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Preface

This volume constitutes the revised post-conference proceedings of the 17th European
Conference on Multi-Agent Systems (EUMAS 2020) and the 7th International Con-
ference on Agreement Technologies (AT 2020). The conferences were originally
planned to be held in Thessaloniki, Greece, in April 2020, but were eventually held
online between September 14–15, 2020. The 38 full papers presented in this volume
were carefully reviewed and selected from a total of 53 submissions. The papers report
on both early and mature research and cover a wide range of topics in the field of multi-
agent systems.

EUMAS 2020 followed the tradition of previous editions (Oxford 2003, Barcelona
2004, Brussels 2005, Lisbon 2006, Hammamet 2007, Bath 2008, Agia Napa 2009,
Paris 2010, Maastricht 2011, Dublin 2012, Toulouse 2013, Prague 2014, Athens 2015,
Valencia 2016, Evry 2017, Bergen 2018) in aiming to provide the prime European
forum for presenting and discussing agents research as the annual designated event
of the European Association for Multi-Agent Systems (EURAMAS).

AT 2020 was the seventh instalment in a series of events (after Dubrovnik 2012,
Beijing 2013, Athens 2015, Valencia 2016, Evry 2017, Bergen 2018) that focus on
bringing together researchers and practitioners working on computer systems in which
autonomous software agents interact, typically on behalf of humans, in order to come
to mutually acceptable agreements. A wide scope of technologies can help provide the
support needed for reaching mutually acceptable agreements, such as argumentation
and negotiation, trust and reputation, computational social choice, coalition and team
formation, coordination and distributed decision-making, and semantic alignment, to
name a few.

This year, for the fifth time, the two events were co-located and run as a single, joint
event. This joint organization aimed to encourage and continue cross-fertilization
among the broader EUMAS and the more specialized AT communities, and to provide
a richer and more attractive program to participants. While the technical program was
put together by their independent committees, the conferences shared keynote talks and
aligned their schedules to minimize overlap and enable participants to make the best
possible use of the combined program of the two conferences. Traditionally, both
conference series have always followed a spirit of providing a forum for discussion and
an annual opportunity for primarily European researchers to meet and exchange ideas.
For this reason, they have always encouraged submission of papers that report on both
early and mature research.

The peer-review processes carried out by both conferences put great emphasis on
ensuring the high quality of accepted contributions. The 90-person EUMAS Program
Committee accepted 32 submissions as full papers. The AT review process resulted in
the acceptance of six full papers by the 54-person AT program committee.

This volume is structured in sections mirroring the presentation sessions of the joint
event (https://eumas2020.csd.auth.gr/). In addition to the papers included in this

https://eumas2020.csd.auth.gr/


volume, the program was highlighted by two great keynote talks, the first one by
Professor Sarvapali (Gopal) Ramchurn of the Department of Electronics and Computer
Science, University of Southampton, UK, on “Emerging Challenge Areas for AI and
Multi-Agent Systems: From Sports to Maritime”, and the second one by Professor
Pavlos Moraitis of the Department of Mathematics and Computer Science, University
of Paris, France, on “Computational Argumentation: From Theory to Market”. Two
papers of EUMAS stood out from the rest and were nominated by the EUMAS Pro-
gram Chairs as candidates for the best paper award. These two papers were presented in
a special session and then a committee composed of all the EUMAS and AT program
chairs and one of the keynote speakers, Prof. Pavlos Moraitis, decided that the award
should be shared between them.

The editors would like to thank all authors for submitting to EUMAS and AT, all
participants, the invited speakers, the members of the Program Committees, and the
additional reviewers for putting together a strong joint program. We also thank the
local organizers for their hard work organizing the events. Finally, we would like to
express our gratitude to the sponsors of the conferences: Aristotle University of
Thessaloniki for providing technical and human resources, the MDPI journal Com-
puters for sponsoring the EUMAS Best Paper Award, the journal Autonomous Agents
and Multi-Agent Systems for agreeing to publish extended versions of the EUMAS best
and runner-up papers, and the journal SN Computer Science for agreeing to publish a
special issue with selected extended EUMAS papers.

November 2020 Nick Bassiliades
Georgios Chalkiadakis

Dave de Jonge

vi Preface
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Agents and MAS Applications



Towards a Theory of Intentions
for Human-Robot Collaboration

Rocio Gomez1, Mohan Sridharan2(B) , and Heather Riley1

1 Electrical and Computer Engineering, The University of Auckland,
Auckland, New Zealand

m.gomez@auckland.ac.nz, hril230@aucklanduni.ac.nz
2 School of Computer Science, University of Birmingham, Birmingham, UK

m.sridharan@bham.ac.uk

Abstract. The architecture described in this paper encodes a theory of
intentions based on the principles of non-procrastination, persistence,
and relevance. The architecture reasons with transition diagrams at
two different resolutions, with the fine-resolution description defined
as a refinement of, and hence tightly-coupled with, a coarse-resolution
description. For any given goal, non-monotonic logical reasoning with
the coarse-resolution description computes an activity, i.e., a plan, com-
prising a sequence of abstract actions to be executed to achieve the goal.
Each abstract action is implemented as a sequence of concrete actions
by automatically zooming to and reasoning with the part of the fine-
resolution transition diagram relevant to the coarse-resolution transition
and the goal. Each concrete action is executed using probabilistic mod-
els of the uncertainty in sensing and actuation, and the corresponding
coarse-resolution observations are added to the coarse-resolution history.
Experimental results in the context of simulated and physical robots indi-
cate improvements in reliability and efficiency compared with an archi-
tecture that does not include the theory of intentions, and an architecture
that does not include zooming for fine-resolution reasoning.

1 Introduction

Consider a robot1 assisting humans in dynamic domains, e.g., a robot help-
ing a human arrange objects in different configurations on a tabletop, or a
robot delivering objects to particular places or people—see Fig. 1. These robots
often have to reason with different descriptions of uncertainty and incomplete
domain knowledge. This information about the domain often includes common-
sense knowledge, especially default knowledge that holds in all but a few excep-
tional circumstances, e.g., “books are usually in the library but cookbooks may
be in the kitchen”. The robot also receives a lot more sensor data than it can
process, and it is equipped with many algorithms that compute and use a prob-
abilistic quantification of the uncertainty in sensing and actuation, e.g., “I am
1 A journal article based on this work has been accepted for publication in the Annals
of Mathematics and Artificial Intelligence [11].

c© Springer Nature Switzerland AG 2020
N. Bassiliades et al. (Eds.): EUMAS 2020/AT 2020, LNAI 12520, pp. 3–19, 2020.
https://doi.org/10.1007/978-3-030-66412-1_1
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90% certain the robotics book is on the table”. Furthermore, while it is difficult
to provide robots comprehensive domain knowledge or elaborate supervision,
reasoning with incomplete or incorrect information can provide incorrect or sub-
optimal outcomes. This loss in performance is more pronounced in scenarios
corresponding to unexpected success or failure, which are common in dynamic
domains. For instance, consider a robot trying to move two books from an office
to a library. After moving the first book to the library, if the robot observes the
second book in the library, or if it observes the second book in the kitchen on the
way back to the office, it should stop executing its plan, reason about what may
have happened, and compute a new plan if necessary. One way to achieve this
behavior is to augment a traditional planning approach with the ability to rea-
son about observations of all domain objects and events during plan execution,
but this approach is computationally intractable in complex domains. Instead,
the architecture described in this paper seeks to enable a robot pursuing a par-
ticular goal to automatically reason about the underlying intention and related
observations of its domain during planning and execution. It does so by building
on an architecture that uses declarative programming to reason about intended
actions to achieve a given goal [5], and on an architecture that reasons with
tightly-coupled transition diagrams at different levels of abstraction [18]. This
work has been described in detail in a recently published journal article [11].
Here, we describe the following key characteristics of the architecture:

– An action language is used to describe the tightly-coupled transition diagrams
of the domain at two different resolutions. At the coarse resolution, non-
monotonic logical reasoning with commonsense knowledge, including default
knowledge, produces a sequence of intentional abstract actions for any given
goal.

– Each intended abstract action is implemented as a sequence of concrete
actions by automatically zooming to and reasoning with the relevant part of
the fine-resolution system description defined as a refinement of the coarse-
resolution system description. The outcomes of executing the concrete actions
using probabilistic models or uncertainty are added to the coarse-resolution
history.

In this paper, the coarse-resolution and fine-resolution action language descrip-
tions are translated to programs in CR-Prolog, an extension of Answer Set Prolog
(ASP) [9], for commonsense reasoning. The execution of each concrete action
using probabilistic models of uncertainty in sensing and actuation is achieved
using existing algorithms. The architecture thus reasons about intentions and
beliefs at two resolutions. We demonstrate the capabilities of our architecture
in the context of (i) a simulated robot assisting humans in an office domain;
(ii) a physical robot (Baxter) manipulating objects on a tabletop; and (iii) a
wheeled robot (Turtlebot) moving objects in an office domain. Experimental
results indicate that the proposed architecture improves reliability and compu-
tational efficiency of planning and execution in dynamic domains in comparison
with an architecture that does not support reasoning about intentional actions.
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(a) Baxter robot. (b) Turtlebot.

Fig. 1. (a) Baxter robot manipulating objects on a tabletop; and (b) Turtlebot moving
objects to particular locations in a lab.

2 Related Work

There is much work in the modeling and recognition of intentions. Belief-desire-
intention (BDI) architectures model the intentions of reasoning agents and guide
reasoning by eliminating choices inconsistent with current intentions [6,14]. How-
ever, such architectures do not learn from past behavior, adapt to new situations,
or include an explicit representation of (or reasoning about) goals. Other work
has reasoned with domain knowledge or used models learned from training sam-
ples to recognize intentions [13].

An architecture formalizing intentions based on declarative programming
was described in [3]. It introduced an action language that can represent inten-
tions based on two principles: (i) non-procrastination, i.e., intended actions are
executed as soon as possible; and (ii) persistence, i.e., unfulfilled intentions per-
sist. This architecture was also used to enable an external observer to recognize
the activity of an observed agent, i.e., for determining what has happened and
what the agent intends to do [8]. However, this architecture did not support the
modeling of agents that desire to achieve specific goals. The Theory of Inten-
tions (T I) [4,5] builds on [3] to model the intentions of goal-driven agents. T I
expanded transition diagrams that have physical states and physically executable
actions to include mental fluents and mental actions. It associated a sequence
of agent actions (called an “activity”) with the goal it intended to achieve, and
introduced an intentional agent that only performs actions that are intended to
achieve a desired goal and does so without delay. This theory has been used to
create a methodology for understanding of narratives of typical and exceptional
restaurant scenarios [20], and goal-driven agents in dynamic domains have been
modeled using such activities [15]. A common requirement of such theories and
their use is that all the domain knowledge, including the preconditions and effects
of actions and potential goals, be known and encoded in the knowledge base,
which is difficult to do in robot domains. Also, the set of states (and actions,
observations) to be considered can be large in robot domains, which makes effi-
cient reasoning a challenging task. In recent work [20], the authors attempt to
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Fig. 2. Architecture combines the complementary strengths of declarative program-
ming and probabilistic reasoning, representing intentions and beliefs as coupled transi-
tion diagrams at two resolutions; may be viewed as interactions between a controller,
logician, and executor.

address this problem by clustering indistinguishable states [16] but these clusters
need to be encoded in advance. Furthermore, these approaches do not consider
the uncertainty in sensing and actuation.

Logic-based methods have been used widely in robotics, including those that
also support probabilistic reasoning [12,21]. Methods based on first-order logic
do not support non-monotonic logical reasoning or the desired expressiveness for
capabilities such as default reasoning, e.g., it is not always meaningful to express
degrees of belief by attaching probabilities to logic statements. Non-monotonic
logics such as ASP address some of these limitations, and they have been used
in cognitive robotics applications by an international research community [7].
However, classical ASP formulations do not support the probabilistic models of
uncertainty that are used by algorithms for sensing and actuation in robotics.
Approaches based on logic programming also do not support one or more of the
capabilities such as incremental addition of probabilistic information or variables
to reason about open worlds. Towards addressing these limitations, prior work in
our group developed a refinement-based architecture that reasoned with tightly-
coupled transition diagrams at two resolutions; each abstract action in a coarse-
resolution plan computed using ASP was executed as a sequence of concrete
actions computed by probabilistic reasoning over the relevant part of the fine-
resolution diagram [18]. This paper explores the combination of these ideas with
those drawn from T I; specific differences from prior work are described in the
relevant sections below.
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3 Cognitive Architecture

Figure 2 presents a block diagram of the overall architecture. Similar to prior
work [18], this architecture may be viewed as consisting of three components: a
controller, a logician, and an executor. In this paper, the controller is responsi-
ble for holding the overall beliefs regarding domain state, and for the transfer of
control and information between all components. For any given goal, the logician
performs non-monotonic logical reasoning with the coarse-resolution represen-
tation of commonsense knowledge to generate an activity, i.e., a sequence of
intentional abstract actions. Each abstract action is implemented as a sequence
of concrete actions by zooming to and reasoning with a fine-resolution repre-
sentation defined as a refinement of the coarse-resolution representation. The
executor uses probabilistic models of the uncertainty in sensing and actuation
to execute each concrete action, with the outcomes being communicated to the
controller and added to the coarse-resolution history of the logician. These com-
ponents of the architecture are described below, along with differences from prior
work, using variants of the following illustrative domain.

Example Domain 1 [Robot Assistant (RA) Domain]. Consider a robot assist-
ing humans in moving particular objects to desired locations in an indoor office
domain with:

– Sorts such as place, thing, robot, object, and book, arranged hierarchically,
e.g., object and robot are subsorts of thing.

– Places: {office1, office2, kitchen, library} with a door between neighboring
places—see Fig. 3; only the door between kitchen and library can be locked.

– Instances of sorts, e.g., rob1, book1, book2.
– Static attributes such as color, size and parts (e.g., base and handle) of

objects. Other agents that may change the domain are not modeled.

Fig. 3. Four rooms considered in Example 1, with a human in the kitchen and two
books in office1. Only the library’s door can be locked; all other rooms remain open.

3.1 Action Language and Domain Representation

We first describe the action language encoding of domain dynamics, and its
translation to CR-Prolog programs for knowledge representation and reasoning.
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Action Language: Action languages are formal models of parts of natural lan-
guage used for describing transition diagrams of dynamic systems. We use action
language ALd [10] to describe the transition diagrams at different resolutions.
ALd has a sorted signature with statics, fluents and actions. Statics are domain
attributes whose truth values cannot be changed by actions, whereas fluents are
domain attributes whose truth values can be changed by actions. Fluents can
be basic or defined. Basic fluents obey the laws of inertia and can be changed
by actions. Defined fluents do not obey the laws of inertia and are not changed
directly by actions—their values depend on other fluents. Actions are defined
as a set of elementary operations. A domain attribute p or its negation ¬p is a
literal. ALd allows three types of statements: causal law, state constraint, and
executability condition.

Coarse-Resolution Knowledge Representation: The coarse-resolution
domain representation consists of system description Dc, a collection of state-
ments of ALd, and history Hc. System description Dc has a sorted signature Σc

and axioms that describe the transition diagram τc. Σc defines the basic sorts,
domain attributes and actions. Example 1 introduced some basic sorts and ground
instances of the RA domain. Σc also includes the sort step for temporal rea-
soning. Domain attributes (i.e., statics and fluents) and actions are described
in terms of their arguments’ sorts. In the RA domain, statics include relations
such as next to(place, place), which describes the relative location of places in
the domain; and relations representing object attributes such as color and size,
e.g., obj color(object, color). Fluents include loc(thing, place), the location of
the robot or domain objects; in hand(robot, object), which denotes a particu-
lar object is in the robot’s hand; and locked(place), which implies a particular
place is locked. The locations of other agents, if any, are not changed by the
robot’s actions; these locations are inferred from observations obtained from other
sensors. The domain’s actions include move(robot, place), pickup(robot, object),
putdown(robot, object), and unlock(robot, place); we also consider exogenous
actions exo move(object, place) and exo lock(place), which are used for diagnos-
tic reasoning. Σc also includes the relation holds(fluent, step) to imply that a
particular fluent holds true at a particular time step. Axioms for the RA domain
include causal laws, state constraints and executability conditions such as:

move(rob1, P ) causes loc(rob1, P )
loc(O,P ) if loc(rob1, P ), in hand(rob1, O)
impossible pickup(rob1, O) if loc(rob1, L1), loc(O,L2), L1 �= L2

The history Hc of the domain contains the usual record of fluents observed to
be true or false at a particular time step, i.e., obs(fluent, boolean, step), and
the execution of an action at a particular time step, i.e., occurs(action, step).
In [18] this notion was expanded to represent defaults describing the values of
fluents in the initial state, e.g., “books are usually in the library and if it not
there, they are normally in the office”. We can also encode exceptions to these
defaults, e.g., “cookbooks are in the kitchen”. This representation, which does
not quantitatively model beliefs in these defaults, supports elegant reasoning
with generic defaults and their specific exceptions.
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Reasoning: The coarse-resolution domain representation is translated into a
program Π(Dc,Hc) in CR-Prolog2, a variant of ASP that incorporates con-
sistency restoring (CR) rules [2]. ASP is based on stable model semantics and
supports concepts such as default negation and epistemic disjunction, e.g., unlike
“¬a” that states a is believed to be false, “not a” only implies a is not believed
to be true. ASP can represent recursive definitions and constructs that are dif-
ficult to express in classical logic formalisms, and it supports non-monotonic
logical reasoning, i.e., it is able to revise previously held conclusions based on
new evidence. An ASP program Π includes the signature and axioms of Dc,
inertia axioms, reality checks, and observations, actions, and defaults from Hc.
Every default also has a CR rule that allows the robot to assume the default’s
conclusion is false to restore consistency under exceptional circumstances. Each
answer set of an ASP program represents the set of beliefs of an agent associ-
ated with the program. Algorithms for computing entailment, and for planning
and diagnostics, reduce these tasks to computing answer sets of CR-Prolog pro-
grams. We compute answer sets of CR-Prolog programs using the system called
SPARC [1].

3.2 Adapted Theory of Intention

For any given goal, a robot using ASP-based reasoning will compute a plan
and execute it until the goal is achieved or a planned action has an unexpected
outcome; in the latter case, the robot will try to explain the outcome (i.e.,
diagnostics) and compute a new plan if necessary. To motivate the need for a
different approach in dynamic domains, consider the following scenarios in which
the goal is to move book1 and book2 to the library; these scenarios have been
adapted from scenarios in [5]:

– Scenario 1 (planning): Robot rob1 is in the kitchen holding book1, and
believes book2 is in the kitchen and the library is unlocked. The plan
is: move(rob1, library), put down(rob1, book1), move(rob1, kitchen), pickup
(rob1, book2), followed by move(rob1, library) and put down(rob1, book2).

– Scenario 2 (unexpected success): Assume that rob1 in Scenario-1 has
moved to the library and put book1 down, and observes book2. The robot
should explain this observation (e.g., book2 was moved there) and realize the
goal has been achieved.

– Scenario 3 (not expected to achieve goal, diagnose and replan, case
1): Assume rob1 in Scenario-1 starts moving book1 to library, but observes
book2 is not in the kitchen. The robot should realize the plan will fail to
achieve the overall goal, explain the unexpected observation, and compute a
new plan.

– Scenario 4 (not expected to achieve goal, diagnose and replan, case
2): Assume rob1 is in the kitchen holding book1, and believes book2 is in
office2 and library is unlocked. The plan is to put book1 in the library

2 We use the terms “ASP” and “CR-Prolog” interchangeably.



10 R. Gomez et al.

before fetching book2 from office2. Before rob1 moves to library, it observes
book2 in the kitchen. The robot should realize the plan will fail and compute
a new plan.

– Scenario 5 (failure to achieve the goal, diagnose and replan): Assume
rob1 in Scenario-1 is putting book2 in the library, after having put book1 in
the library earlier, and observes that book1 is no longer there. The robot’s
intention should persist; it should explain the unexpected observation, replan
if necessary, and execute actions until the goal is achieved.

One way to support the desired behavior in such scenarios is to reason with
all possible observations of domain objects and events (e.g., observations of all
objects in the sensor’s field of view) during plan execution. However, such an
approach would be computationally intractable in complex domains. Instead, we
build on the principles of non-procrastination and persistence and the ideas from
T I. Our architecture enables the robot to compute actions that are intended
for any given goal and current beliefs. As the robot attempts to implement each
such action, it obtains all observations relevant to this action and the intended
goal, and adds these observations to the recorded history. We will henceforth use
AT I to refer to this adapted theory of intention that expands both the system
description Dc and history Hc in the original program Π(Dc,Hc). First, the
signature Σc is expanded to represent an activity, a triplet of a goal, a plan to
achieve the goal, and a specific name, by introducing relations such as:

activity(name), activity goal(name, goal), activity length(name, length)
activity component(name, number, action)

These relations represent each named activity, the goal and length of each activ-
ity, and actions that are components of the activity; when ground, these relations
are statics.

Next, the existing fluents of Σ are considered to be physical fluents and the
set of fluents is expanded to include mental fluents such as:

active activity(activity), in progress goal(goal), next action(activity, action),
in progress activity(activity), active goal(goal), next activity name(name),

current action index(activity, index)

where the first four relations are defined fluents, and other relations are basic flu-
ents. These fluents represent the robot’s belief about a particular activity, action
or goal being active or in progress. None of these fluents’ values are changed
directly by executing any physical action. The value of current action index
changes if the robot has completed an intended action or if a change in the
domain makes it impossible for an activity to succeed. The values of other men-
tal fluents are changed by expanding the set of existing physical actions of Σ
to include mental actions such as start(name), stop(name), select(goal), and
abandon(goal), where the first two mental actions are used by the controller to
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start or stop a particular activity, and the other two are exogenous actions that
are used (e.g., by human) to select or abandon a particular goal.

In addition to the signature Σc, history Hc is also expanded to include rela-
tions such as attempt(action, step) and ¬ hpd(action, step), which denote that
a particular action was attempted at a particular time step, and that a particu-
lar action was not executed successfully at a particular time step. Figuring out
when an action was actually executed (or not executed) requires reasoning with
observations of whether an action had the intended outcome(s).

We also introduce new axioms in Dc, e.g., to represent the effects of the
physical and mental actions on the physical and mental fluents, e.g., starting
(stopping) an activity makes it active (inactive), and executing an action in an
activity keeps the activity active. The new axioms also include state constraints,
e.g., to describe when a particular activity or goal is active, and executability con-
ditions, e.g., it is not possible for the robot to simultaneously execute two mental
actions. In addition, axioms are introduced to generate intentional actions, build
a consistent model of the domain history, and to perform diagnostics.

The revised system description D′
c and history H′

c are translated automati-
cally to CR-Prolog program Π(D′

c,H′
c) that is solved for planning or diagnostics.

The complete program for the RA domain is available online [17]. Key differences
between AT I and prior work on T I are:

– T I becomes computationally expensive, especially as the size of the plan
or history increases. It also performs diagnostics and planning jointly, which
allows it to consider different explanations during planning but increases com-
putational cost in complex domains. AT I, on the other hand, first builds a
consistent model of history by considering different explanations, and uses
this model to guide planning, significantly reducing computational cost in
complex domains.

– T I assumes complete knowledge of the state of other agents (e.g., humans
or other robots) that perform exogenous actions. In many robotics domains,
this assumption is rather unrealistic. AT I instead makes the more realistic
assumption that the robot can only infer exogenous actions by reasoning with
the observations that it obtains from sensors.

– AT I does not include the notion of sub-goals and sub-activities (and associ-
ated relations) from T I, as they were not necessary. Also, the sub-activities
and sub-goals will need to be encoded in advance, and reasoning with these
relations will also increase computational complexity in many situations. The
inclusion of sub-activities and sub-goals will be explored in future work.

Any architecture with AT I, T I, or a different reasoning component based on
logic-programming or classical first-order logic, has two key limitations. First,
reasoning does not scale well to the finer resolution required for many tasks to
be performed by the robot. For instance, the coarse-resolution representation
discussed so far is not sufficient if the robot has to grasp and pickup a particular
object from a particular location, and reasoning logically over a sufficiently fine-
grained domain representation will be computationally expensive. Second, we
have not yet modeled the actual sensor-level observations of the robot or the
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uncertainty in sensing and actuation. Section 2 further discusses the limitations
of other approaches based on logical and/or probabilistic reasoning for robotics
domains. Our architecture seeks to address these limitations by combining AT I
with ideas drawn from work on a refinement-based architecture [18].

3.3 Refinement, Zooming and Execution

Consider a coarse-resolution system description Dc of transition diagram τc that
includes AT I. For any given goal, reasoning with Π(Dc,Hc) will provide an
activity, i.e., a sequence of abstract intentional actions. In our architecture, the
execution of the coarse-resolution transition corresponding to each such abstract
action is based on a fine-resolution system description Df of transition diagram
τf , which is a refinement of, and is tightly coupled to, Dc. We can imagine
refinement as taking a closer look at the domain through a magnifying lens,
potentially leading to the discovery of structures that were previously abstracted
away by the designer [18]. Df is constructed automatically as a step in the design
methodology using D′

c and some domain-specific information provided by the
designer.

First, the signature Σf of Df includes each basic sort of Dc whose ele-
ments have not been magnified by the increase in resolution, or both the coarse-
resolution copy and its fine-resolution counterparts for sorts with magnified ele-
ments. For instance, sorts in the RA domain include cells that are components
of the original set of places, and any cup has a base and handle as components;
any book, on the other hand, is not magnified and has no components. We also
include domain-dependent statics relating the magnified objects and their coun-
terparts, e.g., component(cup base, cup). Next, domain attributes of Σf include
the coarse-resolution version and fine-resolution counterparts (if any) of each
domain attribute of Σc. For instance, in the RA domain, Σf include domain
attributes, e.g.: loc∗(thing∗, place∗), next to∗(place∗, place∗), loc(thing, place),
and next to(place, place), where relations with and without the “*” represent the
coarse-resolution counterparts and fine-resolution counterparts respectively. The
specific relations listed above describe the location of each thing at two different
resolutions, and describe two places or cells that are next to each other. Actions of
Σf include (a) every action in Σc with its magnified parameters replaced by fine-
resolution counterparts; and (b) knowledge-producing action test(robot, f luent)
that checks the value of a fluent in a given state. Finally, Σf includes knowledge
fluents to describe observations of the environment and the axioms governing
them, e.g., basic fluents to describe the direct (sensor-based) observation of the
values of the fine-resolution fluents, and defined domain-dependent fluents that
determine when the value of a particular fluent can be tested. The test actions
only change the values of knowledge fluents.

The axioms of Df include (a) coarse-resolution and fine-resolution counter-
parts of all state constraints of Dc, and fine-resolution counterparts of all other
axioms of Dc, with variables ranging over appropriate sorts from Σf ; (b) general
and domain-specific axioms for observing the domain through sensor inputs; and
(c) axioms relating coarse-resolution domain attributes with their fine-resolution
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counterparts. If certain conditions are met, e.g., each coarse-resolution domain
attribute can be defined in terms of the fine-resolution attributes of the corre-
sponding components, there is a path in τf for each transition in τc—see [18] for
formal definitions and proofs.

Reasoning with Df does not address the uncertainty in sensing and actua-
tion, and becomes computationally intractable for complex domains. We address
this problem by drawing on the principle of zooming introduced in [18]. Specif-
ically, for each abstract transition T to be implemented at fine resolution, we
automatically determine the system description Df (T ) relevant to this transi-
tion; we do so by determining the relevant object constants and restricting Df

to these object constants. To implement T , we then use ASP-based reasoning
with Π(Df (T ),Hf ) to plan a sequence of concrete (i.e., fine-resolution) actions.
In what follows, we use “refinement and zooming” to refer to the use of both
refinement and zooming as described above. Note that fine-resolution reasoning
does not (need to) reason with activities or intentional actions.

The actual execution of the plan of concrete action is based on existing imple-
mentations of algorithms for common robotics tasks such as motion planning,
object recognition, grasping and localization. These algorithms use probabilistic
models of uncertainty in sensing and actuation. The high-probability outcomes
of each action’s execution are elevated to statements associated with complete
certainty in Hf and used for subsequent reasoning. The outcomes from fine-
resolution execution of each abstract transition, along with relevant observations,
are added to Hc for subsequent reasoning using AT I. The CR-Prolog programs
for fine-resolution reasoning and the program for the overall control loop of the
architecture are available online [17].

Key differences between the current representation and use of fine-resolution
information, and the prior work on the refinement-based architecture [18] are:

– Prior work used a partially observable Markov decision process (POMDP)
to reason probabilistically over the zoomed fine-resolution system descrip-
tion Df (T ) for any coarse-resolution transition T ; this can be computation-
ally expensive, especially when domain changes prevent reuse of POMDP
policies [18]. In this paper, CR-Prolog is used to compute a plan of con-
crete actions from Df (T ); each concrete action is executed using algorithms
that incorporate probabilistic models of uncertainty, significantly reducing the
computational costs of fine-resolution planning and execution. The disadvan-
tage is that the uncertainty associated with each algorithm is not considered
explicitly during planning at the fine-resolution.

– Prior work did not (a) reason about intentional actions; (b) maintain any
fine-resolution history; or (c) extract and exploit all the information from fine-
resolution observations. The architecture described in this paper keeps track
of the relevant fine-resolution observations and adds appropriate statements
to the coarse-resolution history to use all the relevant information. It also
explicitly builds a consistent model of history at the finer resolution.
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4 Experimental Setup and Results

This section reports the results of experimentally evaluating the capabilities of
our architecture in different scenarios. We evaluated the following hypotheses:

– H1: using AT I improves the computational efficiency in comparison with
not using it, especially in scenarios with unexpected success.

– H2: using AT I improves the accuracy in comparison with not using it, espe-
cially in scenarios with unexpected goal-relevant observations.

– H3: the architecture that combines AT I with refinement and zooming sup-
ports reliable and efficient operation in complex robot domains.

We report results of evaluating these hypotheses experimentally: (a) in a simu-
lated domain based on Example 1; (b) on a Baxter robot manipulating objects
on a tabletop; and (c) on a Turtlebot finding and moving objects in an indoor
domain. We also provide some execution traces as illustrative examples of the
working of the architecture. In each trial, the robot’s goal was to find and move
one or more objects to particular locations. As a baseline for comparison, we
used an ASP-based reasoner that does not include AT I—we refer to this as
the “traditional planning” (T P) approach in which only the outcome of the
action currently being executed is monitored. Note that this baseline still uses
refinement and zoom, and probabilistic models of the uncertainty in sensing and
actuation. Also, we do not use T I as the baseline because it includes components
that make it much more computationally expensive than AT I—see Sect. 3.2 for
more details. To evaluate the hypotheses, we used one or more of the follow-
ing performance measures: (i) total planning and execution time; (ii) number of
plans computed; (iii) planning time; (iv) execution time; (v) number of actions
executed; and (vi) accuracy.

4.1 Experimental Results (Simulation)

We first evaluated hypotheses H1 and H2 extensively in a simulated world that
mimics Example 1, with four places and different objects. Please also note the
following:

– To fully explore the effects of AT I, the simulation-based trials did not include
refinement, i.e., the robot only reasons with the coarse-resolution domain rep-
resentation. We also temporarily abstracted away uncertainty in perception
and actuation.

– We conducted paired trials and compared the results obtained with T P and
AT I for the same initial conditions and for the same dynamic domain changes
(when appropriate), e.g., a book is moved unknown to the robot and the robot
obtains an unexpected observation.

– To measure execution time, we assumed a fixed execution time for each con-
crete action, e.g., 15 units for moving from a room to the neighboring room, 5
units to pick up an object or put it down; and 5 units to open a door. Ground
truth is provided by a component that reasons with complete domain knowl-
edge.
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Table 1. Experimental results comparing AT I with T P in different scenarios. Values
of all performance measures (except accuracy) for T P are expressed as a fraction of
the values of the same measures for AT I. AT I improves accuracy and computational
efficiency, especially in dynamic domains.

Scenarios Average ratios Accuracy

Total
time

Number
plans

Planning
time

Exec.
time

Exec.
steps

T P AT I

1 0.81 1.00 0.45 1.00 1.00 100% 100%

2 3.06 2.63 1.08 5.10 3.61 100% 100%

3 0.81 0.92 0.34 1.07 1.12 72% 100%

4 1.00 1.09 0.40 1.32 1.26 73% 100%

5 0.18 0.35 0.09 0.21 0.28 0% 100%

All 1.00 1.08 0.41 1.39 1.30 74% 100%

3 - no failures 1.00 1.11 0.42 1.32 1.39 100% 100%

4 - no failures 1.22 1.31 0.49 1.61 1.53 100% 100%

All - no failures 1.23 1.30 0.5 1.72 1.60 100% 100%

Table 1 summarizes the results of ≈800 paired trials in each scenario described
in Sect. 3.2; all claims made below were tested for statistical significance. The
initial conditions, e.g., starting location of the robot and objects’ locations, and
the goal were set randomly in each paired trial; the simulation ensures that
the goal is reachable from the chosen initial conditions. Also, in suitable sce-
narios, a randomly-chosen, valid (unexpected) domain change is introduced in
each paired trial. Given the differences between paired trials, it does not make
sense to average the measured time or plan length across different trials. In each
paired trial, the value of each performance measure (except accuracy) obtained
with T P is thus expressed as a fraction of the value of the same performance
measure obtained with AT I; each value reported in Table 1 is the average of
these computed ratios. We highlight some key results below.

Scenario-1 represents a standard planning task with no unexpected domain
changes. Both T P and AT I provide the same accuracy (100%) and compute
essentially the same plan, but computing plans comprising intentional actions
takes longer. This explains the reported average values of 0.45 and 0.81 for
planning time and total time (for T P) in Table 1. In Scenario-2 (unexpected
success), both T P and AT I achieve 100% accuracy. Here, AT I stops reasoning
and execution once it realizes the desired goal has been achieved unexpectedly.
However, T P does not realize this because it does not consider observations not
directly related to the action being executed; it keeps trying to find the objects
of interest in different places. This explains why T P has a higher planning time
and execution time, computes more plans, and executes more plan steps.

Scenarios 3–5 correspond to different kinds of unexpected failures. In all
trials corresponding to these scenarios, AT I leads to successful achievement of
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the goal, but there are many instances in which T P is unable to recover from
the unexpected observations and achieve the goal. For instance, if the goal is to
move two books to the library, and one of the books is moved to an unexpected
location when it is no longer part of an action in the robot’s plan, the robot may
not reason about this unexpected occurrence and thus not achieve the goal. This
phenomenon is especially pronounced in Scenario-5 that represents an extreme
case in which the robot using T P is never able to achieve the assigned goal
because it never realizes that it has failed to achieve the goal. Notice that in the
trials corresponding to all three scenarios, AT I takes more time than T P to
plan and execute the plans for any given goal, but this increase in time is more
than justified given the high accuracy and the desired behavior that the robot
is able to achieve in these scenarios using AT I.

The row labeled “All” in Table 1 shows the average of the results obtained in
the different scenarios. The following three rows summarize results after remov-
ing from consideration all trials in which T P fails to achieve the assigned goal.
We then notice that AT I is at least as fast as T P and often faster, i.e., takes
less time (overall) to plan and execute actions. In summary, T P results in faster
planning but results in lower accuracy and higher execution time than AT I in
dynamic domains, especially in the presence of unexpected successes and failures
that are common in dynamic domains. All these results provide evidence in sup-
port of hypotheses H1 and H2. For extensive results in more complex domains,
including a comparison with an architecture that does not use zooming at the
fine-resolution, please see [11].

4.2 Execution Trace

The following execution trace illustrates the differences in the decisions made by
a robot using AT I in comparison with a robot using T P. This trace corresponds
to scenarios in which the robot has to respond to the observed effects of an
exogenous action.

Execution Example 1 [Example of Scenario-2]
Assume that robot rob1 is in the kitchen initially, holding book1 in its hand, and
believes that book2 is in office2 and the library is unlocked.

– The goal is to have book1 and book2 in the library. The computed plan is the
same for AT I and T P, and consists of actions:

move(rob1, library), put down(rob1, book1),move(rob1, kitchen),
move(rob1, office2), pickup(rob1, book2), move(rob1, kitchen)
move(rob1, library), putdown(rob1, book2)

– Assume that as the robot is putting book1 down in the library, someone has
moved book2 to the library.

– With AT I, the robot observes book2 in the library, reasons and explains the
observation as the result of an exogenous action, realizes the goal has been
achieved and stops further planning and execution.
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– With T P, the robot does not observe or does not use the information encoded
in the observation of book2. It will thus waste time executing subsequent steps
of the plan until it is unable to find or pickup book2 in the library. It will
then replan (potentially including prior observation of book2) and eventually
achieve the desired goal. It may also compute and pursue plans assuming
book2 is in different places, and take more time to achieve the goal.

4.3 Robot Experiments

We also ran experimental trials with the combined architecture, i.e., AT I with
refinement and zoom, on two robot platforms. These trials represented instances
of the different scenarios in variants of the domain in Example 1.

First, consider the experiments with the Baxter robot manipulating objects
on a tabletop. The goal is to move particular objects between different “zones”
(instead of places) or particular cell locations on a tabletop. After refinement,
each zone is magnified to obtain grid cells. Also, each object is magnified into
parts such as base and handle after refinement. Objects are characterized by
color and size. The robot cannot move its body but it can use its arm to move
objects between cells or zones.

Next, consider the experiments with the Turtlebot robot operating in an
indoor domain. The goal is to find and move particular objects between places
in an indoor domain. The robot does not have a manipulator arm; it solicits
help from a human to pickup the desired object when it has reached the desired
source location and found the object, and to put the object down when it has
reached the desired target location. Objects are characterized by color and type.
After refinement, each place or zone was magnified to obtain grid cells. Also,
each object is magnified into parts such as base and handle after refinement.

Although the two domains differ significantly, e.g., in the domain attributes,
actions and complexity, no change is required in the architecture or the under-
lying methodology. Other than providing the domain-specific information, no
human supervision is necessary; most of the other steps are automated. In ≈50
experimental trials in each domain, the robot using the combined architecture is
able to successfully achieve the assigned goal. The performance is similar to that
observed in the simulation trials. For instance, if we do not include AT I, the
robot has lower accuracy or takes more time to achieve the goal in the presence
of unexpected success or failure; in other scenarios, the performance with AT I
and T P is comparable. Also, if we do not include zooming, the robot takes a
significantly longer to plan and execute concrete, i.e., fine-resolution actions. In
fact, as the domain becomes more complex, i.e., there are many objects and
achieving the desired goal requires plans with multiple steps, there are instances
when the planning starts becoming computationally intractable. All these results
provide evidence in support of hypothesis H3.

Videos of the trials on the Baxter robot and Turtlebot corresponding to
different scenarios can be viewed online [19]. For instance, in one trial involving
the Turtlebot, the goal is to have both a cup and a bottle in the library, and
these objects and the robot are initially in office2. The computed plan has the
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robot pick up the bottle, move to the kitchen, move to the library, put the bottle
down, move back to the kitchen and then to office2, pick up the cup, move to
the library through the kitchen, and put the cup down. When the Turtlebot is
moving to the library holding the bottle, someone moves the cup to the library.
With AT I, the robot uses the observation of the cup, once it has put the bottle
in the library, to infer the goal has been achieved and thus stops planning and
execution. With just T P, the robot continued with its initial plan and realized
that there was a problem (unexpected position of the cup) only when it went
back to office2 and did not find the cup.

5 Discussion and Future Work

In this paper we presented a general architecture that reasons with intentions
and beliefs using transition diagrams at two different resolutions. Non-monotonic
logical reasoning with a coarse-resolution domain representation containing com-
monsense knowledge is used to provide a plan of abstract intentional actions
for any given goal. Each such abstract intentional action is implemented as
a sequence of concrete actions by reasoning with the relevant part of a fine-
resolution representation that is a refinement of the coarse-resolution represen-
tation. Also, the architecture allows the robot to automatically and elegantly
consider the observations that are relevant to any given goal and the underly-
ing intention. Experimental results in simulation and on different robot plat-
forms indicate that this architecture improves the accuracy and computational
efficiency of decision making in comparison with an architecture that does not
reason with intentional actions and/or does not include refinement and zooming.

This architecture opens up directions for future research. First, we will
explore and formally establish the relationship between the different transition
diagrams in this architecture, along the lines of the analysis provided in [18].
This will enable us to prove correctness and provide other guarantees about
the robot’s performance. We will also instantiate the architecture in different
domains and to further demonstrate the applicability of the architecture. The
long-term goal will be enable robots to represent and reason reliably and effi-
ciently with different descriptions of knowledge and uncertainty.

References

1. Balai, E., Gelfond, M., Zhang, Y.: Towards answer set programming with sorts.
In: International Conference on Logic Programming and Nonmonotonic Reasoning,
Corunna, Spain, 15–19 September 2013 (2013)

2. Balduccini, M., Gelfond, M.: Logic programs with consistency-restoring rules. In:
AAAI Spring Symposium on Logical Formalization of Commonsense Reasoning,
pp. 9–18 (2003)

3. Baral, C., Gelfond, M.: Reasoning about intended actions. In: Proceedings of the
National Conference on Artificial Intelligence, vol. 20, p. 689 (2005)



Theory of Intentions for Human-Robot Collaboration 19

4. Blount, J., Gelfond, M., Balduccini, M.: Towards a theory of intentional agents. In:
Knowledge Representation and Reasoning in Robotics. AAAI Spring Symposium
Series, pp. 10–17 (2014)

5. Blount, J., Gelfond, M., Balduccini, M.: A theory of intentions for intelligent agents.
In: Calimeri, F., Ianni, G., Truszczynski, M. (eds.) LPNMR 2015. LNCS (LNAI),
vol. 9345, pp. 134–142. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
23264-5 12

6. Bratman, M.: Intention, Plans, and Practical Reason. Center for the Study of
Language and Information (1987)

7. Erdem, E., Patoglu, V.: Applications of ASP in robotics. Kunstliche Intelligenz
32(2–3), 143–149 (2018)

8. Gabaldon, A.: Activity recognition with intended actions. In: International Joint
Conference on Artificial Intelligence (IJCAI), Pasadena, USA, 11–17 July 2009
(2009)

9. Gelfond, M., Kahl, Y.: Knowledge Representation, Reasoning, and the Design of
Intelligent Agents: The Answer-Set Programming Approach. Cambridge University
Press, Cambridge (2014). https://books.google.co.nz/books?id=99XSAgAAQBAJ

10. Gelfond, M., Inclezan, D.: Some properties of system descriptions of ALd. J. Appl.
Non-Class. Log. Spec. Issue Equilibr. Logic Answ. Set Program. 23(1–2), 105–120
(2013)

11. Gomez, R., Sridharan, M., Riley, H.: What do you really want to do? Towards
a theory of intentions for human-robot collaboration. Ann. Math. Artif. Intell.
(2020). https://doi.org/10.1007/s10472-019-09672-4

12. Hanheide, M., et al.: Robot task planning and explanation in open and uncertain
worlds. Artif. Intell. 247, 119–150 (2017)

13. Kelley, R., Tavakkoli, A., King, C., Nicolescu, M., Nicolescu, M., Bebis, G.: Under-
standing human intentions via hidden Markov models in autonomous mobile
robots. In: International Conference on Human-Robot Interaction (HRI), Ams-
terdam, Netherlands, 12–15 March 2008 (2008)

14. Rao, A.S., Georgeff, M.P.: BDI agents: from theory to practice. In: 1st International
Conference on Multiagent Systems, San Francisco, CA, pp. 312–319 (1995)

15. Saribatur, Z.G., Baral, C., Eiter, T.: Reactive maintenance policies over equalized
states in dynamic environments. In: Oliveira, E., Gama, J., Vale, Z., Lopes Cardoso,
H. (eds.) EPIA 2017. LNCS (LNAI), vol. 10423, pp. 709–723. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-65340-2 58

16. Saribatur, Z.G., Eiter, T.: Reactive policies with planning for action languages. In:
Michael, L., Kakas, A. (eds.) JELIA 2016. LNCS (LNAI), vol. 10021, pp. 463–480.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48758-8 30

17. Software and results corresponding to the evaluation of our architecture (2019).
https://github.com/hril230/theoryofintentions/tree/master/code

18. Sridharan, M., Gelfond, M., Zhang, S., Wyatt, J.: REBA: a refinement-based archi-
tecture for knowledge representation and reasoning in robotics. J. Artif. Intell. Res.
65, 87–180 (2019)

19. Videos demonstrating the use of our architecture on robot platforms (2019).
https://drive.google.com/open?id=1m-jVV25vFvi35Ai9N7RYFFOPNaZIUdpZ

20. Zhang, Q., Inclezan, D.: An application of ASP theories of intentions to under-
standing restaurant scenarios. In: International Workshop on Practical Aspects of
Answer Set Programming (2017)

21. Zhang, S., Khandelwal, P., Stone, P.: Dynamically constructed (PO)MDPs for
adaptive robot planning. In: AAAI Conference on Artificial Intelligence (AAAI),
San Francisco, USA, February 2017 (20)

https://doi.org/10.1007/978-3-319-23264-5_12
https://doi.org/10.1007/978-3-319-23264-5_12
https://books.google.co.nz/books?id=99XSAgAAQBAJ
https://doi.org/10.1007/s10472-019-09672-4
https://doi.org/10.1007/978-3-319-65340-2_58
https://doi.org/10.1007/978-3-319-48758-8_30
https://github.com/hril230/theoryofintentions/tree/master/code
https://drive.google.com/open?id=1m-jVV25vFvi35Ai9N7RYFFOPNaZIUdpZ


Decentralised Control of Intelligent
Devices: A Healthcare Facility Study

Sacha Lhopital1, Samir Aknine2, Vincent Thavonekham1, Huan Vu2(B) ,
and Sarvapali Ramchurn3

1 VISEO Technologies, Lyon, France
{sacha.lhopital,vincent.thavonekham}@viseo.com
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Abstract. We present a novel approach to the management of notifica-
tions from devices in a healthcare setting. We employ a distributed con-
straint optimisation (DCOP) approach to the delivery of notification for
healthcare assistants that aims to preserve the privacy of patients while
reducing the intrusiveness of such notifications. Our approach reduces
the workload of the assistants and improves patient safety by automat-
ing task allocation while ensuring high priority needs are addressed in a
timely manner. We propose and evaluate several DCOP models both in
simulation and in real-world deployments. Our models are shown to be
efficient both in terms of computation and communication costs.

Keywords: IoT · Healthcare · DCOP · DPOP

1 Introduction

The penetration of novel Internet-of-things technology in the healthcare setting
is growing rapidly. Many of these devices serve to monitor patients and alert
healthcare professionals whenever abnormalities are detected (for instance, a
syringe pump is going to ring when it detects an air bubble in its mechanism)
or when routine checks are needed (about every four hours).

Nevertheless, operating and monitoring these devices take a considerable
amount of time ranging from 5 to 10% a day. As a result, a healthcare provider
has to check all those devices on a regular basis. As part of this project, a series
of interviews with hospital staff were conducted. The following conclusions were
drawn from these interviews. Every time a device encounters a technical problem
(e.g. running out of power) or the device is ending its program (e.g. the syringe
pump will finish its program in less than ten minutes), the device produces a
very loud tone in order to alert the medical staff. Attending to such notifications
rapidly becomes intractable with large departments with hundreds of patients.
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Thus, when a device rings, the medical staff cannot remember which one it is
and what action is expected. Therefore, the staff needs to: (1) go in the room (2)
notice the defective equipment (3) act accordingly (for instance: get a medication
stored in another room). Limiting these tasks (by only checking rooms requiring
an intervention, where it used to be every room of the department every x hours
for instance) can improve healthcare professionals’ work conditions. With this
in mind, several issues were noticed: (1) most of the devices are not integrated
into an information system, thus forcing healthcare professionals to individually
check them regularly, thereby wasting precious time on monitoring actions; (2)
audible notifications from multiple devices at the same time can raise levels of
stress and confusion among staff.

Against this background, in this paper we propose a novel approach that
looks to minimise the intrusiveness of such devices. Specifically, we develop a
solution that: (1) Detects anomalies and manages tasks division by combin-
ing data from multiple sources; (2) Constructs and suggests an action plan for
healthcare provider. The aim is to provide staff with situational awareness and
help them anticipate future interventions. The purpose of our system is to warn
the medical staff before devices ring, but without increasing the frequency of
their interventions. We formulate the problem as a Distributed Constraint Opti-
mization Problem (DCOP) which has been shown to be effective in itinerary
optimization [6,15] and scheduling problems [7]. This decentralized approach has
the benefit of distributing the main computations across all available devices.
Specifically, this paper advances the state of the art in the following ways.

1. We propose a DCOP approach that limits the amount of data transmitted to
a central node.

2. Our DCOP approach allows the seamless integration or removal of IoT
devices.

3. We show that a DCOP approach is a natural way of modelling the problem.
Our system was simulated using Raspberry Pi’s to help represent the problem
in a more realistic way. This specific deployment method is very important
since it adds development constraints to our system (execution time, machine
resources, interactions with the staff).

The remainder of this article is organized as follows. First, the paper intro-
duces the problem statement. After that, we describe the DCOP model we pro-
pose to solve this problem. Then, we detail the proposed solution. We pursue
with an evaluation of our work. In the conclusion, we summarize the work done
and we provide some perspectives.

2 Related Work

MobiCare [1], designed by Chakravorty in 2006, provides a wide-area mobile
patient monitoring system to facilitate continuous monitoring of the patients
physiological status. Like CodeBlue [9,11] is a popular healthcare project based
on BSN framework (Body Sensor Network). In this system, sensors on the
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patient’s body transmit information wirelessly to other devices for further anal-
ysis (like laptops and personal computers). While CodeBlue is using a wireless
architecture, there have been many efforts in the medical field to design gate-
ways for specific applications. For example, [2,16] suggest the use of gateways
instead of wireless or Ethernet to connect networks with different protocols.

Beyond these first solutions, DCOP algorithms have already been tested in
practical scenarios such as travel optimization [6,15] or planning [7]. Among the
DCOP algorithms, three are particularly well known: ADOPT [12], DPOP [14],
OptAPO [10].

[6] compared these main algorithms in situations where the environment
changes dynamically. Their study shows that these algorithms offer good per-
formance but also highlight some limitations. DPOP is the fastest algorithm at
runtime, but it is extremely greedy about the size of the messages exchanged.
ADOPT gives variable results depending on the constraints. Indeed, if the sys-
tem is not subject to many conflicting constraints, the algorithm will be efficient.
On the other hand, if many constraints conflict, ADOPT does not provide effi-
cient results. OptAPO was proven to be incomplete and therefore, a complete
variant has been proposed [5]. Both variants are based on a mediator agent, so
the resolution is not fully distributed. [7] proposed another algorithm to solve
dynamic problems called DCDCOP (Dynamic Complex DCOP) based on a case
study of time use optimization in a medical context. This algorithm - mainly
based on the addition of a Degree of Unsatisfaction measure - dynamically guides
agents through the resolution process. This method is more appropriate where
agents try to optimize several variables at the same time.

The mechanism we propose is based on the DPOP algorithm [13]. We pro-
pose an improved version of the algorithm proposed by [13]. We have designed
new heuristics for the Depth First Search (DFS) tree generation to improve the
execution speed. This is the first model for device management using DCOPs.

3 Problem Statement

We consider a hospital facility made up of several departments. Each department
includes a set of rooms. Within a room, several devices are deployed to monitor
the status of each patient. Each room has a neighborhood formed by a set of
rooms. The objective of the system is to determine the times when healthcare
providers pass through each of these rooms and prioritize them in order to per-
form the operations required for each patient (e.g. recharging a syringe pump,
etc.). The intervention time consists of a number of minutes before the situation
becomes critical. Thus, we prioritize the rooms depending on which one is the
most urgent. The emergency “level” is calculated dynamically and depends on
several parameters. A room deadline is the time when a device of this room will
ring. We define, a configuration Ot as the set of times for all the rooms in the
department for a time step t. Each configuration Ot must satisfy the following
rules: (1) a room must have only one intervention time at a time ti; (2) the cur-
rent configuration must be accessible by all rooms so that they share the same
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information; (3) all the rooms should not call the healthcare providers at the
same time, except the rooms in the same neighbourhood. In order to build this
configuration, we model the problem as follows. Let A = {a1, . . . , an} be the set
of agents (which manage the rooms) with n the total number of rooms. Each
room i is modeled by an agent ai. For a room i, each agent ai will compute a
value vi which represents the time (in minutes) before the next intervention. Let
D = {d1, . . . , dn} be all the possible values for vi. If di = +∞, then no interven-
tion is required in the room i. Let t be the current time step. A configuration
Ot = {v1, . . . , vn} is optimal if, and only if, it respects all the constraints of each
room in the department. The system’s inputs are the agents A and the previous
configuration Ot−1. Thus, the Ot configuration is optimal if F , the interventions
cost function, is minimal according to the next intervention dates vi. Our goal
is to seek a minimization:

arg min
Ot

F (Ot) =
n∑

i=1

Ci (1)

For a specific vi, Ci returns a global cost ∈ R ∪ {∞}. This global cost, to
satisfy F , is defined regarding all the following structural constraints.

– c1. Device number constraint: If there are no devices in the room, the
agent will not ask for intervention: Let Mi = {m1, . . . , ml} be the set of all
the devices of the room i.

∀ai ∈ A, |Mi| = 0 ⇒ vi = +∞ (2)

– c2.a Simple device rescheduling constraint: Healthcare professionals
have to check the room just before a device ends its program. We define
the function isInCriticState(mi) which returns true if the device mi is in a
critical state.

∀ai ∈ A,∀ml ∈ Mi,

isInCriticState(ml) ⇒ vi < 10
(3)

– c2.b Critical device rescheduling constraint: Healthcare professionals
have to reschedule machines when they come to a critical state. Therefore, we
define the function programState(mi) to return the remaining time (minutes)
before mi ends its program. If the remaining time is not computable (i.e.
the device does not require an intervention), the function returns +∞. As a
consequence, if a device in the room i ends its program in less than 30 min
than vi has to be less than this value.

∀ai ∈ A,∃ml ∈ Mi,

¬ isInCriticState(ml) ∧ programState(ml) ≤ 30
⇒ vi ≤ programState(ml)

(4)
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– c3. Neighbourhood constraint: If two rooms are in the same location,
they can synchronize their decisions to avoid multiple interventions in a short
time. In other words: two neighbours should not ask for interventions with
less than tsynchro minutes interval (except if they both call at the same time).
We define the function neighbours(ai, aj) as a function returning true when
the agents ai and aj are neighbours.

∀ai, aj ∈ A2, neighbours(ai, aj) ⇒
(|vi − vj | > tsynchro ∨ |vi − vj | = 0)

(5)

– c4.a Patient’s condition constraint: If a patient uses multiple devices
(more than five), we consider that he needs more attention than others. His
state should be checked at least every three hours instead of four otherwise.
Let τi be the elapsed time since a medical staff came into the room i.

∀ai ∈ A, (|Mi| > 5 ∧ τi ≥ 180) ⇒ vi < 30 (6)

– c4.b Time between two visits constraint: The elapsed time between two
interventions in a room cannot exceed four hours. This constraint is derived
from the interviews we made. If more than 3 h and 30 min have passed since
the last visit, the system should plan another visit within 30 min.

∀ai ∈ A, (|Mi| ≥ 1 ∧ τi ≥ 210) ⇒ vi < 30 (7)

– c5. Quietness constraint: Each agent ai verifies if there is no device in the
room i that needs intervention. If it is the case, healthcare staff can ignore
the room:

∀ai ∈ A,∀ml ∈ Mi,

(¬isInCriticState(ml)∧
programState(ml) > 30 ∧ τi < 180)
⇒ vi ≥ 240

(8)

Example 1. Consider the following scenario with 6 rooms (a1, a2, a3, a4, a5

and a6) in a medical department. None of the rooms has devices to monitor
except the room a3 which is monitoring 3 devices programmed to end respectively
in 40min, 60min, and the last is in a critical state. The neighbourhood is the
following: a1 is surrounded by a3 and a2; a4 is surrounded by a3 and a5; And a5

is also neighbour with a6. Therefore, a1, a3, a4, a5 have two neighbours, while
a2 and a6 have only one neighbour (cf. Fig. 1).
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Fig. 1. Illustration scenario with the 6 rooms in the medical department. None of
the rooms have devices to monitor except agent a3 which is monitoring 3 devices
programmed to end respectively in 40 min, 60 min, and the last (in red) is in a critical
state. All adjacent rooms are neighbours. Therefore, a1, a3, a4, a5 have two neighbours,
while a2 and a6 have only one neighbour. (Color figure online)

Also, assuming that:

– M3 = {m31,m32,m33}
with isInCriticState(m32) = True (the device is in a critical state),
programState(m31) = 60 and
programState(m33) = 40.

– M4 = M5 = M1 = M2 = M6 = {∅}.
– τ3 = 60.
– We also set tsynchro = 30.

The structural constraints can be described as:

c1: v4, v5, v1, v2 and v6 will take the value +∞.
c2: The device m32 needs intervention. Thus, v3 < 10. The device m31 ends its

program in 60min and the device m33 in 40min. Hence: v3 ≤ 60; v3 ≤ 40.
c3: Given the neighbourhood in the scenario, we deduce that |v3 − v4| > tsynchro

and |v3 − v1| > tsynchro.
c4: The last intervention is very recent (because τ3 < 180 and |M3| < 5), so this

constraint will not be applied.
c5: This constraint does not apply here.

Next, we formalize the problem as a distributed constraint optimization problem.
Centralized solutions to scheduling have a lack of scalability and adaptabil-

ity to dynamic events such as the arrival of an emergency. In such a dynamic
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context, using a decentralized approach allows to be proactive to any change of
the devices.

4 DCOPs for Device Management

We formalise the Device Management DCOP as a tuple {A, V,D,C} , where:
A = {a1, a2, . . . , an} is a set of n agents; V = {v1, v2, . . . , vn} are variables owned
by the agents, where variable vi is owned by agent ai; D = {d1, d2, . . . , dn} is
a set of finite-discrete domains. A variable vi takes values in dvi

= v1, . . . , vk;
C = {c1, . . . , cm} is a set of constraints, where each ci defines a cost ∈ N∪ {∞}.
A solution to the DCOP is an assignment to all variables that minimizes

∑n
i=1 ci.

DCOP is a preferred solution to deal with stochastic and dynamic environ-
ments with data gathered from different agents. It is applied to numerous differ-
ent applications in multi-agent systems such as disaster management, meeting
scheduling, sensor network [3].

There are several ways to formalize our problem as a DCOP, depending on
what agents, variables and constraints are representing. Here we present three
approaches to formalize the medical optimization problem as a DCOP: a fully
decentralized room-based approach (Room Approach), a semi-decentralized
area-based approach (Area Approach) and finally a semi-decentralized multi-
variable approach (Multi-variable Area-based Approach). We intend to
show the effect of different levels of decentralization on the quality of time com-
puting. We evaluate and show the performance of each approach which may be
suitable for different medical device conditions.

4.1 Room-Based Approach

The Room Approach consists of modelling all the rooms as agents. The num-
ber of agents corresponds to the number of rooms to monitor. Each agent has
a variable that corresponds to the desired intervention time, depending on the
devices conditions in the room. The domain of the variables varies from 0, which
is the most critical call, to ∞ which means that no call is planned. We then map
the structural constraints described in the Eqs. (2) to (8) as follows:

Device number constraint

c1(vi) =

{
∞, if |Mi| = 0 and vi = +∞
0, otherwise

(9)

Device rescheduling constraint

c2(vi) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∞, if ∃ml ∈ Mi,

isInCriticState(ml) and vi ≥ 10
1, if ∃ml ∈ Mi, (¬isInCriticState(ml)

and programState(ml) ≤ 30)
and vi > programState(ml)

0, otherwise

(10)
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Neighbourhood constraint

c3(vi, vj) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1, if neighbours(ai, aj)
and |vi − vj | ≤ tsynchro

and |vi − vj | = 0
0, otherwise

(11)

Patient’s condition and time between two visits constraint

c4(vi) =

⎧
⎪⎨

⎪⎩

∞, if ((|Mi| > 5 and τi ≥ 180)
or (|Mi| ≥ 1 and τi ≥ 210)) and vi ≥ 30

0, otherwise
(12)

Quietness constraint

c5(vi) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1, if ∀ml ∈ Mi, vi < 240
and ¬isInCriticState(ml)
and programState(ml) > 30 and τi < 180

0, otherwise

(13)

The objective of our DCOP is to minimize
∑n

i=1 ci. This optimization repre-
sents the goal of the system (i.e. minimizing the number of rooms making calls
without violating any structural constraint).

4.2 Area-Based Approach

Instead of considering each room as an agent, we can consider a hospital area
as an agent which monitors multiple rooms. We consider that the department
is divided into several areas. As an area agent, it holds a unique variable v
that contains the most critical intervention time among all monitored rooms.
By gathering information from several rooms in this way, the system solves the
problem using the same constraints as in the previous approach. However, these
constraints are applied to all the rooms instead of a single room. On the other
hand, the neighbourhood constraint no longer concerns the rooms, but rather
the areas. Therefore, the global cost Ci is also computed by area as follows:

Ci =

⎧
⎪⎨

⎪⎩

∞, if ∃rk ∈ Ri, ∃ml ∈ Mk

isInCriticState(ml)
∑p

k=1

∑m
q=2 cq(vi), otherwise

(14)

In this approach, the device number constraint is no more used. We define a
similar constraint to take all rooms Ri into account and no longer a single one.

This approach also requires us to consider the impact on privacy and, more
specifically, the transit of data. For security and data protection reasons, the
centralization of data is very sensitive.
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4.3 Multi-variable Area-Based Approach

To go further in the area-based modelling, a slightly more specific approach was
also considered where each area defines an intervention time for each room. In
this last approach, we still consider that each one of the rooms in the area has
the knowledge on all the other rooms. Thus, we still have a single area agent,
but this agent will calculate a time set Vai

= {vr1 , vr2 , . . . , vrk} where k is the
number of rooms of the area i. This approach also requires us to consider the
impact on privacy, like the area-based approach.

Now that we have formalized the problem as a DCOP, we discuss the quality
of the solution and the usefulness of the method.

5 A DPOP Solution for the Device Management Problem

To solve the DCOP presented above, we use the DPOP algorithm (Dynamic
Parameter Optimization Problem) [14], based on the exchange of messages
between agents. We chose to use DPOP as it is one of the fastest DCOP algo-
rithms [6], working by tree aggregation [4]. In more details, DPOP operates on
a matrix handling algorithm. To communicate agents use a tree graph (DFS):
an undirected graph, which contains a variable node vi for each agent, and an
edge connecting a variable node vi with another variable node vj if and only if
vi is a neighbour of vj . Each agent in DPOP takes the role of the variable node
which represents its own variable. Figure 2 shows the tree graph of the room-
based approach for the scenario presented in the Example 1. The main process of
DPOP consists in computing and exchanging messages between variable nodes
through the tree graph constructed. At each iteration k of the process, all agents
execute 3 phases. In the first phase, a proper tree graph is generated to serve as
a communication structure for the next steps. To do so, agents exchange mes-
sages through their neighbourhood in order to generate the tree graph. When
this graph is complete, the second phase starts: starting from the leaves of the
tree, each agent ai computes its own cost matrix Utili (depending on its vi value
and on its children v values) and propagates it upward through the tree edges.
Those matrices summarize the influence of the sending agent and its neighbours
on the next steps. The third phase is started by the root when phase 2 is over.
Each agent computes its optimal value for v based on the Util matrix and the
V alue message it received from its parent. Then it sends this value as a V alue
message to its own children.

Fig. 2. Room-based approach tree graph for the scenario presented in Example 1. There
are 6 agents (v1 to v6), each is connected to its neighbours.
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Example 2. Consider the tree graph presented in Fig. 2. Let D = {0, 30, 241}.
The message that the variable v2 sends to its parent v1 for the iteration k is the

following: Util2 =

⎡

⎣
a
b
c

⎤

⎦, where each matrix value is the result of a cost (
∑5

l=1 cl).

The abscissa axis represents the lowest possible value for v2, while the ordinate
represents all possible values for v1 in D. When v1 is set up with the best value
for this iteration (let us say b), v1 sends this value back to v2.

During the propagation of messages, an agent is able to calculate locally its
next intervention time that minimizes the sum of the costs over all neighbours
functions. Classic DPOP does not always guarantee convergence at the end of an
iteration. In our context, we overcome this issue with the use of the Quietness
constraint.

Event Detection and Management. Dynamic events should be taken into account
during the resolution. For instance, we need to detect when a medical staff is
in a room (or when she is near). Every event will dynamically impact some
constraints. Thus, the system will detect healthcare staff interventions and can
update the different constraints parameters, for instance, the time since the last
intervention (τ), the states of the devices, the number of interventions (|M |,
isInCriticState(m), programState(m)).

Event detection is essential when a device enters in a critical state. The
healthcare provider needs to be called right away because the situation corre-
sponds to an emergency.

Priority Management. After each iteration, all agents set their next intervention
time v depending on their knowledge about their devices. However, if an agent
i asks for a quicker intervention than its neighbours, i will not necessarily be
satisfied if it is not the most critical in the system.

In order to deal with this issue, we define the concept of priority for the
DCOP solver. The classic DPOP algorithm generates a DFS tree for the problem
to solve. But for the same problem, several DFS trees may be generated. Yet,
depending on the generated tree, the algorithm finds a local solution (possibly
the best solution, but not necessarily).

Yet, in our case study, finding a local solution is not enough. We therefore
search for the best solution because healthcare providers need to check on the
most urgent patients first. To do so, we define some specific rules for the DPOP
that allow agents to declare themselves as more important. More precisely, those
rules impact the tree graph construction in the first phase of DPOP by putting
the most important agents at the top of the DSF tree. This allows them to choose
their intervention time first. Three specific priority rules are defined:

– Critical Priority is triggered when a device enters a critical state. The
concerned agent will ask other agents to start a new DCOP computation
handling its condition. This priority is the most important. When this rule
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applies, it overcomes all the others. When triggered, all agents will start a
new computation of the DCOP algorithm.

– Time Priority is triggered when a device needs intervention since the last
iteration, but no healthcare provider has been able to intervene. At each iter-
ation, the agent will increase its priority until a healthcare provider answers
the call.

– Intervention Consequence Priority is triggered after a healthcare assis-
tant provides an intervention. When triggered, the priority of the concerned
agent is reduced to the lowest value.

6 Empirical Evaluation

We have evaluated the performance of our method using the DPOP algorithm.
The algorithm was implemented in Python 3.6 and deployed on Raspberry Pi
devices, using Broadcom BCM2837 64-bit processor with four ARM Cortex-A53
hearts - 1,2 GHz. The use of Raspberry pi allows us to physically distribute our
agents - as it will be the case in a real situation. DPOP was also implemented
using Frodo [8]. In order to communicate, the Mqtt protocol was used with a
Mqtt Server running on a local gateway. All compared values are averages on
up to 10 to 50 consecutive simulations (the exact number depends on the used
method with the Frodo simulator or with the deployed system and their multiple
parameters). All algorithms are evaluated according to their execution time. We
ran our experiments with all our different approaches: room-based approach,
area-based approach and the multi-variable area-based approach.

6.1 Benchmarking

The Fig. 3a represents the execution time of each approach: Room Approach
in solid line; Area Approach in big dots; and Multi-variable Area-based
Approach with dashed lines. Multiple curves are shown for different numbers of
agents in the system. Whatever the situation, these curves show that the fastest
approach is the Area Approach (execution time between 1,29 and 2,68 s by
agent). The Room Approach also gives good results (between 3,75 and 5,6 s).
This evaluation shows that the Area Approach can offer faster results but it
will be at the detriment of the precision of the results. The Fig. 3b summarizes
these results. Figures 5a and 6a present the results with 6 agents. Among them, 3
agents run on Raspberry Pi devices and 3 agents run on Windows 10 computers.
Figures 5b and 6b show a similar situation but with 10 agents (3 agents on
Raspberry Pi devices and others on Windows 10 computers). Also, dotted lines
represent a specific simulation performed with simulated Raspberry Pi devices
(QEMU). The use of this simulator drastically increased the execution time
because this simulator uses more computer resources. Therefore, we will focus
on the analysis of the results represented in solid lines. The total execution time
of our deployed system is higher than the execution time we observed with the
DPOP simulation (cf. Fig. 4). For 6 agents (cf. Fig. 5a), we provide a solution in
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Algorithm 1. Scheduling Agent pseudo-code
Require: root = NULL

for all agents do
if root == NULL then

send starting signal
else

send starting signal with root as a parameter
end if

end for
while results size < number of agents do

wait
end while
for all results do

if result == 0 then
root = agent
Start over

end if
if result < 30 and agent.priority > 0 then

agent.priority = agent.priority + 1
end if
if result > 30 and agent.priority > 0 then

agent.priority = 0
end if

end for

Algorithm 2. DPOP Agent pseudo-code when receiving a message to start
if root != NULL then

run DPOP algorithm with root as the DFS Tree root
else

run DPOP classic algorithm
end if
return result

less than 1 s using the simulator and in less than 5 s with our deployed system.
This can be explained by the fact that our system provides an optimal solution,
whereas FRODO provides a local optimum. This is the case because the “priority
constraint” cannot be taken into account by Frodo without completely rewriting
the DPOP algorithm. Secondly, regardless of the number of agents, the execution
time is quite similar. Against the Room Approach, the Area Approach runs
the algorithm much faster. For instance, 10 rooms divided into 4 areas give
results in 1,64 s, and 10 rooms divided into 6 areas give results in 2,15 s. This
semi-decentralized approach allows the system to produce more relevant results
for great numbers of rooms (more than 30). Furthermore, the algorithm gives
4,64 s for 50 rooms divided into 4 areas and 9,29 s for 6 areas. This is consistent
since the system only has 4 to 6 agents instead of 50 agents for the Room
Approach.
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Fig. 3. Evaluations of our algorithm. (a) Execution time of the system deployed on
Raspberry Pi devices depending on the approach for a medical department of 6 rooms.
(b) Average execution time of the system deployed on Raspberry Pi devices depending
on the approach for a medical department of 6 rooms.

Fig. 4. Execution time depending on the number of agents using FRODO.

Table 1 gives the execution times for the Multi-variable Area-based App-
roach. If the method takes more time to execute, we observed some consider-
able differences between two agents, execution times for the same iteration. For
instance, in the Table 1, agent 6 takes 1571 s to execute and agent 4 takes 129 s
while others take less than 65 s. Those major differences can be explained by
the new data structure that the agents use. Indeed, instead of using matri-
ces of |D| dimensions, the agents are computing matrices of |D|NbRoomsArea(ai)

dimensions where NbRoomsArea(ai) is the number of rooms managed by the
agent ai. Therefore, depending on their positions in the tree graph in the
DPOP algorithm, some agents will have to deal with much more data because
each parent in the tree will receive as much matrix |D|NbRoomsArea(ai) as it
has children. The resulting matrix will then have the following dimension:
|D|NbRoomsArea(ai) × NbChildren(ai) where NbChildren(ai) is the number of
children for the agent ai in the DFS tree.
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Table 1. Execution time for 12 Rooms and 6 Areas (with a Multi-variable Area-
based Approach).

Area 1 2 3 4 5 6

Time (s) 66.95 66.67 66.91 129.3 60.99 1571.99

6.2 Message Size

Our algorithm (and DPOP in general) requires a linear number of messages. This
is explained by the DFS construction which requires 2 × l messages, where l is
the number of edges in the tree graph. For n agents, Util DPOP phase requires
n− 1 messages (from the bottom to the top of the tree). The Value propagation
requires n− 1 messages (from the top to the bottom of the tree). The maximum
message size and memory requirements grow exponentially with the number of
agents. More precisely, DFS and Value messages are size and memory linear.
But the complexity lies in the size of the Util messages, which is space and time
exponential. Figures 6a and b give the size of the exchanged messages between
the agents (respectively for 6 agents in the system, and for 10 agents). Those
curves show the average size of the received messages for each agent depending on
different tested situations. Our system exchanges very tiny messages compared
to a Frodo simulation. For example with 10 agents (plain curves), the agent
number 3 is the one receiving huge messages (average of 3800 bytes). But with
Frodo, average messages size is in the order of 102 Kbytes. These results are
explained by the fact that we use the Mqtt communication protocol, which
allows to define a specific message structure. Also, regarding the Figs. 6a and b,
we observe important variations from one agent to another. Those results are
explained by the algorithm processing method. Indeed, depending on the DFS
tree generated during the first phase, the agents at the top of this tree will receive
bigger messages because their children will send them bigger matrices during the
Util propagation phase. The Util matrix is a multidimensional matrix, with one
dimension for each variable of the problem to solve. Therefore, every time an
agent received a Util matrix from one of its children, the current agent increases
the dimensions of the matrix (because the agent adds its own variable to solve to
the matrix). In the DPOP algorithm as described by A. Petcu, each dimension
of the matrix corresponds to the possible value of an agent. Each agent who
receives a matrix from one of these children (in the DFS tree) actually receives
a cost matrix based on the value the child will take. The more the matrix goes
up in the DFS tree, the more children are to be taken into account, so the more
dimensions there are. For instance, in the Fig. 6b, agents 1 to 3 received bigger
messages than other agents because they are at the top of the tree and they
have to compute more data. The same effect is observed for the agent 2 in the
Fig. 6b.
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Fig. 5. Execution time comparison between our system and QEMU simulations. (a)
Comparison for 6 agents. The figure shows the quality of the solutions and that our
system performed better on Raspberry Pi devices. (b) Comparison for 10 agents.

Fig. 6. Evaluation of the messages size. (a) Average received messages size comparison
between our system deployed on Raspberry Pi devices and our system deployed with
QEMU simulator (for 6 agents). (b) Average received messages size comparison between
our system deployed on Raspberry Pi devices and our system deployed with QEMU
simulator (for 10 agents).

7 Conclusion

In this paper, we have proposed an intelligent system to ease the daily work of
the medical staff in helping patients. Our work offers a new method to supervise
and monitor the various devices running in the rooms of the medical department
and leaves the medical staff to focus on their patients. We provided a DCOP for-
malization of the problem and showed how we use the DPOP algorithm to solve
it. Our method produces an efficient solution in terms of alerting healthcare
professionals in intervention times. We showed the robustness of this solution
to dynamic events. We also provided different formulations of the model with
different degrees of privacy preservation when it comes to the messages passed
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around. While our work has shown the potential of the DCOPs to solve the med-
ical device management problem, in the future, we aim to extend our method to
consider a more sophisticated system with cameras to detect healthcare providers
movements in the medical department. More precisely, we want to deploy our
system on Arduino instead of the Raspberry to follow up on this work. We also
aim to test our system with real devices like syringe pumps and multi-parameter
monitor as they are the most common ones in most medical services.
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Abstract. This paper presents a decentralised mechanism for traffic
control of connected autonomous vehicles in settings where multiple road
intersections have to be managed and optimised. We propose a solution
based on the distributed constraint optimisation approach (DCOP). We
build upon state of the art algorithm for single-intersection management
in order to manage congestion both across and within intersections. Fur-
thermore, to solve the DCOP, we propose an improved node ordering
policy for the Max-sum AD VP algorithm. Empirical evaluation of our
model and algorithm demonstrate that our approach outperforms exist-
ing benchmarks by up to 32% in terms of average delay for both single
and multiple intersection setup.

Keywords: Congestion control · Connected vehicles · Distributed
constraints optimisation

1 Introduction

Autonomous cars are predicted to number several millions by 2025. Crucially,
these cars will be able to communicate and coordinate with vehicles in range,
opening up opportunities to mitigate congestion and the risk of accidents.
This ability to communicate and coordinate underpins the notion of Connected
Autonomous Vehicles (CAVs).

Specifically, previous works from the AI community as well as the transporta-
tion community have considered different strategies to use CAVs to mitigate
traffic congestion. Some notable ones are [2,4,16,18,19]. They either use First
Come First Served (FCFS) [4], alternating [16], Distributed Constraint Opti-
misation Problem (DCOP) [18] to optimise traffic at an intersection. However,
the lack of communication and coordination between intersections can result,
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as we show in this paper, in highly congested situations across neighbouring
intersections, and thus, reduce the overall performance. [4] is further extended
in [17], a market-based approach where drivers constantly submit bids to get
the permission to cross the intersection. This mechanism can be applied to the
road network, however, it turns the network into a competitive set up with no
guarantees on performance as the bids are not optimised in any way. Recent
work [1] proposes a solution to deal with multi-intersection traffic management.
However, at a single intersection, this model relies on the one proposed earlier
[7], in which, the computation is centralised in an intersection controller, which
results in having a single point of failure.

