continuous update
and revision. This consists of a process which will be enforced by the local peer,
as driven by its user, and which will consist of performing a set of abstraction
operations [4] on the private profile.

3 Notation

We first present, in this Section, the notation used in the remainder of this paper.
We say let CN describe the set of community norms, PrR and ShR describe the
sets of private and shared norms, respectively, and PrP and ShP describe the
private and share profiles, respectively. We view a profile as a set of features. To

Open Social Systems 137

specify which agent does a set of norms or profile describe, we use the sub index
of that agent. For example, PrR 4 describe’s A’s private norms whereas ShPpg
describes B’s shared profile.

We say a profile is a set of features, and we specify features as propositions.
For example, we say gender(“A” female) to state that A’s gender is female and
loc(“A” barcelona) to state that A’s location is in Barcelona. As for norms, we
specify these as “if then” statements that talk about actions (similar to the rule-
based norms of [3]), and we use the deontic operators O and F to describe obli-
gations and prohibitions, accordingly. For example, F'(display(“A”,M)) states
that it is forbidden to display the message M to A.

4 Architecture and Associated Operational Model

User
Interface
User
Interface

— Sk

Y
ﬁ::/\)ﬁ I
Message (MSG) - 0

I -I Machine
Message (M) Bob’s Private Profile (PrP)

Sender’s Shared Profile (Sh Bob’s Shared Profile (ShP)
Sender’s Shared Rules (ShR RS R IR ()

Bob’s Shared Rules (ShR)

Alice’s Private Profile (PrP)

Alice’s Shared Profile (ShP)

Alice’s Private Rules (PrR)

Alice’s Shared Rule (ShR)

Community Norms (CN) Community Norms (CN)

Fig. 2. Basic (distributed) architecture

In Fig. 2, the schema of the peer-to-peer architecture for our proposed normative
system is presented. Each user has a machine, that may run all or some of its

138 N. Osman et al.

computations on a remote server (depending on the complexity of the norms and
their computational requirements). Each user interacts with its machine through
a user interface.

As illustrated in Sect. 2, each user specifies their profile and individual norms.
The profile is divided into private (PrP) and shared (ShP) parts, and the norms
into private (PrR) and Shared (ShR) parts.

The norm engine at each machine will have both a reactive and proactive
behaviour.

— Reactive Behaviour. This allows the norm engine to react to messages
received (usually representing the actions being performed), and there are
two types of messages that a machine can receive:

e A message from the user interface. When a user performs an action, it
is translated into a message that is sent to the machine through the user
interface. The message includes the shared norms and a copy of the sender’s
shared profile. Upon the receipt of such a message, the norm engine needs
to first verify that the message does not violate any of the norms, this
includes the community norms and the sender’s individual norms (both
private and shared). A conflict resolution mechanism should address any
conflicting norms that may arise. If the action violates any of those norms,
an error message is sent back to the user. However, if the action obeys
the norms, then the norm engine needs to decide what to do next, usually
translated into sending messages to other peers. This decision follows from
the community and individual norms (both private and shared), and takes
the user’s profile (both public and shared) into account as needed.

o A message from another machine. As in the previous case, the norm engine
needs to first verify that the message does not violate any of the community
norms. This re-checking upon receipt ensures that the sender’s norm engine
has not been manipulated to cheat. If the message violates any of the com-
munity norms, then it may either be discarded, or if the community norms
require sanctioning, then the appropriate sanctions should be executed.
However, if the action obeys the community norms, then the norm engine
needs to decide what to do next, which is usually translated into sending
messages to other peers and/or sending messages to the user interface. This
decision takes into consideration the community norms, the norms attached
to the message, and the individual private and shared norms. This ensures
that the machine abides with its human’s private norms without leaking any
of their private norms and profile.

— Proactive Behaviour. This allows the norm engine to proactively perform
actions as required by the norms. For example, incentivising norms might
remind a user to complete their profile, if this has been neglected for some
time, or remind the user of how much their contribution to their community
is valued, if they haven’t been active lately. To be proactive, a machine will
require access to the community norms and individual private norms, as well
as its human’s private and public profile.

Open Social Systems 139

5 Motivating Example

In this example we will specify the interaction between three people with the
uHelp use case in mind. uHelp [5] is an app that allows one to find help with
everyday tasks, such as picking up one’s child from school, or finding a friend
to play squash with. uHelp works by crawling one’s social network looking for
trusted volunteers. In this example, imagine having four people involved: Alice
(A), Bob (B), Carol (C), and Dave (D). Say Bob, Carol and Dave are on Alice’s
contact list, and Bob is on Carol’s contact list. The community norms (CN), or
the uHelp norms, specify how a help request is propagated in the social network.
They state that every time a machine receives a help request, it needs to decide
whether it displays it to its user (Lines 32-35, Fig. 3), and whether it needs to
forward it and to whom (Lines 24-31, Fig. 3). We note that the person making
the request will decide the maximum number of hops accepted when looking for
volunteers (Hops) and the minimum trustworthiness required (Trust). As these
are specified for a given task, they are sent along with the help request message
(Line 38, Fig. 3).

As for individual norms, imagine Carol has a private norm that says ignore
help requests from females (i.e. do not display such requests, as show in Lines
13-17, Fig. 3). Alice, on the other hand, has a private norm and a shared one.
The private one specifies that only those who are close by (in Barcelona) get to
see her help requests (Lines 10-12, Fig.3). The shared one specifies that none
of her requests may be displayed to Bob (Lines 19-22, Fig.3). As Bob is her
ex-husband, she prefers that Bob does not see her requests, though she is happy
for his machine to still receive her requests as she is interested in using his social
network. Hence, she only prohibits the display of the message to Bob.

Now concerning people’s profiles, some information such as gender, location,
or trust in others may be kept private (Lines 1-4, Fig. 3), or made public (Lines
6-8, Fig. 3). For example, Alice’s private profile specifies her trust in her contacts:
in this case, ‘low’ for Bob and ‘high’ for Carol and Dave. Similarly, Carol’s private
profile specifies her trust in her contact Bob as ‘high’ and her current location
as being in London. Bob, Dave and Alice are happy to make share their gender
and location with others through their shared profiles.

Now given these profiles and norms, imagine that Alice is running late at
work and she needs someone to pick up her child from school (message M). She
accepts friends of friends (Hops=2, for connection level 2), but is looking for
trustworthy volunteers only (Trust="high"), as illustrated in Line 38, Fig.3.
For these norms to be enforced by other machines, Alice shares these norms
along with her other shared norms and profiles by attaching them to the help
request (M), resulting in the message, MSG.

As soon as the help request is sent by Alice, the norm interpreter at her
machine will check whether the message applies with the community norms
(CN), in which case it does. The interpreter then needs to decide what are
the actions that this message entails, taking into consideration Alice’s profile
(private and shared), her norms (private and shared), and the community norms.
According to the community norm on Lines 24-31, the interpreter decides to

140 N. Osman et al.

forward the help request to Carol and Dave, as they satisfy the requested hops
and trustworthiness constraints (the trustworthiness of Bob, on the other hand,
is low).

Upon receiving the message, Dave’s machine now needs to check whether
the message applies with the community norms, which it does. It then needs
to decide what are the resulting actions of receiving this message, taking into
consideration Dave’s profile and norms (both private and shared), the norms
attached to the message (that is, Alice’s shared norms), and the community
norms. According to the community norm on Lines 32-35, the request is then
displayed to Dave, despite the fact that Alice forbids it in its private norm. This
is because Alice’s private norm is private and cannot be taken into consideration
by other people’s machines.

Upon receiving this message, again, Carol’s machine needs to check whether
the message applies with the community norms, which it does. After that, it
needs to decide what are the resulting actions of receiving this message, taking

1 PrPy = { trust("A","B",low) ;

2 trust("A","C",high) ;

3 trust("A","D",high) }

4 PrPc = { trust("C","B",high) ; loc("C",london) }

5

6 ShP, = { gender("A",female) ; loc("A",barcelona)}

7 ShPg = { gender("B",male) ; loc("B",barcelona) }

8 ShPp = { gender("D",male) ; loc("D", rome) }

9

10 PrRy, = { IF —loc(X,barcelona) A requester(M)="A" THEN
11 F(display(X,M))

12 END IF }

13 PrRc = { IF rcv.help rqst(Sndr,"C",Trust,Hops,MSG) A
14 gender (Sndr)=female A

15 MSG=M+ShRy+ShRgpqr+ShPspa; THEN

16 F(display("C",M))

17 END IF}

18

19 ShRy = { IF rcv_help.rqst(Sndr,"B",Trust,Hops,MSG) A
20 MSG=M+ShRy+ShRgngr+ShPgngr THEN

21 F(display("B",M))

22 END IF }

23

24 CN = {IF rcv_help.rgst(Sndr,Rcvr,Trust,Hops,MSG) THEN
25 FOR ALL X&Rcvr.Contacts

26 IF trust(Rcvr,X,Y) A

27 Y>Trust A Hops>0 THEN

28 0(snd-help_rqst (Rcvr,X,Trust,Hops-1,MSG))
29 END IF

30 END FOR

31 END IF ;

32 IF rcv_help_rqst(Sndr,Rcvr,Trust,Hops,MSG) A

33 type(Sndr)=machine A MSG=M+ShRy+ShRgnar+ShPspay THEN
34 0(display(Rcvr,M))

35 END IF }

36

37 M = "Can you pick up my son from school at 5Spm?"

38 ShRy = { 0(snd-help_rqst("A",machine("A"),"high",2,MSGy)) }

Fig. 3. uHelp example: profiles and norms

Open Social Systems 141

into consideration Carol’s profile (private and shared), her norms (private and
shared), the norms attached to the message (that is, Alice’s shared norms), and
the community norms. In this case, and according to Carol’s private norm on
Lines 13-17, the help request is not displayed on Carol’s mobile as it comes
from a female. However, the help request is forwarded to Bob, according to the
community norm at Lines 24-31. Note that while Alice’s trust in Bob was low,
her trust in Carol is high, and Carol’s trust in Bob is also high, allowing the
message to be forwarded to Bob through Carol.

Upon receiving the message, Bob’s machine again checks its adherence to
community norms. Then, as above, it needs to decide what are the resulting
actions of receiving this message, taking into consideration Bob’s profile (private
and shared), his norms (private and shared), the norms attached to the message
(that is, Alice’s shared norms), and the community norms. In this case, and
according to Alice’s shared norm on Lines 19-22, the help request is not displayed
on Bob’s mobile as Alice forbids it.

This example illustrates how our proposed system ensures the interaction
between people adheres to both community norms and individual ones with-
out jeopardizing people’s privacy. It also illustrates the impact of private and
shared information. For instance, private norms are better suited to control local
behaviour, whereas shared norms are better suited for controlling the behaviour
of other machines.

6 Conclusion

This paper has proposed a decentralised architecture for normative systems that
introduces individual norms, while ensuring the privacy of people. One aspect
that has been overlooked in this paper and left for future work is the conflict res-
olution mechanism. Having people specify their own norms will probably result
in conflicting rules, and a mechanism will be needed to address such conflicts.

Our current next steps will be to implement the proposed system by extend-
ing the existing uHelp platform to introduce the different types of norms (adding
private and shared ones) and different types of profiles (splitting them into pri-
vate and shared). Furthermore, we plan to integrate uHelp with an extended
version of iLog [9] that automatically learns people’s profiles from their online
activity.

As illustrated in our discussion of community norms, these norms can be
used to specify the rules of interaction in a community, but also to introduce
more specialised rules, such as rules specifying what is considered ethical and
unethical, or rules specifying how to motivate people to act in a certain way.
Future work will be experimenting with these specialised different, focusing on
ethics and incentives.

Acknowledgements. This research has received funding from the European Union’s
Horizon 2020 FET Proactive project “WeNet — The Internet of us” (grant agreement

142 N. Osman et al.

No 823783), as well as from the Spanish Ministry of Economy, Industry and Com-
petitiveness’ Retos 2017 project “CIMBVAL” (project No TIN2017-89758-R), and the
RecerCaixa 2017 project “AppPhil”.

References

1. Andrighetto, G., Governatori, G., Noriega, P., van der Torre, L.W.N. (eds.): Nor-
mative Multi-Agent Systems, Vol. 4. Dagstuhl Publishing (2013)

2. d’Inverno, M., Luck, M., Noriega, P., Rodriguez-Aguilar, J., Sierra, C.: Communi-
cating open systems. Artif. Intell. 186, 38-94 (2012)

3. Garcia-Camino, A., Rodriguez-Aguilar, J.A., Sierra, C., Vasconcelos, W.W.: Con-
straint rule-based programming of norms for electronic institutions. Autonom.
Agents Multi-Agent Syst. 18(1), 186-217 (2009)

4. Giunchiglia, F., Walsh, T.: A theory of abstraction. Artif. Intell. 57(2-3), 323-389
(1992)

5. Koster, A., et al.: U-help: supporting helpful communities with information technol-
ogy. In: Proceedings of the 2013 International Conference on Autonomous Agents
and Multi-agent Systems, pp. 1109-1110. AAMAS 2013, International Foundation
for Autonomous Agents and Multi-agent Systems, Richland, SC (2013)

6. Morales, J., Lopez-Sanchez, M., Esteva, M.: Using experience to generate new reg-
ulations. In: Proceedings of IJCAI 2011, pp. 307-312 (2011)

7. Oren, N., Luck, M., Miles, S., Norman, T.: An Argumentation Inspired Heuristic
for Resolving Normative Conflict. Unknown Publisher (2008)

8. Shoham, Y., Tennenholtz, M.: On social laws for artificial agent societies:
off-line design. Artif. Intell. 73, 231-252 (1995). https://doi.org/10.1016/0004-
3702(94)00007-N

9. Zeni, M., ad Zaihrayeu, I., Giunchiglia, F.: Multi-device activity logging. In: ACM
International Joint Conference on Pervasive and Ubiquituous Computing, pp. 299—
302. ACM (2014)

https://doi.org/10.1016/0004-3702(94)00007-N
https://doi.org/10.1016/0004-3702(94)00007-N

®

Check for
updates

A Faithful Mechanism for
Privacy-Sensitive Distributed Constraint
Satisfaction Problems

Farzaneh Farhadi® and Nicholas R. Jennings

Department of Computing, Imperial College London, London, UK
{f.farhadi,n.jennings}@imperial.ac.uk

Abstract. We consider a constraint satisfaction problem (CSP) in
which constraints are distributed among multiple privacy-sensitive
agents. Agents are self-interested (they may reveal misleading informa-
tion/constraints if that increases their benefits) and privacy-sensitive
(they prefer to reveal as little information as possible). For this set-
ting, we design a multi-round negotiation-based incentive mechanism
that guarantees truthful behavior of the agents, while protecting them
against unreasonable leakage of information. This mechanism possesses
several desirable properties, including Bayesian incentive compatibility
and individual rationality. Specifically, we prove that our mechanism is
faithful, meaning that no agent can benefit by deviating from his required
actions in the mechanism. Therefore, the mechanism can be implemented
by selfish agents themselves, with no need for a trusted party to gather
the information and make the decisions centrally.

Keywords: Constraint satisfaction problems - Incentive mechanism
design - Privacy

1 Introduction

Distributed constraint satisfaction problems (DisCSP) in which decision vari-
ables and constraints are distributed among multiple agents are common in many
multi-agent systems. They are popular because they are a good representation
of many real world applications including resource allocation [1], scheduling [16],
electronic commerce [22] and logistics [18].

To solve distributed CSPs, agents need to exchange messages until a solution
is found or until one agent finds out that there is no solution to the problem. In
many cases, there is also a natural desire for the agents to minimize the amount of
information revealed during the problem solving process. This is particularly true
in cases where the agents are self-interested. Such privacy-sensitive encounters
[10] involve the design of mechanisms that strike a balance between the amount of

This work was supported and funded by Samsung Electronics R&D Institute UK
(SRUK).
© Springer Nature Switzerland AG 2020

N. Bassiliades et al. (Eds.): EUMAS 2020/AT 2020, LNAT 12520, pp. 143-158, 2020.
https://doi.org/10.1007/978-3-030-66412-1_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-66412-1_10&domain=pdf
https://doi.org/10.1007/978-3-030-66412-1_10

144 F. Farhadi and N. R. Jennings

information revealed and the desire to reach an acceptable solution. For example
exchanging no information minimizes the amount of information revealed but is
unlikely to lead to a solution, whereas all agents revealing all their constraints
maximizes the chance of finding a socially-optimal solution but at the cost of all
privacy.

When the agents are self-interested, the mechanism needs to be robust to
the possibility of receiving misleading information from the agents. However,
such agents will only provide truthful information if they are motivated by rele-
vant incentives to do so. In an incentive mechanism, the agents give each other
rewards (or penalties) based on the information they share with each other.
These rewards must be designed so as to align the agents’ individual objectives
and eventually to motivate them to not reveal fake information.

The literature on incentive mechanism design mostly focuses on centralized
mechanisms where a trusted entity performs as a manager and processes the
mechanism procedures centrally [3,25]. However, in many cases, a trusted entity
does not always exist. To tackle this drawback, we design a faithful incentive
mechanism that can be run by selfish agents. A mechanism is faithful if an
agent cannot benefit by deviating from any of his required actions, including
information-revelation, computation and message passing [17].

In more detail, our faithful incentive mechanism strikes a balance between
privacy and social efficiency. This mechanism is based on the score-voting idea
which is used in the literature for designing centralized incentive mechanisms
[12]. Specially, we design a multi-round negotiation-based mechanism in which
at each round, the agents first rate a set of candidate solutions and then decide
if any of them is acceptable. To make this voting mechanism Bayesian truthful,
we present a reward function that is based on the agents’ beliefs about the likely
effectiveness of their votes on the final outcome. We guarantee faithfulness of
the mechanism by setting non-manipulable rules and show that the minimum
number of solutions being discussed at each round is a control parameter that
balances the tradeoff between privacy leakage and social efficiency. We illustrate
this mechanism via the domain of distributed meeting scheduling, which is a
canonical example of a DisCSP with self-interested and privacy-sensitive agents.

This work presents the first faithful mechanism for a DisCSP with selfish
and privacy-sensitive agents. Moreover, our mechanism has the flexibility to
adjust the relative importance of privacy leakage and social efficiency. DisCSPs
show quite different behaviors based on the relative importance of privacy and
efficiency. Therefore, designing a unified mechanism than can plausibly handle
a diverse range of DisCSPs is a key advance.

2 Related Literature

DisCSP was first introduced in [26]. Most existing mechanisms in this area
require that all decision variables and constraints are known by the correspond-
ing agents in advance; i.e. they are offline mechanisms. Two strands of works are
prevalent in the category of offline mechanisms: complete mechanisms [7,13] and

Faithful Mechanism Design 145

incomplete mechanisms [23,28]. The former are guaranteed to find the social-
welfare maximizing solution, but require exponential time in the worst case. The
latter find suboptimal solutions but run quickly enough to be applied to real-
world applications. However, offline mechanisms do not fit dynamic applications
such as meeting scheduling, where new decision variables and constraints are
introduced over time. Thus, to solve practical dynamic DisCSPs, we need to
design online mechanisms that make decisions based on partial available infor-
mation.

Distributed online mechanisms often use negotiation between agents to find a
solution [9,21]. During such encounters, agents usually need to adjust their nego-
tiating strategy based on their information about others’ preferences to change
the outcome to their favorite one. Some cooperative negotiation mechanisms
assume that agents’ preferences are public information [19]. In a competitive
environment (non-cooperate negotiation), however, self interested agents keep
their preferences private to avoid being exploited by their opponents [11,20].
Without the knowledge of opponents’ preferences, agents may have difficulty in
adjusting their negotiation strategies properly. This difficulty has been addressed
in the literature of incentive mechanism design [25].

There is a long tradition of using centralized incentive mechanisms within
distributed systems [14]. However, there are very few known methods for dis-
tributed problem solving in the presence of self-interested agents. The first steps
in providing a distributed incentive mechanism were the works presented in
[5,6]. However, the rules of these mechanisms are not robust to manipulation,
and hence are not suitable for distributed implementation. Starting from [15],
researchers have attempted to design faithful mechanisms that incentivize agents
to follow all the rules [17]. These mechanisms do not consider privacy leakage
and so are not directly applicable for our purposes.

There are a number of papers that are starting to address privacy issues
in DisCSP [2,10,27]. These papers describe techniques, such as encryption [27],
obfuscation [2], and codenames [2], that can be used with DisCSP algorithms
such as DPOP, ADOPT, and NCBB, to provide privacy guarantees. However,
these works do not take agents’ selfish behavior into account.

3 Multi-agent Meeting Scheduling

We view meeting scheduling as a distributed and dynamic CSP where the deci-
sions are about when to hold each meeting and the constraints are the attendees’
calendar availabilities. The problem is distributed as the agents are only aware
of their own calendars and is dynamic as the needs for different meetings arise
over time. In this setting, the agents need to decide about the time of different
meetings one-by-one, and without knowing what will happen next. Attendees
of the meetings are self interested and privacy-sensitive; they wish to maximize
their own utility and reveal as little information about their availabilities and
preferences as possible. Therefore, we need to design an incentive mechanism
that guarantees truthful behavior of the agents, while protecting them against
unreasonable leakage of information.

146 F. Farhadi and N. R. Jennings

Formally, we model each meeting m by a tuple m = (A, I,1) where A is the
set of mandatory attendees, I € A is the initiator who is responsible for setting
the meeting time, and [is the meeting’s required length in terms of time slots.
We denote the set of all available time slots in a meeting scheduling problem by
S ={st,...,sT}, where s7 represents the j-th available time slot.

Attendees of the meetings, including the initiator, are selfish. They have some
preferences over the outcomes and attend to their desires without any regard to
the preferences of others. Agent i’s preferences are captured by a utility function
Ui(.), which is a function of five variables:

1. Meeting start time (s € S): We denote agent i’s valuation for having a meet-
ing at time ¢ by the valuation function V;(t) € {—0c0} U [Vinin, Vinaz)- The
valuation is —oo when the meeting scheduling fails or when the meeting is
set at a time the agent cannot attend. Agent ¢’s valuation for a meeting with
length [which starts at time s is the minimum value he assigns to attending
a meeting at times s,s +1,...,s+1— 1.

2. The messages sent in the mechanism (M;): The agents are privacy-sensitive
and prefer not to share their calendar’s information with others. We denote
by L(M;) the amount of agent ’s privacy which is leaked by sending messages
M;. This privacy leakage adversely affects the agent’s utility. We will discuss
thoroughly how to design the leakage function in Sect. 4.