Against this background, we propose a congestion management model based
on a DCOP representation, both at the intersection and the network level. In
more detail, this paper advances the state of the art in the following ways.
First, we propose a more efficient way to model space inside an intersection
than previous models. Second, we propose a novel mechanism that makes it
possible for intersections to distribute vehicles and reduce congestion across the
network, while avoiding computationally expensive global optimisation. Third,
we propose an improvement to the Max-sum AD VP algorithm [20], one of the
best incomplete DCOP algorithms, to account for the particular structure of our
problem. Finally, we empirically evaluate the performance of each proposition
and show the potential of using such approach for traffic management.

The remainder of the paper is organised as follows: Section 2 discusses existing
intersection models while Sect. 3 extends one of these models using a precise
approach. Section 4 presents a novel solution to the multi-intersection problem.
Section 5 formalises our problem as a DCOP and presents a variant of the Max-
sum AD VP algorithm, along with an improvement to the algorithm by ordering
nodes using priority levels. Section 6 evaluates our model on a single and multiple
intersection setup, and Sect. 7 concludes the paper.

2 Background on Intersection Model and Rules
for Vehicles

To be able to understand our multi-intersection approach, we need to first under-
stand the existing single intersection microscopic transportation model. Most of
these models aim to propose a regulation method for an individual intersection.
To deal with the lack of coordination between intersections, we will propose in
latter sections, a novel method that enables the use of the information in the
global traffic conditions to improve the overall performance.

CAVs, each guided by an agent, will replace the current flow-centric control
based on optimising the traffic light system [11]. In future CAV-based road net-
works, an intersection will no longer be regulated by traffic lights, but by using
intelligent agents that manage the right-of-way of each individual vehicle so that
we can optimise the use of resources (e.g. space and time, infrastructure, fuel).

When opting for intelligent intersection management, one crucial step is to
model the intersection area and define rules for vehicles crossing this area. In
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most works proposed earlier in multi-agent systems, cellular-based presenta-
tions are often the authors’ choice [4,17,18]. However, using cellular-based model
might lead to a higher use of space than necessary (e.g. in the model proposed
by [4], the area that a vehicle reserved is always higher than its exact length and
width), or a lack of precision (e.g. in the model proposed by [18], each vehicle is
counted as one cell, regardless of their length).

In every existing intersection model, rules for vehicles are the same. They
aim to give each vehicle a reservation [4,17], which is a set of cells for each time
step or an admission time [18], which is the time that the vehicle can enter the
intersection. The rules for reservations or admission times to be accepted is that
vehicles can cross the intersection without stopping and without any conflict
between them. Conflicts are often detected if vehicles try to use the same cell at
the same time.

In reality, depending on the infrastructure installed at the intersection level,
vehicles might be able to know their exact position. They also have information
about their velocity and their length. Thus, instead of using a cellular model
and checking for conflict between vehicles using their reserved cells, they might
be able to apply the exact formula computed based on this information. Before
heading to our main contribution, namely the multi-intersection problem, we
will first define how to check for conflicts between vehicles by proposing this
exact formula.

3 A Space-Efficient Intersection Model

We notice that when using the cellular model, vehicles are often not precisely
represented. Therefore, a vehicle can occupy multiple cells at a time based on its
position. This may lead to an inefficient way of using space and thus, can reduce
the performance of the model. In this section, we will present a precise way to
model trajectories of vehicles to avoid conflict, while being more space-efficient.

Definition 1. Let t be the current time step and Vt the set of all vehicles
approaching the intersection. Each vehicle vi ∈ Vt is modelled with: its relative
distance to the intersection di, its velocity si and its length �i.

Definition 2. An intersection is modelled with several incoming lanes, several
outgoing lanes, and a central zone called conflict zone. The path of a vehicle
across the intersection is called a trajectory. The shared area between two tra-
jectories is called a conflict spot (cf. Fig. 1).

3.1 Structural Constraints

We model each intersection using a DCOP model described in [18], as it is a
recent model that can outperform existing approaches at the intersection level.
This model aims to find, for each time step t, a configuration Φt, which consists
of one admission time for each vehicle. Vehicles are able to cross the intersection
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Fig. 1. Intersection with 12 incoming lanes, 12 outgoing lanes and a conflict zone.
Incoming lanes are numbered from 1 to 12. The conflict zone is crossed by various
trajectories. There are 3 vehicles v1 (light blue), v2 (green) and v3 (orange). The tra-
jectories τ1 of v1 and τ3 of v3 are the same and are coloured in light blue, and τ2 of v2
in green. The conflict spot between the two trajectories is coloured in red (Color figure
online).

at a constant speed at their admission time. The conflict free property is guar-
anteed. As mentioned earlier, we extend the existing model by using the exact
information about vehicle location, velocity and length. Thus, the rules in that
model can be rewritten as follows:

Let L be the set of incoming lanes and lk ∈ L be lane k. For each vi ∈ Vt,
let lvi

∈ L be the lane in which the vehicle vi is present and τi be vi’s trajectory
inside the conflict zone. Let ds

i,j the distance between the beginning of τi and
the starting point of the conflict spot between τi and τj and de

i,j the distance
between τi and the end of this conflict spot. Let varphii be the time vi starts
crossing the intersection.

c1. Distance constraint. A vehicle has to cross the distance separating it from
the conflict zone before entering it:

∀vi ∈ V, ϕi > t +
di

si
(1)

c2. Anteriority constraint. A vehicle vi cannot enter the conflict zone before
the vehicle vj preceding it on its lane completely enters the conflict zone.
In our model, we consider the area close to an intersection. Therefore, no
overtaking is possible. Thus a vehicle vi cannot enter the conflict zone before
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the vehicle vj preceding it on its lane completely enters the conflict zone. We
have:

∀vi, vj ∈ V 2
t , lvi

= lvj
, di > dj ⇒ ϕi > ϕj +

�j

sj
(2)

c3. Conflict constraint. Two vehicles must not be present at the same time
in their conflict spot. Given all the information, if the trajectories of vi and
vj have a conflict spot, vi has to leave it before vj arrives or vice-versa1. Note
that the time it takes for vi to completely leave the conflict spot is the time
it travels the distance de

i,j + �i. We have:

∀vi, vj ∈ V 2
t ,

(ϕi + ds
i,j

si
) > (ϕj + de

j,i+�j
sj

)

∨(ϕj + ds
j,i

sj
) > (ϕi + de

i,j+�i
si

)
(3)

3.2 Objective of Each Intersection and Discussion

The average delay of vehicles has been the common benchmark at the intersec-
tion level [4,17,18]. Let wi be the waiting time of vi, this minimisation can be
described as finding the minimum value for

∑
vi∈Vt

wi. However, from a network
point-of-view, simply evacuating vehicles in front of the intersection as quickly
as possible can create high density traffic in the outgoing lanes. Indeed, several
studies [9,10,14] have shown that traffic flow speed in a lane is not linear in
the lane’s density, but rather follows complex rules. Hence, in a road network,
continuing to send vehicles to a lane that has a high density may result in a
significant slowdown. In the market-based regulation system [17], authors have
introduced a dynamic pricing policy to improve the performance of the network.
Building upon that policy, we will next introduce a priority setting technique
that can be used to regulate traffic in a multi-intersection settings.

4 Priority Levels for Multi-intersection Settings

To date, intersection management algorithms have mainly been shown to opti-
mise traffic flow for individual intersections. However, they do not acknowledge
the fact that it is not always possible to evacuate vehicles through the outgoing
lanes as they might be the neighbouring intersections’ incoming lane and thus
might have a long queue. This leads to the fact that optimising traffic at an inter-
section might lead to further conflict at another intersection. In this section, we
present a novel dynamic individual priority level, that can be used to distribute
vehicles among intersections, or even guide vehicles to a better trajectory.

Similar to a dynamic pricing problem [3,6] where resources might have dif-
ferent costs each time, a vehicle’s delay should be continuously evaluated using
1 This solution aims to work for settings with a large number of CAVs. In transi-

tional periods where non-autonomous vehicles are presented, this constraint can be
extended by adding a time lapse between the two vehicles to keep a safe distance.
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several criteria. Formally, we define for each vehicle vi a strictly positive real
value priority level ρi. This priority level is updated using traffic information
such as the vehicle’s past trajectories, the current traffic density at its desti-
nation and the nature of the vehicle. A priority is defined by its type (e.g.,
emergency vehicles, buses, road maintenance vehicle) whilst a dynamic factor
is added using the other information (e.g., trajectory, destination, delay). Next
we propose two ways to update vehicles’ priority level, namely the Priority by
history and the Priority by destination.

4.1 Calculating Priority Levels

The priority of a vehicle represents the contribution of its delay in the solution
(i.e. a vehicle with higher priority contributes more to the quality of the solu-
tion). Therefore, dynamically updating this priority can guide the mechanism
to different solutions as time progresses. In this paper, we propose two ways to
calculate and update a vehicle’s priority based on its information and on the
global traffic condition.

Priority by History: Priority by history is computed based on the total delay of a
vehicle from the beginning of its trajectory. Assuming that every ordinary vehicle
that enters the road network has the same priority level and each intersection will
try to minimise average delays, the method would favour the more crowded lanes.
This makes vehicles that travel in a less crowded trajectory wait for an extremely
long time in dense traffic. To be able to balance a vehicle’s waiting time and the
global objective of the intersection, we dynamically change vehicles’ priority by
history. In this paper, we consider the distribution of priority by history, ranging
from 0 for vehicles that recently entered the system to 10 for vehicles that are
suffering lots of delay (cf. Fig. 2a). In certain cases, this priority can also help
evacuating vehicles from a congested area as they tend to have higher delays and
thus, higher priority than others.

Priority by Destination: Priority by destination is computed based on the den-
sity of the next destination of a vehicle to avoid sending vehicles to a congested
area. In a simple intersection model, it is often assumed that the outgoing lanes
are always free and capable of taking vehicles. However, this assumption breaks
down in real-world settings as the conditions at the neighbouring intersections
will determine how fast cars can move along. For example, if an intersection
cannot shift vehicles from one of its incoming lanes, a neighbouring intersection
cannot and should not shift more vehicles to this lane. Such situation can also
create a deadlock if the first CAV in the lane has to stop because its destination
doesn’t have enough free space. Hence, redistributing priority so that an inter-
section can avoid sending vehicles to a more congested intersection can also be
useful. Furthermore, giving a priority bonus to a certain direction also encour-
ages vehicles to take a less congested route when they have multiple options



Decentralised Multi-intersection Congestion Control for CAVs 43

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0  10  20  30  40  50  60  70  80

P
rio

rit
y

Delay

Priority by history

(a)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8

P
rio

rit
y

Density of the destination

Priority by destination

(b)

Fig. 2. Priority distribution (a) Priority by history (b) Priority by destination

to complete their journey. The bonus priority by destination is also distributed
from 0 to 10, according to the expected density of their destination communi-
cated by the neighbouring intersection (cf. Fig. 2b). Furthermore, intersections
can exchange information with their neighbours in case of blocked lanes due to
unpredictable events so that traffic flows can be eased.

Optimising Weighted Delay. Since each vehicle has its priority level, we will
build, for each time step t, a configuration Φt for all vehicles in Vt in front of the
intersection that minimises their total weighted delay whilst being able to satisfy
all the structural constraints described above. The input is the set of vehicles
Vt presented in front of an the intersection at the current time step and the
configuration at the last time step Φt−1. Let wi be the waiting time of vehicle
vi (i.e. the difference between the admission time of vi in fluid condition and its
actual admission time) and Φ be the set of all possible configurations, our goal
can be expressed as follows:

f : (t, Vt, Φt−1) �→ arg min
Φt∈Φ

∑

vi∈Vt

wi ∗ ρi (4)

We next discuss the formalisation of the model using a DCOP and show how
existing DCOP solution algorithms can be optimised to consider the parameters
of our problem.

5 DCOPs for Intersection Management

Distributed constraint optimisation is a general way to formulate multi-agent
coordination problems. A Distributed Constraint Optimisation Problem (or
DCOP) is a tuple {A,X ,D, C}, where: A = {a1, . . . , an} is a set of n agents;
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X = {x1, . . . , xn}2 are variables owned by the agents, where variable xi is owned
by agent ai; D = {Dx1 , . . . ,Dxn

} is a set of finite-discrete domains. A variable xi

takes values in Dxi
= v1, . . . , vk; C = {c1, . . . , cm} is a set of constraints, where

each ci defines a cost ∈ R ∪ {∞}. A solution to the DCOP is an assignment to
all variables that minimise

∑
i ci.

There are several ways in which we can formalise our problem as a DCOP,
depending on what we choose to represent with agents, variables and constraints.
The choices have an impact in both computational load and communication
overhead of agents. Here we evaluate our model using two formalisations, namely
the vehicle-based approach where each vehicle is considered as an agent and the
lane-based approach where the sub-problem of the lane is solved before the global
optimisation problem.

To give some more details, in the vehicle-based approach, each vehicle partic-
ipates in the DCOP formulation as an agent. They each have one variable rep-
resenting their admission time. The vehicles then perform a fully decentralised
process in order to find a global solution that does not cause any conflict, and
that optimises the overall delay.

On the other hand, in the lane-based approach, each lane is represented by
an agent. This solution sacrifices some decentralisation in exchange for less com-
putational time. Vehicles in the same lane are affected with the anteriority con-
straint, and may often cross the intersection using the same trajectory. Thus, the
lane agent can solve the sub-problem of only exchanging solutions that do not vio-
late the anteriority constraint. The lane agent uses a pseudo variable which is the
Cartesian product of the admission time of all the vehicles in the lane.

The lane-based approach has been shown to outperform the vehicle-based
approach in standard Max-sum setting [18]. However, when switching to a recent
variant of the algorithm, the Max-sum AD VP [20], the success rate becomes
higher and thus we reevaluate their performances and notice that each approach
is preferred in different traffic densities.

As can be seen, most of our constraints are hard constraints. Since the state of
the intersection constantly changes and the number of vehicles at rush hours can
be quite high, it is important to produce solutions rapidly, trading off optimality
for robustness to changes in traffic condition. Hence, instead of optimal DCOP
algorithms, we opt for heuristic, anytime algorithms that have been shown to
produce solutions of relatively high quality. In what follows, we first propose our
adaptations of the Max-sum algorithm [5] to improve performance on the traffic
management problem.

5.1 Optimisation

To exploit the two models presented above, we use message-passing approaches.
We chose a variant of the Max-sum algorithm [5] as it has been shown to be
one of the fastest and most efficient algorithms in many multi-agent domains

2 The number of variables can be different. In this paper, we assume only one variable
per agent.
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[12,13,15]. The Max-sum algorithm uses two kinds of messages. At each iteration
i of the process, a message is sent from each variable node x to a factor node c,
including for each value d ∈ Dx, the sum of the costs for this value she received
from all factor node neighbours apart from c in iteration i−1. Formally, for each
value d ∈ Dx the message Ri

x→c(d) includes:
∑

c′∈Cx\c cost(f ′.d) − α, where Cx

is the set of factor neighbours of variable x and cost(c′.d) is the cost for value d
included in the message received from c′ in iteration i − 1. α represents a scalar
to prevent the message to increase endlessly in cyclic factor graphs. The message
sent from a factor node c to a variable node x contains for each possible value
d ∈ Dx the minimum cost that can be achieved from any combination of other
variables involved in c. Formally, for each value d ∈ Dx, the message Qi

f→x(d)
includes minPA−x

cost(〈x, d〉, PA−x) where PA−x is a possible combination of
assignments to all variables involved in c except x. The cost of an assignment
a = (〈x, d〉, PA−x) is c(a) +

∑
x′∈Xf\x cost(x′.d′). c(a) is the original cost in the

constraint c for the assignment a and cost(x′, d′) is the cost which was received
from variable node x′ during iteration i−1, for the value d′ which is assigned to x′

in a. These messages are exchanged between graph nodes until the convergence
criteria is reached3.

5.2 The Max-Sum AD VP Algorithm and the Importance of Node
Ordering

Max-sum AD VP is a recent variant of Max-sum and is empirically proven to
converge faster and to a better solution than the standard version [20]. It oper-
ates on a directed factor graph. The transformation between these two graphs is
produced by giving each agent a unique index to create an order. At each phase,
messages are only computed and sent in one direction (e.g. upstream direction in
odd phases and downstream direction in even phases). From the third phase, Max-
sum AD VP adds value propagation, a technique where each variable node selects
a currently optimal assignment and sends it alongside the standard message. Fac-
tor nodes then, based on the value chosen, compute messages by minimising only
over assignments that are consistent with the value chosen.

To transform the original factor graph into an acyclic directed graph, Max-
sum AD VP has no preference and often uses the variable indices. Since the
solution quality of Max-sum AD VP is highly related to the initial assignments,
we aim to find a good way to organise nodes to improve its performance. In our
system, vehicles come with different priorities and we can see that the optimal
solution is more likely to favour vehicles with high priority. Thus, we conjecture
that by arranging the nodes in the priority order so that the algorithm can
converge faster to a better solution. This is due to the fact that during the value
propagation phases, the nodes with higher priority propagate their values first.
In Sect. 6.2 we will evaluate the performance of ordering nodes in different traffic
conditions.

3 In our experiments the algorithm stops when convergence is achieved or when the
timeout is reached.
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In the lane-based approach, instead of the priority of the vehicles, lane agents
use the sum of the priorities over the vehicles presented in the lane.

6 Empirical Evaluation

In this section, we evaluate the performance of our mechanism and the efficiency
of the improvements that we proposed for the Max-sum AD VP algorithm. The
experiments were performed using an Intel Core i5 clocked at 2.9 GHz with 32 GB
RAM, under Ubuntu 16.04. The Max-sum AD VP algorithm is implemented in
Java as per [20]. We compare values from at least 50 simulations, with 95%
confidence interval as error bars. The insertion rate of vehicles to the intersection
ranges from 0.1 (off-peak) to 0.5 (rush hour) [8].

6.1 Evaluating Space Efficiency at Individual Intersections

In this first benchmark, we aim to compare the performance of our model and
the standard cellular model used in [18]. The intersection evaluated is the one
from Fig. 1. Each incoming lane has a width of 3 m. We decided to use such
intersections as they are one of the most complicated scenarios in urban settings.
Vehicles are generated without any priority and both models are evaluated using
the lane-based approach with the same standard Max-sum algorithm. A time
step is set at 2 s and is also the timeout of the DCOP algorithms. If the algorithm
fails to provide a solution before timing out, the intersection will automatically
apply the FCFS solution as it is very simple to compute and advance to the next
time step. Based on the results in Fig. 3a, we observe an improvement in dense
traffic only from using space more efficiently, without changing the algorithm.

6.2 Evaluating the Efficiency of the Max-Sum AD VP Algorithm
at Individual Intersections

Next, we evaluate in detail our mechanism at a single intersection. Here we
evaluate all combinations of the approaches: Vehicle-based approach with node
ordering (VB-NO), Lane-based approach with node ordering (LB-NO), standard
vehicle-based approach (VB) and standard lane-based approach (LB). Vehicles
are generated with a random priority ranging from 1 to 10. We measure the
quality of the solution (i.e. the total weighted delay of vehicles) during off-peak
and rush hours. For reference we also put the results from the model proposed
by [18] on the same weighted delay problem (i.e. using a cellular, standard Max-
sum resolution). The intersection and timeout conditions stay the same as the
first experiment.

Figure 3b shows the average success rate of each approach (i.e. the percent-
age of iterations where the algorithm converges to a better solution than the
one provided by FCFS). We can see that in dense traffic, VB fails to respond
to the 2-s timeout and thus, has the worst success rate of about 24% whilst
LB converges about 80% of the time with node ordering and 70% of the time
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Fig. 3. Empirical evaluations on the single intersection setting. Figure (a) shows the
performance of our space efficient model. Figure (b) shows success rate of each app-
roach on a weighted delay problem. Figure (c) shows the average solution quality when
successful. Figure (d) shows the average weighted delay. Figure (e) shows the aver-
age runtime of each algorithm when successful. Figure (f) shows the anytime cost
of Ordered and Standard versions of Max-sum AD VP running on the lane-based
approach.
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without. Figure 3c shows the average solution quality when successful. We note
that VB tends to converge to a better solution in off-peak conditions. In VB,
the solution is less likely to favour vehicles with high priority since it depends
more on the number of vehicles in the lane. Therefore, using node ordering with
this approach does not always result in a better outcome, and at times pushes
Max-sum AD VP to greedily pick a worse solution. For LB, since lanes with
more vehicles/higher priority are more likely to have shorter delays, using node
ordering causes Max-sum AD VP to converge faster with higher success rate,
especially in dense traffic. Figure 3d shows the overall quality of the solution, i.e.
the average weighted delay of all vehicles. VB is the solution that gives the best
performance in off-peak conditions. In dense traffic, since it often has to take the
FCFS solution when it fails to converge, its overall cost is higher than the cost
of LB. LB-NO provides a fairly good result in dense traffic and is the best one in
rush hour. It outperforms the existing approach by up to 32%. Hence, switching
between approaches for different traffic conditions could lead to a better solution
for single intersection traffic management. Figure 3f shows the anytime quality of
the solution to compare the performance between the ordered and the standard
versions of the lane-based approach Max-sum AD VP. We can clearly observe a
better convergence when ordering nodes using priority levels.

6.3 Multi-intersection Efficiency

To be able to measure the effect of dynamic vehicle priorities, we evaluate our
mechanism in two different scenarios using a 2 × 2 intersection model. In the
scenario A, we consider the East-West direction through I1 and I2 in the rush

(a) (b)

Fig. 4. Multi-intersection scenario (a) The east-west direction through I1 and I2 (in
red) is more crowded than the other directions. (b) The east and south outgoing lanes
of I4 (in red) have a limited capacity (Color figure online).
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hour conditions whilst the other directions in normal conditions (cf. Fig. 4a).
This is a common scenario during rush hours in urban traffic.

In the scenario B, we consider the east and south outgoing lanes of I4 can
only evacuate 1 vehicle every 3 time steps and get crowded (cf. Fig. 4b).

Table 1 shows results achieved using each individual priority, a combined
version using the sum of the priorities, and the standard version.

Table 1. Average delay of vehicles in different scenarios.

Priority by
history only

Priority by
destination only

Combined
priority

No priority

Scenario A 24.74 ± 3.13 27.88 ± 3.86 21.25 ± 2.25 32.19 ± 6.29

Scenario B 21.98 ± 3.01 12.85 ± 2.66 13.12 ± 3.84 21.16 ± 4.42

In the scenario A, both priorities contribute to the improvement of the overall
solution. Indeed, when we take a closer look at the intersections I3 and I4, their
north lanes often have to evacuate more vehicles. The priority by history speeds
up this evacuation since the vehicles in these lanes have suffered from higher
delays. On the other hand, the priority by destination prevents I3 and I4 to
send vehicles to the north, since the northern outgoing lanes might not be able
to evacuate a large number of vehicles.

In the scenario B, we noticed that the priority by destination contributes
much more to the congestion avoidance. In fact, without the priority by desti-
nation, vehicles continue to be sent to the intersection I4, creating a congested
situation. This congestion further leads to the impossibility of sending vehicles
from I2 and I3 to the east and south directions respectively, thus blocked vehicles
from entering I2 and I3. The average delay grows rapidly due to deadlocks. The
priority by history makes the performance slightly worse (but not significant)
while sending unnecessary vehicles to I4. In this simulation, we consider that
vehicles have a fixed trajectory before entering the network but to extend the
model, vehicles might choose to go from I2 to I3 or vice-versa through I1 instead
of I4 to reduce their delays and optimise the use of traffic network.

6.4 Discussion on the Lane-Based Approach

As shown in the empirical results, the lane-based approach can sometimes be
outperformed by the vehicle-based approach, especially in the lower density set-
tings. However, there is also another aspect we should take a closer look at,
namely the communication range of the vehicles. Communication between vehi-
cles can be achieved via the infrastructures installed at the intersection level.
However, there are always areas where intersections may not have any computa-
tion capability (e.g., in rural areas or non-urban settings). This can be important
in mass evacuations following fires or floods [13].
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(a) (b)

Fig. 5. Communication range required for (a) the vehicle-based approach. (b) the lane-
based approach.

In Figs. 5a and b we can see that the lane-based approach also helps reducing
communication range, because only the vehicle representing the lane is required
to communicate with vehicles representing conflicting lanes. Therefore, in the
lane-based approach, the lane agent should be the first vehicle in the lane due
to the reduction of communication range.

7 Conclusions

In this paper, we proposed a novel approach for managing CAVs to reduce traf-
fic congestion. Our results show that we outperform benchmark solutions by
up to 32% at a single intersection. Our dynamic priority assignment technique is
proven to be efficient in multi-intersection settings. Since the combined version
might not be the best in some cases, future work will look at a detailed eval-
uation of combination between several priority distribution functions to adapt
to traffic conditions. Other performance metrics such as fuel consumption and
comfortability of passengers (due to acceleration, deceleration and stop-and-go)
can also be used for evaluation.
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Abstract. To date the majority of commuters drive their privately
owned vehicle that uses an internal combustion engine. This transporta-
tion model suffers from low vehicle utilization and causes environmental
pollution. This paper studies the use of Electric Vehicles (EVs) operating
in a Mobility-on-Demand (MoD) scheme and tackles the related manage-
ment challenges. We assume a number of customers acting as cooperative
agents requesting a set of alternative trips and EVs distributed across
a number of pick-up and drop-off stations. In this setting, we propose
congestion management algorithms which take as input the trip requests
and calculate the EV-to-customer assignment aiming to maximize trip
execution by keeping the system balanced in terms of matching demand
and supply. We propose a Mixed-Integer-Programming (MIP) optimal
offline solution which assumes full knowledge of customer demand and
an equivalent online greedy algorithm that can operate in real time.
The online algorithm uses three alternative heuristic functions in decid-
ing whether to execute a customer request: (a) The sum of squares of
all EVs in all stations, (b) the percentage of trips’ destination location
fullness and (c) a random choice of trip execution. Through a detailed
evaluation, we observe that (a) provides an increase of up to 4.8% com-
pared to (b) and up to 11.5% compared to (c) in terms of average trip
execution, while all of them achieve close to the optimal performance.
At the same time, the optimal scales up to settings consisting of tenths
of EVs and a few hundreds of customer requests.

Keywords: Electric vehicles · Mobility-on-demand · Scheduling ·
Heuristic search · Cooperative

1 Introduction

We live in a world where the majority of the population is living in, or around,
large cities. Given that this trend tends to increase, the current personal trans-
portation model is not sustainable as this is based to a large extend on privately
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owned internal combustion engine vehicles [1]. These vehicles cause high air and
sound pollution and usually have low utilization rates [21]. Electric Vehicles
(EVs) can be an efficient alternative to those using internal combustion engines
in terms of running costs [8], quality of driving, and environmental impact. At
the same time, their main disadvantages are their short ranges and long charg-
ing times. To address such issues, cities aim to build many charging stations.
Charging facilities though, are only worth building if there are enough EVs to
use them. However, drivers will not buy EVs if charging stations are not first
available, leading to a catch-22 situation.

Mobility-on-Demand (MoD) schemes [14] are considered as a way to increase
vehicle utilization. MoD involves vehicles that are used by either individuals, or
small groups of commuters, and provides them with an alternative from using
their privately owned vehicles. Such systems have the potential to reduce traffic
congestion in urban areas, as well as the need for large numbers of parking
spots and increase the vehicle utilization rates as few vehicles will cover the
transportation needs of many commuters.

Given these benefits of EVs and MoD schemes, in this paper we study a
setting where EVs are used within MoD schemes, and propose solutions for the
related optimization challenges. By addressing these challenges, the advantages
of the two transportation modes can be combined [3,14]. Moreover, the use of
EVs in MoD schemes offers an opportunity to better market EVs to potential
car owners as they get to try the technology before buying it. In this way, EV-
equipped MoD schemes would help popularize EVs, while at the same time
having a positive impact in urban traffic conditions as well as the environment.

Against this background, we model the MoD scheme for EVs and develop
novel algorithms to solve the problem of scheduling trips for MoD consumers in
order to maximize the number of trip requests serviced while coping with the
limited range of EVs. We step upon the work presented in [17] and study the
problem of assigning EVs to customers in a MoD scheme and we solve it offline
and optimally using Mixed Integer Programming (MIP) techniques, as well as
online using heuristic search. In doing so, we advance the state of the art as
follows:

1. We extend the optimal scheduling algorithm “Off-Opt-Charge” presented
in [17] which considers single travel requests by customers, by covering the
option for customers to express their demand for more than one tasks, where
as a task we consider a trip between a pair of locations starting a particular
point in time.

2. We develop an online greedy scheduling algorithm for the problem of selecting
the tasks to execute and the assignment of EVs to customers and we propose
three alternative heuristic functions.

The rest of the paper is structured as follows: Section 2 presents related work,
Sect. 3 formally defines the problem, Sect. 4 presents the optimal offline solution
of the problem and Sect. 5 the equivalent online one. Section 6 provides a detailed
evaluation of the algorithms and finally, Sect. 7 concludes and presents ideas for
future work.
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2 Related Work

In this context, Pavone et al. propose mathematical programming-based rebal-
ancing mechanisms to decide on the relocation of vehicles to restore imbalances
across a MoD network, either using robotic autonomous driving vehicles [16], or
human drivers [15], while Smith et al. [19] use mathematical programming to
optimally route such rebalancing drivers. Moreover, Carpenter et al. [4] develop
solutions for the optimal sizing of shared vehicle pools. These works assume
normal cars, while EVs present new challenges for MoD schemes as EVs have
a limited range that requires them to charge regularly. Moreover, if such MoD
schemes are to become popular, it is important to ensure that charging capac-
ity is managed and scheduled to allow for the maximum number of consumer
requests to be serviced across a large geographical area. In addition, in order
for MoD schemes to be economically sustainable, and given the higher cost of
buying EVs compared to conventional vehicles, it is important to have them
working at maximum capacity and servicing the maximum number of customers
around the clock.

In such a setting, Drwal et al. [10] consider on-demand car rental systems
for public transportation. To balance the demand across the stations and to
maximise the operator’s revenue, they adjust the prices between origin and des-
tination stations depending on their current occupancy, probabilistic information
about the customers’ valuations and estimated relocation costs. Using real data
from an existing on-demand mobility system in a French city, they show that
their mechanisms achieve an up to 64% increase in revenue for the operator and
at the same time up to 36% fewer relocations. In addition, Rigas et al. [17] use
mathematical programming techniques and heuristic algorithms to schedule EVs
in a MoD scheme taking into consideration the limited range of EVs and the
need to charge their batteries. The goal of the system is to maximize serviced
customers. Cepolina and Farina [5] study the use of single-sitter compact-sized
EVs in a MoD scheme operating in a pedestrian zone. The vehicles are shared
throughout the day by different users and one way trips are assumed. However,
here the authors also assume open ended reservation to exist (i.e., the drop-off
time is not fixed), thus adding one more dimension to the problem. Given this,
they propose a methodology that uses a random search algorithm to optimize
the fleet size and distribution to maximize the number of serviced customers.
Moreover, Turan et al. [22] study the financial implications of smart charging in
MoD schemes and they conclude that investing in larger battery capacities and
operating more vehicles for rebalancing reduces the charging costs, but increases
the fleet operational costs. Finally, Gkourtzounis et al. [12] propose a software
package that allows for efficient management of a MoD scheme from the side of
a company, and easy trip requests for customers.

From an algorithmic point of view, similarities can be found with problems
such as the capacitated vehicle routing problem [6] which is a special case of the
Vehicle Routing Problem [7], where each vehicle has a limited carrying capacity,
the project scheduling problem [20], and the machine scheduling problem [13].
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Overall, the need for battery charging as well as the strict order of task
execution differentiate our problem compared to the majority of the works pre-
sented so far, and make it harder to find the optimal solution. Also the efficient
online algorithms make it more applicable in real-world deployments. In the next
section, the problem is formally defined.

3 Problem Definition

In a MoD scheme which uses EVs, customers may choose to drive between pairs
of predefined locations. They can choose at least one starting point and at least
one end point. Since the MoD company’s aim is to serve as many requests as
possible, the system selects to execute the task which keeps the system in balance
(i.e., trying to match demand across supply). A task is defined as a trip from
a pick-up to drop-off location starting a particular point in time. Thus, based
on the number of start and end points the customer has defined, all possible
combinations are calculated and the equivalent tasks are created. We consider
a network of pick-up and drop-off stations where the EVs can park and charge
their batteries. The stations are considered as nodes aiming to be kept neither
empty nor overloaded. The system needs to be in balance since the overloading
of one station may cause major disruption to the network. A summary of all
notations can be found in Table 1.

We consider a fully connected directed graph G(L,E) where l ∈ L ⊆ N is the
set of locations where the stations exist and e ∈ E ⊆ N are the edges connecting
all locations combinations. Each station has a maximum capacity cmax

l ∈ N

declaring the number of EVs that can reside at it simultaneously. We assume a
set of discrete time points t ∈ T ⊆ N where the time is global for the system
and the same for all agents. We have a set of tasks r ∈ R ⊆ N where a task is a
trip initiating a particular point in time. Thus, each task has a starting location
lstartr , an end location lendr , as well as a starting time tstartr , a duration τr and
an equivalent energy demand er ∈ N.

We denote the set of EVs a ∈ A ⊆ N. Each EV has a current location
la,t ∈ L, a current battery level ea,t ∈ N, a maximum battery level emax

a ∈ N,
an energy consumption rate cona ∈ N where cona =(energy unit/time point), a
maximum travel time τa = emax

a /cona and a charging rate cha ∈ N. Note that
an EV changes location only when being driven by a customer and no relocation
of vehicles exists.

Finally, we have a set of customers i ∈ I ⊆ N where a customer needs to travel
between one or more pairs of locations demi ⊆ R. Customers act as fully coop-
erative agents when communicating their demand to the MoD company. After
the demand is communicated to the company, an EV-to-customer assignment
algorithm is applied. In doing so, a set of assumptions are made:

1. The MoD company is a monopoly. At this point competition between compa-
nies is not taken into consideration. This would introduce different approaches
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in decision making strategy and should include more variables into the prob-
lem domain (energy and labor cost, building rents, taxes, etc.), which are not
the case in this paper.

2. The MoD company uses the same EV model. For simplification reasons it is
considered that all EVs are of the same make and model.

3. All stations have one charger for each parking spot. This means that if there is
a parking spot available, there is also a charger available. There is no waiting
queue for charging.

4. EVs’ full battery capacity is sufficient to make a journey from one station
to any other without extra charge needed. No stops are required, and no
charging time needs to be spent in between two locations. Travelling to loca-
tions beyond the maximum range of an EV needs a different formulation and
induce challenges which will be solved in future work.

Table 1. Notations used in problem definition and algorithms.

Notation Explanation

l Location of a station

e Edge connecting two stations

cmax
l Maximum capacity of a station

t Time point

r A task

lstart
r Start location of a task

lend
r End location of a task

tstart
r Start time of a task

τr Duration of a task

er Energy demand of a task

a An EV

la,t Current location of EV

ea,t Energy level of EV

emax
a Max battery capacity of EV

cha Charging rate of EV

cona Consumption rate of EV

τa Max travel time of EV

i A customer

demi Travel demand of customer

λr Task r accomplished (Boolean)

εa,r,t True if EV a is working on task r at time t (Boolean)

prka,t,l True if EV a is parked at location l at time t (Boolean)

bcha,t Charging rate of EV a at time t
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4 Optimal Offline Scheduling

In this section, we assume that customer requests are collected in advance and
we propose an optimal offline algorithm for the assignment of EVs to customers.
This formulation aims to maximize the number of tasks that are completed
(i.e., customer service) (Eq. 1). To achieve this, we present a solution based on
Mixed Integer Programming (MIP), where we use battery charging to cope with
the EVs’ limited range. MIP techniques have been particularly useful to solve
such large combinatorial problems (e.g., combinatorial auctions [2,18], travelling
salesman problem [9]). We will refer to this algorithm as Optimal. As a solver we
have selected the IBM ILOG CPLEX 12.10. In this formulation, we define four
decision variables: 1) λr ∈ {0, 1} denoting whether a task r is accomplished or
not, 2) εa,r,t ∈ {0, 1} denoting whether EV a is executing task r at time t or not,
3) prka,t,l ∈ {0, 1} denoting whether EV a is parked at time point t at location l
or not and 4) bcha,t ∈ [0, cha] which denotes whether an EV a is charging at time
point t and at which charging rate (i.e., the charging rate can be any between 0
and the maximum charging rate - cha).

Objective Function:

max
∑

r∈R

(λr) (1)

Subject to:

– Completion constraints:

∑

a∈A

∑

tstart
r ≤t<tend

r

εa,r,t = τr × λr,∀r (2)

∑

a∈A

∑

tstart
r >t,t≥tend

r

εa,r,t = 0,∀r (3)

εa,r,t+1 = εa,r,t∀a,∀r,∀t : tstartr ≤ t < tendr − 1 (4)

bcha,t ≤
∑

l∈L

prka,t,l × cha,∀a,∀t (5)

0 ≤ ea,t=0 +
t∑

t′=0

bcha,t′ −
∑

r∈R

t∑

t′′=tstart
r

εr,a,t′′ × cona ≤ 100,∀a,∀t (6)

∑

r∈demi

λr ≤ 1,∀i (7)

The completion constraints ensure the proper execution of tasks. Thus, for
each executed task, the time traveled must be equal to the duration of the trip
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concerned (Eq. 2), and no traveling must take place when a task is not executed
(Eq. 3). Moreover, each task is executed by exactly one EV at a time (Eq. 4) and
Eq. 9). Equation 5 ensures that each EV a can charge only while being parked.
When an EV is parked, it can charge with a charging rate up to its maximum
one. However, when it is driving and prka,t,l = 0 it cannot charge. Regarding
the time points the EV will charge, the solver will choose any time points, as
long as the available range will not compromise the task execution ability. At
the same time, Eq. 6 ensures that the battery level of an EV a never goes above
100%, or below 0%. Thus, no EV a will execute a task r for which it does not
have enough range, nor will it charge more than its battery capacity. Note that
we assume all EVs to have the same fixed average consumption. Finally, for each
customer at most one of her alternative tasks demi must be executed (Eq. 7).

– Temporal, spatial, and routing constraints:

∑

l∈L

prka,t,l = 1 −
∑

r∈R

εa,r,t,∀a,∀t (8)

2 ×
∑

r∈R

εa,i,tstart
r

=
∑

l∈L

∑

t∈T−1

|prka,t+1,l − prka,t,l| ,∀a (9)

prka,tstart
r −1,lstart

r
≥ εa,r,tstart

r
,∀r,∀a (10)

prka,tend
r ,lend

r
≥ εa,r,tend

r
,∀r,∀a (11)

∑

a∈A

(prka,t,l) ≤ cmax
l ,∀l, ∀t (12)

prka,t=0,l = lstarta ,∀a,∀l (13)

εa,r,t=0 = 0,∀a,∀r (14)

The temporal, spatial and routing constraints ensure the proper placement of
the EVs over time. Equation 8 ensures that for each time point at which an EV
is executing a task, this EV cannot be parked at any location and also assures
(together with Eq. 4) that any time point, each EV executes at most one task.
Moreover, Eq. 9 ensures that no EVs change location without executing a task
(the sum of all changes of EVs’ locations as denoted in prk decision variable,
must be double the total number of tasks that are executed). Note that, this
constraint is linearized at run time by CPLEX. This is usually done by adding
two extra decision variables and two extra constraints.

Now, whenever a task is to be executed, the EV that will execute this task
must be at the task’s starting location one time point before the task begins
(Eq. 10), and similarly, whenever a task has been executed, the EV that has
executed this task must be at the task’s end location the time point the task
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ends (Eq. 11). Moreover, at every time point, the maximum capacity of each
location must not be violated (Eq. 12). Finally, at time point t = 0, all EVs
must be at their initial locations (Eq. 13), which also means that no tasks are
executed at t = 0 (Eq. 14).

– Cut constraints:

∑

a∈A

prka,t,l =
∑

a∈A

prka,t−1,k +
∑

Rstart(t,l)

λr −
∑

Rend(t,l)

λr,∀t,∀l (15)

Equation 15 ensures that for every location, the total number of EVs at charg-
ing stations changes only when EVs depart or arrive to execute a task, or after
executing tasks. Although this constraint is covered by Eq. 9, when added to the
formulation, it significantly speeds up the execution time. In fact, it is known
that the introduction of additional cut constraints into a MIP problem may cut
off infeasible solutions at an early stage of the branch and bound searching pro-
cess and thus reduce the time to solve the problem [11]. Given that MoD schemes
should also work in a dynamic setting, in the next section we present an online
greedy scheduling algorithm that uses alternatively three heuristic functions to
solve the task execution problem.

5 Greedy Online Scheduling

In the previous section, we presented an optimal offline solution for the EV
to customer assignment problem in a MoD setting. However, this algorithm
assumes full knowledge of supply and demand in advance. In this section, in
order to have a more complete set of tools to tackle the pre-defined problem we
propose a greedy online algorithm that calculates an EV to task assignment in
real time as requests arrive to the system. This algorithm applies a one-step look
ahead heuristic search mechanism and achieves near optimal performance and
scales to thousands of EVs and tasks.

Given that EVs change locations only when being driven by customers, the
tasks that an EV will be able to execute in the future are directly related to the
ones it has already executed in the past (i.e., the end location of one task will be
the start location for the next one). In large settings, normally not all tasks can
be executed. Thus the selection of the ones to execute is of great importance,
since each decision can affect future task execution.

The proposed scheduling algorithm uses three heuristic functions in deciding
on whether to execute a task or not. The first is the sum of squares of parked
EVs at each station (see Eq. 16). The larger this number, the more imbalance for
the system. In this case, we select to execute the task that will lead the EV to the
location that minimizes this sum and causes the least imbalance to the system.
For example if we consider two stations each having three parking spots, and
three EVs. If all three EVs are parked in one station (when a task/request will
be accomplished), the outcome would be: 32 +02 = 9. However, if two EVs were
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parked at one station and one at the other, the outcome would be: 22 + 12 = 5.
We refer to this heuristic as Square.

The second heuristic is the destination station capacity percentage (see
Eq. 17). In this case, we divide the sum of the parked EVs at location l by
its total capacity and we select to execute the task that will lead an EV to the
location with the highest current capacity (i.e., the lower number of existing
EVs). This calculation is used to discover each location’s capacity percentage
separately and aims to move EVs to locations where the supply is low. We refer
to this heuristic as Destination.

Finally, the third heuristic is a simple random choice of the task to execute.
We refer to this heuristic as Random.

sqt =
∑

l∈L

(
∑

a∈A

εa,t,l)2, t ∈ T (16)

dcpl,t = (
∑

a∈A

εa,t,l)/cmax
l (17)

In what follows, we provide a step-by-step description of the greedy schedul-
ing algorithm (see Algorithm 1). Based on the online execution of the algorithm,
if at time point t a new customer i arrives and expresses her demand, then the
set demi of all possible tasks is created (line 2). Then, we update the energy
level for all EVs. EVs are assumed to charge their battery every time point they
are parked unless the battery is fully charged (lines 3–8). Note that in contrast
to the optimal algorithm, here the EVs charge with the maximum rate. For each
task in demi, we check whether the end location of it has enough capacity to
receive one vehicle. If this is true, then we search the set of EVs to find the ones
that are parked at the starting location of the task and have enough energy to
execute the task. If at least one such EV exists, then this task is added to the
set dem∗

i that contains the list of feasible tasks (lines 9–23). The next step is to
calculate for each of the feasible tasks, the scorer using one of the three heuristic
functions (lines 24–27). These scores are later sorted on ascending order and the
task with the lower score is selected to be executed (lines 27–28). Once the task
has been selected, the EV is assigned to it and its location is updated accord-
ingly (lines 29–39). In the next section we present a detailed evaluation of our
algorithms.

6 Evaluation

In this section, we present a detailed evaluation of our algorithms using a number
of different settings. In doing so, we use real locations of pick-up and drop-off
points owned by ZipCar1 in Washington DC, USA which are available as open
data.2 The distance and duration of all trips were calculated using Google maps.
The evaluation of our algorithms takes place in two main parts:
1 https://www.zipcar.com/washington-dc.
2 http://opendata.dc.gov/datasets/.

https://www.zipcar.com/washington-dc
http://opendata.dc.gov/datasets/
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Algorithm 1. EV-to-Customer assignment algorithm.
Require: A, T, L, demi, ∀a, l, r : ea,t, εa,t,l, wa,t,r, l

start
r , lend

r , er, τr

1: {If a new customer i arrives at time point t then:}
2: Create demi which consists of the combination of all start and end points defined

by the customer.
3: for all (a ∈ A) do
4: for all (t′ ∈ T : t′ < t) do
5: {Update the energy level of each EV}
6: ea,t = ea,t + (

∑
l∈L εa,t′,l) × cha − (

∑
r∈R wa,t′,r) × cona

7: end for
8: end for
9: for all (r ∈ demi) do

10: {If the end location of the task has enough capacity for an incoming vehicle:}
11: if (clend

r ,t+τr
< clend

r ,t+τr
) then

12: FoundEV ← False
13: a = 0
14: while (Found = False AND a < |A|) do
15: {Search the set of EVs until an EV with current location equal to the initial location

of the task that has enough energy to execute the task is found.}
16: if (εa,t,lstart

r
= 1 AND ea,t > er) then

17: Found ← True
18: end if
19: a = a + 1
20: end while{Update the set of feasible tasks.}
21: (dem∗

i ← dem∗
i + r)

22: end if
23: end for
24: for all (r ∈ dem∗

i ) do
25: Calculate score for each task using one of the three heuristic functions.
26: end for
27: Sort score in ascending order.
28: Select to execute task r that minimizes the heuristic function.
29: for all (t′ ∈ T : t′ ≥ τr) do
30: {Set the new location of the EV after the execution of the task.}
31: εa,t′,lend

r
= 1

32: end for
33: for all t′ ∈ T : t′ > t do
34: εa,t′,lstart

r
= 0

35: end for
36: for all (t′ ∈ T : t′ ≥ t AND t′ < t + τr) do
37: {Set the EV to be working on the task for the equivalent time points. }
38: wa,t′,r = 1
39: end for

– EXP1: The performance of the online and offline algorithms in terms of the
average number of serviced customers (i.e., executed tasks).

– EXP2: The execution time and the scalability of the algorithms.
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To perform the experiments we used the following setting: 1) One time point
is equal to 15 min and totally 58 time points exist which is equivalent to the
execution of the MoD service from 7:00 to 18:00. 2) 8 locations exist and tasks
can be formulated based on one of 56 possible trips (i.e., the trips are the combi-
nations of the locations that form the MoD scheme. However, locations too close
to each other were ignored) and trips as well as starting times were randomly
selected. Each location has a maximum capacity cmax

l = 10. 3) Each customer i
has a demand demi of up to three alternative tasks. 4) The energy consumption
rate for each EV a is selected to be cona = 10 and the charging rate cha = 25.
This means that for each time point that an EV is working the battery level is
reduced by 10 units of energy, and for each time point an EV is charging the
battery level is increased by up to 25 units of energy (fast battery charging):
The average range of an EV is currently at around 150 km. We assume an aver-
age speed of 40 km/hour which means that an EV can drive for 3.75 h. In our
evaluation setting, one time point is equal to 15 min, and 3.75 h equal to 15 time
points. Thus, cona = 10% of battery for each time point. A fast charger can
fully charge an EV at around one hour. Thus, cha = 25% of the battery for each
time point. Both cona and cha are configuration parameters and can be selected
by the user. All experiments were executed on a Windows PC using an Intel
i7-4790K CPU and 16 GB of RAM running at 2400 MHz.

6.1 EXP1: Customer Service

Here we investigate the performance trade-off incurred by the online algorithms
in terms of average customer service against the optimal offline one. Initially, we
study a setting with 15 EVs and up to 70 customers. Note that each customer
expresses her demand for up to 3 alternative tasks, with an average number of 2,
so the average number of tasks is approximately double the number of customers.
As we observe in Fig. 1, all online algorithms are close to the optimal with the
best being the Squared having a 94.2% efficiency in the worst case, then is the
Destination with a 93.3% efficiency in the worst case and last is the Random
with a 86.9% efficiency in the worst case.

Aiming to see how the number of EVs affects the performance of the online
algorithms, we set up an experiment with 100 customers and up to 35 EVs. As
we can observe in Fig. 2 the overall image is similar to the previous case with the
Squared being the best, the Destination second and the Random third. However,
it is interesting to notice that when the number of EVs is low (5 EVs) or large (35
EVs) the performance deficit of the Destination and Random is smaller compared
to the case where 20 EVs exist. This can be explained by the fact that when
the number of EVs is low the heuristics, as they are connected to the number of
EVs, cannot make a big difference, while when the number of EVs is high the
problem becomes easier to solve. Finally, in order to evaluate the performance
of the online algorithms in larger settings, we set up an experiment with 100
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Fig. 1. Average number of serviced customers

Fig. 2. Average number of serviced customers- Varying number of EVs

EVs, 100 time points and up o 1200 customers. As we can observe in Fig. 3,
up to around 500 customers all three algorithms have a similar performance,
but later the Squared and Destination have a better performance and for 1200
customer the Destination has a 95.4% efficiency compared to the Squared and
the Random a 89.7% efficiency compared to the Squared.
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Fig. 3. Average number of serviced customers- Online algorithms

Fig. 4. Execution time of the Optimal algorithm

6.2 EXP2: Execution Time and Scalability

Execution time and scalability are typical metrics for scheduling algorithms. In
a setting with 15 EVs and up to around 140 tasks (i.e., 70 customers), we see in
Fig. 4 that the execution time of the Optimal algorithm increases polynomially.
Using MATLAB’s Curve Fitting Toolbox we see that the Optimal’s execution
time is second degree polynomial with R2 = 97.11. At the same time, the online
algorithms have a very low execution time, as they all run in well under 0.05 s
even in large settings.



Congestion Management for MoD Schemes that Use EVs 65

7 Conclusions and Future Work

In this paper, we studied the problem of scheduling a set of shared EVs in a MoD
scheme. We proposed an offline algorithm which collects the customers’ demand
in advance and calculates an optimal EV to customer assignment which max-
imizes the number of serviced customers. This algorithm scales up to medium
sized problems. We also proposed three variations of an online algorithm which
operates in a customer-by-customer basis and has shown to achieve near opti-
mal performance while it can scale up to settings with thousands of EVs and
locations.

Currently, we assume that the customer-agents are cooperative when com-
municating their demand to the system. As future work we aim to extend this
by including non-cooperative agents and to apply mechanism design techniques
in order to ensure truthful reporting. Moreover, we aim to improve the charging
procedure of the EVs by trying to maximize the use of limited and intermittent
energy from renewable sources. Finally, we want to enhance our algorithms in
handling possible uncertainties in arrival and departure times, while aiming to
maximize customer satisfaction and their profit.
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Abstract. We introduce a novel two-dimensional simulator for disaster
response on maps of real cities. Our simulator deals with logistics and
coordination problems and allows to plug-in almost any approach devel-
oped for simulated environments. In addition, it (1) offers functionali-
ties for further developing and benchmarking, and (2) provides metrics
that help the analysis of the performance of a team of agents during
the disaster. Our simulator is based on software made available by the
multi-agent programming contest, which over the years has provided
challenging problems to be solved by intelligent agents. We evaluate the
performance of our simulator in terms of processing time and memory
usage, message exchange, and response time. We apply this analysis to
two different approaches for dealing with the mining dam disaster that
occurred in Brazil in 2019. Our results show that our simulator is robust
and can work with a reasonable number of agents.
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1 Introduction

Disaster Response has long been used as a scenario for multi-agent systems, but
it remains a relevant problem to be addressed by real-world applications. Each
year, many countries suffer from devastating natural disasters [2,13,14]. Such
disaster events often overwhelm local authorities in dealing with the many tasks
that must be accomplished in order to recover quickly. With that in mind, we
have developed a new disaster response simulator where agents control simulated
entities that represent autonomous vehicles, human professional rescuers, and
volunteers. The simulation happens on a realistic map, where affected areas and
victims are placed.

In the beginning of 2019, a dam for mining tailings collapsed, inundating with
mud all over a sparse area; in fact, 12 million cubic meters of mining tailings were
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spread out over more than 46 kilometres [2]. Buildings, cars, animals, and people
were swamped by mud. Then, a massive operation was carried out to respond
to that disaster event. Three months after the disaster, confirmed fatal victims
toll was 225 with 68 missing people [2]. In our simulator, which was mostly
being used for flooding scenarios, a new type of scenario based on mud events is
introduced in order to analyse and experiment with Multi-Agent System (MAS)
approaches that could support tactical response of such disasters.

We aim to provide a realistic simulation environment for benchmarking intel-
ligent software agents in disaster response context. Although this topic has
already been addressed in the Agent-Based Modelling (ABM) community [8,9],
in most approaches decision-making is limited to reactive reasoning (e.g., rule-
based system) [11], and in others, AI techniques are constrained to a few situa-
tions in a given scenario [15]. However, simulation tools should not constrain, in
any way, decision-making capabilities of agents in coping with the posed prob-
lem. In contrast with this, authors in [1] decoupled agents from the environ-
ment to evaluate different MAS frameworks in a challenging scenario. By doing
so, they let agents act freely to fully exploit their reasoning capabilities. With
that in mind, we apply the concepts introduced in [1] to simulations in disaster
response episodes in which developers are free to choose the degree of agent’s
reasoning and AI techniques that fit them best. Therefore techniques are not
evaluated in isolation, but as part of a complex system.

This paper is organised as follows. Section 2 describes relevant related work
in disaster environments and explains why we need a new simulator for this par-
ticular domain. In Sect. 3, the reasoning engine and all features of our simulator
are described using several examples illustrating the core ideas. Section 4 con-
tains some experiments performed in order to evaluate our simulator. Finally,
Sect. 5 concludes with future directions.

2 Related Work

Disaster response simulation has been addressed in the multi-agent systems lit-
erature for a long time. We review some of the main work and discuss the
differences with respect to our simulator.

Different disaster response scenarios have been proposed in the literature,
most of them use an ABM approach. Mancheva et al. [9] model a bushfire episode
in which Belief Desire Intention (BDI) agents simulate human behaviour and
interactions. Hilljegerdes and Augustijn [6] explore a hurricane season to simu-
late a evacuee procedure during two consecutive hurricane events. In both work,
a general platform for simulating ABM is used, GAMA1 and NetLogo2 respec-
tively. By contrast, Klein et al. [8] implement a resilience scenario considering
a cross-border disaster event using Repast3 framework, which is based on Java.
This scenario demands coordination between parties that have differences in the
1 http://gama-platform.org.
2 https://ccl.northwestern.edu/netlogo/.
3 https://repast.github.io/.
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way they are organised and even in their cultural collective behaviour. The main
focus of those approaches is to simulate some predefined behaviour, for this pur-
pose, they take advantage of a ABM tool to implement and solve their designed
problem.

Another approach is to provide a problem and ask for solutions from the MAS
community: RoboCup-Rescue [15] is one of the most successful simulators which
intends to simulate disaster response episodes. It offers two major competitions
for participants. The first one focuses on virtual robots working together to assess
the situation of a devastated area. The second one is a agent-based simulation
of an earthquake in which agents try to minimise the impact of the disaster.
Teams implement their algorithms in ADF modules [7]. This enables modularity
in team’s code and organisers are then able to run the code and swap modules
of same purpose around to collect performance results. RoboCup-Rescue, in the
agent-based simulation, focuses on certain aspects of the scenario (e.g., task allo-
cation, team formation, and route planning), in which teams develop techniques
for those isolated problems.

An even more general approach is to simply provide the problem and leave
it entirely open to the MAS community to choose strategies and techniques of
how to solve it. In the Multi-Agent Programming Contest (MAPC) [1], the aim
is to identify key problems, collect suitable benchmarks, and gather test cases
for MAS community, in particular to MAS programming languages. Agents are
decoupled from the environment server and interact with it by sending actions
and receiving perceptions. Doing so, agents chose strategies and AI techniques
that fit them best. The environment is designed to enforce coordinated actions
and to be highly dynamic; which means it changes as new events are announced
and as teams of agents act upon the shared environment.

Our simulator is inspired by MAPC; in particular by the contests of 2016,
2017, and 2018, with the “Agents in the City” scenario [1]. In that scenario
agents of two different teams control various autonomous vehicles to solve logistic
problems simulated on the map of a real city. We leave it to the developers of
agents to choose and apply what are the possibly best approaches to address the
overall disaster response problem. Doing so, we work to shift MAS community’s
attention to relevant problems of real-world in which developers can fully exploit
the entire potential that MAS solutions can offer.

3 A Simulator for Disaster Response Episodes

In a disaster episode, usually, a sparse area is affected [10] and the experts,
robots, and volunteers accomplish certain tasks in order to minimise the suffering
and loss caused by the disaster event. We simulate some tasks related to a
collapse of a dam for mining tailings occurred in Brumadinho in 2019.
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In our setting, tasks for rescuing victims, collecting mud samples, and tak-
ing photographs4: These are announced by the Centre for Disaster Management
(CDM). Some victims may have their location already revealed and others are
hidden in the middle of the mud. Information about the area is collected and
then analysed in order to decide whether there might be or not victims at that
location. The CDM also tags specific locations in which the mud must be sam-
pled. As new information is received during the disaster response operation, new
tasks are announced and require further investigation.

In disaster response episodes volunteers support disaster response in many
ways (e.g., as a workforce) [3]. For this reason, recent work concentrates on
integrating those persons into the operation [12]. To represent that need, we
define the idea of social assets that represents volunteers in disaster response
context. We distinguish between agents that connect before the simulation starts
(i.e., regular agents) and agents that connect after the simulation has begun (i.e.,
social assets) to help some other agent. For instance, if an agent has to finish a
task but it does not have the skill to do so, it can try to find some social assets
that are able to perform that particular task. The reader can find the code and
additional information about this simulator in our repository5.

3.1 Problem Set-Up

The disaster response simulator generates an environment model (where agents
will be situated) based on the parameters established in a configuration file. It
is organised into five sections:

– Map: contains all the information regarding the simulator itself and the map
in which the simulation will take place (Open Street Map (OSM)).

– Regular Agents: sets how many agents should be instantiated at the begin-
ning of the simulation as well as their skills and resources.

– Social Assets: similar to regular agents in which one can define the amount
of social assets and their skills and resources.

– Actions: specifies the actions available to the agents stating which skills and
resources are needed in order to perform them in the environment.

– Events: sets the chance to occur, size, and number of occurrences of mud
events. Such events are noticed by the CDM that announces tasks (i.e., pho-
tos, samples, and rescuing victims) to be accomplished by the agents. A photo
task has a chance of an agent finding out victims at that location.

Agents have physical and virtual storage in addition to their move capability.
Three types of movement are supported in our simulated environment: by air,
ground, or water. The skill of an agent indicates which movement the simulation

4 Photo in our context is an abstraction that represents a further investigation that
must be carried out in order to find out whether a victim is or is not hidden under
the mud. Usually, experts may use some device that provides data that must be
analysed to draw a conclusion.

5 https://github.com/smart-pucrs/MASiRe.
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engine should perform for that agent (e.g., skill airMovement). Air movement
enables agents to reach any coordinate in the map (i.e., latitude and longitude).
The underlying map is compounded by a set of nodes that could form a route
from one place to another. These nodes are affected by the disaster events, for
instance, in a mud episode, spawned nodes are tagged and pose speed constraints
on the agents’ locomotion to represent the effects of mud on the ground surface.
Note that agents’ skills and resources should match (i.e., a string match) the
skills and resources required by an action in order to be performed.

Agents interact with the simulator through actions. Actions are designed to
meet the model of the mud episode in which the CDM announces tasks that
must be accomplished by the agents. The actions available for the agents are:

pass does nothing in the environment;
move moves an agent towards a specific coordinate;
charge recharges, at the CDM, the agent’s energy used by other actions (e.g.,

move action);
rescue achieves task rescue victim and puts a volume in the agent’s physical

storage;
collect achieves task collect sample and puts a volume in the agent’s physical

storage;
take-photo achieves task take photo and puts a volume in the agent’s virtual

storage;
analyse-photo analyses a photo, at the CDM, to figure out whether there is or

not a victim at that location;
search-social-asset searches for a social asset in a given perimeter;
request-social-asset asks for opening a connection for a social asset;
provide-retrieve-physical synchronised actions between agents to exchange

physical volume;
provide-retrieve-virtual synchronised actions between agents to exchange vir-

tual volume;
carry-becarried synchronised actions that put one agent into the physical stor-

age of another;
deliver delivers an item from the agent’s storage in the agent’s current position

(it could be an physical item, virtual item, or even an agent).

Agents that are being carried by other agent cannot perform any action but
pass. This feature us useful when an agent is out of battery or cannot move at
the current terrain.

Agents play in discrete steps, in which at each step an action is expected from
each connected agent. A step represents a notion of time unit in the simulation
(i.e., seconds, minutes, etc.) and it also has a timeout for waiting for actions from
the agents. We call a match a run of n steps (set in the configuration file) for a
team of agents in the simulated disaster environment. Events, and consequently
tasks, may have a duration span (in steps) that poses time constraints to the
agents. This is also the case for the people stuck in the mud, once the duration
is set to 0 in the environment model the victim is considered dead.
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3.2 Architecture of the Disaster Response Simulator

The architecture of our simulator is divided into three components:

– Simulation Engine: responsible for creating the environment, events,
agents, processing the actions received from agents, and computing metrics
at the end of the simulation;

– Application Program Interface (API) interfaces the communication
between agents and the simulation engine, as well as refreshes the graphi-
cal interface with new data;

– Monitor: receives data from the API and shows it in the browser.

Figure 1 gives an overview of the components and libraries used in our simulator.

Fig. 1. Architecture of the simulator.

Although for agents a graphical interface is not needed during the simulation,
for humans carrying out the experimentation, it is a very useful tool to see what
is going on. Experts can visually analyse the behaviour adopted by a team of
agents and it is also useful in order to find flaws in strategies.

3.3 Communication with Multi-Agent Platforms

The communication between the simulator and a MAS is established by a well-
defined protocol similar to the one in MAPC [1]. The protocol consists of four
types of messages:

Initial Percepts: Sent to an agent as soon as it connects to the API. It contains
all percepts related to the map and the agent’s role in the simulation. These
percepts do not change during a match.

Percepts: Sent to the agent at each new simulation step. It contains all the
percepts for the current state of the environment and of the agents (an agent
does not receive percepts of other agents).

End: Sent to the agent at the end of a match. It contains a report of the per-
formance of the team of agents during the match (this is further discussed in
Sect. 3.5).
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Bye: Received by all agents when all matches have finished. It contains the report
of the performance of the agents in all matches; similar to the end message
but for when the whole simulation is finished.

All the messages of the protocol are in JSON object format and can be easily
parsed by a MAS to Prolog-like syntax. Note that any Multi-Agent System plat-
form is able to connect and interact with our simulator as long as it implements
the communication protocol described above. All the messages are generated by
the simulation engine which is detailed in the next section.

3.4 Simulation Cycle

So far we have illustrated the configuration of the simulator and how to exchange
messages. We are now introducing how the simulator itself works.

The simulation engine first checks the configuration file and generates all
events that will take place in the simulated environment as well as all the social
assets options. Note that a social asset is available for a period (e.g., it can
be called from step 120 to 150). Once this phase is finished, the API begins
accepting connections from agents. When a request is made, the API generates
a token that will be used during the whole simulation to represent that agent,
and sends to the agent the initial percepts. When all agents get connected
(or the timeout is reached), the simulator enters the cycle until the end of the
match. The cycle consists of:

1. sending percepts for the current step (Simulation Engine �→ API �→ MAS);
2. updating the graphical interface (API to Monitor);
3. waiting for the connected agents’ actions (API);
4. sending actions to the simulator (API to Simulation Engine);
5. Simulation Engine processes actions;
6. goes back to the first step.

If no action is received from an agent in time (i.e., before the timeout for that
simulation step be reached), the API assigns a pass action to it. If all steps are
processed the simulation engine sends an end message and disconnects all social
assets. If there are no more matches to simulate (i.e., other maps), it sends the
bye message and disconnects all agents.

A special treatment is needed when a social asset is requested by a regular
agent. This action is processed by the simulation engine that asks to the API to
wait for a new connection. If a timeout is reached, a failure is returned to the
requester agent. This social asset is always linked to a regular agent and can be
disposed of at any time by its creator. After being connected, a social asset is
considered a regular agent: It receives perceptions and performs actions in the
environment.

At the beginning of a simulation a mud event is always generated (i.e., at the
first step), after that, other events may occur dynamically over the simulation.
A mud event only disappears when there are no more tasks to be completed
in the affected area. Our simulation focuses only on the response phase of a
disaster [10].
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3.5 Simulation Metrics

A final but important part of the simulation are the results generated about the
performance of the team(s) of agents. We collect during the simulation some
metrics that help developers of the MAS and experts to analyse the advantages
and drawbacks of the adopted strategies.

At the end of each match, we record the performance of team of agents in
accomplishing all the tasks announced by the CDM. The simulator provides
metrics for:

Victims: This metric states the total number of victims in the simulation, includ-
ing both the victims already known in the mud events as well as victims hid-
den under the mud. We also count the number of victims delivered to the
CDM, alive or dead. Finally, we count all the generated victims (i.e., in the
mud events and in the photo events) that were not rescued by the agents.

Photos: This metric refers to the total number of photo tasks that were gen-
erated. It represents locations of the affected area that should have been
evaluated by the agents in order to look for new victims. Every time an agent
takes a photo or analyses a photo, we record that information. Photo tasks
that were not completed are also counted.

Samples: For this metric we show the quantity of mud-sample tasks requested by
the disaster response command. Although this kind of task has not the same
priority as rescuing a victim in disaster operations, it represents secondary
tasks that agents should also take into account during their activities. We
also keep track of how many these tasks were completed by the agents.

The simulator also allows the user to record matches for future replay. This
enables further analysis of what happened during the simulation and is a very
powerful feature during the development of MAS teams.

4 Evaluating the Simulator

After introducing how our simulator works, we present some results regarding
its performance. We start describing the simulator performance over a range of
parameter in the configuration file. Then we illustrate how to compare different
approaches using the metrics provided by the simulator’s report.

4.1 Simulator Performance

We experiment with some configuration parameters in order to monitor memory
usage, processing time, message exchange and response time. As the experiments
were directed to the assessment of the simulator engine, we decided not to con-
sider the influence of graphic monitoring. In addition, the connection with a MAS
platform will not be considered in these experiments, that is, we instantiate “fake
agents”6 that connect to the simulator to experiment with its performance only.
6 Fake agents are agents that do not perform any reasoning; they just send a predefined

action at each step.
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Fig. 2. Package size of the messages exchanged between the sim-engine, API, and MAS.

All experiments were executed in a MacPro 5 server with 32 Gigabyte of RAM
and two hexa core Intel Xeon of 2.4 GHz processor.

To clearly explain the experiments, we define a basic setting of the parameters
used during all the simulations (in the following we only state the parameters
that have different values in this setting). In the basic configuration, the number
of steps is set to 100, the chance of a event to occur to 10%, the number of agents
to one, and the number of mapped nodes to 49634 (i.e., subset of nodes from
the map that are loaded into the simulation). The mud events have a duration
of 30 to 50 steps.

We start describing the experiments with package size and response time
for sent actions. All the messages exchanged between the simulation engine and
the API, and also between the API and the MAS, are evaluated. We set the
simulation to 100 steps and only one agent is instantiated. We experiment with
the chance of a mud event to occur in the simulation. We remind the reader
that mud events lead the CDM to announce tasks for rescuing victims, taking
photos, and collecting samples. The results are depicted in Fig. 2.

At the end of each step, percepts and activated events are sent to the API; this
is depicted in the first chart of Fig. 2. As the simulation progresses, we can notice
a growth in the size of the packages as new events are being announced. However,
the growth gets stable around step 40. This is due to the configured duration
of an event, at that point, as new events are announced, others disappear. We
can see that the size of packages depends on the number of events occurring
in the disaster scenario as well as on the number of agents. If we instantiate
more agents, the size of the packages exchanged between the simulation engine
and API will increase only in the part that represents the agents’ current states.
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Fig. 3. Response time of the simulation engine considering two different actions; pass
is the least expensive action and searchSocialAssets is the most expensive one.

However, from the API to MAS we have to multiply the package size by the
number of agents, as agents need to receive their own state and the state of the
environment (see the second chart in Fig. 2). Disaster scenarios in which new
events are announced frequently are unlikely, for instance, in a simulation of
100 steps, 100 events being announced. By observing the simulation with 10%
event occurrence, a more realistic value, we have acceptable packet sizes for the
communication between the components of the overall simulation.

Next, we experiment with the actions sent by the agents in order to evaluate
the simulation engine’s response time. Agents send the same action at each
step. We analyse a simulation instance in which all agents send a pass action.
The pass action is the least expensive action in terms of computation for the
simulator; it changes nothing in the environment. We also analyse the response
time when the agents send the searchSocialAsset action. This action is the
most expensive one, because the engine must go through all the elements of the
set of social assets, evaluating their distance to the requesting agent in order
to send back only the assets that are within the specified perimeter. For this
experiment, we set the incidence of events to 100% in which they stay activated
throughout the simulation. Each mud event will contain only one task of each
type and one new social asset will be made available at each step. We vary the
number of agents between 20, 60, and 100. The results are depicted in Fig. 3.
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Fig. 4. Memory usage: varying # of agents, steps, event occurrence, and mapped nodes.

The first chart in Fig. 3 depicts the time taken to process the pass action.
In order to advance a step, the simulator performs the agents’ actions in the
environment, updates the current status of the other entities (i.e., victims’ life-
time), generates the new state, and sends the information back to the agents.
For both actions the simulation response time grows linearly, as expected; this
is due to the number of events generated at each step (i.e., one new event being
announced). However, when comparing the response time for both actions, we
can see that the search action is slightly slower than the pass action.

The next two experiments are for memory usage and processing time. We
instantiate simulations varying the number of connected agents (20, 60, and 100
agents), the number of steps that a match takes (100, 500, 1000, and 1500 steps),
the complexity of the simulated problem which means the incidence of events
throughout the simulation (10%, 50%, 100% chance that a new mud event occurs
in a step), and the number of nodes mapped in the OSM file (10000, 30000, and
50000 nodes). We analyse from the moment the simulator is instantiated, going
through the generation of events, loading the map, and getting agents connected
until the initial percepts are sent to the agents (i.e., before the first simulation
step). We depict the results for memory usage in Fig. 4.

When the simulator is started, all events that will occur in the simulation
are generated and stored in memory; the event only gets activated at the step
indicated by the event generation procedure. In this sense, the number of steps
could indeed have an impact on the performance of the simulation initialisation.
However, as we can see in Fig. 4, as we change the parameters of the simulation,
the memory usage increases linearly. Moreover, we can see that the size of the
map (i.e., mapped nodes) has not a significant impact on memory usage. The
memory used by the simulator increases a little as we change the configuration
settings, therefore we can conclude that simulating more complex scenarios seems
to be feasible.
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Fig. 5. Processing time: varying # of agents, steps, event occurrence, mapped nodes.

In addition to memory usage, we analyse the processing time required to
generate the shared environment. We used the same parameters as in the mem-
ory experiment to run those simulation instances. The results are depicted in
Fig. 5. We can see a similar behaviour for the number of agents, steps, and event
occurrences. The processing time requirement grows linearly with increasing the
parameters. For the size of the map, we still notice a small increase when com-
pared with the memory usage experiment.

4.2 Comparison Between Different MAS Approaches

Having shown that our simulator is robust, we now aim to demonstrate how
MAS researchers can use our simulator metrics to analyse the performance of
a team of agents7. We evaluate two approaches in the same disaster scenario:
(i) a MAS with only very simple reasoning; and (ii) a MAS using a coalition
formation approach to partition the set of agents. Both approaches are developed
using the JaCaMo platform [4] in which the communication protocol (Sect. 3.3)
is implemented in a CArtAgO artefact.

In this scenario, we consider a mud disaster environment in which 30 experts
receive tasks from the CDM and must establish a coordination between them-
selves to perform all announced tasks. We assume experts are able to teleoperate
robots. The configuration file is set as the following:

– 500 steps in a match;
– two types of regular agents: drone for aerial locomotion (7 agents), and

Unmanned Ground Vehicles (UGV) for ground locomotion (23 agents);
– ground vehicles suffer speed reduction of 50% in a zone affected by mud;

7 Although we compare the two approaches to show how to use our metrics, our main
goal does not lie to state which approach is better.
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– new mud events occur at each step with chance of 2% containing: four to
eight mud sample tasks; four to ten photo tasks; and one to three victims.

– each photo has a chance of 80% to reveal one to three victims in that area;
– victims stay alive in the simulation for 50 to 100 steps.

Any change in the disaster scenario can be easily set in our configuration file.
For instance, it is completely feasible to declare other types of agents and skills
according to the range of experts and unmanned (or manned) vehicles that are
available in the operation. However, to better illustrate the use of simulator’s
metrics, we prefer to keep the experiment simple.

Both approaches have some characteristics in common related to the agents’
reasoning. Drones are capable of taking photos, analysing them, and collecting
mud samples. They always prefer collecting photos and analysing them rather
than collecting mud samples. UGV are capable of rescuing victims and collecting
mud samples; both must be delivered at the CDM. They always prefer rescuing
victims rather than collecting mud samples. Note that the agents are not aware
of the current health situation of the victim, they try to save the first victim
they find in the disaster zone. After completing a task, an agent always returns
to the CDM to report on what was done, to recharge, and to choose a new task.
Agents use a simple coordination mechanism in order to pick a task. An agent
queries if there is no other agent performing that task, then it broadcasts to the
other agents that it is now attempting to achieve that particular task.

In the simple MAS team, agents always consider all the active mud events in
order to pick a task. They only attempt to execute the first task returned when
querying its belief base for known events (preserving the preferences of each role
over the tasks).

In the MAS team that uses coalition formation, we use the C-Link algorithm
introduced by Farinelli et al. [5]8. It is a heuristic algorithm for coalition forma-
tion based on hierarchical clustering. We aim to partition the agents for the set
of active mud events. An agent post as contribution to act upon a mud event the
number of tasks it could accomplish in that event, plus the distance to get there
(long distances have smaller contributions). The characteristic function evalu-
ates the contribution of each agent divided by the number of agents of that same
type in the coalition. For instance, in a mud event in which two mud samples
must be collected, a drone agent would have contribution value of two for that
event (we ignore the distance values in this example). However, if a coalition
contains two drone agents, each will contribute only one to the total value, so
the coalition value will still be two. After the coalition structure is formed, coali-
tion members only act upon the mud event related to the coalition they belong.
We generate a new coalition structure every time a new mud event occurs in the
scenario, and agents may be reallocated to work on different areas.

8 As our main goal is not to evaluate the technique itself but to demonstrate how to
compare different approaches, we omit implementation details.
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Fig. 6. Metrics for the mud disaster response considering two MAS approaches.

We execute both teams in the same scenario (i.e., same events at the same
steps) and collect their performance results which are depicted in Fig. 6. For this
setting, the simple reasoning MAS team rescued more victims alive, but it did
not accomplish many mud sample tasks. Drones and UGV always try to achieve
their most preferred tasks (i.e., taking photos and rescuing victims respectively),
and ignore the rest. In contrast, the coalition formation MAS team accomplished
more of the tasks announced by CDM, however, the priority system for rescuing
victims was applied only locally in the mud regions which led to a higher number
of rescued bodies. This shows how to use the simulator’s metrics as a guide for
decision-making.

5 Conclusions and Future Work

In this paper, we have introduced a new disaster response simulator to be
used by the scientific community during the design and benchmark of different
MAS approaches for coordinating autonomous agents. It differs from previous
approaches in the literature about simulating disaster response environments
by not constraining the MAS approach to a few reasoning mechanisms or AI
techniques: Any methods can be plugged-in and evaluated in a long-term sim-
ulation. The present simulator was first designed to cope with floods, but with
the occurrence of a collapse of a dam for mining tailings in Brumadinho in 2019,
we adapted it to suit better some characteristics of this disaster.
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For future work, we aim to expand the range of disasters that our simulator is
capable of simulating. We also intend to improve the tasks and actions provided
by our simulator, in particular providing other predefined actions that require
agents to cooperate and coordinate themselves. Moreover, we want to bring
also the recovery phase [10, described therein] into the simulations, in order to
investigate how we can improve disaster preparation and response. We aim to
work along with experts and professionals that act on various types of disasters,
taking into account the usability of our simulator.
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Abstract. InProof-of-Work(PoW)basedblockchains(e.g.,Bitcoin),min-
ing is the procedure through which miners can gain money on regular basis
by finding solutions to mathematical crypto puzzles (i.e., full solutions)
which validate blockchain transactions. In order to reduce the uncertainty
of the remuneration over time, miners cooperate and form pools. Each pool
receivesrewardswhichhavetobesplitamongpool’sparticipants.Theobjec-
tive of this paper is to find an allocation method, for a mining pool, aimed
at redistributing the rewards among cooperating miners and, at the same
time, preventing some malicious behaviours of the miners.