3. Number of rounds of mechanism (n): Each agent’s utility is a decreasing
function of the number of rounds. This is because, the longer the mechanism
takes, more communication resources agents need to use in the process.

4. Reward received at the mechanism (R;): In an incentive mechanism, the
agents may give some rewards to others to incentivize them to behave as
they want. These rewards can come in the form of points, badges and lev-
eling that can help the agents advance in the future [24]. In this paper, we
consider rewards to be convenience points that can be used by the agents to
influence the future meeting scheduling processes.

5. Convenience points spent at the mechanism (C;): This is the number of con-
venience points that agent ¢ used to influence the outcome of the meeting
scheduling process. In general, more points are required to express higher
interests in a specific time for a meeting.

Based on the discussion above, we model agent ¢’s utility function in a quasi-
linear way as follows:

Ui(s,1, M;,n, R;) = 6! Vi(t) — 0;L(M;) — C; + Ry, (1)

min
s<t<s+l—1
where §; € (0,1) is agent ¢’s discount factor by which agent ¢’s future profits
is multiplied to find its present value, and 6; € (0,1) is agent i’s sensitivity to
his privacy. Agent i’s discount factor displays his patience in the mechanism,
while his privacy sensitivity represents his attitude toward revealing his private
information to others.

Agents’ valuation functions and hence their calendar availabilities are
assumed to be their own private information. Therefore, selfish agents have to be

Faithful Mechanism Design 147

motivated by a suitably designed incentive mechanism to reveal their calendar
availabilities truthfully. This mechanism needs to limit the leakage of agents’
privacy, as agents do not participate in a mechanism if it is overly detrimental
to their privacy. In the next section, we introduce a privacy leakage function
L(.). Then, in Sect.5, we detail our incentive mechanism that induces honest
behavior by all selfish and privacy-sensitive agents.

4 Privacy Leakage

In a meeting scheduling process, the agents care about the privacy of their infor-
mation. They want to protect the privacy of their respective availability sched-
ules, as well as the lists of meetings they are involved in. Moreover, the initiator
who is responsible for scheduling a meeting may not want to share the details,
such as the number or identities of the participants, with them before the meet-
ing starts'.

To satisfy these requirements, we restrict our attention to the following class
of mechanisms.

Definition 1. Define by I'' ! the class of incentive mechanisms that satisfy
the following two properties:

1. Message passing occurs only between the initiator and the responders, and not
between responders themselves. The initiator does not pass the information
he receives from a responder to the others.

2. The initiator never asks the reason why an agent is free or busy at a time
slot. He also never describes the meeting’s details for the responders.

We call this class non-curious one-to-one (NC 1-1) mechanisms.

Restricting attention to this class of mechanisms guarantees that the details
of the current meeting, as well as the other appointments or meetings the agents
might have, are not leaked. However, in order to find a feasible time for the
meeting, revealing some information about the free/busy (F/B) status of the
agents is inevitable. In the following, we propose a function that measures the
leakage of the agents’ F/B information in an NC 1-1 mechanism.

In an NC 1-1 mechanism, no F/B information of a responder is leaked to
the other responders. Therefore, the only possible leakage is from the initiator
to the responders, and vice versa. Before revealing any information, the initiator
and the responders have a prior belief about the F/B information of each other.
This belief is based on the previous knowledge they may have about each other.
When no such information is available, the belief assigns probability 0.5 to both
free and busy status of the others for each time slot.

When a meeting scheduling mechanism runs, the initiator and the responders
learn some new information about each other’s calendars. This new information

! This leak of information may enable responders to collude with each other to alter
the outcome in their favor.

148 F. Farhadi and N. R. Jennings

constitutes a posterior belief about the F/B information of the other agent. The
agents’ posterior beliefs about each agent i is constructed based on the messages
he has sent to them. Therefore, agent ¢ is able to track the evolution of the
beliefs.

We define the privacy of a responder i at each instant of time as the distance
between the initiator’s belief about his F/B status and his true F /B information.
The privacy leakage of agent i is the difference between his privacy at the start
and end of the mechanism.

To formalize this idea, we denote the true probability distribution of agent i’s
availability at time slot s/ by ¢/ : {F, B} — {0,1}, where ¢/ assigns a probability
0 or 1 to the free (F') and busy (B) status of agent i at time s/. We have t/ (F) = 1
and ¢/ (B) = 0, if agent i is free at s7, and #/(F) = 0 and #/(B) = 1, if he is busy
at that time.

At each instant of time, the initiator assigns a probability distribution to
the F/B status of agent i for time slot s/. We denote this probability distribu-
tion at the beginning and end of the mechanism by b}’i : {F,B} — [0,1] and
¢}« {F,B} — [0,1], where b}Z(F) and b}i(B) (¢} ;(F) and ¢} ,(B)) are the
pr’ior (posterior) beliefs the initiator has on the free and busy state of agent 1,
respectively, at time slot s7.

Now, to define agent i’s privacy before and after running the mechanism, we
compare the prior and posterior beliefs with the true distribution. We do this
comparison based on the total variation distance metric [8]. For two probability
distributions p and ¢ on a random variable z € X, the total variation distance
is defined as 1 1

5(p.q) = 5lp—alr = 5 D Ip(x) - a(a)], (2)
rzeX
where |.||1 represents the L; norm. Using this distance, we measure the privacy
of responder ¢ at the beginning and end of a mechanism as

T
Pry =" "4(t,b],) — b, (F)], (3)
j=1 =1
and
:Z(S eIz —e“F)‘ (4)

respectively. The privacy leakage of responder 1 is the difference between his
privacy at the start and end of the mechanism. That is,

L; = Pr? — Pr. (5)

In a similar way, we define the initiator’s privacy at the start and end of a
mechanism, as:

Pri= = Y. Zata,bzf— - > Z]tf —b],(F)|, (6)
A1 \

zEA A#£T j=1 zEA gA#T j=1

Faithful Mechanism Design 149

and

T T
Pri= T 2 Ydthed) =y X S [Hw) - o) @)

i€Ai£] j=1 i€AAT j=1

The only fundamental difference between (6)—(7) and (3)—(4) is that irrespec-
tive of the responders who only communicate with the initiator, the initiator
communicates with all of the responders. Therefore, his messages could affect
all responders’ beliefs. We define the initiator’s privacy as the average of the
privacy he gets in his communications with the responders. The privacy leakage
of the initiator is defined as

Ly = Prb — Pr§. (8)
The privacy leakage function proposed above has two main features.

1. This privacy metric takes the possible correlation among an agent’s availabil-
ities at different time slots into account. In some cases, an agent has some
side information about the pattern of an agent’s calendar. This side informa-
tion could be the length or repeat frequency of his meetings, or the length of
breaks he normally has between them. In these cases, the F/B information
of one time slot may reveal parts of the F/B information of other time slots.
This indirect leakage of information reflects in functions (4) and (7) through
the posterior beliefs e} ; and e ;. This capability is missing in most of the
available privacy metricﬁs7 such as entropy and information content.

2. The privacy value of each time slot is finite and normalized to one. One of
the drawbacks of the logarithmic-based privacy metrics, such as Information
content and KL divergence, is that they do not provide any upper bound for
the privacy leakage; by using these metrics, the privacy leakage could go to
infinity even if the information of just one time slot is leaked.

Measuring privacy leakage with the function proposed above, in the next
section we present our negotiation-based mechanism that guarantees truthful-
ness.

5 A Negotiation-Based Incentive Mechanism

The initiator has some candidate start times for a meeting that needs to be
scheduled. The responders have different valuations and availabilities for these
time intervals, but this information is not available to the initiator. To extract
this information with low privacy leakage, at each round, the initiator offers at
least L,;n start times to the responders and asks them to rate the offers on a
scale of 0 to D — 1, where 0 means “busy/unavailable”, 1 means “Available but
completely dissatisfied” and D — 1 means “Available and completely satisfied”.

Increasing the lower bound L,,;, increases the chance of finding a socially
acceptable solution in a shorter length of time, but at the cost of a higher privacy

150 F. Farhadi and N. R. Jennings

leakage. Therefore, L,,;, is a control parameter that can be used to balance the
tradeoff between speed and social efficiency on one side, and privacy leakage on
the other.

The agents who rate time slot s at d € {1,2,...,D — 2} attend the meet-
ing at s only if the initiator compensates them for the hardship they endure
by giving them some convenience points. Two examples of hardship could be
attending a meeting after work hours and rescheduling an existing meeting so
as to open room for this one. The agents use these convenience points to rate
future time slots. The number of points awarded by the initiator to a responder
is a decreasing function of his reported satisfaction d for that time slot, but it
is also a function of the satisfaction levels he reported for the other offered time
slots. Thus, if a responder announces to be generally more satisfied with the
offered time slots, he will get more points if one of his undesirable time slots is
selected. This rule is used so as to prevent the responders from falsely reporting
low satisfaction levels in order to get more points.

In more detail, the mechanism is a multi-round negotiation, where at each
round the initiator offers at most L,,,, meeting start times to the responders. If
the number of offers made at round n, denoted by L,, is greater than or equal
to a lower threshold L,,;,, the initiator is permitted to go to the next round and
offer some new start times, if he couldn’t find a suitable time for the meeting at
the current round n. However, if L,, < Ly, the negotiation ends at the end of
round n, independent of whether or not the meeting scheduling was successful.
This rule is designed to encourage the initiator to make at least L,,;, offers at
each round, if he is able to do so.

We denote the time slots offered by the initiator at round n for starting the
meeting by {sl,...,sk»}. Receiving this offer, each responder should rate each

of the offered times s}, ..., sk» on a scale of 0 to D — 1. We denote responder

) n .
i’s ratings at round n by ri, = (rj,,.. .,Tﬁg), where] € {0,1,...,D — 1}
indicates how satisfied responder ¢ is with starting the meeting at the j-th time
slot offered to him at round n.

At each round n of the mechanism, each agent ¢ has b; ,, convenience points
that can be used to rate the offered time slots. Giving rates 0 and 1 does not
require spending points, however to give a rate d > 2 to an offer, the agent needs
to assign d — 1 points to that offer. We define Nﬁn, d=0,1,...,D —1, as the
number of time slots to which responder ¢ gives rate d at round n. Using this
notation, the number of points agent ¢ spends at round n to give rating r; ,, can

be derived as
D—1

d=2

At each round n of negotiation, we must have C; , < b; 5.

Let us define A, ,, as the number of time slots responder ¢ announces avail-
D—1 Nd

ability at round n. We can derive this parameter as A;, = > ,_; N{,. We
define the total flexibility responder ¢ shows at round n of negotiation as follows:

Faithful Mechanism Design 151

D-1
(Ain + D)INE, (10)
d=1
This function gives the decimal value of number (Nil))n_l, ..., N}, inbase A; , +

1. Therefore, a greater value of F; ;, means responder 7 is more satisfied with the
time slots offered at round n. Function F' is invertible; meaning that for each
i,m, given A; , + 1, the vector (Ng;l7 e Nzln) can be reconstructed from the
flexibility F;,. We use this property and represent hereafter, the cost C;, of
agent ¢’s rating at round n by C(A; ., Fin).

After receiving the responders’ ratings, the initiator checks to see if any of
{sL,...,sEn} is a good time for the meeting. If he finds none of these time slots
appeahng, he can go to the next round and make some new offers, provided that
L, > Lyin- But if he does so, the mechanism doesn’t let him go back to time
slots {sl,...,sL»} in the future. This rule is designed to encourage the initiator
to decide about the meeting time as soon as possible. If the initiator neglects a
time, in which all attendees are available, and goes to the next round, there is a
risk that no other feasible time slots can be found in the future, and hence the
meeting scheduling fails. To avoid this risk, the initiator prefers to set up the
meeting time as soon as he can.

The presence of all responders at the meeting is necessary. Therefore, the
initiator does not schedule the meeting at a time at which at least one responder
gave a zero rating. If the initiator chooses time slot s/, j = 1,...,L,, as the
meeting start time, he should award some convenience points to the following
two groups of responders:

1. Responders who announce they are not completely satisfied with time slot
sJ. These responders who rate time slot s/, at d € {1,2,...,D — 2}, must
receive a compensation for the hardship they will endure if they attend the
meeting at interval [sﬁl, s8I +1— 1]

2. Responders who announce complete satisfaction with all offered time slots at
round n at which they are available. Although these responders are completely
satisfied with the possible choices and will unconditionally attend the meeting
if any of them is selected, the initiator gives them a reward to appreciate their
high flexibility.

The number of points that must be awarded to a responder 1 if time slot
83 is selected as the meetlng start time is denoted by ¢(r? A, Fin, Ly). This

function is decreasing in 77, € {1,2,..., D —2} and increasing in F} ,,, when the
other parameters are ﬁxed

To incentivize agents to rate the offered time slots truthfully, we design
reward function ¢(.) such that it satisfies the following conditions:

177,7

152 F. Farhadi and N. R. Jennings

(a)

D-1
P(daAvF) t(dvAa Fa L) - C(AvF) = P(LAa A) t(17AaA7L)7 (11)
d=1

< Limas, VA< L, VF st. F (mod A+ 1) >0,

<

where P(d, A, F) is the probability a responder with flexibility F who
announced availability at A time slots at round n, assigns to the fact that
one of the time slots he rates at d will be selected by the initiator.

(b) t(D—1,A,F,L) =0, if F # A(A+1)P~2.

(c) t(d, A, F,L) is a decreasing function of d for d € {1,...,D — 2}.

(d) t(.) is invariant to shifting of the ratings. That is, r; ,, = (r;, +c) sign(r; »),
where ¢ € {1,..., D — 2}, implies that t(d’, A’, F', L) = t(d, A, F, L)

The intuitions behind the above conditions are as follows. Condition (a)
guarantees that provided the agent gives rate 1 to at least one offer, the expected
number of points he gets minus the points he used depends only on the number
of time slots he reports to be available, and not on the specific ratings he gives
to the offers. This expectation is computed based on the agent’s belief about
the likely effectiveness of his ratings on the final outcome. Condition (b) ensures
that a responder who is announced to be completely satisfied with the chosen
meeting time receives no reward, unless he rated all the offers at D —1. Condition
(c) means that the agents who are less satisfied with the selected time slot
receive higher rewards. Condition (d) determines the reward for ratings with F
(mod A + 1) = 0 and guarantees that the reward function is only sensitive to
the relative ratings the agent give to the offers and not on the absolute values.
Based on the definition provided in condition (d), we call ratings r and r’ shifted
versions of each other, if 1) they mark the same time slots as unavailable, and
2) they differ only by a constant factor in the available time slots.

Theorem 1. For any fixed belief profile { P(d, A, F)}4 4,F which is invariant to
shifting of the ratings, the system of equations defined in (11) has a solution that
satisfies (b)-(d). We say a belief profile is invariant to shifting if r},, = (r;, +
c) sign(r; ,,), where ¢ € {1,...,D — 2}, implies that P(d’, A", F') = P(d, A, F).

We present the proofs of all the theorems and lemmas in [4].

The probabilities {P(d, A, F') }q,4,F depend on 1) the responders’ belief about
the number of other people who should attend the meeting, and 2) the initia-
tor’s strategy for selecting the meeting start time. At each round n, when the

initiator receives the responders’ reports r; ,,, 2 = 1,..., IV, he evaluates all offers
{sl,...,sL»} and decides which, if any, of them are suitable to be selected as the

meeting start time. Since the initiator is selfish, he does this evaluation based on
his own utility. According to (1), the initiator’s utility for any start time s/, is
the difference between the discounted value interval [sj sl +1— 1] has for him

n» n

2 Tt is clear that by this transformation, we have A’ = A.

Faithful Mechanism Design 153

Algorithm 1: Reward Design

1 Initialize reward function ¢(.) such that it satisfies condition (c)-(d);

2 err «— oo;

3 while err > th do

4 Calculate probabilities {P(d, A, F')}a,4,r based on t(.);

5 tnew < Solution of the set of Eq. (11) that satisfies condition (b)—(d);
6 err «— Norm(t — tnew);

7 t — tnew;

8

end

and the sum of his privacy leakage and the points he should spend to incentivize
responders to attend the meeting at that time. This utility would be —oo, if at
least one responder cannot attend the meeting at that time. That is,

67 ming o,y Vi(t) — 01 L(M;)—
UI(S%) = ZiEA t(TZJ"n, Ai,n; Fi,’ru Ln), If T?,n >0 for all i,

—00, Otherwise.
(12)

It is clear from (12) that the initiator’s strategy for selecting the meeting’s
time and hence the probabilities {P(d, A, F)}4 4,7 depend on the reward func-
tion t(.). Therefore, for each L < L,44, to derive a reward function that satisfies
the set of constraints (11) we have to run Algorithm 1. This algorithm works
by first considering an arbitrary reward function ¢(.) that satisfies conditions
(c)—(d). These conditions are weak and easily satisfied. Then it calculates prob-
abilities {P(d, A, F)}4, 4 r that matches with the selected reward function and
updates function ¢(.) based on equation (11) and conditions (b)-(d). This proce-
dure repeats until convergence is reached. Theorem 1 ensures that the algorithm
will never stick in Line 5 because of not finding a solution to the set of equa-
tions (11).

We represent the Negotiation-based Meeting Scheduling (NMS) mechanism
designed in this section by T' = (Lmin, Lmaz, D, t(.)). The corresponding pseudo-
code of this mechanism is shown by Algorithm 2. Briefly, the NMS mechanism
starts with designing a reward function ¢(.) that satisfies conditions (a)-(d) and
announcing it to the agents. Then, when the need for a meeting arises, the
meeting’s initiator starts a negotiation process by offering some of his desirable
time slots. The number of offers at each round is one of the initiator’s decision
variables. Receiving the offers, the responders use their convenience points to
express their preferences over them. Then, the initiator evaluates each offer based
on the utility it provides to him, considering the cost » ;4 t(rim Ain,Fin,Ly)
he should pay to incentivize the responders to participate in the meeting (12). If
the initiator finds any of the offers acceptable, he will set up the meeting at that
time and terminates the negotiation. Otherwise, he will go to the next round if
Ln > Lmin-

154 F. Farhadi and N. R. Jennings

Algorithm 2: NMS mechanism I' = (Lyin, Limaz, D, t(.))

1 The system announces reward function ¢(.) to all agents.;
2 for each meeting m =1,2,... do
3 System chooses parameters Ly, and Lmq. based on the relative
importance of privacy and efficiency.;
4 n «— 1;
5 Meeting start time sy, <« 0;
6 while s, = 0 do
7 Initiator offers L, < Lmq. time slots to the responders.;
8 Each responder i rates the offered time slots on a scale of 0 to D — 1 as
Cin = (7"1-177“ o ,rﬁg).;
9 if Initiator finds any of the offered time slots appealing then
10 A suitable time slot s7, is selected as the meeting start time.;
11 Sm — s3:
12 Initiator awards 75(7“17,n7 Ain, Fin, Ln) points to each responder i;
13 else
14 if L, > L,in then
15 ‘ n<«—mn-+1;
16 else
17 Meeting scheduling fails.;
18 Sm, — 00.;
19 end
20 end
21 end
22 end

6 Properties of the Mechanism

In this section, we show that the NMS mechanism I' = (Lyin, Limagz, D, t(.))
is faithful. To this end, we need to prove that both the responders and the
initiator have no incentive to deviate from their required actions. We prove the
faithfulness of the responders and the initiator in Sects. 6.1 and 6.2, respectively.

6.1 Responders’ Faithfulness

The responders must have an incentive to 1) participate in the mechanism and
2) rate the offers truthfully. The first property is called individual rationality
and the second is incentive compatibility. In the following, we investigate and
prove these two properties for the privacy-sensitive responders (the proofs are
given in [4]).

Property 1 (Individual Rationality): Individual rationality, also referred to
as voluntary participation, is a desirable feature of a mechanism as it guaran-
tees that the agents voluntarily participate in the mechanism. This property is
important as agents are not forced to participate in a mechanism but can decide
whether or not to participate.

Faithful Mechanism Design 155

Theorem 2. The NMS mechanism is individually rational for privacy-sensitive
responders. That is, each responder prefers the outcome of the mechanism to
the utility he gets when he does not participate.

Property 2 (Incentive Compatibility): The NMS mechanism is Bayesian
incentive compatible from the responders’ view point if each privacy-sensitive
responder can achieve his maximum expected utility by adopting a truthful
strategy. We focus on Bayesian incentive compatibility, as the agents have incom-
plete information and hence try to maximize their expected utility. To prove this
property we first need to define what exactly a truthful strategy is.

Definition 2. We say that responder ¢ is truthful in the mechanism I' =
(Lmins Lmag, D, t(.)), if his report r;,, at each round n satisfies the following
conditions:

(I) Foreach j =1,...,L,, rin = 0 if and only if the responder is busy at time

(II) The ratings are non-decreasing in the value of the time slots, i.e. V;(sJ) >
Vi(sk) implies that 7/, >rF,.

(III) The ratings are as discriminant as possible. That is, time slots with different

values get different ratings, as long as both the number of satisfaction levels

D and the budget b;,, allow.

Definition 2 provides a formal description of a responder’s truthful behavior.
In the following, we show that the mechanism I' is powerful enough to incentivize
privacy-sensitive responders to adopt a truthful strategy.

Lemma 1. The privacy-sensitive responders do not have any incentive to lie
about their availability, i.e.giving rate 0 to a time-slot is efficient for a responder
if and only if he is busy at that time slot.

Lemma 1 proves that condition (I) of Definition 2 is satisfied. In the next
lemma, we prove that condition (II) is also satisfied.

Lemma 2. It is never optimal for a responder to give a higher rating to a time
slot he likes less.

To prove satisfaction of condition (III), we need the following lemma. This
lemma states an important property of the proposed mechanism that is key to
proving incentive compatibility.

Lemma 3. It is optimal for each responder i to give rate 1 to at least one
offer. In this case, the expected number of points he gets at each round of the
mechanism minus the number of points he spends is independent of how he rates
his available time slots.

As a result of Lemma 3, when a responder wants to decide on the ratings for
his available time slots, he does not need to consider the points; he only needs
to consider the effect of his ratings on the selected time slot. This property helps
us to prove the next lemma.

156 F. Farhadi and N. R. Jennings

Lemma 4. The ratings are as discriminant as possible. That is, as long as the
number D of satisfaction levels and the responder’s budget al.low, it is optimal
for him to give unequal ratings to time slots with unequal values.

Based on Lemmas 1-4, we can state the following main theorem.

Theorem 3. For any L,in, Lmaz, and D, the mechanism I' = (Lyin, Limag,
D,t(.)) where reward function ¢(.) is derived by Algorithm 1 is Bayesian
incentive-compatible from the view point of privacy-sensitive responders.