Recently, Schrijvers et al. (2017) have proposed a rewarding mecha-
nism that is incentive compatible, ensuring that miners have an advan-
tage to immediately report full solutions to the pool. However, such a
mechanism encourages a harmful inter-pool behaviour (i.e., pool hop-
ping) when the reward results insufficient to remunerate pool miners,
determining a loss in terms of pool’s computational power.

By reinterpreting the allocation rules as outcomes of bankruptcy sit-
uations, we define a new rewarding system based on the well-studied
Constrained Equal Losses (CEL) rule that maintains the incentive com-
patible property while making pool hopping less advantageous.

Keywords: Blockchain · Mining · Mining pool · Reward · Bankruptcy
situation

1 Introduction

In the blockchain systems transactions are collected in blocks, validated and pub-
lished on the distributed ledger. Nakamoto [5] proposed a Proof-of-Work system
based on Back’s Hashcash algorithm [1] that validates blocks and chains them
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one to another. The Proof-of-Work system requires finding an input of a prede-
fined one-way function (e.g., hash function) generating an output that meets the
difficulty target. More precisely, the goal for the block validators (miners) is to
find a numerical value (nonce) that added to an input data string and “hashed”
gives an output which is lower than the predefined threshold. A miner who finds
a full solution (i.e., a nonce meeting the difficulty target) broadcasts it across
the network.

Miners compete to be the first to find a full solution in order to publish the
block and gain a reward consisting in new minted crypto-currencies. Mining is a
competitive crypto puzzle (a mining race) that participants try to solve as fast
as possible. The difficulty D of the crypto puzzle limits the rate at which new
transaction blocks are generated by the blockchain (e.g., it takes approximately
10 min to find a full solution in the Bitcoin network). This difficulty value is
adjusted periodically in order to meet the established validation rate. At the
time of writing, in order to validate a block in the Bitcoin blockchain, miners
needs to generate (on average) a number D = 15, 47T of hashes.

Mining is a procedure through which miners can gain a substantial amount
of money. Nowadays, due to the high difficulty values, solo miners (i.e., miners
who work alone with a personal device) find a full solution with a time variance
range of billions of years. Small miners survive in this new industry by joining
mining pools. A mining pool is a cooperative approach in which multiple miners
share their efforts (i.e., their computational power) in order to validate blocks
and gain rewards. Once a full solution is found, pool’s reward is split among the
miners. In this way small miners, instead of waiting for years to be rewarded,
gain a fraction of the reward on a regular basis.

Miners’ reward is based on their contribution in finding a full solution. In
order to give proof of their work, miners submit to the pool partial solutions, i.e.,
nonces that do not meet the original threshold, but a higher one. The solutions
of this easier crypto puzzle are considered “near to valid” solutions and called
shares. For those blockchains that adopt a SHA-256 function, every hash value
(i.e., output of the hash function) is a full solution with probability 1

232D , and
each hash has a probability of 1

232 to be a share. Hence, a share is a full solution
with probability p := 1

D .
Miners are rewarded according to the number of shares that they provide.

Whenever a share is also a full-solution a block is validated and the pool gains a
reward that is split among pool participants according to the number of shares
that they have reported.

Mining pools are managed by a pool manager that establishes the way in
which miners should be rewarded. Each pool adopts its own rewarding system.
There exist several rewarding approaches that can be more or less attractive to
miners (see for instance [6]).

1.1 Mining Pool Attacks

An attack to a mining pool refers to any miner’s behavior which differs from the
default practice (the honest one) and that jeopardizes the collective welfare of the



Rewarding Miners: Bankruptcy Situations and Pooling Strategies 87

pool. Rosenfeld provided in [6] an overview of the possible malicious behaviours
regarding pools whose profitability depends on their own rewarding mechanism.
Miners may attack their pool at the time of reporting their Proof-of-Work. More
precisely they can (i) delay in reporting a share (i.e., block withholding) and/or
(ii) report a share elsewhere (i.e., pool-hopping).

The former is a practice consisting in delaying in reporting shares and full
solutions to a mining pool. This practice implies delaying a block validation and
the consequent possession of the reward, that in some cases may be profitable for
attackers. Pool-hopping consists in an attack where miners “hop” from a pool
to another one according to pools’ attractiveness.

1.2 Related Works on Rewarding Mechanisms

The problem for a pool manager is to establish how to redistribute the rewards
among pool participants in order to prevent malicious behaviours (as the ones
listed above). In other words, the pool manager must choose an “appropriate”
rewarding mechanism preventing (possibly, all) different types of attacks. Con-
cerning the block withholding practice, Schrivers et al. [7] make use of non-
cooperative game theory to propose a rewarding mechanism (denoted as incen-
tive compatible) that prevents this attack. This specific rewarding system is
robust against malicious actions operated inside a pool, however it does not
behave as well in an inter-pool environment since it cannot prevent pool-hopping.
In this case, Rosenfeld [6] shows that malicious miners can gain at the expenses
of the honest ones, who receive a lower reward than the expected one. In [4] the
authors use cooperative games to prove that pool-hopping is not preventable,
thus mining pools are not stable coalitions.

Our contribution. Starting from the model in [7], the goal of this work is to
propose an alternative incentive compatible rewarding mechanism discouraging
the pool-hopping practice. By reinterpreting the reward function in [7] as an out-
come of a bankruptcy situation, we construct, analyze and test a new rewarding
mechanism adoptable by pools to remunerate contributing miners.

The paper is structured as follows. Section 2 presents the basic model for
mining pool and some definitions about bankruptcy situations. In Sect. 3, we
introduce a reward function from the literature, we compare it with a new one
(based on a modified version of the CEL rule for bankruptcy situation) and we
show that the two are equivalent with respect to incentives in reporting shares or
full solutions. Then, in Sect. 4, we compare these two methods from a multi-pool
perspective by showing (also with the aid of simulations) that the CEL-based
reward function performs better than the one from the literature in discouraging
miners to hop from a pool to another. Section 5 concludes the paper.
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2 Preliminaries

2.1 The Model

Let N = {1, . . . , n} be a finite set of miners. Time is split into rounds, i.e., the
period it takes any of the miner in the pool to find a full solution. During a
round miners participate in the mining race and report their shares (and the
full solution) to the pool manager. Once the full solution is submitted, the pool
manager broadcasts the information to the network and receives the block reward
B. Then, the pool manager redistributes the block reward B among the miners
according to a pre-defined reward function. The round is then concluded and a
new one starts. For the sake of simplicity we set B = 1.

The situation is represented by the vector s = (s1, s2, ..., sn) ∈ N
N , defined as

history transcript, that contains the number of shares si reported by each miner
i ∈ N in a round. Letting S =

∑
i∈N si be the total number of reported shares,

the reward function R : NN → [0, 1]n, according to [7], is a function assigning to
each history transcript s an allocation of the reward (R1(s), . . . , Rn(s)), where Ri

denotes the fraction of reward gained by the single miner i ∈ N and
∑

i∈N Ri =
B = 1.

Following the approach in [7], under the assumption of rationality, miners
want to maximize their individual revenues over time. Let K be the numbers of
rounds that have been completed at time t and let sj be the transcript history for
any round j ∈ K. Given a reward function R, a miner i ∈ N will adopt a strategy
(i.e., the number of reported shares at each round j) aimed at maximizing her
total reward given by

lim
t→+∞

∑

j∈K

Ri(sj),

where a strategy affects both the number of completed rounds and the number
of reported shares. In [7], a reward function R is said to be incentive compatible
if each miner’s best response strategy is to immediately report to the pool a
share and a full solution. Assuming that (i) one single pool represents the total
mining power (normalized to 1) of the network and that (ii) each miner i ∈ N
has a fraction αi of the hashing power, then the probability for a miner i to
find a full solution is αi. Under this assumption, Schrijvers et al. [7] show that
a miner i ∈ N has an incentive to immediately report her shares if and only if
the reward function R is monotonically increasing (i.e., Ri(s + ei) > Ri(s) for
all history transcripts s, where ei = (ei

1, . . . , e
i
n) ∈ {0, 1}N is a vector such that

ei
j = 0 for each j ∈ N \ {i} and ei

i = 1.). Moreover, they show that a miner
i ∈ N , finding a full solution at time t, has an incentive to immediately report
it if and only if the following condition holds:

n∑

j=1

αj · (
Ri(st + ej) − Ri(st)

) ≤ Es[Ri(s)]
D

(1)

for all vectors of mining powers (αi)n
i=1 and all history transcripts st, where

Es[Ri(s)] is the expected reward for miner i over all possible history transcripts.
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Condition (1) results from the comparison of the withholding strategy – i.e.,
∑

s:S=1 P(find s) · (
Ri(st + s)

)
– with the honest one – i.e., Ri(st) + Es[Ri(s)]

Es[S]

– knowing the fact that the total number of submitted shares in a round,
S =

∑
i∈N si, follows a geometrical distribution of parameter p = 1

D (i.e.,
the probability for a share to be a full solution), where D is the difficulty of
the crypto puzzle. Therefore, the value of the parameter D corresponds to the
average number of submitted shares in a round.

2.2 Bankruptcy Situations

We now provide some game-theoretical basic definitions. A bankruptcy situation
arises whenever there are some agents claiming a certain amount of a divisible
estate, and the sum of the claims is larger than the estate. Formally, a bankruptcy
situation on the set N consists of a pair (c, E) ∈ R

N ×R with ci ≥ 0 ∀i ∈ N and
0 < E <

∑
i∈N ci = C. The vector c represents agents’ demands (each agent

i ∈ N claims a quantity ci) and E is the estate that has to be divided among
them (and it is not sufficient to satisfy the total demand C).

We denote by B
N the class of all bankruptcy situations (c, E) ∈ R

N × R

with 0 < E <
∑

i∈N ci A solution (also called allocation rule or allocation
method) for bankruptcy situations on N is a map f : BN → R

N assigning to
each bankruptcy situation in B

N an allocation vector in R
N , which specifies the

amount fi(c, E) ∈ R of the estate E that each agent i ∈ N receives in situation
(c, E).

A well-known allocation rule in the literature is the Constrained Equal Losses
(CEL) rule, which is defined in the following definition (see, for instance, [3,8]
for more details on bankruptcy situations and the CEL rule).

Definition 1 (Constrained equal losses rule (CEL)). For each bankruptcy
situation (c, E) ∈ B

N , the constrained equal losses rule is defined as
CELi(c, E) = max(ci −λ, 0) where the parameter λ is such that

∑
i∈N max(ci −

λ, 0) = E.

3 Incentive Compatible Reward Functions

Schrijvers et al. [7] introduce a reward mechanism that fulfills the property of
incentive compatibility using the identity of the full solution discoverer w. Given
a vector ew = (ew

1 , . . . , ew
n ) ∈ {0, 1}N such that ew

i = 0 for each i ∈ N \ {w} and
ew
w = 1, the incentive compatible reward function R is the following:

Ri(s;w) =

{
si

D + ew
i

(
1 − S

D

)
, if S < D

si

S , if S ≥ D
∀i ∈ N, (2)

where si is the number of shares reported by miner i, S is the total number
of reported shares in a round and D is the crypto puzzle difficulty. This function
rewards miner i proportionally to the submitted shares in the case S ≥ D. On
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the other hand, in the case S < D, each miner receives a fixed reward-per-
share equal to 1

D and the discoverer w of the full solution receives, in addition,
all the remaining amount 1 − S

D . So, in both cases,
∑

i∈N Ri(s;w) = B = 1.
Roughly speaking, the reward function R is the combination of two distinct
allocation methods. In a short round, i.e., when the total amount of reported
shares is smaller than the difficulty D of the original problem, the reward function
allocates a fixed amount-per-share to all agents equal to 1

D , but the agent w who
finds a solution is rewarded with an extra prize. Instead, in a long round, i.e.,
when the total amount of reported shares exceeds the difficulty of the problem,
the reward function allocates the reward proportionally to the individual shares.

Remunerating miners in a per-share fashion, for long rounds, would lead
pool going bankrupt since the reward B results insufficient to pay out all the
reported shares. For long rounds, the rewarding mechanism proposed in [7] is
nothing more than a solution to a bankruptcy situation. Therefore, it is possible
to create new reward functions by simply substituting in long rounds (i.e., in
bankruptcy situations) different bankruptcy solutions.

Let us now create a new rewarding mechanism based on the CEL rule defined
in Sect. 2.2 and let us compare the properties of the two allocation methods in
long rounds. In order to preserve incentive compatibility we define a CEL-based
reward function.

Definition 2. Given the identity of the full solution discoverer w, for all i ∈ N
the CEL-based reward function R̂ is defined as follows:

R̂i(s;w) =

⎧
⎨

⎩

si

D + ew
i

(
1 − S

D

)
, if S < D

ew
i

D + max
(

si

D − λ, 0
)
, λ :

∑

i

max
(

si

D − λ, 0
)

= 1 − 1
D , if S ≥ D

,

where ew = (ew
1 , . . . , ew

n ) ∈ {0, 1}N is a vector such that ew
w = 1 and ew

i = 0 ∀i ∈
N \{w}, si is the number of shares reported by miner i, S =

∑
i∈N si is the total

number of reported shares in a round and D is the crypto puzzle difficulty.

We assign to agent w, who finds the solution during a long round, an extra
prize of 1

D to add to the allocation established by the classical CEL rule for the
bankruptcy situation (c, E) =

(
1
D · s, 1 − ew

i

D

)
, with the estate reduced by 1

D .
More precisely, in long rounds R̂i(s;w) = ew

i

D + CELi

(
1
D · s, 1 − ew

i

D

)
. In other

words, it means that 1 is added to the count of the shares si reported by the full
solution discoverer w. If the value si

D − λ is negative, by default, the agent w is
receiving 1

D . This incentive is sufficient to make the reward function incentive
compatible.

Before proving this statement, let us compare the allocations provided by the
classical CEL rule and R̂ through an example with n = 3, D = 10 and E = 1.

Example 1. Given the following bankruptcy situation: s = (2, 7, 8), miner 1 finds
the full solution (w = 1) and (c, E) = ((0.2, 0.7, 0.8), 1). By Definition 1, it is
easy to check that λ = 0.25, hence:

CEL(c, E) = (0, 0.45, 0.55).
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Now, consider the new CEL-based rule R̂, a prize of 1
D = 0.1 is allocated to miner

1, and a new bankruptcy situation (c, E′) arises where the estate is reduced by
0.1; (c, E′) = ((0.2, 0.7, 0.8), 0.9). By Definition 2, now λ = 0.3 and we have that:

R̂((2, 7, 8); 1) = (0.1, 0, 0) + CEL((0.2, 0.7, 0.8), 0.9) =
= (0.1, 0, 0) + (0, 0.4, 0.5) = (0.1, 0.4, 0.5).

In order to prove that the CEL-based rule is incentive compatible we need
to present some preliminary results. More precisely, to express Condition (1) for
this new reward function we need to focus on the parameter λ of the definition.
This parameter depends on miners’ demands and it changes value from round
to round. It is important to analyze how the parameter varies if an additional
share is found. Let us denote by:

(i) λ1 the value of the parameter λ when miner i finds the full solution and
immediately reports it to the pool and,

(ii) λ2 the value of the parameter after delaying in reporting the full solution
by one additional share. By convention, if miner i finds the additional share
the parameter is denoted as λ1

2, while if any other miner finds it we have λ2
2.

By analyzing the different values of the parameter λ it is possible to derive the
following result:

Proposition 1. Let us consider CELi(c, E) = max(ci − λ1, 0) and CELi(c +
ej , E) = max(c

′
i − λ2, 0). For each (c, E) ∈ B

N , i, j ∈ N we have that λ1 ≤ λ2.

Proof. Let us report the efficiency condition for the two allocations:

max(cj − λ1, 0) +
∑

i∈N\{j}
max(ci − λ1, 0)

= max(cj + 1 − λ2, 0) +
∑

i∈N\{j}
max(ci − λ2, 0).

If cj ≤ λ1, efficiency condition implies that
∑

i∈N\{j} max(ci − λ1, 0) ≥
∑

i∈N\{j} max(ci −λ2, 0). Hence, λ1 ≤ λ2. For cj > λ1 let us assume, by contra-
diction, that λ1 > λ2. The assumption implies that

∑
i∈N\{j} max(ci − λ1, 0) ≤

∑
i∈N\{j} max(ci − λ2, 0). However, max(cj − λ1, 0) = cj − λ1 < cj − λ2 <

cj + 1 − λ2 = max(cj + 1 − λ2, 0) and this leads to contradiction.

Corollary 1. Given the situation of Proposition 1 we have that: λ2− 1
D ≤ λ1 ≤

λ2.

Now, we are ready to prove the incentive compatibility of the new reward
function based on the CEL rule.

Proposition 2. The CEL-based reward function R̂ of Definition 2 satisfies the
property of incentive compatibility.
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Proof. Let us write down Condition (1) for R̂:

αi

(
1
D

+ max
(

si + 1
D

− λ1
2, 0

)

− 1
D

− max
( si

D
− λ1, 0

))

+ (1 − αi)
(

max
( si

D
− λ2

2, 0
)

− 1
D

− max
( si

D
− λ1, 0

))

≤ Es[R̂i(s;w)]
D

.

Since the average reward Es[R̂i(s;w)] is positive, the right hand side is positive.
Therefore, the condition is fulfilled if the left hand side is not positive.

Due to Proposition 1 and Corollary 1 we have that: si

D − λ2
2 ≤ si

D − λ1 ≤
si+1

D − λ1
2.

If all the terms in the form max(·, 0) are positive, then the condition is fulfilled:

αi

(
1
D

− λ1
2 + λ1

)

+ (1 − αi)
(

−λ2
2 − 1

D
+ λ1

)

≤

≤ max(αi, 1 − αi)(−λ1
2 − λ2

2 + 2λ1) ≤ 0.

If si

D − λ2
2 ≤ 0 ≤ si

D − λ1 we get:

αi

(
1
D

− λ1
2 + λ1

)

+ (1 − αi)
(

− si

D
− 1

D
+ λ1

)

≤

≤ max(αi, 1 − αi)(−λ1
2 − si

D
+ 2λ1) ≤ 0.

If si

D − λ1 ≤ 0 ≤ si+1
D − λ1

2 we get:

αi

(
si + 1

D
− λ1

2

)

+ (1 − αi)
(

− 1
D

)

≤ max(αi, 1 − αi)
( si

D
− λ1

2

)
≤

≤ max(αi, 1 − αi)
( si

D
− λ1

)
≤ 0.

In the end, if all the terms in the form max(·, 0) are equal to 0, then the condition
is fulfilled, since the left hand side is negative.

4 A Multi-pool Analysis

Pool-hopping consists of a practice in which miners leave a pool to join another
one that is considered more attractive in terms of remuneration. More precisely,
during a round a miner performing pool hopping (i.e., a hopper) stops submitting
shares to the pool she was working with at the beginning of the round and starts
submitting shares to a different one. A hopper leaves, during a mining race, a
pool entering (or already in) a long round for a pool that is currently in a short
round. The hopping miner receives an increasing reward from the brand new pool
(in short round) and a decreasing reward from the pool left (facing a bankruptcy
situation where the resource B is insufficient to remunerate the working miners).
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In a multi-pool framework, the total mining power of the network is repre-
sented by different mining pools each with its own computational power. Differ-
ently from Sect. 2.1, each miner i ∈ N is characterized by αi that now represents
a fraction of the pool hashing rate. Indeed, in the single-pool framework, we
denote with αi the fraction of the total hashing power.

Hopping affects the actual rewards of a pool. If a miner performs pool hopping
the pool loses computational power and so on average the full solution is found
later, i.e., the rounds become longer.

In our multi-pool analysis, we assume that pool hopping is performed at the
very beginning of a long round and that miners hop between two pools adopting
the same rewarding mechanism. Every mean denoted as E[·] is considered con-
ditioned to the fact that the miner is in a long round: Es[·|S > D]. From now
on, we mark with an asterisk (∗) every variable defining the reward of miners
once pool hopping is performed.

4.1 Hopping Analysis on Schrijver’s Rewarding Function

When miner i is remunerated with reward function R her incentive to perform
pool hopping can be measured as the difference between (i) the average reward
when hopping E[R∗

i ] and (ii) the average reward E[Ri] when working for the
pool:

δhop := E[R∗
i ] − E[Ri].

Proposition 3. The reward function R proposed by Schrijvers et al. always
gives miners a positive incentive δhop > 0 to perform pool hopping.

Proof. As shown in [7], the average reward of an honest miner i ∈ N , i.e., not
hopping, is:

E[Ri] = αi.

A hopper (hopping at time t) receives an increasing reward from the new pool
in a short round and a decreasing one from the pool left. The sum of the two
represents the total reward. On average at the end of a short round (S = D) a
miner has found αi · D shares. The round finishes after D + t shares are found,
with t ∈ [0,+∞), hence the reward for the miner who performs pool hopping is
the following:

E[R∗
i ]=

∞∑

t=0

(
αit

D
+

αiD

D + t

)

p′(1 − p′)t >
αi

1 − αi
> αi,

where p′ = 1−αi

D is the probability that a share found by an honest miner is a
full solution, t is the time taken by an honest miner (working for the old pool)
to find a new share and R∗

i is the reward obtained by a miner who hops from a
pool rewarding with R to another pool using the same reward function. Hence,
the incentive to perform pool hopping is always positive:

δhop = E[R∗
i ] − E[Ri] > αi − αi = 0.
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A second result deriving from Proposition 3 is the fact that, on average, the
hopping miners gain more than their hashing ratio αi. This has been empirically
verified on the Bitcoin network in [2]. The average reward for a hopper, between
pools adopting R, can be analytically computed according to the following result.

Proposition 4. The average reward of miner i ∈ N hopping between two dif-
ferent pools remunerating miners according to the reward function R is the fol-
lowing:

E[R∗
i ] =

αi

1 − αi
+ α∗

i ,

where α∗
i = αi(1 − αi)e1−αi(−Ei(αi − 1)) with Ei(x) =

∫ x

−∞
et

t denoting the
exponential integral.

Proof. On average, a miner with computational power αi who performs pool
hopping receives:

E[R∗
i ] =

∞∑

t=0

αit

D
p′(1 − p′)t +

∞∑

t=0

αiD

D + t
p′(1 − p′)t.

The first term represents the reward received by the new pool in short round
that can be easily computed as follows:

αi

D

∞∑

t=0

t · p′(1 − p′)t =
αi

D
· D

1 − αi
=

αi

1 − αi
.

The second term (denoted as α∗
i ) corresponds to the reward assigned by the pool

left by the hopping miner. In order to compute this term we need to consider an
approximation for D → ∞:

α∗
i =

∞∑

t=0

αiD

D + t

1 − αi

D

(

1 − 1 − αi

D

)t

≈ αi(1 − αi)e1−αi

∞∑

t=D

1
t
e− 1−αi

D t.

The computations can be solved by defining:

f(x) := lim
D→∞

fD(x) = lim
D→∞

∞∑

t=D

1
t
e− tx

D .

Using Lebesgue’s theorem and given the constraint limx→∞ f(x) = 0 we get:

f(x) = −Ei(−x).

Hence:

α∗
i ≈ αi(1 − αi)e1−αif(1 − αi) = αi(1 − αi)e1−αi(−Ei(αi − 1)).

Thanks to the result provided by Proposition 4 we note that the shares
submitted in the pool left by the hopping miner (α∗

i ) represent an important
part of her average reward. More precisely, for values of αi < 0.39, α∗

i is more
than the 50% of the average reward a miner would have got by not leaving the
pool (i.e., her computational power αi). For instance, if a miner has αi = 0.2 as
computational power, she will get α∗

i ≈ 0.11.
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4.2 Hopping Analysis on CEL-Based Rewarding Function

Following similar arguments, we can analyze the incentive to perform pool hop-
ping when adopting the CEL-based rule R̂. We can, then, compare the results
obtained for the reward function R with the ones provided by R̂. We denote as βi

the average reward of function R̂ (corresponding to αi for function R) that can
be computed as follows since the probability for a miner i to find a full solution
and to receive the extra prize 1

D is αi:

βi = E[R̂i] =
αi

D
+ E

[
max

( si

D
− λ, 0

)]
λ :

∑

i

max
( si

D
− λ, 0

)
= 1 − 1

D
.

Like in Sect. 4.1, let us define the incentive to perform pool hopping δ̂hop :=
E[R̂∗

i ] − E[R̂i] and let us compute the average reward received by a hopper:

E[ ̂R∗
i ] =

∞
∑

t=0

(

αit

D
+ max

(

αiD

D
− λ, 0

))

p′(1 − p′)t =
αi

1 − αi
+ E [max(αi − λ, 0)] ,

where p′ = 1−αi

D , t is the time taken by an honest miner to find a new share and
R̂∗

i is the reward obtained by a hopping miner. Analogously to α∗
i for function

R, we denote by β∗
i the reward given by the pool the hopper left:

β∗
i = E [max(αi − λ, 0)] .

Hence we have that:

δ̂hop = E[R̂∗
i ] − E[R̂i] =

αi

1 − αi
+ β∗

i − βi.

4.3 Comparison of the Two Rewarding Functions in a Multi-pool
Framework

We have, now, the metrics to compare the performance of the reward functions
R and R̂ in hopping situations. Both rewarding systems present an incentive to
hop in long rounds, however the miner rewarded with the CEL-based reward
function are less incentivized. It is possible to compare the incentives δhop, δ̂hop
given by the two functions R, R̂ through the variables introduced in Sect. 4.2
since:

δ̂hop ≤ δhop ⇔ βi − β∗
i ≥ αi − α∗

i .

In order to show that the hopping incentive for the CEL-based reward function
is lower with respect to the incentive given by R it is sufficient to prove that
βi − β∗

i ≥ αi − α∗
i .

Proposition 5. Let N be the ordered set of miners: α1 ≤ α2 ≤ · · · ≤ αn, let
us define α>i :=

∑
j>i αj, as the global computational powers of the miners

that are more powerful than αi. Then, βi − β∗
i ≥ αi − α∗

i if (1 − αi)(α>i −
αi)e−αi+(α>i−αi)

−1
(−Ei(αi − 1)) ≥ 1 where Ei(·) is the exponential integral

function.
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Proof. Given the definitions of βi and β∗
i :

βi =
αi

D
+

∞∑

t=0

max
(

αi +
αit

D
− λ, 0

)

p(1 − p)t and

β∗
i =

∞∑

t=0

max (αi − λ, 0) p′(1 − p′)t,

let us recall that p = 1
D is the probability for a share to be a full solution and

that p′ = 1−αi

D represents the probability for a share reported by an honest
miner to be a full solution.

For t → ∞ (i.e., for very long rounds) the function max(·, 0) either tends to
0 or to 1 since in long rounds eventually the most powerful miner is receiving
all the reward (max(·, 0) → 1) and the other miners are receiving none of it
(max(·, 0) → 0). The limit value 0 is reached for t = γi ·D, where γi ∈ R∪{+∞}
is defined as follows; γi := argminγ{αit

D − λ < 0, ∀t ≥ γD}. Roughly speaking,
γi · D represents the number of shares after which miner i is not rewarded.

Hence, it is possible to rewrite βi and β∗
i in this form:

βi =
αi

D
+

γiD∑

t=0

(

αi +
αit

D
− λ

)

p(1 − p)t and β∗
i =

γiD∑

t=0

(αi − λ) p′(1 − p′)t.

The value of γi might change if the miner is performing pool hopping, but for
the sake of simplicity we approximate by considering the same γi in both cases.
Assuming that

∑
t λ · p(1 − p)t ≈ ∑

t λ · p′(1 − p′)t we can approximate the
difference between βi and β∗

i as follows:

βi − β∗
i ≈ αi

D
+

γiD∑

t=0

αit

D
p(1 − p)t.

Due to the value of the difficulty D, we can consider the limit for D → ∞, then:

βi −β∗
i ≈ αi

D
+

γiD∑

k=0

αik

D

1
D

e−k/D =
αi

D
+αi

1
D2

γiD∑

k=0

ke−k/D → αi(1−e−γi(1+γi)).

Let us now compute explicitly γi. If i = N (i.e., αi = argmaxj{αj}) then γi = ∞.
Otherwise at time t = γi · D the miners who receive a positive reward are all
the j ∈ N : αj > αi, i.e., all the ones having larger computational power than
i. According to the CEL rule definition we get the following balance equation:

∑

j>i

(

αj

(

1 +
t

D

)

− λ

)

= 1 − 1
D

≈ 1.

Since the time t = γi · D is the moment when the value max(αi(1 + t
D ) − λ, 0)

turns from positive to null, we can say that αi(1 + t
D ) − λ ≈ 0. Therefore we

have that:
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∑

j>i

(

αj

(

1 +
t

D

)

− αi

(

1 +
t

D

))

= 1.

Replacing the value of t with γi · D we get (α>i − (N − i)αi)(1 + γi) = 1, then:

γi = ((α>i − (N − i)αi)−1 − 1).

Now we can find a lower bound for γi (since N − i ≥ 1) and so for βi − β∗
i :

γi ≥ γ̄i := ((α>i − αi)−1 − 1) =⇒ βi − β∗
i ≥ αi(1 − e−γ̄i(1 + γ̄i)).

The sufficient condition for βi − β∗
i ≥ αi − α∗

i is:

αi(1 − e−γ̄i(1 + γ̄i) ≥ αi − α∗
i .

We get the statement of the proposition by replacing γ̄i and α∗
i with their explicit

formulas.

Thanks to Proposition 5, given miner i’s hashing ratio (i.e., αi) and the power
of the miners who are stronger than i (i.e., α>i), we can check whether R̂ is
giving a lower hopping incentive than the one given by R (i.e., check whether
δ̂hop ≤ δhop) by simply applying the sufficient condition introduced above that
we denote as f(αi, α>i):

f(αi, α>i) := (1 − αi)(α>i − αi)e−αi+(α>i−αi)
−1

(−Ei(αi − 1)) ≥ 1.

Let us analyze the hopping performance of R and R̂ in the following example.

Example 2. Given 5 miners ordered according to their hash rates: α1 = 0.10
α2 = 0.15, α3 = 0.20, α4 = 0.25, α5 = 0.30, using the condition provided by
Proposition 5 we get:

• f(α1, α>1) = f(0.10, 0.90) = 0.59 < 1, miner 1 has a greater incentive to
perform pool hopping if rewarded with R̂ rather than with R;

• f(α2, α>2) = f(0.15, 0.75) = 0.66 < 1, miner 2 has a greater incentive to
perform pool hopping if rewarded with R̂ rather than with R;

• f(α3, α>3) = f(0.20, 0.55) = 1.24 > 1, miner 3 has a greater incentive to hop
if rewarded with R rather than with R̂;

• f(α4, α>4) = f(0.25, 0.30) > 106 > 1, miner 4 has a greater incentive to hop
if rewarded with R rather than with R̂;

• f(α5, α>5) = f(0.30, 0) → ∞ > 1, miner 5 has a really low incentive to
perform pool hopping if rewarded with R̂.

We can see that miners representing the 75% of the pool’s computational power
have a lower incentive to perform pool hopping when the CEL-based rewarding
mechanism is adopted.
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By analyzing function f(·, α>i) – i.e., fixing α>i – we can identify the cases in
which δ̂hop ≤ δhop (where R̂ performs better than R). For instance, f(·, α>i) > 1
for every α>i < 0.4, means that with R̂ not only the miners representing the
most powerful 40% of the pool have a lower incentive to perform pool hopping,
but also the miner i who just follows in the ranking.

To compare the two reward functions, it is necessary to estimate the percent-
age of miners who have a lower incentive to perform pool hopping. In Example 2
this percentage is p(α = {0.1, 0.15, 0.2, 0.25, 0.3}) = 75%. Formally we would
like to estimate:

p(α) :=
∑

i

αi · 1{βi−β∗
i ≥αi−α∗

i }.

We know that p(α) > 40% thanks to the analysis of function f . In order to get
a better idea of the range of the value of function p we perform a simulation.

Simulation. Due to the unpredictability of α, we assume that it comes from a
random distribution. More precisely, given Xi ∼ U [0, 1], αi is defined as follows:
αi := Xi∑

j Xj
.

We run a simulation with 100 different samples of α for n miners, with
n ∈ {3, 10, 20, 30, 50}, and estimate the CDF of pn(α) for every n. We compute
explicitly βi and β∗

i , without using the approximation above introduced.

Fig. 1. CDF of every pn(α), with n ∈ {3, 10, 20, 30, 50}.

The functions pn(α) have almost always values over 0.5 (i.e., in just two cases
out of 100 with n = 3, p3(α) achieves value between 0.47 and 0.5) (Fig. 1).

This means that in most of the cases the majority of the miners have a lower
incentive to perform pool-hopping with R̂ rather than R.
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5 Conclusion

The paper analyzes the robustness of two different rewarding mechanisms in
both intra-pool and inter-pool environments. Schrijvers et al. introduce in [7] a
reward function R that is incentive compatible. However, this rule gives miners
an incentive to leave pools in long rounds to join pools in short rounds that
adopt the same rewarding system (i.e., pool-hopping).

By reinterpreting R, in long rounds, as an allocation rule for a bankruptcy
situation, we create a new rewarding function R̂ inspired to the well-known
Constrained Equal Loss (CEL) rule.

We show that this CEL-based rule is incentive compatible as R but it provides
to most of the miners a lower incentive to perform pool hopping in long rounds. In
conclusion, if a pool wants to tackle this issue, the proposed rewarding function
R̂ is the one to be recommended.
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Abstract. The double auction marketplaces usually charge fees to
traders to make profits, but little work has been done on analyzing how
marketplaces charge appropriate fees to make profits in multiple market-
places competing environment. In this paper, we investigate this problem
by using game theory. Specifically, we consider four typical types of fees,
and use Fictitious Play algorithm to analyze the Nash equilibrium market
selection and bidding strategy of traders in competing environment when
different types of fees are charged. Building on this, we draw insights
about how the marketplaces charge strategies in equilibrium when sell-
ers and buyers have made the choice of the marketplace and bid in Nash
equilibrium. Furthermore, we investigate which type of fees is more com-
petitive in terms of maximizing profits while keeping traders staying in
the marketplaces. Our experimental results provide useful insights on
setting charging strategies for competing double auction marketplaces.

Keywords: Double auction · Market fee · Game theory · Bidding
strategy · Nash equilibrium · Fictitious play

1 Introduction

Double auction [14] is a particular two-sided market mechanism with multiple
buyers (one side) and multiple sellers (the other side). In such a mechanism,
traders can submit offers at any time in a specified trading round and they
will be matched by the marketplace at a specified time. The advantages of this
mechanism are that traders can enter the marketplace at any time and they can
trade multiple homogeneous or heterogeneous items simultaneously [7]. Due to
its high allocative efficiency between buyers and sellers of goods [23], this market
mechanism has been widely adopted by realistic exchanges, such as commodities
exchanges. The high efficiency has also led many online marketplaces to use this
format, including stock exchanges, business-to-business commerce, bandwidth
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allocation [12], spectrum allocation [25], and smart grid energy exchange [1].
In the real world, such double auction marketplace is often run by commercial
enterprise that seeks to maximize profit by charging fees to traders such as eBay
makes profit by charging sellers [20]. Nevertheless, in today’s global economy,
each marketplace needs to compete with other homogeneous marketplaces. For
example, stock exchanges compete with each other worldwide [18]. Therefore,
it’s crucial to set optimal charging strategy for double auction marketplaces. In
this paper, we will analyze how the double auction marketplaces charge fees to
maximize profits in a competing environment.

In the real world, the marketplaces can charge different types of fees to make
profits. For example, with respect to the time of charging fees, the marketplaces
can charge fees before sellers and buyers make any transactions (i.e. ex-ante fees)
or charge fees after they have made transactions (i.e. ex-post fees). The double
auction markets’ charging strategies play an important role on affecting traders’
profits. Thus it will affect the traders’ market choices and bidding strategies,
which in turn affect the competition result of double auction markets. Hence, we
need to analyze how to determine the charging strategies for competing double
auction marketplaces. Furthermore, some traders may leave the marketplaces if
they can’t trade when market fees are charged.

Specifically, in this paper, we assume that marketplaces adopt a so-called
clearing-house double auction mechanism, where matching of sellers and buyers
occurs once all sellers and buyers have submitted their offers, and the trans-
action price is set in the middle of the matched sellers and buyers. We also
assume that traders are heterogeneous with continuous privately known types
(the type is traders’ preferences on the goods). According to the time of charg-
ing fees and fee values, in this paper, we will analyze four typical types of fees
that marketplaces usually charge, such as registration fee, transaction fee, profit
fee and transaction price percentage fee [4,24]. In such a context, intuitively, we
know that the behavior of traders and marketplaces are affected by each other.
Therefore, game theory [8], which mathematically studies such strategies inter-
actions between self-interested agents, is appropriate to be used to analyze this
system (where an individual’s success in making choices depends on the choices
of others). Specially, we consider the competing environment where there exist
two marketplaces competing with each other and then analyze the marketplaces’
charging strategies in this environment in detail.

The structure of the rest of the paper is as follows. In Sect. 2 introduced
the related work about this field. In Sect. 3, we describe the basic settings, and
derive the expected utilities of traders and marketplace in this setting. In Sect. 4,
we describe the algorithm used in this paper. In Sect. 5, we analyze how differ-
ent types of fees can affect the sellers and buyers’ market selection and bidding
strategies. In Sect. 6, we analyze how the marketplace charges fees in Nash equi-
librium. Finally, we conclude in Sect. 7.
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2 Related Works

Since the charging strategies of the marketplaces are affected by traders’ bidding
strategies, first we introduce the related work about traders’ bidding strategies
in the double auction marketplace, then we introduce the related works about
marketplaces charging strategies.

Firstly, many heuristic bidding strategies have been proposed for traders bid-
ding in double auction, such as [9,10,13]. Besides, there are also research works
related to traders’ bidding strategies based on game theory. Phelps et al. [16] use
evolutionary game theory to investigate the Nash equilibrium given a restricted
strategy space. However, these restricted strategies do not necessarily consti-
tute a Nash equilibrium when considering the entire space of possible strategies.
Jackson et al. [11] show the existence of a non-trivial mixed-strategy equilibrium
for double auctions in a variety of settings given a finite set of offers, and Reny
et al. [19] show that when there are sufficiently many buyers and sellers with
a finite set of discrete offers, there exists a monotonic pure equilibrium bidding
strategy for traders. Chowdhury et al. [6] proposed a dynamic Monte Carlo Tree
Search (MCTS) bidding strategy that preforms a more comprehensive search
of the policy space using an anytime algorithm. But when the bidding space is
large, this algorithm may not longer been suitable. However, these researches
are not suitable for traders to bid across multiple marketplaces because they do
not consider the choice of marketplaces.

Next, In the context of multiple double auctions, Cai et al. [3] experimen-
tally analyze how standard economic measures are affected by the presence of
multiple marketplaces when traders select marketplaces and submit offers in a
heuristic way, and then Miller et al. [15] experimentally analyse traders’ mar-
ket selection strategies in the competing marketplaces trading environment. Shi
et al. [22] analyse the Nash equilibrium market selection strategy in the context
of multiple competing double auction marketplaces using evolutionary game the-
ory(EGT), but they emphasise traders adpot a fixed bid factor for the bidding
strategy rather than Nash equilibrium bidding strategy. All the above works
do not consider interaction between the markets’ charging strategies and the
traders’ trading strategies, and only a small number of traders are considered.

There also exist works on analyzing how the competing marketplaces charge
fees to make profits. Caillaud et al. [5] analyze the competition between two
marketplaces. They assume that traders are homogeneous and the market selec-
tion only depends on the number of traders of the other side, the result show
that when traders can only enter one marketplace at a time, by adopting the
”divide-and-conquer” strategy, in equilibrium, one marketplace will attract all
traders, but it has to give up all profit. however, the number of traders of the own
side also affects traders’ bidding strategies, but they don’t consider this factor.
Shi et al. [22] investigate how the competing double auction marketplaces make
profits by charging fees, the results show that when competing marketplaces
charging different type of fees, the competing marketplaces are more likely to
co-exist in equilibrium. But when the marketplaces charge the same type of fees,
competing marketplaces can’t co-exist any more.
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However, the above works only consider a small number of traders, and they
don’t consider how competing marketplaces set fees to make profits while keep
traders. Our work investigates the problem from another perspective. We inves-
tigate how competing marketplaces charge appropriate fees to make profits while
keep traders in Nash equilibrium, by the way, due to the number of traders have
an impact on the traders’ bidding strategies, which in turn affect the markets’
competitive results. Thus, we will also consider the situation of a large number
of traders with continuous privately known types, and analyze traders’ bidding
strategies in Nash equilibrium.

3 Framework

In this section, we first introduce the basic setting for analysing our problems.
Then in order to undertake the theoretical analysis, we derive the equations to
calculate the expected utilities of the traders in this setting, which the FP algo-
rithm needs to approximate the Nash equilibrium bidding strategy. Furthermore,
we also derive the equations to calculate the expected profit and the expected
number of traders when the marketplaces charge fees.

3.1 Basic Setting

We assume that there is a set of buyers, B = {1, 2, ...B}, and a set of sellers,
S = {1, 2, ...S}. Each buyer and each seller can only trade a single unit of the
goods in one marketplace. All goods are identical. Each buyer and seller has a
type1, which is denoted as θb and θs respectively. We assume that the types of
all buyers are i.i.d drawn from the cumulative distribution function F b, with
support [0, 1], and the types of all sellers are i.i.d drawn from the cumulative
distribution function F s, with support [0, 1]. The distributions F b and F s are
assumed to be common knowledge and differentiable. The probability density
functions are f b and fs respectively. In our setting, the type of each specific
trader is not known to the other traders, i.e. private information.

According to the time of charging fees and the fee value, we consider four
typical fees: registration fee r, which is charged to traders when they enter the
marketplace (ex-ante and flat fee); transaction fee t, which is charged to buyers
and sellers when they make transactions (ex-post and flat fee); profit fee q, which
is charged on profits made by buyers and sellers (ex-post and percentage fee);
and transaction price percentage fee o, which is charged on the transaction price
of buyers and sellers (ex-post and percentage fee). Note that the ex-ante and
percentage fee usually does not exist. Moreover, we further make an assumption
that traders will incur a small cost ι when they enter the marketplace (such as
time cost for trading online). We do this so that they slightly prefer choosing
no marketplace than choosing a marketplace but making no transactions (even
1 The type of a buyer is its limit price, the highest price it is willing to buy the item

for, and the type of a seller is its cost price, the lowest price it is willing to sell the
item for.
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if r = 0). This small cost will help us to distinguish buyers’ behaviour between
bidding the lowest allowed offer and not choosing the marketplace, and sell-
ers’ behaviour between bidding the highest allowed offer and not choosing the
marketplace.

Furthermore, we assume that the marketplace adopts a clearing-house mech-
anism, which means that the marketplace matches sellers with buyers when all
sellers and buyers have submitted their offers. We also assume that the mar-
ketplace matches buyers with sellers according to the equilibrium matching
policy, which means that the marketplace matches the buyer with v-th highest
offer with the seller with v-th lowest offer if the seller’s offer is not greater than
the buyer’s offer. By adopting the clearing-house mechanism and the equilib-
rium matching policy, the marketplace can match sellers and buyers in a highly
efficient way. Moreover, we assume that the transaction price of a successful
transaction in the marketplace is determined by a parameter k ∈ [0, 1] (i.e. a
discriminatory k-pricing policy), which sets the transaction price of a matched
buyers and sellers at the point determined by k in the interval between their
offers.

We now describe the offers that sellers and buyers take in this setting. In
this paper, we call the offers of the buyers bids and the offers of the sellers
asks. Specifically, we make the assumption that there is a finite number of bids
and asks and that these are discrete. The ranges of possible bids and asks con-
stitute the bid space and ask space respectively. For convenience, we further
assume that buyers and sellers have the same offer space, which is given by
Δ = {0, 1

D , 2
D , ..., D−1

D , 1} ∪ {�}, i.e. the bid(ask) space comprises D + 1 allow-
able bids(asks) from 0 to 1 with step size 1/D (D is a natural number), and
� means not submitting an offer in the marketplace (i.e. not choosing the mar-
ket). Note that the expected utility of a seller or buyer is directly dependent
on its beliefs about other sellers or buyers’ offer choices. Therefore, instead of
looking at their strategies, in what follows, the expected utility is expressed
directly in terms of sellers and buyers’ offer distributions. Specifically, we use
ωb

i to denote the probability of bid db
i being chosen by a buyer, and use ωs

i to
denote the probability of ask ds

i being chosen by a seller. Furthermore, we use
Ωb =

(
ωb
1, ω

b
2, ..., ω

b
|Δ|

)
,
∑|Δ|

i=1 ωb
i = 1, to represent the probability distribution of

buyers’ bids, and Ωs = (ωs
1, ω

s
2, ..., ω

s
|Δ|) for the sellers’ ask distribution.

3.2 Trader’s Expected Utility

Before analysing the strategies of the traders, we first need to derive the equa-
tions to calculate their expected utilities. Which are defined as the expected
profits that traders can make in the marketplaces. In what follows, we derive the
expected utility of a buyer, but the seller’s is calculated analogously. A buyer’s
expected utility depends on its type, its own bid, and its beliefs about offer
choices of other sellers and buyers. In the following, we calculate the expected
utility of a buyer with type θb bidding db given other buyers’ bid distribution
Ωb and sellers’ ask distribution Ωs, and the market fees.
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Since the marketplace adopts the equilibrium matching policy, we need to
know the position of the buyer’s bid in the marketplace, which determines its
matching with sellers. When knowing other buyers’ bid choices, we can know
the buyer’s position. Specifically, we use a |Δ|-tuple x̄ = 〈x1, ...x|Δ|〉 ∈ X to
represent the number of buyers choosing different bids, where xi is the number
of buyers choosing bid db

i , X is the set of all such possible tuples and we have
∑|Δ|

i=1 xi = B − 1 (note that we need to exclude the buyer for which we are
calculating the expected utility). The probability of exactly xi buyers choosing
bid db

i is
(
ωb

i

)xi , and then the probability of the tuple x̄, which denotes the
number of buyers choosing different bids, is:

ρb(x̄) =

(
B − 1

x1, ..., x|Δ|

)

×
|Δ|∏

i=1

(
ωb

i

)xi

(1)

Now for a particular x̄, we determine the buyer’s position as follows. Firstly, we
obtain the number of other buyers whose bids are greater than the buyer’s bid
db, which is given by:

X>(x̄, db) =
∑

db
i∈Δ:db

i>db

xi (2)

Similarly, we use X=(x̄, db) to represent the number of buyers whose bids are
equal to the buyer’s bid (excluding the buyer itself):

X=(x̄, db) =
∑

db
i∈Δ:db

i=db

xi (3)

Due to having discrete bids and given X>(x̄, db) buyers bidding higher than the
buyer’s bid db and X=(x̄, db) buyers bidding equal to db, the buyer’s position
vx̄ given x̄ could be anywhere from X>(x̄, db) + 1 to X>(x̄, db) + X=(x̄, db) +
1, which constitutes the buyer’s position range. We use Vx̄ = {X>(x̄, db) +
1, ...,X>(x̄, db)+X=(x̄, db)+1} to denote the position range. Since X=(x̄, db)+1
buyers have the same bid, as we said previously, a tie-breaking rule is needed
to determine the buyer’s position. Here we adopt a standard rule where each of
these possible positions occurs with equal probability, i.e. 1/(X=(x̄, db) + 1).

The buyer’s expected utility also depends on sellers’ ask choices. Specifically,
we use a |Δ|-tuple ȳ = 〈y1, ...y|Δ|〉 ∈ Y to represent the number of sellers choosing
different asks, where yi is the number of sellers choosing ask ds

i , and Y is the
set of all such possible tuples and we have

∑|Δ|
i=1 yi = S. The probability of the

tuple ȳ, which indicates the number of sellers choosing different asks, is:

ρs(ȳ) =

(
S

y1, ..., y|Δ|

)

×
|Δ|∏

i=1

(
ωs

i

)yi

(4)

Now given the buyer’s positions vx̄ and the number of sellers choosing dif-
ferent asks ȳ, next we calculate the buyer’s expected utility. Given the tuple ȳ,
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we can sort the asks of the sellers descendingly. The ask which is vx̄-th highest
will be matched with the buyer’s bid. We denote this ask as ds. Now the buyer’s
expected utility can be calculated:

U
(
vx̄, ȳ, θb, db, ΩB , ΩS , r, t, q, o

)
=

⎧
⎨

⎩

0 if db = �
θb − TP − P if db ≥ dS

−r − ι if db < ds
(5)

where P = r + t + (db − TP ) × q + TP × o + ι is the seller and buyer’s payment
in the transaction and TP = ds × k + db × (1 − k) is the transaction price.

Finally, by considering all possible numbers of sellers choosing different asks,
all possible positions and all possible numbers of buyers choosing different bids,
the buyer’s expected utility is given by:

Ũ
(
θb, db, Ωb, Ωs, r, t, q, o

)
=

∑

x̄∈X
ρb(x̄) ×

∑

vx̄∈Vx̄

1
X= (x̄, db) + 1

×
∑

ȳ∈Y
ρs(ȳ) × U

(
vx̄, ȳ, θb, db, ΩB , ΩS

r, t, q, o)

(6)

3.3 The Marketplace’s Expected Utility

After deriving equations to calculate the expected utilities of sellers and buyers,
we now calculate the expected utility of the marketplace (i.e. its profit) when
it charges fees. Specifically, in the following, we derive equations to calculate
the marketplace’s expected utility given the offer distributions of buyers and
sellers, Ωb and Ωs. Intuitively, we can see that the expected utility depends on
the number of sellers and buyers choosing each allowed offer. Similarly, we use a
|Δ|-tuple x̄ = 〈x1, ..., x|Δ|〉 ∈ X ′,

∑|Δ|
i=1 xi = B, to denote the number of buyers

choosing different bids, where xi is the exact number of buyers choosing bid
db

i , and X ′ is the set of all such possible tuples. We use ȳ = 〈y1, ..., y|Δ|〉 ∈ Y,
∑|Δ|

i=1 yi = S, to denote the number of sellers choosing different asks. Given the
number of buyers and sellers choosing different offers, x̄ and ȳ, we will know
what exact bids and asks are placed in the marketplace. Then the marketplace’s
expected utility is calculated as follows. Since the marketplace uses equilibrium
matching to match sellers and buyers, we first sort the bids descendingly and
asks ascendingly in the marketplace, and then match high bids with low asks.
Specifically, we assume that there are T transactions in total in the marketplace,
and in transaction t, we use db

t and ds
t to represent the matched bid and ask.

Then the transaction price of this transaction is TPt = ds
t × k + db

t × (1 − k).
The marketplace’s utility is:
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U(r, t, q, o, x̄, ȳ) =
∑

db
i∈Δ:db

i �=�
xi × r +

∑

ds
i∈Δ:ds

i �=�
yi × r

+
T∑

t=1

(
2t +

(
db

t − TPt

) × q + (TPt − ds
t )

× q + TPt × o × 2)

(7)

In this equation, the former two parts are profits from charging registration fees
to buyers and sellers respectively, and the last part is the profit from charging
transaction fees, profit fees and transaction price percentage fees.

Now we have obtained the marketplace’s expected utility given the number
of buyers and sellers choosing different offers, which are denoted by x̄ and ȳ
respectively. Furthermore, the probability of x̄ appearing is:

�b(x̄) =

(
B

x1, ..., x|Δ|

)

×
|Δ|∏

i=1

(
ωb

i

)xi

(8)

and the probability of ȳ appearing is:

�s(ȳ) =

(
S

y1, ..., y|Δ|

)

×
|Δ|∏

i=1

(
ωs

i

)yi

(9)

At this moment, we can compute the marketplace’s expected utility given offer
distributions Ωb and Ωs:

Ũ
(
r, t, q, o, Ωb, Ωs) =

∑

x̄∈X ′
�b(x̄) ×

∑

ȳ∈Y
�s(ȳ) × U(r, t, q, o, x̄, ȳ) (10)

4 Solving the Nash Equilibrium Charging Strategy

In this section, we describe how to solve the Nash equilibrium charging strategy
of the marketplace when competing with other marketplaces. As we mentioned
before, we analyze the Nash equilibrium of charging strategies given all sell-
ers and buyers adopting Nash equilibrium marketplace selection and bidding
strategies in different types of fees. Therefore, we first need to obtain the Nash
equilibrium strategies of sellers and buyers. Given sellers and buyers having pri-
vately known types, we can only approximate the Nash equilibrium strategies
when the marketplaces charge different types of fees. In Sect. 4.1 we introduce
how to use Fictitious Play algorithm (FP) to do this. After knowing sellers and
buyers’ Nash equilibrium strategies, i.e. offer distribution Ωb and Ωs in Nash
equilibrium, we can compute the expected utility of the competing marketplace
using Eq. 10 when marketplaces charge different fees. Then the expected utilities
of competing marketplaces in different fees consists of a payoff matrix, and we
can use Gambit2 to find Nash equilibrium charging strategies in this matrix, and
the payoff matrix is shown in three-dimensional graph.
2 http://gambit-project.org.

http://gambit-project.org
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4.1 The Fictitious Play Algorithm

In game theory, fictitious play (FP) is a learning rule first introduced by George
W. Brown [2]. In it, each player presumes that the opponents are playing sta-
tionary (possibly mixed) strategies. Each player selects an action according to a
probability distribution that represents that player’s strategy, then each player
could, via repeated play, learn this distribution by keeping a running average of
opponent actions [21]. Based on there own distribution, each player thus best
responds to the empirical frequency of play of their opponent. However, The
standard FP algorithm is not suitable for analyzing Bayesian games where the
player’s type is not known to other players. To ameliorate this, we adopt a gen-
eralized FP algorithm [17] to derive the strategies of the Bayesian game with
continuous types and incomplete information, and it is often used to approxi-
mate the Bayes-Nash equilibrium (i.e. deriving the ε-Bayes-Nash equilibrium)
by running the FP algorithm for a limited number of rounds.

We first describe how to compute the best response actions against current
FP beliefs. Previously, we used Ωb and Ωs to denote the probability distributions
of buyers’ and sellers’ offers respectively. In the FP algorithm, we use them to
represent FP beliefs about the buyers and sellers’ offers respectively. Then, given
their beliefs, we compute the buyers’ and the sellers’ best response functions.
In the following, we describe how to compute the buyers’ best response func-
tion σb∗, where σb∗(θb, Ωb, Ωs, r, t, q, o) = argmaxdb∈ΔŨ(θb, db, Ωb, Ωs, r, t, q, o)
is the best response action of the buyer with type θb against FP beliefs
Ωb and Ωs. The optimal utility that a buyer with type θb can achieve is
Ũ∗(θb, Ωb, Ωs, r, t, q, o) = maxdb∈ΔŨ(θb, db, Ωb, Ωs, r, t, q, o). From the equations
to calculate the buyer’s expected utility in Sect. 3.2, we find the buyer’s expected
utility Ũ(θb, db, Ωb, Ωs) is linear in its type θb for a given bid. Given this, and
given a finite number of bids, the best response function is the upper envelope
of a finite set of linear functions, and thus is piecewise linear. Each line segment
corresponds to a type interval, where the best response action of each type in
this interval is the same. We can create the set of distinct intervals Ib, which
constitute the continuous type space of buyers, i.e.

⋃
Ψb∈Ib Ψ b = [0, 1], which

satisfy the following conditions:

– For any interval Ψ b, if θb
1, θ

b
2 ∈ Ψ b, then σb∗(θb

1, Ω
b, Ωs) = σb∗(θb

2, Ω
b, Ωs), i.e.

types in the same interval have the same best response action.
– For any distinct Ψ b

1 , Ψ b
2 ∈ Ib, if θb

1 ∈ Ψ b
1 , θb

2 ∈ Ψ b
2 , then σb∗(θb

1, Ω
b, Ωs) �=

σb∗(θb
2, Ω

b, Ωs)

Based on the above computation, we can calculate the best response action
distribution of buyers, which is done as follows. We know that given the buyers’
type distribution function F b and probability density function f b, the proba-
bility that the buyer has the type in the interval Ψ b is

∫
Ψb f(x)dx, denoted by

F b(Ψ b). When the best response action corresponding to the interval Ψ b
i is db∗

i ,
the probability that the bid db∗

i is used by buyers is ωb
i = F b(Ψ b

i ). By calculating
the probability of each bid being used, we obtain the current best response action
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distribution of buyers, denoted by Ωb
br, which is against current FP beliefs. We

can then update the FP beliefs of buyers’ bids, which is given by:

Ωb
τ+1 =

τ

τ + 1
× Ωb

τ +
1

τ + 1
× Ωb

br (11)

where Ωb
τ+1 is the updated FP beliefs of the buyers’ bids for the next iteration

round τ + 1, Ωb
τ is the FP beliefs on the current iteration round τ , and Ωb

br is
the probability distribution of best response actions against FP beliefs Ωb

τ . This
equation actually gives the FP beliefs on the current round as the average of
FP beliefs of all previous rounds. The computation of the sellers’ best response
function and belief updates is analogous.

Since we approximate the Nash equilibrium, if the difference between the
expected utility of a buyer (seller) in current best response action distributions
and its expected utility of adopting best response action against current best
response action distributions is not greater than ε, the FP algorithm stops the
iteration process, and the current best response actions with corresponding type
intervals constitute an ε-Bayes-Nash equilibrium. Specifically, we set ε = 0.00001.

5 Nash Equilibrium Strategies of Sellers and Buyers

In this section, we will use the FP algorithm to analyse traders’ Nash equilib-
rium bidding strategies when the marketplaces charge different types of fees. The
reason why we first analyze the traders’ bidding strategies is that traders’ Nash
equilibrium bidding strategies can directly affect marketplace’s utility according
to Sect. 3.3. Therefore, in order to investigate how each fee type combination can
affect bidding strategies, in the following analysis, we assume that the market-
place only charges one type of fees at a time. For illustrative purposes, we show
our results in a specific setting with 50 buyers and 50 sellers, and 11 allowable
bids(asks) unless mentioned otherwise3. Furthermore, we assume that the small
cost for traders entering a marketplace is ι = 0.0001. For the transaction price,
we assume k = 0.5, i.e. the transaction price is set in the middle of the matched
bid and ask, which means the marketplace has no bias in favor of buyers or
sellers. Finally, we assume that both buyers and sellers’ types are independently
drawn from a uniform distribution.

We now consider sellers and buyers’ equilibrium strategies when there are
two competing marketplaces4. We first consider the case where the marketplaces
charge no fees to seller and buyers. By using FP, we find that, sellers and buyers
eventually converge to one marketplace in equilibrium. The result is shown in
Fig. 1(a). The gray line represents buyers’ bids in equilibrium and the black line
represents sellers’ asks in equilibrium. From this figure, We find that buyers shade

3 We also tried other settings. However, we still obtained the similar results.
4 Note that our algorithms allow more than two competing marketplaces and more

sellers and buyers. However, in this paper, we focus on the typical setting with two
marketplaces.
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their bids by decreasing their bids, and sellers shade their asks by increasing their
asks, in order to keep profits. We also find that when buyers’ (sellers’) types are
lower (higher) than a certain point they will not enter the marketplace because
of the small cost ι.

Now we consider the case where marketplace 1 charges a profit fee and mar-
ketplace 2 charges a registration fee. For example, marketplace 1 charges a very
high profit fee of 90%, and marketplace 2 charges a registration fee of 0.1. If
initial beliefs are uniform (i.e. all actions are chosen with the same possibility),
we find that all traders eventually converge to marketplace 1 and the equilibrium
bidding strategies are shown in Fig. 1(b). there exists a bigger range of types of
sellers and buyers not choosing the marketplace, sellers and buyers only ask or
bid for 0.5. The reason of they converging to marketplace 1, is as follows. When a
high profit fee is charged, the traders shade their offers more to keep profits, they
will both bid (ask) 0.5 offers, and won’t pay for profit fee. However, shading has
no effect in the case of registration fees. Therefore, sellers and buyers will prefer
the marketplace charging profit fees compared to registration fees. Furthermore,
we also run simulations with many other fee combinations, and always find that
all sellers and buyers converge to one marketplace.
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(a) Marketplace charges no fee
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(b) Marketplace charges 90% profit fee

Fig. 1. Equilibrium strategies with 50 sellers and 50 buyers.

6 Equilibrium Analysis of Marketplace’s Charging
Strategies

In Sect. 5, we have analyzed sellers and buyers’ strategies when competing mar-
ketplaces charge different types of fees. Based on this, we now start to analyze
the Nash equilibrium charging strategies of marketplaces.

In more detail, in the following analysis, we discretize fees from 0 to 1 with
step size 0.01. Then we obtain different fee combinations. For each fee combina-
tion, we repeat the experiments by trying different initial FP beliefs. For each
set of initial FP beliefs, we run the FP algorithm and obtain the sellers and buy-
ers’ Nash equilibrium offer distributions Ωb and Ωs (i.e. converged FP beliefs).
By using Eq. 10, we compute the marketplace’ expected utilities for the given
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fee combination when starting from a particular FP beliefs. When repeating the
experiments from different initial FP beliefs, we obtain the average utilities (i.e.
profits) of marketplaces for this given fee combination. We repeat this process for
different possible fee combinations, and consists of a profit matrix, from which
we can use Gambit to compute the Nash equilibrium charging strategies. In the
following, we analyze how to set fees in equilibrium in ten different cases. The
marketplaces’ profits in different fee combinations when sellers and buyers have
used Nash equilibrium strategies are shown in Fig. 2.

Registration Fee and Registration Fee: Firstly, we analyze the case of both
marketplaces charging registration fees. The results are shown in Fig. 2(a). We
can see that their profits are symmetric, and both marketplaces charging 0.15
registration fees constitutes a Nash equilibrium charging strategy.

Transaction Fee and Transaction Fee: In the second case, we consider that
both charges transaction fees. The results are shown in Fig. 2(b). Both mar-
ketplaces charging 0.05 transaction fee constitutes a Nash equilibrium charging
strategy. Note that comparing this result to Fig. 2(a), both marketplaces charge
a lower value of transaction fee.

Profit Fee and Profit Fee: In the third case marketplaces charge profit fees.
The results are shown in Fig. 2(c). We find that both marketplaces charging a
11% profit fee constitutes a Nash equilibrium charging strategy.

Transaction Price Percentage Fee and Transaction Price Percentage
Fee: In this case marketplaces charge transaction price percentage fees. The
results are shown in Fig. 2(d). Both marketplaces charging a 5% transaction
price percentage fee constitutes a Nash equilibrium charging strategy.

In the above four cases, both marketplaces charge the same types of fees.
We can find that two marketplaces’ payoff are symmetrical. In the following, we
analyze the cases of marketplaces charging different types of fees.

Registration Fee and Transaction Fee: In the fifth case, marketplace 1
charges a registration fee and 2 charges a transaction fee. The results are shown
in Fig. 2(d). We find that marketplace 1 charges 0.1 registration fee, marketplace
2 charges 0.15 transaction fee, constitutes a Nash equilibrium charging strategy.

Registration Fee and Profit Fee: In the sixth case, marketplace 1 charges a
registration fee and marketplace 2 charges a profit fee. The results are shown in
Fig. 2(f), we can see that the payoff of marketplace 2 is higher than marketplace
1. This is because compared with registration fee, sellers and buyers prefer to
enter the marketplace which charges a profit fee since they can hide their true
profit by shading their offers, and thus reduce the absolute payment of profit
fees. Marketplace 1 charging 0.23 registration fee and Marketplace 2 charging
31% profit fee constitutes a Nash equilibrium charging strategy.

Registration Fee and Transaction Price Percentage Fee: In this case,
marketplace 1 charges a registration fee and marketplace 2 charges a transaction
price percentage fee. The results are shown in Fig. 2(g). Marketplace 1 charging
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Fig. 2. Marketplaces’ profits when sellers and buyers have adopted Nash equilibrium
strategies in different fee combinations.
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0.05 registration fee and marketplace 2 charging 15% transaction price percent-
age fee constitutes a Nash equilibrium strategy, and marketplace 2 charging a
transaction price percentage fees is more attractive to sellers and buyers.

Transaction Fee and Profit Fee: In this case, marketplace 1 charges a trans-
action fee and marketplace 2 charges a profit fee. The results are shown in
Fig. 2(h). Marketplace 1 charging 0.05 transaction fee and marketplace 2 charg-
ing 28% profit fee constitutes a Nash equilibrium charging strategy. Sellers and
buyers prefer the marketplace charging a profit fee.

Transaction Fee and Transaction Price Percentage Fee: In the ninth case,
the results are shown in Fig. 2(i). When marketplace 1 charges 0.05 transaction
fee and marketplace 2 charges 8% transaction price percentage fee, it constitutes
a Nash equilibrium charging strategy. We find that when marketplace 1 charges
0.5 or above, no sellers and buyers will enter marketplace 1.

Profit Fee and Transaction Price Percentage Fee: Finally, we consider
that marketplace 1 charges a profit fee and marketplace 2 charges a transaction
price percentage fee, and the results are shown in Fig. 2(j). We find that the
profit of marketplace 2 increases quickly and then decreases rapidly. This is
because when marketplace’s fee increases, sellers and buyers will leave quickly
to enter marketplace 1. Marketplace 1 charging 18% profit fee and marketplace
2 charging 5% transaction price percentage fee constitutes a Nash equilibrium
charging strategies.

Furthermore, what we can see from Fig. 2(g) is that if the marketplace charges
a registration fee, traders need to pay regardless of whether or not the trans-
action is successful, which will cause the traders to be reluctant to enter this
marketplace. Therefore, in a competitive market environment, the marketplace
charges registration fee will not be competitive. Then, comparing Fig. 2(c), (f),
(h) and (j) where profit fees are charged, with other figures where no profit fees
are charged, we find marketplaces make less profits when profit fee is charged.
This is because in this situation, sellers and buyers can hide their actual profits
by shading their offers, and thus make less payments to marketplaces. Further-
more, when one marketplace charges a profit fee, its opponent, who charges
another type of fees, has to charge a lower fee in order to attract sellers and
buyers. This result further indicates that charging profit fee is better to keep
sellers and buyers, but is worse of making profit. Moreover, in Fig. 2(g) and (i),
we find that the transaction price percentage fee is better than the registration
fee and transaction fee to attract sellers and buyers, and makes profits at a good
level.

7 Conclusion

In this paper, we use game theory to analyze how double auction marketplaces
charge fees in Nash equilibrium when competing with other homogeneous mar-
ketplaces. We first use FP algorithm to derive the Nash equilibrium marketplace
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selection and bidding strategies of seller and buyers in competitive double auc-
tion marketplaces. We find that in our setting, all sellers and buyers will con-
verge to one marketplace in Nash equilibrium, i.e. another marketplace cannot
survive, moreover, traders shade their offers in equilibrium and the degree to
which they do this depend on the amount and types of fees that are charged by
marketplaces. Based on the sellers and buyers’ Nash equilibrium behavior, we
further analyze the Nash equilibrium charging strategies of marketplaces when
charging different types of fees. We find that different fees can affect market-
places’ profits significantly. In a competitive environment, the marketplace that
charges a registration fee will not be competitive, and traders will not choose
to enter this marketplace. The profit fee and transaction price percentage fee
are more competitive to attract sellers and buyers than another two types of
fees. This result provides a theoretical basis for how competing double auction
marketplaces charge fees to maximize their profits in real economic world.
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Abstract. Privacy is a right of individuals to keep personal information
to themselves. Often online systems enable their users to select what
information they would like to share with others and what information
to keep private. When an information pertains only to a single indi-
vidual, it is possible to preserve privacy by providing the right access
options to the user. However, when an information pertains to multi-
ple individuals, such as a picture of a group of friends or a collabora-
tively edited document, deciding how to share this information and with
whom is challenging as individuals might have conflicting privacy con-
straints. Resolving this problem requires an automated mechanism that
takes into account the relevant individuals’ concerns to decide on the pri-
vacy configuration of information. Accordingly, this paper proposes an
auction-based privacy mechanism to manage the privacy of users when
information related to multiple individuals are at stake. We propose to
have a software agent that acts on behalf of each user to enter privacy
auctions, learn the subjective privacy valuations of the individuals over
time, and to bid to respect their privacy. We show the workings of our
proposed approach over multiagent simulations.

Keywords: Multiagent systems · Online social networks · Privacy

1 Introduction

Collaborative systems enable users to interact online while sharing content that
pertains to more than one user. Consider an online social network (OSN), where
a user can share pictures that include other users, who are many times able to
tag themselves or others, comment on it, and even reshare it with others. Or,
an IoT system, in which one security camera would like to share footage of a
setting to guarantee security for the people, while one individual would prefer
to keep the location of herself secret. In both of these cases, the content being
in question relates to multiple entities, who have different privacy concerns or
expectations from each other. Even though the content is meant to be shared
by a single entity, the content is related to more than the uploader and hence is
actually co-owned by others [11,21].

When co-owners have different privacy constraints, they should be given the
means to make a decision as to either share or not to share the content. However,
c© Springer Nature Switzerland AG 2020
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current systems enable only the uploader to set privacy settings while publishing
contents, but does not allow co-owners to state their constraints. As a result,
individuals are left to resolve conflicts via offline methods [14].

Ideally, systems should provide privacy management mechanisms to regulate
how content will be shared. Recently, multiagent agreement techniques, such as
negotiation [12,21] and argumentation [13] have been used. These approaches
have been successful but require heavy computations; that is, they can only
be used when the entities can reason on its privacy policies and communicate
with others intensively. Moreover, the agents in these systems follow predefined
rules but do not learn better ways to preserve their users’ privacy over time.
An alternative to this is to use auctions [20] where each user bids based on how
much she wants to see a content public or private. The decisions are then made
based on the winning bids [4,6].

Accordingly, this paper first explains an agent-based approach PANO for col-
laborative privacy management. When a content is about to be shared, agents of
co-owners interact over a mechanism to reach a decision. Similar to Squicciarini
et al. [20], PANO uses Clarke-Tax mechanism, but adapts it to protect users
against abuses, and at the same time encourages users to share content online.
PANO incorporates a group-wise budget system that ensures that advantages
gained by interactions with certain individuals can only be used against the
same individuals. Thus, the agents support users in biding automatically for
their behalf. Next, we propose an agent architecture called Privacy Auction-
ing Learning Agent (PANOLA) that uses user’s privacy policy as an initial
point to bid but then learns to adjust its bidding strategy over time. Learning
has been used in context of privacy before, mostly to enable agents to clas-
sify whether a user would consider a content private or not [7,18]. However, the
learning problem addressed here is different. First, since the content to be shared
is co-owned, other agents’ actions influence the outcome of a privacy decision.
Second, what needs to be learned is not whether a content is private or not, but
what the agent would bid to share or not to share the content, given what it has
observed and shared before.

Our main contributions in this paper are as follows:

– We provide a fair privacy respecting auctioning method based on Clarke-Tax
mechanism, where software agents represent users’ privacy requirements and
appropriately bid on behalf of the users.

– We develop a privacy-aware bidding strategy for the agents based on rein-
forcement learning. This gives them the ability to fine-tune their auction bids
according to previous experiences and adjust their privacy respecting strate-
gies over time.

– We evaluate the proposed approach over multiagent simulations and show
that it achieves superior privacy protection than non-learning cases.

The rest of this paper is organized as follows: Sect. 2 explains PANO in detail,
with a focus on how automatic bidding is done for protecting privacy. Section 3
proposes an agent architecture that learns bidding strategies over time. Section 4



118 O. Ulusoy and P. Yolum

describes our multiagent simulation environment and evaluates the effectiveness
of learning. Finally, Sect. 5 discusses our work in relation to existing methods in
the literature.

2 Agent-Based Auctioning for Privacy: PANO

To enable decisions on co-owned content, we propose co-owners to be represented
with software agents. Agents keep track of the privacy preferences of entities and
act on behalf of them to reach a decision. We propose PANO, an agent-based
privacy decision system, where agents employ auctioning mechanisms to reach
decisions on privacy conflicts [24]. PANO uses an extended version of Clarke-Tax
Mechanism as an underlying mechanism.

2.1 Background: Clarke-Tax Mechanism

Clarke-Tax mechanism [4] provides an auction mechanism, where participants
bid for different, possible actions in the environment. The action that receives
the highest total bids from the participants wins and is executed. Different from
an English auction, participants who aid in the winning action to be chosen,
i.e., that bid towards it, are taxed according to the value they put on it. This
is achieved by subtracting the bid values of every single user from the overall
values. If the subtraction of a single user’s bid changes the overall decision, it
shows that the user’s bid on this action had a decisive value. Thus, the user
is taxed with the difference of the actual action’s score and the score of action
to be taken if that user were not present in the auction [4]. In the context of
collaborative privacy, Clarke-Tax mechanism is used to decide on how a content
is going to be shared. Squicciarini et al. [20] consider three types of sharing
actions: no share, limited share, and public share. We follow the same scheme
here. When an image is about to be shared, all the relevant participants bid on
these three possible actions.

2.2 PANO Auctions

The Clarke-Tax auctions are beneficial for decision making for multiple partic-
ipants with different opinions, as they support truthfulness [20]. If Clarke-Tax
auctions are applied in commerce, then each participant would have their own
budget (e.g., money) to bid with. However, since we are emulating the auction
idea, the participants are given budgets at the beginning of each auction, which
they can use to bid in the current auction or save to bid later. As usual, a
participant cannot bid more than her current budget.

When Clarke-Tax auctions are applied in privacy as opposed to commerce,
there are two points that need attention: First, users can enter into arbitrary
auctions in arbitrary groups to increase their budgets. If budgets earned with
one group of users is used to set the privacy in a second group by overbidding,
then the system is abused. Second, it is not clear to assign a bid value for privacy.
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In commerce, the valuation for an item can be identified more easily, however,
for privacy, the difference between values is not easily interpreted. Without clear
boundaries to specify the range for bids, agents are left with an uncertainty to
express their preferences accurately. We address these two points by offering only
group-wise budgets and ensuring boundaries for bid ranges [24].

Group-wise Spending: To prevent abuse of using budgets for trivial auctions
with different users, earned budgets can only be used in new contents with the
same co-owners. With this, we improve robustness of the system, where malicious
users cannot collaborate for increasing their budget and forcing the other users
about their own choices. For example, without group-wise Spending, two agents
might share arbitrary content over a social network without spending budget for
privacy actions, thus increasing their total budget. When they co-own a content
with others, they will have extra budget from these previous efforts, and can
bid high amounts to force sharing a content over on OSN, while in fact it is a
sensitive content for another user that can’t outbid the malicious users. With
group-wise spending, each agent would have a separate budget for each co-owner
group, hence cannot use previously earned budget against a co-owner group if
the earned previously budget was with another co-owner group.

Boundaries: Boundaries enable all the agents to bid inside a predefined range.
This is beneficial for preventing users that are richer in the budget from domi-
nating the decisions. This also helps agents that participate in the auctions to
have better evaluation functions, because they can have a better opinion about
the other participants’ bids. When the agents know what would be the maxi-
mum bid from the others, they can set their bidding strategy accordingly. For
example, without the boundaries in place, when an agent considers a content
for a privacy action, she would try to bid as much as possible since she would
considers others doing the same for the opposite action. But with boundaries,
the agent would have a clearer idea about how much to bid, since she will know
the amount to outbid in the worse case scenario, where all the agents bid the
amount of the maximum boundary for the opposite action.

Definition 1 PANO: PANO auction is defined as a 6-tuple:
AUC = {c,AC,A,m,M,BD}, which consists of the auction’s related content c, a
set of privacy actions (AC), the set of agents (A) that participate in the auction,
minimum possible bid (m), maximum possible bid (M) and the set of placed bids
(BD), where each bid bt,a (bt,a ∈ BD) is related to one single action t (t ∈ AC)
and one single agent a (a ∈ A).

Given a PANO auction defined as in Definition 1, a system can compute the
outcome for the agents, and update their budgets accordingly. At the end of
each auction, each participant is given an amount that is equal to the half of
the maximum possible bid. This prohibits the agent to bid for the maximum
possible bid for each auction. That is, the agent would need to save its acquired
budget for the next auction to be able to bid higher than average possible bid.
Our reason to employ this half of the maximum boundary is that if an agent
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acquires more budget than she should use, she would be able to bid the maximum
allowed amount for every auction. In this case, it would not make sense for an
agent to deliberate the bid amount, since a higher bid would increase her chances
to force the action she wants, regardless of the significance of the action. On the
extreme opposite case, if the agents would earn very little amount for every
auction, they would not be able to bid for many decisions when they consider
the content sensitive. In this situation, many privacy violations might occur, and
agents would be forced to save their budget for many cases to be able to have a
decision in one. Our decision to give half the amount of the maximum possible
bid aims to find a balance between these two extreme cases, where agents should
deliberate about placing their bids to be able to enforce their decisions only when
necessary, but they would still be able to enforce their decisions in the sensitive
cases, if they bid reasonably.

2.3 Privacy Policy

Each agent should have an evaluation mechanism on the importance of a content,
and how much it is willing to bid for its preferred actions. Since the action
set can differ significantly in terms of size, the evaluation mechanism of the
agents should rely on some generic, but still comprehensive representation of the
represented individuals’ privacy preferences. Thus, we propose a 5-tuple privacy
policy structure to represent the privacy related choices of the individuals.