6.2 Initiator’s Faithfulness

In the NMS mechanism, the initiator is supposed to 1) participate in the mech-
anism voluntarily, 2) make at least L,,;, offers at each round, if he is able to
do so, 3) choose a feasible start time, and 4) award convenience points to the
responders according to reward function ¢(.). In the following, we discuss briefly
why the initiator has no incentive to deviate from any of the above-mentioned
actions.

Voluntarily participation of the initiator can be proved following similar steps
to Theorem 2. The initiator offers at least L,,;, time slots at each round to
preserve the chance of continuing the negotiation. Since otherwise, he may end
up failing the scheduling, while a feasible time slot exists. In this case, the utility
of the initiator is —oo and hence, he does his best to avoid it.

Setting the meeting at a time when some agents are busy is equivalent to
failing the meeting scheduling, which values —oo to the initiator. Therefore, the
initiator never chooses a time slot to which at least one agent give 0 rating. The
attendance of responders at the meeting is conditioned by receiving the corre-
sponding rewards. Therefore, if the initiator does not award the promised points
to the responders, they do not participate in the meeting. This fact prevents the
initiator from deviating from giving responders the promised rewards.

7 Conclusions

Using a score-voting approach, we described an incentive mechanism for DisCSPs
with selfish and privacy-sensitive agents. Our mechanism is online and can be
implemented in dynamic situations where the decision variables and constraints
are evolving over time. Moreover, we showed that the mechanism is faithful and
can be run by selfish agents, with no need to a central trusted entity. Devising
a control parameter, we made the mechanism adjustable to different scenarios
in which agents assign different weights to privacy and efficiency. We presented
the mechanism via the domain of meeting scheduling, however, this mechanism
can be easily applied to a wide range of multi-agent systems.

Faithful Mechanism Design 157

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.
20.

21.

22.

23.

Brooks, R.R.: Distributed sensor networks: a multiagent perspective. Int. J. Distrib.
Sens. Netw. 4 (2008)

Faltings, B., Leaute, T., Petcu, A.: Privacy guarantees through distributed con-
straint satisfaction. In: Web Intelligence and Intelligent Agent Technology (2008)
Farhadi, F., Golestani, S.J., Teneketzis, D.: A surrogate optimization-based mech-
anism for resource allocation and routing in networks with strategic agents. IEEE
Trans. Autom. Control 64, 464-479 (2019)

Farhadi, F., Jennings, N.R.: A faithful mechanism for privacy-sensitive distributed
constraint satisfaction problems. Technical report. https://github.com/ffarhadi20/
Paper/blob/master/Main.pdf

Feigenbaum, J., Papadimitriou, C., Sami, R., Shenker, S.: A BGP-based mechanism
for lowest-cost routing. Distrib. Comput. 18 (2002)

Feigenbaum, J., Shenker, S.: Distributed algorithmic mechanism design: recent
results and future directions. In: DIAL (2002)

Gershman, A., Meisels, A., Zivan, R.: Asynchronous forward bounding for dis-
tributed cops. J. Artif. Intell. Res. 34, 61-88 (2009)

Gibbs, A.L., Su, F.E.: On choosing and bounding probability metrics. Int. Stat.
Rev. 70 (2002)

Jennings, N., Jackson, A.: Agent-based meeting scheduling: a design and imple-
mentation. Electron. Lett. 31, 350-352 (1995)

Leaute, T., Faltings, B.: Privacy-preserving multi-agent constraint satisfaction. In:
International Conference on Computational Science and Engineering, vol. 3 (2009)
Leu, S.S., Son, P.V.H., Nhung, P.T.H.: Hybrid Bayesian fuzzy-game model for
improving the negotiation effectiveness of construction material procurement. J.
Comput. Civ. Eng. 29 (2015)

Majumdar, D.; Sen, A.: Ordinally Bayesian incentive compatible voting rules.
Econometrica 72, 523-540 (2004)

Modi, P.J., Shen, W.M., Tambe, M., Yokoo, M.: Adopt: asynchronous distributed
constraint optimization with quality guarantees. Artif. Intell. 161, 149-180 (2005)
Parkes, D.C., Kalagnanam, J.R., Eso, M.: Achieving budget-balance with vickrey-
based payment schemes in exchanges. In: 17th IJCAI (2001)

Parkes, D.C., Shneidman, J.: Distributed implementations of vickrey-clarke-groves
mechanisms. In: AAMAS (2004)

Pascal, C., Panescu, D.: On applying discsp for scheduling in holonic systems. In:
20th International Conference on System Theory, Control and Computing (2016)
Petcu, A., Faltings, B., Parkes, D.C.: M-DPOP: faithful distributed implementa-
tion of efficient social choice problems. J. Artif. Intell. Res. 32 (2008)

Pultowicz, P.: Multi-agent negotiation and optimization in decentralized logistics.
Ph.D. thesis, University of Vienna (2017)

Rosenchein, J.S., Zlotkin, G.: Rules of Encounter. MIT Press, Cambridge (1994)

Rubinstein, A.: Perfect equilibrium in a bargaining model. Econometrica 50, 97—
109 (1982)

Sen, S., Durfee, E.-H.: A formal study of distributed meeting scheduling. Group
Decis. Negot. 7, 265-289 (1998)

Singh, D.K., Mazumdar, B.D.: Agent mediated negotiation in e-commerce: a
review. Int. J. Mod. Trends Eng. Res. 9, 285-301 (2017)

Teacy, W.T.L., Farinelli, A., Grabham, N.J., Padhy, P., Rogers, A., Jennings, N.R..:
Max-sum decentralised coordination for sensor systems. In: 7th International Joint
Conference on Autonomous Agents and Multiagent Systems (2008)

https://github.com/ffarhadi20/Paper/blob/master/Main.pdf
https://github.com/ffarhadi20/Paper/blob/master/Main.pdf

158

24.

25.

26.

27.

28.

F. Farhadi and N. R. Jennings

Thom-Santelli, J., Millen, D., DiMicco, J.: Removing gamification from an enter-
prise SNS (2012)

Yokoo, M.: Protocol/mechanism design for cooperation/competition. In: 3rd Inter-
national Joint Conference on Autonomous Agents and Multiagent Systems (2004)
Yokoo, M., Ishida, T., Durfee, E.H., Kuwabara, K.: Distributed constraint satis-
faction for formalizing distributed problem solving. In: International Conference
on Distributed Computing Systems (1992)

Yokoo, M., Suzuki, K., Hirayama, K.: Secure distributed constraint satisfaction:
reaching agreement without revealing private information. Artif. Intell. 161, 229—
245 (2005)

Zivan, R., Okamoto, S., Peled, H.: Explorative anytime local search for distributed
constraint optimization. Artif. Intell. 212, 1-26 (2014)

®

Check for
updates

Incentivising Exploration
and Recommendations for Contextual
Bandits with Payments

Priyank Agrawal'®)@® and Theja Tulabandhula?

! University of Illinois at Urbana-Champaign, Urbana, USA
priyank4@illinois.edu
2 University of Illinois at Chicago, Chicago, USA
ttQ@theja.org

Abstract. We propose a contextual bandit based model to capture the
learning and social welfare goals of a web platform in the presence of
myopic users. By using payments to incentivize these agents to explore
different items/recommendations, we show how the platform can learn
the inherent attributes of items and achieve a sublinear regret while maxi-
mizing cumulative social welfare. We also calculate theoretical bounds on
the cumulative costs of incentivization to the platform. Unlike previous
works in this domain, we consider contexts to be completely adversarial,
and the behavior of the adversary is unknown to the platform. Our app-
roach can improve various engagement metrics of users on e-commerce
stores, recommendation engines and matching platforms.

Keywords: Multi agent learning + Contextual bandit - Incentivizing
exploration

1 Introduction

In several practical applications such as recommendation systems (mobile health
apps, Netflix, Amazon product recommendations) and matching platforms
(Uber, Taskrabbit, Upwork, Airbnb), the platform/firm has to learn various sys-
tem parameters to optimize resource allocation while only partially being able
to control learning rates. This is because, the users who transact on such plat-
forms can take autonomous actions that maximize their own utility based on
potentially inaccurate information, sometimes to the detriment of the learning
goals.

It is well known that users are influenced by the ratings and reviews of pre-
vious users provided by the platform while making their purchase decisions on
e-commerce platforms. For such settings, it is standard to associate the different
products on the platform with parameters (or attributes). Similarly, the users
who arrive on the platform can be identified by their preference which we subse-
quently refer as contexts. The true attributes are unknown to both the platform
© Springer Nature Switzerland AG 2020

N. Bassiliades et al. (Eds.): EUMAS 2020/AT 2020, LNATI 12520, pp. 159-170, 2020.
https://doi.org/10.1007/978-3-030-66412-1_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-66412-1_11&domain=pdf
http://orcid.org/0000-0002-0644-6703
http://orcid.org/0000-0001-9111-7519
https://doi.org/10.1007/978-3-030-66412-1_11

160 P. Agrawal and T. Tulabandhula

and the users, however, estimates of these attributes can be learnt as the users
purchase products on the platform based on their preferences and reveal their
utility via ratings and reviews. Generally, e-commerce platforms are assumed to
have complete knowledge of the user contexts, e.g., by users logging into the
platform before making a purchase. The most common behavior model of the
users is myopic, i.e., they make greedy decisions based on the attributes of dif-
ferent items revealed by the platform. A myopic user’s decision based on these
attributes can be sub-optimal if attributes have not been learned well enough
from previous transactions. Because of the positive feedback loop, the platform’s
estimates of these attributes may be very different from their true values, lead-
ing to loss of social welfare. While users are myopic, the platform tends to be
long-term focused, and has to incentivise its users through discounts, promotions
and other controls to learn these attributes accurately and increase the overall
social welfare.

Similarly in the area of mobile health apps (e.g., for chronic care management,
fitness & general health, medication management) incentivization in learning can
help the app serve users better, but might get impeded by users being immediate
reward focused. Here, the platform typically sends recommendations for users to
partake in activities with the goal of improved health outcomes [5]. The quality
of recommendations can be high if the platform knows the utility model of the
users and their preferences for different activities. To learn these preferences, the
platform could devise incentives to nudge the user to prefer a different activity
than their currently preferred choice, where the latter is based on current low
quality recommendations. If it can restrict the amount of nudging while still
being able to learn enough to give good activity recommendations (based on
what it has learned so far), then all users will be better off.

In the above two applications and many others, the platform’s goal is to max-
imize social welfare of the myopic users by learning the system parameters just
enough to make the best recommendations (or equivalently, ensuring that the
users take the best actions for their contexts) over time, when compared to the
clairvoyant benchmark of making recommendations when the system parameters
are known. The paper focuses on modeling a principal-agent variation of online
learning in the contextual bandit setting that allows the platform (principal) to
use payments as auxiliary controls. Typically, the platform needs to give pay-
ments (which are costly) since in most practical settings the choices of the users
based on current data may not be exploratory enough. Our objective then is to
design such payments schemes that allow learning and improving social welfare,
while simultaneously not costing too much to the platform.

Contextual bandits, a popular framework to learn and maximize revenue in
online advertising and recommendation domains [2,13,17], are problems where
users are modeled as contexts (feature vectors) and the learner picks an action
tailored to the context for which it is rewarded (bandit feedback). The meth-
ods developed here learn the parameters of the reward generation model while
simultaneously exploiting current information on the quality of the arms (pop-
ular algorithms include EXP4, e-greedy, RegCB etc.). While limited in their

Incentivising Exploration for Contextual Bandits 161

expressivity compared to Markov Decision Processes (MDPs) (there are no
states), they tend to capture learning problems where the reward for an action
(such as purchasing an item or walking for 10 min or standing up) has an imme-
diate outcome (such as a positive utility or a better mood) fairly accurately.
While MDPs are also a suitable approach, they are typically harder to learn and
analyse theoretically.

Only a few works have considered the principal-agent variations which
involves incentivization in learning through payments or otherwise in the recent
past. In [3] show that a constant amount of payments is enough if the users
are heterogeneous, however, in their setting the platform is aware of the arriv-
ing contexts and the distribution from which contexts are drawn. The role of
user heterogeneity is further explored in [1,11] as covariate diversity. In the for-
mer work, the authors consider contexts to be stochastic and prove that myopic
arm selection is enough for certain distributions of contexts when the number
of arms is two, while in the later, the authors use controlled and known pertur-
bations to the contexts and show that greedy (myopic) selection of arms gives
sub-linear regret. In [10], the authors propose a randomized algorithm without
an explicit user heterogeneity criteria. However, their technique requires use of
ridge estimator to estimate arm attributes leading to unbiased estimates.

A related but orthogonal approach is pursued in [4,9,15,16], where the
authors consider principal-agent settings but only allow the use of information
asymmetry under incentive compatibility constraints to explore, unlike payments
in our setting. A similar setting was also investigated in [8] where they explore
various unbiased disclosure policies that the platform can use to explore. In [7]
the authors also consider a principal-agent setting, and assuming that the prin-
cipal knows the distribution from which the contexts arrive as well as that each
arm is preferred by at least some contexts, provide regret and payment bounds
for an incentivization algorithm (building on their earlier results in [6]). In a
vanilla multi-armed bandit setting, the authors in [18] have studied how pay-
ments can help explore and achieve sublinear regret.

Main Contributions: First, we propose a contextual bandit based principal-agent
model where payments can be used as auxiliary controls to induce exploration
and learning. Second, we develop qualitative and quantitative characterization
of payments as means of ensuring exploratory behaviour by agents. We develop
a novel algorithm and show that the expected aggregate payments it makes in
such regimes is sub-linear in the time horizon T. Finally, we compare regret
performance and payments requirements of our approach and other competitors
on both synthetic and real datasets. We find that the greedy approach with
no payments (i.e., the platform does not explore at all) work well with real
data, however, there are synthetic data instances where its regret performance
is consistently surpassed by algorithms such as ours. Our proposed algorithm
works with the most general agent behavior (adversarial contexts), moreover,
the payments scheme does not require the principal to have the knowledge of
the current context (see Sect. 2).

162 P. Agrawal and T. Tulabandhula

2 Problem Statement

Users (or agents) arrive sequentially over a period T on a platform V' and make
choices. The context vector corresponding to an agent arriving at time step
t € [T] is represented as 0; € R? (w.lo.g. assume ||0||2 < 1). Each choice is
represented as an arm i € N (with [N]| = N), which is associated with a fixed
d-dimensional attribute vector u; (w.l.o.g. assume ||u;]]2 < 1). We can think of
each coordinate of u; as an attribute of arm ¢ that may influence the user to
choose it over the others. True arms attributes are unknown to both platform
and the agents a priori, and the platform shows its estimate of these attributes
to arriving agents.

User Choice and Reward Model: The user choice behavior is myopic in
nature: she is presented with the empirical estimates of {g; }ien: {fi }ienr, cor-
responding to the arms available on the platform (e.g., via metadata, tags or
auxiliary textual information) and then she makes a singleton choice. In this
notation, /it denotes the latest estimate for the arm 7 available at the time t. She
may have a random utility for each arm 4, whose mean is 6;.u; (an inner prod-
uct), where 6, is her context vector. Given these utilities, she picks an arm with
the highest perceived utility. In the special case where there is no randomness
in the utilities, then her decision is simply arg max;ear 0;.fi;. For simplicity, we
will work under this restriction for the rest of the paper. Let the chosen arm be
denoted as ¢; at round ¢. The reward accrued by the user is ¢.p;, .

Feedback Model: Although the platform keeps track of all interaction history,
it can only observe the context after the agent has arrived on the platform. The
platform computes and displays the empirical estimates {/i; }icnr based on the
measurements it is able to make. The measurements include the context of the
user that arrived and the random utility that she obtained: y; = 0:.p5, + 7,
where 7 is a zero mean i.i.d. sub-Gaussian noise random variable. The platform
estimates {[i; }icar by using the observed contexts and the reward signals for
each arm at each time step, most often by solving a regression problem. Some
useful notations are as follows: © is the T x d-dimensional design matriz whose
rows are the contexts 6;. Also Vi € N, S;; := {s < t|is = i}. Further, ©(S;,)
represents the design matrix corresponding to the contexts arriving at the time
steps denoted by S;, and Y'(S; ;) denotes the collection of rewards correspond-
ing to these contexts at time steps S; ;.

Learning Objective: The platform incurs an instantaneous regret r; if the arm
picked by the user is not the best arm for that user. That is, r, = max; 0;.u; —
0:.1;, . The goal of the platform is to reduce the expected cumulative regret Ry =
E[Z;l r¢] over the horizon T Intuitively, if the platform had the knowledge and
could display the true attributes of the arms, then the users would pick the items
that are best suited to them, and the cumulative regret would be zero. But since
the platform does not know the attributes of the arms a priori and the users
are acting myopically, it has to incentivise some of these users to explore (based

Incentivising Exploration for Contextual Bandits 163

on the history of contexts and rewards generated thus far). The platform does
so by displaying a payment/discount vector p’ in addition to the estimated
arm attributes. The corresponding user’s decision is arg max;jen (6;.4; + pﬁ)
The goal of the platform is to design incentivization schemes that minimize the
cumulative regret, while keeping the total payments made as small as possible.
We assume all ties to be broken arbitrarily. Hence at each round ¢, an agent
with context 6; (unknown to the platform when it is deciding payments) arrives
on the platform. The platform presents the agent with arm estimates {fi;}ien
and a payment vector p’. The agent makes a singleton choice, thereby accruing
some reward. The platform observes the context and a noisy measurement of
this reward, and updates its estimates.

3 Algorithms and Guarantees

In this section, we propose a new algorithm (CBWHETEROGENIETY, see Algo-
rithm 1) that uses randomized payments to incentivize agents, enabling the
platform to incur sub-linear regret. Essentially we identify a way to adapt and
extend the non principal-agent setting of [11] to our platform-user interaction
model. One way to reduce the cost that the platform incurs towards incentiviza-
tion is to work with a special class of contexts (those having covariate diversity,
see Definition 1), which would provide exploration of the arms naturally, leading
to learning and low-regret. More specifically, in the contextual bandit setting
of [11], the authors assume that a known perturbation (i.i.d. noise) is added to
the contexts before they are picked up by the platform. They show that because
of this perturbation the power of adversary (in choosing the contexts) is reduced
and a myopic selection of arms enjoys sublinear regret (Theorem 1).

In our setting, the choice of context at a given round is purely adversarial
and we make no assumption on the contexts. Our key idea is to use payments to
mimic perturbations. We show that with the proposed payment scheme, covari-
ate diversity can be infused into our model, even if the arriving contexts are
adversarial. Finally, we bound the expected cumulative payments in our scheme
and show that it is sub-linear in T

Our algorithm CBWHETEROGENIETY is described in Algorithm 1. The key
idea is to first generate perturbations that can satisfy the covariate diversity
condition, and then transform these perturbations to a payment vector, which is
then presented to the user. The user then myopically picks the best action, given
these payments (one for each arm), ensuring fair compensation if this choice
was different from their original choice. The platform updates the estimates
of the selected arm’s attribute vector by performing a regression while taking
the payment information into account. As we show below, this approach enjoys
sublinear (in horizon T') upper bounds on regret and the payment budget.

Lemma 1. In CBWHETEROGENIETY (Algorithm 1), there exists a suitable
payment for each arm such that arg max;(fi.0; + pt) = argmax; jit.(65) for all
t > m (m is the number of initial forced exploration rounds). And 65 satisfies

164 P. Agrawal and T. Tulabandhula

Input: Arms: N, time horizon: T, and initial exploration parameter: m.
InitialExploration()
for t=m+1toT do
Agent with context 0; arrive at the Platform.
{pt}ien = CalcPayment ().
Agent choose arm 7; = arg max; (if.0; + p}).
UpdateEstimate()
end
Procedure CalcPayment ()
| pt = ¢fal, where ¢ ~ N(0,0%I4) for all arms.
Procedure UpdateEstimate ()
Updating History:
O(Sr;,t41) = [O(Sry,t)|(0: + ¢)] with (¢ obtained above, and
Y (Srpt41) = [Y (Sry,0)|(fim, 01 + pr,)]-
Updating Parameter:
ﬂ‘tfrtl = (Q(Sﬂt,t)T@(Sm;t))ile(sﬂxt)TY(Sm,t)-

Algorithm 1: CBWHETEROGENIETY

covariate diversity (Definition 1). Additionally, expected payments made by the
platform are sub-linear in horizon T, specifically the average cumulative pay-

ments are O (N\/QT log(NT)).

Proof. First, we make some observations. The platform can offer negative pay-
ments implying users would incur some penalty if they select certain actions.
Hence, the platform can influence the choice of the myopic user by providing a
collection of payments and penalties (one for each arm). Enforcing payments as:

= (it where ¢ ~ N(0, 021,), ensures that the perceived context, 0; + ¢; at
any given round ¢ satisfies the covariate diversity condition. Hence, in the pro-
posed payments scheme, the platform pays a random payments vector p¢ where
each arm may receive a non-zero value, depending on the estimates fi’.

The cumulative payments for an arm ¢ can be expressed as:

Payment(T, 1) Z Ce-fa Nm (1)

Notice that Ct it is a sum of sub-Gaussian random variables as (.0l =
Zz 1 § .A (l . Hence (;./i¢ is a sub-Gaussian random variable with the variance-
proxy parameter, ||i¢]]. Since we assume that ||p;|| < 1, estimate (in our algo-
rithm) ||¢]] < 1 as well. Thus we can use sub-Gaussian tail bounds to upper
bound the absolute value of the payments in Eq.(1). Consider the following
standard tail bound for sub-Gaussian random variable:

Incentivising Exploration for Contextual Bandits 165

Lemma 2. Let Y1,Y5..Y; be an s-sub-Gaussian martingale, i.e, each Y is dis-
tributed as mean-0 and s-sub-Gaussian conditioned on Yi,..Y;_1. Then:

t
P>V < \/2tslog(1/0)| > 16

Jj=1

Thus we bound the sum 23:1 Q.ﬂa with probability at least 1 — § with the
quantity:

T
> Geitf, < \/2Tlog(1/9). (2)

In Eq.(2), we apply a union bound to obtain a bound for all arms i € N
simultaneously with probability 1 — §’, as shown below:

T
> Gk, < /2T 10g(N/6)

t=1

Hence, the cumulative payments across all arms is upper bounded by:

N
Z Payments(T,i) < Ny/2T log(N/¢'),
i=1

with probability at least 1 — 0’. To realize the final bound we use §' = 1/T.
We now provide a proof of the regret claim. First, we re-write the definition
of covariate diversity from [11] as below.

Definition 1. For any distribution D with { ~ D and (€ R? and 69 = 0,4+,
for any arbitrary 0; € RY such that: (a) if ¢ is a “centrally bounded”, i.e. w.C <
r,Vw : ||w|| <1 with high probability, and (b) if the minimum eigenvalue of the
expected outer product E[09.(09)T] is lower bounded, i.e:

)\min [E [GE(HE)T]] Z >\oa
then, the perturbed context, 07 has covariate diversity.

Remark 1. In the Algorithm 1, an agent makes a choice after receiving the pay-
ment vector from the platform and hence to the platform, the perceived con-
text 6 has Gaussian (“centrally bounded” distribution) perturbation baked-in
providing co-variate diversity to the context. Such a condition on the context
implies that there is non-trivial variance in all dimensions and intuitively such an
arrangement allows convergence of the least square estimator of arm attributes.

Since (a) the payments scheme proposed in the proof of Lemma 1 establishes
covariate diversity, and (b) in the Algorithm 1, we update history with perturbed
contexts, it is intuitive to see that the regret upper bound of Theorem 4.1 of [11]
(derived in the non principal-agent setting) also applies here.

166 P. Agrawal and T. Tulabandhula

Theorem 1. With an appropriate initial exploration (parameterized by m),
CBWHETEROGENIETY has the following regret upper bound with probability at
least 1 — 0" :

R(T) <0 (\/TTV log (TN)%/ 2) ,

where the notation O() hides dependence on instance specific parameters and
o".

Remark 2. Note that for the regret guarantee to hold, Algorithm 1 must have
an initial exploration phase, during which the agents are made to play arms
uniformly at random or in a round-robin fashion. Intuitively, this warm-start is
required to build up robustness of estimates against adversarial contexts.

3.1 Other Payments Scheme and Lower Bound

In the previous section, we established a payments scheme with bounded cumu-
lative cost to the platform that also allowed for sub-linear regret without any
additional assumption on the instance or the adversarial choice of the contexts.
It is natural to ask the following question: does there exist a payments scheme
which is even more frugal for the platform (i.e., costs less) and still ensures sub-
linear regret? Could there be a principal-agent setting where initial exploration
is not needed? The first question has been partially addressed before. In [3], the
authors show that only a constant (in T') total amount of payment is required for
a sub-linear regret bound. However, in their model the platform knows the dis-
tribution of the contexts as well as views the context of the arriving agent before
deciding on the payments, this is in addition to the heterogeneity assumption
on the contexts, which is equivalent to the covariate diversity described above.
In [10], the authors presents a randomized algorithm which does not need any
initial exploration phase as the exploration is baked-into the randomization.
Their scheme, however requires that the agents and the platform maintain the
estimate of the arm attributes using a ridge estimator.

In the previous section and in the above works, cumulative payment scales up
with instance parameters. We claim that, this is essential if we ought to perform
better than a vanilla explore-then-commit strategy®, as shown in the following
lemma.

Lemma 3. Consider A to be the set of all explore-then-commit algorithms
(without incentivization) for the contextual bandit that does not make any addi-
tion assumptions on the instance or the contexts. With a restricted upper cap
B on the cumulative payments budget, no algorithm can do better than the best
algorithm in the set A even with an initial exploration.

! In a typical explore-then-commit learning strategy, there is an initial pure exploration
phase by the end of which the learner commits to a single best action till the end of
the horizon T' [12].

Incentivising Exploration for Contextual Bandits 167

Proof. Firstly, we make an observation that the best algorithm (denoted by
Alg) in the set A: it has the best regret guarantee of all algorithms that do not
explicitly incentivize by payments and have an initial exploration phase. Consider
an instance with two arms and let ¢ be the first round after the initial exploration
phase. Let fi; and fis be the corresponding estimates of the arm attributes, visible
to the arriving agents on the platform. As the agent arrival is purely adversarial,
3 context ¢, such that (jiy — fi2) -0 > B. Further, if the adversary opts for this
context for all the following rounds till 7', then incentivizing through payments
is fruitless. This is because, the fixed budget B is too less to induce any change
to the myopic behavior of the agents. Hence, in fixed budget regimes, Alg has
the best regret guarantee.

4 Simulations

In this section we compare the learning performance (regret) and payment
requirements for our proposed strategy Algorithm 1 and other standard baselines
for both synthetic and real datasets. For ease of referencing we name the algo-
rithms as: (1) CBWHETEROGENIETY (Algorithm 1); (2) CBWPAYMENTS (an
algorithm in which the platform provides as much payment as required so
that the myopic agents choose arms as if they are deploying LinUCB [14]);
(3) CBCHAINEDUNRESTRICTED (an algorithm based on the chaining method
of [10]); (4) CBCHAINEDRESTRICTED (an instance of the algorithm CBCHAINE-
DUNRESTRICTEDwith a fixed upper cap on the total cumulative payments) and
(5) NOPAYMENTS (the platform is passive and agents make myopic choice with-
out any influence).

In our first experiment, the contexts are drawn from a multivariate Gaussian
distribution with a non-zero mean. We set the number of arms to be |N| = 8,
the context dimension as d = 4, and the time horizon as T" = 800, while aver-
aging over 10 Monte Carlo runs (refer to Fig.1). The NOPAYMENTS strategy,
i.e., where the platform has no control on exploration, perform very well and
has a sub-linear regret. However, in our simulation studies its performance was
consistently surpassed by other algorithms, especially CBWPAYMENTS with Lin-
UCB as the underlying strategy. One interesting result (which is also observed
in the next experiment) is that CBWHETEROGENIETY has good performance
in terms of payments required to ensure sub-linear regret. This reinforces our
theoretical guarantees for the same (see Lemma 1, where upper bounds on the
expected total payments were stated). On the other hand, LinUCB (implemented
within CBWPAYMENTS) incurred large incentivization costs in these synthetic
principal-agent instances.

Next, we use the same experimental setup as before, but use a publicly
available data set to mimic arm attribute learning: the EEG data set from
the OpenML platform. This data set contains 14-dimensional feature vectors
with two possible class labels (|JNV| = 2). We use this classification instance to
generate contexts and assign rewards. We standardize the feature vectors as a
pre-processing step. Taking the time horizon as T = 2500, we randomize the

https://www.openml.org/d/1471
https://www.openml.org

168 P. Agrawal and T. Tulabandhula

00
00| = NoPayments —— CBwPayments
—— CBwPayments 60| — CBChainedUnrestricted
@00| = CBChainedUnrestricted —— CBChainedRestricted
—— CBChainedRestricted s00| — CBwHeterogeniaty
500| = CBwHeterogeniety
400
400
20 00
20 200
100 100
0 0
0 100 20 30 400 50 60 700 800 0 100 200 30 400 S0 60 70 80

Fig. 1. Left plot shows cumulative regret, right shows the total payments made by
various algorithms. In both plots, x-axis is the time horizon and y-axis represents
either cumulative regret or cumulative payments made.

arrival of contexts and report results averaged over 10 Monte Carlo runs (refer
Fig. 2). Interestingly, the NOPAYMENTS strategy performs very well, followed by
the payment based schemes (note that our algorithm is quite competitive in this
setting and has regret and payment guarantees while NOPAYMENTS does not
without addtional assumptions).

NoPayments
CBwPayments

—— CBwPayments
8000 [—— CBChainedUnrestricted

8
NARE

CBChainedUnrestricted = CBChainedRestricted
CBChainedRestricted = CBwHeterogeniety
CBwHeterogeniety 6000

00

00 4000

Fig. 2. Left plot shows the cumulative regret, right shows the total payments made
by various algorithms. In both, x-axis is the time horizon and y-axis represents either
cumulative regret or cumulative total payments.

5 Conclusion

In this paper, we studied the principal-agent variants of online learning under
the contextual bandit framework, where a platform sends recommendations and
users act on those that are most valuable to them, and the platform can use
payments to incentivize exploration and fasten learning.

This paper is among only a handful of recent works which have tackled the
problem of incentivization/recommendation in principal-agent settings, hence
several fruitful avenues for extending this initial foray remain.

— In Algorithm 1, platform uses payments to infuse heterogeneity in the arriving
contexts. It is easy to ensure sub-linear regret with £2(7") payments. Similarly,

Incentivising Exploration for Contextual Bandits 169

if the allowed regret is upto O(T'), the platform does not need to pay at all. It
would an interesting problem to calculate lower bounds on payments required
for a reasonable regret guarantee.

It seems to be the case that notions such as covariate diversity may be nec-
essary for unbiased estimation of arm attributes. Hence, a study which ties
together the efficacy of various algorithms (including ours) to covariate diver-
sity in the contexts could be an interesting contribution in the incentivized
exploration literature.

Although assuming myopic behavior of the agents is an intuitive modeling
choice, it may not cover all the practical possibilities. Hence, extending algo-
rithm design and analysis to situations where the agents are non-myopic, for
instance, they are anticipating payments, are partially observed, or are gov-
erned by a rich discrete choice model. All these would also be of significant
interest.

More complex user behaviors can modeled if the platform can inform the
estimate of each arm’s attributes along with their variance. This can better
inform the users, especially the ones that are risk-averse.

References

1.

2.

10.

11.

12.

Bastani, H., Bayati, M., Khosravi, K.: Mostly exploration-free algorithms for con-
textual bandits. arXiv preprint arXiv:1704.09011 (2017)

Bietti, A., Agarwal, A., Langford, J.: A contextual bandit bake-off. arXiv preprint
arXiv:1802.04064 (2018)

Chen, B., Frazier, P., Kempe, D.: Incentivizing exploration by heterogeneous users.
In: Conference On Learning Theory, pp. 798-818 (2018)

Cohen, L., Mansour, Y.: Optimal algorithm for Bayesian incentive-compatible.
arXiv preprint arXiv:1810.10304 (2018)

Dantzig, S., Geleijnse, G., Halteren, A.T.: Toward a persuasive mobile application
to reduce sedentary behavior. Pers. Ubiquit. Comput. 17(6), 1237-1246 (2013)
Frazier, P., Kempe, D., Kleinberg, J., Kleinberg, R.: Incentivizing exploration. In:
Proceedings of the Fifteenth ACM Conference on Economics and Computation,
pp. 5-22. ACM (2014)

Han, L., Kempe, D., Qiang, R.: Incentivizing exploration with heterogeneous value
of money. In: Markakis, E., Schéfer, G. (eds.) WINE 2015. LNCS, vol. 9470, pp.
370-383. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48995-
6 27

Immorlica, N., Mao, J., Slivkins, A., Wu, Z.S.: Incentivizing exploration with unbi-
ased histories. arXiv preprint arXiv:1811.06026 (2018)

Immorlica, N., Mao, J., Slivkins, A., Wu, Z.S.: Bayesian exploration with hetero-
geneous agents. In: The World Wide Web Conference, pp. 751-761. ACM (2019)
Kannan, S., et al.: Fairness incentives for myopic agents. In: Proceedings of the
2017 ACM Conference on Economics and Computation, pp. 369-386. ACM (2017)
Kannan, S., Morgenstern, J.H., Roth, A., Waggoner, B., Wu, Z.S.: A smoothed
analysis of the greedy algorithm for the linear contextual bandit problem. Adv.
Neural Inf. Process. Syst. 31, 2227-2236 (2018)

Langford, J., Zhang, T.: The epoch-greedy algorithm for contextual multi-armed
bandits. In: Proceedings of the 20th International Conference on Neural Informa-
tion Processing Systems, pp. 817-824. Citeseer (2007)

http://arxiv.org/abs/1704.09011
http://arxiv.org/abs/1802.04064
http://arxiv.org/abs/1810.10304
https://doi.org/10.1007/978-3-662-48995-6_27
https://doi.org/10.1007/978-3-662-48995-6_27
http://arxiv.org/abs/1811.06026

170

13.

14.

15.

16.

17.

18.

P. Agrawal and T. Tulabandhula

Lattimore, T., Szepesvari, C.: Bandit Algorithms. Cambridge University Press,
Cambridge (2020)

Li, L., Chu, W., Langford, J., Schapire, R.E.: A contextual-bandit approach to per-
sonalized news article recommendation. In: Proceedings of the 19th International
Conference on World Wide Web, pp. 661-670. ACM (2010)

Mansour, Y., Slivkins, A., Syrgkanis, V.: Bayesian incentive-compatible bandit
exploration. In: Proceedings of the Sixteenth ACM Conference on Economics and
Computation, pp. 565-582. ACM (2015)

Mansour, Y., Slivkins, A., Syrgkanis, V., Wu, Z.S.: Bayesian exploration: incen-
tivizing exploration in Bayesian games. arXiv preprint arXiv:1602.07570 (2016)
Riquelme, C., Tucker, G., Snoek, J.: Deep Bayesian bandits showdown: an empirical
comparison of Bayesian deep networks for thompson sampling. In: International
Conference on Learning Representations, ICLR (2018)

Wang, S., Huang, L.: Multi-armed bandits with compensation. In: Advances in
Neural Information Processing Systems, pp. 5114-5122 (2018)

http://arxiv.org/abs/1602.07570

®

Check for
updates

Emotional Agents Make a (Bank) Run

Konstantinos Grevenitis' @, Ilias Sakellariou'®)@®, and Petros Kefalas?

! Department of Applied Informatics, University of Macedonia, Thessaloniki, Greece
{mail6028,iliass}@uom.edu.gr
2 Department of Computer Science, The International Faculty of the University
of Sheffield City College, Thessaloniki, Greece
kefalas@citycollege.sheffield.eu
http://wuw.uom.gr/, http://citycollege.sheffield.eu

Abstract. Agent-based Computational Economics (ACE) is an area
that has gained significant attention, since it offers the possibility to
model economic phenomena in a more fine-grained manner than other
approaches. One such phenomenon is “bank panic” in which the term
“panic” implies the existence of emotional bias towards to the sudden
withdrawal of deposits from financial institutions (simultaneous bank
runs). However, research towards complex emotional agents in ACE has
not been extensively conducted. The paper employs a formal state-based
model enhanced with explicit emotional states, mood and personality
characteristics in order to describe the agents behavior. A NetLogo sim-
ulation of a multi-agent system in a limited economic environment is
attempted in order to study the effects of emotions, emotion contagion
and the role of various players in the genesis of a bank panic crisis. The
aim is to investigate further whether such agent models that are already
used in other areas, such as evacuation simulation, could also provide a
better insight on the evolution of such economic phenomena.

Keywords: Agent based simulation + Emotional agents - Agent-based
computational economics + Bank runs

1 Introduction

Agent based Computational Economics (ACE) is a thriving area of research,
offering the potential to model economic phenomena. Existing conventional
methods are based on mathematical models, which describe a set of defini-
tions and assumptions that lead to proofs of theorems. A number of economists
consider such models too restrictive to address real problems and thus moved
towards other computational alternatives [13]. ACE modelling has been applied
to the same problems, for instance how an economic system reaches an equi-
librium. ACE conveys a methodological novelty since the models consist of rel-
atively simple agents that collectively exhibit rich behaviour with the overall
outcome naturally emerging as a result of their interactions. Thus, agent-based

© Springer Nature Switzerland AG 2020
N. Bassiliades et al. (Eds.): EUMAS 2020/AT 2020, LNAI 12520, pp. 171-187, 2020.
https://doi.org/10.1007/978-3-030-66412-1_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-66412-1_12&domain=pdf
http://orcid.org/0000-0001-9619-3860
http://orcid.org/0000-0003-3522-6045
http://orcid.org/0000-0002-6846-7374
https://doi.org/10.1007/978-3-030-66412-1_12

172 K. Grevenitis et al.

modeling enables the development of macroeconomic models using a bottom up
approach [28].

ACE can be applied to a broad spectrum of micro or macro economic systems,
where agents can be represented as interactive goal-directed entities, i.e. BDI
agents. However, in many economics applications, BDI agents need to be infused
with emotions that may affect their reasoning and decision-making. Emotions
affect an agent’s goals, hence affecting their actions [18], that is common in the
real world. In addition, incorporating human aspects such as personality and
emotion leads to more believable simulations [17].

The paper aims to investigate further whether emotional agent models, used
in other areas such as evacuation simulation, could provide a better insight on
the evolution of economic phenomena. Our motivation was to demonstrate the
potential of ACE in an emotionally intensive economic phenomenon, namely a
bank panic. Thus, the main contribution of the paper is an agent model and
the corresponding simulation based on a formal method that supports emotions
including emotion contagion.

The rest of the paper is structured as follows. Section 2 presents an overview
of the related work in ACE, bank runs and emotional agents; Sect.3 provides
a brief description of the emotions X-Machine model, which was used as the
basis to specify the behaviour of agents in the simulation environment. Section 4
describes the agent model used, including the emotional inputs and how they
affect agent behaviour, with Sect.5 presenting the preliminary experimental
results. Finally, Sect. 6 concludes the paper.

2 Background and Related Work

2.1 Emotions

Emotions are meant to be short, short term states of mind the individual pas-
sively experiences instigated by events or objects [7]. Mood, on the other hand,
is used to describe a long standing emotional state. In psychological studies,
the emotions that influence the deliberation and practical reasoning of an agent
are considered as heuristics for preventing excessive deliberation [4]. Emotions
affect an agent’s goals, hence affecting their actions. Emotional effects on goals
can manifest via reordering existing goals, or by introducing completely new
goals. The goals’ success or failure can affect emotional states.

In addition to emotions and moods, personality is an important aspect which
affects perception and how quickly the emotional state changes. The final factor
that is of great importance to communication intensive socioeconomic environ-
ments is contagion, i.e. how an agent’s emotional state affect another agent’s
emotional state. All these integrated, make an individual’s behaviour completely
different from pure rational behaviour in the absence of emotions.

Agents can be potentially enhanced by infusing emotions in their function-
ality leading to Emotional-BDI agents, i.e. agents whose behaviour is guided
not only by beliefs, desires and intentions, but also by the influence of emotions

Emotional Agents Make a (Bank) Run 173

(such as fear, anxiety etc.) in reasoning and decision-making. The existing for-
mal systems for rational agents [20] do not allow a straightforward representation
of emotions. However, they have properties which can be inherited in order to
properly model Emotional-BDI agents [18].

2.2 Emotional Agents in Socioeconomic Scenarios

Several models for emotions in agent systems have been reported. ESCAPES
is a multi-agent simulation tool, that reproduces phenomena on evacuation sce-
narios, such as an escape scenario at the International Terminal of Los Angeles
International Airport [29].

Elsewhere, a Group Decision Support System was developed focused on the
negotiation process improvement through argumentation, by using the affecting
characteristics of the involved parties [25]. The system uses both personality
and emotional inputs in order to select the best arguments to reach a decision.
The results revealed that aggressive agents achieve more preferred solutions than
negotiator agents.

In [1], another agent based model of the financial domain was introduced,
leveraged investors (banks) that used a Value-at-Risk constraint. This constraint
was established on historical market data (e.g. asset prices) to predict the port-
folio risk. The model took under consideration pro-cyclical leverage (low risk
results in high leverage). It was shown that it resulted in endogenous irregular
oscillations. This means that when the stock prices were increased the market
collapsed. When the leverage was regulated to correct the risk (using a counter-
cyclical leverage policy) prices reached a plateau which stabilized the system.

2.3 Bank Runs

A bank run is defined as the situation “where depositors withdraw their deposits
from banks because of fear of the safety of their deposits” [12]. The term “bank
panic” is often associated with the existence of emotional bias towards a sudden
simultaneous withdrawal of deposits from different financial institutions (simul-
taneous bank runs). Bank runs often appeared in the course of time, such as
the Great Depression in the US. The 2007 global financial crisis, has also been
characterized by bank runs internationally (e.g., Countrywide Bank, IndyMac
Bank, Northern Rock Bank, etc.). To avoid bank runs, several actions have been
taken, such as increasing deposit insurance in bank of the US and UK [12].
There have been several approaches in simulating bank run scenarios with
ACE. The frequency of occurrence in bank runs has been studied in [27], where
panic is spread among agents that focus on the neighborhood influence. The
assumption is that different equilibria are likely to be established in differ-
ent neighbourhoods. The model included synchronization effects which gener-
ate bank runs and is based on three important interacting factors which influ-
ence the patient agents’ strategies (withdraw or wait), the proportion of patient
agents (those that wait), the activation threshold and the interaction neighbor-
hood of agents [6]. A similar approach with regards to focusing on neighborhood

174 K. Grevenitis et al.

influence is taken in [26], which showed that the number of bank run incidents
decreases with the size of the banks, i.e. number of clients. The work reported in
[8] focuses on rumors spreading. The model described is predicated on dynamic
rumor-based bank runs with endogenous information acquisition by incorporat-
ing bank liquidity uncertainties into a asynchronous awareness framework. The
liquidity event triggers a rumor spread and therefore the bank can be exposed
to a bank withdrawal. In such a case, depositors can withdraw or deposit at
any time for a tiny low transaction cost, or wait so as to totally withdraw, then
redeposit if the bank survives. The risk of collapse of a financial system has been
studied in [19], which is calculated through an agent based model that suits the
microeconomic framework for this economic analysis. In the model, there are
heterogeneous agents that interact through two key channels: direct and infor-
mational contagion. Results showed that when bank runs are associated with
contagion, then an increase in interconnectedness worsens the outcomes. In [11],
the probability of bank runs is reported. Even when the economy is thriving,
they proposed that agents’ behaviour is influenced by non-favorable news and
that can cause a bank run. Agents are modelled as rational or irrational with a
wide range of learning models. Irrational thinking increases the chances of the
system to collapse. An agent-based model for banking analysis is developed in
[3]. The model includes agents types (savers, loans, and banks) which inhabit a
world divided into different regions. Results showed that banks which are more
vulnerable to credit shocks are also more likely to be under capitalized and even-
tually have to rely on the European Union’s Emergency Liquidity Assistance.

Finally, agents behaviour in simulations can be predicted more accurately if
artificial neural networks are utilised [11]. Taking into consideration the multi
factorial facets of bank runs, the results demonstrate that if the agents are aware
of the whole picture of market then bank run incidents only occur when the
economy is at an extremely poor state. There exist a plethora of studies related
to economic analysis of bank runs but they fall outside the context of this paper
[2,5,12,16].

The novelty of the current work is attributed to three factors: (a) our model is
not based on a standard definition of a neighbourhood, e.g. lattice, but it adopts
a more dynamic notion of neighborhood, one that depends on the spatial char-
acteristics of the simulation platform, (b) our agents do not attempt to liquidify
all their assets from the bank but instead their intention is to have enough cash
to make them feel secure, i.e. we consider retail depositors agents relying on the
assumption that deposit insurance is guaranteed by the government supervision
of banks and (c) agents follow relatively complex behaviours and can be easily
extended.