Definition 2 PANO Policy: A PANO policy P is a 5-tuple P = {a,n,p,q,i},
where a is the agent that the policy belongs to, n is the audience of the policy
who are the users affected by the outcome, p is the contextual properties for the
content that the policy will be applied, q is the privacy related action and i is the
importance of the policy, which is a rational value between 0 and 1.

An example policy of an agent that represents Alice, who wants to share
its blood pressure information received from an IoT device with her doctor and
nurse can be defined as:

P = {Alice,{doctor[Alice],nurse[Alice]},info[BloodPressure],share,0.9}.

3 Learning to Bid

Existing work in PANO assumes that the agents are homogeneous and bid in a
predefined manner. However, this is rarely the case in real life. First, different
users have different privacy understandings that can affect their bidding strate-
gies. Second, users do not know their valuations accurately. Third, some users’
privacy expectations can change over time, requiring them to bid differently for
the same content at two different time points.

In general, users (and thus agents) are not experts of privacy domains. Even
though users claim that they care about privacy and can express their privacy
concerns, they tend to act differently and their actions can possibly contradict
with their privacy requirements [1]. Hence, presenting privacy related actions in
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a way that users can understand and fit their privacy requirements with ease
becomes essential. For a privacy auctioning mechanism, agents would find it
difficult to place an exact bid on a privacy action, but presenting a range from
which they can provide their bids, rather than a single value could be easier.
Depending on the context, the extent of the range can vary and providing bids
on one end of the range versus the other can significantly change the outcome of
the bid. For this reason, it is best if an agent can learn over time a range from
which it can generate its bids.

In order to facilitate this, we use reinforcement learning [22]. With reinforce-
ment learning, agents can learn how to improve their privacy actions over time
by making use of the only few possible visible outcomes in the system and with
simple computations. In our adoption of reinforcement learning to PANO; over
time, agents’ desired actions are rewarded or their bad choices are penalized.
According to these, agents explore their set of actions, in order to adapt and act
in the best possible way for the current state of the environment. The conver-
gence to learn the best possible action depends on the exploration/exploitation
balance of the agents. An adventurous agent can explore from a wider range
of actions while risking being penalized, while a conservative agent can avoid
taking risk and adapt slowly, but might get stuck in local minima since the best
possible action has a bigger probability of never being explored.

In light of the aspects mentioned above that can affect the privacy deci-
sions, we introduce our learning agent, called Privacy Auctioning Learning Agent
(PANOLA). PANOLA employs reinforcement learning to learn the bidding
ranges, build strategies using defined coefficients and adapt its bidding according
to the outcome of previous decisions. In addition, we ensure that PANOLA can
act coherently with agents’ privacy policies even when previous decisions are not
available.

3.1 Bidding Ranges

With the given minimum and maximum boundaries for PANO, we introduce
bidding ranges, where the agents can pick from the possible ranges within the
boundaries and bid integers between the picked ranges. All the possible bidding
ranges within boundaries are stored by the agents themselves; each of them
accompanied by a rational utility value, in the range of [0–1] that denotes how
suitable a range is for bidding for a privacy action; 0 meaning the least suitable
and 1 the most suitable. Since the agents cannot have any previous experience
when first introduced to a domain, the initial utilities are computed according
to the distance of the ranges’ mean values to the agents’ initial bid evaluations
extracted from their privacy policies.

Example 1 Figure 1 depicts two bidding range examples (r1 = [4, 12] and r2 =
[14, 18]) for action t between minimum and maximum boundaries (m and M
respectively), assigned as 0 and 20. The set of ranges contains more than these
two, since we include all possible integer ranges between m and M . bt,a shows
the initial bidding evaluation for action t, which is given as 6 and means that
the agent would initially bid 6 for t for the incoming content.
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m M

0 204 12 14 186

bt,a r1 r2

Fig. 1. A depiction of two ranges between minimum (m) and maximum (M) bidding
boundaries and the initial bidding evaluation of agent a for action t

In time, utility values of bidding ranges change according to success or failure
of the picked bids. Agents do not share the utility values with the environment
or other agents. Each agent updates its utilities independently according to the
outcome of the auctions. Reinforcement learning is used to make agents learn
to pick the most suitable range for a given content type, using information that
results from PANO auctions, such as the amount they paid from their budget
according to their bids, the deducted tax amount if any tax was paid and the
action chosen by the auction, which can be considered as the most important
factor for the learning process. We employ all these factors in our computations
for learning the suitability of the ranges. The agents pick the range with the
highest utility for a given content and bid an integer value inside this range
according to their bidding strategy for their preferred action.

3.2 Effective Auctions

An important aspect in facilitating reinforcement learning is to balance explo-
ration of new bid ranges with exploitation of already found ones. The explo-
ration/exploitation balance is not binary in most of the real life domains, since
the uncertainty and non-determinism is usually present. Therefore, we make use
of continuous utility ranges with several coefficients that represent properties of
the auction outcomes to compute the balance.

Like most of the approaches in reinforcement learning [3,5,23], the unsuc-
cessful range pickings are penalized with a decrease in the utility value, while
the successful ones have an increase in the utility. In our approach, the utilities
are based on the effectiveness of the previous auctions. Intuitively, an auction
has been effective for an agent if a preferred action has been decided, while
the agent did not bid too high and was not taxed too much. We formalize this
intuition below using three coefficient values. Table 1 summarizes the important
parameters for the proposed approach.

– Bid Coefficient (BC ) captures the preference of winning an auction with lower
bids. Having a higher BC means that spending less is more important while
winning. This is essential when an agent has a limited budget, since winning
with a lower bid would enable the agent to have spare budget for the future
auctions. In contrast, a rich agent would prefer a lower BC value since bidding
more than it should would still leave budget for the future auctions, without
the need to search of another winning bid with a lower value.
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Table 1. Coefficients and values for utility calculations

Name
Abbreviation

Short description Equation/Function Range

Bid Coef. BC Used for distinguishing
between winning with
lower and higher bids

BC −→ 0 : decrease
effect of BC
BC −→ 0.5 : increase
effect of BC

[0–0.5

Tax Coef. TC Changes the
importance of taxes in
utility calculation

TC −→ 0 : decrease
effect of TC
TC −→ 0.5 : increase
effect of TC

[0–0.5]

Action Coef.
AC

Assigned by the agents
according to their
action choice
preferences

AC −→ BC + TC :
decrease effect of AC
AC −→ 1 : increase
effect of AC

[(BC + TC)−1]

Distance D Used in the initial
utility value
calculations

D = (M −
|Mean(rng) − bt,a|)/M

[0–1]

Effectiveness
E

Calculates agent’s
effectiveness in an
auction

E =
AC − (BC ∗ bt,a/M+
TC ∗ Tax/M)

[0–1]

– Tax Coefficient TC has a similar purpose to BC, but it focuses on the amount
of taxed budget on winning bids instead of the bids themselves. Similar to
BC, a higher TC increases the importance of taxes in utility computation.

– AC enables each agent to decide the importance order of the privacy actions.
Agents assign coefficient values between BC + TC and 1 to each action
according to their action ordering preferences, the highest coefficient value
being the AC of the most important action.

These three aforementioned coefficients are used in computing the final effec-
tiveness. For the Effectiveness (E ) value, a higher amount means that the agent’s
preferred action has been chosen with lower bidding and lower taxing. The ratio
of bt,a to the maximum possible bid M gives the magnitude of the bid. The higher
this value, the less effective the auction will be. This magnitude is adjusted with
BC to account for the fact that different agents would care about this differently.
The ratio of Tax to maximum possible bid M gives the magnitude of the budget
loss for the agent. Again, the higher this amount, the less effective the auction
would be. Adjusting it with TC enables the agent to account for different con-
texts, e.g., when the agent has high budget and would not be affected by being
taxed. The effectiveness of the auction is then the difference between the value
gained by the decided action AC and the cost of bidding and taxing as shown
in Table 1. The sum of Tax Coefficient TC and the Bid Coefficient BC should
be lower than the Action Coefficient AC, so that when an auction is successful,
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E will have a positive value and can increase the utility of the picked range for
the auction.

The effectiveness of an auction will determine the likelihood of a bidding
range to be picked again. However, at the beginning, the agent does not have
any effectiveness values, as it has not participated in any previous auctions. Yet,
they still need a mechanism to assign bids. Distance (D) formula is used for this
purpose of initial utility value calculations. This formula favors bidding ranges
that are closer to the agent’s initial privacy policy. That is, the distance for-
mula assigns higher utility values to the ranges that have a close mean value
to the agents’ initial bid evaluations, and lower values to the distant ranges.
According to D (in Table 1), if the mean of all the integer values within a range
is equal to the initial bid evaluation of the agent, D will be equal to 1, which
will be a top pick for the first auction for a related content. The normalization
according to the maximum auction boundary ensures that the furthest differ-
ence between the range mean and initial bid evaluation would be the difference
between the maximum boundary and the minimum boundary (zero for our sim-
ulation), since the furthest distance could be the initial bid evaluation to be at
one end of the boundary and the mean of the range on the other end. In such
case, |Mean(range) − bt,a| part of the D calculation will always be equal to the
maximum boundary M , thus the D value will be computed as 0. In addition
to enabling first time utilities with D, we also ensure that initial bids are as
close as possible to the agents’ intended privacy requirements. A utility value
closer to 1 would mean that the agent is indeed willing to bid around the mean
of the picked range, and the privacy action outcome of the first auction would
be similar with when the agent does not employ a learning strategy and bids a
value according to its own privacy policies.

Example 2 Referring back to the examples of two ranges in Fig. 1, the mean
of r1 and r2 are 8 and 16 respectively. If we assume that there are no previous
auctions for agent a, the initial bid bt,a is given as 6, which is the amount a is
willing to bid for action t, if the learning process with ranges are not available.
According to the equation of D, r1 has the initial utility of 0.9 and r2 has 0.5.
As the mean of r1 is closer to bt,a, it has a higher D value than r2 and can be
considered a better candidate for a bidding range of t for an incoming auction.

3.3 Utility Update

After the initialization with the Distance value, utility computation depends on
the Effectiveness value and the total number of auctions entered. Utility for a
range called rx is simply computed with the formula below:

Utility{rx} =

n∑

i=1

Ei + Drx

n + 1
(1)

According to Formula 1, utility value of rx after n auctions is the sum of
all previous E values and the initial D value divided by the number of entered
auctions plus one, considering D.
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Example 3 According to the example in Fig. 1, the initial utilities of the ranges
according to D value would be [0−1] : 0.725, [0−2] : 0.75, ..., [4−12] : 0.9, ..., [14−
18] : 0.5, ..., [18 − 20] : 0.35, [19 − 20] : 0.325.

If we ignore the ranges that are not shown in the examples above, r1 ([4–12])
is the one to be picked for the next bid, since it has the highest utility. Assume
that the agent picked r1, won the auction with a bid within the range, and got
an E value of 0.8 out of it. The utility of r1 will become (0.9 + 0.8)/2, equaling
to 0.85. Since this value is still higher than other ranges above, it will have the
highest probability to be picked for the next auction.

4 Evaluation of Learning for Preserving Privacy

The above setup shows us how reinforcement learning can be used by the agents
to generate bids. Some important questions that follow are: does this approach
enable agents to learn accurately, do the agents that learn bidding ranges perform
better in PANO auctions, do other personal values affect preserving privacy and
if so, how.

In order to answer these questions, we design and implement a multiagent
simulation environment, where PANO and PANOLA agents with different pri-
vacy policies enter PANO auctions. The environment consists of a set of agents,
and different types of contents, where the agents have predetermined evaluations
to rely on. According to these content evaluations, agents have an initial opinion
about which privacy actions to support in an auction, and how much they are
willing to bid for it. The environment also keeps track of the budget balances
of the agents, and their success rate (i.e., the percentage of won auctions in all
entered auctions) for further performance evaluations. The content types and
the number of actions may vary in the environment, and the required informa-
tion is fully observable to the agents so they can evaluate on how to bid for a
given content type and the set of privacy actions. As in the original Clarke-Tax
algorithm, the agents cannot see the bids of the other agents before or after an
auction, but they are informed of the winning action as well as the amount of
tax to pay, in case they are taxed.

4.1 Simulation System

We have developed a simulation system to evaluate the performance of
PANOLA agents in different setups. The environment supports both
PANO agents, which do not employ any learning for bidding and
PANOLA agents, which learn how to bid over time. The simulation includes
multiple action choices and all the agents have predetermined evaluations about
how important they consider different action types and how much their initial
bid should be accordingly. After the agents are loaded into environment, the
simulation cycles for all the contents, and agents enter PANO auctions to col-
laboratively decide which action to take for the given auctions.
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To understand whether an agent is successful, we use a success metric, which
calculates the percentage of auctions for which an agent’s preferred privacy
action is chosen. Recall that the auctions are set up in a such a way that the pri-
vacy expectations of the agents conflict. As a result, if an agent’s most preferred
action is the result of the auction, then this agent has won and the remaining
agents have lost. That said, it is possible to have two privacy actions that end
with the same highest bid. In those cases, we disregard the auction from calcu-
lations of success. Thus, the total wins of all the agents equals the total count
of the auctions. This simple metric enables us to see which agents have been
the most successful in selecting privacy actions as measured by the percentage
of total auctions.

4.2 PANOLA vs. PANO Agents

In our multiagent simulations, there are PANOLA agents that learn how to
bid over time and the remaining agents are opposing PANO agents that have
different action choices than PANOLA agents. These opposing PANO agents
have a static strategy, meaning that they always bid the same pre-evaluated
amount for the same type of content.

We perform ten simulation runs of 100 contents for each to evaluate preser-
vation of total budget, amount spent for each content and success for entered
auctions (e.g. successful if the first action choice of the agent is the outcome
of an auction and unsuccessful if not). The experiments where we include both
PANO agents and PANOLA are executed with a single PANOLA against a
PANO agent setup, since we aim to measure PANOLA’s success with differ-
ent characteristics against PANO agent opponents that do not learn how to
bid over time. The experiments for comparing PANOLA agents with different
values against each other are conducted with one-against-one auctions, since
our purpose for this comparison is to measure a learning characteristic against
another one.

In our first experiment, we evaluate the success of PANOLA against PANO
agents in terms of privacy decisions. For all 100 content, our scenario sets the
privacy actions of PANOLA and PANO agents always in conflict, thus in each
auction the agents oppose each other to ensure their own privacy action becom-
ing the final privacy decision. One of the goals of PANO auctions is to enable
every agent to participate for making privacy decisions in the long run, by taxing
the winners of the auctions to give a higher chance for the losing agents for the
future auctions. Referring back to Sect. 2.2, since we allow agents to earn limited
budget (i.e., half of the maximum possible bid) after each auction, even when the
agent learns the right bidding range, they might not be able to bid due to lack
of budget. Hence, we evaluate whether PANOLA agents learn the right bid-
ding range, we perform auctions with and without budget restrictions. Figure 2
shows the privacy success percentages of PANOLA against PANO agent in
both conditions.

As expected, PANOLA learns to outbid the PANO agent after a few auc-
tions, and wins every auction afterwards for the unlimited budget condition.
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Fig. 2. Privacy success of PANOLA against PANO agents in unlimited and regulated
budget scenarios.

This shows that PANOLA indeed learns the correct range to bid from and if
PANOLA owns enough budget, it will always choose the correct amount to bid
for its privacy actions. When the budget regulation is in place, it is expected
for both agents to decide on some privacy actions in the long run, as this is a
desired outcome in our mechanism. For the evaluation with the regulated bud-
get, PANOLA still performs better in the long run than PANO agent (˜60%
privacy success after 100 auctions); but this time PANO agent is able to give
the decisive privacy action for some auctions. The main reason for this is that
even though PANOLA learns how to outbid the opponent, it will run out of
budget after winning some auctions, and in that case the opponent can win the
auction. However, we can also conclude that learning how to bid is beneficial for
agents, since adapting the bids for their desired privacy actions enables them to
obtain significantly more desired collaborative privacy decisions in their favor
than the agents that do not adapt over time.

4.3 Exploration Within Bid Ranges

While learning which range a bid will be given from is the first step, deciding
on the actual bid is an important second step. Intuitively, the agent can pick
a bid from the range based on a given distribution. Currently, we implement
two types of agents, namely adventurous and conservative. Adventurous agents
bid randomly within the picked bidding range, while conservative agents bid
according to normal distribution in Gaussian.

We compare the performance of the adventurous and conservative PANOLA
agents against each other. We investigate the success rate and total owned budget
of the agents over 100 auctions. Figure 3 shows the success rates and total owned
budget over 100 auctions for both agents.

According to Figure 3, it can be seen that conservative bidding achieves
slightly more successful results after the agent learns the environment through
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Fig. 3. Success (a) and Owned Budget (b) of adventurous and conservative
PANOLA against each other

some auctions. It is also more successful at the first few auctions, while spend-
ing more reasonably than the adventurous bidding with random distribution.
Around the tenth auction, adventurous agent’s success passes conservative, since
the adventurous agent tries to increase its bids to beat conservative, while con-
servative does not increase its bids since it already wins auctions. But after the
next few auctions, conservative agent also adjusts its bids accordingly, and stays
steadily around 4% more successful than the adventurous agent. The main reason
for this difference relies on the Clarke-Tax mechanism; when a conservative agent
outbids the adventurous, the tax amount payed tends to be a small amount, since
the conservative agent sticks closer to its winning range and not reaching the
maximum boundaries. In the opposite position, an adventurous agent can win
by trying bids closer to the maximum boundary, but get taxed with a bigger
amount which decreases its budget significantly for the next auction. According
to this evaluation, it can be said that when two learning agents have the same
importance evaluation for an incoming content, using a conservative approach
leads to more successful bids in the long run.

With these results, we can conclude that employing conservative strategy in
biddings is more beneficial than the adventurous strategy in most cases. How-
ever, the learning curve of an adventurous agent while losing is steeper than
the conservative one. Thus, when the agent loses most of the bids, trying an
adventurous strategy while trying to pick from higher ranges could be useful to
find out the winning privacy bids over opponents.

5 Discussion

Privacy in ubiquitous systems started to receive attention around early2000 s,
with the Internet becoming accessible to most of the people in the world and
enabling easy sharing and access of private information over the web. Langhein-
rich [15] is one of the first works that investigate the open issues for privacy-
respecting approaches for ubiquitous computing. Spiekermann and Cranor [17]
and Gürses et al. [10] study the grounds of engineering privacy, explaining how
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information related domains can be designed to employ privacy-preserving meth-
ods. Paci et al. [16] provide an extensive survey for literature about access control
over community centric collaborative systems; laying down the key issues and
giving a roadmap for future challenges. Bahri et al. [2] show the challenges of
preserving privacy over decentralized OSNs, and provides a review of previous
work done for overcoming these challenges. These studies all show that privacy is
an important aspect of collaborative information systems and address the need
for effective mechanisms.

Even though the systems the main goal is intended to satisfy the general
good for the collaborative privacy decisions, the agents that represent entities
naturally have the goal to force their privacy requirements to the others.

Collaborative privacy management is investigated in the literature for differ-
ent domains. Fong [9] introduce Relationship Based Access Control (ReBAC)
mechanism, and provides a model to make it applicable to OSNs, where users
can define their privacy constraints related to the relations that are available in
OSNs, such as friends or colleagues. Multi-party Access Control Model by Hu
et al. [11] is another work which focuses on determining a single final policy
according to privacy requirements of the users. PANO offers [24] a fair mech-
anism to decide on which action to take, which uses Clarke-Tax auctions at its
core with some economic modifications such as group-wise spending, bidding
boundaries and income-expenditure balance levels. For the competitiveness of
the agents, we introduce a learning mechanism that is based on reinforcement
learning, where agents can adapt according to the visible information result-
ing from the outcome of previous auctions. We also use an evaluation distance
coefficient to overcome the cold start problem for the agents that have no prior
information about auctions or their opponents.

The use of machine learning for privacy is gaining momentum and the
research area is still open for further improvement. Fogues et al. [8] provide an
agent-based approach which requires user input when required to learn incremen-
tally about user policies, and recommends privacy policies for sharing content
for multiuser scenarios. Vanetti et al. [25] propose a machine learning approach
for filtering unwanted textual contents in OSNs. Squicciarini et al. [19] infer pri-
vacy policies of OSN users for photographic contents. Zhong et al. [26] employ
contextual image properties in a different way: they extract and learn from the
image features in a way to detect possible privacy conflicts to take further action.

Our work on this paper opens up interesting research directions. The first
direction is to use the findings of this paper to build an agent that can change
its behavior as needed as well as build models of other agents’ in the auctions to
make better decisions. The second direction is to capture the dynamics between
agents, especially that of trust. When agents trust each other more, they could
reflect that differently when bidding, leading to better overall decisions. The
third direction is understanding and derivation of social norms into PANO,
which could be beneficial to create learning agents according to their normative
behavior.
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Abstract. While normative systems have excelled at addressing issues
such as coordination and cooperation, they have left a number of open
challenges. The first is how to reconcile individual goals with community
goals, without breaching the individual’s privacy. The evolution of norms
driven by individuals’ behaviour or argumentation have helped take the
individual into consideration. But what about individual norms that one
is not willing to share with others? Then there are the ethical consid-
erations that may arise from our interactions, such as, how do we deal
with stereotypes, biases, or racism, or how to avoid the abuse of commu-
nity resources. This paper is concerned with accounting for individual
needs while respecting privacy and adhering to the community’s ethi-
cal code. We propose a decentralised architecture for normative systems
that, along with the community norms, introduces individual’s require-
ments to help mediate the interaction between members.

Keywords: Normative systems · Privacy by design

1 Introduction

Normative systems have attracted a lot of attention in the multi agent systems
community as one approach to maintain the autonomy of agents while ensuring
community goals and aspirations are fulfilled. Norms essentially specify the rules
of interaction: what one can (or cannot) do, when, under what conditions, etc.
Normative systems copy how human societies function, and they can be com-
pared to social norms that govern society’s behaviour or organisational norms
that mediate interactions in organisations [8].

While normative systems have excelled at addressing issues such as coordi-
nation and cooperation [1], they have left a number of open challenges. The first
is how to reconcile individual goals with community goals, without breaching
the individual’s privacy. A number of approaches have been studied to take the
individual into consideration, such as norm synthesis techniques that would help
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norms evolve based on individuals’ behaviour [6], or norm evolution that would
allow the individuals to reason about norms through argumentation [7]. But
what about individual norms that one is not willing to share with their fellow
community member? For example, imagine a community norm that states that
a donation cannot be below 5e and an individual norm that states that a dona-
tion cannot exceed 50e. Another open challenge are the ethical considerations
that may arise from our interactions, such as, how do we deal with stereotypes,
biases, or racism, or how to avoid the abuse of community resources, to name a
few.

In other words, the question this paper addresses is how can we make sure
that an individual will have their needs taken into consideration while we ensure
their privacy is respected and the community’s ethical code is not violated.
To address these issues, this paper proposes a decentralised architecture for
normative systems that, along with the community norms, introduces individ-
ual’s requirements to help mediate the interaction between members. Section 2
presents our proposal in brief, Sect. 3 introduces the notation used in this paper,
Sect. 4 introduces the decentralised architecture addressing the challenges dis-
cussed above, while Sect. 5 provides a motivating example, before concluding
with Sect. 6.

2 Proposal

To address the issues presented above, we first say that in addition to community
norms, there are also individual norms that describe the individual’s rules of
interaction with others.

Norms, as illustrated earlier, specify what actions are acceptable for that
specific individual, who can the individual interaction with, and under what
circumstances. While normative systems have focused a lot on the action, ‘what’
can one do, we highlight in this paper the other crucial aspect of interactions:
‘who’ can one interact with. The ‘who’ aspect has been implicit until now, usually
hidden under the ‘what’ action specification. In an increasingly hyperconnected
world, we choose to make the ‘who’ more explicit in our proposal. To achieve
this, we require users to have profiles describing them, such as describing their
gender, their age, their relationships, etc. With such profiles, rules on who to
interact with can then be specified. For example, one individual norm can then
say ‘only seek the support of female friends during my breakup period’, while
another can say ‘never ask my ex-husband for help’. As such, and in addition to
community norms and individual norms, the individual profile becomes another
crucial element for mediating our interactions.

Both the individual’s norms and profile may be divided into a private and
shared part. In what follows, we present the norms and the profiles in more
detail.
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2.1 Norms

As per the above we distinguish between community norms and individual
norms.

– Community norms. These norms are the community’s agreed upon norms.
Any action (represented by a message exchange) in the peer-to-peer network
must be coherent with them. We consider an action acceptable by the com-
munity when it doesn’t violate any of the community’s norms.
We note community norms can be categorised into a number of groups
(Fig. 1). For example, institutional norms can describe the rules of behaviour
in the given community (following the concept of electronic institutions [2]).
Governance norms can describe the rules of who has the right to change exist-
ing norms and how. Ethical norms can describe what is considered ethical and
what actions are deemed unethical, and hence, unacceptable in the commu-
nity. Incentivising norms can help provide incentives for community members
to behave in a certain way, such as encouraging benevolent behaviour, say to
help maintaining the community and fulfilling its objectives. One can even
imagine re-using, adapting, or building on top of existing norms. For example,
a new social network may re-use the institutional norms of an existing social
network and adapt them to their community’s particular needs.

Fig. 1. Community norms

– Individual norms. These norms represent particular aspects of the relation-
ship of the human with her machine and with the community. For instance, a
prohibition to pop-up a message during a siesta unless coming from a relative.
Or one can filter messages coming from people that they do not deem trust-
worthy. As most individual norms are private, some ‘unethical’ behaviour
may be codified at this level and remain unnoticed, such as a private norm
requiring to never show messages coming from old men.
In general, individual norms may implement certain behaviour that may not
be fully aligned with the community values and norms. In cases of conflict
between community norms and individual private ones, community norms
prevail concerning actions within the community. For example, if community
norms prohibit discriminating against women, then an action like excluding
females from a given activity will be prohibited. However, individual private
norms prevail when concerning actions local to one’s machine. For instance,
while community norms may prohibit discriminating against women, one’s
private norms can enforce requests coming from women to be suppressed
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(ignored).
We note that individual norms can further be divided into two parts: private
norms and shared norms.

• Private norms are norms that are private and are never shared with other
machines (e.g. ‘never show messages coming from old men’). Their impact
is restricted as other machines do not have access to these norms.

• Shared norms are norms that travel with messages so that other people’s
machines can take them into consideration (e.g. when specifying ‘do not ask
the help of people outside Barcelona’, the receiving machine can check the
location of its human, even if this data is private as this data never leaves
the machine and is not shared with others).

2.2 Profiles

Generally speaking we assume we have two types of profiles that we can intu-
itively describe as follows.

– Private profile. This is the set of features that are private to (and
hence, accessible only by) the human’s own machine. For instance, if
gender("A",female) is part of Alice’s private profile this means that Alice’s
machine has permission to use Alice’s gender in the reasoning.

– Shared profile. This is a set of features that can be shared with (or made
accessible to) others, both the humans and their machines. There are several
approaches, both centralised and decentralised, that one can choose from for
making information public. However, in this proposal, we suggest sharing the
public profile by communicating it to other machines on an as-needed basis.

Of course, humans decide what part of their profile is public and what part is
kept private.

The notion of private profile is quite intuitive. We want to keep private what
we do not want the others to know. This issue of privacy has always been around
but it has become of paramount importance with the pervasive use of the Web
and the Social Media. In the past we were protected for free by our space and
time limitations: it would take some time to from place A to place B and this
time would increase with distance. The phone lifted some time barriers, but the
propagation of information would still be limited by the fact that we were able
to choose who to interact with and, in any case, the communication would only
happen in pairs. Television lifted other barriers, allowing for zero time one-to-
many communication, but still information was very much verified and under
control and in many cases regulated by law. The Social Media have lifted the last
barrier: now everybody can talk with everybody and say whatever they prefer
with basically no limitations (the first limitations being established by the most
recent legislation, for instance, GDPR in Europe).

The social media have made it possible to replicate and hugely expand what
has always been the case in the real world. Now anybody can share information
with anybody, virtually the entire world population, in zero time and no space
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constraints. This motivates the focus on privacy and hence the need for a private
profile.

But this is only part of the story. First of all, the notion of privacy is not
an absolute notion. There is information that I may be willing to share with
my family but not with my friends and even less with my enemies. For example
people are usually very happy to share information about the location of their
children in a certain moment of time, for instance the fact that they go to a
school with a certain address and that lectures will end at 1pm, with a person
with a car that maybe has a child who goes to the same school. But they would
never be willing to share this information with a person they do not fully trust.
In social relations, the notion of privacy is fully contextual in the sense that it
depends on the current situation and also in the objectives that one wants to
achieve.

The contextuality, and therefore non-absoluteness, of privacy brings up the
key observation which underlies the need for both a public and a private profile.
To provide another example which integrates the one about the child who needs
to be picked up from school, suppose I have a certain disease, e.g., diabetes. This
is sensitive information, namely information with many more constraints for its
circulation. In general, most people would not talk about their disease, but, for
instance, a person with diabetes, if too low in her level of sugar in the blood,
would be very happy to let others know about this. And not only of the need for
sugar but also of the fact that the reason is diabetes, as this would increase the
urgency of the intervention. In social relations there is always a tension between
privacy and transparency. In almost any interaction with other people we trade-
off some privacy (about us, about our family, friends, ..., anybody) as a key
enabler for obtaining information, support, information from others.

The notion of public profile captures exactly this need of transparency, mean-
ing by this the sharing information as key to enabling social interactions. Clearly,
the public profile is contextual, where the person we interact with is a crucial
component of the relevant context, and mostly dynamic. There is in fact very
little information, if any, that we are willing to always share with others; maybe
our name, but also in this case it is easy to think of exceptions. Furthermore
the public profile, like the private profile, will change in time because of multiple
reasons, e.g., change of one’s job or of the place where one lives. The contex-
tuality and dynamicity of the public profile will require its continuous update
and revision. This consists of a process which will be enforced by the local peer,
as driven by its user, and which will consist of performing a set of abstraction
operations [4] on the private profile.

3 Notation

We first present, in this Section, the notation used in the remainder of this paper.
We say let CN describe the set of community norms, PrR and ShR describe the
sets of private and shared norms, respectively, and PrP and ShP describe the
private and share profiles, respectively. We view a profile as a set of features. To
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specify which agent does a set of norms or profile describe, we use the sub index
of that agent. For example, PrRA describe’s A’s private norms whereas ShPB

describes B’s shared profile.
We say a profile is a set of features, and we specify features as propositions.

For example, we say gender(“A”,female) to state that A’s gender is female and
loc(“A”,barcelona) to state that A’s location is in Barcelona. As for norms, we
specify these as “if then” statements that talk about actions (similar to the rule-
based norms of [3]), and we use the deontic operators O and F to describe obli-
gations and prohibitions, accordingly. For example, F (display(“A”,M)) states
that it is forbidden to display the message M to A.

4 Architecture and Associated Operational Model

Fig. 2. Basic (distributed) architecture

In Fig. 2, the schema of the peer-to-peer architecture for our proposed normative
system is presented. Each user has a machine, that may run all or some of its
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computations on a remote server (depending on the complexity of the norms and
their computational requirements). Each user interacts with its machine through
a user interface.

As illustrated in Sect. 2, each user specifies their profile and individual norms.
The profile is divided into private (PrP) and shared (ShP) parts, and the norms
into private (PrR) and Shared (ShR) parts.

The norm engine at each machine will have both a reactive and proactive
behaviour.

– Reactive Behaviour. This allows the norm engine to react to messages
received (usually representing the actions being performed), and there are
two types of messages that a machine can receive:

• A message from the user interface. When a user performs an action, it
is translated into a message that is sent to the machine through the user
interface. The message includes the shared norms and a copy of the sender’s
shared profile. Upon the receipt of such a message, the norm engine needs
to first verify that the message does not violate any of the norms, this
includes the community norms and the sender’s individual norms (both
private and shared). A conflict resolution mechanism should address any
conflicting norms that may arise. If the action violates any of those norms,
an error message is sent back to the user. However, if the action obeys
the norms, then the norm engine needs to decide what to do next, usually
translated into sending messages to other peers. This decision follows from
the community and individual norms (both private and shared), and takes
the user’s profile (both public and shared) into account as needed.

• A message from another machine. As in the previous case, the norm engine
needs to first verify that the message does not violate any of the community
norms. This re-checking upon receipt ensures that the sender’s norm engine
has not been manipulated to cheat. If the message violates any of the com-
munity norms, then it may either be discarded, or if the community norms
require sanctioning, then the appropriate sanctions should be executed.
However, if the action obeys the community norms, then the norm engine
needs to decide what to do next, which is usually translated into sending
messages to other peers and/or sending messages to the user interface. This
decision takes into consideration the community norms, the norms attached
to the message, and the individual private and shared norms. This ensures
that the machine abides with its human’s private norms without leaking any
of their private norms and profile.

– Proactive Behaviour. This allows the norm engine to proactively perform
actions as required by the norms. For example, incentivising norms might
remind a user to complete their profile, if this has been neglected for some
time, or remind the user of how much their contribution to their community
is valued, if they haven’t been active lately. To be proactive, a machine will
require access to the community norms and individual private norms, as well
as its human’s private and public profile.
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5 Motivating Example

In this example we will specify the interaction between three people with the
uHelp use case in mind. uHelp [5] is an app that allows one to find help with
everyday tasks, such as picking up one’s child from school, or finding a friend
to play squash with. uHelp works by crawling one’s social network looking for
trusted volunteers. In this example, imagine having four people involved: Alice
(A), Bob (B), Carol (C), and Dave (D). Say Bob, Carol and Dave are on Alice’s
contact list, and Bob is on Carol’s contact list. The community norms (CN), or
the uHelp norms, specify how a help request is propagated in the social network.
They state that every time a machine receives a help request, it needs to decide
whether it displays it to its user (Lines 32–35, Fig. 3), and whether it needs to
forward it and to whom (Lines 24–31, Fig. 3). We note that the person making
the request will decide the maximum number of hops accepted when looking for
volunteers (Hops) and the minimum trustworthiness required (Trust). As these
are specified for a given task, they are sent along with the help request message
(Line 38, Fig. 3).

As for individual norms, imagine Carol has a private norm that says ignore
help requests from females (i.e. do not display such requests, as show in Lines
13–17, Fig. 3). Alice, on the other hand, has a private norm and a shared one.
The private one specifies that only those who are close by (in Barcelona) get to
see her help requests (Lines 10–12, Fig. 3). The shared one specifies that none
of her requests may be displayed to Bob (Lines 19–22, Fig. 3). As Bob is her
ex-husband, she prefers that Bob does not see her requests, though she is happy
for his machine to still receive her requests as she is interested in using his social
network. Hence, she only prohibits the display of the message to Bob.

Now concerning people’s profiles, some information such as gender, location,
or trust in others may be kept private (Lines 1–4, Fig. 3), or made public (Lines
6–8, Fig. 3). For example, Alice’s private profile specifies her trust in her contacts:
in this case, ‘low’ for Bob and ‘high’ for Carol and Dave. Similarly, Carol’s private
profile specifies her trust in her contact Bob as ‘high’ and her current location
as being in London. Bob, Dave and Alice are happy to make share their gender
and location with others through their shared profiles.

Now given these profiles and norms, imagine that Alice is running late at
work and she needs someone to pick up her child from school (message M). She
accepts friends of friends (Hops=2, for connection level 2), but is looking for
trustworthy volunteers only (Trust="high"), as illustrated in Line 38, Fig. 3.
For these norms to be enforced by other machines, Alice shares these norms
along with her other shared norms and profiles by attaching them to the help
request (M), resulting in the message, MSG.

As soon as the help request is sent by Alice, the norm interpreter at her
machine will check whether the message applies with the community norms
(CN), in which case it does. The interpreter then needs to decide what are
the actions that this message entails, taking into consideration Alice’s profile
(private and shared), her norms (private and shared), and the community norms.
According to the community norm on Lines 24–31, the interpreter decides to
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forward the help request to Carol and Dave, as they satisfy the requested hops
and trustworthiness constraints (the trustworthiness of Bob, on the other hand,
is low).

Upon receiving the message, Dave’s machine now needs to check whether
the message applies with the community norms, which it does. It then needs
to decide what are the resulting actions of receiving this message, taking into
consideration Dave’s profile and norms (both private and shared), the norms
attached to the message (that is, Alice’s shared norms), and the community
norms. According to the community norm on Lines 32–35, the request is then
displayed to Dave, despite the fact that Alice forbids it in its private norm. This
is because Alice’s private norm is private and cannot be taken into consideration
by other people’s machines.

Upon receiving this message, again, Carol’s machine needs to check whether
the message applies with the community norms, which it does. After that, it
needs to decide what are the resulting actions of receiving this message, taking

Fig. 3. uHelp example: profiles and norms
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into consideration Carol’s profile (private and shared), her norms (private and
shared), the norms attached to the message (that is, Alice’s shared norms), and
the community norms. In this case, and according to Carol’s private norm on
Lines 13–17, the help request is not displayed on Carol’s mobile as it comes
from a female. However, the help request is forwarded to Bob, according to the
community norm at Lines 24–31. Note that while Alice’s trust in Bob was low,
her trust in Carol is high, and Carol’s trust in Bob is also high, allowing the
message to be forwarded to Bob through Carol.

Upon receiving the message, Bob’s machine again checks its adherence to
community norms. Then, as above, it needs to decide what are the resulting
actions of receiving this message, taking into consideration Bob’s profile (private
and shared), his norms (private and shared), the norms attached to the message
(that is, Alice’s shared norms), and the community norms. In this case, and
according to Alice’s shared norm on Lines 19–22, the help request is not displayed
on Bob’s mobile as Alice forbids it.

This example illustrates how our proposed system ensures the interaction
between people adheres to both community norms and individual ones with-
out jeopardizing people’s privacy. It also illustrates the impact of private and
shared information. For instance, private norms are better suited to control local
behaviour, whereas shared norms are better suited for controlling the behaviour
of other machines.

6 Conclusion

This paper has proposed a decentralised architecture for normative systems that
introduces individual norms, while ensuring the privacy of people. One aspect
that has been overlooked in this paper and left for future work is the conflict res-
olution mechanism. Having people specify their own norms will probably result
in conflicting rules, and a mechanism will be needed to address such conflicts.

Our current next steps will be to implement the proposed system by extend-
ing the existing uHelp platform to introduce the different types of norms (adding
private and shared ones) and different types of profiles (splitting them into pri-
vate and shared). Furthermore, we plan to integrate uHelp with an extended
version of iLog [9] that automatically learns people’s profiles from their online
activity.

As illustrated in our discussion of community norms, these norms can be
used to specify the rules of interaction in a community, but also to introduce
more specialised rules, such as rules specifying what is considered ethical and
unethical, or rules specifying how to motivate people to act in a certain way.
Future work will be experimenting with these specialised different, focusing on
ethics and incentives.
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Abstract. We consider a constraint satisfaction problem (CSP) in
which constraints are distributed among multiple privacy-sensitive
agents. Agents are self-interested (they may reveal misleading informa-
tion/constraints if that increases their benefits) and privacy-sensitive
(they prefer to reveal as little information as possible). For this set-
ting, we design a multi-round negotiation-based incentive mechanism
that guarantees truthful behavior of the agents, while protecting them
against unreasonable leakage of information. This mechanism possesses
several desirable properties, including Bayesian incentive compatibility
and individual rationality. Specifically, we prove that our mechanism is
faithful, meaning that no agent can benefit by deviating from his required
actions in the mechanism. Therefore, the mechanism can be implemented
by selfish agents themselves, with no need for a trusted party to gather
the information and make the decisions centrally.

Keywords: Constraint satisfaction problems · Incentive mechanism
design · Privacy

1 Introduction

Distributed constraint satisfaction problems (DisCSP) in which decision vari-
ables and constraints are distributed among multiple agents are common in many
multi-agent systems. They are popular because they are a good representation
of many real world applications including resource allocation [1], scheduling [16],
electronic commerce [22] and logistics [18].

To solve distributed CSPs, agents need to exchange messages until a solution
is found or until one agent finds out that there is no solution to the problem. In
many cases, there is also a natural desire for the agents to minimize the amount of
information revealed during the problem solving process. This is particularly true
in cases where the agents are self-interested. Such privacy-sensitive encounters
[10] involve the design of mechanisms that strike a balance between the amount of
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information revealed and the desire to reach an acceptable solution. For example
exchanging no information minimizes the amount of information revealed but is
unlikely to lead to a solution, whereas all agents revealing all their constraints
maximizes the chance of finding a socially-optimal solution but at the cost of all
privacy.

When the agents are self-interested, the mechanism needs to be robust to
the possibility of receiving misleading information from the agents. However,
such agents will only provide truthful information if they are motivated by rele-
vant incentives to do so. In an incentive mechanism, the agents give each other
rewards (or penalties) based on the information they share with each other.
These rewards must be designed so as to align the agents’ individual objectives
and eventually to motivate them to not reveal fake information.

The literature on incentive mechanism design mostly focuses on centralized
mechanisms where a trusted entity performs as a manager and processes the
mechanism procedures centrally [3,25]. However, in many cases, a trusted entity
does not always exist. To tackle this drawback, we design a faithful incentive
mechanism that can be run by selfish agents. A mechanism is faithful if an
agent cannot benefit by deviating from any of his required actions, including
information-revelation, computation and message passing [17].

In more detail, our faithful incentive mechanism strikes a balance between
privacy and social efficiency. This mechanism is based on the score-voting idea
which is used in the literature for designing centralized incentive mechanisms
[12]. Specially, we design a multi-round negotiation-based mechanism in which
at each round, the agents first rate a set of candidate solutions and then decide
if any of them is acceptable. To make this voting mechanism Bayesian truthful,
we present a reward function that is based on the agents’ beliefs about the likely
effectiveness of their votes on the final outcome. We guarantee faithfulness of
the mechanism by setting non-manipulable rules and show that the minimum
number of solutions being discussed at each round is a control parameter that
balances the tradeoff between privacy leakage and social efficiency. We illustrate
this mechanism via the domain of distributed meeting scheduling, which is a
canonical example of a DisCSP with self-interested and privacy-sensitive agents.

This work presents the first faithful mechanism for a DisCSP with selfish
and privacy-sensitive agents. Moreover, our mechanism has the flexibility to
adjust the relative importance of privacy leakage and social efficiency. DisCSPs
show quite different behaviors based on the relative importance of privacy and
efficiency. Therefore, designing a unified mechanism than can plausibly handle
a diverse range of DisCSPs is a key advance.

2 Related Literature

DisCSP was first introduced in [26]. Most existing mechanisms in this area
require that all decision variables and constraints are known by the correspond-
ing agents in advance; i.e. they are offline mechanisms. Two strands of works are
prevalent in the category of offline mechanisms: complete mechanisms [7,13] and
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incomplete mechanisms [23,28]. The former are guaranteed to find the social-
welfare maximizing solution, but require exponential time in the worst case. The
latter find suboptimal solutions but run quickly enough to be applied to real-
world applications. However, offline mechanisms do not fit dynamic applications
such as meeting scheduling, where new decision variables and constraints are
introduced over time. Thus, to solve practical dynamic DisCSPs, we need to
design online mechanisms that make decisions based on partial available infor-
mation.

Distributed online mechanisms often use negotiation between agents to find a
solution [9,21]. During such encounters, agents usually need to adjust their nego-
tiating strategy based on their information about others’ preferences to change
the outcome to their favorite one. Some cooperative negotiation mechanisms
assume that agents’ preferences are public information [19]. In a competitive
environment (non-cooperate negotiation), however, self interested agents keep
their preferences private to avoid being exploited by their opponents [11,20].
Without the knowledge of opponents’ preferences, agents may have difficulty in
adjusting their negotiation strategies properly. This difficulty has been addressed
in the literature of incentive mechanism design [25].

There is a long tradition of using centralized incentive mechanisms within
distributed systems [14]. However, there are very few known methods for dis-
tributed problem solving in the presence of self-interested agents. The first steps
in providing a distributed incentive mechanism were the works presented in
[5,6]. However, the rules of these mechanisms are not robust to manipulation,
and hence are not suitable for distributed implementation. Starting from [15],
researchers have attempted to design faithful mechanisms that incentivize agents
to follow all the rules [17]. These mechanisms do not consider privacy leakage
and so are not directly applicable for our purposes.

There are a number of papers that are starting to address privacy issues
in DisCSP [2,10,27]. These papers describe techniques, such as encryption [27],
obfuscation [2], and codenames [2], that can be used with DisCSP algorithms
such as DPOP, ADOPT, and NCBB, to provide privacy guarantees. However,
these works do not take agents’ selfish behavior into account.

3 Multi-agent Meeting Scheduling

We view meeting scheduling as a distributed and dynamic CSP where the deci-
sions are about when to hold each meeting and the constraints are the attendees’
calendar availabilities. The problem is distributed as the agents are only aware
of their own calendars and is dynamic as the needs for different meetings arise
over time. In this setting, the agents need to decide about the time of different
meetings one-by-one, and without knowing what will happen next. Attendees
of the meetings are self interested and privacy-sensitive; they wish to maximize
their own utility and reveal as little information about their availabilities and
preferences as possible. Therefore, we need to design an incentive mechanism
that guarantees truthful behavior of the agents, while protecting them against
unreasonable leakage of information.
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Formally, we model each meeting m by a tuple m = (A, I, l) where A is the
set of mandatory attendees, I ∈ A is the initiator who is responsible for setting
the meeting time, and l is the meeting’s required length in terms of time slots.
We denote the set of all available time slots in a meeting scheduling problem by
S = {s1, . . . , sT }, where sj represents the j-th available time slot.

Attendees of the meetings, including the initiator, are selfish. They have some
preferences over the outcomes and attend to their desires without any regard to
the preferences of others. Agent i’s preferences are captured by a utility function
Ui(.), which is a function of five variables:

1. Meeting start time (s ∈ S): We denote agent i’s valuation for having a meet-
ing at time t by the valuation function Vi(t) ∈ {−∞} ∪ [Vmin, Vmax]. The
valuation is −∞ when the meeting scheduling fails or when the meeting is
set at a time the agent cannot attend. Agent i’s valuation for a meeting with
length l which starts at time s is the minimum value he assigns to attending
a meeting at times s, s + 1, . . . , s + l − 1.

2. The messages sent in the mechanism (Mi): The agents are privacy-sensitive
and prefer not to share their calendar’s information with others. We denote
by L(Mi) the amount of agent i’s privacy which is leaked by sending messages
Mi. This privacy leakage adversely affects the agent’s utility. We will discuss
thoroughly how to design the leakage function in Sect. 4.

3. Number of rounds of mechanism (n): Each agent’s utility is a decreasing
function of the number of rounds. This is because, the longer the mechanism
takes, more communication resources agents need to use in the process.

4. Reward received at the mechanism (Ri): In an incentive mechanism, the
agents may give some rewards to others to incentivize them to behave as
they want. These rewards can come in the form of points, badges and lev-
eling that can help the agents advance in the future [24]. In this paper, we
consider rewards to be convenience points that can be used by the agents to
influence the future meeting scheduling processes.

5. Convenience points spent at the mechanism (Ci): This is the number of con-
venience points that agent i used to influence the outcome of the meeting
scheduling process. In general, more points are required to express higher
interests in a specific time for a meeting.

Based on the discussion above, we model agent i’s utility function in a quasi-
linear way as follows:

Ui(s, l,Mi, n,Ri) = δn−1
i min

s≤t≤s+l−1
Vi(t) − θiL(Mi) − Ci + Ri, (1)

where δi ∈ (0, 1) is agent i’s discount factor by which agent i’s future profits
is multiplied to find its present value, and θi ∈ (0, 1) is agent i’s sensitivity to
his privacy. Agent i’s discount factor displays his patience in the mechanism,
while his privacy sensitivity represents his attitude toward revealing his private
information to others.

Agents’ valuation functions and hence their calendar availabilities are
assumed to be their own private information. Therefore, selfish agents have to be
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motivated by a suitably designed incentive mechanism to reveal their calendar
availabilities truthfully. This mechanism needs to limit the leakage of agents’
privacy, as agents do not participate in a mechanism if it is overly detrimental
to their privacy. In the next section, we introduce a privacy leakage function
L(.). Then, in Sect. 5, we detail our incentive mechanism that induces honest
behavior by all selfish and privacy-sensitive agents.

4 Privacy Leakage

In a meeting scheduling process, the agents care about the privacy of their infor-
mation. They want to protect the privacy of their respective availability sched-
ules, as well as the lists of meetings they are involved in. Moreover, the initiator
who is responsible for scheduling a meeting may not want to share the details,
such as the number or identities of the participants, with them before the meet-
ing starts1.

To satisfy these requirements, we restrict our attention to the following class
of mechanisms.

Definition 1. Define by Γ1→1 the class of incentive mechanisms that satisfy
the following two properties:

1. Message passing occurs only between the initiator and the responders, and not
between responders themselves. The initiator does not pass the information
he receives from a responder to the others.

2. The initiator never asks the reason why an agent is free or busy at a time
slot. He also never describes the meeting’s details for the responders.

We call this class non-curious one-to-one (NC 1-1) mechanisms.

Restricting attention to this class of mechanisms guarantees that the details
of the current meeting, as well as the other appointments or meetings the agents
might have, are not leaked. However, in order to find a feasible time for the
meeting, revealing some information about the free/busy (F/B) status of the
agents is inevitable. In the following, we propose a function that measures the
leakage of the agents’ F/B information in an NC 1-1 mechanism.

In an NC 1-1 mechanism, no F/B information of a responder is leaked to
the other responders. Therefore, the only possible leakage is from the initiator
to the responders, and vice versa. Before revealing any information, the initiator
and the responders have a prior belief about the F/B information of each other.
This belief is based on the previous knowledge they may have about each other.
When no such information is available, the belief assigns probability 0.5 to both
free and busy status of the others for each time slot.

When a meeting scheduling mechanism runs, the initiator and the responders
learn some new information about each other’s calendars. This new information
1 This leak of information may enable responders to collude with each other to alter

the outcome in their favor.
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constitutes a posterior belief about the F/B information of the other agent. The
agents’ posterior beliefs about each agent i is constructed based on the messages
he has sent to them. Therefore, agent i is able to track the evolution of the
beliefs.

We define the privacy of a responder i at each instant of time as the distance
between the initiator’s belief about his F/B status and his true F/B information.
The privacy leakage of agent i is the difference between his privacy at the start
and end of the mechanism.

To formalize this idea, we denote the true probability distribution of agent i’s
availability at time slot sj by tji : {F,B} → {0, 1}, where tji assigns a probability
0 or 1 to the free (F ) and busy (B) status of agent i at time sj . We have tji (F ) = 1
and tji (B) = 0, if agent i is free at sj , and tji (F ) = 0 and tji (B) = 1, if he is busy
at that time.

At each instant of time, the initiator assigns a probability distribution to
the F/B status of agent i for time slot sj . We denote this probability distribu-
tion at the beginning and end of the mechanism by bjI,i : {F,B} → [0, 1] and
ejI,i : {F,B} → [0, 1], where bjI,i(F ) and bjI,i(B) (ejI,i(F ) and ejI,i(B)) are the
prior (posterior) beliefs the initiator has on the free and busy state of agent i,
respectively, at time slot sj .

Now, to define agent i’s privacy before and after running the mechanism, we
compare the prior and posterior beliefs with the true distribution. We do this
comparison based on the total variation distance metric [8]. For two probability
distributions p and q on a random variable x ∈ X, the total variation distance
is defined as

δ(p, q) =
1
2
‖p − q‖1 =

1
2

∑

x∈X

|p(x) − q(x)|, (2)

where ‖.‖1 represents the L1 norm. Using this distance, we measure the privacy
of responder i at the beginning and end of a mechanism as

Prbi =
T∑

j=1

δ(tji , b
j
I,i) =

T∑

j=1

∣∣∣tji (F ) − bjI,i(F )
∣∣∣, (3)

and

Prei =
T∑

j=1

δ(tji , e
j
I,i) =

T∑

j=1

∣∣∣tji (F ) − ejI,i(F )
∣∣∣, (4)

respectively. The privacy leakage of responder i is the difference between his
privacy at the start and end of the mechanism. That is,

Li = Prbi − Prei . (5)

In a similar way, we define the initiator’s privacy at the start and end of a
mechanism, as:

PrbI =
1

|A| − 1

∑

i∈A,i �=I

T∑

j=1

δ(tjI , b
j
i,I) =

1
|A| − 1

∑

i∈A,i �=I

T∑

j=1

∣∣∣tjI(F ) − bji,I(F )
∣∣∣, (6)
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and

PreI =
1

|A| − 1

∑

i∈A,i �=I

T∑

j=1

δ(tjI , e
j
i,I) =

1
|A| − 1

∑

i∈A,i �=I

T∑

j=1

∣∣∣tjI(F ) − eji,I(F )
∣∣∣. (7)

The only fundamental difference between (6)–(7) and (3)–(4) is that irrespec-
tive of the responders who only communicate with the initiator, the initiator
communicates with all of the responders. Therefore, his messages could affect
all responders’ beliefs. We define the initiator’s privacy as the average of the
privacy he gets in his communications with the responders. The privacy leakage
of the initiator is defined as

LI = PrbI − PreI . (8)

The privacy leakage function proposed above has two main features.

1. This privacy metric takes the possible correlation among an agent’s availabil-
ities at different time slots into account. In some cases, an agent has some
side information about the pattern of an agent’s calendar. This side informa-
tion could be the length or repeat frequency of his meetings, or the length of
breaks he normally has between them. In these cases, the F/B information
of one time slot may reveal parts of the F/B information of other time slots.
This indirect leakage of information reflects in functions (4) and (7) through
the posterior beliefs ejI,i and eji,I . This capability is missing in most of the
available privacy metrics, such as entropy and information content.

2. The privacy value of each time slot is finite and normalized to one. One of
the drawbacks of the logarithmic-based privacy metrics, such as Information
content and KL divergence, is that they do not provide any upper bound for
the privacy leakage; by using these metrics, the privacy leakage could go to
infinity even if the information of just one time slot is leaked.

Measuring privacy leakage with the function proposed above, in the next
section we present our negotiation-based mechanism that guarantees truthful-
ness.

5 A Negotiation-Based Incentive Mechanism

The initiator has some candidate start times for a meeting that needs to be
scheduled. The responders have different valuations and availabilities for these
time intervals, but this information is not available to the initiator. To extract
this information with low privacy leakage, at each round, the initiator offers at
least Lmin start times to the responders and asks them to rate the offers on a
scale of 0 to D − 1, where 0 means “busy/unavailable”, 1 means “Available but
completely dissatisfied” and D − 1 means “Available and completely satisfied”.

Increasing the lower bound Lmin increases the chance of finding a socially
acceptable solution in a shorter length of time, but at the cost of a higher privacy
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leakage. Therefore, Lmin is a control parameter that can be used to balance the
tradeoff between speed and social efficiency on one side, and privacy leakage on
the other.

The agents who rate time slot s at d ∈ {1, 2, . . . ,D − 2} attend the meet-
ing at s only if the initiator compensates them for the hardship they endure
by giving them some convenience points. Two examples of hardship could be
attending a meeting after work hours and rescheduling an existing meeting so
as to open room for this one. The agents use these convenience points to rate
future time slots. The number of points awarded by the initiator to a responder
is a decreasing function of his reported satisfaction d for that time slot, but it
is also a function of the satisfaction levels he reported for the other offered time
slots. Thus, if a responder announces to be generally more satisfied with the
offered time slots, he will get more points if one of his undesirable time slots is
selected. This rule is used so as to prevent the responders from falsely reporting
low satisfaction levels in order to get more points.

In more detail, the mechanism is a multi-round negotiation, where at each
round the initiator offers at most Lmax meeting start times to the responders. If
the number of offers made at round n, denoted by Ln, is greater than or equal
to a lower threshold Lmin, the initiator is permitted to go to the next round and
offer some new start times, if he couldn’t find a suitable time for the meeting at
the current round n. However, if Ln < Lmin, the negotiation ends at the end of
round n, independent of whether or not the meeting scheduling was successful.
This rule is designed to encourage the initiator to make at least Lmin offers at
each round, if he is able to do so.

We denote the time slots offered by the initiator at round n for starting the
meeting by {s1n, . . . , sLn

n }. Receiving this offer, each responder should rate each
of the offered times s1n, . . . , sLn

n on a scale of 0 to D − 1. We denote responder
i’s ratings at round n by ri,n = (r1i,n, . . . , rLn

i,n), where rji,n ∈ {0, 1, . . . ,D − 1}
indicates how satisfied responder i is with starting the meeting at the j-th time
slot offered to him at round n.

At each round n of the mechanism, each agent i has bi,n convenience points
that can be used to rate the offered time slots. Giving rates 0 and 1 does not
require spending points, however to give a rate d ≥ 2 to an offer, the agent needs
to assign d − 1 points to that offer. We define Nd

i,n, d = 0, 1, . . . ,D − 1, as the
number of time slots to which responder i gives rate d at round n. Using this
notation, the number of points agent i spends at round n to give rating ri,n can
be derived as

Ci,n =
D−1∑

d=2

(d − 1)Nd
i,n. (9)

At each round n of negotiation, we must have Ci,n ≤ bi,n.
Let us define Ai,n as the number of time slots responder i announces avail-

ability at round n. We can derive this parameter as Ai,n =
∑D−1

d=1 Nd
i,n. We

define the total flexibility responder i shows at round n of negotiation as follows:
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Fi,n =
D−1∑

d=1

(Ai,n + 1)d−1Nd
i,n. (10)

This function gives the decimal value of number (ND−1
i,n , . . . , N1

i,n) in base Ai,n+
1. Therefore, a greater value of Fi,n means responder i is more satisfied with the
time slots offered at round n. Function F is invertible; meaning that for each
i, n, given Ai,n + 1, the vector (ND−1

i,n , . . . , N1
i,n) can be reconstructed from the

flexibility Fi,n. We use this property and represent hereafter, the cost Ci,n of
agent i’s rating at round n by C(Ai,n, Fi,n).

After receiving the responders’ ratings, the initiator checks to see if any of
{s1n, . . . , sLn

n } is a good time for the meeting. If he finds none of these time slots
appealing, he can go to the next round and make some new offers, provided that
Ln ≥ Lmin. But if he does so, the mechanism doesn’t let him go back to time
slots {s1n, . . . , sLn

n } in the future. This rule is designed to encourage the initiator
to decide about the meeting time as soon as possible. If the initiator neglects a
time, in which all attendees are available, and goes to the next round, there is a
risk that no other feasible time slots can be found in the future, and hence the
meeting scheduling fails. To avoid this risk, the initiator prefers to set up the
meeting time as soon as he can.

The presence of all responders at the meeting is necessary. Therefore, the
initiator does not schedule the meeting at a time at which at least one responder
gave a zero rating. If the initiator chooses time slot sjn, j = 1, . . . , Ln, as the
meeting start time, he should award some convenience points to the following
two groups of responders:

1. Responders who announce they are not completely satisfied with time slot
sjn. These responders who rate time slot sjn at d ∈ {1, 2, . . . ,D − 2}, must
receive a compensation for the hardship they will endure if they attend the
meeting at interval

[
sjn, sjn + l − 1

]
;

2. Responders who announce complete satisfaction with all offered time slots at
round n at which they are available. Although these responders are completely
satisfied with the possible choices and will unconditionally attend the meeting
if any of them is selected, the initiator gives them a reward to appreciate their
high flexibility.

The number of points that must be awarded to a responder i if time slot
sjn is selected as the meeting start time is denoted by t(rji,n, Ai,n, Fi,n, Ln). This
function is decreasing in rji,n ∈ {1, 2, . . . ,D−2} and increasing in Fi,n, when the
other parameters are fixed.

To incentivize agents to rate the offered time slots truthfully, we design
reward function t(.) such that it satisfies the following conditions:
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(a)

D−1∑

d=1

P (d,A, F ) t(d,A, F, L) − C(A,F ) = P (1, A,A) t(1, A,A,L),

∀L ≤ Lmax,∀A ≤ L, ∀F st. F (mod A + 1) > 0,

(11)

where P (d,A, F ) is the probability a responder with flexibility F who
announced availability at A time slots at round n, assigns to the fact that
one of the time slots he rates at d will be selected by the initiator.

(b) t(D − 1, A, F, L) = 0, if F 
= A(A + 1)D−2.
(c) t(d,A, F, L) is a decreasing function of d for d ∈ {1, . . . , D − 2}.
(d) t(.) is invariant to shifting of the ratings. That is, r′

i,n = (ri,n + c) sign(ri,n),
where c ∈ {1, . . . , D − 2}, implies that t(d′, A′, F ′, L) = t(d,A, F, L)2.

The intuitions behind the above conditions are as follows. Condition (a)
guarantees that provided the agent gives rate 1 to at least one offer, the expected
number of points he gets minus the points he used depends only on the number
of time slots he reports to be available, and not on the specific ratings he gives
to the offers. This expectation is computed based on the agent’s belief about
the likely effectiveness of his ratings on the final outcome. Condition (b) ensures
that a responder who is announced to be completely satisfied with the chosen
meeting time receives no reward, unless he rated all the offers at D−1. Condition
(c) means that the agents who are less satisfied with the selected time slot
receive higher rewards. Condition (d) determines the reward for ratings with F
(mod A + 1) = 0 and guarantees that the reward function is only sensitive to
the relative ratings the agent give to the offers and not on the absolute values.
Based on the definition provided in condition (d), we call ratings r and r′ shifted
versions of each other, if 1) they mark the same time slots as unavailable, and
2) they differ only by a constant factor in the available time slots.

Theorem 1. For any fixed belief profile {P (d,A, F )}d,A,F which is invariant to
shifting of the ratings, the system of equations defined in (11) has a solution that
satisfies (b)-(d). We say a belief profile is invariant to shifting if r′

i,n = (ri,n +
c) sign(ri,n), where c ∈ {1, . . . , D − 2}, implies that P (d′, A′, F ′) = P (d,A, F ).

We present the proofs of all the theorems and lemmas in [4].
The probabilities {P (d,A, F )}d,A,F depend on 1) the responders’ belief about

the number of other people who should attend the meeting, and 2) the initia-
tor’s strategy for selecting the meeting start time. At each round n, when the
initiator receives the responders’ reports ri,n, i = 1, . . . , N , he evaluates all offers
{s1n, . . . , sLn

n } and decides which, if any, of them are suitable to be selected as the
meeting start time. Since the initiator is selfish, he does this evaluation based on
his own utility. According to (1), the initiator’s utility for any start time sjn is
the difference between the discounted value interval

[
sjn, sjn + l − 1

]
has for him

2 It is clear that by this transformation, we have A′ = A.
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Algorithm 1: Reward Design
1 Initialize reward function t(.) such that it satisfies condition (c)-(d);
2 err ← ∞;
3 while err > th do
4 Calculate probabilities {P (d,A, F )}d,A,F based on t(.);
5 tnew ← Solution of the set of Eq. (11) that satisfies condition (b)–(d);
6 err ← Norm(t − tnew);
7 t ← tnew;

8 end

and the sum of his privacy leakage and the points he should spend to incentivize
responders to attend the meeting at that time. This utility would be −∞, if at
least one responder cannot attend the meeting at that time. That is,

UI(sjn) =

⎧
⎪⎨

⎪⎩

δn−1
I minsjn≤t≤sjn+l−1 VI(t) − θIL(MI)−∑
i∈A t(rji,n, Ai,n, Fi,n, Ln), If rji,n > 0 for all i,

−∞, Otherwise.
(12)

It is clear from (12) that the initiator’s strategy for selecting the meeting’s
time and hence the probabilities {P (d,A, F )}d,A,F depend on the reward func-
tion t(.). Therefore, for each L ≤ Lmax, to derive a reward function that satisfies
the set of constraints (11) we have to run Algorithm 1. This algorithm works
by first considering an arbitrary reward function t(.) that satisfies conditions
(c)–(d). These conditions are weak and easily satisfied. Then it calculates prob-
abilities {P (d,A, F )}d,A,F that matches with the selected reward function and
updates function t(.) based on equation (11) and conditions (b)-(d). This proce-
dure repeats until convergence is reached. Theorem 1 ensures that the algorithm
will never stick in Line 5 because of not finding a solution to the set of equa-
tions (11).

We represent the Negotiation-based Meeting Scheduling (NMS) mechanism
designed in this section by Γ = (Lmin, Lmax,D, t(.)). The corresponding pseudo-
code of this mechanism is shown by Algorithm 2. Briefly, the NMS mechanism
starts with designing a reward function t(.) that satisfies conditions (a)-(d) and
announcing it to the agents. Then, when the need for a meeting arises, the
meeting’s initiator starts a negotiation process by offering some of his desirable
time slots. The number of offers at each round is one of the initiator’s decision
variables. Receiving the offers, the responders use their convenience points to
express their preferences over them. Then, the initiator evaluates each offer based
on the utility it provides to him, considering the cost

∑
i∈A t(rji,n, Ai,n, Fi,n, Ln)

he should pay to incentivize the responders to participate in the meeting (12). If
the initiator finds any of the offers acceptable, he will set up the meeting at that
time and terminates the negotiation. Otherwise, he will go to the next round if
Ln ≥ Lmin.
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Algorithm 2: NMS mechanism Γ = (Lmin, Lmax,D, t(.))
1 The system announces reward function t(.) to all agents.;
2 for each meeting m = 1, 2, . . . do
3 System chooses parameters Lmin and Lmax based on the relative

importance of privacy and efficiency.;
4 n ← 1;
5 Meeting start time sm ← 0;
6 while sm = 0 do
7 Initiator offers Ln ≤ Lmax time slots to the responders.;
8 Each responder i rates the offered time slots on a scale of 0 to D − 1 as

ri,n = (r1i,n, . . . , r
Ln
i,n ).;

9 if Initiator finds any of the offered time slots appealing then
10 A suitable time slot sjn is selected as the meeting start time.;

11 sm ← sjn;

12 Initiator awards t(rji,n, Ai,n, Fi,n, Ln) points to each responder i;

13 else
14 if Ln ≥ Lmin then
15 n ← n + 1.;
16 else
17 Meeting scheduling fails.;
18 sm ← ∞.;

19 end

20 end

21 end

22 end

6 Properties of the Mechanism

In this section, we show that the NMS mechanism Γ = (Lmin, Lmax,D, t(.))
is faithful. To this end, we need to prove that both the responders and the
initiator have no incentive to deviate from their required actions. We prove the
faithfulness of the responders and the initiator in Sects. 6.1 and 6.2, respectively.

6.1 Responders’ Faithfulness

The responders must have an incentive to 1) participate in the mechanism and
2) rate the offers truthfully. The first property is called individual rationality
and the second is incentive compatibility. In the following, we investigate and
prove these two properties for the privacy-sensitive responders (the proofs are
given in [4]).

Property 1 (Individual Rationality): Individual rationality, also referred to
as voluntary participation, is a desirable feature of a mechanism as it guaran-
tees that the agents voluntarily participate in the mechanism. This property is
important as agents are not forced to participate in a mechanism but can decide
whether or not to participate.
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Theorem 2. The NMS mechanism is individually rational for privacy-sensitive
responders. That is, each responder prefers the outcome of the mechanism to
the utility he gets when he does not participate.

Property 2 (Incentive Compatibility): The NMS mechanism is Bayesian
incentive compatible from the responders’ view point if each privacy-sensitive
responder can achieve his maximum expected utility by adopting a truthful
strategy. We focus on Bayesian incentive compatibility, as the agents have incom-
plete information and hence try to maximize their expected utility. To prove this
property we first need to define what exactly a truthful strategy is.

Definition 2. We say that responder i is truthful in the mechanism Γ =
(Lmin, Lmax,D, t(.)), if his report ri,n at each round n satisfies the following
conditions:

(I) For each j = 1, . . . , Ln, rji,n = 0 if and only if the responder is busy at time
sjn.

(II) The ratings are non-decreasing in the value of the time slots, i.e. Vi(sjn) >
Vi(skn) implies that rji,n ≥ rki,n.

(III) The ratings are as discriminant as possible. That is, time slots with different
values get different ratings, as long as both the number of satisfaction levels
D and the budget bi,n allow.

Definition 2 provides a formal description of a responder’s truthful behavior.
In the following, we show that the mechanism Γ is powerful enough to incentivize
privacy-sensitive responders to adopt a truthful strategy.

Lemma 1. The privacy-sensitive responders do not have any incentive to lie
about their availability, i.e.giving rate 0 to a time-slot is efficient for a responder
if and only if he is busy at that time slot.

Lemma 1 proves that condition (I) of Definition 2 is satisfied. In the next
lemma, we prove that condition (II) is also satisfied.

Lemma 2. It is never optimal for a responder to give a higher rating to a time
slot he likes less.

To prove satisfaction of condition (III), we need the following lemma. This
lemma states an important property of the proposed mechanism that is key to
proving incentive compatibility.

Lemma 3. It is optimal for each responder i to give rate 1 to at least one
offer. In this case, the expected number of points he gets at each round of the
mechanism minus the number of points he spends is independent of how he rates
his available time slots.

As a result of Lemma 3, when a responder wants to decide on the ratings for
his available time slots, he does not need to consider the points; he only needs
to consider the effect of his ratings on the selected time slot. This property helps
us to prove the next lemma.
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Lemma 4. The ratings are as discriminant as possible. That is, as long as the
number D of satisfaction levels and the responder’s budget al.low, it is optimal
for him to give unequal ratings to time slots with unequal values.

Based on Lemmas 1–4, we can state the following main theorem.

Theorem 3. For any Lmin, Lmax, and D, the mechanism Γ = (Lmin, Lmax,
D, t(.)) where reward function t(.) is derived by Algorithm 1 is Bayesian
incentive-compatible from the view point of privacy-sensitive responders.

6.2 Initiator’s Faithfulness

In the NMS mechanism, the initiator is supposed to 1) participate in the mech-
anism voluntarily, 2) make at least Lmin offers at each round, if he is able to
do so, 3) choose a feasible start time, and 4) award convenience points to the
responders according to reward function t(.). In the following, we discuss briefly
why the initiator has no incentive to deviate from any of the above-mentioned
actions.

Voluntarily participation of the initiator can be proved following similar steps
to Theorem 2. The initiator offers at least Lmin time slots at each round to
preserve the chance of continuing the negotiation. Since otherwise, he may end
up failing the scheduling, while a feasible time slot exists. In this case, the utility
of the initiator is −∞ and hence, he does his best to avoid it.

Setting the meeting at a time when some agents are busy is equivalent to
failing the meeting scheduling, which values −∞ to the initiator. Therefore, the
initiator never chooses a time slot to which at least one agent give 0 rating. The
attendance of responders at the meeting is conditioned by receiving the corre-
sponding rewards. Therefore, if the initiator does not award the promised points
to the responders, they do not participate in the meeting. This fact prevents the
initiator from deviating from giving responders the promised rewards.

7 Conclusions

Using a score-voting approach, we described an incentive mechanism for DisCSPs
with selfish and privacy-sensitive agents. Our mechanism is online and can be
implemented in dynamic situations where the decision variables and constraints
are evolving over time. Moreover, we showed that the mechanism is faithful and
can be run by selfish agents, with no need to a central trusted entity. Devising
a control parameter, we made the mechanism adjustable to different scenarios
in which agents assign different weights to privacy and efficiency. We presented
the mechanism via the domain of meeting scheduling, however, this mechanism
can be easily applied to a wide range of multi-agent systems.
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Abstract. We propose a contextual bandit based model to capture the
learning and social welfare goals of a web platform in the presence of
myopic users. By using payments to incentivize these agents to explore
different items/recommendations, we show how the platform can learn
the inherent attributes of items and achieve a sublinear regret while maxi-
mizing cumulative social welfare. We also calculate theoretical bounds on
the cumulative costs of incentivization to the platform. Unlike previous
works in this domain, we consider contexts to be completely adversarial,
and the behavior of the adversary is unknown to the platform. Our app-
roach can improve various engagement metrics of users on e-commerce
stores, recommendation engines and matching platforms.

Keywords: Multi agent learning · Contextual bandit · Incentivizing
exploration

1 Introduction

In several practical applications such as recommendation systems (mobile health
apps, Netflix, Amazon product recommendations) and matching platforms
(Uber, Taskrabbit, Upwork, Airbnb), the platform/firm has to learn various sys-
tem parameters to optimize resource allocation while only partially being able
to control learning rates. This is because, the users who transact on such plat-
forms can take autonomous actions that maximize their own utility based on
potentially inaccurate information, sometimes to the detriment of the learning
goals.

It is well known that users are influenced by the ratings and reviews of pre-
vious users provided by the platform while making their purchase decisions on
e-commerce platforms. For such settings, it is standard to associate the different
products on the platform with parameters (or attributes). Similarly, the users
who arrive on the platform can be identified by their preference which we subse-
quently refer as contexts. The true attributes are unknown to both the platform
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and the users, however, estimates of these attributes can be learnt as the users
purchase products on the platform based on their preferences and reveal their
utility via ratings and reviews. Generally, e-commerce platforms are assumed to
have complete knowledge of the user contexts, e.g., by users logging into the
platform before making a purchase. The most common behavior model of the
users is myopic, i.e., they make greedy decisions based on the attributes of dif-
ferent items revealed by the platform. A myopic user’s decision based on these
attributes can be sub-optimal if attributes have not been learned well enough
from previous transactions. Because of the positive feedback loop, the platform’s
estimates of these attributes may be very different from their true values, lead-
ing to loss of social welfare. While users are myopic, the platform tends to be
long-term focused, and has to incentivise its users through discounts, promotions
and other controls to learn these attributes accurately and increase the overall
social welfare.

Similarly in the area of mobile health apps (e.g., for chronic care management,
fitness & general health, medication management) incentivization in learning can
help the app serve users better, but might get impeded by users being immediate
reward focused. Here, the platform typically sends recommendations for users to
partake in activities with the goal of improved health outcomes [5]. The quality
of recommendations can be high if the platform knows the utility model of the
users and their preferences for different activities. To learn these preferences, the
platform could devise incentives to nudge the user to prefer a different activity
than their currently preferred choice, where the latter is based on current low
quality recommendations. If it can restrict the amount of nudging while still
being able to learn enough to give good activity recommendations (based on
what it has learned so far), then all users will be better off.

In the above two applications and many others, the platform’s goal is to max-
imize social welfare of the myopic users by learning the system parameters just
enough to make the best recommendations (or equivalently, ensuring that the
users take the best actions for their contexts) over time, when compared to the
clairvoyant benchmark of making recommendations when the system parameters
are known. The paper focuses on modeling a principal-agent variation of online
learning in the contextual bandit setting that allows the platform (principal) to
use payments as auxiliary controls. Typically, the platform needs to give pay-
ments (which are costly) since in most practical settings the choices of the users
based on current data may not be exploratory enough. Our objective then is to
design such payments schemes that allow learning and improving social welfare,
while simultaneously not costing too much to the platform.

Contextual bandits, a popular framework to learn and maximize revenue in
online advertising and recommendation domains [2,13,17], are problems where
users are modeled as contexts (feature vectors) and the learner picks an action
tailored to the context for which it is rewarded (bandit feedback). The meth-
ods developed here learn the parameters of the reward generation model while
simultaneously exploiting current information on the quality of the arms (pop-
ular algorithms include EXP4, ε-greedy, RegCB etc.). While limited in their
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expressivity compared to Markov Decision Processes (MDPs) (there are no
states), they tend to capture learning problems where the reward for an action
(such as purchasing an item or walking for 10min or standing up) has an imme-
diate outcome (such as a positive utility or a better mood) fairly accurately.
While MDPs are also a suitable approach, they are typically harder to learn and
analyse theoretically.

Only a few works have considered the principal-agent variations which
involves incentivization in learning through payments or otherwise in the recent
past. In [3] show that a constant amount of payments is enough if the users
are heterogeneous, however, in their setting the platform is aware of the arriv-
ing contexts and the distribution from which contexts are drawn. The role of
user heterogeneity is further explored in [1,11] as covariate diversity. In the for-
mer work, the authors consider contexts to be stochastic and prove that myopic
arm selection is enough for certain distributions of contexts when the number
of arms is two, while in the later, the authors use controlled and known pertur-
bations to the contexts and show that greedy (myopic) selection of arms gives
sub-linear regret. In [10], the authors propose a randomized algorithm without
an explicit user heterogeneity criteria. However, their technique requires use of
ridge estimator to estimate arm attributes leading to unbiased estimates.

A related but orthogonal approach is pursued in [4,9,15,16], where the
authors consider principal-agent settings but only allow the use of information
asymmetry under incentive compatibility constraints to explore, unlike payments
in our setting. A similar setting was also investigated in [8] where they explore
various unbiased disclosure policies that the platform can use to explore. In [7]
the authors also consider a principal-agent setting, and assuming that the prin-
cipal knows the distribution from which the contexts arrive as well as that each
arm is preferred by at least some contexts, provide regret and payment bounds
for an incentivization algorithm (building on their earlier results in [6]). In a
vanilla multi-armed bandit setting, the authors in [18] have studied how pay-
ments can help explore and achieve sublinear regret.