3 Modelling Agents Using X-Machines and Emotions

3.1 A Formal Model of Agents

X-Machines [9] are finite state machines that offer an elegant way to compact
states @ by allowing processing of a globally available memory structure M. In

Emotional Agents Make a (Bank) Run 175

addition, transitions F' between states are each labeled by a function ¢ (where
@ € P) that is triggered by inputs X and not just input values as in simple
automata, i.e. F': Q x & — 2%. Functions ¢ also take into account the memory
values, i.e. ¢ : ¥ x M — I'x M, they generate an output and change the memory
values. These characteristics give X-Machines some important advantages for
formal agent modeling: (a) models have less states @, (b) states, beliefs, goals
etc. are nicely represented as @ and M,(c) behaviors map well to transition
functions ¢ and (d) the formal model facilitate transformation to executable
code but also is supported by a well established theory for complete testing. The
formal definition of X-Machines can be found at [9].

In Fig.1 we show a partial X-Machine model of a rational (emotionless)
agent. In this model, three states are depicted (“at the bank”, “at store” and “at
home”), four functions-behaviors (“withdraw some cash”, “withdraw all cash”,
“go to store” and “go home”) and a partial memory structure containing infor-
mation that will trigger any behavior. For instance, in this particular case, “with-
draw some cash” is triggered, which will allow the agent to get the appropriate
amount of cash in order to go to the store.

| M=(..., goal(buy_tv),pocket_cash(10),tv_price(200),...) ‘

input/percept

J
withdraw some cash at a store
’ go to store
. go home @

withdraw all cash
Fig. 1. A partial X-Machine model of a rational agent

3.2 A Formal Model of Emotions

In order to facilitate a simulation of emotional agents, we adopt the formal model
of emotions that was presented in [15], extended with a contagion mechanism
[23], albeit with minor modifications. In the following, we briefly outline the
approach reported in the previously mentioned work for completeness.

The representation of emotions follows the dimensional approach [21,22], i.e.
emotions are represented in a two dimensional space [15]. Thus, emotion is a tuple
(Ve, ae), where v, € [—1,1] is the valence measure, that is how “pleasurable”
it is to experience an emotional state and a. € [—1,1] the arousal measure,
representing the likelihood to take some action in the specific state. The tuple
defines the emotional state E of the agent and will be referred to as the emotional
state vector of the agent.

176 K. Grevenitis et al.

Emotional states are subject to change due to percepts, emotion contagion
(i.e. external stimuli) and mood. Thus, there are three stages in computing the
overall emotional change in each execution cycle. They all share a similar mech-
anism for computing the resulting emotional state. The main characteristics of
the mechanism is that the emotional state vector shifts closer to the input vector
associated with either external stimuli or mood, and the rate of change is regu-
lated by personality traits of the agent. The latter allows to represent population
diversity in the simulation, i.e. model the fact that some agents might be more
receptive to percepts than others.

The emotional effect of a percept is represented by a vector (vpre, Gpre), i-€.
each agent percept is associated with an input emotion vector. Given an emo-
tional state (v, a.) the resulting vector (v.,al) is given in Eq. 1.

2 Av f?- Aa
(ve,ap) = <Ue + m y Qe+ 1_~_epfp-(Aa|1)) (1)
where Av = vy — ve and Aa = apre — a.. The personality factor f, € (0,1]
determines how quickly the emotion vector converges to an emotional percept.

The contagion model described in [23] is inspired by the ASCRIBE model
[10], although simpler, and adapted to the vector representation of emotions.
Emotional contagion is treated as a form of perception: agents perceive the
emotions of other agents in their proximity. Thus, emotion contagion involves
computing an overall emotion vector (vVent, aent) based on the emotions of neigh-
boring agents. In order to define the neighbourhood of each agent, it is assumed
that agents inhabit a two dimensional world. However, extending the definitions
to a three dimensional world is straightforward.

In order to model the spatial characteristics of such a perception, each agent
has an influence-crowd (IC;) that consists of all other agents within a radius
ding, i.e. IC; = {Agent; : d(Pos;, Pos;) < diny}.

Contagion strength w;; (Eq.2) determines the strength by which an agent j
(j € IC;), influences agent 7 and depends on the expressiveness of agent j, expr;,
a measure of how much the agent manifests its emotions, and the channel, that
models that closer agents have a larger effect to the emotions of the agent 1.

Ao o) @)

Wij = expr;j - (1 — dins
m

channel;;

The overall contagion strength w; of agent ¢ by all agents in its influence is:

JEIC;

To form the emotional percept due to contagion (vent, @ent), each emotion
contagion vector coordinate is defined as the sum of the corresponding emotion
vector coordinates of agents in the influence crowd multiplied by the normalised
contagion strength (w;;/w;):

Emotional Agents Make a (Bank) Run 177

onsten) = (3w vy, 3 w05 ()

JEIC; JEIC;

The vector (Vent, Gent) is treated in a similar manner as other percepts (Eq. 1),
however, the change now depends on the on the openness (opn;) of the agent i,
i.e. how perceptive the agent is to other agents’ emotions, and is given in Eq. 5.

2.A 2. A
(vg7a/€/) _ (’Ué + opn; Uent opn; Gent) (5)

/
1+ e—opni-(|Avent|-1)) Ge + 1 4 e—opni-(|Aacn:|=1)
where Avens = Vent — v, and Aaepy = @ent — al,, where (v, al) is the emotion
vector computed after the change due to perception (Eq.1).

Finally, the emotional state of agent is affected by its mood. Mood describes
the long term emotional state of the agent, i.e that state in which the agent will
eventually settle given that no external stimuli are present. Thus, mood provides
the mechanism to model that the effects of a single emotion percept are reduced
over time. Change due to mood is given by Eq.6, where mood is the vector
(Vm, Va)y, AVme = Uy — 02 and Aame = am — a, (v, al) the emotion vector
computed in Eq.5 and d is a discount factor that depends on the simulation
model. The vector (v{,af) is the new emotional state of the agent.

faf)<” d'f;"Avme " d~f5’~Aame > (6)

Ve t I e ho (e D) 0 % T T oo (Bame D)

3.3 A Formal Model of Emotional Agents

The emotional model described above is embedded in an X-Machine model
resulting in Emotional X-Machines ¢X. The additional component in this model
is an emotional structure formalisation F that consists of emotional states €@,
moods M, personality traits P and a contagion type mechanism C. In addi-
tion, there exist emotions revision functions ¢y that given an emotional state,
a mood, a contagion model, a personality trait and a memory tuple, it returns
a new emotional state. Finally, inputs go through a revision function p, which
given an input transforms it into an emotional percept taking into account the
current emotional state, the mood and the personality. The formal definition
of Emotional X-Machines can be found at [14]. It should be noted that transi-
tions functions of the original state machine (behaviors) take into account the
emotional structure E.

The enhanced model (Emotional X-Machines) allows the description of the
behavior of emotional agents which are developed on top of rational agents
(simple X-Machines), offering a natural decoupling of the two types. For instance,
consider again the partial model of Fig.1 now extended with the emotional
structure as depicted in Fig.2. Under certain emotional state (e.g. panic due
to rumors of financial crisis), the behavior which should be triggered is now
“withdraw all cash” and not “withdraw some cash” as it was in the original
case.

178 K. Grevenitis et al.

| M=(..., goal(buy_tv),pocket_cash(10),tv_price(200),...) |

withdraw some cash at a store
’ go to store
. go home @

withdraw all cash
I E=(emotion_state(v,a), personality(...),mood(...),contagion(...)) |

emotional percept

input/percept

Fig. 2. A partial Emotional X-Machine model of an emotional agent

Emotional X-Machines have been used in a number of simulations involving
evacuation scenarios [24]. In this work we focus on economic phenomena, as
described in Sect. 4.

4 Modelling Bank Runs

Emotion X-Machines allow for a much richer bank depositor model, than those
that have been explored in the literature. The model presented takes advantage
of spatial characteristics of agent simulation platforms, since agents are expected
to move in a two dimensional space, i.e. the world they inhabit and interact with.
This presents the significant advantage of having agents interacting with a vari-
able neighborhood, i.e. the underlying agent interaction links vary with respect
to where the agent is located. More specifically, being at different locations dur-
ing a single 24 h simulation day, an agent interacts with “co-workers” sharing the
same workplace, with a different set of agents in its home neighborhood, or with
other agents located in a shopping area. Although the first two sets are invariant
during the simulation, since they are fixed at initialisation, the third set al.lows
the agent to form ephemeral links with agents that happen to visit the store at
the same time. By interaction in this case, we refer to emotion contagion, i.e. the
emotional change due the other agents included in an agent’s influence crowd
1C;, which is computed dynamically in each time point.

4.1 Environment Setup

Agent movement also allows the opportunity to model the affect of influencers
in the simulated world, for instance media that spread rumors regarding the
imminent bank failure.

By allowing influencers to “move”, they interact for short periods with differ-
ent sets of agents, thus providing a varying perceptual input to the latter. This,
we believe, leads to a better modelling of the impact that influencers have to

Emotional Agents Make a (Bank) Run 179

the general population. For instance, in order to be affected by public media an
agent could follow some of their broadcasts; since this is not expected to happen
continuously during the course of a day, a model should be able to accommodate
such an interaction. Additionally, not all agents follow the same media, thus one
could model the impact of a highly influential news channels by increasing its
number of influencers.

The current model has a very fine grain representation of time, with 15 min
corresponding to a single simulation step. Under this assumption, agents stay
at their working place for 8h a day and commute to work for 45 mins (please
see Sect. 4.2). Such a fine grain simulation, facilitates experimentation with the
evolution of phenomena that occur rather rapidly.

The model simulates a limited part of the economic environment: we con-
sider only retail banks, a market (shops), workplaces, houses, influencers and
individual depositors. In this model we are only interested in cash flow and we
do not model transactions that occur with electronic forms of money (i.e. credit
cards). This restriction of the model was due to the fact that we are concerned
about bank panic, i.e. a significant amount of banks failing, a problem that can
manifest when depositors withdraw cash for safe keeping at their home. The
model has entities that represent:

— Banks: Each bank has an initial amount of retail depositor savings (see below)
and maintains a 10% fractional reserve in cash. Each retail depositor main-
tains an account in one of the available banks. Each bank maintains a number
of ATMs that “spread” its presence in the environment. It can serve a limited
number of customers in each step, thus queues can be formed outside banks
(a phenomenon common in bank runs).

— Shops stand for the marketplace. Shops provide goods to individuals (for the
obvious exchange of cash) and at the end of each day deposit their profits to
the banks, thus contributing to maintaining adequate cash levels of banks.

— Influencers: are agents that move randomly in the experiment world, and
“spread rumors” regarding bank solvency. They act as perceptual input to
bank depositors, i.e. the latter perceive their presence and form the corre-
sponding emotional percept (see Sect.4.2).

4.2 Agent Parameters Setup

The main actors are the Retail Depositors and we are going to refer to the
latter as the agents hereafter. The latter have a number of parameters, stored
as memory values in the corresponding X-Machine:

— savings in one of the banks, that is initially set to three times the agent’s
salary,

— the current amount of cash in their Wallet (W;),

— a desired level of cash the agent “feels” safe to have, i.e. its Cash-Level (Cl;),

— aratio of Wallet/Cash-Level (rWCl

1
withdraw money from the bank.

) that determines when the agent needs to

180 K. Grevenitis et al.

Obviously the ratio r;”/ “ determines the amount of cash that exist off the system,
i.e. cash held outside banks. We define the 10% of their salary as the Original
Cash Level (OC;) and initially Cl; = W; = OC;.

Agents follow a daily cycle, that consists of an 8-hour working day, after
which they return home. When their goods level is low, they visit the market,
and when the level of cash in their wallet drops below the threshold r;”/ o Cl;
(W; < T‘ZU/ . Cl;), they visit the bank to withdraw money. Agents do not move
between locations instantly, but commute so that each transportation requires
are least three time steps (45 mins): this allows agent to perceive the status of the
environment, as for instance whether a queue is formed in front of a bank, etc.
The behavioural model outlined above, was encoded as an emotions X-Machine,
with states and transitions depicted in Fig. 3.

Commuting otherwise

travelling to Finished work
work

otherwise Time to go to work Commuting Buying goods

travelling to
market

Commuting

Zero savings / ‘

) Finished shopping travelling to
shopping house

arrive

Needing goods

resting

Needing cash
Pick-ticket

Needing cash
travelling to interacting
bank with bank

Commuting waiting

Detecting bank failure /
Withdrawing-money

Fig. 3. The Agent state transition X-Machine Model

Following the description of Sect. 3, a subset of the agent percepts is mapped
to emotions, i.e. they produce a change to the emotional state of the agent. In
the current model, three percepts belong to this subset:

— Perception of an influencer in the agent’s proximity, which is mapped to the
emotional percept F;¢ = (—0.5,0.7). In the model ifluencers spread negative
rumors regarding the solvency of banks and thus cause a negative affect on
the agent’s valence (value —0.5) and at the same time urge agents to withdraw
money from the failing banks (arousal value 0.7).

— Perception of any queues in a bank, mapped to Epenrg = (—0.5,0.8). Such
a perception confirms the negative valence of the emotion attributed to the
influencer and further alerts the agent to take some action w.r.t. money with-
draw (arousal 0.8).

Emotional Agents Make a (Bank) Run 181

— Finally, perception of agent’s bank failure is mapped to the emotion Epuprr =
(=1,1), i.e. the minimum valence and the maximum arousal value, i.e. what
could be described as panic.

The above emotional percepts lead to changes to the emotional state of the
agent, which affect in the current model, memory values of the X-machine. In
particular, the two dimensions of the emotion state vector affect the Cash-Level

Cl;) and a ratio Wallet/Cash-Level (’I“;-U/Cl) of the agent.

Equation 7 shows how the cash level changes with respect to the arousal of
the agent. Since arousal measures the incentive of the agent to take action, i.e.
withdraw money from the bank, an increase in the arousal coordinate of the
emotion vector leads to an increased cash level. As shown in Eq. 7, we define the
latter to be at most 5 times the original OC;, i.e. at most 50% of their monthly
salary.

ocC; ta. <0
Cli(ac) = {(1+5-ae)-00i:ae>0 (7)

Valence controls the Wallet /Cash-Level ratio of agents. The rationale behind
this choice is that in unpleasant economic situations, agents feel safer if they
have more cash in their disposal. Thus, Eq.8 provides the ratio change with
respect to value (obviously lower valence leads to a higher ratio).

P/ = 025 v, +0.75 (8)

As a final note, the model includes a consumption rate that decreases the
level of goods in all agents in every simulation step. The section that follows
(Sect. 5) presents the results of our experiments.

5 Experimental Results

We implemented the model! using NetLogo [30]. According to our experience,
NetLogo can successfully deal with such simulations, even at large scale. We
divided the experiments into two phases: (a) experiments in order to calibrate
the model, and (b) experiments to show the effect that influencers have on the
population. The calibration phase is required to setup appropriate parameters
in a state where an equilibrium is achieved, far from any potential bank failures.
These parameters are then used in the second phase.

The number of agents is set to 250, the number of banks to 5, with 10 ATMs
and 15 workplaces in total. The salary is set to 600 monetary units for all agents.
The original cash level for each agent was set to 10% of the salary. As mentioned,
each agent has three times its salary as savings in one of the banks minus its
cash level.

The personality characteristics of the agents are as follows. The personality
factor f, (Eq.1), ranges between 0.5 and 0.75, while expressiveness ezpr; (Eq. 2)

! The code can by found at https://github.com /isakellariou/NetLogoBankRun.

https://github.com/isakellariou/NetLogoBankRun

182 K. Grevenitis et al.

and openness opn; (Eq.5) have a minimum value of 0.2 with the maximum being
0.4. Agents receive randomly a value within the range mentioned above for each
parameter.

5.1 Calibration

In the first set of experiments related to calibration, we expect that the system is
in equilibrium, i.e. no bank run event occurs. We set the maximum time period
for the experiment to 25 days. The number of influencers is set to 0, meaning
that no “bad news” on bank solvency is spread within the simulation world.
We test the environment for two cases. The first concerns experiments with no
contagion, and as shown in Fig. 4, the system is in equilibrium, i.e. bank reserves
are well over the amount of cash desired by the agents. The fluctuations observed
are attributed to the fact that agents withdraw money from the bank to cover
the needs in market goods by paying in cash, which at the end of each simulation
day are deposited by the shops back to the bank. Almost identical results occur
for the case of agents interacting under the contagion model described in Sect. 3.
Values reported in Fig. 4 are the average values over a set of 10 experiments.

Evolution of Cash Flow Bank Reserves

Model with no Contagion and no Influencers

Monetary Units
w
o
o
o
o

e
i o N - ; : ;
Wy MR Bl a0t A AR A DN AN AT
10000
0
CH O P HLH D P DD O D DPD DD DD PP DD DD
PP P LR E L LI PP 0D P D0 S
M L S S VNN SN N

Time Ticks

Fig. 4. Experimental results during calibration (No Contagion and No Influencers).

5.2 The Effect of Influencers

Having a set of initial conditions that form an equilibrium, the next set of exper-
iments involves increasing the number of influencers in the simulation world. We
consider this number to reflect how strong rumors regarding bank failure are,
thus we vary the number of influencers from 5 to 15. Table 1 summarizes the
results over a set of 12 runs for each combination of influencers and contagion

Emotional Agents Make a (Bank) Run 183

model, with the column “Failure Rate”, reporting the number of experiments
over those 12 runs where all banks failed, i.e. the manifestation of the “bank
panic”. For each set of runs, the column “Simulation Step” reports the time
point when the last bank failed with the associated standard deviation. Results,
as expected, confirm the belief that stronger bank failure rumors increase likeli-
hood that banks will fail.

Table 1. Bank Failures w.r.t. the number of influencers

No contagion mechanism With emotion contagion
Influencers | Failure Rate | Sim. Step | StdDev | Failure Rate | Sim. Step | StdDev
5 25% 1388.33 | 414.31 | 0% - -
6 33.3% 1370.25 | 679.02 |16.7% 1271.00 | 170
7 75% 1088.22 | 314.50 |33.3% 1136.50 | 158.86
8 91.7% 816.64 |171.33 |50% 762.83 | 406.25
9 100% 581.33 58.38 |66.7% 848.50 | 376.51
10 100% 423.50 | 174.53 |83.3% 782.50 491.01
11 100% 393.75 37.01 |100% 421.83 37.71
12 100% 293.67 63.88 | 100% 434.08 98.05
13 100% 309.25 |117.43 |100 % 343.33 | 147.51
14 100% 221.92 39.37 | 100% 301.67 51.53
15 100% 243.83 44.64 |100% 269.67 |160.23

It is interesting to note that in simulations using the contagion model, the
number of total failures (all banks fail) is less compared to no contagion mecha-
nism simulations, and at a much slower rate. Although this appears counter intu-
itive, it can be explained by the fact that, interaction with neighboring agents
reduces the effect to the population, at least in the early stages of spreading
rumors, i.e. the effects of influencers are reduced due to interaction among indi-
viduals. Recall that according to the emotions model (Sect. 3), emotions induced
by influencers and contagion are both treated as percepts, however with a dif-
ferent factor (personality factor vs. openness).

Figure5 presents the behaviour of agents under emotion contagion, when
the number of influencers is 15. Again values reported are averaged over all
experimental runs. Note that the desired level of cash increases rather rapidly
and thus this leads eventually to banks failing. The steep rise of the desired cash
level at the final steps of the simulation is attributed to the fact that once agents
learn that their bank has failed, they simply panic, spreading this emotion to
other members of the population.

Similar results can be observed in Fig. 6, although the time it takes for the
banks to fail is much larger.

It is also interesting to see the time relation between successive banks failures
in the world, since not all banks fail at the same time. Figure 7 shows, the average

184 K. Grevenitis et al.

Bank Reserves
===sasamns \Nallet Cash

Model with Contagion and 15 Influencers ===== Cash Level

Evolution of Cash Flow

(desired)
100000
90000
pmmmmmm——-
80000 e P ELL L L
’
emmpmm=m=
70000 B, e —
60000 £ - s

50000
40000 7

Monetary Units

30000 3
A —
10000
o ~—r
YRR PSSP EPLELLF PP S PSP
Time Ticks

Fig. 5. Experimental results with the emotion contagion model and 15 influencers.

Bank Reserves
===uunnnnnn \\/g|let Cash
== === Cash Level
(Desired)

Evolution of Cash Flow

Model with Contagion and 10 Influencers
100000
90000
80000 pum==s

v =r®"

70000 vant?
N
I A I R e e T e e e e NP LR e

60000
50000 R
40000 .'

Monetary Units

Time Ticks

Fig. 6. Experimental results with the emotion contagion model and 10 influencers.

time point of each bank failure in the corresponding set of experiments, i.e. the
time point when the first bank fails, the second, etc. As it can be easily observed,
experiments with no contagion (labeled as No-Cont) fail earlier compared to
those with contagion (labeled Contagion) for both cases of 10 and 15 influencers,
due to the same reasons reported earlier in the section. Another interesting point
to note is that when one bank fails, then others follow in a rather short time
period, again due to the fact that agents not being able to withdraw money are
pushed to a panic state, and this has an effect through the contagion mechanism
to all other agents.

Although the present experimental evaluation of the bank run phenomenon
is preliminary, it is noticed that a relation exists between strong rumors of bank

Emotional Agents Make a (Bank) Run 185

---4---(10,No-Cont)

———— (10,Contagion)
Bank Failures in Time ---2k----(15,No-Cont)

—>— (15,Contagion)

> —

o

2

n

o

8

8

E

Boawo ST W---emmeemmmmens -
------------- *

mmmmmmmmmmmme B etetetut Kemmmm
1st Bank 2nd Bank 3rd Bank 4th Bank 5th Bank

Fig. 7. Bank failures vs. simulation time.

failures incidents and actual bank panic. However, to reach a safe conclusion,
a more thorough experimental evaluation is required, one that might take into
account more parameters of the system, as for example no-retail depositors and
interbank links. However, given the expressive power of X-Machines, modelling
more agents, other influencers, global broadcasting models, is not expected to
present significant difficulties.

6 Conclusions

Incorporating human aspects such as personality and emotion can be an impor-
tant research direction for ACE, since it allows modelling of emotionally intensive
economic phenomena and can lead to more engaging and believable simulations.
The present work attempts, for the first time to the best of our knowledge, to
use a formal emotional agent model towards a simulation of bank panic, a phe-
nomenon that is often associated with the emotional state of involved stakehold-
ers. In that direction, the paper presents an emotions X-Machine model, together
with an implementation in a well known simulation platform. The experimental
results confirm that a relation exists between public opinion influencers (e.g.
public media) and the manifestation of such phenomena.