Main Contributions: First, we propose a contextual bandit based principal-agent
model where payments can be used as auxiliary controls to induce exploration
and learning. Second, we develop qualitative and quantitative characterization
of payments as means of ensuring exploratory behaviour by agents. We develop
a novel algorithm and show that the expected aggregate payments it makes in
such regimes is sub-linear in the time horizon T . Finally, we compare regret
performance and payments requirements of our approach and other competitors
on both synthetic and real datasets. We find that the greedy approach with
no payments (i.e., the platform does not explore at all) work well with real
data, however, there are synthetic data instances where its regret performance
is consistently surpassed by algorithms such as ours. Our proposed algorithm
works with the most general agent behavior (adversarial contexts), moreover,
the payments scheme does not require the principal to have the knowledge of
the current context (see Sect. 2).
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2 Problem Statement

Users (or agents) arrive sequentially over a period T on a platform V and make
choices. The context vector corresponding to an agent arriving at time step
t ∈ [T ] is represented as θt ∈ R

d (w.l.o.g. assume ||θt||2 ≤ 1). Each choice is
represented as an arm i ∈ N (with |N | = N), which is associated with a fixed
d-dimensional attribute vector μi (w.l.o.g. assume ‖μi‖2 ≤ 1). We can think of
each coordinate of μi as an attribute of arm i that may influence the user to
choose it over the others. True arms attributes are unknown to both platform
and the agents a priori, and the platform shows its estimate of these attributes
to arriving agents.

User Choice and Reward Model: The user choice behavior is myopic in
nature: she is presented with the empirical estimates of {μi}i∈N : {μ̂i}i∈N , cor-
responding to the arms available on the platform (e.g., via metadata, tags or
auxiliary textual information) and then she makes a singleton choice. In this
notation, μ̂t

i denotes the latest estimate for the arm i available at the time t. She
may have a random utility for each arm i, whose mean is θt.μi (an inner prod-
uct), where θt is her context vector. Given these utilities, she picks an arm with
the highest perceived utility. In the special case where there is no randomness
in the utilities, then her decision is simply argmaxj∈N θt.μ̂j . For simplicity, we
will work under this restriction for the rest of the paper. Let the chosen arm be
denoted as it at round t. The reward accrued by the user is θt.μit .

Feedback Model: Although the platform keeps track of all interaction history,
it can only observe the context after the agent has arrived on the platform. The
platform computes and displays the empirical estimates {μ̂i}i∈N based on the
measurements it is able to make. The measurements include the context of the
user that arrived and the random utility that she obtained: yt = θt.μit + ηt,
where ηt is a zero mean i.i.d. sub-Gaussian noise random variable. The platform
estimates {μ̂i}i∈N by using the observed contexts and the reward signals for
each arm at each time step, most often by solving a regression problem. Some
useful notations are as follows: Θ is the T × d-dimensional design matrix whose
rows are the contexts θt. Also ∀i ∈ N , Si,t := {s < t|is = i}. Further, Θ(Si,t)
represents the design matrix corresponding to the contexts arriving at the time
steps denoted by Si,t, and Y (Si,t) denotes the collection of rewards correspond-
ing to these contexts at time steps Si,t.

Learning Objective: The platform incurs an instantaneous regret rt if the arm
picked by the user is not the best arm for that user. That is, rt = maxj θt.μj −
θt.μit . The goal of the platform is to reduce the expected cumulative regret RT =
E[

∑T
t=1 rt] over the horizon T . Intuitively, if the platform had the knowledge and

could display the true attributes of the arms, then the users would pick the items
that are best suited to them, and the cumulative regret would be zero. But since
the platform does not know the attributes of the arms a priori and the users
are acting myopically, it has to incentivise some of these users to explore (based
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on the history of contexts and rewards generated thus far). The platform does
so by displaying a payment/discount vector pt in addition to the estimated
arm attributes. The corresponding user’s decision is argmaxj∈N (θt.μ̂j + ptj).
The goal of the platform is to design incentivization schemes that minimize the
cumulative regret, while keeping the total payments made as small as possible.
We assume all ties to be broken arbitrarily. Hence at each round t, an agent
with context θt (unknown to the platform when it is deciding payments) arrives
on the platform. The platform presents the agent with arm estimates {μ̂i}i∈N
and a payment vector pt. The agent makes a singleton choice, thereby accruing
some reward. The platform observes the context and a noisy measurement of
this reward, and updates its estimates.

3 Algorithms and Guarantees

In this section, we propose a new algorithm (CBwHeterogeniety, see Algo-
rithm 1) that uses randomized payments to incentivize agents, enabling the
platform to incur sub-linear regret. Essentially we identify a way to adapt and
extend the non principal-agent setting of [11] to our platform-user interaction
model. One way to reduce the cost that the platform incurs towards incentiviza-
tion is to work with a special class of contexts (those having covariate diversity,
see Definition 1), which would provide exploration of the arms naturally, leading
to learning and low-regret. More specifically, in the contextual bandit setting
of [11], the authors assume that a known perturbation (i.i.d. noise) is added to
the contexts before they are picked up by the platform. They show that because
of this perturbation the power of adversary (in choosing the contexts) is reduced
and a myopic selection of arms enjoys sublinear regret (Theorem 1).

In our setting, the choice of context at a given round is purely adversarial
and we make no assumption on the contexts. Our key idea is to use payments to
mimic perturbations. We show that with the proposed payment scheme, covari-
ate diversity can be infused into our model, even if the arriving contexts are
adversarial. Finally, we bound the expected cumulative payments in our scheme
and show that it is sub-linear in T .

Our algorithm CBwHeterogeniety is described in Algorithm 1. The key
idea is to first generate perturbations that can satisfy the covariate diversity
condition, and then transform these perturbations to a payment vector, which is
then presented to the user. The user then myopically picks the best action, given
these payments (one for each arm), ensuring fair compensation if this choice
was different from their original choice. The platform updates the estimates
of the selected arm’s attribute vector by performing a regression while taking
the payment information into account. As we show below, this approach enjoys
sublinear (in horizon T ) upper bounds on regret and the payment budget.

Lemma 1. In CBwHeterogeniety (Algorithm 1), there exists a suitable
payment for each arm such that argmaxi(μ̂t

i.θt + pti) = argmaxi μ̂t
i.(θ

◦
t ) for all

t > m (m is the number of initial forced exploration rounds). And θ◦
t satisfies
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Input: Arms: N , time horizon: T , and initial exploration parameter: m.
InitialExploration()
for t = m + 1 to T do

Agent with context θt arrive at the Platform.
{pt

i}i∈N = CalcPayment().
Agent choose arm πt = argmaxi(μ̂

t
i.θt + pt

i).
UpdateEstimate()

end
Procedure CalcPayment()

pt
i = ζt.μ̂

t
i, where ζt ∼ N (0, σ2Id) for all arms.

Procedure UpdateEstimate()
Updating History:

Θ(Sπt,t+1) = [Θ(Sπt,t)|(θt + ζt)] with ζt obtained above, and
Y (Sπt,t+1) = [Y (Sπt,t)|(μ̂πt .θt + pt

πt
)].

Updating Parameter:
μ̂t+1

πt
= (Θ(Sπt,t)

T Θ(Sπt,t))
−1Θ(Sπt,t)

T Y (Sπt,t).

Algorithm 1: CBwHeterogeniety

covariate diversity (Definition 1). Additionally, expected payments made by the
platform are sub-linear in horizon T , specifically the average cumulative pay-
ments are O

(
N

√
2T log(NT )

)
.

Proof. First, we make some observations. The platform can offer negative pay-
ments implying users would incur some penalty if they select certain actions.
Hence, the platform can influence the choice of the myopic user by providing a
collection of payments and penalties (one for each arm). Enforcing payments as:
pti = ζt.μ̂

t
i where ζt ∼ N (0, σ2Id), ensures that the perceived context, θt + ζt at

any given round t satisfies the covariate diversity condition. Hence, in the pro-
posed payments scheme, the platform pays a random payments vector pt where
each arm may receive a non-zero value, depending on the estimates μ̂t.
The cumulative payments for an arm i can be expressed as:

Payment(T, i) =
T∑

t=1

ζt.μ̂
t
it , (1)

Notice that, ζt.μ̂
t
i is a sum of sub-Gaussian random variables as ζt.μ̂

t
i =

∑d
l=1 ζ

(l)
t .μ̂

(l),t
i . Hence ζt.μ̂

t
i is a sub-Gaussian random variable with the variance-

proxy parameter, ||μ̂t
i||. Since we assume that ||μi|| ≤ 1, estimate (in our algo-

rithm) ||μ̂t
i|| ≤ 1 as well. Thus we can use sub-Gaussian tail bounds to upper

bound the absolute value of the payments in Eq. (1). Consider the following
standard tail bound for sub-Gaussian random variable:
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Lemma 2. Let Y1, Y2..Yt be an s-sub-Gaussian martingale, i.e, each Yj is dis-
tributed as mean-0 and s-sub-Gaussian conditioned on Y1, ..Yj−1. Then:

P

⎡

⎣
t∑

j=1

Yj <
√

2ts log(1/δ)

⎤

⎦ > 1 − δ

Thus we bound the sum
∑T

t=1 ζt.μ̂
t
it

with probability at least 1 − δ with the
quantity:

T∑

t=1

ζt.μ̂
t
it <

√
2T log(1/δ). (2)

In Eq. (2), we apply a union bound to obtain a bound for all arms i ∈ N
simultaneously with probability 1 − δ′, as shown below:

T∑

t=1

ζt.μ̂
t
it <

√
2T log(N/δ′)

Hence, the cumulative payments across all arms is upper bounded by:

N∑

i=1

Payments(T, i) < N
√
2T log(N/δ′),

with probability at least 1 − δ′. To realize the final bound we use δ′ = 1/T .
We now provide a proof of the regret claim. First, we re-write the definition

of covariate diversity from [11] as below.

Definition 1. For any distribution D with ζ ∼ D and ζ ∈ R
d and θ◦

t := θt+ζ,
for any arbitrary θt ∈ R

d such that: (a) if ζ is a “centrally bounded”, i.e. w.ζ ≤
r ,∀w : ||w|| ≤ 1 with high probability, and (b) if the minimum eigenvalue of the
expected outer product E[θ◦

t .(θ
◦
t )

T ] is lower bounded, i.e:

λmin

[
E

[
θ◦
t .(θ

◦
t )

T
]] ≥ λ◦,

then, the perturbed context, θ◦
t has covariate diversity.

Remark 1. In the Algorithm 1, an agent makes a choice after receiving the pay-
ment vector from the platform and hence to the platform, the perceived con-
text θ◦

t has Gaussian (“centrally bounded” distribution) perturbation baked-in
providing co-variate diversity to the context. Such a condition on the context
implies that there is non-trivial variance in all dimensions and intuitively such an
arrangement allows convergence of the least square estimator of arm attributes.

Since (a) the payments scheme proposed in the proof of Lemma 1 establishes
covariate diversity, and (b) in the Algorithm 1, we update history with perturbed
contexts, it is intuitive to see that the regret upper bound of Theorem 4.1 of [11]
(derived in the non principal-agent setting) also applies here.
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Theorem 1. With an appropriate initial exploration (parameterized by m),
CBwHeterogeniety has the following regret upper bound with probability at
least 1 − δ′′:

R(T ) ≤ Õ
(√

TN log (TN)3/2
)

,

where the notation Õ(.) hides dependence on instance specific parameters and
δ′′.

Remark 2. Note that for the regret guarantee to hold, Algorithm 1 must have
an initial exploration phase, during which the agents are made to play arms
uniformly at random or in a round-robin fashion. Intuitively, this warm-start is
required to build up robustness of estimates against adversarial contexts.

3.1 Other Payments Scheme and Lower Bound

In the previous section, we established a payments scheme with bounded cumu-
lative cost to the platform that also allowed for sub-linear regret without any
additional assumption on the instance or the adversarial choice of the contexts.
It is natural to ask the following question: does there exist a payments scheme
which is even more frugal for the platform (i.e., costs less) and still ensures sub-
linear regret? Could there be a principal-agent setting where initial exploration
is not needed? The first question has been partially addressed before. In [3], the
authors show that only a constant (in T ) total amount of payment is required for
a sub-linear regret bound. However, in their model the platform knows the dis-
tribution of the contexts as well as views the context of the arriving agent before
deciding on the payments, this is in addition to the heterogeneity assumption
on the contexts, which is equivalent to the covariate diversity described above.
In [10], the authors presents a randomized algorithm which does not need any
initial exploration phase as the exploration is baked-into the randomization.
Their scheme, however requires that the agents and the platform maintain the
estimate of the arm attributes using a ridge estimator.

In the previous section and in the above works, cumulative payment scales up
with instance parameters. We claim that, this is essential if we ought to perform
better than a vanilla explore-then-commit strategy1, as shown in the following
lemma.

Lemma 3. Consider A to be the set of all explore-then-commit algorithms
(without incentivization) for the contextual bandit that does not make any addi-
tion assumptions on the instance or the contexts. With a restricted upper cap
B on the cumulative payments budget, no algorithm can do better than the best
algorithm in the set A even with an initial exploration.

1 In a typical explore-then-commit learning strategy, there is an initial pure exploration
phase by the end of which the learner commits to a single best action till the end of
the horizon T [12].
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Proof. Firstly, we make an observation that the best algorithm (denoted by
Alg) in the set A: it has the best regret guarantee of all algorithms that do not
explicitly incentivize by payments and have an initial exploration phase. Consider
an instance with two arms and let t be the first round after the initial exploration
phase. Let μ̂1 and μ̂2 be the corresponding estimates of the arm attributes, visible
to the arriving agents on the platform. As the agent arrival is purely adversarial,
∃ context θ′, such that (μ̂1 − μ̂2) · θ′ > B. Further, if the adversary opts for this
context for all the following rounds till T , then incentivizing through payments
is fruitless. This is because, the fixed budget B is too less to induce any change
to the myopic behavior of the agents. Hence, in fixed budget regimes, Alg has
the best regret guarantee.

4 Simulations

In this section we compare the learning performance (regret) and payment
requirements for our proposed strategy Algorithm 1 and other standard baselines
for both synthetic and real datasets. For ease of referencing we name the algo-
rithms as: (1) CBwHeterogeniety (Algorithm 1); (2) CBwPayments (an
algorithm in which the platform provides as much payment as required so
that the myopic agents choose arms as if they are deploying LinUCB [14]);
(3) CBChainedUnrestricted (an algorithm based on the chaining method
of [10]); (4) CBChainedRestricted (an instance of the algorithm CBChaine-
dUnrestrictedwith a fixed upper cap on the total cumulative payments) and
(5) NoPayments (the platform is passive and agents make myopic choice with-
out any influence).

In our first experiment, the contexts are drawn from a multivariate Gaussian
distribution with a non-zero mean. We set the number of arms to be |N | = 8,
the context dimension as d = 4, and the time horizon as T = 800, while aver-
aging over 10 Monte Carlo runs (refer to Fig. 1). The NoPayments strategy,
i.e., where the platform has no control on exploration, perform very well and
has a sub-linear regret. However, in our simulation studies its performance was
consistently surpassed by other algorithms, especially CBwPayments with Lin-
UCB as the underlying strategy. One interesting result (which is also observed
in the next experiment) is that CBwHeterogeniety has good performance
in terms of payments required to ensure sub-linear regret. This reinforces our
theoretical guarantees for the same (see Lemma 1, where upper bounds on the
expected total payments were stated). On the other hand, LinUCB (implemented
within CBwPayments) incurred large incentivization costs in these synthetic
principal-agent instances.

Next, we use the same experimental setup as before, but use a publicly
available data set to mimic arm attribute learning: the EEG data set from
the OpenML platform. This data set contains 14-dimensional feature vectors
with two possible class labels (|N | = 2). We use this classification instance to
generate contexts and assign rewards. We standardize the feature vectors as a
pre-processing step. Taking the time horizon as T = 2500, we randomize the

https://www.openml.org/d/1471
https://www.openml.org
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Fig. 1. Left plot shows cumulative regret, right shows the total payments made by
various algorithms. In both plots, x-axis is the time horizon and y-axis represents
either cumulative regret or cumulative payments made.

arrival of contexts and report results averaged over 10 Monte Carlo runs (refer
Fig. 2). Interestingly, the NoPayments strategy performs very well, followed by
the payment based schemes (note that our algorithm is quite competitive in this
setting and has regret and payment guarantees while NoPayments does not
without addtional assumptions).

Fig. 2. Left plot shows the cumulative regret, right shows the total payments made
by various algorithms. In both, x-axis is the time horizon and y-axis represents either
cumulative regret or cumulative total payments.

5 Conclusion

In this paper, we studied the principal-agent variants of online learning under
the contextual bandit framework, where a platform sends recommendations and
users act on those that are most valuable to them, and the platform can use
payments to incentivize exploration and fasten learning.

This paper is among only a handful of recent works which have tackled the
problem of incentivization/recommendation in principal-agent settings, hence
several fruitful avenues for extending this initial foray remain.

– In Algorithm 1, platform uses payments to infuse heterogeneity in the arriving
contexts. It is easy to ensure sub-linear regret with Ω(T ) payments. Similarly,
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if the allowed regret is upto O(T ), the platform does not need to pay at all. It
would an interesting problem to calculate lower bounds on payments required
for a reasonable regret guarantee.

– It seems to be the case that notions such as covariate diversity may be nec-
essary for unbiased estimation of arm attributes. Hence, a study which ties
together the efficacy of various algorithms (including ours) to covariate diver-
sity in the contexts could be an interesting contribution in the incentivized
exploration literature.

– Although assuming myopic behavior of the agents is an intuitive modeling
choice, it may not cover all the practical possibilities. Hence, extending algo-
rithm design and analysis to situations where the agents are non-myopic, for
instance, they are anticipating payments, are partially observed, or are gov-
erned by a rich discrete choice model. All these would also be of significant
interest.

– More complex user behaviors can modeled if the platform can inform the
estimate of each arm’s attributes along with their variance. This can better
inform the users, especially the ones that are risk-averse.
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Abstract. Agent-based Computational Economics (ACE) is an area
that has gained significant attention, since it offers the possibility to
model economic phenomena in a more fine-grained manner than other
approaches. One such phenomenon is “bank panic” in which the term
“panic” implies the existence of emotional bias towards to the sudden
withdrawal of deposits from financial institutions (simultaneous bank
runs). However, research towards complex emotional agents in ACE has
not been extensively conducted. The paper employs a formal state-based
model enhanced with explicit emotional states, mood and personality
characteristics in order to describe the agents behavior. A NetLogo sim-
ulation of a multi-agent system in a limited economic environment is
attempted in order to study the effects of emotions, emotion contagion
and the role of various players in the genesis of a bank panic crisis. The
aim is to investigate further whether such agent models that are already
used in other areas, such as evacuation simulation, could also provide a
better insight on the evolution of such economic phenomena.

Keywords: Agent based simulation · Emotional agents · Agent-based
computational economics · Bank runs

1 Introduction

Agent based Computational Economics (ACE) is a thriving area of research,
offering the potential to model economic phenomena. Existing conventional
methods are based on mathematical models, which describe a set of defini-
tions and assumptions that lead to proofs of theorems. A number of economists
consider such models too restrictive to address real problems and thus moved
towards other computational alternatives [13]. ACE modelling has been applied
to the same problems, for instance how an economic system reaches an equi-
librium. ACE conveys a methodological novelty since the models consist of rel-
atively simple agents that collectively exhibit rich behaviour with the overall
outcome naturally emerging as a result of their interactions. Thus, agent-based
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modeling enables the development of macroeconomic models using a bottom up
approach [28].

ACE can be applied to a broad spectrum of micro or macro economic systems,
where agents can be represented as interactive goal-directed entities, i.e. BDI
agents. However, in many economics applications, BDI agents need to be infused
with emotions that may affect their reasoning and decision-making. Emotions
affect an agent’s goals, hence affecting their actions [18], that is common in the
real world. In addition, incorporating human aspects such as personality and
emotion leads to more believable simulations [17].

The paper aims to investigate further whether emotional agent models, used
in other areas such as evacuation simulation, could provide a better insight on
the evolution of economic phenomena. Our motivation was to demonstrate the
potential of ACE in an emotionally intensive economic phenomenon, namely a
bank panic. Thus, the main contribution of the paper is an agent model and
the corresponding simulation based on a formal method that supports emotions
including emotion contagion.

The rest of the paper is structured as follows. Section 2 presents an overview
of the related work in ACE, bank runs and emotional agents; Sect. 3 provides
a brief description of the emotions X-Machine model, which was used as the
basis to specify the behaviour of agents in the simulation environment. Section 4
describes the agent model used, including the emotional inputs and how they
affect agent behaviour, with Sect. 5 presenting the preliminary experimental
results. Finally, Sect. 6 concludes the paper.

2 Background and Related Work

2.1 Emotions

Emotions are meant to be short, short term states of mind the individual pas-
sively experiences instigated by events or objects [7]. Mood, on the other hand,
is used to describe a long standing emotional state. In psychological studies,
the emotions that influence the deliberation and practical reasoning of an agent
are considered as heuristics for preventing excessive deliberation [4]. Emotions
affect an agent’s goals, hence affecting their actions. Emotional effects on goals
can manifest via reordering existing goals, or by introducing completely new
goals. The goals’ success or failure can affect emotional states.

In addition to emotions and moods, personality is an important aspect which
affects perception and how quickly the emotional state changes. The final factor
that is of great importance to communication intensive socioeconomic environ-
ments is contagion, i.e. how an agent’s emotional state affect another agent’s
emotional state. All these integrated, make an individual’s behaviour completely
different from pure rational behaviour in the absence of emotions.

Agents can be potentially enhanced by infusing emotions in their function-
ality leading to Emotional-BDI agents, i.e. agents whose behaviour is guided
not only by beliefs, desires and intentions, but also by the influence of emotions
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(such as fear, anxiety etc.) in reasoning and decision-making. The existing for-
mal systems for rational agents [20] do not allow a straightforward representation
of emotions. However, they have properties which can be inherited in order to
properly model Emotional-BDI agents [18].

2.2 Emotional Agents in Socioeconomic Scenarios

Several models for emotions in agent systems have been reported. ESCAPES
is a multi-agent simulation tool, that reproduces phenomena on evacuation sce-
narios, such as an escape scenario at the International Terminal of Los Angeles
International Airport [29].

Elsewhere, a Group Decision Support System was developed focused on the
negotiation process improvement through argumentation, by using the affecting
characteristics of the involved parties [25]. The system uses both personality
and emotional inputs in order to select the best arguments to reach a decision.
The results revealed that aggressive agents achieve more preferred solutions than
negotiator agents.

In [1], another agent based model of the financial domain was introduced;
leveraged investors (banks) that used a Value-at-Risk constraint. This constraint
was established on historical market data (e.g. asset prices) to predict the port-
folio risk. The model took under consideration pro-cyclical leverage (low risk
results in high leverage). It was shown that it resulted in endogenous irregular
oscillations. This means that when the stock prices were increased the market
collapsed. When the leverage was regulated to correct the risk (using a counter-
cyclical leverage policy) prices reached a plateau which stabilized the system.

2.3 Bank Runs

A bank run is defined as the situation “where depositors withdraw their deposits
from banks because of fear of the safety of their deposits” [12]. The term “bank
panic” is often associated with the existence of emotional bias towards a sudden
simultaneous withdrawal of deposits from different financial institutions (simul-
taneous bank runs). Bank runs often appeared in the course of time, such as
the Great Depression in the US. The 2007 global financial crisis, has also been
characterized by bank runs internationally (e.g., Countrywide Bank, IndyMac
Bank, Northern Rock Bank, etc.). To avoid bank runs, several actions have been
taken, such as increasing deposit insurance in bank of the US and UK [12].

There have been several approaches in simulating bank run scenarios with
ACE. The frequency of occurrence in bank runs has been studied in [27], where
panic is spread among agents that focus on the neighborhood influence. The
assumption is that different equilibria are likely to be established in differ-
ent neighbourhoods. The model included synchronization effects which gener-
ate bank runs and is based on three important interacting factors which influ-
ence the patient agents’ strategies (withdraw or wait), the proportion of patient
agents (those that wait), the activation threshold and the interaction neighbor-
hood of agents [6]. A similar approach with regards to focusing on neighborhood
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influence is taken in [26], which showed that the number of bank run incidents
decreases with the size of the banks, i.e. number of clients. The work reported in
[8] focuses on rumors spreading. The model described is predicated on dynamic
rumor-based bank runs with endogenous information acquisition by incorporat-
ing bank liquidity uncertainties into a asynchronous awareness framework. The
liquidity event triggers a rumor spread and therefore the bank can be exposed
to a bank withdrawal. In such a case, depositors can withdraw or deposit at
any time for a tiny low transaction cost, or wait so as to totally withdraw, then
redeposit if the bank survives. The risk of collapse of a financial system has been
studied in [19], which is calculated through an agent based model that suits the
microeconomic framework for this economic analysis. In the model, there are
heterogeneous agents that interact through two key channels: direct and infor-
mational contagion. Results showed that when bank runs are associated with
contagion, then an increase in interconnectedness worsens the outcomes. In [11],
the probability of bank runs is reported. Even when the economy is thriving,
they proposed that agents’ behaviour is influenced by non-favorable news and
that can cause a bank run. Agents are modelled as rational or irrational with a
wide range of learning models. Irrational thinking increases the chances of the
system to collapse. An agent-based model for banking analysis is developed in
[3]. The model includes agents types (savers, loans, and banks) which inhabit a
world divided into different regions. Results showed that banks which are more
vulnerable to credit shocks are also more likely to be under capitalized and even-
tually have to rely on the European Union’s Emergency Liquidity Assistance.

Finally, agents behaviour in simulations can be predicted more accurately if
artificial neural networks are utilised [11]. Taking into consideration the multi
factorial facets of bank runs, the results demonstrate that if the agents are aware
of the whole picture of market then bank run incidents only occur when the
economy is at an extremely poor state. There exist a plethora of studies related
to economic analysis of bank runs but they fall outside the context of this paper
[2,5,12,16].

The novelty of the current work is attributed to three factors: (a) our model is
not based on a standard definition of a neighbourhood, e.g. lattice, but it adopts
a more dynamic notion of neighborhood, one that depends on the spatial char-
acteristics of the simulation platform, (b) our agents do not attempt to liquidify
all their assets from the bank but instead their intention is to have enough cash
to make them feel secure, i.e. we consider retail depositors agents relying on the
assumption that deposit insurance is guaranteed by the government supervision
of banks and (c) agents follow relatively complex behaviours and can be easily
extended.

3 Modelling Agents Using X-Machines and Emotions

3.1 A Formal Model of Agents

X-Machines [9] are finite state machines that offer an elegant way to compact
states Q by allowing processing of a globally available memory structure M . In
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addition, transitions F between states are each labeled by a function ϕ (where
ϕ ∈ Φ) that is triggered by inputs Σ and not just input values as in simple
automata, i.e. F : Q × Φ → 2Q. Functions ϕ also take into account the memory
values, i.e. ϕ : Σ ×M → Γ ×M , they generate an output and change the memory
values. These characteristics give X-Machines some important advantages for
formal agent modeling: (a) models have less states Q, (b) states, beliefs, goals
etc. are nicely represented as Q and M ,(c) behaviors map well to transition
functions ϕ and (d) the formal model facilitate transformation to executable
code but also is supported by a well established theory for complete testing. The
formal definition of X-Machines can be found at [9].

In Fig. 1 we show a partial X-Machine model of a rational (emotionless)
agent. In this model, three states are depicted (“at the bank”, “at store” and “at
home”), four functions-behaviors (“withdraw some cash”, “withdraw all cash”,
“go to store” and “go home”) and a partial memory structure containing infor-
mation that will trigger any behavior. For instance, in this particular case, “with-
draw some cash” is triggered, which will allow the agent to get the appropriate
amount of cash in order to go to the store.

Fig. 1. A partial X-Machine model of a rational agent

3.2 A Formal Model of Emotions

In order to facilitate a simulation of emotional agents, we adopt the formal model
of emotions that was presented in [15], extended with a contagion mechanism
[23], albeit with minor modifications. In the following, we briefly outline the
approach reported in the previously mentioned work for completeness.

The representation of emotions follows the dimensional approach [21,22], i.e.
emotions are represented in a two dimensional space [15]. Thus, emotion is a tuple
(ve, ae), where ve ∈ [−1, 1] is the valence measure, that is how “pleasurable”
it is to experience an emotional state and ae ∈ [−1, 1] the arousal measure,
representing the likelihood to take some action in the specific state. The tuple
defines the emotional state E of the agent and will be referred to as the emotional
state vector of the agent.
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Emotional states are subject to change due to percepts, emotion contagion
(i.e. external stimuli) and mood. Thus, there are three stages in computing the
overall emotional change in each execution cycle. They all share a similar mech-
anism for computing the resulting emotional state. The main characteristics of
the mechanism is that the emotional state vector shifts closer to the input vector
associated with either external stimuli or mood, and the rate of change is regu-
lated by personality traits of the agent. The latter allows to represent population
diversity in the simulation, i.e. model the fact that some agents might be more
receptive to percepts than others.

The emotional effect of a percept is represented by a vector (vprc, aprc), i.e.
each agent percept is associated with an input emotion vector. Given an emo-
tional state (ve, ae) the resulting vector (v′

e, a
′
e) is given in Eq. 1.

(v′
e, a

′
e) =

(
ve +

f2
p · Δv

1 + e−fp·(|Δv|−1)
, ae +

f2
p · Δa

1 + e−fp·(|Δa|−1)

)
(1)

where Δv = vprc − ve and Δa = aprc − ae. The personality factor fp ∈ (0, 1]
determines how quickly the emotion vector converges to an emotional percept.

The contagion model described in [23] is inspired by the ASCRIBE model
[10], although simpler, and adapted to the vector representation of emotions.
Emotional contagion is treated as a form of perception: agents perceive the
emotions of other agents in their proximity. Thus, emotion contagion involves
computing an overall emotion vector (vcnt, acnt) based on the emotions of neigh-
boring agents. In order to define the neighbourhood of each agent, it is assumed
that agents inhabit a two dimensional world. However, extending the definitions
to a three dimensional world is straightforward.

In order to model the spatial characteristics of such a perception, each agent
has an influence-crowd (ICi) that consists of all other agents within a radius
dinf , i.e. ICi = {Agentj : d(Posi, Posj) ≤ dinf}.

Contagion strength wij (Eq. 2) determines the strength by which an agent j
(j ∈ ICi), influences agent i and depends on the expressiveness of agent j, exprj ,
a measure of how much the agent manifests its emotions, and the channel, that
models that closer agents have a larger effect to the emotions of the agent i.

wij = exprj ·
(

1 − d(Posi, Posj)
dinf

)
︸ ︷︷ ︸

channelij

(2)

The overall contagion strength wi of agent i by all agents in its influence is:

wi =
∑

j∈ICi

wij (3)

To form the emotional percept due to contagion (vcnt, acnt), each emotion
contagion vector coordinate is defined as the sum of the corresponding emotion
vector coordinates of agents in the influence crowd multiplied by the normalised
contagion strength (wij/wi):
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(vcnt, acnt) =
( ∑

j∈ICi

(wij/wi) · vj ,
∑

j∈ICi

(wij/wi) · aj

)
(4)

The vector (vcnt, acnt) is treated in a similar manner as other percepts (Eq. 1),
however, the change now depends on the on the openness (opni) of the agent i,
i.e. how perceptive the agent is to other agents’ emotions, and is given in Eq. 5.

(v′′
e , a′′

e ) =
(

v′
e +

opn2
i · Δvcnt

1 + e−opni·(|Δvcnt|−1)
, a′

e +
opn2

i · Δacnt

1 + e−opni·(|Δacnt|−1)

)
(5)

where Δvcnt = vcnt − v′
e and Δacnt = acnt − a′

e, where (v′
e, a

′
e) is the emotion

vector computed after the change due to perception (Eq. 1).
Finally, the emotional state of agent is affected by its mood. Mood describes

the long term emotional state of the agent, i.e that state in which the agent will
eventually settle given that no external stimuli are present. Thus, mood provides
the mechanism to model that the effects of a single emotion percept are reduced
over time. Change due to mood is given by Eq. 6, where mood is the vector
(vm, va), Δvme = vm − v′′

e and Δame = am − a′′
e , (v′′

e , a′′
e ) the emotion vector

computed in Eq. 5 and d is a discount factor that depends on the simulation
model. The vector (vf

e , af
e ) is the new emotional state of the agent.

(vf
e , af

e ) =
(

v′′
e +

d · f3
p · Δvme

1 + e−fp·(|Δvme|−1)
, a′′

e +
d · f3

p · Δame

1 + e−fp·(|Δame|−1)

)
(6)

3.3 A Formal Model of Emotional Agents

The emotional model described above is embedded in an X-Machine model
resulting in Emotional X-Machines eX . The additional component in this model
is an emotional structure formalisation E that consists of emotional states eQ,
moods M, personality traits P and a contagion type mechanism C. In addi-
tion, there exist emotions revision functions eϕ that given an emotional state,
a mood, a contagion model, a personality trait and a memory tuple, it returns
a new emotional state. Finally, inputs go through a revision function ρσ which
given an input transforms it into an emotional percept taking into account the
current emotional state, the mood and the personality. The formal definition
of Emotional X-Machines can be found at [14]. It should be noted that transi-
tions functions of the original state machine (behaviors) take into account the
emotional structure E.

The enhanced model (Emotional X-Machines) allows the description of the
behavior of emotional agents which are developed on top of rational agents
(simple X-Machines), offering a natural decoupling of the two types. For instance,
consider again the partial model of Fig. 1 now extended with the emotional
structure as depicted in Fig. 2. Under certain emotional state (e.g. panic due
to rumors of financial crisis), the behavior which should be triggered is now
“withdraw all cash” and not “withdraw some cash” as it was in the original
case.
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Fig. 2. A partial Emotional X-Machine model of an emotional agent

Emotional X-Machines have been used in a number of simulations involving
evacuation scenarios [24]. In this work we focus on economic phenomena, as
described in Sect. 4.

4 Modelling Bank Runs

Emotion X-Machines allow for a much richer bank depositor model, than those
that have been explored in the literature. The model presented takes advantage
of spatial characteristics of agent simulation platforms, since agents are expected
to move in a two dimensional space, i.e. the world they inhabit and interact with.
This presents the significant advantage of having agents interacting with a vari-
able neighborhood, i.e. the underlying agent interaction links vary with respect
to where the agent is located. More specifically, being at different locations dur-
ing a single 24 h simulation day, an agent interacts with “co-workers” sharing the
same workplace, with a different set of agents in its home neighborhood, or with
other agents located in a shopping area. Although the first two sets are invariant
during the simulation, since they are fixed at initialisation, the third set al.lows
the agent to form ephemeral links with agents that happen to visit the store at
the same time. By interaction in this case, we refer to emotion contagion, i.e. the
emotional change due the other agents included in an agent’s influence crowd
ICi, which is computed dynamically in each time point.

4.1 Environment Setup

Agent movement also allows the opportunity to model the affect of influencers
in the simulated world, for instance media that spread rumors regarding the
imminent bank failure.

By allowing influencers to “move”, they interact for short periods with differ-
ent sets of agents, thus providing a varying perceptual input to the latter. This,
we believe, leads to a better modelling of the impact that influencers have to
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the general population. For instance, in order to be affected by public media an
agent could follow some of their broadcasts; since this is not expected to happen
continuously during the course of a day, a model should be able to accommodate
such an interaction. Additionally, not all agents follow the same media, thus one
could model the impact of a highly influential news channels by increasing its
number of influencers.

The current model has a very fine grain representation of time, with 15 min
corresponding to a single simulation step. Under this assumption, agents stay
at their working place for 8 h a day and commute to work for 45 mins (please
see Sect. 4.2). Such a fine grain simulation, facilitates experimentation with the
evolution of phenomena that occur rather rapidly.

The model simulates a limited part of the economic environment: we con-
sider only retail banks, a market (shops), workplaces, houses, influencers and
individual depositors. In this model we are only interested in cash flow and we
do not model transactions that occur with electronic forms of money (i.e. credit
cards). This restriction of the model was due to the fact that we are concerned
about bank panic, i.e. a significant amount of banks failing, a problem that can
manifest when depositors withdraw cash for safe keeping at their home. The
model has entities that represent:

– Banks: Each bank has an initial amount of retail depositor savings (see below)
and maintains a 10% fractional reserve in cash. Each retail depositor main-
tains an account in one of the available banks. Each bank maintains a number
of ATMs that “spread” its presence in the environment. It can serve a limited
number of customers in each step, thus queues can be formed outside banks
(a phenomenon common in bank runs).

– Shops stand for the marketplace. Shops provide goods to individuals (for the
obvious exchange of cash) and at the end of each day deposit their profits to
the banks, thus contributing to maintaining adequate cash levels of banks.

– Influencers: are agents that move randomly in the experiment world, and
“spread rumors” regarding bank solvency. They act as perceptual input to
bank depositors, i.e. the latter perceive their presence and form the corre-
sponding emotional percept (see Sect. 4.2).

4.2 Agent Parameters Setup

The main actors are the Retail Depositors and we are going to refer to the
latter as the agents hereafter. The latter have a number of parameters, stored
as memory values in the corresponding X-Machine:

– savings in one of the banks, that is initially set to three times the agent’s
salary,

– the current amount of cash in their Wallet (Wi),
– a desired level of cash the agent “feels” safe to have, i.e. its Cash-Level (Cli),
– a ratio of Wallet/Cash-Level (rw/cl

i ) that determines when the agent needs to
withdraw money from the bank.



180 K. Grevenitis et al.

Obviously the ratio r
w/cl
i determines the amount of cash that exist off the system,

i.e. cash held outside banks. We define the 10% of their salary as the Original
Cash Level (OCi) and initially Cli = Wi = OCi.

Agents follow a daily cycle, that consists of an 8-hour working day, after
which they return home. When their goods level is low, they visit the market,
and when the level of cash in their wallet drops below the threshold r

w/cl
i · Cli

(Wi < r
w/cl
i · Cli), they visit the bank to withdraw money. Agents do not move

between locations instantly, but commute so that each transportation requires
are least three time steps (45 mins): this allows agent to perceive the status of the
environment, as for instance whether a queue is formed in front of a bank, etc.
The behavioural model outlined above, was encoded as an emotions X-Machine,
with states and transitions depicted in Fig. 3.

Fig. 3. The Agent state transition X-Machine Model

Following the description of Sect. 3, a subset of the agent percepts is mapped
to emotions, i.e. they produce a change to the emotional state of the agent. In
the current model, three percepts belong to this subset:

– Perception of an influencer in the agent’s proximity, which is mapped to the
emotional percept Eifl = (−0.5, 0.7). In the model ifluencers spread negative
rumors regarding the solvency of banks and thus cause a negative affect on
the agent’s valence (value −0.5) and at the same time urge agents to withdraw
money from the failing banks (arousal value 0.7).

– Perception of any queues in a bank, mapped to EbankQ = (−0.5, 0.8). Such
a perception confirms the negative valence of the emotion attributed to the
influencer and further alerts the agent to take some action w.r.t. money with-
draw (arousal 0.8).
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– Finally, perception of agent’s bank failure is mapped to the emotion EbankF =
(−1, 1), i.e. the minimum valence and the maximum arousal value, i.e. what
could be described as panic.

The above emotional percepts lead to changes to the emotional state of the
agent, which affect in the current model, memory values of the X-machine. In
particular, the two dimensions of the emotion state vector affect the Cash-Level-
Cli) and a ratio Wallet/Cash-Level (rw/cl

i ) of the agent.
Equation 7 shows how the cash level changes with respect to the arousal of

the agent. Since arousal measures the incentive of the agent to take action, i.e.
withdraw money from the bank, an increase in the arousal coordinate of the
emotion vector leads to an increased cash level. As shown in Eq. 7, we define the
latter to be at most 5 times the original OCi, i.e. at most 50% of their monthly
salary.

Cli(ae) =
{

OCi : ae ≤ 0
(1 + 5 · ae) · OCi : ae > 0 (7)

Valence controls the Wallet/Cash-Level ratio of agents. The rationale behind
this choice is that in unpleasant economic situations, agents feel safer if they
have more cash in their disposal. Thus, Eq. 8 provides the ratio change with
respect to value (obviously lower valence leads to a higher ratio).

r
w/cl
i = −0.25 · ve + 0.75 (8)

As a final note, the model includes a consumption rate that decreases the
level of goods in all agents in every simulation step. The section that follows
(Sect. 5) presents the results of our experiments.

5 Experimental Results

We implemented the model1 using NetLogo [30]. According to our experience,
NetLogo can successfully deal with such simulations, even at large scale. We
divided the experiments into two phases: (a) experiments in order to calibrate
the model, and (b) experiments to show the effect that influencers have on the
population. The calibration phase is required to setup appropriate parameters
in a state where an equilibrium is achieved, far from any potential bank failures.
These parameters are then used in the second phase.

The number of agents is set to 250, the number of banks to 5, with 10 ATMs
and 15 workplaces in total. The salary is set to 600 monetary units for all agents.
The original cash level for each agent was set to 10% of the salary. As mentioned,
each agent has three times its salary as savings in one of the banks minus its
cash level.

The personality characteristics of the agents are as follows. The personality
factor fp (Eq. 1), ranges between 0.5 and 0.75, while expressiveness expri (Eq. 2)

1 The code can by found at https://github.com/isakellariou/NetLogoBankRun.

https://github.com/isakellariou/NetLogoBankRun
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and openness opni (Eq. 5) have a minimum value of 0.2 with the maximum being
0.4. Agents receive randomly a value within the range mentioned above for each
parameter.

5.1 Calibration

In the first set of experiments related to calibration, we expect that the system is
in equilibrium, i.e. no bank run event occurs. We set the maximum time period
for the experiment to 25 days. The number of influencers is set to 0, meaning
that no “bad news” on bank solvency is spread within the simulation world.
We test the environment for two cases. The first concerns experiments with no
contagion, and as shown in Fig. 4, the system is in equilibrium, i.e. bank reserves
are well over the amount of cash desired by the agents. The fluctuations observed
are attributed to the fact that agents withdraw money from the bank to cover
the needs in market goods by paying in cash, which at the end of each simulation
day are deposited by the shops back to the bank. Almost identical results occur
for the case of agents interacting under the contagion model described in Sect. 3.
Values reported in Fig. 4 are the average values over a set of 10 experiments.

Fig. 4. Experimental results during calibration (No Contagion and No Influencers).

5.2 The Effect of Influencers

Having a set of initial conditions that form an equilibrium, the next set of exper-
iments involves increasing the number of influencers in the simulation world. We
consider this number to reflect how strong rumors regarding bank failure are,
thus we vary the number of influencers from 5 to 15. Table 1 summarizes the
results over a set of 12 runs for each combination of influencers and contagion
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model, with the column “Failure Rate”, reporting the number of experiments
over those 12 runs where all banks failed, i.e. the manifestation of the “bank
panic”. For each set of runs, the column “Simulation Step” reports the time
point when the last bank failed with the associated standard deviation. Results,
as expected, confirm the belief that stronger bank failure rumors increase likeli-
hood that banks will fail.

Table 1. Bank Failures w.r.t. the number of influencers

No contagion mechanism With emotion contagion

Influencers Failure Rate Sim. Step StdDev Failure Rate Sim. Step StdDev

5 25% 1388.33 414.31 0% - -

6 33.3% 1370.25 679.02 16.7% 1271.00 170

7 75% 1088.22 314.50 33.3% 1136.50 158.86

8 91.7% 816.64 171.33 50% 762.83 406.25

9 100% 581.33 58.38 66.7% 848.50 376.51

10 100% 423.50 174.53 83.3% 782.50 491.01

11 100% 393.75 37.01 100% 421.83 37.71

12 100% 293.67 63.88 100% 434.08 98.05

13 100% 309.25 117.43 100 % 343.33 147.51

14 100% 221.92 39.37 100% 301.67 51.53

15 100% 243.83 44.64 100% 269.67 160.23

It is interesting to note that in simulations using the contagion model, the
number of total failures (all banks fail) is less compared to no contagion mecha-
nism simulations, and at a much slower rate. Although this appears counter intu-
itive, it can be explained by the fact that, interaction with neighboring agents
reduces the effect to the population, at least in the early stages of spreading
rumors, i.e. the effects of influencers are reduced due to interaction among indi-
viduals. Recall that according to the emotions model (Sect. 3), emotions induced
by influencers and contagion are both treated as percepts, however with a dif-
ferent factor (personality factor vs. openness).

Figure 5 presents the behaviour of agents under emotion contagion, when
the number of influencers is 15. Again values reported are averaged over all
experimental runs. Note that the desired level of cash increases rather rapidly
and thus this leads eventually to banks failing. The steep rise of the desired cash
level at the final steps of the simulation is attributed to the fact that once agents
learn that their bank has failed, they simply panic, spreading this emotion to
other members of the population.

Similar results can be observed in Fig. 6, although the time it takes for the
banks to fail is much larger.

It is also interesting to see the time relation between successive banks failures
in the world, since not all banks fail at the same time. Figure 7 shows, the average
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Fig. 5. Experimental results with the emotion contagion model and 15 influencers.

Fig. 6. Experimental results with the emotion contagion model and 10 influencers.

time point of each bank failure in the corresponding set of experiments, i.e. the
time point when the first bank fails, the second, etc. As it can be easily observed,
experiments with no contagion (labeled as No-Cont) fail earlier compared to
those with contagion (labeled Contagion) for both cases of 10 and 15 influencers,
due to the same reasons reported earlier in the section. Another interesting point
to note is that when one bank fails, then others follow in a rather short time
period, again due to the fact that agents not being able to withdraw money are
pushed to a panic state, and this has an effect through the contagion mechanism
to all other agents.

Although the present experimental evaluation of the bank run phenomenon
is preliminary, it is noticed that a relation exists between strong rumors of bank
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Fig. 7. Bank failures vs. simulation time.

failures incidents and actual bank panic. However, to reach a safe conclusion,
a more thorough experimental evaluation is required, one that might take into
account more parameters of the system, as for example no-retail depositors and
interbank links. However, given the expressive power of X-Machines, modelling
more agents, other influencers, global broadcasting models, is not expected to
present significant difficulties.

6 Conclusions

Incorporating human aspects such as personality and emotion can be an impor-
tant research direction for ACE, since it allows modelling of emotionally intensive
economic phenomena and can lead to more engaging and believable simulations.
The present work attempts, for the first time to the best of our knowledge, to
use a formal emotional agent model towards a simulation of bank panic, a phe-
nomenon that is often associated with the emotional state of involved stakehold-
ers. In that direction, the paper presents an emotions X-Machine model, together
with an implementation in a well known simulation platform. The experimental
results confirm that a relation exists between public opinion influencers (e.g.
public media) and the manifestation of such phenomena.

There are a number of research directions towards which this work can be
extended. These include a more in-depth analysis of the current experimental
model and adding different types of stakeholders in the domain, such as gov-
ernment officials. Finally, it is interesting to build a more complete model of
the banking system and include a wider range of economic activities, such as
inter-bank links and strategic investors. In all cases, we believe the introduction
of formal emotional agent modelling could provide ACE with a set of tools that
can increase its potential.
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Abstract. Autonomy has been one of the most desirable features for
robotic applications in recent years. This is evidenced by a recent surge
of research in autonomous driving cars, strong government funding for
research in robotics for extreme environments, and overall progress in
service robots. Autonomous decision-making is often at the core of these
systems, thus, it is important to be able to verify and validate prop-
erties that relate to the correct behaviour that is expected of the sys-
tem. Our main contribution in this paper, is an interface for integrating
BDI-based agents into robotic systems developed using ROS. We use
the Gwendolen language to program our BDI agents and to make use
of the AJPF model checker in order to verify properties related to the
decision-making in the agent programs. Our case studies include 3D sim-
ulations using a simple autonomous patrolling behaviour of a TurtleBot,
and multiple TurtleBots servicing a house that can cooperate with each
other in case of failure.

Keywords: Autonomous agents · High-level decision-making ·
Robotic applications · ROS · Model checking

1 Introduction

Belief-Desire-Intention (BDI) [13] agents has been the standard paradigm for
agent programming languages over the years. These mental attitudes represent,
respectively, the information, motivational, and deliberative states of the agent.
Incoming perceptions from the environment can trigger the update of the belief
base (what the agent believes to be true about its environment and other agents).
This update generates more goal options and updates the desire base (the desired
states that the agent hopes to achieve) accordingly. Finally, given the updated
belief and desire base, the intention base (a sequence of actions that an agent
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wants to carry out in order to achieve a desired state) is updated and one inten-
tion is chosen to be executed.

There are many agent programming languages that are based on BDI, such as
Gwendolen [6], Jason [1], 2APL [4], GOAL [9], and more recently ASTRA [2].
Such languages would be ideal for controlling high-level decision-making in
autonomous robots. However, despite the various choices in agent languages,
there is still a lack of robotic applications that make use of them. Past attempts
usually try to mimic or implement their own BDI representation inside of their
robotic application, such as in [8]. These attempts are often domain-specific or
depend on specific versions of software to work. Moreover, they usually lack any
means of verifying the high-level decision-making component of the system.

In this paper, we introduce an interface for the Gwendolen agent program-
ming language to communicate with the Robot Operating System (ROS) [11].
This interface allows agent programs to send commands to a robot’s actuators
and receive feedback from the robot and its sensors. We use Gwendolen due to
its association with the Agent Java PathFinder (AJPF) [7] model checker. AJPF
is an extension of JPF [15], a model-checker that works directly on Java pro-
gram code instead of on a mathematical model of the program’s execution. This
extension allows for formal verification of agent programs by providing a prop-
erty specification language based in Linear-time Temporal Logic that supports
the description of terms usually found in BDI agents.

We validate our interface through its practical use in two case studies using
the Gazebo 3D simulator, chosen for its association with ROS and its realistic
physics plugins. In our first scenario, an agent autonomously controls a Turtle-
Bot3 to keep patrolling four waypoints in a map indefinitely. Our second scenario
expands to three agents, each controlling its own TurtleBot3, in a home envi-
ronment where the agents can cooperate to deliver items throughout the house.
Although we focus on Gwendolen in this paper, our interface can be used with
any AgentSpeak(L) [12] based-language that is implemented in Java.

The remainder of this paper is organised as follows. The next section contains
basic concepts about ROS that are used throughout the paper. In Sect. 3, we
describe how our interface can be used to allow autonomous agents programs
that are capable of performing high-level decision-making in robots that use
ROS. Section 4 has two case studies that show our interface in use: a single-
agent patrolling a simple environment, and three agents cooperating in a home
environment. In Sect. 5, related approaches that combine autonomous agents
with robots and/or provide any means of verifying decision-making in robots
are presented. We conclude the paper in Sect. 6.

2 Background

ROS [11] is an open-source set of software libraries and tools to develop robotic
applications. We chose it because of its modularity, its large community of users,
and its compatibility with a variety of robots. ROS applications follow a node-
based structure. Each robot inside ROS can be defined as a set of nodes, and each
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node handles a specific aspect. For example, we can have nodes fetching data
from sensors, sending commands to actuators, or even focused on evaluations
and computations to support the other nodes in the system.

ROS nodes are inherently distributed and the entire information sharing is
obtained through message passing. This simplifies the internal logic of each single
node, and allows a natural distribution of the workload on multiple machines
(common in cyber-physical systems). When a node enters the system, in order
to communicate with the other nodes, it has to register with ROS Master. The
ROS Master is a special node which keeps track of the nodes registered in the
system, and enables the communication among them, as shown in Fig. 1.

ROS
Node 1

ROS
Node 2

ROS
Node n

ROS
Master

messages

messages messages

registration registration

Fig. 1. ROS general structure.

When a node registers to the ROS Master, it has to specify the topics for
which it is a publisher or a subscriber. A topic in ROS can be seen as a com-
munication channel used by the nodes to exchange information. Each node can
be a publisher : able to send messages on the channel; or a subscriber : able to
receive messages from the channel. In Fig. 2 an example with one publisher and
two subscribers is shown. For each topic, the ROS Master keeps track of the
nodes that are publishing on it. When a new subscriber node registers to the
ROS Master, the ROS Master enables peer-to-peer communication between the
subscriber node and all the nodes publishing on the requested topic. The ROS
Master is involved only at this initial stage. After it, all the consecutive commu-
nications are performed directly among the involved nodes. This communication
is one-way from (one or more) publishers to (one or more) subscribers.

Communication using topics is flexible, but also many-to-many. It is appro-
priate when the nodes have to continuously update the system, such as in the
case of sensors. When a node wants to make a request to another node (one-
to-one), and it expects a response (the result) from it, then using services is
more appropriate. A node can offer one or multiple services, and each service
is specified through its name, and a pair of messages representing its input and
output. When a node needs a service, it has to send a message (the message
request) to the service (identified by its name) and wait for the response.
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ROS Node

Publisher
Topic: /example
Message Type: std msgs/String

ROS Node

Subscriber

ROS Node

Subscriber

Fig. 2. ROS example communication through topics.

Services are synchronous, which can be a problem when the task assigned
to the service requires a long time to be completed, or when the requesting
node needs to cancel the request. In these cases, the action library can be used
(Fig. 3), allowing the creation of servers that can accept long-running requests
(called goals), and clients that can cancel the execution at any time and receive
feedback (intermediate results) dynamically until the goal is completed and the
final result is available.

ROS Topics

Action
Client

Action
Client

goal
cancel

status
result

feedback

Fig. 3. Action library.

3 Integrating Autonomous Agents with ROS

In this section we describe an interface1 that can be used to integrate autonomous
agents with ROS using the rosbridge library. While we use the Gwendolen
language in our examples and case studies, we note that any agent programming
language that uses Java would be able to benefit from our interface. For instance,
we have also tested using the Jason [1] language.2 However, in this paper we focus
on the Gwendolen language, particularly due to its association with the AJPF
model checker, which enables us to verify properties of the agent’s program.

1 Gwendolen interface source code is available at: https://github.com/autonomy-
and-verification-uol/gwendolen-rosbridge.

2 Jason interface source code is available at: https://github.com/rafaelcaue/jason-
rosbridge.

https://github.com/autonomy-and-verification-uol/gwendolen-rosbridge
https://github.com/autonomy-and-verification-uol/gwendolen-rosbridge
https://github.com/rafaelcaue/jason-rosbridge
https://github.com/rafaelcaue/jason-rosbridge
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3.1 Connecting to Rosbridge

Rosbridge is a library for ROS that allows external programs to communicate
with ROS [3]. This is easily achieved through message passing using the JSON
format. A message sent from a ROS node to an external program passes through
the rosbridge node, which translates the message to JSON and then publishes
the message to the appropriate topic that the external program is listening to.
Conversely, a message sent (in JSON format) from an external program to a ROS
node is received by the rosbridge node, translated from JSON to ROS messages,
and then published to the appropriate topic.

The rosbridge library does not alter ROS in any way, it simply provides a
ROS API for non-ROS programs. Thus, it is programming language and trans-
port agnostic, making it easy to integrate any external program with ROS, as
long as messages are sent in the JSON format. Another advantage of rosbridge
is that it does not alter ROS core functions in any way, therefore it requires
minimal to no changes between new ROS versions. This, in turn, makes exter-
nal programs agnostic of ROS versions, as long as the ROS message structure
remains unchanged from the original version.

Our interface is implemented as a Gwendolen environment. It connects to
rosbridge using the WebSocket protocol, as shown in Listing 1. First the bridge
object is instantiated, and then, once the environment starts it attempts to con-
nect to rosbridge using the rosbridge server URI (localhost in this example) with
the default port 9090 (this can be changed in the ROS launch file of rosbridge).
The second parameter is a flag that determines if the call should be blocked until
the connection is established.

1 public class RosEnv extends DefaultEnvironment {
2 RosBridge bridge = new RosBridge();
3 public RosEnv() {
4 bridge.connect("ws://localhost:9090", true);
5 }
6 }

Listing 1: Sample environment code in Gwendolen for connecting to rosbridge.

The translation of a message from Java to JSON is done automatically, how-
ever the message still has to be defined in Java with the appropriate data types
that relate to the data types specified in the ROS message. New message types
only have to be defined once, and if added to the interface JAR can then be used
subsequently by any program.

3.2 Subscribing

Agents can subscribe to ROS topics through the environment. The subscrip-
tion is completely transparent to the agent. Perceptions are generated by the
environment as messages are published in the subscribed topic. Subscribers can
be defined in the constructor method for the environment, or can be declared
later on. An example of a subscriber definition in the environment is shown in
Listing 2. We make use of the bridge object to subscribe to the topic called
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“/ros to java”, where we need to set the ROS message type (with the full type
“std msgs/String”), however the other fields are optional and work the same way
as when declaring subscribers in ROS.

1 bridge.subscribe(SubscriptionRequestMsg.generate("/ros_to_java")
2 .setType("std_msgs/String")
3 .setThrottleRate(1)
4 .setQueueLength(1),
5 new RosListenDelegate() {
6 public void receive(JsonNode data, String stringRep) {
7 MessageUnpacker<PrimitiveMsg<String>> unpacker =
8 new MessageUnpacker<PrimitiveMsg<String>>(PrimitiveMsg.class);
9 PrimitiveMsg<String> msg = unpacker.unpackRosMessage(data);

10 System.out.println(msg.data);
11 }
12 }
13 );

Listing 2: Creating a subscriber in the interface.

Each subscriber has a receive method that unpacks the message (this time
using the message type as defined in the interface, PrimitiveMsg<String>). In
this example we simply print the data contents of the message. The case studies
shown in the next section cover how to translate the contents of a message into
perceptions to be sent to the agent.

It is important to note that messages coming from ROS to the agent usually
originate from sensors, which depending on the frequency that is being published
could overload the belief base of an agent. This is a known problem in using
autonomous agents in robots, and the solution is to either change the frequency
to an acceptable value or to apply a filter. The filter can be applied directly
to the ROS code of the sensor, to the receive method in our interface, or to
the belief base revision of the agent. We conjecture that the first would be the
most efficient computationally, the second can be easier to change and adapt,
and the third is the most difficult since it requires changes to the source code of
the language being used.

3.3 Publishing

An agent can publish a message to a ROS topic through actions in its environ-
ment. Most agent programming languages delegate the action description to the
environment. As such, the code for the environment usually contains a section
for describing these actions. In the Gwendolen language this occurs inside
the executeAction method, which is activated when an agent prompts a new
action. For example (Listing 3), if we want to add an action called hello ros
to the environment, we simply have to match the name of the action received
(actionname) to the name of the action (a string) we want to deal with.
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1 public Unifier executeAction(String agName, Action act) throws AILexception {
2 String actionname = act.getFunctor();
3 if (actionname.equals("hello_ros")) {
4 hello_ros();
5 }
6 return super.executeAction(agName, act);
7 }

Listing 3: Execute action environment in Gwendolen.

We specify the hello ros action that was called in Listing 3 as a method,
described in Listing 4. In this method, since we want to send a message to a ROS
topic we have to create a new publisher. The first parameter is the topic that the
message will be published to (“/java to ros”), the second parameter is the ROS
type of the message (“std msgs/String”), and the third is the bridge object.
In this example, once the agent calls the hello ros action a string message is
published on the “/java to ros” topic each 500 ms, up to a total of 100 messages.
Note that to publish a message it is necessary to associate it with the correct
type as defined in the interface, PrimitiveMsg<String> in this case.

1 public void hello_ros() {
2 Publisher pub = new Publisher("/java_to_ros", "std_msgs/String", bridge);
3 for(int i = 0; i < 100; i++) {
4 pub.publish(new PrimitiveMsg<String>("hello from gwendolen " + i));
5 try {
6 Thread.sleep(500);
7 } catch (InterruptedException e) {
8 e.printStackTrace();
9 }

10 }
11 }

Listing 4: Creating a publisher in the interface.

4 Case Studies

To validate our interface we have applied it to two different scenarios3 and have
verified certain properties about the behaviour of the agents. In the first scenario,
the autonomous agent decides the order to visit waypoints in order to patrol an
area. The second scenario has three agents, each controlling its own TurtleBot3
to service several rooms in a home environment.

All of our case studies were simulated using ROS and the Gazebo 3D simu-
lator. Our simulations were performed in both Kinetic and Melodic versions of
ROS. We have used the 2019 release of MCAPL (Model-checking Agent Pro-
gramming Languages) [5], which includes the Gwendolen agent language and
the AJFP program model checker.

3 Source code of both scenarios are available at: https://github.com/autonomy-and-
verification-uol/gwendolen-ros-turtlebot3.

https://github.com/autonomy-and-verification-uol/gwendolen-ros-turtlebot3
https://github.com/autonomy-and-verification-uol/gwendolen-ros-turtlebot3
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4.1 TurtleBot Autonomous Patrolling

We use a TurtleBot3 to patrol around four different locations in an environment,
illustrated in Fig. 4. The robot can start at any point inside the map, however
it must patrol the designated waypoints in order (A → B → C → D → A →
...). The robot starts with a complete map of the area, and uses the move base
library to move to specific coordinates in the map while avoiding obstacles.

A

BC

D

Fig. 4. TurtleBot autonomous patrolling simulated in Gazebo.

Move base is an action library, and as such it has a server that executes
actions and a client that requests actions. While our agents cannot serve directly
as clients due to the communication barrier between ROS and external programs,
the agents can publish a message through the interface and rosbridge, which is
received by a ROS node for the move base client. This client can then process
the message and create a new request for the move base server.

Agent Implementation. A plan in Gwendolen is started by an event, for
example, a plan for completing a goal patrol(a) is activated when the goal (!)
patrol(a) is added (+); this is known as a goal addition event. The plan will
be selected and added to the agent’s intention base if the formulae present in
the guard (i.e. the context or precondition of the plan, goes after a colon and
between curly brackets) are true. After a plan is selected, a sequence of actions
in the plan body (denoted by ←) is executed.

The complete source code of the agent program is shown in Listing 5. The
agent begins with 8 initial beliefs (lines 5–12): four for each waypoint (a, b, c, d)
and another four for each coordinate that corresponds to one of the waypoints.
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For simplicity the agent already starts with this knowledge, although in a more
complex scenario it could learn it during execution from the low-level control of
the robot (sensors and/or movement libraries) or from other agents. The initial
goal of the agent is to start patrolling waypoint A. This triggers the plan in
lines 18–19, which tests in the plan guard if the agent has the belief with the
corresponding coordinates. If this is the case, then a belief going(a) is added
to the belief base, and the agent executes the move action. This action is sent
to the move base library, where a path from the robot’s initial position to the
destination is computed and altered as the robot moves.

Subsequent plans (lines 20–24) deal with the result of the move base library.
The result is returned upon the end of the action with code 3 if it was successful,
or with code 2 in case of failure (i.e. the action stopped and the robot has not
arrived in its destination). The first four plans respond to a successful action,
which means that the robot arrived in its destination and is ready to patrol the
next waypoint in the list. Each plan removes the going belief and calls the patrol
plan as appropriate.
1 GWENDOLEN
2 :name: turtlebot3
3

4 :Initial Beliefs:
5 waypoint(a)
6 waypoint(b)
7 waypoint(c)
8 waypoint(d)
9 waypoint_coordinate(a,1.25,0.0,0.0)

10 waypoint_coordinate(b,2.5,0.0,0.0)
11 waypoint_coordinate(c,2.5,1.0,0.0)
12 waypoint_coordinate(d,1.25,1.0,0.0)
13

14 :Initial Goals:
15 patrol(a) [perform]
16

17 :Plans:
18 +!patrol(Waypoint) [perform] : { B waypoint_coordinate(Waypoint,X,Y,Z) }
19 <- +going(Waypoint), move(X,Y,Z);
20 +movebase_result(Seq,3) : { B going(a) } <- -going(a), +!patrol(b) [perform];
21 +movebase_result(Seq,3) : { B going(b) } <- -going(b), +!patrol(c) [perform];
22 +movebase_result(Seq,3) : { B going(c) } <- -going(c), +!patrol(d) [perform];
23 +movebase_result(Seq,3) : { B going(d) } <- -going(d), +!patrol(a) [perform];
24 +movebase_result(Seq,2) : { B going(W) } <- print("Movement to ",W," failed.");

Listing 5: Gwendolen agent program for the TurtleBot autonomous patrolling.

The plan on line 24 can be used to deal with failure. In this case, for brevity
we simply print a message on the screen. However, the agent could retrieve its
target waypoint using the belief going and retry the action, or it could try to
move to the next waypoint in the list, and so on. In the real world things often
fail or don’t work as expected, so it is important for the agent to be able to react
and reason about these events at a high-level.

The subscriber for the move base action result is shown in Listing 6. Note
that this subscriber uses a message type from the move base library called
“move base msgs/MoveBaseActionResult”. In lines 9–12 we create the new per-
ception that is to be sent to the agent. We create the literal movebase result
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and add the two terms (parameters) that come with the ROS message: seq, an
increasing sequence identification; and status, an int value that indicates success
or failure. Then, the literal is added as a perception and sent to the agent.

1 bridge.subscribe(SubscriptionRequestMsg.generate("/move_base/result")
2 .setType("move_base_msgs/MoveBaseActionResult"),
3 new RosListenDelegate() {
4 public void receive(JsonNode data, String stringRep) {
5 MessageUnpacker<MoveBaseActionResult> unpacker =
6 new MessageUnpacker<MoveBaseActionResult>(MoveBaseActionResult.class);
7 MoveBaseActionResult msg = unpacker.unpackRosMessage(data);
8 clearPercepts();
9 Literal movebase_result = new Literal("movebase_result");

10 movebase_result.addTerm(new NumberTermImpl(msg.header.seq));
11 movebase_result.addTerm(new NumberTermImpl(msg.status.status));
12 addPercept(movebase_result);
13 }
14 }
15 );

Listing 6: Move base result subscriber for the TurtleBot autonomous patrolling.

The execution of the move action is processed in the environment, as
described in Listing 7. It takes the coordinates, as sent by the agent, and creates
a publisher to the topic “/gwendolen to move base” using the Vector3 message
type. A move base client is listening to that topic, and upon receiving a message
it creates a goal with the coordinates given in the message and sends it to the
move base server.

1 public void move(double lx, double ly, double lz) {
2 Publisher move_base =
3 new Publisher("/gwendolen_to_move_base", "geometry_msgs/Vector3", bridge);
4 move_base.publish(new Vector3(lx,ly,lz));
5 }

Listing 7: Move action for the TurtleBot autonomous patrolling.

Verification. Some of the properties that we verified of the implementation of
our agent, consider the following:

�(Aturtlebot3 patrol(a) → ♦¬Bturtlebot3 going(a))
�(Aturtlebot3 patrol(b) → ♦¬Bturtlebot3 going(b))
�(Aturtlebot3 patrol(c) → ♦¬Bturtlebot3 going(c))
�(Aturtlebot3 patrol(d) → ♦¬Bturtlebot3 going(d))

These properties state that it is always the case (�) that if the turtlebot3
agent executes the action patrol (to either A, B, C, or D), then eventually (♦)
the turtlebot3 agent will no longer believe that it is on its way to that particular
waypoint. That is, it has either arrived or failed.
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4.2 The Three TurtleBots: Home Service Robots

In this section, we present a case study involving multiple robots inside a house
(Fig. 5). Differently to the example presented in Sect. 4.1, in this scenario the
robots have to collaborate to solve specific tasks. The reasoning process followed
by each robot is defined by a Gwendolen agent. More specifically, each robot
has the job to bring supplies and tools around the house. The robots collaborate
in two situations; when a robot needs an item from another robot, and, when a
robot fails to deliver an item because of some technical difficulties.
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Fig. 5. Map of the house where the three TurtleBots are used.

In order to use multiple robots, each one controlled by a Gwendolen agent,
we modify a few things in our interface. Until now, there was only one agent
publishing messages, and only one robot receiving them; in fact, it was not
necessary to keep track of which agent was sending a certain message, and which
robot was reacting on the latter. When multiple agents are involved, each one
of them needs to distinguish its topics according to its associated robot. This
can be achieved straightforwardly by keeping track of the name of the robot in
ROS, and adding it as namespace when publishing the messages. In this way,
each robot knows where to subscribe to receive the agent’s commands and each
agents knows where to publish.

For example, consider three robots called ag1, ag2 and ag3, respectively; and
a topic corresponding to the action that each agent can ask its corresponding
robot to do, act. Thus, ag1 publishes on ag1/act, ag2 on ag2/act and finally,
ag3 on ag3/act.
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Agent Implementation. Each agent has a set of beliefs (Listing 8) denoting
the items to be delivered and where they have to be delivered. For example, the
following three beliefs in the agent’s mind tell that, the agent has a coke to be
delivered to the table in the kitchen, and the table in the kitchen is at some
specific coordinates.

1 item(coke)
2 delivery(coke, kitchen, table)
3 waypoint_coordinate(kitchen,table,1.25,2.0,1.5)

Listing 8: Example of beliefs in the TurtleBot house scenario.

Using these beliefs, the agents can achieve different goals. In this scenario,
where our aim is to show the feasibility of guiding multiple robots using a MAS
defined in Gwendolen, the agents deliver items and help each other in case
of technical problems. This is obtained through the deliver plan (Listing 9),
where the agent checks for item to deliver, and deliver them (base case).

1 +!deliver [perform] : { B name(Name), B delivery(Item, Room, Waypoint),
2 B item(Item), B waypoint_coordinate(Room, Waypoint, X, Y, Z) }
3 <- move(Name, X, Y, Z), -delivery(Item, Room, Waypoint), +!deliver [perform];

Listing 9: The basic deliver plan in the TurtleBot house scenario.

In this plan, the agent checks if it possesses an item Item which has to be
delivered to a specific Room in a predefined waypoint inside the room (Waypoint).
If this is the case, then the agent asks the robot to move to the target position,
and to deliver the item. In this simplified scenario, the delivery is assumed as
being instantaneous; once the robot reaches the target position, the item is
instantaneously delivered, and the agent only has to update its beliefs accord-
ingly (by removing the belief about delivering the item).

We defined two other course of actions which may happen when a delivery
has to be done. The first case is when the item required is not available, thus
the agent has to ask to the other agents to deliver the item, if they have it. This
can be achieved with a different deliver plan, as shown in Listing 10.

1 +!deliver [perform] : { B delivery(Item, Room, Waypoint), ~ B item(Item) }
2 <- -delivery(Item, Room, Waypoint),
3 .send(ag1, :tell, delivery(Item, Room, Waypoint)),
4 ...
5 .send(agn, :tell, delivery(Item, Room, Waypoint));

Listing 10: The second deliver plan in the TurtleBot house scenario.

The trigger for this case is different from before. This plan is triggered when
a delivery is expected by the agent for an Item, but the agent does not have
the item (∼ stands for negation). Thus, the agent has to ask the other agents
to help deliver this item. The messages will simply create beliefs in the receiver
agents’ belief base. If one of them has the item, then it will execute the base
deliver plan (note that we allow multiple agents to deliver the same item).



An Interface for Programming Verifiable Autonomous Agents in ROS 203

The last case is when an agent fails and is no longer able to continue with
its deliveries. In this case, the agent asks for help to the other agents. The agent
which accepts to help it, will move to the position of the broken agent, and fetch
all the items from the latter. In this way, even though a robot fails, its items can
still be delivered. This can be obtained with a combination of multiple plans, and
due to space constraints we only report the plans that send the help requests.
1 +!deliver [perform] : { B name(Name), B failure(Room, Waypoint) }
2 <- +!ask_for_help(Name, Room, Waypoint);
3 +!ask_for_help(Name, Room, Waypoint) : { ~ B accept_request_for_help, B agent_to_ask(Ag)}
4 <- .send(Ag, :tell, help_request(Name, Room, Waypoint)),
5 wait(5000),
6 -agent_to_ask(Ag),
7 +!ask_for_help(Name, Room, Waypoint);
8 +!ask_for_help(Name, Room, Waypoint) : { B accept_request_for_help }
9 <- -accept_request_for_help;

Listing 11: The third deliver plan in the TurtleBot house scenario.

In Listing 11, the agent that failed asks for help to all the other agents one at a
time; after each request, it waits a fixed amount of time (5000 ms), before sending
the request to another agent. This is necessary to simplify the communication
protocol involved, and to avoid that multiple agents decide to help the agent
that failed.

Verification. One of the advantages in defining the agents in Gwendolen is
that we can also do model checking of their behaviours. For instance, a property
we check is:

�(Btb3 0 delivery(coke, kitchen, table)) → ♦(¬Btb3 0 delivery(coke, kitchen, table))

Where we check for a specific agent (tb3 0 in this case) if a delivery assigned
to it is eventually considered completed. In this case, the delivery of the coke to
the kitchen’s table. The delivery can be achieved by the agent, or by any helper
agent in case of failure.

5 Related Work

In [17], the authors discuss the necessary requirements to integrate agent pro-
gramming languages with robotic frameworks. These requirements are exempli-
fied using a demo application of a NAO robot in a home-care scenario. The robot
is controlled using the 2APL agent language that interacts with ROS through
an interface environment. However, the paper limits itself to describing existing
solutions that can be used and past work in the literature. The interface itself is
never described, and no source code is provided within the paper.

Two similar approaches have been developed to allow the Jason [1] agent
programming language to interface with ROS. The first approach [16] makes
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use of the rosjava library. This library re-implements the essential core features
of ROS in Java, which is not officially supported in ROS. The authors use this
library to then connect the agents through the CArtAgO [14] environment, which
Jason agents can then access using CArtAgO artifacts. The second approach [10]
changes the default agent architecture to interface with ROS code in C++.
Compared to our interface, both approaches have the disadvantage of requiring
changes to core ROS functionalities, something that usually changes between
new releases of ROS. Whilst our approach remains version agnostic (as long as
the ROS message structure remains the same) and can be used by a variety of
agent programming languages (as long as they support Java).

6 Conclusion

In this paper we presented an interface that allows the integration of autonomous
agents (particularly those programmed in agent languages that support Java)
with robots that use ROS. Agents can use the interface to publish messages
(e.g. commands to actuators) to a ROS topic or to subscribe to a topic in order
to receive messages (e.g. perceptions from sensors). To evaluate our approach
we used the interface to develop autonomous agents in Gwendolen that are
capable of high-level decision-making in the TurtleBot3 robot. In the first case
study, the agent controls the patrolling behaviour of the robot. We increase the
number of agents and robots in the second case study, using three agents (one
for each of the three TurtleBot3 robots) to service multiple rooms in a house. For
both scenarios we have used the AJPF model checker to verify some properties
of the agents program.

Although verifying the code that is responsible for the robot’s decision-
making is an important step towards providing assurances about its behaviour,
in some scenarios (e.g. safety critical) it may also be necessary to verify other
nodes that are part of the system, such as the vision mechanism or the path
planner. Other future work include comparing the agent’s program with tradi-
tional decision-making code in Python/C++ (ROS supported languages), and
performing field tests in real world applications.
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Abstract. A robot’s ability to provide explanatory descriptions of its
decisions and beliefs promotes effective collaboration with humans. Pro-
viding such transparency in decision making is particularly challeng-
ing in integrated robot systems that include knowledge-based reason-
ing methods and data-driven learning algorithms. Towards addressing
this challenge, our architecture couples the complementary strengths of
non-monotonic logical reasoning with incomplete commonsense domain
knowledge, deep learning, and inductive learning. During reasoning and
learning, the architecture enables a robot to provide on-demand explana-
tions of its decisions, beliefs, and the outcomes of hypothetical actions, in
the form of relational descriptions of relevant domain objects, attributes,
and actions. The architecture’s capabilities are illustrated and evaluated
in the context of scene understanding tasks and planning tasks performed
using simulated images and images from a physical robot manipulat-
ing tabletop objects. Experimental results indicate the ability to reliably
acquire and merge new information about the domain in the form of con-
straints, and to provide accurate explanations in the presence of noisy
sensing and actuation.

Keywords: Explainable reasoning and learning · Non-monotonic
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1 Introduction

Imagine a robot arranging objects in desired configurations on a table, and esti-
mating the occlusion of objects and stability of object configurations. Figure 1a
illustrates a scene in this setting. An object is considered to be occluded if the
view of any minimal fraction of its frontal face is hidden by another object, and
any given configuration (i.e., a vertical stack of objects) is unstable if any object
in the configuration is unstable. To perform these tasks, the robot extracts infor-
mation from on-board camera images, reasons with this information and incom-
plete domain knowledge, and executes actions to achieve desired outcomes. The
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(a) Test scenario. (b) Image from robot’s camera.