There are a number of research directions towards which this work can be
extended. These include a more in-depth analysis of the current experimental
model and adding different types of stakeholders in the domain, such as gov-
ernment officials. Finally, it is interesting to build a more complete model of
the banking system and include a wider range of economic activities, such as
inter-bank links and strategic investors. In all cases, we believe the introduction
of formal emotional agent modelling could provide ACE with a set of tools that
can increase its potential.

186

K. Grevenitis et al.

References

10.

11.

12.

13.

14.

15.

16.

Aymanns, C., Farmer, J.D.: The dynamics of the leverage cycle. J. Econ. Dyn.
Control 50, 155-179 (2015). https://doi.org/10.1016/j.jedc.2014.09.015

Brown, M., Trautmann, S.T., Vlahu, R.: Understanding bank-run contagion. Tech-
nical report, European Central Bank (2014). https://www.ecb.europa.eu/pub/
pdf/scpwps/ecbwpl711.pdf

Chan-Lau, J.A.: ABBA: an agent-based model of the banking system. IMF Work-
ing Papers 17/136, International Monetary Fund (2017). https://ideas.repec.org/
p/imf/imfwpa/17-136.html

. Damasio, A.R.: Descartes Error: Emotion, Reason, and the Human Brain. G.P.

Putnam, New York (1994)

Davis, D.D., Reilly, R.J.: On freezing depositor funds at financially distressed
banks: an experimental analysis. J. Money Credit Bank. 48(5), 989-1017 (2016).
https://doi.org/10.1111 /jmeb.12324

. Deng, J., Yu, T., Li, H.: Bank runs in a local interaction model. Phys. Procedia

3(5), 1687-1697 (2010). https://doi.org/10.1016/j.phpro.2010.07.007
Fridja, N.: The psychologists’ point of view. In: Lewis, M., Haviland-Jones, J.,
Feldman-Barrett, L. (eds.) Handbook of Emotions, 3rd edn., pp. 68-87. The Guild-
ford Press, New York (2008). https://hdl.handle.net/11245/1.295660

. He, Z., Manela, A.: Information acquisition in rumor’ based bank runs. J. Financ.

71(3), 1113-1158 (2016). https://doi.org/10.1111/jofi.12202

Holcombe, M., Ipate, F.: The theory of x-machines. In: Correct Systems: Building
a Business Process Solution, pp. 135-168. Springer, London (1998). https://doi.
org/10.1007/978-1-4471-3435-0_6

Hoogendoorn, M., Treur, J., Wal, C., Wissen, A.: Modelling the interplay of emo-
tions, beliefs and intentions within collective decision making based on insights
from social neuroscience. In: Neural Information Processing: Theory and Algo-
rithms, LNCS, vol. 6443, pp. 196-206. Springer, Berlin Heidelberg (2010). https://
doi.org/10.1007/978-3-642-17537-4_25

Huang, W., Huang, Q.: Connectionist agent-based learning in bank-run decision
making. Chaos Interdisc. J. Nonlinear Sci. 28(5), 055910 (2018). https://doi.org/
10.1063/1.5022222

Iyer, R., Puri, M.: Understanding bank runs: the importance of depositor-bank
relationships and networks. Am. Econ. Rev. 102(4), 1414-1445 (2012). https://
doi.org/10.1257 /aer.102.4.1414

Judd, K.L.: Chapter 17 Computationally intensive analyses in economics. In: Hand-
book of Computational Economics, pp. 881-893. Elsevier (2006). https://doi.org/
10.1016/s1574-0021(05)02017-4

Kefalas, P., Sakellariou, I., Basakos, D., Stamatopoulou, I.: A formal approach to
model emotional agents behaviour in disaster management situations. In: Likas, A.,
Blekas, K., Kalles, D. (eds.) SETN 2014. LNCS (LNAI), vol. 8445, pp. 237-250.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07064-3_19

Kefalas, P., Sakellariou, I., Savvidou, S., Stamatopoulou, I., Ntika, M.: The role of
mood on emotional agents behaviour. In: Nguyen, N.-T., Manolopoulos, Y., [liadis,
L., Trawiriski, B. (eds.) ICCCI 2016. LNCS (LNAI), vol. 9875, pp. 53-63. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-45243-2_5

Kiss, H.J., Rodriguez-Lara, 1., Rosa-Garcia, A.: Do social networks prevent or
promote bank runs? J. Econ. Behav. Organ. 101, 87-99 (2014). https://doi.org/
10.1016/j.jeb0.2014.01.019

https://doi.org/10.1016/j.jedc.2014.09.015
https://www.ecb.europa.eu/pub/pdf/scpwps/ecbwp1711.pdf
https://www.ecb.europa.eu/pub/pdf/scpwps/ecbwp1711.pdf
https://ideas.repec.org/p/imf/imfwpa/17-136.html
https://ideas.repec.org/p/imf/imfwpa/17-136.html
https://doi.org/10.1111/jmcb.12324
https://doi.org/10.1016/j.phpro.2010.07.007
https://hdl.handle.net/11245/1.295660
https://doi.org/10.1111/jofi.12202
https://doi.org/10.1007/978-1-4471-3435-0_6
https://doi.org/10.1007/978-1-4471-3435-0_6
https://doi.org/10.1007/978-3-642-17537-4_25
https://doi.org/10.1007/978-3-642-17537-4_25
https://doi.org/10.1063/1.5022222
https://doi.org/10.1063/1.5022222
https://doi.org/10.1257/aer.102.4.1414
https://doi.org/10.1257/aer.102.4.1414
https://doi.org/10.1016/s1574-0021(05)02017-4
https://doi.org/10.1016/s1574-0021(05)02017-4
https://doi.org/10.1007/978-3-319-07064-3_19
https://doi.org/10.1007/978-3-319-45243-2_5
https://doi.org/10.1016/j.jebo.2014.01.019
https://doi.org/10.1016/j.jebo.2014.01.019

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

Emotional Agents Make a (Bank) Run 187

Padgham, L., Taylor, G.: A system for modelling agents having emotion and per-
sonality. In: Cavedon, L., Rao, A., Wobcke, W. (eds.) TAS 1996. LNCS, vol. 1209,
pp. 59-71. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-62686-7_28
Pereira, D., Oliveira, E., Moreira, N.: Formal modelling of emotions in BDI agents.
In: Sadri, F., Satoh, K. (eds.) CLIMA 2007. LNCS (LNAI), vol. 5056, pp. 62-81.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88833-8_4
Provenzano, D.: Contagion and bank runs in a multi-agent financial system. In:
Teglio, A., Alfarano, S., Camacho-Cuena, E., Ginés-Vilar, M. (eds.) Managing Mar-
ket Complexity: The Approach of Artificial Economics, pp. 27-38. LNE, Springer,
Berlin, Heidelberg (2013). https://doi.org/10.1007/978-3-642-31301-1_3

Rao, A.S., Georgeff, M.P.: Modeling rational agents within a BDI-architecture. In:
Principles of Knowledge Representation and Reasoning. Proceedings of the sec-
ond International Conference. pp. 473-484. Morgan Kaufmann, San Mateo (1991).
https://doi.org/10.5555/3087158.3087205

Russell, J.A.: A circumplex model of affect. J. Pers. Soc. Psychol. 39(6), 1161-1178
(1980). https://doi.org/10.1037/h0077714

Russell, J.A.: Core affect and the psychological construction of emotion. Psychol.
Rev. 110(1), 145-172 (2003). https://doi.org/10.1037/0033-295X.110.1.145
Sakellariou, I., Kefalas, P., Savvidou, S., Stamatopoulou, I., Ntika, M.: The role of
emotions, mood, personality and contagion in multi-agent system decision making.
In: Hiadis, L., Maglogiannis, I. (eds.) AIAI 2016. IAICT, vol. 475, pp. 359-370.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44944-9_31
Sakellariou, 1., Kefalas, P., Stamatopoulou, I.: Evacuation simulation through for-
mal emotional agent based modelling. In: Duval, B., van den Herik, H.J., Loiseau,
S., Filipe, J. (eds.) ICAART 2014 - Proceedings of the 6th International Con-
ference on Agents and Artificial Intelligence, vol. 2, ESEO, Angers, Loire Valley,
France, 6-8 March, 2014, pp. 193—-200. SciTePress (2014). https://doi.org/10.5220/
0004824601930200

Santos, R., Marreiros, G., Ramos, C., Neves, J., Bulas-Cruz, J.: Personality, emo-
tion, and mood in agent-based group decision making. IEEE Intell. Syst. 26(6),
58-66 (2011). https://doi.org/10.1109/mis.2011.92

dos Santos, T., Nakane, M.: Dynamic bank runs: an agent-based approach. Working
Papers Series 465, Central Bank of Brazil, Research Department (2017). https://
EconPapers.repec.org/RePEc:bcb:wpaper:465

Shi, S., Temzelides, T.: A model of bureaucracy and corruption. Int. Econ. Rev.
45(3), 873-908 (2004). https://doi.org/10.1111/.0020-6598.2004.00290.x
Tesfatsion, L.: Chapter 16 agent-based computational economics: a constructive
approach to economic theory. In: Tesfatsion, L., Judd, K. (eds.) Handbook of
Computational Economics, vol. 2, pp. 831-880. Elsevier (2006). https://doi.org/
10.1016/s1574-0021(05)02016-2

Tsai, J., et al.: Escapes - evacuation simulation with children, authorities, parents,
emotions, and social comparison. In: AAMAS 2011: The Tenth International Con-
ference on Autonomous Agents and Multiagent System, vol. 2, pp. 457-464. ACM
Digital Library, New York, New York, United States (2011). https://dl.acm.org/
doi/abs/10.5555/2031678.2031682

Wilensky, U.: NetLogo (1999). http://ccl.northwestern.edu/netlogo/. Center for
Connected Learning and Computer-Based Modeling, Northwestern University,
Evanston, IL

https://doi.org/10.1007/3-540-62686-7_28
https://doi.org/10.1007/978-3-540-88833-8_4
https://doi.org/10.1007/978-3-642-31301-1_3
https://doi.org/10.5555/3087158.3087205
https://doi.org/10.1037/h0077714
https://doi.org/10.1037/0033-295X.110.1.145
https://doi.org/10.1007/978-3-319-44944-9_31
https://doi.org/10.5220/0004824601930200
https://doi.org/10.5220/0004824601930200
https://doi.org/10.1109/mis.2011.92
https://EconPapers.repec.org/RePEc:bcb:wpaper:465
https://EconPapers.repec.org/RePEc:bcb:wpaper:465
https://doi.org/10.1111/j.0020-6598.2004.00290.x
https://doi.org/10.1016/s1574-0021(05)02016-2
https://doi.org/10.1016/s1574-0021(05)02016-2
https://dl.acm.org/doi/abs/10.5555/2031678.2031682
https://dl.acm.org/doi/abs/10.5555/2031678.2031682
http://ccl.northwestern.edu/netlogo/

EUMAS 2020 Session 3: Autonomous
Agents

®

Check for
updates

An Interface for Programming Verifiable
Autonomous Agents in ROS

Rafael C. Cardoso®)®, Angelo Ferrando®, Louise A. Dennis®,
and Michael Fisher

Department of Computer Science, The University of Manchester, Manchester, UK
{rafael .cardoso,angelo.ferrando,louise.dennis,
michael. fisher}@ma_nchester .ac.uk

Abstract. Autonomy has been one of the most desirable features for
robotic applications in recent years. This is evidenced by a recent surge
of research in autonomous driving cars, strong government funding for
research in robotics for extreme environments, and overall progress in
service robots. Autonomous decision-making is often at the core of these
systems, thus, it is important to be able to verify and validate prop-
erties that relate to the correct behaviour that is expected of the sys-
tem. Our main contribution in this paper, is an interface for integrating
BDI-based agents into robotic systems developed using ROS. We use
the GWENDOLEN language to program our BDI agents and to make use
of the AJPF model checker in order to verify properties related to the
decision-making in the agent programs. Our case studies include 3D sim-
ulations using a simple autonomous patrolling behaviour of a TurtleBot,
and multiple TurtleBots servicing a house that can cooperate with each
other in case of failure.

Keywords: Autonomous agents - High-level decision-making -
Robotic applications + ROS + Model checking

1 Introduction

Belief-Desire-Intention (BDI) [13] agents has been the standard paradigm for
agent programming languages over the years. These mental attitudes represent,
respectively, the information, motivational, and deliberative states of the agent.
Incoming perceptions from the environment can trigger the update of the belief
base (what the agent believes to be true about its environment and other agents).
This update generates more goal options and updates the desire base (the desired
states that the agent hopes to achieve) accordingly. Finally, given the updated
belief and desire base, the intention base (a sequence of actions that an agent

Work supported by UK Research and Innovation, and EPSRC Hubs for “Robotics and
Al in Hazardous Environments”: EP/R026092 (FAIR-SPACE), EP/R026173 (ORCA),
and EP/R026084 (RAIN).

© Springer Nature Switzerland AG 2020

N. Bassiliades et al. (Eds.): EUMAS 2020/AT 2020, LNAT 12520, pp. 191-205, 2020.
https://doi.org/10.1007/978-3-030-66412-1_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-66412-1_13&domain=pdf
http://orcid.org/0000-0001-6666-6954
http://orcid.org/0000-0002-8711-4670
http://orcid.org/0000-0003-1426-1896
http://orcid.org/0000-0002-0875-3862
https://doi.org/10.1007/978-3-030-66412-1_13

192 R. C. Cardoso et al.

wants to carry out in order to achieve a desired state) is updated and one inten-
tion is chosen to be executed.

There are many agent programming languages that are based on BDI, such as
GWENDOLEN |[6], Jason [1], 2APL [4], GOAL [9], and more recently ASTRA [2].
Such languages would be ideal for controlling high-level decision-making in
autonomous robots. However, despite the various choices in agent languages,
there is still a lack of robotic applications that make use of them. Past attempts
usually try to mimic or implement their own BDI representation inside of their
robotic application, such as in [8]. These attempts are often domain-specific or
depend on specific versions of software to work. Moreover, they usually lack any
means of verifying the high-level decision-making component of the system.

In this paper, we introduce an interface for the GWENDOLEN agent program-
ming language to communicate with the Robot Operating System (ROS) [11].
This interface allows agent programs to send commands to a robot’s actuators
and receive feedback from the robot and its sensors. We use GWENDOLEN due to
its association with the Agent Java PathFinder (AJPF) [7] model checker. AJPF
is an extension of JPF [15], a model-checker that works directly on Java pro-
gram code instead of on a mathematical model of the program’s execution. This
extension allows for formal verification of agent programs by providing a prop-
erty specification language based in Linear-time Temporal Logic that supports
the description of terms usually found in BDI agents.

We validate our interface through its practical use in two case studies using
the Gazebo 3D simulator, chosen for its association with ROS and its realistic
physics plugins. In our first scenario, an agent autonomously controls a Turtle-
Bot3 to keep patrolling four waypoints in a map indefinitely. Our second scenario
expands to three agents, each controlling its own TurtleBot3, in a home envi-
ronment where the agents can cooperate to deliver items throughout the house.
Although we focus on GWENDOLEN in this paper, our interface can be used with
any AgentSpeak(L) [12] based-language that is implemented in Java.

The remainder of this paper is organised as follows. The next section contains
basic concepts about ROS that are used throughout the paper. In Sect. 3, we
describe how our interface can be used to allow autonomous agents programs
that are capable of performing high-level decision-making in robots that use
ROS. Section4 has two case studies that show our interface in use: a single-
agent patrolling a simple environment, and three agents cooperating in a home
environment. In Sect. 5, related approaches that combine autonomous agents
with robots and/or provide any means of verifying decision-making in robots
are presented. We conclude the paper in Sect. 6.

2 Background

ROS [11] is an open-source set of software libraries and tools to develop robotic
applications. We chose it because of its modularity, its large community of users,
and its compatibility with a variety of robots. ROS applications follow a node-
based structure. Each robot inside ROS can be defined as a set of nodes, and each

An Interface for Programming Verifiable Autonomous Agents in ROS 193

node handles a specific aspect. For example, we can have nodes fetching data
from sensors, sending commands to actuators, or even focused on evaluations
and computations to support the other nodes in the system.

ROS nodes are inherently distributed and the entire information sharing is
obtained through message passing. This simplifies the internal logic of each single
node, and allows a natural distribution of the workload on multiple machines
(common in cyber-physical systems). When a node enters the system, in order
to communicate with the other nodes, it has to register with ROS Master. The
ROS Master is a special node which keeps track of the nodes registered in the
system, and enables the communication among them, as shown in Fig. 1.

registration T registration

(

ROS
Node 1

messages messages

messages

Fig. 1. ROS general structure.

When a node registers to the ROS Master, it has to specify the topics for
which it is a publisher or a subscriber. A topic in ROS can be seen as a com-
munication channel used by the nodes to exchange information. Each node can
be a publisher: able to send messages on the channel; or a subscriber: able to
receive messages from the channel. In Fig. 2 an example with one publisher and
two subscribers is shown. For each topic, the ROS Master keeps track of the
nodes that are publishing on it. When a new subscriber node registers to the
ROS Master, the ROS Master enables peer-to-peer communication between the
subscriber node and all the nodes publishing on the requested topic. The ROS
Master is involved only at this initial stage. After it, all the consecutive commu-
nications are performed directly among the involved nodes. This communication
is one-way from (one or more) publishers to (one or more) subscribers.

Communication using topics is flexible, but also many-to-many. It is appro-
priate when the nodes have to continuously update the system, such as in the
case of sensors. When a node wants to make a request to another node (one-
to-one), and it expects a response (the result) from it, then using services is
more appropriate. A node can offer one or multiple services, and each service
is specified through its name, and a pair of messages representing its input and
output. When a node needs a service, it has to send a message (the message
request) to the service (identified by its name) and wait for the response.

194 R. C. Cardoso et al.

ROS Node

ROS Node

. Topic: /example
Publisher Message Type: std_msgs/String

ROS Node

Fig. 2. ROS example communication through topics.

Services are synchronous, which can be a problem when the task assigned
to the service requires a long time to be completed, or when the requesting
node needs to cancel the request. In these cases, the action library can be used
(Fig. 3), allowing the creation of servers that can accept long-running requests
(called goals), and clients that can cancel the execution at any time and receive
feedback (intermediate results) dynamically until the goal is completed and the
final result is available.

ROS Topics

cancel

feedback

Fig. 3. Action library.

3 Integrating Autonomous Agents with ROS

In this section we describe an interface! that can be used to integrate autonomous
agents with ROS using the rosbridge library. While we use the GWENDOLEN
language in our examples and case studies, we note that any agent programming
language that uses Java would be able to benefit from our interface. For instance,
we have also tested using the Jason [1] language.? However, in this paper we focus
on the GWENDOLEN language, particularly due to its association with the AJPF
model checker, which enables us to verify properties of the agent’s program.

! GWENDOLEN interface source code is available at: https://github.com/autonomy-
and-verification-uol/gwendolen-rosbridge.

2 Jason interface source code is available at: https://github.com/rafaelcaue/jason-
rosbridge.

https://github.com/autonomy-and-verification-uol/gwendolen-rosbridge
https://github.com/autonomy-and-verification-uol/gwendolen-rosbridge
https://github.com/rafaelcaue/jason-rosbridge
https://github.com/rafaelcaue/jason-rosbridge

An Interface for Programming Verifiable Autonomous Agents in ROS 195

3.1 Connecting to Rosbridge

Rosbridge is a library for ROS that allows external programs to communicate
with ROS [3]. This is easily achieved through message passing using the JSON
format. A message sent from a ROS node to an external program passes through
the rosbridge node, which translates the message to JSON and then publishes
the message to the appropriate topic that the external program is listening to.
Conversely, a message sent (in JSON format) from an external program to a ROS
node is received by the rosbridge node, translated from JSON to ROS messages,
and then published to the appropriate topic.

The rosbridge library does not alter ROS in any way, it simply provides a
ROS API for non-ROS programs. Thus, it is programming language and trans-
port agnostic, making it easy to integrate any external program with ROS, as
long as messages are sent in the JSON format. Another advantage of rosbridge
is that it does not alter ROS core functions in any way, therefore it requires
minimal to no changes between new ROS versions. This, in turn, makes exter-
nal programs agnostic of ROS versions, as long as the ROS message structure
remains unchanged from the original version.

Our interface is implemented as a GWENDOLEN environment. It connects to
rosbridge using the WebSocket protocol, as shown in Listing 1. First the bridge
object is instantiated, and then, once the environment starts it attempts to con-
nect to rosbridge using the rosbridge server URI (localhost in this example) with
the default port 9090 (this can be changed in the ROS launch file of rosbridge).
The second parameter is a flag that determines if the call should be blocked until
the connection is established.

1 public class RosEnv extends DefaultEnvironment {
2 RosBridge bridge = new RosBridge();

3 public RosEnv() {

4 bridge.connect("ws://localhost:9090", true);
5 }

6

Listing 1: Sample environment code in GWENDOLEN for connecting to rosbridge.

The translation of a message from Java to JSON is done automatically, how-
ever the message still has to be defined in Java with the appropriate data types
that relate to the data types specified in the ROS message. New message types
only have to be defined once, and if added to the interface JAR can then be used
subsequently by any program.

3.2 Subscribing

Agents can subscribe to ROS topics through the environment. The subscrip-
tion is completely transparent to the agent. Perceptions are generated by the
environment as messages are published in the subscribed topic. Subscribers can
be defined in the constructor method for the environment, or can be declared
later on. An example of a subscriber definition in the environment is shown in
Listing 2. We make use of the bridge object to subscribe to the topic called

196 R. C. Cardoso et al.

“/fros_to_java”, where we need to set the ROS message type (with the full type
“std_msgs/String”), however the other fields are optional and work the same way
as when declaring subscribers in ROS.

1 bridge.subscribe(SubscriptionRequestMsg.generate("/ros_to_java")
2 .setType ("std_msgs/String")

3 .setThrottleRate(1)

4 .setQueuelength(1),

5 new RosListenDelegate() {

6 public void receive(JsonNode data, String stringRep) {

7 MessageUnpacker<PrimitiveMsg<String>> unpacker =

8 new MessageUnpacker<PrimitiveMsg<String>>(PrimitiveMsg.class);
9 PrimitiveMsg<String> msg = unpacker.unpackRoslMessage(data);
10 System.out.println(msg.data);

11 }

Listing 2: Creating a subscriber in the interface.

Each subscriber has a receive method that unpacks the message (this time
using the message type as defined in the interface, PrimitiveM sg<String>). In
this example we simply print the data contents of the message. The case studies
shown in the next section cover how to translate the contents of a message into
perceptions to be sent to the agent.