Fig. 1. (a) Motivating scenario of a Baxter robot arranging objects in desired config-
urations on a tabletop; (b) Image from the camera on the robot’s left gripper.

robot also incrementally learns previously unknown constraints, and responds to
questions about its plans, actions, associated decisions, and beliefs. For instance,
assume that the target configuration in Fig. 1b is to have the pig on the orange
block, and that the plan is to move the blue block on to the table before placing
the pig on the orange block. When asked to justify a step of the plan, e.g., “why
do you want to pick up the blue block first?”, the robot answers “I have to put
the pig on the orange block. The blue block is on the orange block”; when asked,
after executing the plan, to explain why an action was not executed, e.g., “why
didn’t you pick up the pig first?”, the robot responds “Because the blue block
is on the orange block”.

Realizing the motivating scenario described above poses challenges in knowl-
edge representation, reasoning, learning, and control. This paper focuses on
enabling a robot to provide an on-demand explanation of its decisions and
beliefs in the form of a description comprising relations between relevant objects,
actions, and attributes of the domain. Such “explainability” will help estab-
lish accountability in the robot’s decision making and help the human designer
improve the algorithms, but it remains an open problem. It is particularly chal-
lenging with integrated robot systems that include knowledge-based reasoning
methods (e.g., for planning and diagnostics) and data-driven (e.g., deep learn-
ing) algorithms that are the state of the art for many pattern recognition prob-
lems. Research in cognitive systems and architectures indicates that relational
representations and reasoning with commonsense knowledge help promote trans-
parency in decision making [13,15,29]. Inspired by this insight, our architecture
tightly couples the complementary strengths of knowledge-based and data-driven
methods, while providing transparent decision making. It builds on and signif-
icantly expands our prior work that combined non-monotonic logical reasoning
and deep learning for scene understanding in simulated images [21]. This paper
contributes the ability to:

– Automatically extract relevant information and construct explanations as
relational descriptions provided in response to questions about the robot’s
decisions and beliefs, including under hypothetical situations.
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– Incrementally merge newly acquired information with existing knowledge,
exploiting the interplay between representational choices, reasoning methods,
and learning algorithms to generate accurate explanations.

These capabilities are evaluated in the context of planning tasks and scene under-
standing tasks in simulated scenes and on a physical robot manipulating table-
top objects. Specifically, the robot (i) computes and executes plans to arrange
objects in desired configurations; and (ii) estimates occlusion of scene objects
and stability of object configurations. Experimental results indicate the ability
to (i) incrementally reduce uncertainty about the scene by learning previously
unknown state constraints; and (ii) construct explanations reliably and efficiently
by automatically identifying and reasoning with the relevant knowledge despite
noisy sensing and actuation.

The remainder of the paper is organized as follows. We first discuss related
work in Sect. 2, followed by a description of the architecture in Sect. 3. Exper-
imental results are discussed in Sect. 4, and the conclusions are presented in
Sect. 5.

2 Related Work

Early work on explanation generation drew on research in cognition, psychology,
and linguistics to characterize explanations in terms of generality, objectivity,
connectivity, relevance, and information content [7]. Subsequent studies involv-
ing human subjects have also indicated that the important attributes of good
explanations include coherence, simplicity, generality, soundness, and complete-
ness [24]. In parallel, fundamental computational methods were developed for
explaining unexpected outcomes by reasoning logically about potential causes
[10].

With the use of AI and machine learning methods in different domains, there
is much interest in understanding the decisions of these methods1. This under-
standing can be used to improve the underlying algorithms, and to make auto-
mated decision-making more acceptable or trustworthy to humans [17]. Recent
work in explainable AI and explainable planning can be broadly categorized into
two groups [19]. Methods in one group modify or map learned models or reason-
ing systems to make their decisions more interpretable, e.g., by tracing decisions
back to input data [11] or explaining the predictions of any classifier by learning
equivalent interpretable models [25], or biasing a planning system towards mak-
ing decisions easier for humans to understand [33]. Methods in the other group
provide descriptions that make a reasoning system’s decisions more transpar-
ent, e.g., explaining planning decisions [3], or causal and temporal relations [27].
Much of this research is agnostic to how an explanation is structured or assumes
comprehensive domain knowledge. Given the use of deep networks and related
algorithms in different applications, methods are being developed to understand

1 For a recent debate on whether interpretability is needed in machine learning, please
see: https://www.youtube.com/watch?v=93Xv8vJ2acI.

https://www.youtube.com/watch?v=93Xv8vJ2acI
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Fig. 2. Architecture combines strengths of non-monotonic logical reasoning with
incomplete commonsense domain knowledge, deep learning, and inductive learning.
New components to the right of the dashed line support desired explainability.

the operation of these networks, e.g., by computing the features most relevant to
a deep network’s outputs [2]. As documented in a recent survey, these methods
compute gradients and decompositions in a network’s layers to obtain heatmaps
of the relevant features [26]. There has also been work on reasoning with learned
symbolic structure, or with a learned graph encoding scene structure, in con-
junction with deep networks to answer questions about images of scenes [23,32].
However, these approaches do not (i) fully integrate reasoning and learning to
inform and guide each other; or (ii) use the rich commonsense knowledge, which
is available in almost every domain, for reliable and efficient reasoning, learn-
ing, and the generation of descriptions of the decisions and beliefs of the system
under consideration.

Our focus is on integrated robot systems that use a combination of
knowledge-based and data-driven algorithms to represent, reason with, and learn
from incomplete domain knowledge and noisy observations. We enable such
robots to generate relational descriptions of decisions, beliefs, and hypothetical
or counterfactual situations; humans often consider such hypothetical options
to infer causal relations [4]. Recent surveys state that these capabilities are not
supported by existing systems [1,19]. Our architecture addresses this limitation
by extending work in our group on explainable agency [14], a theory of explana-
tions [31], and on combining non-monotonic logical reasoning and deep learning
for classification of simulated images [21].
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3 Architecture

Figure 2 shows the overall architecture. Components to the left of the dashed
vertical line were introduced in our prior work that combined non-monotonic
logical reasoning and deep learning for classification in simulated images [21];
we summarize these components for completeness. Components to the right of
the dashed line are introduced here to expand reasoning capabilities and answer
questions about decisions, beliefs, and hypothetical situations. We describe these
new components and revisions to existing components in more detail. We do so
using the following example domain.

Example Domain 1. [Robot Assistant (RA) Domain]
A Baxter (see Fig. 1a): (i) estimates occlusion of scene objects and stability of
object structures, and arranges objects in desired configurations; and (ii) pro-
vides relational descriptions of decisions, beliefs, and hypothetical situations as
responses to questions and commands. There is uncertainty in the robot’s per-
ception and actuation, and the robot uses probabilistic algorithms to visually
recognize and move objects. The robot has incomplete (and potentially impre-
cise) domain knowledge, which includes object attributes such as size (small,
medium, large), surface (flat, irregular) and shape (cube, apple, duck); spa-
tial relations between objects (above, below, front, behind, right, left, in); some
domain attributes; and some axioms governing domain dynamics such as:

– Placing an object on top of an object with an irregular surface results in an
unstable object configuration.

– For any given object, removing all objects blocking the view of any minimal
fraction of its frontal face causes this object to be not occluded.

This knowledge may need to be revised over time, e.g., some actions, axioms,
and the values of some attributes may not be known, or the robot may find that
placing certain objects on an object with an irregular surface results in a stable
configuration.

3.1 Knowledge Representation, Reasoning, and Learning

We first describe the knowledge representation, reasoning, and learning compo-
nents.

Feature Extraction: In our architecture, the sensor inputs are RGB images of
simulated scenes, or noisy top and front views of any given scene from the robot’s
cameras; our previous work considered RGB-D images (i.e., point clouds) of
simple simulated scenes [21]. From each image, a probabilistic algorithm is used
to extract objects and their attributes. Also, the spatial relations between objects
are computed using our prior work that incrementally learns the grounding,
i.e., the meaning in the physical world, for position-based and distance-based
prepositional words such as “above”, “in”, and “far”, in the form of 2D and 1D
histograms [20].
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Non-monotonic Logical Reasoning: To represent and reason with domain
knowledge, we use CR-Prolog, an extension to Answer Set Prolog (ASP) that
introduces consistency restoring (CR) rules; we use the terms “CR-Prolog” and
“ASP” interchangeably in this paper. ASP is a declarative language that rep-
resents recursive definitions, defaults, causal relations, and constructs that are
difficult to express in classical logic formalisms. ASP is based on the stable model
semantics, and encodes default negation and epistemic disjunction, e.g., unlike
“¬a”, which implies that “a is believed to be false”, “not a” only implies “a is
not believed to be true” [9]. Each literal can hence be true, false, or unknown,
and the robot only believes statements that it is forced to believe. ASP supports
non-monotonic logical reasoning, i.e., adding a statement can reduce the set of
inferences, which helps recover from errors due to reasoning with incomplete
knowledge. Knowledge-based reasoning paradigms such as ASP are often criti-
cized for requiring considerable prior knowledge, and for being unwieldy in large,
complex domains. However, modern ASP solvers are used by an international
community to reason efficiently with a large knowledge base or with incomplete
knowledge [5].

A domain’s description in ASP comprises a system description D and a his-
tory H. D comprises a sorted signature Σ and axioms encoding the domain’s
dynamics. Our prior work explored spatial relations for classification tasks; Σ
included basic sorts, e.g., object, robot, size, relation, and surface; statics,
i.e., domain attributes that do not change over time, e.g., obj size(object, size)
and obj surface(obj, surface); and fluents, i.e., attributes whose values can be
changed, e.g., obj relation(above, A, B) implies object A is above object B. The
robot in this paper also plans and executes physical actions that cause changes
in the domain. Such a dynamic domain is modeled in our architecture by first
describing the expanded Σ and transition diagram in action language ALd [8];
this description is then translated to ASP statements. For the RA domain, Σ
now includes the sort step for temporal reasoning, additional fluents such as
in hand(robot, object), actions such as pickup(robot, object) and putdown(robot,
object, location), and the relation holds(fluent, step) implying that a particular
fluent holds true at a particular timestep. Axioms of the RA domain include
ASP statements such as:

holds(in hand(robot, object), I + 1) ← occurs(pickup(robot, object), I) (1a)
holds(obj relation(above,A,B), I) ← holds(obj relation(below,B,A), I) (1b)
¬occurs(pickup(robot, object), I) ← holds(in hand(robot, object), I) (1c)

which encode a causal law, a state constraint, and an executability condition
respectively, e.g., Statement 1(a) implies that executing the “pickup” action
causes the target object to be in the robot’s grasp in the next time step; our
prior work only included state constraints [21]. The axioms also encode some
commonsense knowledge in the form of default statements that hold unless there
is evidence to the contrary, e.g., “larger objects placed on smaller objects are
unstable” is encoded in ASP as:



212 T. Mota et al.

¬holds(stable(A), I) ← holds(obj relation(above,A,B), I), (2)
size(A, large), size(B, small), not holds(stable(A), I)

where “not” denotes default negation. In addition to axioms, information
extracted from the input images (e.g., spatial relations, object attributes) with
sufficiently high probability is converted to ASP statements at that time step.
Also, the domain’s history H comprises records of fluents observed to be true
or false at a particular time step, i.e., obs(fluent, boolean, step), and of the exe-
cution of an action at a particular time step, i.e., hpd(action, step). In [29] this
notion was expanded to represent defaults describing the values of fluents in
the initial state, e.g., “it is initially believed that a book is in the library”, and
exceptions, e.g., “a cookbook is in the kitchen”.

To reason with the domain knowledge, our architecture constructs the CR-
Prolog program Π(D,H), which includes Σ and axioms of D, inertia axioms,
reality checks, closed world assumptions for actions, and observations, actions,
and defaults from H. Every default also has a CR rule to let the robot assume
the default’s conclusion is false to restore consistency under exceptional circum-
stances. For instance, the statement in the ASP program: ¬loc(X, library) +←
book(X) is a CR rule that is triggered under exceptional circumstances to assume
a book is not in the library as a potential explanation of an unexpected obser-
vation. The program for our RA domain is available online [22]. Once Π is
constructed, planning, diagnostics, and inference can be reduced to computing
answer sets of Π [9]. Any answer set represents the beliefs of the robot asso-
ciated with Π; it is a description of a possible world and the set of literals of
domain fluents and statics at any particular time step represents the state at
that time step. Note that incorrect inferences can be drawn due to incomplete
knowledge, noisy sensor input, or the use of a low threshold for elevating prob-
abilistic information to statements in the ASP program. Non-monotonic logical
reasoning enables the robot to recover from such errors, and not be very sensitive
to the choice of the probability threshold. Also, although we do not describe it
here, it is possible to model non-determinism (e.g., in action outcomes) in our
architecture. In addition, work by others in our group has combined such logical
reasoning at a coarse resolution with probabilistic reasoning over the relevant
part of a finer resolution representation of the domain [29]. For ease of under-
standing and to focus on the interplay between non-monotonic logical reasoning
and learning, we limit ourselves to logical reasoning at one resolution in this
paper.

Classification: Similar to the approach in our prior work, for any given image,
the robot tries to estimate the occlusion of objects and the stability of object con-
figurations using ASP-based reasoning. If an answer is not found, or an incorrect
answer is found (on labeled training examples), the robot automatically extracts
relevant regions of interest (ROIs) from the corresponding image. Parameters of
existing Convolutional Neural Network (CNN) architectures (e.g., Lenet [16],
AlexNet [12]) are tuned to map information from each such ROI to the corre-
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sponding classification labels. An innovation of our prior work was to reason with
knowledge of the task (e.g., estimating occlusion) to identify and ground only
the relevant axioms and relations in the image under consideration to determine
the ROIs [21]. In this paper, we reason about relevance over a sequence of steps
to provide explanations, as described in Subsect. 3.2.

Decision Tree Induction: Images used to train the CNNs are considered
to contain information about missing or incorrect constraints related to occlu-
sion and stability. Image features and spatial relations extracted from ROIs in
each such image, along with the known labels for occlusion and stability (dur-
ing training), are used to incrementally learn a decision tree summarizing the
corresponding state transitions. The learning process repeatedly splits a node
based on an unused attribute likely to provide the highest reduction in entropy.
Next, branches of the tree that satisfy minimal thresholds on purity at the leaf
(≥95% samples in one class) and on the level of support from labeled exam-
ples (≥5%) are used to construct candidate axioms. Candidates are validated
and those without a minimal level of support (≥5%) on unseen examples are
removed. These thresholds are set to identify a small number of highly likely
axioms, and small changes to thresholds do not affect performance. Also, the
thresholds can be revised to achieve other outcomes, e.g., they can be lowered
significantly to identify default constraints.

Unlike our prior work, we introduce new strategies to process noisy images
of more complex scenes. First, we use an ensemble learning approach, retain-
ing only axioms that are identified over a number of cycles of learning and
validation. Second, different versions of the same axiom are merged to remove
over-specifications, e.g.:

¬stable(A) ← obj relation(above,A,B), obj surface(B, irregular) (3a)
¬stable(A) ← obj relation(above,A,B), obj surface(B, irregular), (3b)

obj size(B, large)

where Statement 3(b) can be removed because the size of the object at the
bottom of a stack does not provide any additional information about instability
given that it has an irregular surface. If the robot later observes that a large
object, even with an irregular surface, can support a small object, the axiom will
be revised suitably. Specifically, axioms with the same head and some overlap
in the body are grouped. Each combination of one axiom from each group is
encoded in an ASP program along with axioms that are not in any group. This
program is used to classify ten labeled scenes, only retaining axioms in the
program that provides the highest accuracy on these scenes. Third, to filter
axioms that cease to be useful, the robot associates each axiom with a strength
that decays exponentially over time if it is not reinforced, i.e., not used or learned
again. Any axiom whose strength falls below a threshold is removed. Other work
in our group has explored the learning of actions, causal laws, and executability
conditions in simulated domains [30]. Here, we only consider the learning of
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constraints and explore the effect of the learned axioms on the ability to provide
explanations.

3.2 Relational Descriptions as Explanations

Our architecture’s new components exploit the interplay between representation,
reasoning, and learning to provide the desired relational descriptions of decisions,
beliefs, and the outcomes of hypothetical events.

Interaction Interface and Control Loop: Human interaction with our archi-
tecture is through speech or text. Existing algorithms, software, and a controlled
(domain-specific) vocabulary are used to parse human verbal input and to pro-
vide a verbal response when appropriate. Specifically, verbal input from a human
is transcribed into text drawn from the controlled vocabulary. This (or the input)
text is labeled using a part-of-speech (POS) tagger, and normalized with the
lemma list [28] and related synonyms and antonyms from WordNet [18]. The
processed text helps identify the type of request, which may correspond to a
desired goal or a question about decisions, beliefs, or the outcomes of hypotheti-
cal events. In the former case, the goal is sent to the ASP program for planning.
The robot executes the plan, replanning when unexpected action outcomes can-
not be explained, until the goal is achieved. In the latter case, the “Program
Analyzer” considers the domain knowledge (including inferred beliefs that are
computed as needed) and processed human input to automatically identify rel-
evant axioms and literals. These literals are inserted into generic response tem-
plates based on the controlled vocabulary, resulting in human-understandable
(textual) descriptions that are converted to synthetic speech if needed.

Program Analyzer: Algorithm 1 describes our approach for automatically
identifying and reasoning with the relevant information to construct the desired
relational descriptions in the context of four types of explanatory questions or
requests. The first three question types were introduced as those to be considered
by any explainable planning system [6]; we also consider a question about specific
beliefs.

1. Plan description When asked to describe a particular plan, the robot
parses the related answer set(s) to extract a sequence of actions of the form
occurs(action1, step1), ..., occurs(actionN, stepN) (line 3 in Algorithm 1).
These actions are used to construct the response.

2. Action justification: Why action X at step I? To justify the execution
of any particular action at a particular time step:
(a) For each action that occurred after time step I, the robot examines rel-

evant executability condition(s) and identifies literal(s) that would pre-
vent the action’s execution at step I (lines 5–7). For the goal of plac-
ing the orange block on the table in Fig. 1b, assume that the action
executed are occurs(pickup(robot, blue block), 0), occurs(putdown(robot,
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Algorithm 1. (Program Analyzer) Construct answer to input question
Input : Literal of input question; Π(D,H); answer templates.
Output: Answer and answer Literals.
// Compute answer set

1 AS = AnswerSet(Π)
2 if question = plan description then

// Retrieve all actions from answer set

3 answer literals = Retrieve(AS, actions)
4 else if question = “why action X at step I?” then

// Extract actions after step I

5 next actions = Retrieve(AS, actions for step > I)
// Extract axioms influencing these actions

6 relevant axioms = Retrieve(Π, head = ¬ next actions)
// Extract relevant literals from Answer Set

7 relevant literals = Retrieve(AS, Body(relevant axioms) ∈ I∧ /∈ I + 1)
// Output literals

8 answer literals = pair(relevant literals, next actions)
9 else if question = “why not action X at step I?” then

// Extract axioms relevant to action

10 relevant axioms = Retrieve(Π, head = ¬ occurs(X))
// Extract relevant literals from Answer Set

11 answer literals = Retrieve(AS, Body(relevant axioms) ∈ I∧ /∈ I + 1)
12 else if question = “why belief Y at step I?” then

// Extract axioms influencing this belief

13 relevant axioms = Retrieve(Π, head = Y)
// Extract body of axioms

14 answer literals = Recursive Examine(AS, Body(relevant axioms))
15 Construct Answer(answer literals, answer templates)

blue block), 1), and occurs(pickup(robot, orange block), 2). If the focus is
on the first pickup action, an executability condition related to the second
pickup action:

¬occurs(pickup(robot, A), I) ← holds(obj relation(below,A,B), I)

is ground in the scene to obtain obj relation(below, orange block,
blue block) as a literal of interest.

(b) If any identified literal is in the answer set at the time step of interest
(0 in the current example), and is absent (or its negation is present) in
the next step, it is taken to be a reason for executing the action under
consideration (line 7).

(c) The condition modified by the execution of the action of interest is paired
with the subsequent action to construct the answer to the question (line
8). For instance, the question “Why did you pick up the blue block at
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time step 0?”, receives the answer “I had to pick up the orange block,
and the orange block was located below the blue block”.

A similar approach is used to justify the selection of any particular action in
any particular plan that has been computed but not yet executed.

3. Hypothetical actions: Why not action X at step I? For questions
about actions not selected for execution:
(a) The robot identifies executability conditions that have the hypothetical

action in the head, i.e., conditions that prevent the action from being
selected during planning (line 10 in Algorithm 1).

(b) For each identified executability condition, the robot examines whether
literals in the body are satisfied in the corresponding answer set (line 11).
If so, these literals are used to construct the answer.

Suppose action putdown(robot, blue block, table) occurred at step 1 in Fig. 1b.
For the question “Why did you not put the blue cube on the tennis ball at
time step 1?”, the following related executability condition is identified:

¬occurs(putdown(robot, A, B), I) ← has surface(B, irregular)

which implies that an object cannot be placed on another object with an
irregular surface. The answer set indicates that the tennis ball has an irreg-
ular surface. The robot provides the answer “Because the tennis ball has an
irregular surface”.

4. Belief query: Why belief Y at step I? To explain any particular belief,
the robot searches for support axioms in which the belief is the head and the
corresponding body is satisfied in the current state. The search is repeated
recursively for literals in the body until no more axioms are found (lines 13–
14). These relevant literals are used to construct the answer. For instance, to
explain the belief that object ob1 is unstable in step I, the robot finds the
support axiom:

¬holds(stable(ob1), I) ← holds(small base(ob1), I)

Assume that the current beliefs include that ob1 has a small base. Searching
for why ob1 is believed to have a small base identifies the axiom:

holds(small base(ob1), I) ← holds(relation(below, ob2, ob1), I),
has size(ob2, small), has size(ob1, big)

Asking “why do you believe object ob1 is unstable at step I?” would provide
the answer “Because object ob2 is below object ob1, ob2 is small, and ob1 is
big”.

Robot Platform: Our prior work explored scene understanding tasks with
simulated images, but this paper considers a robot that also plans and executes
actions to achieve the desired goals. As stated earlier, we use a Baxter robot that
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manipulates objects on a tabletop. The Baxter uses probabilistic algorithms to
process inputs from its cameras, e.g., to extract information about the pres-
ence of objects, their attributes, and the spatial relations between objects, from
images such as Fig. 1b. The Baxter also uses built-in probabilistic motion plan-
ning algorithms to execute primitive manipulation actions, e.g., to grasp and
pick up objects. Observations obtained with a high probability are elevated to
literals associated with complete certainty in the ASP program. Recall that our
architecture’s non-monotonic logical reasoning capability enables the robot to
identify and recover from errors caused by adding incorrect information to the
ASP program.

4 Experimental Setup and Results

Subsection 4.1 describes the setup for evaluating the ability to construct rela-
tional descriptions of decisions, beliefs, and hypothetical events. Subsection 4.2
then describes some execution traces and Subsect. 4.3 discusses quantitative
results.

4.1 Experimental Setup

Experiments were designed to evaluate the following hypotheses:

H1 : reasoning with incrementally learned and merged state constraints
improves the quality of plans generated; and

H2 : exploiting the links between reasoning and learning improves the accuracy
of the descriptions provided to explain the decisions and beliefs.

These hypotheses and the underlying capabilities of our architecture were evalu-
ated considered four kinds of explanatory requests and questions: (i) describing
the plan; (ii) justifying the execution of an action at a given time step; (iii) justi-
fying not choosing a hypothetical action; and (iv) justifying particular beliefs. As
stated in Algorithm 1 in Subsect. 3.2, the same methodology can also be adapted
to address other requests nd questions. The quality of a plan was measured in
terms of the ability to compute minimal plans, i.e., plans with the least num-
ber of actions to achieve the desired goals. The quality of an explanation was
measured in terms of precision and recall of the literals in the answer provided
by our architecture in comparison with the expected response. The expected
(“ground truth”) response was provided in a semi-supervised manner based on
manual input and automatic selection of relevant literals.

Experimental trials considered images from the robot’s camera and simulated
images. Real world images contained 5–7 objects of different colors, textures,
shapes, and sizes in the RA domain of Example 1. The objects included cubes,
a pig, a capsicum, a tennis ball, an apple, an orange, and a pot. These objects
were either stacked on each other or spread on the table—see Fig. 1b. A total
of 40 configurations were created, each with five different goals for planning and
four different questions for each plan, resulting in a total of 200 plans and 800
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(a) Execution Example 1. (b) Execution Example 3. (c) Additional example.

Fig. 3. (a) Relation between blue cube and red cube is important for the explanation
in Execution Example 1; (b) The rubber duck is the focus of attention in Execution
Example 3; and (c) Example of another trial (not described in this paper) in which a
tennis ball plays an important role in the explanation constructed by our architecture.
(Color figure online)

questions. Since evaluating applicability to a wide range of objects and scenes
is difficult on robots, we also used a real-time physics engine (Bullet) to create
40 simulated images, each with 7–9 objects (3–5 stacked and the remaining
on a flat surface). Objects included cylinders, spheres, cubes, a duck, and five
household objects from the Yale-CMU-Berkeley dataset (apple, pitcher, mustard
bottle, mug, and box of crackers). We once again considered five different goals
for planning and four different questions for each plan, resulting in the same
number of plans (200) and questions (800) as with the real world data.

To explore the interplay between reasoning and learning, we focused on the
effect of learned knowledge on planning and constructing explanations. Specif-
ically, we ran experiments with and without some learned constraints in the
knowledge base. Learned constraints were revised over time in our architecture,
as described in Subsect. 3.1, whereas the learned constraints were not used by
the baselines for planning and explanation generation. During planning, we mea-
sured the number of optimal, sub-optimal, and incorrect plans, and the planning
time. An optimal plan is a minimal plan that achieves the goal; a sub-optimal
plan requires more than the minimum number of steps and/or has to assume
an unnecessary exception to default knowledge; and an incorrect plan leads to
undesirable outcomes and fails to achieve the desired goal. We discuss the quan-
titative results of these experimental trials after describing some execution traces
of our architecture’s operation.

4.2 Execution Trace

The following execution traces illustrate our architecture’s ability to construct
relational descriptions explaining the decisions, beliefs, and the outcomes of
hypothetical actions.

Execution Example 1. [Plans, actions, and beliefs]
Consider a robot that starts with objects as shown in Fig. 1b. The robot is
assigned the goal of achieving a state in which the red block is on top of
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the orange block, i.e., holds(relation(on, red block, orange block), I). The robot
answers the following questions after executing a plan and successfully achieving
the assigned goal:

– Human: “Please describe the plan.”
Baxter: “I picked up the blue block. I put the blue block on the table. I
picked up the orange block. I put the orange block on the table. I picked up
the red block. I put the red block on the orange block.”

– The human may ask the robot to justify a particular action in the executed
plan.
Human: “Why did you pick up the blue block at step 0?”
Baxter: “Because I had to pick up the red block, and it was below the blue
block.”
The constructed answer is also used to automatically highlight the relevant
image regions that influenced this answer, as shown in Fig. 3.

– The human now may ask about particular actions that were not considered.
Human: “Why did you not put down the orange block on the blue block?”
Baxter: “Because the blue block is small.” In the absence of a reference to
a particular time step, the robot answers the question based on the single
instance (in the executed plan) of putting the orange block on another block
or surface. In addition, the answer is based on learned default knowledge, i.e.,
that objects with a small base are typically unstable.

– The human may also ask about particular beliefs.
Human: “Why did you believe that the red block was below the blue block
in the initial state?”
Baxter: “Because I observed the red block below the blue block in step zero.”

Execution Example 2. [Reasoning and explanation]
Continuing with the previous example, the subsequent interactions are as follows:

– Human: “Put the tennis ball on the blue cube.”
The goal holds(relation(on, ball, blue block), I) is encoded in the ASP program
for planning. The default rule about configurations with small bases being
unstable prevents the robot from placing objects on the blue block. At the
same time, the robot has to compute plans to achieve the assigned goal. This
causes an inconsistency that is resolved by invoking a CR rule and planning
to place the ball on the top of the blue block. The following interaction takes
place after plan execution:

– Human: “Please describe the plan you executed.”
Robot: “I picked up the ball. I put the ball on the blue block.”

– The human may now explore the belief of the agent that requires it to consider
exceptions to the default knowledge:
Human: “Why do you believe the ball is on the blue block?”
Robot: “Because I observed the ball on the blue block in step one.”

Combining reasoning with constructing explanations thus allows the robot to
adapt to unforeseen exceptions.
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Execution Example 3. [Learning and explanation]
In some situations, the robot may be unable to respond to the human request or
question because it is not possible to achieve the desired object configuration or
belief. Even in such cases, our architecture enables the robot to answer explana-
tory questions. For instance, consider the simulated scene in Fig. 3b, with the
following interaction:

– Human: “Please put the pitcher on the duck.”
This action is not executed because of a constraint learned during a previous
trial that any object configuration that has an object on another object with
an irregular surface will be unstable.

– If asked, the robot can justify its decision of not executing the action.
Human: “Why did you not put the pitcher on the duck?”.
Robot: “Because the duck has an irregular surface.”
The image region relevant to the construction of the robot’s answer to the
question posed by the human is automatically highlighted in the correspond-
ing image, as indicated in Fig. 3b above.

This example illustrates how integrating reasoning and learning helps justify the
decision to not execute a requested action that will have an unfavorable outcome.

Overall, these and other such examples demonstrate how our architecture uses
a relational representation, automatically reasons with just the relevant knowl-
edge, incrementally revises axioms, and identifies image regions, attributes, and
actions contributing to particular decisions and beliefs. Since the same set of
samples are used to learn axioms and train the deep networks, our approach
also provides a partial understanding of the behavior of learned deep networks.

4.3 Experimental Results

In this section, we discuss quantitative results of evaluating the desired hypothe-
ses. The first set of experiments was designed as follows to evaluate hypothesis
H1:

1. Forty initial object configurations were arranged (similar to that in Fig. 1a).
The Baxter automatically extracted information (e.g., attributes, spatial rela-
tions) from images corresponding to top and frontal views (using the cameras
on the left and right grippers), and encoded it in the ASP program as the
initial state.

2. For each initial state, five goals were randomly chosen and encoded in the ASP
program. The robot reasoned with the existing knowledge to create plans for
these 200 combinations (40 initial states, five goals).

3. The plans were evaluated in terms of the number of optimal, sub-optimal and
incorrect plans, and planning time.

4. Experiments were repeated with and without the learned axioms.
5. Steps 1–4 (above) were also repeated with the simulated images.
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Since the number of plans and planning time vary depending on the initial con-
ditions and the goal, we conducted paired trials with and without the learned
constraints included in the ASP program used for reasoning. The initial condi-
tions and goal were identical in each paired trial, and differed between different
paired trials. Then, we expressed the number of plans and the planning time
with the learned constraints as a fraction of the corresponding values obtained
by reasoning without the learned constraints. The average of these fractions
over all the trials is reported in Table 1. In addition, we computed the number of
optimal, sub-optimal, and incorrect plans in each trial as a fraction of the total
number of plans in the trial; we did this separately with and without using the
learned axioms for reasoning, and the average over all trials is summarized in
Table 2. These results indicate that using the learned axioms for reasoning sig-
nificantly reduced the search space, resulting in a much smaller number of plans
and a substantial reduction in the planning time. In addition, when the robot
used the learned axioms for reasoning, it resulted in a much smaller number of
sub-optimal plans and eliminated all incorrect plans. Also, each such sub-optimal
plan was created only when the corresponding goal could not be achieved with-
out creating an exception to a default, e.g., stacking an object on a small base.
Without the learned axioms, a larger fraction of the plans are sub-optimal or
incorrect. These results support hypothesis H1.

The second set of experiments was designed as follows to evaluate hypothesis
H2:

Table 1. Number of plans and planning time with the learned axioms expressed as a
fraction of the values without the learned axioms. Reasoning with the learned axioms
improves performance.

Measures Ratio (with/without)

Real scenes Simulated scenes

Number of plans 0.36 0.33

Planning time 0.66 0.89

Table 2. Number of optimal, sub-optimal, and incorrect plans expressed as a fraction
of the total number of plans. Reasoning with the learned axioms improves performance.

Plans Real scenes Simulated scenes

Without With Without With

Optimal 0.31 0.82 0.15 0.49

Sub-optimal 0.12 0.18 0.31 0.51

Incorrect 0.57 0 0.54 0
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1. For each of the 200 combinations (40 configurations, five goals) from the first
set of experiments with real-world data, we considered knowledge bases with
and without the learned axioms and had the robot compute plans to achieve
the goals.

2. The robot had to describe the plan and justify the choice of a particular action
(chosen randomly) in the plan. Then, one parameter of the chosen action was
changed randomly to pose a question about why this new action could not
be applied. Finally, a belief related to the previous two questions had to be
justified.

3. The literals present in the answers were compared against the expected literals
in the ideal response, with the average precision and recall scores reported in
Table 3.

4. We also performed these experiments separately for simulated images, with
the average results summarized in Table 4.

Tables 3 and 4 show that when the learned axioms were used for reasoning,
the precision and recall of relevant literals (for constructing the explanation)
were higher than when the learned axioms were not included. The improve-
ment in performance is particularly pronounced when the robot has to answer
questions about actions that it has not actually executed. The precision and

Table 3. (Real scenes) Precision and recall of retrieving relevant literals for con-
structing answers to questions with and without using the learned axioms for reason-
ing. Using the learned axioms significantly improves the ability to provide accurate
explanations.

Query type Precision Recall

Without With Without With

Plan description 91.77% 100% 91.77% 100%

Why X? 91.75% 94.75% 91.98% 94.75%

Why not X? 93.57% 95.16% 87.91% 98.88%

Belief 93.04% 99.35% 93.63% 100%

Table 4. (Simulated scenes) Precision and recall of retrieving relevant literals for
constructing answers to questions with and without reasoning with learned axioms.
Using the learned axioms significantly improves the ability to provide accurate expla-
nations.

Query type Precision Recall

Without With Without With

Plan description 90.04% 100% 90.04% 100%

Why X? 93.0% 93.0% 93.0% 93.0%

Why not X? 93.22% 100% 89.43% 98.04%

Belief 97.22% 99.19% 97.9% 100%
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recall rates were reasonable even when the learned axioms were not included;
this is because not all the learned axioms are needed to accurately answer each
explanatory question. When the learned axioms were used for reasoning, errors
were very rare and corresponded to some additional literals being included in
the answer (i.e., over-specified explanations). In addition, when we specifically
removed axioms related to the goal under consideration, precision and recall val-
ues were much lower. Furthermore, there was noise in both sensing and actuation,
especially in the robot experiments. For instance, recognition of spatial relations,
learning of constraints, and manipulation have approximate error rates of 15%,
5–10%, and 15% respectively. Experimental results thus indicate that coupling
reasoning and learning to inform and guide each other enables the robot to pro-
vide accurate relational descriptions in response to questions about decisions,
beliefs, and the outcomes of hypothetical actions. This supports hypothesis H2.
Additional examples of images, questions, and answers, are in our open source
repository [22].

5 Conclusions

This paper described a cognitive systems-inspired approach that enables an inte-
grated robot system to explain its decisions, beliefs, and the outcomes of hypo-
thetical actions. These explanations are constructed on-demand in the form of
descriptions of relations between relevant objects, actions, and attributes of the
domain. We have implemented this approach in an architecture that combines
the complementary strengths of non-monotonic logical reasoning with incom-
plete commonsense domain knowledge, deep learning, and inductive learning. In
the context of some scene understanding and planning tasks performed in simula-
tion and a physical robot, we have demonstrated that our architecture exploits
the interplay between knowledge-based reasoning and data-driven learning. It
automatically identifies and reasons with the relevant information to efficiently
construct the desired explanations, with both the planning and explanation gen-
eration performance improving significantly when previously unknown state con-
straints are learned incrementally and used for subsequent reasoning.

Our architecture opens up multiple avenues for further research. First, we
will integrate the ability to learn other kinds of axioms and the corresponding
knowledge represented as an ASP program. We will do so by building on the
approach developed in our group by combining non-monotonic logical reason-
ing, active learning, and relational reinforcement learning [30]. Second, we will
explore more complex domains, tasks, and explanations, reasoning with relevant
knowledge at different tightly-coupled resolutions for scalability [29]. We are
specifically interested in exploring scenarios in which there is ambiguity in the
questions (e.g., it is unclear which of two occurrences of the pickup action the
human is referring to), or the explanation is needed at a different level of abstrac-
tion, specificity, or verbosity. We will do so by building on a related theory of
explanations [31]. Third, we will use our architecture to better understand the
behavior of deep networks. The key advantage of using our architecture is that it
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uses reasoning to guide learning. Unlike “end to end” data-driven learning meth-
ods based on deep networks, our architecture uses reasoning to trigger learning
only when existing knowledge is insufficient to perform the desired task(s). The
long-term objective is to develop an architecture that exploits the complemen-
tary strengths of knowledge-based reasoning and data-driven learning for the
reliable and efficient operation of robots in complex, dynamic domains.
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Abstract. Continuous area coverage missions are a fundamental part
of many swarm robotics applications. One of such missions is coopera-
tive surveillance, where the main aim is to deploy a swarm for covering
predefined areas of interest simultaneously by k robots, leading to better
overall sensing accuracy. However, without prior knowledge of the loca-
tion of these areas, robots need to continuously explore the domain, so
that up-to-date data is gathered while maintaining the benefits of simul-
taneous observations. In this paper, we propose a model for a swarm
of unmanned aerial vehicles to successfully achieve cooperative surveil-
lance. Our model combines the concept of Lévy Walk for exploration
and Reynolds’ flocking rules for coordination. Simulation results clearly
show that our model outperforms a simple collision avoidance mecha-
nism, commonly found in Lévy-based multi-robot systems. Further pre-
liminary experiments with real robots corroborate the idea.

Keywords: Lévy Walk · Swarm intelligence · Reynolds’ flocking ·
Surveillance area coverage · Swarm robotics

1 Introduction

The benefits of swarm intelligence techniques have been widely exploited in coop-
erative missions [1–7]. A particular advantage of these techniques is the focus
on generating decentralized controllers, allowing for greater scalability in real-
world applications. Such applications often require the swarm to deal with the
lack of prior knowledge of the domain, as well as demanding reliable up-to-date
information [8]. This is particularly true in surveillance and monitoring tasks in
a variety of domains, such as: inspection and surveillance [9,10], search & rescue
[8,11], and agriculture [12–14]. Both surveillance and monitoring tasks focus on
developing control laws which enable groups of robots to transverse and observe
a given domain, but with a slightly different focus. The goal of surveillance is to
maximize some measure of coverage or information gathering, while monitoring
focuses on ensuring that certain areas of the domain (usually predefined) are
visited with a certain frequency. To tackle these tasks, aerial swarms have been
widely employed as the preferred vehicle [15], due to their intrinsic ability to
c© Springer Nature Switzerland AG 2020
N. Bassiliades et al. (Eds.): EUMAS 2020/AT 2020, LNAI 12520, pp. 226–242, 2020.
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gather data over a wide field of the ground plane, for example, through a down
facing camera. However, as their distance to the ground increases, the resolution
of observations decreases [16]. Furthermore, the accuracy of these observations is
also affected by the noisy characteristics inherent to any sensor leading to inac-
curacies [17]. These factors have led researchers to propose that several simulta-
neous observations of the same point would yield a more accurate measurement
[17,18]. This proposition is extremely useful when considering unmanned aerial
vehicles (UAVs), since their overlapping sensing regions (or fields of view) on
the ground plane, are the means by which these desired multiple simultaneous
observations can be gathered. Figure 1 depicts an example where three quad-
copters share points in their respective fields of view. This ability to maintain
an overlap of sensing regions, naturally requires robots to be able to coordinate,
while on the other hand, the very nature of the surveillance task, requires robots
to continuously explore the domain [19].

Fig. 1. Fields of view for 3 aerial vehicles, where the darker shades represent the areas
sensed simultaneously by more than one UAV.

Examples of such exploratory behaviours are widely found in natural soci-
eties, such as in honeybees [20], sharks [21] and primates [22]. In fact, foraging
individuals in these societies have been noted to explore an environment by cou-
pling periods of localized random walks with periods of ballistic relocation across
the domain [23]. This exploratory behaviour is known as Lévy Walk (LW) [24]
and has been successfully used as an exploratory behavior for single-agent sys-
tems [25], as well as in swarm-based systems [26]. In contrast to previous works,
we focus on studying the ability of robots within swarm, not only to coordinate
in order to maintain the aforementioned overlapping sensing regions, but to
do so while preforming LWs, leveraging exploration. We propose that this can
be accomplished by merging a biologically-inspired coordination strategy and
a LW controller, in a decentralized manner. Such coordination strategies have
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long drawn inspiration also from natural agents’ inherent ability to coordinate
using only simple and local control rules [27]. The most popular of such frame-
works was introduced by Reynolds in [28], where the rules to generate flocking
behaviours were proposed. In our work, we bringing together the flocking rules
proposed by Reynolds, and the LW motion model, effectively creating a system
that seamlessly integrates both coordination and exploration.

1.1 Contribution

The main contribution of this paper is the development of a decentralized model,
integrating the coordination mechanism based on Reynolds’ rules, with and an
exploratory behaviour based on Lévy Walk. We test our model in a simulated
environment on a cooperative surveillance task. The aim is to explore a given
domain, while maintaining an overlap between the regions sensed by robots of the
swarm. We also demonstrate our controller with proof-of-concept experiments
with two drones.

2 Swarm Systems

2.1 Surveillance in Swarm Systems

Surveillance tasks in multi robot systems have been long addressed by the
research community [9]. Some of the initial works in this area focused on optimiz-
ing policies, considering trajectory planning, energy consumption and dynamic
constraints for a single robot, which were later extrapolated into the multi-robot
scenario [29]. Other works developed model-based strategies to determine feasi-
ble trajectories in real time while also considering detailed sensing models [30],
or considering the task routing problem with a set of predefined locations that
need to be visited [31]. More recently authors also applied the flocking strategy
proposed by Reynolds to address coordination [32], using a pheromone map to
guide the swarm to explore new regions. While control actions were computed
in a decentralized manner, the pheromone map is treated as a central shared
resource, of which every robot is assumed to have knowledge at any point in
time. We should highlight that, even if these works focus on the surveillance
task by employing an aerial swarm, neither of them address the extra constraint
of having overlapping sensing regions.

Another approach to surveillance using aerial swarms was proposed by Saska
in [9]. In this work a Particle Swarm Optimization (PSO) based method was
used to derive individual robot trajectories before deployment, with prior knowl-
edge of areas of interest to be visited, therefore centralising the method on the
planning level. However, authors demonstrate that, after deployment, on-board
sensing can be used in a distributed fashion to adjust trajectories using relative-
localization methods between UAVs, in cases where external localization is non-
existent or lacks the desired precision. Even though this work mentions the ben-
efits that multiple simultaneous observations can bring, the metrics presented
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focus mainly on the output of their proposed PSO in regards to the areas visited
and accuracy of individual pose estimation.

Interestingly, the topic of overlapping sensing regions has been given more
attention in the field of Wireless Sensing Networks (WSNs) [33,34]. However,
works in this field usually assume that a predefined set of areas exist such that
each point needs to be observed by k sensors simultaneously, a task known as k-
coverage [35]. Approaches to k-coverage using robots mainly focus on: optimizing
the number of robots to be deployed for the desired coverage constraints [36];
optimizing energy efficiency [19], or optimizing network connectivity [37], which
tend to require prior knowledge of the set of areas of interest. Nevertheless, k-
coverage is a topic relevant to this work and as such we will use this concept
as a metric to show that our proposed model enables the swarm to achieve
simultaneous observations while exploring the domain.

2.2 Lévy Walks in Swarm Systems

Sutantyo et al. introduced the Lévy Walk (LW) into swarm applications [38],
using the notion of artificial potential fields, as a means of collision avoidance
between robots preforming LWs, for a target search task. Later, that work was
extended to consider an adaptation of the Lévy parameter (μ) based on the den-
sity of targets found [26]. Another work that deals with underwater multi-robot
search using LW is presented in [39]. However, contrary to what we will assume,
authors consider the scenario where regions of the environment are divided and
each robot explores its own assigned region. Suarez and Murphy in their sur-
vey [40] also suggest that robots should divide the environment into individual
search areas. Nevertheless, they also point out that regions of interest might
not clear at the start, and might even change over time, making it difficult to
subdivide an environment prior to the mission. However, all the aforementioned
works focus on a slightly different problem, since they consider targets in the
domain and study their impact on each robot’s behaviour. Our approach focuses
on a more fundamental aspect of the swarm’s behaviour, namely, how can robots
both coordinate and explore, while maintaining overlapping sensing regions.

To highlight the benefits of LW in surveillance or coverage tasks, authors in
[41] have compared analytical results, considering strategies based on LW and
other random walk-based methods to show the clear advantage of the former,
in terms of overall robots’ displacement. More recent papers on Lévy Walks for
swarm systems have also focused primarily on math-based models [42], which
tend to abstract real constraints such as robots’ dynamics, communication and
sensing capabilities, as well as ability to maintain overlapping observations.

In summary, our proposed model differs from the any of the above, in two
key aspects: i) absence of predefined search regions for each robot and ii) fully
decentralized control of UAVs.
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3 Proposed Model

In our model, robots use a behaviour-based controller divided into two compo-
nents: Flocking:Interaction, dealing with the coordination behaviour, and Lévy
Walk, introducing the exploratory behaviour, each outputting a velocity vector.

3.1 Flocking:Interaction

This component, based on [28], consists of three rules: separation; cohesion; and
alignment, defined below.

Separation: Consider the ith robot, with a neighbourhood Ns of all the j robots
below a distance δs whose positions pj have their centroid at Ps defined as:

Ps =

( ∑
j∈Ns

pj

/
Ns

)
− pi (1)

Based on the relative orientation of Ps to the position of the ith robot (ρθ
s) we

compute the separation contribution, in form of an angular velocity, as:

ws = β
[
0 0 wz

s

]T = β
[
0 0 (ρθ

s + π) − θi

]T (2)

Where θi is the orientation of the ith robot. Note that we add π to the compu-
tation so that we consider a vector away from the geometric center Ps.

Cohesion: Consider the ith robot, with a neighbourhood Nc of all the j robots
below a distance δc whose positions pj have their centroid at Pc defined as:

Pc =

( ∑
j∈Nc

pj

/
Nc

)
− pi (3)

Based on the relative orientation of Pc to the position of the ith robot (ρθ
c) we

compute the cohesion contribution, in form of an angular velocity, as:

wc = γ
[
0 0 wz

c

]T = γ
[
0 0 ρθ

c − θi

]T (4)

where θi is the orientation of the ith robot. Note that we do not add π to the
computation so that we consider a vector towards the geometric center Pc.

Alignment : Consider ith robot, and the average heading Θ of the j robots in a
neighbourhood Na within distance δa > δs.

Θ =
∑
j∈Na

θj

/
Na (5)
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where θj is the orientation of robot j in (r p y) coordinates. The alignment
contribution, in the form of angular velocity wa, is computed as:

wa = α
[
0 0 ωz

a

]T = α
[
0 0 (Θ − θi)

]T (6)

The contribution from the interaction block, for the ith robot in the swarm, is
given by Eq. (8), where α, β and γ are weights between 0 and 1:

Φi =
[

v
ws + wa + wc

]
(7)

= [vx 0 0 0 0 βωz
s + γωz

c + αωz
a]T (8)

3.2 Lévy Walk

To introduce a Lévy-based velocity command into the algorithm, we first gen-
erate the appropriate variables, i.e., target orientation ψ and walk length L.
For that we use the Lévy Generator proposed by [43] to randomly draw a Lévy
distributed variable r:

r =
sin

(
(μ − 1) ∗ Ũ1

)
cos(Ũ1)

1
1−µ

(
cos

(
(2 − μ) ∗ Ũ1

)
Ũ2

) 2−µ
µ−1

(9)

where Ũ1 = U1π/2, Ũ2 = (U2 + 1)/2, and a random orientation being given by
ψ = U3π with U1 U2 U3 being uniformly distributed random variables between 0
and 1 and μ the Lévy parameter that influences the length of the jump. Figure 2
illustrates this influence.

Fig. 2. Trajectories of one robot with different μ values. On the left μ = 3 and on the
right mu = 2, showing how higher values o μ lead to smaller walks and hence more
frequent change of orientation.
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Having selected r, we draw an uniformly distributed value of ψ and compute:

x = r · cos(ψ) (10)
y = r · sin(ψ) (11)

L =
√

x2 + y2 (12)

As robots transverse space, the distance each one travels d is calculated and
updated. When this distance reaches L, a new L is generated as well as a new ψ.
As this happens and a robot finishes its walk, it starts updating its orientation
making its neighbours react to this change and continue their trajectory in a
different direction. Similarly to before this change is forced upon a robot through
a velocity command:

wl = η
[
0 0 ωz

l

]T =
[
0 0 η

(
ψ − θ

)]T (13)

where η is a scaling factor and θ is the yaw angle of a robot in the swarm.
This angular velocity command overrides both alignment and separation rules
in order to achieve the desired orientation. In this case linear velocity command

Table 1. Notation

Ps Centroid of the neighbours’ positions considered for the Separation rule

Pc Centroid of the neighbours’ positions considered for the Cohesion rule

Θ Average heading of neighbours considered for the Alignment rule

δs Threshold below which neighbours are considered for the Separation rule

δc Threshold below which neighbours are considered for the Cohesion rule

δa Threshold below which neighbours are considered for the Alignment rule

Ns Set of neighbours considered for the Separation rule

Nc Set of neighbours considered for the Cohesion rule

Na Set of neighbours considered for the Alignment rule

μ Lévy parameter

L Length of generated walk

ws Angular velocity component output by the Separation rule

wc Angular velocity component output by the Cohesion rule

wa Angular velocity component output by the Alignment rule

wl Angular velocity component output by the Lévy generator

Φi Velocity command for agent i based on the Interaction rules

Λi Velocity command for agent i based on the Lévy process

pi Position of agent i

vx, vy Linear components of the agent’s velocity in local frame

θi Orientation of agent i

β, γ, α Weights for Separation, Cohesion and Alignment rules respectively
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Table 2. Values of fixed parameters used in the interaction component.

δs [m] δc [m] δa [m] β γ α

1.5 2.5 2.5 5 0.2 1

assumes the type of vl =
[
vx, vy, 0

]
with orientation (ρθ

s + π) and therefore the
Lévy based contribution to a robot’s velocity is given by Eq. (14). Tables 1 and 2
summarize, respectively, the notation used in our proposed model and the fixed
parameters used in the interaction component of our model.

Λi =
[
vl wl

]T =
[
vx vy 0 0 0 ωl

]T (14)

Having set the components of our proposed model, we present below the
algorithm for a seamless integration of Lévy Walks and coordination rules which
runs in a decentralized manner, for each separate UAV. Algorithm1 shows the
conditional relationships between commands (C(t)) sent to each agent. While
time t is smaller than the total time of the experiment T , each agent computes
the interaction rules according to their respective neighbourhoods and check if
their walk is completed. The action of each agent is then conditional on its own
walk being completed or not.

Algorithm 1. Lévy Swarm Algorithm (LSA)
Initialize distance d = 0.
Assign L
Initialize control action C(t0) =

[
0 0 0 0 0 0

]

while t ≤ T do
Compute Interaction rules
if d ≥ L then � Completed Walk

Compute new ψ and L
d = 0
C(t) = Λ � Lévy Command

else
C(t) = Φ � Interaction Command

end if
Get pose
Update distance d

end while

4 Experiments and Results

In this section, we illustrate the effectiveness of the proposed model in a number
of simulated experiments. We also present a preliminary real robot experiment
that was designed to test the main components of our model using 2 Parrot
drones. A video demonstrating the results accompanies this paper1.
1 https://youtu.be/KvEs7wQ0Ti4.

https://youtu.be/KvEs7wQ0Ti4
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4.1 Simulation Experiments

Simulations were conducted on 20 m by 20 m grid sub-divided into tiles of 0.5 m,
for evaluation, and run in GAZEBO-ROS framework. The size of the swarm was
set to 15 Parrot ar-drones, to sufficiently large for the interaction rules to have
an effect, but not excessively so, to avoid covering the domain without the need
for a strategy. A ROS-based framework was chosen due to its wide adoption in
both academia and industry, and the recognition it receives as being the de-facto
operating system for the development of applications in robotics.

Fig. 3. Initial position of 15 UAVs in an empty arena, for the simulation experiments

Each robot, i.e. Parrot ar-drone, has a down-facing camera capable of sens-
ing an area of 2.5 m by 2.5 m. Each robot is assumed to have an accurate esti-
mation of its pose (through GPS in simulation, and through the VICON mocap
system in the real experiments) which is communicated directly to its neigh-
bourhood. Such neighbourhood is limited by the robot’s communication range
considered to be the same as δa. Figure 3 shows the initial positions of the UAVs
in the simulated area. These simulations considered a varying Lévy parameter
(μ) with values μ ∈]1, 3[. Each parameter (μ) was run 60 times, for a period of
1,800 s. Simulations were run with μ = [1.6, 2.0, 2.4, 2.8] to show differences in
the behaviour of the swarm, at low, medium and high values of μ. In this work
we quantify how many tiles of the grid-domain the swarm is able to maintain
under a certain k coverage level over time, defined as K(t). Our metric is defined
by, firstly, considering the subset of tiles sensed by UAV i at time t, i.e. Ai(t),
and define a set Ω(t) that contains all these subsets as:

Ω(t) = {Ai(t)} ∀i ≤ N (15)

where N is the number of UAVs. Through set Ω we can enumerate all the
combinations of k A subsets and create set Sk, of size

(
N
k

)
, where each member

is one of said combinations. Therefore, K(t) is the total size of intersections
between the A subsets within the elements of Sk, and defined as:

K(t) =
∑
∀j

| ∩ {Sk
j }j⊂J | (16)
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Fig. 4. Number of cells under k-coverage over time for k ∈ [1, 2], with our model (blue)
and the baseline (red) (Color figure online).

where J is the index set of S. Results of our simulations are depicted in Fig. 4 and
show our proposed model (blue) and a simpler one with only the avoidance rule
(red), hereafter addressed as the baseline, for k ∈ [1, 2]. Our results for k = 1,
show that it is the baseline case which performs the best. Since robots only
interact to avoid each other, this creates a diffusive behaviour, that naturally
increases the number of cells sensed only by one UAV. However, in the context
of our problem we are mainly interested in the scenario where k = 2.

Figures 4.1 and 4.2 both show how much merging the flocking rules with
the LW component impacts the results. In qualitative terms the results are com-
pletely the opposite, showing how this merging of techniques leads to a significant
outperforming behaviour when k = 2.

It is also interesting to highlight that as the value of μ increases, the perfor-
mance of the system tends to the baseline case, showing that as μ approaches its
maximum value, the local exploratory component of the system dominates the
coordination mechanism. However, by observing Fig. 4 alone one cannot assess
about the effectiveness of exploration, since there is no indication if the cells
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sensed at a given point in time are the same, or not, than the cells sensed at a
later stage. To assess this, we introduce a random variable Xk, that represents
the total number of different cells sensed by k UAVs and whose probability
distribution, P (Xk), is shown in Fig. 5.

Fig. 5. Simulated P (Xk) for k=2, with our model (blue) and the baseline (red) (Color
figure online).

This result also highlights the benefit of our model, which invariably leads to
a higher mean of different cells sensed, leading to a higher probability of sensing
all the cells of the domain with k = 2 robots . This advantage is evident in the
results obtained with our model, always outperforming its baseline counterpart
for each value of μ.

4.2 Preliminary Real Experiments

In order to further investigate the role of k in the simulation, some preliminary
experiments were conducted with two real Parrot ar-drones in a 3 × 3 m arena.
To consider a similar ratio between the size of the arena domain and the size of
each tile of the grid, tiles are considered to be 0.05 × 0.05 m. Figure 6 shows this
domain as well as the initial positions of the two UAVs.

Similarly to the simulated experiments, we first plot the total number of cells
sensed by k UAVs over time t. Figures 7.1 and 7.2 show these results.

The first noticeable difference between simulated and real results is the appar-
ent lack of effect of μ in both cases. In fact, since Lévy processes tend to occur
over long distances, the preliminary scenario used is too small for such investi-
gation. Nevertheless one can still draw a parallel with simulated results where
values for k are concerned. On one hand, for k = 1, the baseline always yields a
higher value, as expected since k = 1 favours a diffusion behaviour, rather than
a coordinated one. On the other hand, for k = 2, the results are again reversed,
being our model able to outperform the baseline.
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Fig. 6. Initial positions of 2 ar-drones

Fig. 7. Experimental number of cells under k-coverage for k = [1, 2] with our model
(blue) and the baseline (red) (Color figure online).
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Fig. 8. Experimental P (Xk) for k=2, for our model (blue) and the baseline (red) (Color
figure online).

The same is true for the probability distributions of X , depicted in Fig. 8,
where our model continues to show a higher average number of cells being sensed
by k UAVs simultaneously.

5 Conclusions and Future Work

This paper presented a swarm model that combines coordination and explo-
ration strategies using UAVs for collaborative surveillance. Our model is fully
decentralized, with minimal direct communication between robots [44] and does
not require global knowledge or partitioning of the domain. This model is, to
the best of our knowledge, the first to merge the Reynolds flocking rules and the
Lévy Walk exploration strategy.

Simulation results were assessed based on two metrics. The first, K(t), rep-
resents the total number of tiles, in a grid domain, sensed by k UAVs at time t.
The second, P (Xk), represents the distribution of the number of different cells
sensed by k UAVs over the course of the experiment. Both metrics have shown
the advantage of the proposed model for k-coverage when = 2. Merging the flock-
ing rules with the LW strategy, always increased the performance of the system,
when compared to the baseline case where only collision avoidance exists. Our
results show that, choosing lower values of μ is preferential when our model is
adopted. On the other hand, in the baseline case, the performance of the sys-
tem, in respect to K(t), seems to be independent of μ. Since the only interaction
between agents is collision avoidance, we infer that this aspect, rather than the
LW, is the predominant behaviour, pointing towards the need for future work
on the study of interference among agents in a swarm.
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The effect of μ, in both our model and the baseline, is evident in the second
metric, P (Xk). The results show that higher values of μ tend to lead to a lower
mean of (N) different cells being discovered, reflecting the expected behaviour of
the LW for values of μ in this range. Noticeably, when comparing the distribu-
tions P (Xk) between our model and the baseline, the mean value of P (Xk) is
always higher in our model, than the respective baseline result. This shows that,
for the same mission time, the baseline approach restricts the swarm from sens-
ing a higher number of different cells simultaneously with k UAVs. These results
corroborate the hypothesis that merging both behaviours ensures that a larger
portion of the domain is covered, maintaining the desired overlapping sensing
regions. Despite the positive results favouring our model, the difference between
probability distributions is less evident in simulation than in real experiments.

Future work will focus on studying the behaviour of our coordination algo-
rithm with more realistic sensing and communication models as well as perform-
ing a sensitivity analysis regarding the swarm size and flocking parameters. We
aim to assess the performance of our approach applied to a larger swarms of
flying drones, in terms of k-coverage but also in terms of its ability to deal with
robots’ failures and other unexpected events.

We also would like to conduct experiments on variations of the Lévy Walk
concept. For instance, by including inertial motion, making the change of orien-
tation not uniformly random but biased towards the current heading. This way
we could maximize the crossing of the entire domain. Another example, would
be to explore other Lévy Walk parameters using machine learning techniques,
more specifically, artificial homeostatic systems [45–47], evolutionary approaches
[48,49] or a combination of both [50,51].

Acknowledgments. The authors would like to thank Siobhan Duncan, Gissell
Estrada, Jakub Stocek and Heiko Gimperlein for the insightful discussions on the
model.
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searching algorithm using lévy flight and artificial potential field. In: 2010 IEEE
International Workshop on Safety Security and Rescue Robotics (SSRR), pp. 1–6.
IEEE (2010)

39. Keeter, M., et al.: Cooperative search with autonomous vehicles in a 3D aquatic
testbed. In: 2012 American Control Conference (ACC), pp. 3154–3160. IEEE
(2012)

40. Suarez, J., Murphy, R.: A survey of animal foraging for directed, persistent search
by rescue robotics. In: IEEE International Symposium on Safety, Security, and
Rescue Robotics (SSRR), pp. 314–320. IEEE (2011)

41. Bartumeus, F., da Luz, M.G.E., Viswanathan, G.M., Catalan, J.: Animal search
strategies: a quantitative random-walk analysis. Ecology 86(11), 3078–3087 (2005)



242 H. Sardinha et al.

42. Deshpande, A., Kumar, M., Ramakrishnan, S.: Robot swarm for efficient area
coverage inspired by ant foraging: the case of adaptive switching between Brownian
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Abstract. Modelling and planning as well as Machine Learning tech-
niques such as Reinforcement Learning are often difficult in multi-agent
problems. With increasing numbers of agents the decision space grows
rapidly and is made increasingly complex through interacting agents.
This paper is motivated by the question of if it is possible to train single-
agent policies in isolation and without the need for explicit cooperation
or coordination still successfully deploy them to multi-agent scenarios.
In particular we look at the multi-agent Persistent Surveillance Prob-
lem (MAPSP), which is the problem of using a number of agents to
continually visit and re-visit areas of a map to maximise a metric of
surveillance.

We outline five distinct single-agent policies to solve the MAPSP:
Reinforcement Learning (DDPG); Neuro-Evolution (NEAT ); a Gradient
Descent (GD) heuristic; a random heuristic; and a pre-defined ‘plough-
ing pattern’ (Trail). We will compare the performance and scalability
of these single-agent policies to the Multi-Agent PSP. Importantly, in
doing so we will demonstrate an emergent property which we call the
Homogeneous-Policy Convergence Cycle (HPCC), whereby agents fol-
lowing homogeneous policies can get stuck together, continuously repeat-
ing the same action as other agents, significantly impacting performance.
This paper will show that just a small amount of noise, at the state
or action level, is sufficient to solve the problem, essentially creating
artificially-heterogeneous policies for the agents.

Keywords: Multi-agent systems · Reinforcement learning ·
Surveillance · Coverage · Emergent behaviour

1 Introduction and Background

Real-world problems such as reconnaissance and surveillance [13,14], search and
rescue [9] and, drone crop-monitoring [11] rely on efficient and continuous ways
of visiting areas of the world. For problems covering large areas or when higher-
frequency monitoring is desirable it can be useful to deploy multiple agents,
c© Springer Nature Switzerland AG 2020
N. Bassiliades et al. (Eds.): EUMAS 2020/AT 2020, LNAI 12520, pp. 243–260, 2020.
https://doi.org/10.1007/978-3-030-66412-1_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-66412-1_16&domain=pdf
http://orcid.org/0000-0002-7294-1702
http://orcid.org/0000-0001-9500-5514
https://doi.org/10.1007/978-3-030-66412-1_16


244 T. Kent et al.

or even swarms [1], in an environment. Modelling and planning for multi-agent
problems can often be difficult due to a rapidly growing decision space, made
increasing complex through the interacting agents [17]. Additionally, this can
result in a need for coordination and communication that may not be possible
in many situations. Many Unmanned Aerial Vehicle (UAV) platforms and off-
the-shelf solutions are designed in isolation and typically offer only single-agent
behaviours. Unless agents have been designed for multi-agent settings or can
be coordinated via some centralised control, then policy homogeneity might be
unavoidable. However, as we will demonstrate in this paper this can lead to
undesirable emergent properties.

The aim this paper is to explore the concept of using single-agent policies,
designed and/or trained in isolation, that can be successfully deployed in a multi-
agent scenario. In particular we focus on the multi-agent Persistent Surveillance
Problem (MAPSP), as a simplified use-case pertinent to multi-agent systems
research. The MAPSP is the problem of using a number of agents to continually
visit and re-visit areas of a map in order to maximise a metric. We outline, in
Sect. 3, a range of different action policies, for agents to decide the best action to
take given an agent-centric local observation. Policies include (1) Random; (2)
Gradient Descent ; (3) DDPG ; (4) NEAT and (5) Trail-Following. In particular,
in Sect. 3.2, we will demonstrate that by deploying homogeneous single-agent
policies in a multi-agent setting can lead to a highly undesirable emergent prop-
erty that we call the ‘Homogeneous Policy Convergence Cycle’ (HPCC). Each
of the policies will be evaluated for varying numbers of agents and the HPCC
problem will be demonstrated. Finally approaches to counteract the HPCC will
be discussed where we will show that by essentially making the agents less homo-
geneous, via the addition of noise, is sufficient to fix the problem.

2 Persistent Surveillance Problem

The Persistent Surveillance Problem (PSP) belongs to a class of problems known
as coverage problems [4,5]. The aim of Persistent Surveillance is to continually
visit and re-visit all areas of a map in order to maximise a surveillance score
that sufficiently quantifies performance. To measure this a 2-Dimensional world
is divided into regions using a hexagonal-grid structure of N ‘hexes’, with each
of these hexes having an associated surveillance score (as depicted in Fig. 1). The
total surveillance score, i.e. the PSP objective, is the sum of all the scores across
all the hexes. In this paper we have designed a score-function that quantifies
a notion of ‘level of surveillance’ and its subsequent exponential decay by a
relationship dictated by the hex-score function:

V(hi
t+1) =

{
V(hi

t) + C, if hi
t occupied.

V(hi
t)λ, otherwise.

(1)

This function defines that when an agent is in a hex, hi, it increases that hex’s
score, V(hi) by a positive linear constant, C, each time-step it occupies the hex.
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Then for any hex unoccupied the score V(hi), decays exponentially by a factor
λ = (1/2)(dt/Th), which is a constant parametrised by its ‘half-life’ value Th such
that λ ≤ 1. The score of each hex is also bounded, restricting V(hi

t) ∈ [0, vmax].
We define the set Ht = {hi

t for i = 1..N} to be the set of all N hexes at time
t. Thus the total surveillance score, at time t, is sum of all the scores of Ht, that
is

V(Ht) =
∑

∀hi
t∈H

V(hi
t). (2)

The aim of the PSP is to keep the score V(H) as high as possible at all times,
with the max surveillance score defined as

V∗(H) = max
∀t∈T

(V(Ht)). (3)

2.1 PSP Simulation Environment

The Persistent Surveillance Problem has been implemented as an environment
in-line with the OpenAI Gym [3] and follows the traditional State, Action,
Reward sequence [15]. The Multi-Agent Simulator (MAS) environment keeps
track of agent locations and their underlying states. The MAS can be queried
for a state (observation) of any agent and in turn the agent can carry out an
action in the environment and the MAS simulates the outcome, and returns a
reward. In the case when there are multiple agents, all observations and actions
happen simultaneously. In addition we assume that agents are unable to com-
municate with each other and do not attempt to plan for other agents. The
environment is defined over the bounded 2-Dimensional world W . All agents are
restricted to stay within W , with their motions being ‘clipped’ at the simulator
level ensuring they can only move within the bounds.

Fig. 1. Agent-centric observation, higher-values green, lower are red, skt = [20.00, 9.83,
10.66, 19.77, 18.49, 10.12, 9.00] (Color figure online)

The specific environmental parameter choices for the results in this paper are
as follows. The world, W = [0, 100] × [0, 100] and is made up a grid of N = 56
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hexagons each with a height of 15 m (flat edge-to-edge). The simulation updates
at a discrete time-step dt, updating all hi ∈ H, using Eq. (1) with a half-life
decay Th = 120, a linear increase C = 5 and a maximum value of vmax = 20. To
help with agent training and performance we also use a technique called frame-
skip, (popularised from Deep Learning techniques designed to play Atari games
[10]) which limits the rate of decision making to once every 3dt. Thus an agent
receives an observation every third time-step, acts on it and this action is held
for 3dt. Furthermore we define each agent velocity as 5m/dt, and so every action
results in the agent moving 3 × 5 = 15 m across the world.

2.2 Local Observations

The PSP simulation environment keeps track of the current global state of the
world via the scores of each hex, using the current values, the agent locations and
Eq. (1). Agents deployed in the environment will be given access to these states
via observations, as depicted in Fig. 1, which will be agent-centric, i.e. dependent
on the current agent location. The policies outlined in this paper are given only
these local observations of the state, with which to make their action decision
(with the exception of Trail which requires a degree of global-localisation to stay
on course).

We define the set of hexes directly adjacent to hi as

hexAdj(hi) = {∀hj ∈ H|hj adjacent hi}, (4)

which is shown in Fig. 1 with hi in the centre. Then, given an agent k, cur-
rently located in hex hi, the agent’s observation sk(hi) (we choose to shorten
the notation to simply sk when it is appropriately clear), is defined as

sk(hi) = {V(h) for h ∈ {hi ∪ hexAdj(hi)}. (5)

It is the role of each policy to use this local-state observation, sk, to decide the
best action to take in the environment.

While our agents are restricted to the bounded world W they may observe
hexes outside of this, in which case those hexes are declared ‘obstacle hexes’. Any
obstacle hex, hobs, has its observation value set to vobst which is a value greater
than vmax but with V(hobst) = 0 so as not to contribute to the score. Additionally,
in the multi-agent scenarios any observation which contains another agent is also
declared hobst and set to vobst. Note that a hex hobst does not physically restrict
an agent from moving into it, instead its aim is to deter agents moving there by
being a high value while not contributing to the score and in turn not affecting
the reward.

2.3 Action Policy

An agent k’s decision making is contained entirely within its policy function
πk. The role of the policy to take an observation, sk, and provide an action,
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ak ← π(sk), from the set of all possible actions A. In this paper the action,
ak ∈ [−1, 1]× [−1, 1], is the two-dimensional trigonometric-encoding of direction
in which to travel, that is, the agent heading, θ, encoded by the two values
ak = [sin(θ), cos(θ)] (with θ = 0 corresponding to East).

Some of the policies outlined in Sect. 3.1 use a discrete action policy, whereby
an action is chosen from a set, ak ∈ Ad, of 6 possible hexagonal directions,
equivalent to the angular encoding θ ∈ [

7π
6 , 9π

6 , 11π
6 , π

6 , 3π
6 , 5π

6

]
. These angles

correspond to the angular direction from the centre point of the centre hex hi

to the centre of each of h ∈ hexAdj(hi).

2.4 Reward Function

For policies which require ‘training’ (i.e. DDPG and NEAT ) we must also define
a reward function. At each time, t, an agent k chooses an action, ak via its policy,
πk, the agent carries out that action in the environment and in return is given a
reward, rk. The Machine Learning (ML) agents, DDPG and NEAT, of Sect. 3.1
require this reward to learn, and the reward function itself is a hugely important
factor within ML in shaping how and what an agent learns [8]. As the agents
only have access to local observations the reward is restricted to be a function
of these only. For an agent k, at time t in hex hk

t , we define the reward to be
how much the state sk

t (hi
t) is improved as a result of taking the action, that is:

rt+1 = V(sk
t+1(h

i)) − V(sk
t (hi)) (6)

Thus the agent gets positive reward if it leaves the sk(hi) better than when it
arrived. This reward is provided to the agent by the environment as it keeps
track of past hex scores. The mathematical incentive of this reward is to ensure
that the linear addition of C from Eq. (1) is better than the loss via the decay of
λ of each of the other hexes. By having the bound of vmax it means that agents
do not simply try to move between two hexes, instead they should be moving
towards hexes of lower values where there is sufficient ‘room’ to add value.

2.5 Analytical Assessment

Given a world W , the score function of Eq. (1) and a hexagonal-grid structure of
the environment we are able to analyse theoretical bounds on PSP problem. For
each action-step (i.e. 3 time-steps) the most value an agent can add to a hex is
3×C = 15, and hexes have a maximum value vmax = 20, this means that ideally
we want to be moving towards hexes that are ideally less than vmax − 3c = 5.

If we visit each of the N = 56 hexes in some sequence, Hseq = {h0, . . . , hn},
and spend 3dt at each, then each hex will have a score a0 = 15 at the time it
is visited and then that value will subsequently decay. The currently occupied
hex hn

t will have the highest value V(hn
t ) = a0, then the hex visited previously,

at the current time-step, hn−1
t , had the same value but has since decayed by λ

and thus V(hn−1
t ) = a0λ and for n − 2, V(hn−2

t ) = a0λ
2. This continues in this

fashion until the hex visited n time-steps ago, which has a value V(h0
t ) = a0λ

n.
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The sum of these scores, and thus the current surveillance score, is in fact a
geometric series:

a0λ
0 + a0λ

1 + a0λ
2 + · · · + a0λ

n =
n−1∑
k=0

a0λ
k = a0

(
1 − λn

1 − λ

)
(7)

Therefore, visiting each hex once, for λ = (12
3

120 ) the surveillance score reaches
V(Hseq) = 542. The value of the hex visited n time-steps ago Hseq, V(h0) =
a0λ

n = 15×0.379 = 5.684. Therefore if we continue to visit the hexes in the order
of Hseq, that is we now visit h0 again, and its value becomes 5.684 + 3 × C =
20.684, which is above vmax and so is capped at 20. Repeating the same logic as
before a0 ← 20 and using Eq. (7) the surveillance score becomes V(Hseq) = 723.

In order to achieve these kinds of scores it is necessary to find an admissible
sequence Hseq that can be visited in that order. This requires a kind of trail,
that visits each hex only once and returns to the starting hex, in graph-theory
this is known as a Eulerian cycle. Therefore it is clear that in order to maximise
the surveillance score it is necessary to find a policy that best approximates this
kind of cycle. With this in mind, in Sect. 3.1 a trail-agent will be outlined, which
is able to follow a pre-defined cycle, and used as a benchmark to compare the
other agents to (Fig. 2).

Fig. 2. Ideal hex trail resulting in geo-
metric series

Fig. 3. Pre-defined trail for agent to
follow

3 Single-Agent Policies for the PSP

We now outline five single-agent policies designed to solve the Single Agent
Persistent Surveillance Problem. The objective of each of these policies will be
to achieve the best V∗(H) during an episode, by deciding, at each step which
direction to move around the environment.
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3.1 Five Policies for PSP

The first two policies act as benchmarks to essentially bound what good and bad
performance looks like. The first, Random, acts independently of observations
and moves randomly and should result in poor performance. While the second,
Trail, uses the idea of Sect. 2.5, and follows a pre-defined trail, requiring global
information and should result in the best performance.

The remaining three, local policies, act on the local agent-centric observations
of the world described in Sect. 2.2. A simple heuristic policy called gradient
descent acts on the model that moving towards lower values is best. Finally, we
use two different ‘off-the-shelf’ ML algorithms, DDPG and NEAT, and apply
them to our implementation of the Persistent Surveillance Problem.

All of the methods outlined in this paper have been implemented in Python
3.5 and all the simulations are run on a Dell Precision 3520 laptop running
Ubuntu 16.04, with a 2.7 Ghz core i7 CPU and 16 GB of RAM.

Random Policy. The role of the random agent is to act as a minimum bench-
mark and is essentially a blind-policy. The agent is given an observation, sk, but
is not used in its action selection. The agent simple picks, at random, a discrete
direction from one of the six possible, ak ∈ Ad. Due to the randomness of this
policy, it is non-deterministic.

Trail Policy Benchmark. As discussed in Sect. 2.5 an ideal path to take is
one travelling through a sequence of hexes in a Eulerian Cycle. Boustrophedon
patterns, also known as ploughing patterns, are some of the best known examples
of this approach and have long be used in agriculture [7] and in search and rescue
missions [12].

For the purposes of providing a benchmark, a pre-defined trail-based policy is
implemented as shown in Fig. 3. However, we must note that a direct comparison
is not entirely fair as this policy requires a degree of global-state localisation that
is not afforded to the local-state policies. An agent running the trail-policy must
first work out where it is on the trail in order to determine where to move next.
Thus the policy here is to take the trail-point closest to the agent and then select
the action in the direction of the next trail-point. An agent will continue around
this cycle trying to essentially approximate the geometric sum of Eq. (7).

Gradient Descent Policy. A Gradient Descent (GD) approach is used as a
simple yet effective heuristic. This acts as a very simplified model-based policy,
where the model is ‘move towards nearby hexes of lowest value’. That is, choose
the hex, hmin = argmin(sk

t ), with the lowest observation value and move towards
it. Thus the discrete action ak ∈ Ad is the one corresponding to hmin.

Using the example observation of Fig. 1, sk
t = [20.00, 9.83, 10.66, 19.77, 18.49,

10.12, 9.00], the GD policy would move towards the hex corresponding to min-
imum value hmin = 9.00, i.e. the last value of sk

t , North-West (3π/6). In the
event of there being more than one minimum value, then one of them chosen at
random (this adds a level of uncertainty to this policy).
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DDPG Policy. A Tensorflow implementation of the Deep Deterministic Policy
Gradient algorithm [8] is used, which is a model-free, online, off-policy Reinforce-
ment Learning method. It combines the use of an actor-critic architecture along
with target-network updates, replay buffers and stochastic exploration. DDPG
is designed to be used within environments with continuous actions spaces which
is why it was chosen for this problem. DDPG is a policy gradient method and as
such uses a functional approximation, in this case a Deep Neural Network, to the
Q-function. RL is used to train these DNNs through standard SARSA struc-
tured examples [15] to allow us to compute the optimal action, a, to take for a
given state s, that is the action which maximises our Q-function, maxaQ∗(s, a).