It is important to note that messages coming from ROS to the agent usually
originate from sensors, which depending on the frequency that is being published
could overload the belief base of an agent. This is a known problem in using
autonomous agents in robots, and the solution is to either change the frequency
to an acceptable value or to apply a filter. The filter can be applied directly
to the ROS code of the sensor, to the receive method in our interface, or to
the belief base revision of the agent. We conjecture that the first would be the
most efficient computationally, the second can be easier to change and adapt,
and the third is the most difficult since it requires changes to the source code of
the language being used.

3.3 Publishing

An agent can publish a message to a ROS topic through actions in its environ-
ment. Most agent programming languages delegate the action description to the
environment. As such, the code for the environment usually contains a section
for describing these actions. In the GWENDOLEN language this occurs inside
the executeAction method, which is activated when an agent prompts a new
action. For example (Listing 3), if we want to add an action called hello_ros
to the environment, we simply have to match the name of the action received
(actionname) to the name of the action (a string) we want to deal with.

An Interface for Programming Verifiable Autonomous Agents in ROS 197

public Unifier executeAction(String agName, Action act) throws AILexception {
String actionname = act.getFunctor();
if (actionname.equals("hello_ros")) {
hello_ros();
}

return super.executeAction(agName, act);

N oG A W N e

}

Listing 3: Execute action environment in GWENDOLEN.

We specify the hello_ros action that was called in Listing3 as a method,
described in Listing 4. In this method, since we want to send a message to a ROS
topic we have to create a new publisher. The first parameter is the topic that the
message will be published to (“/java_to_ros”), the second parameter is the ROS
type of the message (“std_msgs/String”), and the third is the bridge object.
In this example, once the agent calls the hello_ros action a string message is
published on the “/java_to_ros” topic each 500 ms, up to a total of 100 messages.
Note that to publish a message it is necessary to associate it with the correct
type as defined in the interface, Primitive M sg<String> in this case.

1 public void hello_ros() {
2 Publisher pub = new Publisher("/java_to_ros", "std_msgs/String", bridge);
3 for(int i = 0; i < 100; i++) {
4 pub.publish(new PrimitiveMsg<String>("hello from gwendolen " + i));
5 try {
6 Thread.sleep(500);
7 } catch (InterruptedException e) {
8 e.printStackTrace();
9 }
0
1

}
}

Listing 4: Creating a publisher in the interface.

4 Case Studies

To validate our interface we have applied it to two different scenarios® and have
verified certain properties about the behaviour of the agents. In the first scenario,
the autonomous agent decides the order to visit waypoints in order to patrol an
area. The second scenario has three agents, each controlling its own TurtleBot3
to service several rooms in a home environment.

All of our case studies were simulated using ROS and the Gazebo 3D simu-
lator. Our simulations were performed in both Kinetic and Melodic versions of
ROS. We have used the 2019 release of MCAPL (Model-checking Agent Pro-
gramming Languages) [5], which includes the GWENDOLEN agent language and
the AJFP program model checker.

3 Source code of both scenarios are available at: https://github.com/autonomy-and-
verification-uol/gwendolen-ros-turtlebot3.

https://github.com/autonomy-and-verification-uol/gwendolen-ros-turtlebot3
https://github.com/autonomy-and-verification-uol/gwendolen-ros-turtlebot3

198 R. C. Cardoso et al.

4.1 TurtleBot Autonomous Patrolling

We use a TurtleBot3 to patrol around four different locations in an environment,
illustrated in Fig.4. The robot can start at any point inside the map, however
it must patrol the designated waypoints in order (A = B - C —- D — A —
...). The robot starts with a complete map of the area, and uses the move_base
library to move to specific coordinates in the map while avoiding obstacles.

Fig. 4. TurtleBot autonomous patrolling simulated in Gazebo.

Move base is an action library, and as such it has a server that executes
actions and a client that requests actions. While our agents cannot serve directly
as clients due to the communication barrier between ROS and external programs,
the agents can publish a message through the interface and rosbridge, which is
received by a ROS node for the move base client. This client can then process
the message and create a new request for the move base server.

Agent Implementation. A plan in GWENDOLEN is started by an event, for
example, a plan for completing a goal patrol(a) is activated when the goal (!)
patrol(a) is added (+); this is known as a goal addition event. The plan will
be selected and added to the agent’s intention base if the formulae present in
the guard (i.e. the context or precondition of the plan, goes after a colon and
between curly brackets) are true. After a plan is selected, a sequence of actions
in the plan body (denoted by «) is executed.

The complete source code of the agent program is shown in Listing5. The
agent begins with 8 initial beliefs (lines 5-12): four for each waypoint (a, b, ¢, d)
and another four for each coordinate that corresponds to one of the waypoints.

An Interface for Programming Verifiable Autonomous Agents in ROS 199

For simplicity the agent already starts with this knowledge, although in a more
complex scenario it could learn it during execution from the low-level control of
the robot (sensors and/or movement libraries) or from other agents. The initial
goal of the agent is to start patrolling waypoint A. This triggers the plan in
lines 18-19, which tests in the plan guard if the agent has the belief with the
corresponding coordinates. If this is the case, then a belief going(a) is added
to the belief base, and the agent executes the move action. This action is sent
to the move base library, where a path from the robot’s initial position to the
destination is computed and altered as the robot moves.

Subsequent plans (lines 20-24) deal with the result of the move base library.
The result is returned upon the end of the action with code 3 if it was successful,
or with code 2 in case of failure (i.e. the action stopped and the robot has not
arrived in its destination). The first four plans respond to a successful action,
which means that the robot arrived in its destination and is ready to patrol the
next waypoint in the list. Each plan removes the going belief and calls the patrol
plan as appropriate.

GWENDOLEN
:name: turtlebot3

1

2

3

4 :Initial Beliefs:

5 waypoint(a)

6 waypoint(b)

7 waypoint(c)

8 waypoint(d)

9 waypoint_coordinate(a,1.25,0.0,0.0)

10 waypoint_coordinate(b,2.5,0.0,0.0)

11 waypoint_coordinate(c,2.5,1.0,0.0)

12 waypoint_coordinate(d,1.25,1.0,0.0)

13

14 :Initial Goals:

15 patrol(a) [perform]

16

17 :Plans:

18 +!patrol (Waypoint) [perform] : { B waypoint_coordinate(Waypoint,X,Y,Z) }

19 <- +going(Waypoint), move(X,Y,Z);

20 +movebase_result(Seq,3) : { B going(a) } <- -going(a), +!patrol(b) [perform];
21 +movebase_result(Seq,3) : { B going(b) } <- -going(b), +!patrol(c) [perform];
22 +movebase_result(Seq,3) : { B going(c) } <- -going(c), +!patrol(d) [perform];
23 +movebase_result(Seq,3) : { B going(d) } <- -going(d), +!patrol(a) [perform];
24 +movebase_result(Seq,2) : { B going(W) } <- print("Movement to ",W," failed.");

Listing 5: GWENDOLEN agent program for the TurtleBot autonomous patrolling.

The plan on line 24 can be used to deal with failure. In this case, for brevity
we simply print a message on the screen. However, the agent could retrieve its
target waypoint using the belief going and retry the action, or it could try to
move to the next waypoint in the list, and so on. In the real world things often
fail or don’t work as expected, so it is important for the agent to be able to react
and reason about these events at a high-level.

The subscriber for the move base action result is shown in Listing 6. Note
that this subscriber uses a message type from the move base library called
“move_base_msgs/MoveBaseActionResult”. In lines 9-12 we create the new per-
ception that is to be sent to the agent. We create the literal movebase_result

200 R. C. Cardoso et al.

and add the two terms (parameters) that come with the ROS message: seq, an
increasing sequence identification; and status, an int value that indicates success
or failure. Then, the literal is added as a perception and sent to the agent.

1 bridge.subscribe(SubscriptionRequestMsg.generate ("/move_base/result")
2 .setType("move_base_msgs/MoveBaseActionResult"),

3 new RosListenDelegate() {

4 public void receive(JsonNode data, String stringRep) {

5 MessageUnpacker<MoveBaseActionResult> unpacker =

6 new MessageUnpacker<MoveBaseActionResult>(MoveBaseActionResult.class);
7 MoveBaseActionResult msg = unpacker.unpackRosMessage(data) ;

8 clearPercepts() ;

9 Literal movebase_result = new Literal("movebase_result");

10 movebase_result.addTerm(new NumberTermImpl (msg.header.seq));

11 movebase_result.addTerm(new NumberTermImpl (msg.status.status));
12 addPercept (movebase_result) ;

13 }

14 }

15)

Listing 6: Move base result subscriber for the TurtleBot autonomous patrolling.

The execution of the move action is processed in the environment, as
described in Listing 7. It takes the coordinates, as sent by the agent, and creates
a publisher to the topic “/gwendolen_to_move_base” using the Vector8 message
type. A move base client is listening to that topic, and upon receiving a message
it creates a goal with the coordinates given in the message and sends it to the
move base server.

1 public void move(double 1x, double ly, double 1z) {

2 Publisher move_base =

3 new Publisher(”/gwendolen_to_move_base”, "geometry_msgs/Vector3", bridge) ;
4 move_base.publish(new Vector3(lx,ly,1z));

5

Listing 7: Move action for the TurtleBot autonomous patrolling.

Verification. Some of the properties that we verified of the implementation of
our agent, consider the following:

D(Aturtlebots patTol(a) — O Biurtiebots going(a
O(Aturtiebors patrol(b) — O=Brartiebora going(b
|:l(AturtlebotS patrOl(C) — O Biurt1ebots 90in9(c
D(AturtlebotS PatTOZ(d) — O Biurtiebots gOinQ(d

)
)
)
)

These properties state that it is always the case (O) that if the turtlebot3
agent executes the action patrol (to either A, B, C, or D), then eventually (0)
the turtlebot3 agent will no longer believe that it is on its way to that particular
waypoint. That is, it has either arrived or failed.

An Interface for Programming Verifiable Autonomous Agents in ROS 201

4.2 The Three TurtleBots: Home Service Robots

In this section, we present a case study involving multiple robots inside a house
(Fig.5). Differently to the example presented in Sect.4.1, in this scenario the
robots have to collaborate to solve specific tasks. The reasoning process followed
by each robot is defined by a GWENDOLEN agent. More specifically, each robot
has the job to bring supplies and tools around the house. The robots collaborate
in two situations; when a robot needs an item from another robot, and, when a
robot fails to deliver an item because of some technical difficulties.

kitchen
[o

woouyjeq
1
S
wooJ buuip

|

S St | I
[]
A

. bedroom
[

bedroom

@ robots

Fig. 5. Map of the house where the three TurtleBots are used.

In order to use multiple robots, each one controlled by a GWENDOLEN agent,
we modify a few things in our interface. Until now, there was only one agent
publishing messages, and only one robot receiving them; in fact, it was not
necessary to keep track of which agent was sending a certain message, and which
robot was reacting on the latter. When multiple agents are involved, each one
of them needs to distinguish its topics according to its associated robot. This
can be achieved straightforwardly by keeping track of the name of the robot in
ROS, and adding it as namespace when publishing the messages. In this way,
each robot knows where to subscribe to receive the agent’s commands and each
agents knows where to publish.

For example, consider three robots called agl, ag2 and ag3, respectively; and
a topic corresponding to the action that each agent can ask its corresponding
robot to do, act. Thus, agl publishes on agl/act, ag2 on ag2/act and finally,
ag3 on ag3/act.

202 R. C. Cardoso et al.

Agent Implementation. Each agent has a set of beliefs (Listing 8) denoting
the items to be delivered and where they have to be delivered. For example, the
following three beliefs in the agent’s mind tell that, the agent has a coke to be
delivered to the table in the kitchen, and the table in the kitchen is at some
specific coordinates.

1 item(coke)
2 delivery(coke, kitchen, table)
3 waypoint_coordinate(kitchen,table,1.25,2.0,1.5)

Listing 8: Example of beliefs in the TurtleBot house scenario.

Using these beliefs, the agents can achieve different goals. In this scenario,
where our aim is to show the feasibility of guiding multiple robots using a MAS
defined in GWENDOLEN, the agents deliver items and help each other in case
of technical problems. This is obtained through the deliver plan (Listing9),
where the agent checks for item to deliver, and deliver them (base case).

1 +!deliver [perform] : { B name(Name), B delivery(Item, Room, Waypoint),

2 B item(Item), B waypoint_coordinate(Room, Waypoint, X, Y, Z) }
3 <- move(Name, X, Y, Z), -delivery(Item, Room, Waypoint), +!deliver [perform];

Listing 9: The basic deliver plan in the TurtleBot house scenario.

In this plan, the agent checks if it possesses an item Item which has to be
delivered to a specific Room in a predefined waypoint inside the room (Waypoint).
If this is the case, then the agent asks the robot to move to the target position,
and to deliver the item. In this simplified scenario, the delivery is assumed as
being instantaneous; once the robot reaches the target position, the item is
instantaneously delivered, and the agent only has to update its beliefs accord-
ingly (by removing the belief about delivering the item).

We defined two other course of actions which may happen when a delivery
has to be done. The first case is when the item required is not available, thus
the agent has to ask to the other agents to deliver the item, if they have it. This
can be achieved with a different deliver plan, as shown in Listing 10.

+!deliver [perform] : { B delivery(Item, Room, Waypoint), ~ B item(Item) }

1
2 <- -delivery(Item, Room, Waypoint),

3 .send(agl, :tell, delivery(Item, Room, Waypoint)),
4

5

.send(agn, :tell, delivery(Item, Room, Waypoint));

Listing 10: The second deliver plan in the TurtleBot house scenario.

The trigger for this case is different from before. This plan is triggered when
a delivery is expected by the agent for an Item, but the agent does not have
the item (~ stands for negation). Thus, the agent has to ask the other agents
to help deliver this item. The messages will simply create beliefs in the receiver
agents’ belief base. If one of them has the item, then it will execute the base
deliver plan (note that we allow multiple agents to deliver the same item).

An Interface for Programming Verifiable Autonomous Agents in ROS 203

The last case is when an agent fails and is no longer able to continue with
its deliveries. In this case, the agent asks for help to the other agents. The agent
which accepts to help it, will move to the position of the broken agent, and fetch
all the items from the latter. In this way, even though a robot fails, its items can
still be delivered. This can be obtained with a combination of multiple plans, and
due to space constraints we only report the plans that send the help requests.

1 +!deliver [perform] : { B name(Name), B failure(Room, Waypoint) }

2 <- +lask_for_help(Name, Room, Waypoint);

3 +l!ask_for_help(Name, Room, Waypoint) : { ~ B accept_request_for_help, B agent_to_ask(Ag)}
4 <- .send(Ag, :tell, help_request(Name, Room, Waypoint)),

5 wait (5000),

6 -agent_to_ask(Ag),

7 +!ask_for_help(Name, Room, Waypoint);

8 +lask_for_help(Name, Room, Waypoint) : { B accept_request_for_help }

9 <- -accept_request_for_help;

Listing 11: The third deliver plan in the TurtleBot house scenario.

In Listing 11, the agent that failed asks for help to all the other agents one at a
time; after each request, it waits a fixed amount of time (5000 ms), before sending
the request to another agent. This is necessary to simplify the communication
protocol involved, and to avoid that multiple agents decide to help the agent
that failed.

Verification. One of the advantages in defining the agents in GWENDOLEN is
that we can also do model checking of their behaviours. For instance, a property
we check is:

O(Bevs_o delivery(coke, kitchen, table)) — O(—Byps_o delivery(coke, kitchen, table))

Where we check for a specific agent (tb3_0 in this case) if a delivery assigned
to it is eventually considered completed. In this case, the delivery of the coke to
the kitchen’s table. The delivery can be achieved by the agent, or by any helper
agent in case of failure.

5 Related Work

In [17], the authors discuss the necessary requirements to integrate agent pro-
gramming languages with robotic frameworks. These requirements are exempli-
fied using a demo application of a NAO robot in a home-care scenario. The robot
is controlled using the 2APL agent language that interacts with ROS through
an interface environment. However, the paper limits itself to describing existing
solutions that can be used and past work in the literature. The interface itself is
never described, and no source code is provided within the paper.

Two similar approaches have been developed to allow the Jason [1] agent
programming language to interface with ROS. The first approach [16] makes

204 R. C. Cardoso et al.

use of the rosjava library. This library re-implements the essential core features
of ROS in Java, which is not officially supported in ROS. The authors use this
library to then connect the agents through the CArtAgO [14] environment, which
Jason agents can then access using CArtAgO artifacts. The second approach [10]
changes the default agent architecture to interface with ROS code in C++.
Compared to our interface, both approaches have the disadvantage of requiring
changes to core ROS functionalities, something that usually changes between
new releases of ROS. Whilst our approach remains version agnostic (as long as
the ROS message structure remains the same) and can be used by a variety of
agent programming languages (as long as they support Java).

6 Conclusion

In this paper we presented an interface that allows the integration of autonomous
agents (particularly those programmed in agent languages that support Java)
with robots that use ROS. Agents can use the interface to publish messages
(e.g. commands to actuators) to a ROS topic or to subscribe to a topic in order
to receive messages (e.g. perceptions from sensors). To evaluate our approach
we used the interface to develop autonomous agents in GWENDOLEN that are
capable of high-level decision-making in the TurtleBot3 robot. In the first case
study, the agent controls the patrolling behaviour of the robot. We increase the
number of agents and robots in the second case study, using three agents (one
for each of the three TurtleBot3 robots) to service multiple rooms in a house. For
both scenarios we have used the AJPF model checker to verify some properties
of the agents program.

Although verifying the code that is responsible for the robot’s decision-
making is an important step towards providing assurances about its behaviour,
in some scenarios (e.g. safety critical) it may also be necessary to verify other
nodes that are part of the system, such as the vision mechanism or the path
planner. Other future work include comparing the agent’s program with tradi-
tional decision-making code in Python/C++ (ROS supported languages), and
performing field tests in real world applications.

References

1. Bordini, R.H., Wooldridge, M., Hiibner, J.F.: Programming Multi-agent Systems
in AgentSpeak using Jason. John Wiley & Sons, Chichester (2007)

2. Collier, R.W., Russell, S., Lillis, D.: Exploring AOP from an OOP perspective. In:
Proceedings of the 5th International Workshop on Programming Based on Actors,
Agents, and Decentralized Control. In: AGERE! 2015, pp. 25-36. Association
for Computing Machinery, New York (2015). https://doi.org/10.1145/2824815.
2824818

3. Crick, C., Jay, G., Osentoski, S., Pitzer, B., Jenkins, O.C.: Rosbridge: ROS for
non-ROS users. In: Christensen, H.I., Khatib, O. (eds.) Robotics Research. STAR,
vol. 100, pp. 493-504. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
29363-9_28

https://doi.org/10.1145/2824815.2824818
https://doi.org/10.1145/2824815.2824818
https://doi.org/10.1007/978-3-319-29363-9_28
https://doi.org/10.1007/978-3-319-29363-9_28

10.

11.

12.

13.

14.

15.

16.

17.

An Interface for Programming Verifiable Autonomous Agents in ROS 205

Dastani, M.: 2APL: a practical agent programming language. Auton. Agent. Multi-
Agent Syst. 16(3), 214-248 (2008). https://doi.org/10.1007/s10458-008-9036-y
Dennis, L.: The MCAPL framework including the agent infrastructure layer and
agent Java pathfinder. J. Open Source Softw. 3(24), 617 (2018). https://doi.org/
10.21105/j0ss.00617

Dennis, L.A., Farwer, B.: Gwendolen: A BDI language for verifiable agents. In:
Logic and the Simulation of Interaction and Reasoning. AISB, Aberdeen (2008)
Dennis, L.A., Fisher, M., Webster, M.P., Bordini, R.H.: Model checking agent
programming languages. Autom. Softw. Eng. 19(1), 5-63 (2012)

Gottifredi, S., Tucat, M., Corbatta, D., Garcia, A., Simari, G.R.: A BDI architec-
ture for high level robot deliberation. Inteligencia Artif. 14(46), 74-83 (2010)
Hindriks, K.V., de Boer, F.S., van der Hoek, W., Meyer, J.-J.C.: Agent program-
ming with declarative goals. In: Castelfranchi, C., Lespérance, Y. (eds.) ATAL
2000. LNCS (LNATI), vol. 1986, pp. 228-243. Springer, Heidelberg (2001). https://
doi.org/10.1007/3-540-44631-1_16

Morais, M.G., Meneguzzi, F.R., Bordini, R.H., Amory, A.M.: Distributed fault
diagnosis for multiple mobile robots using an agent programming language. In:
2015 International Conference on Advanced Robotics (ICAR), pp. 395-400, July
2015 https://doi.org/10.1109/ICAR.2015.7251486

Quigley, M., et al.: ROS: an open-source robot operating system. In: Workshop on
Open Source Software at the International Conference on Robotics and Automa-
tion. IEEE, Japan (2009)

Rao, A.S.: AgentSpeak(L): BDI agents speak out in a logical computable language.
In: Van de Velde, W., Perram, J.W. (eds.) MAAMAW 1996. LNCS, vol. 1038, pp.
42-55. Springer, Heidelberg (1996). https://doi.org/10.1007/BFb0031845

Rao, A.S., Georgeff, M.P.: BDI agents: from theory to practice. In: Proceedings of
the First International Conference on Multi-agent Systems, pp. 312-319 (1995)
Ricci, A., Piunti, M., Viroli, M., Omicini, A.: Environment programming in
CArtAgO. In: El Fallah Seghrouchni, A., Dix, J., Dastani, M., Bordini, R.H. (eds.)
Multi-Agent Programming, pp. 259-288. Springer, Boston, MA (2009). https://
doi.org/10.1007/978-0-387-89299-3_8

Visser, W., Havelund, K., Brat, G., Park, S.J., Lerda, F.: Model checking programs.
Autom. Softw. Eng. 10(2), 3-11 (2002)

Wesz, R.: Integrating robot control into the Agentspeak(L) programming language.
Master’s thesis, Pontificia Universidade Catolica do Rio Grande do Sul (2015).
http://tede2.pucrs.br/tede2/handle/tede/6941

Ziafati, P., Dastani, M., Meyer, J.-J., van der Torre, L.: Agent programming
languages requirements for programming autonomous robots. In: Dastani, M.,
Hiubner, J.F., Logan, B. (eds.) ProMAS 2012. LNCS (LNAI), vol. 7837, pp. 35-53.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38700-5_3

https://doi.org/10.1007/s10458-008-9036-y
https://doi.org/10.21105/joss.00617
https://doi.org/10.21105/joss.00617
https://doi.org/10.1007/3-540-44631-1_16
https://doi.org/10.1007/3-540-44631-1_16
https://doi.org/10.1109/ICAR.2015.7251486
https://doi.org/10.1007/BFb0031845
https://doi.org/10.1007/978-0-387-89299-3_8
https://doi.org/10.1007/978-0-387-89299-3_8
http://tede2.pucrs.br/tede2/handle/tede/6941
https://doi.org/10.1007/978-3-642-38700-5_3

l‘)

Check for
updates

Integrated Commonsense Reasoning
and Deep Learning for Transparent
Decision Making in Robotics

Tiago Mota! @, Mohan Sridharan?®™)®, and Ales Leonardis?