This implementation uses the standard hyper-parameters of the original
paper [8]. With an input layer, two hidden layers one of 400 and one of 300
units, and one output layer. A learning rate of 10−4 for the actor networks and
10−3 for the critic networks. A discount factor γ of 0.99 is used, a target-network
update rate of η = 0.01. The Ornstein-Uhlenbeck process was used for training-
noise [18], with noise parameters of θ = 0.05 and σ = 0.05. The input to the
Neural Network is the state observation of the 7 hex values normalised between
0 and 1. Our DDPG has two outputs, activated via hyperbolic-tangent func-
tions, giving output values o1, o2 ∈ [−1, 1] which correspond to the action ak of
Sect. 2.3, sin(θ) and cos(θ) respectively. The reasoning behind using two output
values was to overcome a neuron-saturation [6] issue observed by the authors, a
single angle can be easily recovered via the θ = arctan2(sin(θ), cos(θ)) function.

The DDPG network was trained for 2000 episodes using the reward function
of Eq. (6) taking approximately 60 min, at which point training had sufficiently
converged.

NEAT Policy. Neuro-Evolution of Augmenting Topologies (NEAT ) [16] is a
method for evolving Neural Networks (NN) via an Evolutionary Algorithm (EA).
Here a NN is subjected to an EA process in order to evolve both the structure,
the weights and the activation functions of the NN with the key idea of starting
by building from small NNs and evolving to add increasing complexity.

The evolutionary approach differs to the standard SARSA of RL by way
of the Reward. Where, as is the case of DDPG, the reward received in RL is
at each step, EAs instead use an episodic measure of success known as fitness.
Therefore, any network evolved by NEAT is evaluated against this fitness value
and a selection operator determines whether it is kept for the next generation.
The fitness function used in the paper is the cumulative value over the episode
of the reward function of Eq. (6).

The NNs take the 7 values of sk as input, are a single-layer deep, and have
6 output nodes with each corresponding to an action direction ak ∈ Ad. A
soft-max activation function is used to select the highest-valued output neuron,
the corresponding discrete action is then returned. NEAT is initialised with
a population of fully connected single layer NNs with randomised weights and
activations. The process of NEAT is for each generation to evolve the population
of candidate NNs, test them within the PS environment, evaluate their fitness
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using the cumulative reward function of Eq. (6) and select the best candidates to
be retained for the next generation. NEAT continues this standard evolutionary
process until a termination condition is met, in this case 2000 generations. The
resulting NN is then the NEAT policy, taking in the observation sk, running it
through the NN, and taking the resulting action.

3.2 Multi-Agent Deployment of Single-Agent Policies

To deploy multiple agents within the MAS described in Sect. 2.1, we take a
given policy and deploy copies of it on each agent within the environment. The
MAS provides agents with observations and the agents decide action to take,
these observations and actions happen simultaneously. The agents are unable to
communicate, coordinate or plan for each other except for other agents appearing
as obstacles. Outside of getting vobst in an observation there is no enforcement
of collision avoidance, instead agents motivation for avoiding one another is
intrinsic to the reward function itself.

4 Results and Discussion

The aim of this paper is to assess how well policies, designed in isolation, are
able to be deployed on multiple agents in the same environment. Firstly, we will
see how well the single-agent policies perform in the single-agent environment.
Then for each policy we test how well it performs when being deployed on a
given number of agents. In Sect. 4.2 we will discuss how all agents having homo-
geneous policies leads to highly undesirable emergent behaviour, importantly
in Sect. 4.3 we will demonstrate how we are able to overcome this emergent
behaviour through noise.

4.1 Homogeneous-Policy Performance

The five single-agent policies outlined above are now tested in a single agent envi-
ronment to assess performance. Each trial will be run 100 times (100 episodes),
with an agent with a chosen policy deployed in the environment outlined in
Sect. 2, of 100 m 100 m area made up of 56 hexes H. Each episode starts with
the agent in a random location in W and then proceeding to run for 200 action-
steps (which is 600 dt as each action is held for 3 dt).

For the real world problems needing to continuously surveil an area, there
are a number of metrics, based on our surveillance score, which could measure
performance. These can be continuous measures such as the average score, the
maximum score achieved, time-to-reach a certain value or could be pass-fail
such as never dropping below a certain minimum-value. The results presented
here will be based on V∗(Ht) averaged over all runs. Traits of a good policy are
high average values, which rise quickly and remain stable and ideally have lower
variance across runs.
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The single-agent deployment results, as shown in Fig. 4a, show that the
benchmark policy performs the best with almost no variance, with the ‘peaks’
of the trail policy, visible at step 56 and 112, depicting when the agent com-
pletes each lap of the trail. As expected the random policy performs the worst
with the highest levels of variance. The remaining three policies (GD, DDPG,
NEAT ) all perform somewhat similarly, with DDPG initially performing well
but later being outperformed by GD. All agents experience the diminishing rate
of reward towards the later parts of the episode due to most of the hexes having
high scores, at which point the policies simply maintain them.

However, the results of Figs. 4 and 5 show that when multiple-agents are used,
we quickly observe that the three policies GD, DDPG and NEAT all exhibit the
same dramatic drop-off in performance. This is due to an effect we will discuss
next in Sect. 4.2 which we call Homogeneous-Policy Convergence Cycle (HPCC).
This effect appears to worsen with increasing numbers of agents, exhibiting this
performance-drop more quickly. What is equally alarming is that this effect is so
bad that for 10 agents it appears that an entirely random policy can outperform
them on average.

Notably even the analytical best policy, that is The Trail Policy, also fails
to easily transfer to the multi-agent scenario albeit for a different reason to the
others. Here it is due to the fact the agents are placed in the world at random
and are therefore not necessarily evenly spaced across the trail. This means that
you could end up with agents grouped behind one another, and as discussed in
Sect. 2.5 agents ideally want to be going to the least visited hexes next, and not
to one just visited by another agent. This could be fixed in a number of ways but
would require some additional coordination or planning, such as being forced to
slow down to space out, or this could utilise the observations more and moving
to parts of the trail where the next hex in the trail has a lower score, however
these are left for future work.

4.2 Homogeneous-Policy Convergence Cycle

Figures 4 and 5 show a large reduction in performance by simply deploying a
homogeneous policy to multiple-agents within the same environment. The cause
of this is due to an emergent property that we call Homogeneous-Policy Con-
vergence Cycle (HPCC). This property is cyclical in nature and can occur when
two or more agents occupy the same hex and essentially get ‘stuck’ together.
The process is depicted in Fig. 6a and happens, at some time t, as follows

(1) Agents move to the same hex ht;
(2) Agents get an identical local state observation st;
(3) Identical, deterministic policies π, return identical action choices at

(4) Agents in the same hex, ht, perform identical actions, and move to the same
hex, ht+1, as the other agents - thus returning to step 1)
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(a) 1 Agent Mean Score μ ± σ

(b) 3 Agents Mean Score μ ± σ

(c) 10 Agents Mean Score μ ± σ

Fig. 4. Multi-agent PSP performance over 200 action steps
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(a) 1 Agent

(b) 3 Agents

(c) 10 Agents

Fig. 5. vmax value distribution for PSP performance for differing number of Agents
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(a) HPCC outline (b) Adding Action Noise

(c) Adding State Noise (d) Heterogenous Policies

Fig. 6. Homogeneous Policy Convergence Cycle and potential fixes

The HPCC problem is essentially a product of homogeneity and determinism,
something that appears in game-theory, the El Farol Bar problem [2] for example.
The solid-line path of Fig. 6a represents this convergence cycle, if we break away
from any of the 4-steps above and transition onto one of the dotted paths we
can break this cycle, this can be achieved by doing one of the following:

(1) Co-operate to avoid moving into the same hex → h1
t �= h2

t

(2) Have differing states → s1t �= s2t and therefore a1
t �= a2

t

(3) Have differing action choices → a1
t �= a2

t and therefore s1t+1 �= s2t+1

(4) Have differing policies so identical states may result in differing actions

To achieve 1) we would require the addition of coordination which is not the
aim of this paper. We could also achieve 4) as we have outlined 5 different PS
single-agent policies which are heterogeneous from one another. So for scenarios
with 5 agents or fewer we could feasibly deploy a team of agents each with a
heterogeneous-policy as depicted in Fig. 6d, however for an increasing number of
agents designing new, distinct, policies is more difficult and is unrealistic for large
numbers of agents. Instead we focus on 2) and 3) and look at a straightforward
method for overcoming the HPCC problem via the addition of noise.

4.3 Artificial Heterogeneity

We will now demonstrate two similar ways, as depicted in Figs. 6b and 6c, to
break HPCC through artificial-heterogeneity. By simply adding noise to either
an agent’s action or to an agent’s state observation, we are able to essentially
turn homogeneous policies into heterogeneous ones.
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Action Noise. The optimal action chosen by our policy at ← π∗(st) will be the
same for an identical state as it is deterministic. To achieve a non-deterministic
action, it suffices to take the action at of the policy π and add a small amount of
noise, γi, for each agent i, and for each dimension of the action space. This idea
is to increase the likelihood of producing different action choices a1

t �= a2
t , as in

Fig. 6b. The noise value is drawn from a uniform distribution γ ∼ U(−0.1, 0.1)
for each action dimension and added to the output of the policy. Note that
the addition of noise results in an action which at an individual policy level is
suboptimal at + γ /∈ π∗(a|st).

Action-noise is sufficient in breaking HPCC, as shown in Fig. 7, the previously
exhibited long-term performance drop-off is entirely removed. This allows us to
effectively deploy single-agent heterogeneous policies on multiple agents with
only a minor adjustment.

State Noise. Instead of directly altering a homogeneous policy’s action choice
we can instead perturb our state observations, st, by again adding small amounts
of noise. This is depicted in Fig. 6c, where for each agent i, we add the noise γi

(the same size as s) to the identical state st, so that si
t = st + γi. The aim is

to increase the chances that si
t �= st. Again, noise γi, is taken from a uniform

distribution γ ∼ U(−1.0, 1.0) for each agent i, with dimensions to match the
state observation (this distribution is proportionally similar to the action noise
distribution). The aim is that we are able to ensure that even if agents occupy
the same hex, the observations they receive differ slightly and thus for a sufficient
level of state noise will result in distinct action choices a1

t �= a2
t .

The results of Fig. 8 clearly show just how effective even a small amount of
noise added to either the action or state is, fixing HPCC. It appears that for
higher agent counts, state noise results in higher max surveillance scores along
with lower variance. As expected adding noise to the Trail policy has little effect,
as it does not suffer from HPCC and it does not act on the state information.

The choice of where the noise is added has some subtle differences. By adding
noise to the state observation you are relying on s+ γ1 and s+ γ2 at some point
being sufficiently different to result in the policy π outputting two different
actions, and the agents then moving out of the same hex. Whereas with action
noise, assuming γ1 �= γ2, you are forcing a + γ1 �= a + γ2, so agents are there-
fore always taking different actions. This is likely the cause of the difference in
variance of the two approaches. Additionally, due to the discrete action selection
of GD and NEAT, perturbation in the action space, as we add a continuous
amount of noise, allows a little more continuity in the agents movements. With
state noise only, discrete actions remain discrete, but if the same state plus noise
for two agents can now produce two different actions choice, those two actions
will differ by at least the discrete resolution instead of just the smaller action
noise.



Single-Agent Policies for the Multi-Agent Persistent Surveillance Problem 257

(a) 1 Agent Mean Score μ ± σ

(b) 3 Agents Mean Score μ ± σ

(c) 10 Agents Mean Score μ ± σ

Fig. 7. Multi-Agent PSP performance over 200 action steps with action-noise
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(a) 1 Agent

(b) 3 Agents

(c) 10 Agents

Fig. 8. Multi-Agent PSP V∗(H): Comparison of the effect of adding noise
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5 Conclusion

This work was motivated by the idea of being able to design single-agent poli-
cies in isolation, and without the need for explicit cooperation or coordina-
tion still successfully deploy them to multi-agent scenarios. We used the multi-
agent Persistent Surveillance Problem as a simple scenario to test our question.
We outlined and demonstrated the results of five distinct single-agent policies
designed to solve the single agent PSP: Random; Gradient Descent ; DDPG ;
NEAT ; and Trail. By deploying these single agent homogeneous policies to mul-
tiple agents we quickly observe a negative emergent property that we called the
Homogeneous-Policy Convergence Cycle (HPCC). A property almost entirely the
result of homogeneity and determinism. Whilst we demonstrated the existence
of HPCC in MAPSP, one can imagine that this or a similar class of emergent
properties could occur in other scenarios. Environments with similar action-state
transitional properties of those depicted in Fig. 6a could be subject to similar
undesirable effects. Importantly however, we showed that we are able to remove
this property entirely, through the simple addition of noise. By adding a small
amount of noise to each agent’s action choice or state observation we were able
to essentially create artificial heterogeneity from entirely homogeneous policies.

This shows that some degree of noise can be a desirable property within a
system. This may appear somewhat reassuring as in many real world scenarios,
the introduction of state and action noise will often arise inadvertently, through
imperfections in aspects such as sensing, communication or computation. How-
ever, this also hints at the potential for a whole class of emergent properties such
as HPCC which may exist in many complex systems but remain unnoticed.

Many future directions are of interest, including exploring the impact of
parameter space choices, such as different reward and score functions along with
different environments. However, of greatest interest is in understanding the
impact of system level choices, such as the inclusion of different aspects of coor-
dination and communciation, asking not just where, but also to what degree it
is necessary.
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Abstract. Partially Observable Monte Carlo Planning is a recently pro-
posed online planning algorithm which makes use of Monte Carlo Tree
Search to solve Partially Observable Monte Carlo Decision Processes.
This solver is very successful because of its capability to scale to large
uncertain environments, a very important property for current real-world
planning problems. In this work we propose three main contributions
related to POMCP usage and interpretability. First, we introduce a new
planning problem related to mobile robot collision avoidance in paths
with uncertain segment difficulties, and we show how POMCP perfor-
mance in this context can take advantage of prior knowledge about seg-
ment difficulty relationships. This problem has direct real-world appli-
cations, such as, safety management in industrial environments where
human-robot interaction is a crucial issue. Then, we present an exper-
imental analysis about the relationships between prior knowledge pro-
vided to the algorithm and performance improvement, showing that in
our case study prior knowledge affects two main properties, namely, the
distance between the belief and the real state, and the mutual informa-
tion between segment difficulty and action taken in the segment. This
analysis aims to improve POMCP explainability, following the line of
recently proposed eXplainable AI and, in particular, eXplainable plan-
ning. Finally, we analyze results on a synthetic case study and show how
the proposed measures can improve the understanding about internal
planning mechanisms.

Keywords: Planning under uncertainty · POMCP · POMDP ·
Explainable artificial intelligence · XAI · eXplainable planning

1 Introduction

Planning is a central problem in robotics and artificial intelligence, and it is
crucial in many real-world applications. Often the environments in which agents
act are partially unknown and models of the interaction between agent and
environment should consider this uncertainty to improve planning performance.
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Partially Observable Markov Decision Processes (POMDPs) are a sound and
complete framework for modeling dynamical processes in uncertain environ-
ments [23]. A key idea of this framework is to consider all possible configurations
of the (partially unknown) states of the agent in the environment, and to assign
to each of these states a probability value indicating the likelihood that the state
is the true state. All these probabilities together form a probability distribution
over states which is called belief. Then, policies are computed [30] considering
beliefs (that deal with uncertainty) instead of single states, a transition model for
the dynamics of the system and an observation model for the (probabilistic) rela-
tionships between observations and true state. Unfortunately, exact solutions for
non-trivial POMDP instances are usually computationally infeasible [28], there-
fore many approximate solvers have been recently developed to generate good
solutions in acceptable computational time and space.

One of the most recent and efficient approximation methods for POMDP
policies is Monte Carlo Tree Search (MCTS) [4,17,25], an heuristic search algo-
rithm that represents system states as nodes of a tree, and actions/observations
as edges. The search of profitable actions in this tree is performed considering a
weighted average of the reward gathered in different branches of the tree itself.
The most influential solver for POMDPs which takes advantage of MCTS is Par-
tially Observable Monte Carlo Planning (POMCP) [34]. It combines a Monte
Carlo update of the agent’s belief with a MCTS-based policy. This algorithm
generates online a policy that can be used to solve large instances of planning
problems using only a black-box simulator. This strategy is advantageous in
many practical problems because precise transition and observation models (in
strict POMDP style) are not required, while prior knowledge about the specific
problem at hand can be exploited to improve the planning performance [11,12].

In this paper, we tackle a problem related to velocity control of a mobile
robot following a pre-specified path in an environment with uncertain obstacle
densities. The robot has to reach the end of the path in the shortest possi-
ble time and to avoid collisions, to preserve safety. Real-world applications of
this case study concern, for instance, safety management in Industry 4.0, where
human-robot interaction needs to be robust, reliable and long lasting, especially
when robots interact with workers in highly uncertain environments. In our case
study the path that must be traveled is divided into segments and subsegments,
and every segment is characterized by a difficulty that considers the density of
obstacles in the environment. The real difficulty of segments is unknown and
the robot has to reach the end of the path quickly, hence it should move slowly
in difficult segments to avoid collisions, and faster in simpler segments to mini-
mize the travelling time. Since it is known a-priori that some pairs of segments
can (probabilistically) have the same difficulty (e.g., because they have similar
properties), the information about segment difficulties could be collected as the
robot advances and used to improve the planning performance. In other words,
if some information about the difficulty of a segment is collected while travers-
ing (i.e., acting in and observing) it, then this information can be transferred to
subsequent segments known (a-priori) to have the same difficulty. We represent
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difficulty relationships between pairs of segments by state-variable constraints
in Markov Random Fields (MRF) form [12].

The problem here investigated has therefore a particular sequential struc-
ture, in which difficulties of previously traveled segments can be used to infer
the difficulty of subsequent segments using MRF-based state-variable constraints
to (probabilistically) propagate information. What we show in this work is how
performance improvement is related to the prior knowledge introduced by state-
variable constraints. In particular, we introduce two measures, namely, a distance
between the real state and the belief, and the mutual information between seg-
ment difficulty and action taken in the segment, and we experimentally show that
the performance improvement is related to a decrease in the distance between
real state and belief, and to an increase in the mutual information between dif-
ficulty and action. The improved explainability of the planning process achieved
in this way is important in applications involving human-robot interaction [8–
10,13], in which understanding how intelligent agents select their actions is crit-
ical. This also positively affects the trust that humans have in plans, following
recent trends related to explainable planning [20].

The contribution of this paper to the state-of-the-art is threefold:

• we present the formulation of a new planning problem (having real-world
applications in Industry 4.0) related to mobile robot collision avoidance in
paths with uncertain segment obstacle densities (i.e., difficulties), and show
how planning performance in this context can take advantage of prior knowl-
edge about obstacle density relationships;

• we introduce two measures to quantify the effect of the introduction of prior
knowledge on (i) belief precision and (ii) correlation between segment diffi-
culty and action;

• we analyze results on a simulated experiment by means of a newly developed
visualization tool that supports POMCP explainability.

Hence, this work introduces some novel ways to analyze POMCP functioning
when prior knowledge is available in a novel application domain related to mobile
robot navigation, and it represents a preliminary step towards more sophisticated
explainable planning approaches for POMCP.

The rest of the paper is structured as follows. Section 2 presents related works,
Sect. 3 formalizes the problem of interest and describes the proposed methodol-
ogy, Sect. 4 discusses the results of experimental tests, and Sect. 5 draws conclu-
sion and directions for future works.

2 Related Work

This work has relationships with three main topics in the literature, namely, (i)
planning under uncertainty and reinforcement learning, (ii) the POMCP solver
and its extensions for dealing with prior knowledge, (iii) explainable planning.
Planning under uncertainty dates back to the seventies [18,31] when aspects
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of mathematical decision theory started to be incorporated into the predomi-
nant symbolic problem-solving techniques. The interest in this topic has been
kept very high in the years [3,23], since planning under uncertainty is a critical
task for autonomous and intelligent agents based on current data-driven tech-
nologies. The most recent developments mainly concern the use of Monte Carlo
Tree Search (MCTS) and deep Reinforcement Learning [32,33,38], respectively,
to deal with very large state spaces and to learn from data also the environ-
ment model during the planning process. Among the recently developed approx-
imate [22] and online [30,34] planning approaches, we found only few works [1,26]
in which prior knowledge about specific problems is used to improve planning
performance or to scale to large problem instances. What differentiates these
approaches to our work is that, first, we use a different method to introduce
prior knowledge [12]; second, we focus on an original problem related to robot
obstacle avoidance [19,24,29,37] having strict sequential nature in the way in
which the agent explores the environment and transfers the acquired knowl-
edge to future exploration; third, our goal is to improve the explainability of
POMCP-based decision-making strategies.

The methodology we use to introduce prior knowledge in POMCP [12] allows
to define probabilistic relationships of equality between pairs of state-variables
by means of Markov random fields. State variables in our application domain are
segment difficulties and a relationship says that two segments have a certain rela-
tive “compatibility” to have the same difficulty. The MRF approach then allows
to factorize the joint probability function of state-variable configurations and
this probability is used to constrain the state space. In our application domain
the state space is the space of all possible segment difficulty configurations and
the constraints introduced by the MRF allow to (probabilistically) reduce the
chance to explore states that have small probability to be the true state. The
integration of MRF-based prior knowledge into POMCP is mainly performed in
the particle filter initialization, in the belief update phase and in the reinvigora-
tion phase, where the constraints are used to optimize the management of the
particle filter representing the agent belief.

Explainable planning (XAIP) [7,20] is a branch of the recently introduced
research topic called eXplainable Artificial Intelligence (XAI) [21], which aims
at creating artificial intelligence systems whose models and decisions can be
understood and appropriately trusted by end users. Three main challenges of
XAI are the development of methods for learning more explainable models,
the designation of effective explanation interfaces [14], and the understanding
of psychologic requirements for effective explanations [21]. XAIP has a strong
impact on safety-critical applications, wherein people accountable to authorize
the execution of a plan need complete understanding of the plan itself. First
approaches of XAIP [35] focus on human-aware planning and model reconcili-
ation [16,36,39,40], and on data visualization [15]. One recent trend proposed
in [20] is to answer questions that improve human understanding of planner deci-
sion, such as, “why does the planner chose action A rather than B?”, which are
referred to as contrastive questions. Providing alternative choices and what-if
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analyses has indeed psychological basis [6] and it seems to support the inter-
pretability of decision models that otherwise would not be understandable by
developers and users. In this context users are required to provide alternative
actions, if they do not trust the proposed plan, and replanning is used to show
that the alternative is effectively better or worse than the original plan. Among
the technical challenges of XAIP, one concerns the ability to more naturally spec-
ify and utilize constraints on the planning process [35]. Ideally, constraints over
models should be described using a rich language designed for specifying con-
straints on the form of a desired plan. Some recent works [5,27] focus specifically
on this topic. The contribution of our work to explainable planning is related
to the introduction of two measures and related data visualization tools that
support to explain the influence of prior knowledge, defined by Markov Random
Field constraints, on POMCP performance. To the best of our knowledge no
other work in the literature provides this kind of results.

3 Materials and Methods

In this section we provide definitions of POMDPs and POMCP, and we for-
malize the problem of interest. Then we introduce the three extensions of the
POMCP planner employed in our experiments, that make use of different levels
of prior knowledge, and define the two measures used to explain the effect of
prior knowledge on the POMCP policy.

3.1 Partially Observable Markov Decision Processes

A Partially Observable Markov Decision Process (POMDP) [23] is defined as a
tuple (S,A,O, T, Z,R, γ), where S is a finite set of partially observable states, A
is a finite set of actions, Z is a finite set of observations, T : S ×A → Π(S) is the
state-transition model, O: S×A → Π(Z) is the observation model, R: S×A → R

is the reward function and γ ∈ [0, 1) is a discount factor. The goal of an agent
operating a POMDP, is to maximize its expected total discounted reward (also
called discounted return) E[

∑∞
t=0 γtR(st, at)], by choosing the best action at

in each state st at time t; γ is used to reduce the weight of distant rewards
and ensure the (infinite) sum’s convergence. As mentioned above, the partial
observability of the state is dealt with by considering at each time-step a proba-
bility distribution over states, called belief. The belief space is here represented
by symbol B. We also notice that the term belief is sometimes exchanged with
term history in the following, since an history h is a sequence of actions and
observations that bring the agent from an initial belief b0 to a certain belief b.
POMDP solvers are algorithms that compute, in an exact or approximate way,
a policy for POMDPs, namely a function π: B → A that provides an optimal
action for each believe.

3.2 POMCP

Partially Observable Monte Carlo Planning (POMCP) [34] is an online Monte-
Carlo based algorithm for solving POMDPs. It uses Monte-Carlo Tree Search



266 A. Castellini et al.

(MCTS) for selecting optimal actions at each time-step. The main elements of
POMCP are a particle filter, which represents the belief state, and the Upper
Confidence Bound for Trees (UCT) [25] search strategy, that allows to select
actions from the Monte Carlo tree. The particle filter contains, at each time-
step, a sampling of the agent’s belief at that step (the belief evolves over time).
In particular, it contains k particles, each representing a specific state. At the
beginning the particle filter is usually initialized following a uniform random
distribution over states, if no prior knowledge is available about the initial state.
Then, at each time-step the Monte Carlo tree is generated performing nSim
simulations from the current belief. In other words, for nSim times a particle is
randomly chosen from the particle filter and the related state is used as initial
state to perform a simulation. Each simulation is a sequence of action-observation
pairs that collect a final return, where each action and observation brings to a
new node in the tree. Rewards are then propagated upwards in the tree obtain-
ing, for each action of the root node, an expected (approximated) value of the
cumulative reward that this action can bring. The UCT strategy selects actions
considering both their expected cumulative reward and the necessity to explore
new actions from time to time. The belief is finally updated, after performing
the selected action a and getting a related observation o from the environment,
by considering only the particles (i.e., states) in the node (called hao) reached
from current node h following edges a and o. New particles can be generated
through a particle reinvigoration procedure based on local transformation of
available states, if the particle filter gets empty. A big advantage of POMCP is
that it does not require a complete matrix-based definition of transition model,
observation model and reward, but it only needs a black-box simulator of the
environment.

3.3 Problem Formalization

Here we formally define the problem we want to solve in this paper using different
extensions of POMCP that consider different levels of prior knowledge. Let us
assume to have a pre-defined path to be traversed by a mobile robot in an
industrial environment. The path, of which one possible instance is displayed
in Fig. 1, is made of segments si which are then split in subsegments sij . Each
segment (and related subsegments) is characterized by a difficulty fi, related to
the average density of obstacles in it. The robot has to reach the end of the
path in the shortest possible time, tuning its speed v in each subsegment to
avoid obstacles, since the probability of collision depends on speed and segment
difficulty, and each collision yields a time penalty. The robot cannot directly
observe segment difficulties (which are hidden state variables) but only infer
their values from (observable) variables oi that provide information about the
occupancy of each subsegment, based on the readings of a laser located on top
of the agent.

This problem can be formalized as a POMDP. The state contains (i) the (hid-
den) true configuration of segment difficulties (f1, . . . , fn) where fj ∈ {L,M,H},
L is low difficulty, M medium difficulty and H high difficulty, (ii) the position
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Fig. 1. Path travelled by the agent. Nodes are subsegment

Table 1. Main elements of our POMDP model for the collision avoidance problem.
(a) Occupancy model p(o | f): probability of subsegment occupancy given segment
difficulty. (b) Action-time model: number of time units to traverse a subsegment given
the action performed by the agent. (c) Collision model p(c | f, a): collision probability
given segment difficulty and action.

f p(o = 1 | f)

L 0.0

M 0.5

H 1.0

(a)

a dt

L 3

M 2

H 1

(b)

f a p(c = 1 | f, a)
L L 0.0

L M 0.0

L H 0.0

M L 0.0

M M 0.5

M H 0.9

H L 0.0

H M 1.0

H H 1.0

(c)

p = (i, j) of the robot in the path, where i is the index of the segment and j
the index of the subsegment (saying that the agent is in position (i, j) we mean
that it is at the beginning of subsegment si,j), (iii) the time t elapsed from
the beginning of the path. Actions correspond to the speed the robot main-
tains in a subsegment, which may have three possible values, namely low (L),
medium (M) or high (H). Observations are related to subsegment occupancy,
where o = 0 means that the laser does not detect any obstacle in the current
subsegment, and o = 1 means that it detects some obstacles (notice that observa-
tions are affected by uncertainty). The observation model hence corresponds to
the occupancy model p(o | f) which (probabilistically) relates segment difficulty
to subsegment occupancy. The parameters of Table 1a concern the occupancy
model used in our experiments.
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The state transition model deals with the update of robot position and cur-
rent time at each step. Position update is performed in a deterministic way since
at each step the robot is assumed to reach the beginning of the next subseg-
ment in the path. The current time is instead updated depending on both the
action performed by the agent and the possibility to make collisions. The rela-
tionship between action and time elapsed to traverse a subsegment is displayed
in Table 1b, namely the agent spends 1 time unit if the action is H (low speed), 2
time units if the action is M, and 3 time units if the action is L. The time penalty
due to collision is instead governed by the probabilistic collision model p(c | f, a)
of Table 1c, where c = 0 means no collision and c = 1 means collision. Notice,
that the probability of not making a collision is one minus the probability to
make the collision, since the collision value is binary. The reward function here
used is R = −(t1 + t2), where t1 is the time depending on agent’s action and t2
is the penalty due to collisions. We use t2 = 10 in our experiments. Finally the
discount factor is γ = 0.95.

3.4 Planning Strategies

Three planning strategies are used in our tests. The original implementa-
tion of POMCP [34], named STD in the following, is used as a baseline. An
extended version of POMCP allowing the definition of state-variable constraints
by Markov Random Fields [12], is named MRF in the following, and is used to
introduce prior knowledge about segment difficulty relationships. For instance,
in an instance of our problem we could know that the probability that segment s0
and segment s1 have same difficulty is 0.9. Planner MRF can use this information
to improve the policy it generates and, consequently, the planning performance.
The focus of this paper is, in particular, to identify the effects of prior knowledge
on POMCP strategy and we perform this analysis considering the two measures
introduced in Subsect. 3.6. Finally, we consider an oracle planner, named ORC
in the following, in which perfect knowledge of segment difficulties is used. This
planner performs the POMCP strategy using only the particle corresponding to
the true state (i.e., configuration of segment difficulties).

3.5 Experimental Setup

We perform experiments to compare the three planning strategies described
above. In planner MRF we introduce prior knowledge about the difficulty rela-
tionship of two segments actually having the same difficulty. In particular, we
set to 0.9 the probability of these two segments to have same difficulty (meaning
that we say to the planner that these two segments have probability 0.9 to have
same difficulty). This high probability value allows the planner to consider also
states not satisfying this constraint, but only with a small chance. Tests with
inaccurate prior knowledge are reported in [12]. In each run the agent starts
from node 0 in the path of Fig. 1 and has to reach the same node collecting the
highest possible return. We perform 20 runs for each test in order to compute
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average returns and related standard errors. Different runs have different config-
urations of segment difficulties, for instance, one run could have a configuration
(L,H,M,H) and another (M,H,L,L). Each test is performed using a fixed
number of simulations nSim. We analyze results achieved using nSim between
28 and 215 with exponential step 2x, 8 ≤ x ≤ 15. As expected, runs performed
using more simulations tend to reach better performance (we remind that nSim
simulations are performed each time the agent performs an action in the path,
namely, for each subsegment).

3.6 Measures for Policy Explanation

To quantify the influence of prior knowledge on policy performance we introduce
two measures about specific properties of the policy that support its explain-
ability, namely, the belief-state distance and the mutual information between
difficulty and action.

Belief-State Distance. We define the belief-state distance as the weighted
averaged Manhattan distance between the configuration of segment difficulties
in the true hidden state and the configurations of segment difficulties in the belief
states. Mathematically, if we define the configuration of segment difficulties in
the true state as fS = (f1, . . . , fn), where fj ∈ {L,M,H} and n is the number of
segments, and we define the k configurations of segment difficulties in the belief
as f i

B = (f i
1, . . . , f

i
n), i ∈ {1, . . . , k}, f i

j ∈ {L,M,H} where the probability of
each difficulty configuration f i

B in the belief is piB , then the belief-state distance
is

dSB =
k∑

i=1

(
piB ·

n∑

j=1

|fj − f i
j |

)
. (1)

Since the belief is updated at each time-step, this measure can be computed
at each time-step too. This measure allows to quantify the discrepancy between
what the agent believes about the real state of the environment and the real state
of the environment, hence addiction of prior knowledge about segment difficulty
relationships is expected to decrease this distance.

Mutual Information (MI) Between Segment Difficulty and Action. In
the specific instance of the collision avoidance problem defined in Subsect. 3.3 it is
expected that the agent takes particular actions if it has good knowledge about
the true configuration of segment difficulties. In fact, analyzing the collision
model in Table 1c we observe that high speed (i.e., a = H) should be selected
in segments with low difficulty (i.e., f = L) because the collision probability is
always 0.0 in that segment, hence high speed should be preferred to reach earlier
the end of the path. On the other hand, in segments with high difficulty (i.e.,
f = H) the collision probability is 0.0 if low speed (i.e., a = L) is kept and it
is 1.0 if medium or high speed (i.e., a = M or a = L) is kept, hence low speed
should be preferred. In case of medium difficulty the collision probability instead
increases from 0.0 to 0.5 and to 0.9 when the speed increases from L to M and
to H, thus the choice of the best action depends on collision penalty.
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To check if the POMCP policy effectively generates actions related to segment
difficulties we compute the mutual information between all actions taken in
each run and corresponding segment difficulties. In other words, given a run we
consider the sequence of actions A = (ai,j), where i is the index of a segment
and j is the index of a subsegment, and the sequence of related subsegment
difficulties F = (fi,j). The mutual information [2] between the two sequences,
treated as random variables, is

I(A,F) =
∑

a∈A

∑

f∈F
p(A,F)(a, f)log

(p(A,F)(a, f)
pA(a)pF (f)

)
, (2)

where p(A,F)(a, f) is the joint probability mass function of A and F , and pA and
pF are the marginal probability mass functions of A and F , respectively. Average
MI values are computed on sets of runs. We notice that selecting actions with
high difficulty-action MI is not trivial since the true configuration of segment
difficulties is hidden. In the next section we experimentally analyze the trend of
this measure depending on the prior knowledge provided in different planners.

4 Results

In this section we present the results of the experiments described in Subsect. 3.5.
The first observation we make is that the introduction of complete (ORC) and
partial (MRF) prior knowledge about segment difficulty relationships yields per-
formance improvement, in terms of discounted return. This effect is clear in
Fig. 2a where the blue line (ORC performance) stands above the green line
(MRF performance) which, in turns, stands above the red line (STD perfor-
mance). Notice that the overtaking of MRF on STD for nSim = 10 is due only
to an anomalous higher average difficulty value of the MRF runs w.r.t. the STD
runs. In the following we analyze the reasons of this performance improvement,
which is fundamental in real-world applications involving human-robot interac-
tion because explainability supports safety preservation.

In Fig. 2b–e we decompose the effect on planning performance into its causes,
and provide insight on the mechanisms that produce it. We first observe that
the introduction of prior knowledge has a positive effect on both the average
number of collisions (see Fig. 2b where the blue line stands below the green
line, which stands below the red line) and the average action (see Fig. 2c where
the blue line stands above the green line, which stands above the red line, at
least for nSim ≥ 28). This behavior is not obvious, since these two quantities
have opposite effects. Namely, higher actions, i.e. higher speeds, usually cause
higher number of collisions. If this is not the case, it means that planners using
prior knowledge are able to select actions according to a (smart) strategy which
improves average speed without increasing the collision rate.

Some explanation about the strategies implemented by planners ORC and
MRF to reach this aim is displayed in Figs. 2d and e. Figure 2e shows that the
mutual information between segment difficulties and related actions is much
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Fig. 2. Performance of the three planners ORC, MRF and STD, and explanation of
the reasons of different performance. (Color figure online)

higher in the ORC planner than in the STD planner, and the MRF planner has
intermediate MI values (see the blue line above the green line, and the green line
above the red line in the chart). High MI between difficulty and action means
that the planner is able to adapt the action to the (hidden) difficulty, which
implies that the planner has some knowledge about true segment difficulties.
The charts show that the (complete or partial) prior knowledge about segment
difficulty relationships (see the distance between final belief and real state in
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Fig. 2d) is correctly transferred to the policy, hence that knowledge about seg-
ment difficulties is actually used to better select actions.

Moving to deeper details, we discover (see Fig. 2f) that in the 20 runs per-
formed with maximum number of simulations (i.e., nSim = 215) the ORC plan-
ner (on the right) selects 86 times (i.e., 79% of times) action H in subsegments
with low difficulty (see the top-right cell in the heatmap), while it selects action
M only 19 times (i.e., 17% of times) and action L only 4 times (i.e., 3.6% of
times) (see other cells in the first row of the heatmap). As mentioned earlier,
this strategy is correct since the collision probability is always 0.0 in segments
with low difficulty, therefore high speed should be preferred in such segments.
The STD planner, on the left of Fig. 2f, is unable to select the best action in
segments with low difficulty. It selects 28 times (i.e., 45% of times) action L,
12 times (i.e., 20% of times) action M and 22 times (i.e., 35% of times) action
H (see the first row of the heatmap in the left-hand side of Fig. 2f). Planner
MRF performs better than STD but worse than ORC (see the first row of the
heatmap in the center of Fig. 2f), selecting 61 times (i.e., 46% of times) action
H, 18 times (i.e., 14% of times) action M and 53 times (i.e., 40% of times)
action L. We stress that the differences between these strategies depend on the
knowledge the planner has about the real difficulty of segments. In other words,
planner STD sometimes does not provide best actions because its belief is not
precise enough and actions are consequently affected by this uncertainty.

Analyzing planner behaviors in segments with high or medium difficulty, we
observe that ORC selects almost 99% of times action L (see the second and third
rows of the heatmap in the right hand side of Fig. 2f). STD instead selects action
L respectively 78% (i.e., value 110) and 92% (i.e., value 110) of times in the same
segments (see the second and third rows of the heatmap in the left hand side
of Fig. 2f), and MRF selects action L respectively 80% (i.e., value 72) and 98%
(i.e., value 97) of times in the same segments (see the last row of the heatmap
in the center of Fig. 2f). Again, the ORC strategy is the best considering the
collision model in Table 1), then comes MRF and finally STD. All the planners
should learn the same strategy but the prior knowledge added to ORC and MRF
let them learn it better.

To show how prior knowledge influences the belief evolution, we display in
Fig. 3b and d the belief evolution for a run with hidden state (H,M,L,M)
performed by the STD planner (on the left) and the MRF planner (on the right).
The ORC planner is not displayed because it has fixed belief. Belief states are
encoded by decimal numbers from 0 to 80, whose ternary encoding provides the
difficulty configuration (e.g., decimal 64 corresponds to ternary 2101, namely
difficulty configuration (H,M,L,M)). On top (see Figs. 3a and c) the evolution
of difficulty, action, occupancy and belief-state distance over time (the time-step
is in the x-axis). Red vertical lines delimit path segments and orange lines delimit
subsegments. In the bottom (see Figs. 3b and d) the evolution of the belief over
time (from top to bottom). Green horizontal lines delimit path segments (labels
SEG1, . . . , SEG4 in the central part of the figure).
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Fig. 3. Comparison of belief evolution in STD and a MRF runs with hidden state
(H,M,L,M) and nSim = 215.

The prior knowledge used by the MRF planner constraints the second and
the fourth segment to have the same difficulty with probability 0.9. The effect of
this constraint on the belief evolution is evident in Fig. 3d. Namely, states with
different difficulties in segments 2 and 4 are considered with smaller probability
than states with same difficulty in those segments (see the sparse distribution
of states in Fig. 3d). Then, interestingly enough, the belief about the difficulty
of segment 4 is updated while the agent traverses segment 2, since these two
segments are connected by a (probabilistic) constraint. In other words, when the
agent discovers that segment 2 has medium difficulty, it updates also its belief
about segment 4, accordingly. In this way, the information acquired by the agent
in the current segment is forwarded to future segments and, when the agent will
traverse those segments in the future, it will use this information to choose more
efficient actions. This concept is clearly displayed in our experimental test of
Fig. 3b and d where the belief of the MRF planner (on the right) at the end
of segment 3 is almost completely peaked on the right state, while that of the
STD planner (on the left) needs some steps in segment 4 to understand its
difficulty. In this specific case the observation model is very informative and the
agent needs only one step (i.e., step 13) to understand the true difficulty of the
segment, but in real environments several steps could be required to gather the
same information, yielding a further decrease of performance.

As a final remark we notice that the presented experiments are performed
on a small path only to limit the belief space dimension and to allow the visu-
alization of belief evolution in Fig. 3. However, the approach can easily scale
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to longer paths and in those cases even larger differences between the behavior
(in terms of discounted return, # collisions, actions, belief-state distance and
difficulty-action MI) of the three planners can be observed.

5 Conclusion and Ongoing Work

In this work we analyze the mechanisms by which prior knowledge is used by
POMCP to improve planning performance in a collision avoidance problem.
Although this is a first step towards full POMCP explainability, the approach
has potential for several developments. Among them we are working on (i) the
explanation of the Monte Carlo tree representing the policy, (ii) the applica-
tion to real robotic platforms, (iii) the testing on longer paths and real-world
environments.
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Abstract. Classical voting rules assume that ballots are complete pref-
erence orders over candidates. However, when the number of candidates
is large enough, it is too costly to ask the voters to rank all candidates.
We suggest to fix a rank k, to ask all voters to specify their best k candi-
dates, and then to consider “top-k approximations” of rules, which take
only into account the top-k candidates of each ballot. We consider two
measures of the quality of the approximation: the probability of select-
ing the same winner as the original rule, and the score ratio. We do a
worst-case study (for the latter measure only), and for both measures,
an average-case study and a study from real data sets.

Keywords: Voting rules · Truncated ballots · Approximations.

1 Introduction

The input of a voting rule is usually a collection of complete rankings over
candidates (although there are exceptions, such as approval voting). However,
requiring a voter to provide a complete ranking over the whole set of candidates
can be difficult and costly in terms of time and cognitive effort. We suggest to
ask voters to report only their top-k candidates, for some (small) fixed value of k
(the obtained ballots are then said to be top-k). Not only it saves communication
effort, but it is also often easier for a voter to find out the top part of their
preference relation than the bottom part. However, this raises the issue of how
usual voting rules should be adapted to top-k ballots. Reporting top-k ballots is
a specific form of voting with incomplete preferences, and is highly related to vote
elicitation. Work on these topics is reviewed in the recent handbook chapter [5].
Existing work on truncated ballots can be classified into two classes according
to the type of interaction with the voters:

(i) Interactive elicitation
An interactive elicitation protocol asks voters to expand their truncated ballots
in an incremental way, until the outcome of the vote is eventually determined.
This line of research starts with Kalech et al. [14] who start by top-1 ballots,
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then top-2, etc., until there is sufficient information for knowing the winner. Lu
and Boutilier [16,17] propose an incremental elicitation process using minimax
regret to predict the correct winner given partial information. A more general
incremental elicitation framework, with more types of elicitation questions, is
cost-effective elicitation [25]. Naamani Dery et al. [10] present two elicitation
algorithms for finding a winner with little communication between voters.

(ii) Non-interactive elicitation
The central authority elicits the top-k ballots at once, for a fixed value of k, and
outputs a winner without requiring voters to provide extra information. A possi-
bility consists in computing possible winners given these truncated ballots: this
is the path followed by Baumeister et al. [2] (who also consider double-truncated
ballots where each voter ranks some of her top and bottom candidates). Another
possibility – which is the one follow – consists in generalizing the definition of
a voting rule so that it takes truncated ballots as input. In this line, Oren et
al. [21] analyze top-k voting by assessing the values of k needed to ensure the
true winner is found with high probability for specific preference distributions.
Skowron et al. [23] use top-k voting as a way to approximate some multiwin-
ner rules. Filmus and Oren [12] study the performance of top-k voting under
the impartial culture distribution for the Borda, Harmonic and Copeland rules.
They assess the values of k needed to find the true winner with high probability,
and they report on numerical experiments that show that under the impartial
culture, top-k ballots for reasonable small values of k give accurate results.

Bentert and Skowron [3] focus on top-k approximations of voting rules that
are defined via the maximization of a score (positional scoring rules and max-
imin). They evaluate the quality of the approximation of a voting rule by a top-k
rule by the worst-case ratio between the scores, with respect to the original pro-
file, of the winner of the original rule and the winner of the approximate rule.
They identify the top-k rules that best approximate positional scoring rules (we
give more details in Sect. 5). Their theoretical analysis is completed by numeri-
cal experiments using profiles generated from different distributions over prefer-
ences: they show that for the Borda rule a small value of k is needed to achieve
a high approximation guarantee while maximin needs more information from a
sufficiently many voters to determine the winner.

Ayadi et al. [1] evaluate the extent to which STV with top-k ballots approx-
imates STV with full information. They show that for small k, top-k ballots are
enough to identify the correct winner quite frequently, especially for data taken
from real elections. Finally, the recognition of singled-peaked top-k profiles is
studied in [15] while the computational issues of manipulating rules with top-k
profiles is addressed in [20].

Our contribution concerns non-interactive elicitation. We adapt different vot-
ing rules to truncated ballots: we define approximations of voting rules which
take as input the top-k candidates of each ballot. The question is then, are these
approximations good predictors of the original rule? We answer this question by
considering two measures: the probability that the approximate rule selects the
‘true’ winner, and the ratio between the scores (for the original rule) of the true
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winner and the winner of the approximate rule. For the latter measure we give
a worst-case theoretical analysis. For both measures we give an empirical study,
based on randomly generated profiles and on real-world data. Our findings are
that for several common voting rules, both for randomly generated profiles and
real data, a very small k suffices.

Our research can be seen as a continuation of Filmus and Oren [12]. We
go further on several points: we consider more voting rules; beyond impartial
culture, we consider a large scope of distributions; we study score distortion;
and we include experiments using real-world data sets. Our work is also closely
related to [3], who have obtained related results independently (see Sects. 4 and
5 for a discussion).

Our interpretation of top-k ballots is epistemic: the central authority in
charge of collecting the votes and computing the outcome ignores the voters’
preferences below the top-k candidates of each voter, and has to cope with it
as much as possible. Voters may very well have a complete preference order in
their head (although it does not need to be the case), but they will simply not
be asked to report it.

Section 2 gives some background. Section 3 defines top-k approximations of
different voting rules. Section 4 analyses empirically the probability that approx-
imate rules select the true winner. Section 5 analyses score distortion, theoreti-
cally and empirically.

2 Preliminaries

An election is a triple E = 〈N,A, P 〉 where: N = {1, ..., n} is the set of voters,
A is the set of candidates, with |A| = m; and P = (�1, ...,�n) is the preference
profile of voters in N , where for each i, �i∈ P is a linear order over A. Pm is
the set of all profiles over m alternatives (for varying n).

Given a profile P , NP (a, b) = # {i, a �i b} is the number of voters who prefer
a to b in P . The majority graph M(P ) is the graph whose set of vertices is the
set of the candidates A and in which for all a, b ∈ A, there is a directed edge
from a to b (denoted by a → b) in M(P ) if Np(a, b) > n

2 .
A resolute voting rule is a function f : E → A. Resolute rules are typically

obtained from composing an irresolute rule (mapping an election into an non-
empty subset of candidates, called co-winners) with a tie-breaking mechanism.

A positional scoring rule (PSR) fs is defined by a non-negative vector s =
(s1, ..., sm) such that s1 ≥ ... ≥ sm and s1 > 0. Each candidate receives sj points
from each voter i who ranks her in the jth position, and the score of a candidate
is the total number of points she receives from all voters i.e. S(x) =

∑n
i=1 sj .

The winner is the candidate with highest total score. Examples of scoring rules
are the Borda and Harmonic rules, with sBorda = (m − 1,m − 2, . . . , 0) and
sHarmonic = (1, 1/2, . . . , 1/m).

We now define three pairwise comparison rules.
The Copeland rule outputs the candidate maximizing the Copeland score,

where the Copeland score of x is the number of candidates y with x → y in
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M(P ), plus half the number of candidates y �= x with no edge between x and y
in M(P ).

The Ranked Pairs (RP) rule proceeds by ranking all pairs of candidates
(x, y) according to NP (x, y) (using tie-breaking when necessary); starting from
an empty graph over A, it then considers all pairs in the described order and
includes a pair in the graph if and only if it does not create a cycle in it. At the
end of the process, the graph is a complete ranking, whose top element is the
winner.

The maximin rule outputs the candidates that maximize minx∈A(x�=a)

NP (a, x).
For the experiments using randomly generated profiles, we use the Mallows

φ-model [18]. It is a (realistic) family of distributions over rankings, parametrized
by a modal or reference ranking σ and a dispersion parameter φ ∈ [0, 1]:
P (r;σ, φ) = 1

Z φd(r,σ), where r is any ranking, d is the Kendall tau distance
and Z =

∑
r′ φd(r,σ) = 1 · (1 + φ) · (

1 + φ + φ2
) · ... · (

1 + ... + φm−1
)

is a nor-
malization constant. With small values of φ, the mass is concentrated around
σ, while φ = 1 gives the uniform distribution Impartial Culture (IC), where all
profiles are equiprobable.

3 Approximating Voting Rules from Truncated Ballots

Given k ∈ {1, ...,m − 1}, a top-k election is a triple E′ = 〈N,A,R〉 where N
and A are as before, and R = (�k

1 , ...,�k
n), where each �k

i is a ranking of k out
of m candidates in A. R is called a top-k profile. If P is a complete profile, �k

i

is the top-k truncation of �i (i.e., the best k candidates, ranked as in �i), and
Pk = (�k

1 , ...,�k
n) is the top-k-profile induced from P and k. A top-k (resolute)

voting rule is a function fk that maps each top-k election E′ to a candidate in
A. We sometimes apply a top-k rule to a complete profile, with fk(P ) = fk(Pk).
We now define several top-k rules.

3.1 Borda and Positional Scoring Rules

Definition 1. A top-k PSR fs
k is defined by a scoring vector s =

(s1, s2 . . . , sk, s∗) such that s1 ≥ s2 ≥ ... ≥ sk ≥ s∗ ≥ 0 and s1 > s∗. Each
candidate in a top-k vote receives sj points from each voter i who ranks her
in the jth position. A non-ranked candidate gets s∗ points. The winner is the
candidate with highest total score.

When starting from a specific PSR for complete ballots, defined by scoring
vector s = (s1, . . . , sm), two choices of s∗ particularly make sense:

– zero score: s∗ = 0
– average score: s∗ = 1

m−k (sk+1 + . . . + sm)

We denote the corresponding approximate rules as f0
k and fav

k . Bordaav
k is known

under the name average score modified Borda Count [8,13], while Borda0
k is
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known under the name modified Borda Count [11]). In the experiments we report
only on Bordaav

k , as Borda0
k gives very similar results.

Young [24] characterized positional scoring rules by these four properties,
which we describe informally (for resolute rules):

– Neutrality : all candidates are treated equally
– Anonymity : all voters are treated equally
– Reinforcement : if P and Q are two profiles (on disjoint electorates) and x is

the winner for P and the winner for Q, then it is also the winner for P ∪ Q.
– Continuity : if P and Q are two profiles and x is the winner for P but not for

Q, adding sufficiently many votes of P to Q leads to elect x.

f is a PSR if and only if it satisfies neutrality, anonymity, reinforcement and
continuity [24].

These four properties still make sense for truncated ballots. It is not difficult
to generalize Young’s result to top-k PSR:

Theorem 1. A top-k voting rule is a top-k PSR if and only if it satisfies neu-
trality, anonymity, reinforcement, and continuity.

Proof. The left-to-right direction is obvious. For the right-to-left direction, let
us first define the top-k-only property: a standard voting rule is top-k-only if for
any two complete profiles P, P ′, if Pk = P ′

k, then F (P ) = F (P ′). Then (1) a
positional scoring rule F is top-k-only if and only if sk+1 = . . . = sm (if this
equality is not satisfied, then it is easy to construct two profiles P , P ′ such that
Pk = P ′

k and F (P ) �= F (P ′)). Now, assume Fk is a top-k rule satisfying neu-
trality, anonymity, reinforcement, and continuity. Let F be the standard voting
rule defined by F (P ) = Fk(Pk). Clearly, F also satisfies neutrality, anonymity,
reinforcement, and continuity, and due to Young’s characterization result, F is
a PSR, associated with some vector (s1, . . . , sm). Because F is also top-k-only,
using (1) we have sk+1 = . . . = sm, therefore, Fk is a top-k-PSR. 
�

3.2 Rules Based on Pairwise Comparisons

Given a truncated ballot �k
i and two candidates a, b ∈ A, we say that a domi-

nates b in �k
i , denoted by a >k

i b, if one of these two conditions holds: (1) a and
b are listed in �k

i , and a �k
i b; (2) a is listed in �k

i , and b is not.
For instance, for A = {a, b, c, d}, k = 2, and �2

i = (a � b), then a dominates
b, both a and b dominate c and d, but c and d remain incomparable in �2

i . Now,
the notions of pairwise comparison and majority graph are extended to top-k
truncated profiles in a straightforward way:

Definition 2. Given a top-k profile R, NR(a, b) = #
{
i, a >k

i b
}
is the number

of voters in R for whom a dominates b. The top-k majority graph Mk(R) induced
by R is the graph whose set of vertices is the set of the candidates A and in which
there is a directed edge from a to b if NR(a, b) > NR(b, a).
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The top-k rules Copelandk, Maximink and RPk are defined exactly as their
standard counterparts, but starting from the top-k pairwise comparisons and
majority graph instead of the standard ones. Note that fm−1 = f , and (for all
rules f we consider) f1 coincides with plurality.

Example 1. Let us consider this 62-voter profile: 20 votes a � d � c � b, 10
votes b � c � d � a, 15 votes c � d � b � a and 17 votes: d � c � a � b.

a b c d MP

a - 20 20 10 10
b 10 - 10 10 10
c 42 32 - 25 25
d 32 52 37 - 32

(b) Maximin2(a) Copeland2

Fig. 1. Top-2 approximations of Copeland and Maximin

Figure 1 (a) shows the top-k majority graph and the Copeland winner for k =
2, and Fig. 1 (b) shows the top-k pairwise majority matrix and the Maximink

winner for k = 2. In both cases, the winner for k = 1 (resp. k = 3) is a (resp.
d). For RP, the winner under RPk for k ∈ {1, 2, 3} is the same as the winner
under Copelandk since the k-truncated majority graph does not create cycles.

4 Probability of Selecting the True Winner

The first way of measuring the quality of the top-k approximations is to deter-
mine the probability that they output the ‘true winner’; that is, the winner of
the original voting rule, under various distributions (Subsect. 4.1) and for real-
world data (Subsect. 4.2). In both cases, the procedure is similar: given a voting
rule f , we consider many profiles, and for each profile P we compare f(P ) to
fk(Pk) for each k = {1, . . . , m−2}. The difference between Subsects. 4.1 and 4.2
is that in the former we randomly draw profiles according to a given distribu-
tion, and for the latter, we draw a profile by selecting n votes at random in the
database. We include in our experiments STVk rule defined by Ayadi et al. [1],
which takes top-k ballots as input; and we compared it to our truncated rules.
STVk proceeds as follows: in each round the candidate with the smallest number
of votes is eliminated (using a tie breaking when necessary), if all ranked can-
didates are eliminated by STV, the vote is then ’exhausted’ and ignored during
further counting.

4.1 Experiments Using Mallows Model

Here we follow the research direction initiated by Filmus and Oren [12], but we
consider more rules, and beyond Impartial Culture we also consider correlated
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distributions within the Mallows model. For each experiment we draw 1000 ran-
dom preference profiles. In the first set of experiments, we take m = 7, we let
n and φ vary, and we measure the accuracy of the approximate rule for k = 1
and k = 2. Results are reported on Table 1. Note that for k = 1, our results can
be viewed as answering the question: with which probability does the true winner
with respect to the chosen rule coincide with the plurality winner?

Table 1. Success rate, Mallows model: m = 7, varying n, k and φ.

φ n=100 n=200 n=300 n=400 n=500 n=100 n=200 n=300 n=400 n=500

Bordaav
1 Bordaav

2

0.7 0.902 0.958 0.986 0.992 1.0 0.951 0.98 0.992 1.0 1.0

0.8 0.77 0.855 0.9 0.94 0.963 0.853 0.913 0.956 0.972 0.986

0.9 0.588 0.694 0.685 0.718 0.771 0.772 0.805 0.827 0.846 0.873

1 0.434 0.445 0.424 0.422 0.397 0.576 0.56 0.586 0.598 0.584

Copeland1 Copeland2

0.7 0.908 0.968 0.991 0.994 1.0 0.947 0.99 1.0 1.0 1.0

0.8 0.736 0.847 0.891 0.934 0.949 0.822 0.904 0.952 0.984 0.982

0.9 0.497 0.567 0.655 0.684 0.726 0.62 0.69 0.77 0.805 0.838

1 0.325 0.332 0.323 0.343 0.319 0.458 0.432 0.45 0.442 0.425

Maximin1 Maximin2

0.7 0.908 0.969 0.986 0.99 1.0 0.968 0.991 1.0 1.0 1.0

0.8 0.787 0.856 0.915 0.939 0.955 0.872 0.934 0.961 0.976 0.977

0.9 0.57 0.633 0.691 0.717 0.748 0.735 0.76 0.794 0.838 0.869

1 0.415 0.4 0.423 0.393 0.391 0.52 0.532 0.544 0.545 0.525

Harmonic1 Harmonic2

0.7 0.941 0.986 0.996 1.0 1.0 0.98 0.992 1.0 1.0 1.0

0.8 0.895 0.916 0.958 0.959 0.968 0.958 0.974 0.987 0.988 0.996

0.9 0.805 0.808 0.83 0.866 0.863 0.895 0.921 0.934 0.939 0.952

1 0.725 0.742 0.74 0.697 0.737 0.872 0.867 0.859 0.861 0.859

RP1 RP2

0.7 0.926 0.972 0.995 0.995 1.0 0.963 0.994 1.0 1.0 1.0

0.8 0.778 0.856 0.908 0.939 0.957 0.871 0.928 0.967 0.983 0.989

0.9 0.587 0.64 0.674 0.718 0.749 0.725 0.765 0.777 0.838 0.862

1 0.426 0.405 0.416 0.375 0.385 0.558 0.524 0.557 0.498 0.519

STV1 STV2

0.7 0.907 0.981 0.985 0.998 1.0 0.959 0.993 0.997 1.0 1.0

0.8 0.808 0.865 0.917 0.918 0.943 0.882 0.933 0.962 0.966 0.974

0.9 0.603 0.64 0.721 0.729 0.763 0.742 0.776 0.792 0.855 0.846

1 0.45 0.464 0.477 0.471 0.468 0.576 0.593 0.61 0.592 0.585

For k = 1: when n ≤ 100 and φ ≤ 0.7, prediction reaches 90% for Borda,
Copeland, Maximin and STV, 92% for RP, and 94% for Harmonic. When n ≥
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500, the accuracy is perfect for all rules. For φ = 0.8, the success rate decreases
but results are still good with a large number of voters. For φ = 0.9 and n = 500,
the rate reaches 86% for Harmonic and 72% for Copeland, with intermediate
(and similar) results for Borda, Maximin and RP and STV. For the IC, the
rate decreases dramatically when k becomes small, except for Harmonic (73%
when n = 500 against 46% for STV, 31% for Copeland and 40% for the remaining
rules).

For k = 2: the probability of selecting the true winner reaches 100% (resp.
98%) when φ ≤ 0.7 (resp. φ ≤ 0.8) and n ≥ 400 (resp. n ≥ 500). With high
values of φ, Harmonic still outperforms other rules followed by Bordaav and
STV then the other rules. Consistently with the results obtained by Bentert and
Skowron [3] for the IC, approximating the maximin rule is harder than position
scoring rules where maximin needs more information from the voters in order
to obtain high approximation guarantees. In all cases, top-2 ballots seem to be
always sufficient in practice to predict the winner with 100% accuracy with a
low value of φ.

In the second set of experiments, we are interested in determining the value
of k needed to predict the correct winner with large elections and with high
value of φ. We take k = {1, ...,m}, n = 2000, φ = {0.9, 1} and m = 20. Figure 2
shows depicted results where 1000 random preference profiles are generated for
each experiment. Results suggest that in large elections and unless φ is very high
(φ = 0.9), top-k rules are able to identify the true winner when k = 6 (resp.
k = 8) for Harmonic (resp. the remaining rules) out of m = 20.

We can also observe the behavior of different truncated rules when φ = 0.9:
the best accuracy is obtained again by Harmonic and the accuracy of all other
rules are very close, which we found surprising. When φ = 1, the latter behavior
changes: Harmonic still has the best results, followed by Bordaav and STV,
then the remaining rules. The good performance of Harmonic in all cases can be
explained by the fact that the closer the scoring vector to plurality, the better
the prediction.

Next, for each value of n ∈ {1000, 2000}, φ ∈ {.7, .8, .9, 1}, and m ∈
{7, 10, 15, 20}, we generated 1000 random profiles, and for each of our rules,
we determined the minimal value k (as a function of m) such that the winner is
correctly determined from the top-k votes for all generated profiles. The results
for Bordaav are:

– for φ = 0.7, k = 1 is always sufficient, whatever m.
– for φ = 0.8, k = 2 (resp. k = 1) is always sufficient for n = 1000 (resp.

n = 2000), whatever the value of m.
– for φ = 0.9, we observe that the minimal value of k such that the correct

winner is always correctly predicted is around 7
10m (for n = 1000) and 2

5m
(for n = 2000).

– for φ = 1, the minimal value of k is m − 1: we always find a generated profile
for which we get an incorrect result if the profile is not complete.

The results for Copeland, maximin, RP and STV are similar to those for
Borda. For Harmonic, we observe that k = 1 is always sufficient for φ ≤ 0.8 and
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Fig. 2. Success rate, Mallows model: n = 2000, m = 20, varying φ and k.

n = 2000, and that for φ = 0.9 (resp. φ = 1), the value of k needed is around
1
3m (resp. 2

3m).
In order to see how our approximations behave with small number of voters

and a high dispersion parameter, we take k = {1, ...,m}, n = 15, m = 7, and
φ ∈ {0.9, 1}. The results are on Fig. 3. The worst performance is obtained with
Copeland, while the other rules perform more or less equally well. These results
are consistent with the results obtained by Skowron et al. [23] for multiwinner
rules: elections with few voters and high dispersion appear to be the worst-
case scenario for predicting the correct winner using top-truncated ballots. For
Harmonic, even with few voters, winner prediction is almost perfect when k = 4
and m = 7.

Fig. 3. Success rate, Mallows model: m = 7, n = 15, varying φ and k.
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4.2 Experiments Using Real Data Sets

We now consider real data set from Preflib [19]: 2002 election for Dublin North
constituency with 12 candidates and 3662 voters. We consider data where we
randomly sample n∗ voters among the n available votes (n∗ < n). We start with
n∗ = 10 and increment n∗ in steps of 10. In each experiment, 1000 random
profiles are selected with n∗ voters; then we consider the top-k ballots obtained
from these profiles, with k = {1, 2, 3} and we compute the probability of selecting
the correct winner (the winner of the complete profile of then n∗ sampled votes).
Figure 4 shows results for Dublin with small elections (n∗ = {10, ..., 100}) while
Fig. 5 presents results for large elections (n∗ = {100, ..., 2000}). Arrows indicate
the number of voters from which the prediction is perfect.

Consistently with the results of Fig. 3, for small elections; the success rate is
low when k is too small, except for Harmonic where it gives the best performance
followed by STV (especially when n∗ < 60) then the remaining rules, e.g. For
Harmonic (resp. STV), 92% (resp. 82%) accuracy is reached with k = 3, m = 12
and n∗ = 50 against around 75% for the remaining rules.

Fig. 4. Success rate, Dublin, varying k; n∗ = {10, . . . , 100}.



Approximating Voting Rules from Truncated Ballots 289

For large elections, when k = 1, the different approximations exhibit almost
the same behavior except Harmonic, that performs better especially with few
voters. Obviously, increasing the value of k leads to a decrease in the number of
voters needed for correct winner selection. In general, the different approxima-
tions needs a sufficient number of voters to converge to the correct prediction.
Scoring rules tend to require less voters.

Fig. 5. Success rate, Dublin, varying k; n∗ = {100, . . . , 2000}.

5 Measuring the Approximation Ratio

5.1 Worst Case Study

In order to measure the quality of approximate voting rules whose definition
is based on score maximization, a classical method consists in computing the
worst-case approximation ratio between the scores (for the original rule) of the
‘true’ winner and of the winner of the approximate rule. Using worst-case score
ratios is classical: they are defined for measuring the quality of approximate
voting rules [7,22], for defining the price of anarchy of a voting rule [6] or for
measuring the distortion of a voting rule [4].
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Worst-case score ratios particularly make sense if the score of a candidate is
meaningful beyond its use for determining the winner. This is definitely the case
for Borda, as the Borda count is often seen as a measure of social welfare (see
[9]). This worst-case score ratio is called the price of top-k truncation.

Definition 3. Let f be a voting rule defined as the maximization of a score S,
and fk a top-k approximation of f . The price of top-k-truncation for f , fk, m,
and k, is defined as: R(f, fk,m, k) = maxP∈Pm

S(f(P ))
S(fk(Pk))

.

Positional Scoring Rules: Let fs be a positional scoring rule defined with
scoring vector s. Assume the tie-breaking priority favors x1. Let f s̄

k be a
top-k approximation of fs, associated with vector s̄ = (s1, . . . , sk, s∗), with the
same tie-breaking priority. Let s′ = (s1 − s∗, . . . , sk − s∗, 0) = (s′

1, . . . , s
′
k, 0), i.e.,

s′
i = si−s∗ for i = 1, . . . , k. Obviously, f s̄

k = fs′
k . For instance, if f s̄ is the average-

score approximation of the Borda rule, then s̄ = (m − 1, . . . , m − k, m−k−1
2 ) and

s′ = (m − 1 − m−k−1
2 , . . . ,m − k − m−k−1

2 , 0).
Let S(x, P ) be the score of x for P under fs and S′

k(x, Pk) be the score of
x for Pk under fs′

k . From now on when we write scores we omit P and Pk, i.e.,
we write S(x) instead of S(x, P ), S′

k(x) instead of S′
k(x, Pk) etc. In the rest of

Subsect. 5.1 we assume k ≥ 2. Let x1 = fs′
k (Pk) and x2 = fs(P ).

Lemma 1. R(fs, fs′
k ,m, k) ≤ 1 − sk+1

s′
1

+
(
1 + s∗

s′
1

)
msk+1

s′
1+...+s′

k

Proof. The total number of points given to candidates under fs′
k is n(s′

1+. . .+s′
k),

therefore S′
k(x1) ≥ n

m (s′
1 + . . . + s′

k).
Let us write S(x2) = S1→k(x2) + Sk+1→m(x2), where S1→k(x2) (resp.

Sk+1→m(x2)) is the number of points that x2 gets from the top k (resp. bottom
m − k) positions of the ballots in P . Let γ be the number of ballots in which x2

is not in the top k positions. Then Sk+1→m(x2) ≤ γsk+1.
As x2 appears in at least S′

k(x2)
s′
1

top-k ballots, we have γ ≤ n− S′
k(x2)
s′
1

. More-
over we have S(x1) ≥ S1→k(x1) = S′

k(x1) + ns∗ ≥ S′
k(x2) + ns∗ = S1→k(x2).

Now,
S(x2) ≤ S1→k(x2) +

(
n − S′

k(x2)
s′
1

)
sk+1

≤ S1→k(x2) +
(
n − Sk(x2)−ns∗

s′
1

)
sk+1

≤ (1 − sk+1
s′
1

)S1→k(x2) + nsk+1 + ns∗sk+1
s′
1

≤ (1 − sk+1
s′
1

)S(x1) + nsk+1 + ns∗sk+1
s′
1

S(x2)
S(x1)

≤ 1 − sk+1
s′
1

+ nsk+1(1 + s∗
s′
1
) m

n(s′
1+...+s′

k)

≤ 1 − sk+1
s′
1

+ sk+1(1 + s∗
s′
1
) m

s′
1+...+s′

k


�
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We now focus on the lower bound. We build the following pathological com-
plete profile P such that:

– the winner for Pk (resp. P ) is x1 (resp. x2).
– in Pk, all candidates get the same number of points (x1 wins thanks to tie-

breaking), and x1 and x2 get all their points from top-1 positions.
– in P , the score of x1 is minimized by ranking it last everywhere where it was

not in the top k positions, and the score of x2 is maximized by ranking it in
position k + 1 everywhere where it was not in the top k positions.

– Pk is symmetric in {x3, . . . , xm}.

Formally, Pk is defined as follows:

1. for each ranked list L (resp. L′) of k − 1 (resp. k) candidates in {x3, . . . , xm}:
α votes x1L and α votes x2L (resp. β votes L′). α and β will be fixed later.

2. α and β are chosen in such a way that all candidates get the same score S′
k(.).

Now, P is obtained by completing Pk as follows:

1. each top-k vote x1L is completed into x1Lx2−. “−” means the remaining
candidates are in an arbitrary order.

2. each top-k vote x2L is completed into x2L − x1.
3. each top-k vote L′ is completed into L′x2 − x1.

For instance, for m = 5 and k = 3, P is as follows:

α x1x3x4x2x5

α x1x3x5x2x4

α x1x4x3x2x5

α x1x4x5x2x3

α x1x5x3x2x4

α x1x5x4x2x3

α x2x3x4x5x1

α x2x3x5x4x1

α x2x4x3x5x1

α x2x4x5x3x1

α x2x5x3x4x1

α x2x5x4x3x1

β x3x4x5x2x1

β x3x5x4x2x1

β x4x3x5x2x1

β x4x5x3x2x1

β x5x3x4x2x1

β x5x4x3x2x1

Let M = (m−3)!
(m−k−1)! and Q = (m−2)!

(m−k−1)! .

Lemma 2.
S′

k(x1) = S′
k(x2) = α(m − 2)s′

1M

and for i ≥ 3, S′
k(xi) = 2α(s′

2 + . . . + s′
k)M + β(m − k − 1)(s′

1 + . . . + s′
k)M

Proof. In Pk, x1 and x2 appear in top position in a number of votes equal to α
times the number of different permutations (ordered lists) of (k − 1) candidates
out of (m − 2), i.e. α (m−2)!

(m−k−1)! times. Thus S′
k(x1) = S′

k(x2) = α (m−2)!
(m−k−1)!s

′
1. For

similar reasons, for each i ≥ 3,

S′
k(xi) = 2α (m−3)!

(m−k−1)! (s
′
2 + · · · + s′

k) + β (m−3)!
(m−k−2)! (s

′
1 + · · · + s′

k).


�
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As a consequence, all candidates have the same score in Pk if and only if

β

α
=

(m − 2)s′
1 − 2(s′

2 + . . . + s′
k)

(m − k − 1)(s′
1 + . . . + s′

k)

We fix α and β such that this equality holds. Thanks to the tie-breaking
priority, the winner in Pk is x1. In P , the winner is x2 and the scores of x1 and
x2 are as follows:

Lemma 3.

S(x1) = Qαs1
S(x2) = Qαs1 + Qαsk+1 + Q(m − k − 1)βsk+1

Proof. x1 appears at the top of (m−2)!
(m−k−1)!α votes and at the bottom of all others,

hence S(x1) = Qαs1. x2 appears α (m−2)!
(m−k−1)! times top position, and in position

(k + 1) in the remaining votes, i.e., α (m−2)!
(m−k−1)! + β (m−2)!

(m−k−2)! . Thus

S(x2) = α (m−2)!
(m−k−1)! (s1 + sk+1) + β (m−2)!

(m−k−2)!sk+1 
�
Lemma 4. R(fs, fs′

k ,m, k) ≥ 1 − sk+1
s1

+ sk+1
s1

ms′
1

s′
1+...+s′

k

Proof. From Lemma 3 we get S(x2)
S(x1)

≥ 1 + sk+1
s1

+ (m − k − 1) sk+1
s1

β
α .

Finally, using the expression of β
α we get

S(x2)
S(x1)

≥ 1 + sk+1
s1

+ (m − k − 1) sk+1
s1

(m−2)s′
1−2(s′

2+...+s′
k)

(m−k−1)(s′
1+...+s′

k)

From this we conclude:

R(fs, fs′
k ,m, k) ≥ 1 + sk+1

s1
+ sk+1

s1

(m−2)s′
1−2(s′

2+...+s′
k)

s′
1+...+s′

k

≥ 1 + sk+1
s1

+ sk+1
s1

(m−2)s′
1+2s′

1−2(s′
1+...+s′

k)
s′
1+...+s′

k

≥ 1 + sk+1
s1

+ sk+1
s1

(
ms′

1
s′
1+...+s′

k
− 2

)

≥ 1 − sk+1
s1

+ sk+1
s1

ms′
1

s′
1+...+s′

k 
�
Putting Lemmas 1 and 4 together we get

Proposition 1.

1 − sk+1
s1

+ sk+1
s1

ms′
1

s′
1+...+s′

k
≤ R(fs, fs′

k ,m, k) ≤ 1 − sk+1
s′
1

+
(
1 + s∗

s′
1

)
msk+1

s′
1+...+s′

k

Note that the lower and upper bound coincide when s∗ = 0, giving a tight
worst-case approximation ratio for this class of approximations. This is however
not guaranteed when s∗ > 0 (the reason being that the pathological profile used
in the proof of Lemma1 may not be the worst). Moreover, when s∗ = 0, our
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(lower and upper) bound coincides with the optimal ratio given in [3] (Theorem
1).1 Since the ratio in [3] is shown to be the best possible ratio, this show that
taking s∗ = 0 gives an optimal top-k approximation of a positional scoring rule.2

In particular:

– for Borda0
k (si = m − i, s∗ = 0), the lower and upper bounds coincide and

are equal to k
m−1 + 2m(m−k−1)

k(2m−k−1) .
– for Bordaav

k (si = m − i, s∗ = m−k−1/2), the lower bound is 1 − m−k−1
m−1 +

(m−k−1)(m+k−1)
k(m−1) and the upper bound is k(3k−m+1)+4(m−k−1)(m−1)

k(m+k−1) .
– for Harmonic0k (si = 1/i, s∗ = 0), the lower and upper bounds are equal to

k
k+1 + m

(k+1)(1+ 1
2 ···+ 1

k )
.

Also, note that for k′-approval with k′ > k and s∗ = 0, the (exact) worst-
case ratio m

k does not depend on k′. As a corollary, we get the following order
of magnitudes when m grows:

– R(Borda,Borda0
k,m, k) = Θ

(
m
k

)
.

– R(Borda,Bordaav
k ,m, k) = Θ

(
m
k

)
.

– R(Harmonic,Harmonic0k,m, k) = Θ
(

m
k log k

)
.

Maximin: Let Maximin be the Maximin rule with tie-breaking priority
x1 . . . xm, and Maximink be the k-truncated version of the Maximin rule with
the same tie-breaking priority order. Let SMm(x2, P ) and SMm(x1, Pk) be the
Maximin scores of x2 and x1 for P and Pk, respectively, with SMm(x2, P ) =
miny �=x2 NP (x2, y) and similarly for Pk. Let P be a profile, and let x1 =
Maximink(Pk) and x2 = Maximin(P ). All candidates have the same Maximin
score in Pk, therefore, by tie-breaking priority, Maximink(Pk) = x1.

Lemma 5. R(Maximin,Maximink,m, k) ≤ m − k + 1.

Proof. Because x1 = Maximink(Pk), we must have SMm(x1, Pk) ≥ 1 (oth-
erwise we would have SMm(x1, Pk) ≥ 0, meaning that x1 does not belong to
any top-k ballot, and in this case we cannot have x1 = Maximink(Pk)). Now,
SMm(x2, P ) ≤ SMm(x2, Pk) + (m − k) ≤ SMm(x1, Pk) + (m − k), therefore,

SMm(x2,P )
SMm(x1,P ) ≤ SMm(x1,Pk)+(m−k)

SMm(x1,Pk)

≤ m − k + 1

�

Lemma 6. R(Maximin,Maximink,m, k) ≥ m − k.
1 Note that the ratios in our paper are the inverse of the ratios in [3]. That is, the

inverse of the ratio given in Theorem 1 of [3] coincides with our ratio for s∗ = 0.
2 Interestingly, [3] give another optimal rule (thus with same worst-case ratio), which

is much more complex, and which is not a top-k PSR. Comparing the average ratio
of both rules is left for further study.
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Proof. We consider the cyclic profile Cyc:

Cyc P (m = 5, k = 2)
x1 x2 . . . m − 1 m
x2 x3 . . . m x1

x3 x4 . . . x1 x2

. . . . . . . . . . . .
m x1 . . . m − 2 m − 1

x1 x2 x3 x4 x5

x2 x3 x4 x5 x1

x3 x4 x2 x5 x1

x4 x5 x2 x3 x1

x5 x1 x2 x3 x4

Now, let P be obtained from Cyc by the following operations for every vote
in Cyc:

– if x1 is not in the top k positions in the vote, we move it to the last position
(and move all candidates who were below x1 one position upward)

– if x2 is not in the top k positions in the vote, we move it to the (k + 1)th

position (and move all candidates who were between position k + 1 and 2’s
position one position downward).