! Electrical and Computer Engineering, The University of Auckland,
Auckland, New Zealand
tmot987Qaucklanduni.ac.nz
2 School of Computer Science, University of Birmingham, Birmingham, UK
{m.sridharan,a.leonardis}@bham.ac.uk

Abstract. A robot’s ability to provide explanatory descriptions of its
decisions and beliefs promotes effective collaboration with humans. Pro-
viding such transparency in decision making is particularly challeng-
ing in integrated robot systems that include knowledge-based reason-
ing methods and data-driven learning algorithms. Towards addressing
this challenge, our architecture couples the complementary strengths of
non-monotonic logical reasoning with incomplete commonsense domain
knowledge, deep learning, and inductive learning. During reasoning and
learning, the architecture enables a robot to provide on-demand ezxplana-
tions of its decisions, beliefs, and the outcomes of hypothetical actions, in
the form of relational descriptions of relevant domain objects, attributes,
and actions. The architecture’s capabilities are illustrated and evaluated
in the context of scene understanding tasks and planning tasks performed
using simulated images and images from a physical robot manipulat-
ing tabletop objects. Experimental results indicate the ability to reliably
acquire and merge new information about the domain in the form of con-
straints, and to provide accurate explanations in the presence of noisy
sensing and actuation.

Keywords: Explainable reasoning and learning - Non-monotonic
logical reasoning - Deep learning - Scene understanding + Robotics

1 Introduction

Imagine a robot arranging objects in desired configurations on a table, and esti-
mating the occlusion of objects and stability of object configurations. Figure 1a
illustrates a scene in this setting. An object is considered to be occluded if the
view of any minimal fraction of its frontal face is hidden by another object, and
any given configuration (i.e., a vertical stack of objects) is unstable if any object
in the configuration is unstable. To perform these tasks, the robot extracts infor-
mation from on-board camera images, reasons with this information and incom-
plete domain knowledge, and executes actions to achieve desired outcomes. The

© Springer Nature Switzerland AG 2020
N. Bassiliades et al. (Eds.): EUMAS 2020/AT 2020, LNAI 12520, pp. 206-225, 2020.
https://doi.org/10.1007/978-3-030-66412-1_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-66412-1_14&domain=pdf
http://orcid.org/0000-0002-2339-0270
http://orcid.org/0000-0001-9922-8969
http://orcid.org/0000-0003-0773-3277
https://doi.org/10.1007/978-3-030-66412-1_14

Commonsense Reasoning and DL for Transparent Decision Making 207

(a) Test scenario. (b) Image from robot’s camera.

Fig. 1. (a) Motivating scenario of a Baxter robot arranging objects in desired config-
urations on a tabletop; (b) Image from the camera on the robot’s left gripper.

robot also incrementally learns previously unknown constraints, and responds to
questions about its plans, actions, associated decisions, and beliefs. For instance,
assume that the target configuration in Fig. 1b is to have the pig on the orange
block, and that the plan is to move the blue block on to the table before placing
the pig on the orange block. When asked to justify a step of the plan, e.g., “why
do you want to pick up the blue block first?”, the robot answers “I have to put
the pig on the orange block. The blue block is on the orange block”; when asked,
after executing the plan, to explain why an action was not executed, e.g., “why
didn’t you pick up the pig first?”, the robot responds “Because the blue block
is on the orange block”.

Realizing the motivating scenario described above poses challenges in knowl-
edge representation, reasoning, learning, and control. This paper focuses on
enabling a robot to provide an on-demand explanation of its decisions and
beliefs in the form of a description comprising relations between relevant objects,
actions, and attributes of the domain. Such “explainability” will help estab-
lish accountability in the robot’s decision making and help the human designer
improve the algorithms, but it remains an open problem. It is particularly chal-
lenging with integrated robot systems that include knowledge-based reasoning
methods (e.g., for planning and diagnostics) and data-driven (e.g., deep learn-
ing) algorithms that are the state of the art for many pattern recognition prob-
lems. Research in cognitive systems and architectures indicates that relational
representations and reasoning with commonsense knowledge help promote trans-
parency in decision making [13,15,29]. Inspired by this insight, our architecture
tightly couples the complementary strengths of knowledge-based and data-driven
methods, while providing transparent decision making. It builds on and signif-
icantly expands our prior work that combined non-monotonic logical reasoning
and deep learning for scene understanding in simulated images [21]. This paper
contributes the ability to:

— Automatically extract relevant information and construct explanations as
relational descriptions provided in response to questions about the robot’s
decisions and beliefs, including under hypothetical situations.

208 T. Mota et al.

— Incrementally merge newly acquired information with existing knowledge,
exploiting the interplay between representational choices, reasoning methods,
and learning algorithms to generate accurate explanations.

These capabilities are evaluated in the context of planning tasks and scene under-
standing tasks in simulated scenes and on a physical robot manipulating table-
top objects. Specifically, the robot (i) computes and executes plans to arrange
objects in desired configurations; and (ii) estimates occlusion of scene objects
and stability of object configurations. Experimental results indicate the ability
to (i) incrementally reduce uncertainty about the scene by learning previously
unknown state constraints; and (ii) construct explanations reliably and efficiently
by automatically identifying and reasoning with the relevant knowledge despite
noisy sensing and actuation.

The remainder of the paper is organized as follows. We first discuss related
work in Sect. 2, followed by a description of the architecture in Sect. 3. Exper-
imental results are discussed in Sect.4, and the conclusions are presented in
Sect. 5.

2 Related Work

Early work on explanation generation drew on research in cognition, psychology,
and linguistics to characterize explanations in terms of generality, objectivity,
connectivity, relevance, and information content [7]. Subsequent studies involv-
ing human subjects have also indicated that the important attributes of good
explanations include coherence, simplicity, generality, soundness, and complete-
ness [24]. In parallel, fundamental computational methods were developed for
explaining unexpected outcomes by reasoning logically about potential causes
[10].

With the use of Al and machine learning methods in different domains, there
is much interest in understanding the decisions of these methods'. This under-
standing can be used to improve the underlying algorithms, and to make auto-
mated decision-making more acceptable or trustworthy to humans [17]. Recent
work in ezplainable AI and explainable planning can be broadly categorized into
two groups [19]. Methods in one group modify or map learned models or reason-
ing systems to make their decisions more interpretable, e.g., by tracing decisions
back to input data [11] or explaining the predictions of any classifier by learning
equivalent interpretable models [25], or biasing a planning system towards mak-
ing decisions easier for humans to understand [33]. Methods in the other group
provide descriptions that make a reasoning system’s decisions more transpar-
ent, e.g., explaining planning decisions [3], or causal and temporal relations [27].
Much of this research is agnostic to how an explanation is structured or assumes
comprehensive domain knowledge. Given the use of deep networks and related
algorithms in different applications, methods are being developed to understand

! For a recent debate on whether interpretability is needed in machine learning, please
see: https://www.youtube.com/watch?v=93Xv8vJ2acl.

https://www.youtube.com/watch?v=93Xv8vJ2acI

Commonsense Reasoning and DL for Transparent Decision Making 209

Inputs: Simulated scenes Human query

Real scenes
Labels
(training phase)

Features
extraction

Decision tree Current state
| induction v
New axioms ASP | processing

Baxter

A
program
Relevant Processed
axioms, : ¢ ‘\“ 1
literals
A4
Answer set, Program
> Classification Domain Analyzer
knowledge

Outputs: Output labels Explanation

(occlusion, stability) (relational description)

Fig. 2. Architecture combines strengths of non-monotonic logical reasoning with
incomplete commonsense domain knowledge, deep learning, and inductive learning.
New components to the right of the dashed line support desired explainability.

the operation of these networks, e.g., by computing the features most relevant to
a deep network’s outputs [2]. As documented in a recent survey, these methods
compute gradients and decompositions in a network’s layers to obtain heatmaps
of the relevant features [26]. There has also been work on reasoning with learned
symbolic structure, or with a learned graph encoding scene structure, in con-
junction with deep networks to answer questions about images of scenes [23,32].
However, these approaches do not (i) fully integrate reasoning and learning to
inform and guide each other; or (ii) use the rich commonsense knowledge, which
is available in almost every domain, for reliable and efficient reasoning, learn-
ing, and the generation of descriptions of the decisions and beliefs of the system
under consideration.

Our focus is on integrated robot systems that use a combination of
knowledge-based and data-driven algorithms to represent, reason with, and learn
from incomplete domain knowledge and noisy observations. We enable such
robots to generate relational descriptions of decisions, beliefs, and hypothetical
or counterfactual situations; humans often consider such hypothetical options
to infer causal relations [4]. Recent surveys state that these capabilities are not
supported by existing systems [1,19]. Our architecture addresses this limitation
by extending work in our group on explainable agency [14], a theory of explana-
tions [31], and on combining non-monotonic logical reasoning and deep learning
for classification of simulated images [21].

210 T. Mota et al.

3 Architecture

Figure 2 shows the overall architecture. Components to the left of the dashed
vertical line were introduced in our prior work that combined non-monotonic
logical reasoning and deep learning for classification in simulated images [21];
we summarize these components for completeness. Components to the right of
the dashed line are introduced here to expand reasoning capabilities and answer
questions about decisions, beliefs, and hypothetical situations. We describe these
new components and revisions to existing components in more detail. We do so
using the following example domain.

Example Domain 1. [Robot Assistant (RA) Domain]

A Baxter (see Fig.la): (i) estimates occlusion of scene objects and stability of
object structures, and arranges objects in desired configurations; and (ii) pro-
vides relational descriptions of decisions, beliefs, and hypothetical situations as
responses to questions and commands. There is uncertainty in the robot’s per-
ception and actuation, and the robot uses probabilistic algorithms to visually
recognize and move objects. The robot has incomplete (and potentially impre-
cise) domain knowledge, which includes object attributes such as size (small,
medium, large), surface (flat, irregular) and shape (cube, apple, duck); spa-
tial relations between objects (above, below, front, behind, right, left, in); some
domain attributes; and some axioms governing domain dynamics such as:

— Placing an object on top of an object with an irregular surface results in an
unstable object configuration.

— For any given object, removing all objects blocking the view of any minimal
fraction of its frontal face causes this object to be not occluded.

This knowledge may need to be revised over time, e.g., some actions, axioms,
and the values of some attributes may not be known, or the robot may find that
placing certain objects on an object with an irregular surface results in a stable
configuration.

3.1 Knowledge Representation, Reasoning, and Learning

We first describe the knowledge representation, reasoning, and learning compo-
nents.

Feature Extraction: In our architecture, the sensor inputs are RGB images of
simulated scenes, or noisy top and front views of any given scene from the robot’s
cameras; our previous work considered RGB-D images (i.e., point clouds) of
simple simulated scenes [21]. From each image, a probabilistic algorithm is used
to extract objects and their attributes. Also, the spatial relations between objects
are computed using our prior work that incrementally learns the grounding,
i.e., the meaning in the physical world, for position-based and distance-based
prepositional words such as “above”, “in”, and “far”, in the form of 2D and 1D
histograms [20].

Commonsense Reasoning and DL for Transparent Decision Making 211

Non-monotonic Logical Reasoning: To represent and reason with domain
knowledge, we use CR-Prolog, an extension to Answer Set Prolog (ASP) that
introduces consistency restoring (CR) rules; we use the terms “CR-Prolog” and
“ASP” interchangeably in this paper. ASP is a declarative language that rep-
resents recursive definitions, defaults, causal relations, and constructs that are
difficult to express in classical logic formalisms. ASP is based on the stable model
semantics, and encodes default negation and epistemic disjunction, e.g., unlike
“=a”, which implies that “a is believed to be false”, “not a” only implies “a is
not believed to be true” [9]. Each literal can hence be true, false, or unknown,
and the robot only believes statements that it is forced to believe. ASP supports
non-monotonic logical reasoning, i.e., adding a statement can reduce the set of
inferences, which helps recover from errors due to reasoning with incomplete
knowledge. Knowledge-based reasoning paradigms such as ASP are often criti-
cized for requiring considerable prior knowledge, and for being unwieldy in large,
complex domains. However, modern ASP solvers are used by an international
community to reason efficiently with a large knowledge base or with incomplete
knowledge [5].

A domain’s description in ASP comprises a system description D and a his-
tory H. D comprises a sorted signature X and axioms encoding the domain’s
dynamics. Our prior work explored spatial relations for classification tasks; 3
included basic sorts, e.g., object, robot, size, relation, and surface; statics,
i.e., domain attributes that do not change over time, e.g., obj_size(object, size)
and obj_surface(obj, surface); and fluents, i.e., attributes whose values can be
changed, e.g., obj_relation(above, A, B) implies object A is above object B. The
robot in this paper also plans and executes physical actions that cause changes
in the domain. Such a dynamic domain is modeled in our architecture by first
describing the expanded X and transition diagram in action language AL, [8];
this description is then translated to ASP statements. For the RA domain, X
now includes the sort step for temporal reasoning, additional fluents such as
in_hand(robot, object), actions such as pickup(robot, object) and putdown(robot,
object, location), and the relation holds(fluent, step) implying that a particular
fluent holds true at a particular timestep. Axioms of the RA domain include
ASP statements such as:

holds(in_hand(robot, object), I + 1) «— occurs(pickup(robot, object),I) (la)
holds(obj_relation(above, A, B), I) <« holds(obj_relation(below, B, A),I) (1b)
—occurs(pickup(robot, object), I) «— holds(in_hand(robot, object), I) (1c)

which encode a causal law, a state constraint, and an executability condition
respectively, e.g., Statement 1(a) implies that executing the “pickup” action
causes the target object to be in the robot’s grasp in the next time step; our
prior work only included state constraints [21]. The axioms also encode some
commonsense knowledge in the form of default statements that hold unless there
is evidence to the contrary, e.g., “larger objects placed on smaller objects are
unstable” is encoded in ASP as:

212 T. Mota et al.

—holds(stable(A), I) «— holds(obj_relation(above, A, B),), (2)
size(A,large), size(B,small), not holds(stable(A),T)

where “not” denotes default negation. In addition to axioms, information
extracted from the input images (e.g., spatial relations, object attributes) with
sufficiently high probability is converted to ASP statements at that time step.
Also, the domain’s history H comprises records of fluents observed to be true
or false at a particular time step, i.e., obs(fluent, boolean, step), and of the exe-
cution of an action at a particular time step, i.e., hpd(action, step). In [29] this
notion was expanded to represent defaults describing the values of fluents in
the initial state, e.g., “it is initially believed that a book is in the library”, and
exceptions, e.g., “a cookbook is in the kitchen”.

To reason with the domain knowledge, our architecture constructs the CR-
Prolog program II(D,H), which includes X' and axioms of D, inertia axioms,
reality checks, closed world assumptions for actions, and observations, actions,
and defaults from H. Every default also has a CR rule to let the robot assume
the default’s conclusion is false to restore consistency under exceptional circum-

stances. For instance, the statement in the ASP program: —loc(X,library) &
book(X) is a CR rule that is triggered under exceptional circumstances to assume
a book is not in the library as a potential explanation of an unexpected obser-
vation. The program for our RA domain is available online [22]. Once IT is
constructed, planning, diagnostics, and inference can be reduced to computing
answer sets of IT [9]. Any answer set represents the beliefs of the robot asso-
ciated with I7; it is a description of a possible world and the set of literals of
domain fluents and statics at any particular time step represents the state at
that time step. Note that incorrect inferences can be drawn due to incomplete
knowledge, noisy sensor input, or the use of a low threshold for elevating prob-
abilistic information to statements in the ASP program. Non-monotonic logical
reasoning enables the robot to recover from such errors, and not be very sensitive
to the choice of the probability threshold. Also, although we do not describe it
here, it is possible to model non-determinism (e.g., in action outcomes) in our
architecture. In addition, work by others in our group has combined such logical
reasoning at a coarse resolution with probabilistic reasoning over the relevant
part of a finer resolution representation of the domain [29]. For ease of under-
standing and to focus on the interplay between non-monotonic logical reasoning
and learning, we limit ourselves to logical reasoning at one resolution in this

paper.

Classification: Similar to the approach in our prior work, for any given image,
the robot tries to estimate the occlusion of objects and the stability of object con-
figurations using ASP-based reasoning. If an answer is not found, or an incorrect
answer is found (on labeled training examples), the robot automatically extracts
relevant regions of interest (ROIs) from the corresponding image. Parameters of
existing Convolutional Neural Network (CNN) architectures (e.g., Lenet [16],
AlexNet [12]) are tuned to map information from each such ROI to the corre-

Commonsense Reasoning and DL for Transparent Decision Making 213

sponding classification labels. An innovation of our prior work was to reason with
knowledge of the task (e.g., estimating occlusion) to identify and ground only
the relevant axioms and relations in the image under consideration to determine
the ROIs [21]. In this paper, we reason about relevance over a sequence of steps
to provide explanations, as described in Subsect. 3.2.

Decision Tree Induction: Images used to train the CNNs are considered
to contain information about missing or incorrect constraints related to occlu-
sion and stability. Image features and spatial relations extracted from ROIs in
each such image, along with the known labels for occlusion and stability (dur-
ing training), are used to incrementally learn a decision tree summarizing the
corresponding state transitions. The learning process repeatedly splits a node
based on an unused attribute likely to provide the highest reduction in entropy.
Next, branches of the tree that satisfy minimal thresholds on purity at the leaf
(>95% samples in one class) and on the level of support from labeled exam-
ples (>5%) are used to construct candidate axioms. Candidates are validated
and those without a minimal level of support (>5%) on unseen examples are
removed. These thresholds are set to identify a small number of highly likely
axioms, and small changes to thresholds do not affect performance. Also, the
thresholds can be revised to achieve other outcomes, e.g., they can be lowered
significantly to identify default constraints.

Unlike our prior work, we introduce new strategies to process noisy images
of more complex scenes. First, we use an ensemble learning approach, retain-
ing only axioms that are identified over a number of cycles of learning and
validation. Second, different versions of the same axiom are merged to remove
over-specifications, e.g.:

—stable(A) «— obj_relation(above, A, B), obj_sur face(B,irregular) (3a)
—stable(A) «— obj_relation(above, A, B), obj_sur face(B,irregular), (3b)
obj_size(B, large)

where Statement 3(b) can be removed because the size of the object at the
bottom of a stack does not provide any additional information about instability
given that it has an irregular surface. If the robot later observes that a large
object, even with an irregular surface, can support a small object, the axiom will
be revised suitably. Specifically, axioms with the same head and some overlap
in the body are grouped. Each combination of one axiom from each group is
encoded in an ASP program along with axioms that are not in any group. This
program is used to classify ten labeled scenes, only retaining axioms in the
program that provides the highest accuracy on these scenes. Third, to filter
axioms that cease to be useful, the robot associates each axiom with a strength
that decays exponentially over time if it is not reinforced, i.e., not used or learned
again. Any axiom whose strength falls below a threshold is removed. Other work
in our group has explored the learning of actions, causal laws, and executability
conditions in simulated domains [30]. Here, we only consider the learning of

214 T. Mota et al.

constraints and explore the effect of the learned axioms on the ability to provide
explanations.

3.2 Relational Descriptions as Explanations

Our architecture’s new components exploit the interplay between representation,
reasoning, and learning to provide the desired relational descriptions of decisions,
beliefs, and the outcomes of hypothetical events.

Interaction Interface and Control Loop: Human interaction with our archi-
tecture is through speech or text. Existing algorithms, software, and a controlled
(domain-specific) vocabulary are used to parse human verbal input and to pro-
vide a verbal response when appropriate. Specifically, verbal input from a human
is transcribed into text drawn from the controlled vocabulary. This (or the input)
text is labeled using a part-of-speech (POS) tagger, and normalized with the
lemma list [28] and related synonyms and antonyms from WordNet [18]. The
processed text helps identify the type of request, which may correspond to a
desired goal or a question about decisions, beliefs, or the outcomes of hypotheti-
cal events. In the former case, the goal is sent to the ASP program for planning.
The robot executes the plan, replanning when unexpected action outcomes can-
not be explained, until the goal is achieved. In the latter case, the “Program
Analyzer” considers the domain knowledge (including inferred beliefs that are
computed as needed) and processed human input to automatically identify rel-
evant axioms and literals. These literals are inserted into generic response tem-
plates based on the controlled vocabulary, resulting in human-understandable
(textual) descriptions that are converted to synthetic speech if needed.

Program Analyzer: Algorithm 1 describes our approach for automatically
identifying and reasoning with the relevant information to construct the desired
relational descriptions in the context of four types of explanatory questions or
requests. The first three question types were introduced as those to be considered
by any explainable planning system [6]; we also consider a question about specific
beliefs.

1. Plan description When asked to describe a particular plan, the robot
parses the related answer set(s) to extract a sequence of actions of the form
occurs(actionl, stepl), ..., occurs(actionN, stepN) (line 3 in Algorithm 1).
These actions are used to construct the response.

2. Action justification: Why action X at step I? To justify the execution
of any particular action at a particular time step:

(a) For each action that occurred after time step I, the robot examines rel-
evant executability condition(s) and identifies literal(s) that would pre-
vent the action’s execution at step I (lines 5-7). For the goal of plac-
ing the orange_block on the table in Fig.1b, assume that the action
executed are occurs(pickup(robot, blue_block), 0), occurs(putdown(robot,

Commonsense Reasoning and DL for Transparent Decision Making 215

Algorithm 1. (Program Analyzer) Construct answer to input question

Input : Literal of input question; IT(D,H); answer templates.
Output: Answer and answer Literals.

// Compute answer set

AS = AnswerSet(IT)

if question = plan description then

// Retrieve all actions from answer set

answer_literals = Retrieve(AS, actions)

N =

4 else if question = “why action X at step I7” then
// Extract actions after step I

5 next_actions = Retrieve(AS, actions for step > I)
// Extract axioms influencing these actions
6 relevant_axioms = Retrieve(II, head = — next_actions)

// Extract relevant literals from Answer Set
7 relevant_literals = Retrieve(AS, Body(relevant_axioms) € IA