For instance, for m = 5, k = 2, we get the profile P above.
Maximin(P ) = x2, and the Maximin scores of x1 and x2 in P are:

SMm(x1, P ) = 1 and SMm(x2, P ) = m − k.

Hence SMm(x2,P )
SMm(x1,P ) = m − k. 
�

Proposition 2. m − k ≤ R(Maximin,Maximink,m, k) ≤ m − k + 1.

This worst-case ratio is quite bad, except if k is close to m. However, arguably,
the maximin score makes less sense per se (i.e., as a measure of social welfare)
than a positional score such as the Borda count.

Copeland: Again, for the Copeland rule, the ratio makes less sense, because
the Copeland score is less meaningful as a measure of social welfare.3 Still, for
the sake of completeness we give the following result:

Proposition 3. R(Copeland,Copelandk,m, k) = ∞.

Proof. Let P be the following profile:

– Pk contains two votes x1x2 . . . xk, and one vote L for each ordered list of k
candidates among m.

– P is obtained by completing Pk by adding x1 (resp. x2) in last position (resp.
in position k + 1) when it is not in the top-k positions.

In Pk, the winner for Copelandk is x1. In P , the Copeland winner is x2. Now,
with respect to P , the Copeland score of x1 (resp. x2) is 0 (resp. m − 1), hence
the result. 
�
3 Moreover, there are several ways of defining the Copeland score, all leading to the

same rule. However, this has no impact on the negative result below, as long as a
Condorcet loser has score 0.
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Discussion: The obtained worst-case bounds are rather negative: very negative
for Copeland and maximin, less so for Borda, and even less so for Harmonic.4

However, the maximin and Copeland scores make less sense as a measure of
social welfare than positional scores. Note that for maximin rule the obtained
lower bound matches the one given by Bentert and Skowron [3] (Sect. 4.3) which
means that our top-k approximation of maximin is optimal.

Now, we may wonder whether these worst cases do occur frequently in prac-
tice or if they correspond to rare pathological profiles. The next two subsections
show that the latter is the case.

5.2 Average Case Evaluation

We present the evaluation of the approximation ratio using data generated from
Mallows φ model. For each experiment, we draw 10000 random profiles, with
m = 7, n = 15, and let φ vary. Figure 6 presents the obtained results. Our
results suggest that, in practice, results are much better than in the worst case
where best results are obtained by Harmonic, followed by Borda and finally
Maximin.

Fig. 6. Mallows model: approximation ratio when n = 15, m = 7 and varying φ.

5.3 Real Data Sets

Again we consider 2002 Dublin North data (m = 12, n = 3662) with samples
of n∗ voters among n (n∗ < n) where n∗ = {15, 100}. In each experiment 1000
random profiles are constructed with n∗ voters; then we consider the top-k ballots
obtained from these profiles with k = {1, . . . , m−1}. Again, the results are very
positive (Fig. 7).

4 As Ranked Pairs is not based on scores, it was not studied here.



296 M. Ayadi et al.

Fig. 7. Approximation ratio with Dublin North data set.

6 Conclusion

In this paper we have considered k-truncated approximations of rules which
take only top-k ballots as input where we have considered two measures of the
quality of the approximation: the probability of selecting the same winner as
the original rule, and the score ratio. For the former, our empirical study show
that a very small k suffices. For the latter, while the theoretical bounds are,
at best; moderately encouraging, our experiments show that in practice the
approximation ratio is much better than in the worst case: our results suggest
that a very small value of k works very well in practice. Many issues remain
open. Especially, it would be interesting to consider top-k approximations as
voting rules on their own, and to study their normative properties.
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Abstract. Meeting scheduling (MS) is a practical task in everyday life
that involves independent agents with different calendars and prefer-
ences. In this paper, we consider the distributed MS problem where the
host exchanges private information with each attendee separately. Since
each agent aims to protect its own privacy and attend the meeting at a
time slot that it prefers, it is necessary to design a distributed schedul-
ing mechanism where the privacy leakage can be minimized and as many
agents are satisfied with the outcome as possible. To achieve this, we pro-
pose an intelligent two-layer mechanism based on contract theory where
the host motivates each agent to reveal its true preferences by providing
different rewards without knowing the costs of each agent to attend the
meeting. We first model the privacy leakage by measuring the difference
between the revealed information of an agent’s calendar and other agents’
prior beliefs. An optimal control problem is then formulated such that
the reward function and privacy leakage level can be jointly designed
for each agent. Through theoretical analysis, we show that our proposed
mechanism guarantees the incentive compatibility with respect to all
agents. Compared to the state of the art, empirical evaluations show
that our proposed mechanism achieves lower privacy leakage and higher
social welfare within a small number of rounds.

Keywords: Meeting scheduling · Incentive mechanism · Privacy

1 Introduction

Many multi-agent systems involve reaching an agreement between self-interested
agents that seek to minimize the amount of information revealed to their oppo-
nents. Examples include electronic commerce, computer games and meeting
scheduling. In this paper, we focus on multi-agent meeting scheduling (MAMS)
as a representative application. In this case, the host of a meeting is required to
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arrange a staring time that is acceptable to all attendees. In practice, the MAMS
problem is inherently a distributed one since the agents’ calendars are different
and private, meaning that they are unwilling to share them with others. Given
this situation, there is a clear trade-off between maximizing social welfare and
minimizing the amount of information revealed in this process [1].

Against this background, we study the distributed MAMS problem in a set-
ting where the host proposes candidate time slots in each round and attendees
respond to the proposals separately. Since all agents are self-interested, each of
them desires the meeting to be scheduled at one of its preferable time slots while
revealing as little private information as possible. In such cases, it is necessary to
design an incentive mechanism with the following desirable features. First, the
mechanism should be incentive compatible to avoid the case where a selfish agent
can manipulate the scheduled meeting for its personal benefit. Second, privacy
leakage should be minimized and the mechanism should have a fast convergence
speed. Third, the social welfare should be maximized, meaning, as many agents
as possible should be satisfied with the scheduled time slot.

A useful tool to handle the trade-off between incentive compatibility and
privacy preservation is economic contract theory [2], in which agreements are
designed to motivate agents with conflicting interests to accept mutually benefi-
cial offers. This mathematical tool provides an efficient approach to incentiviza-
tion by offering contracts to each type of agent (classified by the agents’ private
attributes). Here a contract consists of a required action and a corresponding
reward. Given properly designed rewards, the agent only needs to choose the
contract aligned with its own type to maximize its utility.

In this paper, we propose a distributed two-layer contract-based incentive
mechanism where the host offers different rewards in the forms of tokens or
credits to motivate attendees to reveal true preferences1. Such forms of rewards
are widely used in on-line membership[3], resource trading [4], and blockchain
systems [5]. Each attendee first selects one outer-layer contract from a candidate
set provided by the host, which defines 1) a tailored set of rewards paid to each
attendee corresponding to different preferences, and 2) the number of proposals
each attendee is required to respond to at each round (i.e., the privacy leakage
level). For each proposed time slot, the host provides attendees with multiple
agent-specific inner-layer contracts, each of which consists of a reward along with
the required action (e.g., attend/not attend the meeting, hold the offer, etc.).

As such, we advance the state-of-the-art in the following ways.

– We develop a novel metric to define the privacy leakage in a general way
such that it can depict both privacy leakage and the amount of protected
private information. By leveraging the probability distribution of an agent’s
availability, we measure privacy as the difference between other agents’ prior
belief and the agent’s desired belief that it wishes to reveal to others.

1 An agent’s availability at each time slot reflects its preference over the time slots,
which can be categorised as multiple types, such as ‘free’, ‘OK with it’, and ‘busy’.



Contract-Based Incentive Mechanism for Meeting Scheduling 301

– We are the first to develop a privacy-preserving incentive mechanism in the
context of MAMS where the privacy leakage level can be optimized based on
each agent’s calendar.

– We achieve a minimum incentive cost by properly designing the rewards and
allowing the agents to have multiple types of responses. This is the first
attempt to jointly optimize the reward functions and privacy leakage levels
via an optimal control method.

– Simulation results show that the proposed mechanism saves 58.3% privacy
leakage compared to the calendar-sharing scheme. Compared to current state-
of-the-art negotiation mechanism, it also achieves a better trade-off between
the privacy leakage and the convergence speed. To achieve the same conver-
gence speed, the contract mechanism can reduce 26.2% privacy leakage; for a
same level of privacy leakage, the contract mechanism saves 80% time costs for
convergence. It achieves over 88.31% of the optimal social welfare obtained by
a centralized method, and significantly outperforms existing works by up to
82% points. By allowing multiple types of responses, the mechanism reduces
the incentive cost by up to 18%.

Existing literature on distributed MAMS problems explore various schemes
such as negotiation-based methods, Max-Sum algorithms and its variants for dis-
tributed constraint optimization problems (DCOP), and incentive mechanisms
for consensus. For instance, the works of [6,7] consider automated negotiation
between the host and attendees. Agents’ preferences were quantified and dif-
ferent negotiation strategies were developed to improve the social welfare. By
formulating the MAMS problem as a DCOP, the Max-Sum algorithms proposed
in [8] and local consistency reinforcement [9] can be utilized where the solution
space is traversed indirectly via limited private information exchange among all
agents. In the work of [10], the extended VCG mechanism finds the optimal
strategy of each agent, which is aligned with the solution of social welfare maxi-
mization. Agents share all their calendar information with each other. However,
these works have not linked privacy and incentive compatibility. The developed
methods either rely on trust between agents [6–9] or agents’ willingness to share
their private information with others [8,10]. Neither of these extremes is suitable
to solve our problem.

The mechanism we propose is also related to the literature on contract the-
ory2 and game theory where most works [11–13] focus on incentives in MAS
with information asymmetry. For instance, the work of [11] concerns the task
assignment problem where multiple contracts are offered to agents such that
each agent only picks one that it is capable of to achieve the maximum utility.
The work of [13] studies the privacy issue in multi-agent data collection. Privacy
is considered as a type of service and assigned to agents for utility maximization.
Nevertheless, this line of works assumes that the host is trustworthy and only
cares about the incentive compatibility with respect to attendees.

2 It is worth noting that contract theory is different from the contract network proto-
col. The latter is a type of negotiation-based mechanism for task assignment.
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The rest of the paper is organized as below. In Sect. 2 we formulate the dis-
tributed MAMS problem where privacy leakage is modelled. In Sect. 3 we design
a contract-based MAMS protocol to reach a consensus. The reward functions and
privacy leakage level for each agent are jointly optimized via solving an optimal
control problem in Sect. 4. Theoretical analysis on the proposed mechanism is
also provided. In Sect. 5, we evaluate our proposed mechanism by simulations.
Finally we conclude in Sect. 6.

2 Meeting Scheduling Problem Formulation

2.1 Problem Definition

The distributed MSP consists of multiple agents and a number of meetings to be
scheduled. We consider a dynamic case where the need for new meetings arises
randomly and is not known by the agents in advance. Given a set of meetings
and a group of N agents A, we define each meeting m by a tuple

m = {Am, A0, T , l, t} , (1)

where Am is the subset of agents to attend meeting m, A0 is the agent who
will host the meeting and propose candidate time slots to other agents, T is the
set of time slots during which the meeting is expected to be held, and l is the
length of meeting m (i.e., the number of time slots), t is the starting time of the
meeting. In other words, the starting time t will be selected from T and l slots
will be reserved for meeting m if scheduled.

A meeting is scheduled via the propose-and-respond process where in each
round the host proposes multiple time slots to each attendee and receives
responses. We classify the responses of each agent as three states3 based on
its availability: “I am free”, “I am OK with this slot”, or “I am busy”. By reply-
ing OK, the attendee holds the offer temporally and expects the host to propose
other time slots. It only accepts slot t if no other feasible solution to the MAMS
problem is found. We denote the set of three possible states as S = [F,O,B]. The
real state and reported state of each attendee i with respect to time slot t are
denoted as ri (t) ∈ S and si (t) ∈ S. We refer to one time slot as a free/OK/busy
slot if the agent’s real state is free/OK/busy at this slot.

If the meeting is scheduled at slot t, each attendee i’s utility is given below

Ui

(
t, si (t) , Rri(t)

)
= Rri(t) − C

si(t),ri(t)
i − αLi (ri (t)) , (2)

– Rri(t) is the reward (in the forms of tokens or credits) paid by the host when
the reported state of attendee i is ri (t);

– C
si(t),ri(t)
i is the cost of attendee i to report its state as ri (t) given its actual

state si (t). For example, CO,F
i is the cost of agent i to attend the meeting

when it is OK with slot t.

3 This can be extended to more types, but we use three to keep the example simple.
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– Li (ri (t)) is the privacy leakage of attendee i, and α depicts its sensitivity
towards privacy.

Similarly, the host’s utility can be given by

U0

(
t,

(
Rri(t)

)
i∈A

)
=

⎧
⎪⎨

⎪⎩

Γ −
∑

1≤i≤N

Rri(t) − C
s0(t),F
0 − αL0 (r0 (t)) ,∀ri (t) �= B

− ∞,∃ri (t) = B,

(3)
where Γ measures the satisfaction of the host for successfully scheduling a meet-
ing. The above equation omits parameter m for convenience.

2.2 Agents’ Preferences and Privacy Leakage

Agents’ Preferences. Each agent i’s preference over different time slots is
related to its state. For example, agent i prefers slot t to t′ if it is free at slot
t and OK with slot t′. The cost function C

si(t),ri(t)
i is utilized to quantify each

agent’s preferences, which influences agent i’s response strategy. The ordering of
costs for each agent i is determined by the pair of states (si (t) , ri (t)):

CB,F
i > CB,O

i � CO,F
i � CF,F

i > CO,O
i = CF,O

i > CB,B
i = CF,B

i = CO,B
i = 0.

(4)

– Cs,r
i = 0, r = B: When the agent reports it is busy at one slot, it does not

need to attend the meeting. Thus, the cost is 0 regardless of its real state.
– CO,O

i = CF,O
i : The agent’s cost of reporting OK is the same no matter

whether it is actually free or OK at this time slot, since it is not necessary
for the agent to attend the meeting in both cases.

– CO,O
i < CF,F

i : An agent’s cost to tell the truth about an OK slot is lower
than its cost of truth-telling with respect to a free slot, since it is required to
guarantee the attendance at the OK slot.

– CB,F
i > CB,O

i � CO,F
i � CF,F

i : For agent i, its cost of attending the meeting
at a busy slot is higher than that of claiming to be OK with this slot, which is
also much higher than its cost at a free or OK slot regardless of its response.
In other words, the fact that an agent cannot attend the meeting at a busy
slot is represented by a high cost. Similarly, its cost of attending the meeting
at an OK slot is higher than that at a free slot.

We assume that the cost of each agent i depends on how much availability
it has throughout the calendar, i.e., the density of availability, which can be
depicted by di. In other words, the busier an agent is, the higher its cost to
attend a meeting. We define di by the number of free and OK time slots,

di =
(

NF,i

N

)β1

+
(

NO,i

N

)β2

, (5)
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where NF,i and NO,i are the number of free and OK time slots, N is the total
number of candidate slots, and β1 and β2 are scaling factors. We set β2 > β1 > 0
and β1, β2 /∈ Z such that each pair of (NF,i, NO,i) is mapped to one unique
density value di, which is considered as agent i’s type. A general form of the cost
function is then given by

Cs,r
i (di) =

as,r
1

(1 + di)
as,r
2

+ as,r
3 , (6)

where as,r
k > 0 is a parameter (k = 1, 2, 3). Following rule (4), the family of cost

functions for each agent i can then be generated via (6).

Privacy Leakage. We consider the case where each attendee only communi-
cates with the host and does not know any detail of other attendees. Therefore,
the privacy information that each attendee (or the host) leaks is its calendar
information revealed to the host (or the attendee).

Before the propose-and-respond process, the host and each attendee has a
prior belief about the probability that the other is free at each time slot. As
the process progresses, each attendee (or the host) gets new information from
the host (or each attendee) and updates probability information based on the
proposal (or the response). Note that each agent has different attitudes towards
the privacy information. For those who tend to protect their calendar, they
expect the host to believe that their probability of being free is 0.5 (i.e., not sure
about its availability). In contrast, other agents might prefer others to have an
impression that they are busy (or available) even if they are not.

To depict such diversity of agents’ attitudes, we utilize the difference between
one agent’s expected probability distribution and other’s belief, namely, statisti-
cal distance, to measure the privacy leakage. We denote the desired probability
of being free at time slot t that agent j wishes others to believe and the prior
belief that agent i has about agent j’s availability at this slot as pd

i→j (t) and
pb

i→j (t), respectively. After this time slot t is proposed, the updated probability
is denoted by pa

i→j (t, ri(t)). The privacy leakage Li (ri (t)) is given by

Li (ri (t)) =
∣
∣pb

i→j (t) − pd
i→j (t)

∣
∣ −

∣
∣pa

i→j (t, ri(t)) − pd
i→j (t)

∣
∣ . (7)

For Li (ri (t)) > 0 and Li (ri (t)) < 0, it measures leaked privacy and protected
privacy, respectively.

Remark 1. The proposed privacy leakage metric can readily depict the agents’
different attitudes towards their privacy information:

– pd
i→j (t) = 0.5: agent i is privacy-negative, i.e., it does not want others to

know anything about its calendar;
– pd

i→j (t) = 1 (or pd
i→j (t) = 0): agent i is privacy-active, implying that it

desires to leave others the impression that it has a clear/busy calendar;
– pd

i→j (t) is set as the real probability of agent i: the agent is privacy-neutral,
i.e., it does not care about how others view its calendar.



Contract-Based Incentive Mechanism for Meeting Scheduling 305

3 Contract-Based Meeting Scheduling Protocol

To motivate each attendee to reveal their availability at the proposed time slot,
the host provides different rewards depending on the attendee’s response. When
a meeting is set at time slot t, an attendee is offered a high reward if it reports
to be free and guarantees to attend the meeting. In contrast, it gets a medium
reward if it reports to be OK and requires the host to spend more resources
to explore other slots before finally accepting slot t. Given each attendee’s cost
functions, the rewards can be designed in a way that each attendee can only get
the highest utility when it tells the truth.

(a) Outer-layer contracts (b) Inner-layer contracts

Fig. 1. Illustration of the contract-based mechanism

However, the cost functions are unknown to the host, which is determined
by each agent’s type, i.e., the density of availability as shown in (2). Examples
of different types of agents are given in Fig. 1(a). The busier an attendee is (i.e.,
the value of d is smaller in Fig. 1(a), the higher its cost to attend the meeting,
thereby requiring a higher reward. To avoid the attendee claiming to be busy to
get high rewards, the host requires those busy attendees to respond to a larger
number of proposed time slots in each round, leading to a higher privacy leakage
level. Since each attendee is privacy-preserving4, they are not willing to lie at
the cost of higher privacy leakage. Following this insight, the reward function
for each agent type, as well as the number of proposed slots, can be properly
designed to keep them incentive compatible. For example, three red (or green)
points on the three curves in Fig. 1(a) shows rewards and the number of proposed
slots for an type-d1 (or d2) agent.

Based on the above intuitions, the detailed protocol is shown below.

1. When the need to schedule meeting m arrives, the host publishes the meeting
information to the group of attendees.

2. Each attendee labels the valid starting time slots ‘free’, ‘OK’, and ‘busy’, and
keeps it as private information along with its cost at each slot.

4 Here we assume that every agent cares about its privacy to the same degree, which
also makes sense in reality.
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3. The host sends a menu of outer-layer contracts to each attendee, denoted by
{(RF (d), RO (d) , Np (d))}, where d represents the type of an agent, identified
by its density of availability as shown in (5). The menu is shown in Fig. 1(a).
The number of contracts contained in the menu equals the number of agents’
types. Each contract requires the agent to respond to on average Np (d) pro-
posed time slots at each round, and will receive a reward RF (d) or RO (d) if
the meeting is scheduled at a free or OK slot.

4. Each attendee i selects one outer-layer contract from the menu to maximize
its expected utility received from the coming propose-and-respond process.
For example, in Fig. 1(a) attendee 1 may select the outer-layer contract rep-
resented by three red circles.

5. According to the signed out-layer contract, the propose-and-respond process
starts. In each round as shown in Fig. 1(b), the host proposes Np (di) time slots
to each attendee. For each time slot t, the host offers three inner-layer con-
tracts. 1) Contract F offers a high reward RF (di) and requires the attendee
to attend the meeting. 2) Contract O offers a medium reward RO (di) and
allows the attendee to attend the meeting at slot t only when there is no other
options. 3) Contract B offers zero reward to the attendee who is busy at slot
t. In Fig. 1(b), we omit the zero-reward contract B for simplicity.

6. Each attendee selects one inner-layer contract to maximize its utility shown
in (2) and responds to the host. If an attendee reports to be OK with one
slot, the host is required to explore at least one more slot in the next round.

7. Steps 5 and 6 are repeated until either one time slot is found in which at least
Nt attendees are free or the maximum number of rounds M is reached. After
M rounds, the host selects one slot t where the largest number of attendees
is free, denoted by Nf (t). The host then raises the rewards for Nt − Nf (t)
OK attendees so as to maintain its reputation.

The reasoning behind Step 7 will be illustrated in Sect. 4.2.

4 Two-Layer Contract Design

In this section, we first optimize the reward functions (RF (d), RO (d)) and pri-
vacy leakage level Np (d). Properties of the mechanisms are then analysed.

4.1 Joint Reward and Privacy Leakage Optimal Control

Attendee’s Strategy
When each responder n selects the outer-layer contract, it does not know in
which time slot the meeting will be scheduled yet. Therefore, it makes the deci-
sion by maximizing its expected utility. Attendee i’s expected utility when a
free/OK/busy slot is finalized for the meeting is given below.

E
[
Ue(d̂, si)

]
= fsi

(di) · max
ri∈S

[
Rri

(d̂) − Csi,ri(di) − αNp(d̂)Li(ri)
]
, (8a)

= fsi
(di) · Ue(d̂, si), (8b)



Contract-Based Incentive Mechanism for Meeting Scheduling 307

where fsi
(di) = Nsi,i/Ni maps di to the density of free (or OK or busy) time

slots as shown in Eq. (5), and αNp(d̂)Li(ri) is the minimum accumulated privacy
leakage. Note that α decreases with the increase of each attendee’s calendar
density, which can be depicted by a quadratic function. For convenience, we
omit the subscript t here. Therefore, the expected utility of attendee i can be
given by

E
(
d̂; di

)
=

∑

si∈S
E

[
Ue(d̂, si)

]
, (9)

and each attendee’s strategy is to pick a type-d̂ outer-layer contract to maximize
the above expected utility.

Incentive Compatible Constraints of Attendees. To ensure that each
attendee i selects the di-type outer-layer contract designed for it rather than
other types, the following incentive compatible constraint should hold

max
d̂

E
(
d̂; di

)
= E (di; di) ,∀i. (10)

The sufficient conditions to satisfy this constraint can be given by

RF (d̂) − RM (d̂) > CF,F (di) − CO,O(di) + αPO · Np(d̂), (11a)

RF (d̂) − RM (d̂) < CO,F (di) − CO,O(di) + αPO · Np(d̂), (11b)

fF (di) · Ue(d̂, F ) + fO(di) · Ue(d̂, O) ≤ fF (di) · Ue(di, F ) + fO(di) · Ue(di, O),
(11c)

where PO is the probability of an agent being free at an OK slot. The typical value
is 0.5. We ignore Ue(d̂, F ) here since it is usually rather small (RB = CB,B = 0).

When the outer-layer contract is selected, the propose-and-respond process
starts. To motivate each attendee to report their true availability, the following
constraint should be satisfied:

max
ri(t)∈S

Ui

(
t, si (t) , Rri(t)

)
= Ui

(
t, si (t) , Rsi(t)

)
. (12)

We derive its equivalent conditions as

RO (d) ≥ CO,O (d) + αPO + ε, (13a)

RF (d) ≥ RO (d) + max
d

[
CF,F (d) − CO,O (d)

]
+ α + ε. (13b)

where ε > 0 is a number small enough, and pO ≤ 0.5 is the probability of an
attendee to be free at an OK time slot.

Optimal Control of the Host. The host offers a set of outer-layer contracts to
attendees without knowing their types. Its objective is to find an optimal menu of
contracts which minimizes the incentive cost and its own privacy leakage subject
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to all constraints listed above. The problem can be formulated below:

min
R(·),Np(·)

∫ d

d

[fF (d)RF (d) + fO(d)RO (d) + αNp (d) L0(F )] g (d)d d (14a)

s.t.(11), (13), (14b)

where g (d) = 1/Nth is the probability density function of d, following a uniform
distribution and Nth is the number of possible values of d. The upper and lower
bounds of d are given by d and d. Though described with one simple inequality,
(11c) actually implies a huge family of constraints, each of which corresponds to
a certain pair of d̂ and di. To identify the set of feasible solutions to the above
problem, we simplify this constraint by its relaxed version shown in Proposi-
tion 1. The proof can be found in the Appendix A.

Proposition 1. Constraint (11c) can be relaxed by the following constraints:

dRF (d)
dd

≤ 0, (15a)

dRO (d)
dd

≤ 0, (15b)

1
αL(F )

dRF (d)
dd

=
1

αL(O)
dRO (d)

dd
=

dNp (d)
dd

, (15c)

The formulated problem is an optimal control problem to find an optimal func-
tion rather than a value. Based on the Pontryagin’s maximum principle [14] as
well as constraints (11a), (11b), and (13), the numerical forms of both reward
and privacy leakage functions can be obtained.

4.2 Properties of the Mechanism

Privacy Preservation. As shown in (8) and (14a), an optimal privacy leakage
level exists for each agent to reach a balance between the amount of leaked
information and its social welfare.

Incentive Compatibility. We investigate the behaviours of attendees and the
host separately to show the incentive compatibility of the proposed mechanism.

Definition 1. In the MAMS setting, an incentive compatible mechanism moti-
vates attendee i to always reveals its true preference over the proposed time slots
to maximize its utility, i.e.,

– When selecting the outer-layer contracts, attendee i selects the type-di contract
to maximize its expected utility, as shown in (10).

– In the propose-and-response process, if the meeting is scheduled at slot t,
attendee i can only obtain the maximum utility when they tell the truth, i.e.,

arg max
ri(t)∈S

Ui

(
t, si (t) , Rri(t)

)
= si(t). (16)
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– In the propose-and-response process, the attendee has no incentive to manip-
ulate the meeting to be scheduled at time slot t′ by lying about its availability
at slot t, i.e.,

E
[
U lie

i

(
t′, si(t′), Rsi(t′)|ri(t) �= si(t)

)]
�= E

[
U tru

i

(
t, si(t), Rsi(t)

)]
. (17)

Based on Definition 1, we present Proposition 2 as proved in Appendix B.

Proposition 2. The proposed mechanism is incentive compatible with respect
to all attendees.

For the host, there might exist a conflict between its own preference and
others’ social welfare, leading to unfaithful behaviours. For example, when the
host is free at the proposed time slot t′ while all attendees report to be either
free or OK, it may claim that it is busy at all other time slots so as to schedule
the meeting at time slot t′ by ignoring those OK attendees’ will.

Definition 2. An mechanism is incentive compatible with respect to the host if
it cannot get higher expected utility by lying about its availability at time slot t∗

in meeting m, i.e.,

U0

(
m, t′, Rri(t′)|r0(t∗) �= s0(t∗)

)
+ Em′

[
U0

(
m′, t, Rri(t)|m, r0(t∗) �= s0(t∗)

)]
≤

U0

(
m, t,Rri(t)|r0(t∗) = s0(t∗)

)
+ Em′

[
U0

(
m′, t, Rri(t)|m, r0(t∗) = s0(t∗)

)]

(18)
where t′ is the time slot that the host prefers to hold the meeting m. This implies
that the host’s expected utility will reduce in future meetings {m′}.

Observation 1. An attendee who reports OK at slot t expects the host to propose
other time slots. If the attendee does not trust the host to do so, it reports it
is busy. This leads to a higher probability of scheduling failure, which brings
negative utility to the host.
Observation 2. Once the attendees do not trust the host, the host needs to
provide a new inner-layer contract F ′ with a higher reward R′

F below to motivate
the OK attendee to attend the meeting.

R
′
F (d) ≥ CO,F (d) + αPO − α + ε. (19)

This guarantees the meeting to be scheduled successfully at the host’s preferred
time slot at an expense of a higher incentive cost.

The above observations imply that once an OK attendee finds the host not
trust-worthy, it lies about its availability and has less chance to be scheduled at
a free slot, i.e., its social welfare is degraded. The host then needs to offer higher
rewards to successfully schedule the meeting.

Remark 2. The interaction between the host and an attendee OK with time slot
t in the propose-and-respond process can be formulated as a non-cooperative
repeated game. Only when they both tell the truth, they each gets the maximum
utility. Since we have a dynamic setting that new meetings arrive randomly and
are not known to agents, this is an infinite repeated game.
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Proposition 3. In an infinite repeated game of MAMS, the optimal strategy for
both the host and attendees is to tell the truth in order to obtain the maximum
utility.

We design Step 7 as shown in the contract-based protocol in Sect. 3 for attendees
to evaluate whether the host is trustworthy. For each meeting, the host is required
to guarantee at least M attendees are satisfied with the scheduled time slot either
by providing them a free time slot or by offering reward R

′
F to compensate their

loss. In this way, the host’s reputation is kept and attendees will continue to
trust it in future meetings.

5 Simulation Results

We conduct empirical studies to evaluate our proposed mechanism based on a set
of metrics including 1) privacy leakage, 2) social welfare measured by the number
of agents free at the scheduled slot, 3) the number of rounds for convergence, 4)
incentive cost which is the total rewards paid by the host.

For experiment setups, we look into a period of 5 days, 9 a.m. to 5 p.m.
The whole period is split into 80 time slots of length 30 min. The meetings to be
scheduled have different scales ranging from 6 to 12 agents. Each agent’s calendar
is generated with different preferences. Different cost functions are tested in
the experiments and all results are averaged over 20000 cases. We compare our
proposed mechanism with the following benchmarks:
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Fig. 2. Social welfare with respect to agents’ average density of availability.

– Centralized meeting scheduling : a central controller is aware of all the agents’
calendars and schedules the meeting in a way that the social welfare is max-
imized. This serves as an upper bound of the social welfare.



Contract-Based Incentive Mechanism for Meeting Scheduling 311

– Clarke-Tax based mechanism [10]: this is a typical incentive mechanism with-
out privacy preservation. Each responder reports its availability at all time
slots at the first round of negotiation. We evaluate how much privacy leakage
can be saved compared to it.

– Negotiation-based distributed mechanism [7]: this line of work represents the
commonly used meeting scheduling scheme without any incentive compatible
guarantees. By comparing with it, we show how incentive compatibility can
help to improve the performance.

We evaluate the social welfare of different mechanisms, measured by the
ratio of the social welfare in the proposed scheme to the optimal social welfare
in the centralized scheme, i.e., the outcome efficiency. Unlike the IC contract-
based mechanism where all selfish agents are motivated to tell the truth about
their preferences, the benchmarks cannot guarantee the IC property. The Clarke
Tax mechanism can motivate all selfish responders to tell the truth about their
preferences, but cannot do the same with an selfish initiator. The negotiation
mechanism does not even consider IC at all.

In Fig. 2, the outcome efficiency grows with the calendar density in the
contract-based and Clarke Tax mechanisms. This is because as the density
increases, the number of feasible time slots becomes smaller. Thus, the initiator
is more likely to select a time slot which is also the outcome of the centralized
scheme, bringing a higher social welfare. For the negotiation mechanism, the
outcome efficiency decreases with the increase of the calendar density. When
more agents have dense calendars, it is harder for the initiator to find a feasible
time slot since selfish responders keep turning down the OK time slots (as illus-
trated in Observation 1) which could be the output of the centralized scheme.
Therefore, the social welfare decreases.

We observe that the contract mechanism serving selfish agents can achieve
at least 88.31% outcome efficiency compared to the centralized scheme, which
outperforms the Clarke Tax one by 3.31% points, implying that the IC constraint
of the initiator helps improve the social welfare. Compared to the negotiation
mechanism, the outcome efficiency of the contract mechanism is significantly
higher by up to 82% points.

We also report on the balance between the average privacy leakage and the
convergence speed as shown in Fig. 3(a). This figure presents the accumulated
privacy leakage varying with the ID number of rounds starting from round 0
until convergence. Since the Clarke Tax mechanism requires all responders to
report their costs of each time slot at the beginning, each agent leaks all its
private information in the first round. It depicts the upper bound of privacy
leakage and the lower bound of time complexity. Compared to the Clarke Tax
mechanism, The contract one saves privacy leakage by 58.3%. Compared with
the negotiation mechanism, the contract-based mechanism can achieve the same
level of privacy leakage with a significantly smaller number of rounds, saving 80%
time costs. For the same number of rounds to converge, our mechanism efficiently
reduces the privacy leakage by 26.2%. This is because the contract mechanism
intelligently adjusts the number of proposed time slots based on each responder’s
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Fig. 3. a) Privacy leakage with respect to number of rounds; b) Average reward paid
to each attendee with respect to the gap between cost functions CF,F and CO,O

calendar density, which is different from the negotiation mechanism where only
the same number of time slots are proposed to all responders regardless of their
calendar densities. Benefited from this flexible propose-and-respond manner, the
contract-based mechanism can achieve a better balance between privacy leakage
and time complexity.

In Fig. 3(b) we evaluate the incentive cost of the contract-based mechanism,
i.e., the average reward paid to each attendee, for two response modes5. In the
first one, each attendee can report it is free/OK/busy. In the second mode, each
attendee can only reply free or busy information. As discussed in Sect. 4.2, the
host has to raise rewards to incentivize attendees to attend the meeting. Results
in Fig. 3(b) verify our analysis and show that the average required reward in the
second mode is up to 19.6% higher than that in the first mode. The gap between
these cases enlarges with the gap between the cost functions CF,F − CO,O.

6 Conclusions

We have studied the MAMS problem where the host is required to schedule meet-
ings via information exchange with each attendee. By optimizing the rewards
and privacy leakage level, we develop a distributed incentive mechanism based
on contract theory to achieve a balance between incentive compatibility, social
welfare, and privacy-preservation. Through both theoretical analysis and sim-
ulation results, the following features of the proposed mechanism are verified.
1) The mechanism is guaranteed to be incentive compatible with respect to all
agents. 2) Multiple types of responses are designed for each attendee such that
the incentive costs are largely saved. 3) The contract mechanism can achieve a
better trade-off between the privacy leakage and the convergence speed. Given
the same convergence speed, the privacy leakage is reduced by 26.2% compared
5 We do not compare with other works here since each of them has a different metric

of incentive costs, which is not compatible to ours.
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to a state-of-the-art negotiation mechanism; while at the same level of privacy
leakage, the contract mechanism can save 80% time costs for convergence. 4)
Compared to the Clarke Tax mechanism, the contract one reduces the privacy
leakage by 58.3%. 5) Social welfare approaches the upper bound by at least
88.31%, and significantly surpasses that of the Clarke Tax mechanism the nego-
tiation one by up to 3.31 and 82% points, respectively.

Although we deliver this work in the domain of meeting scheduling, the
mechanism we design contains various merits which enable other multi-agent
applications that involve information exchange among agents who have privacy
concerns. For future works, we will extend the constructed framework to explore
its applicability to other scenarios such as e-Commerce platforms where multiple
agents trade with each other to reach a consensus while protecting their own
private information.

A Appendix: Proof of Proposition 1

According to (11c), for any (d, d̂), the following inequalities hold:

fF (d)
(
RF (d̂) − αNp(d̂)L(F )

)
+ fO (d)

(
RO(d̂) − αNp(d̂)L(O)

)
≤

fF (d) (RF (d) − αNp(d)L(F )) + fO (d) (RO(d) − αNp(d)L(O)) , (20a)

fF

(
d̂
)

(RF (d) − αNp(d)L(F )) + fO

(
d̂
)

(RO(d) − αNp(d)L(O)) ≤

fF

(
d̂
) (

RF (d̂) − αNp(d̂)L(F )
)

+ fO

(
d̂
) (

RO(d̂) − αNp(d̂)L(O)
)

. (20b)

When fO (d) = fO(d̂), adding (20a) and (20b) yields
(
d̂ − d

) (
RF (d) − RF

(
d̂
))

+ αLF

(
d̂ − d

) (
Np (d) − Np

(
d̂
))

≤ 0. (21)

The sufficient conditions to satisfy (21) are that both RF (d) and Np (d) are
non-increasing functions. Similarly, by fixing fF (d) = fF (d̂), we can learn that
RO (d) is also a non-increasing one, which verifies (15a) and (15b) .

Given d, (20a) implies that the function y(d̂) = fF (d)
(
RF (d̂) − αNp(d̂)

L(F )
)

+fO (d)
(
RO(d̂) − αNp(d̂)L(O)

)
reaches its maximum at d̂ = d. We have

fF (d)·
[
dRF (d)

dd
− αL(F ) · dNp (d)

dd

]
+fO(d)·

[
dRO (d)

dd
− αL(O) · dNp (d)

dd

]
= 0.

(22)
Since it holds for all fF (d), fO(d) > 0, we have (15c).

B Appendix: Proof of Proposition 2

The first and second conditions stated in Definition 1 are guaranteed by con-
straints (11) and (13) . We now look into whether the third condition holds.
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An attendee i may claim to be busy at an OK time slot t so as to mislead the
host to schedule the meeting at time slot t′ in which it is free. In this case, the
desired probability that attendee i wishes others to believe is pd

0→i (t) = 0. Note
that slot t′ is a time slot that has not been proposed yet. We consider one case
that slot t′ is a time slot that has not been proposed yet. The expected utility
of responder i when lying and telling the truth are separately given by

U lie
i =

(
1 − plie

) [
RF − CF,F + α (pb − 1) + α (2PO − pb)

]
(23a)

U tr
i =

(
1 − ptr

) [
RO − CO,O + α (pb − PO) + α (1 − pb)

]
, (23b)

where plie and ptr are the probability that the meeting can not be success-
fully scheduled in two cases, respectively. pb is the host’s prior belief of the free
probability of the attendee. In (23a), α (pb − 1) represents the privacy leakage
reporting to be free at time slot t′, and α (2pO − pb) represents the protected
privacy information by lying. In (23b), α (pb − pO) is the privacy leakage at time
slot t, and θ (1 − pb) is the protected privacy information of slot t′.

Since pO ≤ 0.5 and plie > ptr, we have E [U tru
i ] > E

[
U lie

i

]
. Therefore, the

attendee has no motivation to lie, which verifies the third condition.
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Abstract. In argumentation theory, argument schemes are constructs
to generalise common patterns of reasoning; whereas critical questions
(CQs) capture the reasons why argument schemes might not generate
arguments. Argument schemes together with CQs are widely used to
instantiate arguments; however when it comes to making decisions, much
less attention has been paid to the attacks among arguments. This paper
provides a high-level description of the key elements necessary for the for-
malisation of argumentation frameworks such as argument schemes and
CQs. Attack schemes are then introduced to represent attacks among
arguments, which enable the definition of domain-specific attacks. One
algorithm is articulated to operationalise the use of schemes to generate
an argumentation framework, and another algorithm to support decision
making by generating domain-specific explanations. Such algorithms can
then be used by agents to make recommendations and to provide expla-
nations for humans. The applicability of this approach is demonstrated
within the context of a medical case study.

Keywords: Computational argumentation · Explainability ·
Human-agent systems

1 Introduction

In recent years, artificial intelligence (AI) has made an increasing impact on
decisions taken in day to day life. Many AI systems involve black-box models that
make decisions on behalf of humans often without providing any explanations.
This is problematic since AI does not always make fair or correct decisions [14].
There is an increasing focus on developing techniques to help humans to make
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better decisions while being assisted by AI models [20]. In situations where
there are multiple recommendations and the decision as to what action to take
depends on a human, then being able to reason with the justifications for the
recommendations becomes crucial.

Computational argumentation [26], a well-founded logic methodology with
roots in philosophy, has been applied in AI and multi-agent systems as a (struc-
tured) technique for reasoning in which conclusions are drawn from evidence
that supports the conclusions. Users find examining the arguments behind a
recommendation to be helpful [28]. This makes a strong case for basing decision-
support systems around argumentation to assist humans in making informed
decisions. The fact that the General Data Protection Regulation [6] requires
transparency for any automated decisions, further strengthens this case.

In existing argumentation-based approaches, an agent constructs an argu-
mentation framework based on the information in its knowledge base; and com-
putes a set of acceptable arguments. Most of the times, an acceptable argument
does not provide any additional information such as why it was deemed to be
acceptable. Furthermore, there is little information about the defeated argu-
ments [7,32]. To provide such information requires a representation for attacks
among arguments. Such a representation can give a better understanding of why
certain decisions are made by agents.

On the other hand, it is common to carry out knowledge acquisition
using argument schemes (AS) and critical questions (CQs) [1,17,29]. Argument
schemes are a means to compactly represent all the arguments that may be gen-
erated in different situations; whereas CQs are a way of capturing all the reasons
why argument schemes might not generate arguments, either as pre-conditions
to the construction of arguments, or as a way of formulating counter-arguments.
Despite the popularity of the argument schemes and critical questions approach,
there is no consensus on a formal representation of these elements, nor on an
approach to construct an argumentation framework (AF), in the sense of [4],
and there is no clear method to use these elements to create explanations, what
we term “explainability by design”.

In this paper, we make the following contributions: (i) we propose a formal
representation of arguments through their respective argument schemes and crit-
ical questions; (ii) we introduce the notion of attack schemes to account for the
conflicts between arguments in a given domain; (iii) we propose one algorithm to
construct an argumentation framework for decision support; and another algo-
rithm to provide explanations for acceptable arguments and attacks by the use
of explanation templates. Such algorithms can help agents to reason about (pos-
sibly conflicting) information, make a decision and explain this to humans. The
rest of the paper is as follows. Section 2 discusses related work. In Sect. 3, we
introduce a high-level description of AFs that support explainability; and we
propose algorithms to construct AFs and explanations automatically. Sections 4
and 5 introduce a medical scenario from the hypertension domain to show the
applicability of our approach. Section 6 concludes and details future directions.
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2 Related Work

Argumentation has been applied to many domains including medicine [8,10,17],
multi-agent systems [1,18,28] and legal reasoning [11,24]. We now focus on the
application of argumentation to support decision making.

Argument schemes and their associated critical questions are often mod-
elled as defeasible inference rules. Prakken et al. model legal cases as argument
schemes together with their associated undercutting attacks within the ASPIC+
framework [24]. Similar to us, they model CQs as argument schemes that can be
challenged by other CQs. Atkinson et al. propose an argumentation-based app-
roach to reason with defeasible arguments [2]. Unlike us, the above authors do
not provide a formal representation for the CQs, but they use CQs to manually
construct arguments in natural language.

Various argumentation-based approaches focus on the medical domain and
determining treatment options. Tolchinsky et al. propose an agent-based archi-
tecture, Carrel+, to help transplant physicians in deliberating over organ viabil-
ity [29]. Gordon and Walton generalise Dung’s abstract argumentation frame-
works [4] such that the arguments have weights to help one to choose among
alternative options [12]. Similar to us, they provide a formal model of a structured
argument. However, in addition, we model different types of attacks through
attack schemes and use explanation templates to explain the decisions that
agents make in a specified domain. Glasspool et al. [9] construct and evaluate pro
and con arguments on different treatment options independently. ArguEIRA [13]
is an ASPIC based clinical decision support system aimed at detecting a patient’s
anomalous reaction to a medication.

Some work combines argumentation with explanations. Kakas, Moraitis and
Spanoudakis propose an approach to take scenario-based preferences in a tabular
format, and to translate these preferences into a Gorgias argumentation theory
and code automatically [15]. Rago, Cocarascu and Toni propose an application
of Tripolar argumentation frameworks to support argumentation based explana-
tions in recommender systems [25]. The method relies on visual representations
of the argumentation frameworks, which includes supporting and attacking argu-
ments, and allows users to tweak the recommendations. Unlike our work, neither
of these approaches provides a natural language explanation. In addition, we
believe that whilst arguments can encapsulate premises and claims, even in the
case where these are instantiated through the use of argument schemes, simply
putting forward extensions or collections of arguments falls short of constituting
an explanation [20]. We believe that our approach of using explanation templates
to translate the contents of an argument and attack into a structured form of
natural language is a promising step towards creating good explanations [27].

In [21], Modgil and Bench-Capon explore the idea of attacking the attacks
in AFs at the meta-level. Here, we focus on reasoning in the object-level. In
both approaches, we can include arguments that represent human preferences
and values to attack the attacks. We plan on exploring a comparison of different
approaches in future work.
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3 A Formal Model to Represent Argumentation
Frameworks

This section contains the main contribution of this paper, which is a high-level
formal representation of an argumentation framework. This representation can:
(i) be implemented in various ways (e.g. logic-based systems, in any programming
language), (ii) enable the sharing of domain-specific knowledge across domains,
(iii) add explainability by design, where explanation templates are part of the
model to generate domain-specific explanations. We then articulate algorithms so
that agents can construct argumentation frameworks and generate explanations.

3.1 Formal Model

We capture the semantics of an argument scheme in Definition 1. The premises
and the conclusion are sentences, which can be represented in a logical language
L. Each of these sentences includes variables, which are then instantiated with
elements of this language. We give an example of an argument scheme from the
medical domain, Argument Scheme for a Proposed Treatment (ASPT) [17], in
Table 1. ASPT represents an argument in support of each possible treatment
TR within the current treatment step S, given the patient’s treatment goal G to
be realised. In the remaining of the paper, we will use the auxiliary function
Var(AS) to refer to the set of variables used in AS.

Definition 1 (Argument Scheme). AS = 〈P, c, V 〉 denotes an argument
scheme, where P is a set of premises, c is the conclusion, and P ∪ {c} ⊆ L.
V is the set of variables used in the argument scheme.

Table 1. Argument Scheme for a Proposed Treatment (ASPT) [17]

ASPT= 〈{p1, p2, p3}, c, {G, TR, S}〉
p1: Bringing about G is the goal

p2: Treatment TR promotes the goal G

p3: Treatment TR is indicated at step S

c: Treatment TR should be offered

An argument scheme can be associated with a set of critical questions (CQs)
which provide reasons why that argument scheme might not generate arguments.
We define CQs to themselves be argument schemes as suggested in [24,29]. We
do not consider CQs to be part of a given argument scheme since this allows
a CQ to be used by multiple argument schemes. We capture this structure in
Definition 2.
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Definition 2 (ASCQ). ASCQ : AS → 2AS, is a function mapping an argu-
ment scheme to a set of argument schemes that represent the CQs of the original
argument scheme.

A knowledge base (KB) is the information store of an agent that includes
premises, rules and the relationships between schemes, as captured in Defini-
tion 3. R is the set of rules written using the elements of the logical language.
Rules and premises can be strict, in which case they admit no exceptions (we call
strict premises “axioms”). For example, factual information about a patient may
be considered to be axioms. Rules and premises can also be defeasible, in which
case they allow exceptions. Thus defeasible rules and facts can be falsified based
on evidence. For example, argument schemes can be represented as defeasible
rules, as we do in this paper, so that they represent tentative inferences that can
be overturned. KB also has information about CQ relations among argument
schemes as described via the ASCQ function.

Definition 3 (Knowledge Base). KB = 〈P,R,ASCQ〉 denotes a knowledge
base; where P is the set of premises (e.g. facts), R is the set of rules and ASCQ
is the function as described in Definition 2.

Arguments are constructed by instantiating each argument scheme according
to ground terms that exist in the KB (i.e. terms that do not contain any free
variables) (Definition 4). All the variables in AS are replaced with the ground
terms to construct an argument (Definition 5). The notation [X] will be used to
denote the name of the scheme X (e.g. type of an argument).

Definition 4 (Argument Scheme Instantiation). ASi = 〈AS,G,KB〉
denotes an instantiation of the AS with G ⊆ L in the knowledge base KB,
AS{vi �→ gi} for all i = 1, .., k where k is the size of Var(AS), vi is the ith
element in Var(AS) and gi is the ith element in G. Prem(ASi) returns the set
of instantiated premises AS.P; Conc(ASi) returns the instantiated conclusion
AS.c; Gr(ASi) returns the set of pairs (vi,gi); and Gr(ASi)(vi) returns gi.

Definition 5 (Argument). [AS]argi = 〈Prem(ASi),Conc(ASi)〉 is an argu-
ment, which is derived from the argument scheme instantiation ASi.

Attacks among arguments are critical components of argumentation. In early
works, attacks were defined syntactically, with an attack being between a formula
and its negation. The well-known argumentation system ASPIC+ generalises this
idea with the notion of a contrary function, which defines the set of formulae that
conflict with a formula [22]. There are three forms of attacks among arguments:
(i) a fallible premise of an argument can be attacked (undermining), (ii) the con-
clusion of a defeasible rule can be attacked (rebuttal), and (iii) a defeasible rule
can be attacked as a whole (undercutting), for example denying its applicability
in a particular setting.

While modelling well-known attacks is important, we introduce attack
schemes (Definition 6) to: (i) provide flexibility to capture all the ways in which
an attack may arise between two arguments, and (ii) explain the existence of
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Table 2. The attack schemes Tcq and ALT

(a) An undercutting attack

Tcq=〈{p1, p2, p3}, c, Var(X) ∪ Var(Y ) 〉
p1: An argument of type X.

p2: An argument of type Y.

p3: X challenges Y (i.e. X ∈ ASCQ(Y)).

c: p1 attacks p2.

(b) Attack between ASPT Arguments

ALT=〈{p1-p5}, c, {A.TR,B.TR, S}〉
p1: A is an argument of ASPT

p2: B is an argument of ASPT

p3: A.TR is offered at step S.

p4: B.TR is offered at step S.

p5: A.TR is an alternative to B.TR.

c: A attacks B.

attacks among arguments. This new representation allows for specific, domain
dependent, forms of attack, such as drug contra-indications or the guideline con-
flicts of [31], as well as domain-independent attacks, such as undercuts.

Definition 6 (Attack Scheme). ATS = 〈{p1, p2}∪P, c, V 〉 denotes an attack
scheme with P ∪ {c} ⊆ L; where p1 is an argument of type X, p2 is an argument
of type Y, P is a set of premises, c is the conclusion of the form ‘p1 attacks p2’
and V = Var(X) ∪ Var(Y ). X and Y can be same type.

Table 2 shows two different attack types. In Table 2a, we provide the attack
scheme Tcq to represent an undercutting attack between two arguments, where
the argument scheme X is a critical question of Y . Note that each argument
scheme can be represented as a defeasible rule in the knowledge base. Therefore,
challenging one argument through a critical question would mean an undercut-
ting attack. Table 2b gives an example of a domain-specific attack scheme, where
an attack exists between two arguments because two treatments promoting the
same goal are alternatives to each other. Definition 7 captures the idea of an
attack, which is constructed when an attack scheme is initialised.

Definition 7 (Attack). [ATS]atti = 〈Prem(ATSi),Conc(ATSi)〉 is an attack,
which is derived from the attack scheme instantiation ATSi.

We make use of Dung’s abstract argumentation framework [4], captured in
Definition 8, to evaluate the arguments and attacks generated by the schemes
in a KB. In a Dung AF, the idea is represent arguments as nodes, and attacks
among them with arrows in a directed graph; it is abstract in the sense that the
internal structure of arguments and attacks is not defined.

Definition 8 (Dung Argumentation Framework, Dung AF). A Dung
AF is a tuple 〈A′,R′〉, where A′ is the set of arguments and R′ ⊆ A′ × A′ is
a relation such that for arguments a and b, (a, b) ∈ R′ iff {a, b} ⊆ A′ and a
attacks b.

Having defined the notions of argument and attack in a structured way previ-
ously, we can map these concepts into a Dung AF (Definition 9). The aim of
this translation will be to compute acceptable arguments in the structured AF
that we construct. Note that Prem(x)[i] returns the ith premise of x, where x is
a scheme instantiation.
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Definition 9 (Argumentation Framework, AF). An argumentation frame-
work is a tuple 〈A,R〉, where A and R are, respectively, the set of arguments
(Definition 5) and the set of attacks (Definition 7). The mapping to a Dung AF
〈A′,R′〉 is as follows: A′ = A; R′ = {(Prem(r)[0],Prem(r)[1]) | r ∈ R}.

Given a Dung AF, it is typical to evaluate it by computing the acceptable
arguments according to the chosen Dung semantics [3,4]. For example we might
use the grounded or the preferred semantics. The grounded semantics is sceptical
in the sense that one can only accept arguments that cannot be rejected for
any reason; whereas one can accept mutually exclusive alternative arguments
(each set represented in different extensions) while using preferred semantics.
Under the chosen semantics, the acceptable arguments are the ones that can
be considered to hold for that AF. In this paper, we introduce the idea of an
acceptable attack in Definition 10.

Definition 10 (Acceptable attack). An attack is acceptable, if ∀r ∈ R,
Prem(r)[0] is an acceptable argument in Dung AF, R being the set of attacks.

We distinguish such attacks because we believe that they are key to understand-
ing, and explaining why a particular set of arguments is acceptable. More than
one extension may hold when evaluating an AF under the chosen semantics
such as the preferred semantics. Therefore, each extension will consist of a pair
of acceptable arguments and attacks. Definition 11 captures this.

Definition 11 (Acceptability). ACC = 〈AF,S〉 denotes the set of
(Aarg, Aatt)i where: S is the chosen semantics to evaluate AF , (Aarg, Aatt)i
is the pair of acceptable arguments and attacks in the ith extension of AF .

Now that we have the sets of acceptable arguments and attacks, we can
use argument and attack schemes to give rationales behind the existence of
arguments and attacks within the argumentation framework. The basic idea is
to map the acceptable arguments and attacks into the explanation templates that
we introduced in [27]. Definition 12 captures the idea of an explanation template
for an argument scheme. An explanation template for the ASPT scheme can be
described as: e1 = 〈ASPT, “Treatment {TR} should be considered at step {S}
as it promotes the goal of {G}.”〉. The variables are shown in curly brackets
in textual representation, and the template includes all the variables (TR, S,
G) that exist in ASPT scheme. The explanation definitions below are similar for
attacks, where AS and [AS]argi are replaced by ATS and [ATS]atti respectively.

Definition 12 (Explanation template). An explanation template is a tuple
E=〈AS, t〉, where AS is an argument scheme, and t is a text in natural language
that can include variables V such that V ⊆ Var(AS).

We build explanations from explanation templates by instantiating them with
acceptable arguments (and attacks). Each variable in the explanation text (E.t)
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is replaced by a ground term found in the argument (attack) scheme instantia-
tion, giving us Definition 13. An explanation for an ASPT argument can be rep-
resented as: 〈e1, 〈{goal(rbp), promotes(d, rbp), indicatedAt(d, s1)}, offer(d)〉〉. In
this case, e1.t will become “Treatment d should be considered at step 1 as it
promotes the goal of reducing blood pressure.”

Definition 13 (Explanation). An explanation is a tuple 〈E, [AS]argi〉, where
E is an explanation template of the argument scheme AS, [AS]argi is an
acceptable argument (Definition 11); and for each variable v ∈ E.t, E.t{v �→
Gr(ASi)(v)}.
A given argument scheme might have different explanations in different con-
texts [19,32]. For example, patients and healthcare professionals may see dif-
ferent explanations for the same set of acceptable arguments and attacks con-
cerning a medical decision. For now, however, we assume that each scheme is
associated with a single explanation template, leaving the question of handling
context-specific explanations for future work.

3.2 Mapping ASPIC+ Theory into Our Formal Model

In this section, we show how an existing argumentation theory, the well-known
ASPIC+, can be mapped into our formal model. We do this to demonstrate
the expressibility of our approach. Our formal model includes explainability fea-
tures by design, which cannot be represented in existing approaches directly.
Therefore, we only define mappings for arguments and attacks.

Proposition 1. An ASPIC+ argument can be represented as an argument con-
structed according to Definition 5.

Proof sketch. Assume that we have a defeasible rule r, where the conjunction of
predicates implies the conclusion (p1, ..., pn ⇒ c) and r ∈ Rd, where Rd is the
set of defeasible rules in an ASPIC+ argumentation theory. In this theory, the
knowledge base K includes all the predicates pi, where i=1, .., n. Prem, Conc,
Sub, DefRules, and TopRule are functions defined in the theory; where Prem
is the set of premises and Conc is the conclusion of the argument, Sub returns all
sub-arguments, DefRules returns all the defeasible rules and TopRule returns
the last rule to construct the argument. Assume that A is an argument on the
basis of this theory such that Sub(A) = {A}, DefRules(A) = r, TopRule(A) =
r. Hence, the corresponding ASPIC+ argument is ‘A : p1, ..., pn ⇒ c’.

With our formal model, we can represent r as the argument scheme as =
〈{p1, ..., pn}, c, {}〉, the scheme instantiation as as1 = 〈as, {},KB〉; where the
knowledge base KB includes all the predicates pi and the argument scheme as.
The mapping from an ASPIC+ argument to our formal model is then straight-
forward: Prem(A) = Prem(as1), Conc(A) = Conc(as1). The ASPIC+ argument
A can then be represented as 〈{p1, ..., pn}, c〉.
Proposition 2. ASPIC+ attack types (undermining, rebuttal and undercutting)
can be represented as attack schemes according to Definition 6.
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Algorithm 1. EvalAf (X ,S)
Input: X , the set of schemes of interest
Input: S, chosen semantics
Output: ACC, the sets of acceptable arguments and attacks

Require: KB, the knowledge base
1: A ← {}, R ← {}
2: I ← instantiateSchemes(X , KB)
3: for all i in I do
4: x ← arg(i.sname,Prem(i),Conc(i))
5: A ← ExtendArg(x, A)

6: K ← instantiateAttSchemes(A, KB)
7: for all k in K do
8: at ← att(k.sname,Prem(k),Conc(k))
9: R ← R ∪ {at}

10: AF ← computeAF(A, R)
11: ACC ← getAccepted(AF, S)
12: return ACC
13: function ExtendArg(arg, A)
14: Q ← getCQs(arg.sname)
15: for all q in Q do
16: J ← instantiateScheme(q.name, KB)
17: for all j in J do
18: a ← arg(j.sname,Prem(j),Conc(j))
19: A ← A ∪ {a}
20: A ← ExtendArg(a, A)

21: return A

Proof sketch. Assume that A and B are two ASPIC+ arguments. A premise in
argument A can be a contrary of the conclusion of an argument B (rebuttal), or a
premise in argument A can be a contrary of a premise in argument B (undermin-
ing). All these attack types are represented by the use of the contrary function in
ASPIC+. Proposition 1 ensures that ASPIC+ arguments can be represented as
arguments in our formal model. Table 2a shows an undercutting attack; whereas
other attack types can be represented through the use of additional predicates
in attack schemes as well. However, domain-specific attacks, such as the one in
Table 2b, can only be represented with our formal model.

3.3 The EvalAF Algorithm

Having introduced our representation, we propose the EvalAf algorithm. An
agent can employ this algorithm to: (i) generate an argumentation framework
from a knowledge base, and (ii) compute extensions under a chosen semantics.
EvalAf thus provides an operational semantics for our system of schemes and
critical questions, showing how they translate into arguments and attacks that
conform to the proposed formal model.
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The EvalAf algorithm requires two inputs: the set of schemes of interest
(X ) to initialise arguments and a semantics (S) to compute the extensions in the
argumentation framework. In other words, X includes the scheme set to initialise
the construction of an AF; therefore, only relevant arguments are constructed.
The output of the algorithm is the sets of acceptable arguments and acceptable
attacks. KB is the knowledge base that includes domain-specific content such as
schemes, critical questions, facts and rules (Definition 3). The set of arguments
(A) and the set of attacks (R) are initialised as empty sets (line 1). The function
instantiateSchemes is used to instantiate the schemes in X (Definition 4) (line
2). Each instantiation is translated into an argument x (Definition 5), and the
set of arguments is updated to include more arguments as a result of applying
critical questions (line 5). So far, all possible arguments are constructed regard-
ing argument schemes; in line 6, the attack schemes are instantiated to generate
attacks among arguments. For each of these instantiations, an attack relation
is formed and added to the set of attacks (lines 8–9). The auxiliary function
computeAF generates an argumentation framework by using the sets of argu-
ments and attacks (Definition 9). At this point, the AF can be used to make a
decision under the chosen semantics S. getAccepted returns the sets of acceptable
arguments and attacks (line 11) (Definition 11).

The function ExtendArg is described between the lines 13 and 21. The
inputs are an argument arg, and the current set A. Since each argument is
constructed according to an argument scheme, the set of CQs are collected in
order to challenge the current argument arg (Definition 2)(line 14). Each CQ is
a scheme to be initialised (line 16), and an argument is generated accordingly
(line 18). The set of arguments is updated (line 19). Each new CQ argument can
be challenged by other CQs as well, hence ExtendArg is invoked recursively
(line 20). Note that at this point the order in which we ask critical questions is
not important, because KB does not change but the argumentation framework
is updated by the construction of new arguments and attacks.

It is easy to show that the algorithm is sound in the sense that it only returns
arguments that are acceptable:

Proposition 3 (Soundness). Given a set of argument schemes and a seman-
tics, the set of arguments returned by EvalAf are acceptable arguments.

Proof sketch. getAccepted ensures the mapping into a Dung AF (Definitions 8
and 9). Existing reasoning tools, such as Aspartix [5], can be used to compute
acceptable arguments. Therefore, EvalAf returns acceptable arguments as well.

Note that EvalAf will always construct all the arguments and attacks given
an initial set of argument schemes:

Proposition 4 (Completeness/AF). EvalAf returns the complete AF when
arguments are instantiated from an argument scheme in X .

Proof sketch. Assume that F1 is the complete Dung AF that can be constructed
given a specific X (Definition 8); i.e, F1 will include all the possible arguments
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and attacks. When an agent invokes EvalAf each argument scheme in X will
be instantiated to construct an argument (Definition 5). ExtendArg is then
invoked recursively to instantiate all the argument schemes and add the result-
ing arguments to the set of arguments. Hence, all possible arguments will be
constructed. instantiateAttSchemes will initialise all possible attacks. computeAF
will then construct an AF, which can then mapped into the Dung AF, F2 (Def-
inition 9). Since there can only exist one Dung AF, F1 and F2 should be the
same. Therefore, EvalAf constructs the complete AF given a specific X .

Proposition 5 (Completeness/Acceptability). EvalAf returns all the
acceptable arguments that are instantiated from an argument scheme in X .
EvalAf returns all the acceptable attacks that are instantiated from acceptable
arguments.

Proof sketch. EvalAf returns all acceptable arguments in a complete AF (fol-
lows from Propositions 3 and 4). Definition 10 ensures that there is an acceptable
attack when an argument is acceptable. Hence, EvalAf returns all the accept-
able arguments and attacks in an argumentation framework.

3.4 The ExpAF Algorithm

The next important step is to map acceptable arguments and attacks into expla-
nations in natural language. In this section, we propose ExpAf algorithm that
conforms to Definitions 12 and 13. The algorithm requires two inputs the set
of acceptable arguments (A′) and the set of acceptable attacks (R′). KB is the
knowledge base that includes domain-specific information as before. EvalAf
ensures that only relevant arguments and attacks will be constructed. In other
words, the agent will not try to initialise all the schemes in its KB but it will start
constructing the argumentation framework with the ones specified in X . Hence,
when an agent provides outputs of EvalAf algorithm as inputs to ExpAf algo-
rithm, it will get explanations that are relevant to the problem instance.

In line 1, the sets of explanations for arguments and attacks are ini-
tialised as empty sets. objects keeps a set of all the inputs. For each object
o, getSchemeName returns the scheme name (line 4), getExpTemplate returns
the explanation template e (Definition 12) (line 5); and the explanation tuple
exp (Definition 13) is generated by the generateExp (line 6). The explanation
tuple is added to Earg if o is an acceptable argument; otherwise, exp is added
to Eatt. The algorithm returns the explanation sets for each object (line 11).

Proposition 6. ExpAf always returns explanations for acceptable arguments
and attacks.

Proof sketch. The input A′ includes acceptable arguments; for each argument,
there will be an instantiated scheme. If there is an instantiated scheme, an expla-
nation template will exist; and this template will have an instance initialised
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Algorithm 2. ExpAf (A′,R′)
Input: A′, the set of acceptable arguments
Input: R′, the set of acceptable attacks
Output: Earg, Eatt, sets of explanations for arguments and attacks

Require: KB, the knowledge base
1: Earg ← {}, Eatt ← {}
2: objects ← A′ ∪ R′

3: for all o in objects do
4: sname ← o.getSchemeName(KB)
5: e ← getExpTemplate(sname, KB)
6: exp ← generateExp(e, o)
7: if o ∈ A′ then � o is an acceptable argument
8: Earg ← Earg ∪ exp
9: else � o is an acceptable attack

10: Eatt ← Eatt ∪ exp

11: return Earg, Eatt

with ground terms, which will constitute an explanation (follows from Defini-
tions 4, 5, 12 and 13). ExpAf conforms to these definitions; hence, it provides
an explanation for any acceptable argument. Similar reasoning holds for attacks.

The output of ExpAf can then be used by tools to provide explanations for
acceptable arguments and/or attacks.

4 Arguments and Attacks

The formal model introduced above can be used in order to describe a par-
ticular domain. We represent the hypertension domain via first-order language
predicates as in our previous work [17]. This language consists of predicates
of different arities. Variables are denoted as capital letters, the predicates are
written in italic text and the constants are in lower case. The knowledge base
(KB) includes information such as the clinical guidelines, patient information,
argument and attack schemes in terms of facts and rules.

4.1 Guideline Representation

In the domain and example that follow we refer to the NICE hypertension
guidelines [23]. NICE1 has a set of guidelines to help healthcare professionals
in diagnosing and treating primary hypertension. The guideline includes treat-
ment steps, such that a patient progresses to the next step and takes a new
drug if their blood pressure control does not improve in the previous step. It
provides guidance on which of the treatments or treatment combinations should
be considered at each step. For example, c (Calcium-Channel Blocker) and d

1 https://www.nice.org.uk/.

https://www.nice.org.uk/
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(Thiazide-like Diuretic) are two treatment options that may be offered if the
patient facts indicate a goal of blood pressure reduction. A treatment that pro-
motes a goal, can be offered or not offered (predicates are offer and notoffer
respectively). Moreover, a treatment can be marked as offered at a specific time.
A treatment can be indicatedAt a specific step according to guidelines. greater
is used to define an ordering between different time points. A treatment that is
previously prescribed may cause a side effect.

4.2 Patient Information

The choice of a treatment may depend on the facts about a patient. In the hyper-
tension domain; age, ethnic origin, the current treatment step in the treatment
process and an observation about the patient are important facts to consider
before recommending a particular treatment. Observations include information
such as if any side-effect has been reported or the desired goal (e.g. reduction in
blood pressure) has been achieved. Such information can dynamically be added
to the knowledge base. For example, in our previous work, we showed that the
knowledge base can be populated with patient facts collected via wellness sen-
sors [16].

4.3 Argument Schemes

We use the ASPT scheme in order to construct arguments in support of different
treatment options (Table 1). There are different reasons precluding a treatment
from being an option for a specific patient, so there are multiple critical questions
associated with ASPT–we just show one in the following. SE scheme ascertains
that no treatment will be offered if a side effect is observed (i.e. ASCQ(ASPT) =
{SE}). SE is challenged by SEF scheme in situations where the treatment is
effective so should not be excluded as an option despite the side effect (i.e.
ASCQ(SE) = {SEF}). In Table 3, the first frame shows these schemes in a
first-order language.

4.4 Attack Schemes

In Sect. 3, we have discussed different types of attacks that could exist among
arguments, and Table 2a gives an example of an undercutting attack between
arguments. Now, we give an example of an attack scheme that is domain-
specific and describes the rationale behind an attack in terms of domain-specific
premises. Table 2b shows the attack scheme, ALT, belonging to the hypertension
domain. The ALT scheme defines an attack between two ASPT arguments when
two treatments promoting the same goal are offered at a specific step. ALT has a
similar intuition as Argument from Alternative scheme proposed by Walton [30].
The instantiation of this attack scheme will result in attacks among alternative
treatment arguments in the argumentation framework.
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Table 3. Arguments schemes and arguments used in the running example

Schemes

ASPT 〈{goal(G), promotes(TR,G),
indicatedAt(TR,S)}, offer(TR),
{G,TR,S}〉

SE 〈{greater(T,T’), offered(TR,T’),
may cause(TR,S)}, notoffer(TR),
{T,T’,TR,S}〉

SEF 〈{greater(T,T’), effective(TR,T’)},
offer(TR), {T,T’,TR}〉

Arguments

[ASPT ]arg1: 〈{goal(rbp), promotes(c,rbp),
indicatedAt(c,s1)}, offer(c)〉

[ASPT ]arg2: 〈{goal(rbp), promotes(d,rbp),
indicatedAt(d,s1)}, offer(d)〉

[SE]arg1.1: 〈{greater(t2,t1), offered(c,t1),
caused(c,swollen-ankles,t1)},
notoffer(c)〉

[SEF ]arg1.1.1: 〈{greater(t2,t1), effective(c,t1)},
offer(c)〉

5 A Stroke Survivor: Baula

We will work through the case of Baula a 32-year-old person of African origin.
Baula suffered a stroke and has hypertension. In order to prevent secondary
stroke, Baula’s blood pressure (BP) needs to be controlled. Baula has started
using a new medication c to control blood pressure as suggested by a GP. During
a follow up visit, Baula’s BP is 130/90 (indicating the treatment is having the
desired BP lowering effect) but there is a side effect (swollen ankles). In the light
of this information, what are the treatment options to consider and why?

We now illustrate the use of EvalAf algorithm on the example. The two
inputs provided to the algorithm are ASPT and preferred, respectively. In our
running example, the goal is set to reducing blood pressure (rbp) by default.
The construction of the arguments will start by initialising ASPT according to
the information available in the knowledge base. The use of preferred semantics
will ensure that there can be multiple acceptable sets of arguments and attacks.
The human user (e.g. Baula’s GP) will make a final decision in the light of
the suggested possible solutions. The bottom part of Table 3 includes all the
arguments generated by the algorithm.

The arguments arg1 and arg2 are constructed as a result of the instantiation
of ASPT. The CQs for each scheme are considered in the following steps. SE
is relevant only to arg1, and given the side effects there is an attack generated
on arg1 from arg1.1. Even if Baula reports side effects, c is still effective in rbp.
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Therefore, arg1.1.1 attacks arg1.1 as well. Figure 1 depicts the resulting AF; where
arguments are displayed as boxes, the solid arrows represent attacks instantiated
by Tcq, and the dashed arrows show attacks instantiated by the ALT scheme.
For simplicity, the attacks are annotated without scheme names. Each attack
has a unique label atti. att4, which conforms to the attack scheme Tcq, is instan-
tiated as: 〈 {[SEF ]arg1.1.1, [SE]arg1.1, challenges(SEF , SE)}, attacks(arg1.1.1,
arg1) 〉. att1, which conforms to the attack scheme ALT, is instantiated as: 〈
{[ASPT ]arg2, [ASPT ]arg1, alt(c, d), indicatedAt(c, s1), indicatedAt(d, s1)},
attacks(arg2, arg1) 〉. att2 and att4 are instantiated similarly.

The EvalAf algorithm returns the set of acceptable arguments and attacks
(Definition 11). Under the preferred semantics, there are two extensions: ({arg1,
arg1.1.1}, {att2, att4}) and ({arg2, arg1.1.1}, {att1, att4}).

Fig. 1. Argumentation framework constructed by EvalAf algorithm.

5.1 Explanations

As argument and attack schemes are associated with explanation templates (Def-
inition 12), agents can instantiate them with an algorithm like ExpAf to gen-
erate explanations in natural language (Definition 13). In Sect. 3, we introduced
e1 as an explanation template for ASPT. In a similar way, we can describe an
explanation template for the ALT scheme as: 〈ALT, “Since {A.TR} and {B.TR}
promote the same goal at step {S}, {A.TR} is an alternative to {B.TR}; hence,
they should not be offered together.”〉.

When we consider the following extension ({arg2, arg1.1.1}, {att1, att4}),
ExpAf will generate an explanation for each acceptable argument and attack.
For example, an explanation for arg2 will be “Treatment d should be considered
at step 1 as it promotes the goal of reducing blood pressure.”; and an explanation
for att1 will be “Since d and c promote the same goal at step 1, d is an alternative
to c; hence, they should not be offered together.”, applying the explanation tem-
plates described above. The remaining explanations are generated in a similar
way by the use of explanation templates. arg1.1.1 can be explained as “Treatment
ccb can be considered as it was an effective treatment at time t1.’; and att4 can
be explained as “The scheme sef is a critical question of the scheme se”.

Given the suggested treatments and explanations, one option is to continue
the current treatment c as it is effective, another option is to offer a new treat-
ment such as d. At this point, the GP should also consider Baula’s preferences
when making a decision.
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5.2 Demonstration of the Proposed Approach

We provide an example implementation of the proposed approach in our GitLab
repository2. Baula’s example is also provided to demonstrate the applicability
of the proposed algorithms. By running the code, one can get the textual expla-
nations for acceptable arguments and attacks as described in this paper. In our
implementation, we make use of Aspartix, an answer set programming approach
to find the justified arguments of an argumentation framework [5]. In a first-order
language, we describe the knowledge base, the argument and attack schemes, and
data about Baula in terms of facts and rules. More use cases can be described
in a similar manner. We also make our Python-based implementation public; we
share an implementation of the proposed algorithms that use explanation tem-
plates to generate textual explanations. Moreover, our implementation provides
means to export the generated Dung AF as a graph, which is useful in providing
a visual explanation of the constructed arguments and attacks.

Figure 2 depicts one extension as a Dung AF where the recommended action
is offering a new treatment d (thiazide). Each box represents an argument con-
structed using argument schemes, each arrow represents an attack between argu-
ments constructed using attack schemes. The acceptable arguments are high-
lighted with a green color. Note that since we are using preferred semantics in
this example, there is also another extension (i.e. another graph) supporting the
idea of using the current treatment c (ccb).

Fig. 2. One extension recommends offering a new treatment thiazide (d)

6 Discussion and Conclusion

We proposed a formalism to describe arguments and attacks in a given domain
through the use of schemes. We introduced the notion of attack schemes to
capture domain-specific conflicts between two arguments. We articulated an

2 https://git.ecdf.ed.ac.uk/nkokciya/explainable-argumentation/.

https://git.ecdf.ed.ac.uk/nkokciya/explainable-argumentation/
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algorithm that generates an AF from a set of schemes to establish the set of
acceptable arguments and attacks and provided soundness and completeness
proof sketches. We also introduced another algorithm for generating explana-
tions, and illustrated our approach through an example. We showed that fur-
ther explanations can be generated by extending the acceptable set of argu-
ments with the acceptable attacks. Intuitively, this enables the explainability of
both accepted and defeated arguments through the instantiation of argument
schemes and attack schemes respectively. We shared a prototype implementa-
tion to demonstrate how our approach works in practice. In this work, the ini-
tialisation of arguments and attacks is performed according to the information
available in the knowledge base. In this paper, the description of schemes or
guideline rules is static; however, such information can be automatically learned
from data.

There are two important steps to achieve explainability by design. First, we
need a formal model that captures the essential components of a decision, and we
propose the use of argument and attack schemes in this paper. Second, we need
methods to deliver explanations for end-users. In this paper, we propose a sim-
ple algorithm to generate textual explanations based on explanation templates.
However, machine learning techniques could be used to construct explanations in
a dynamic way, something which is out of the scope of this paper. In future work,
we will extend the explainability definitions to cover cases such as how an attack
affects the status of an argument in an AF. We are planning to develop user
interfaces where we will show graphs and explanations together, similar to [28].
Moreover, we will evaluate the quality of generated explanations by conducting
user studies. Finally, we will extend our theoretical results to fully explain the
translation of existing argumentation frameworks into our proposed approach.
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Abstract. In this paper, we consider the problem of multi-issue multi-lateral
negotiation. We assume that each agent may be interested only in a subset
of issues at stake. They nevertheless have to make a collective choice that
addresses all issues. We propose a heuristics-based negotiation model where the
agents’reasoning mechanisms may be very complex as a result of multiple issues
being negotiated. Given this complexity, we propose a distributed negotiation
mechanism drawn on divide and rule. The proposed protocol consists of two itera-
tive steps: the partitioning of the agents into groups and the negotiation step where
the agents in each group interact without a central controller (no mediator). Our
negotiation protocol converges and leads to efficient outcomes, as demonstrated
by our empirical results.

Keywords: Collective decision-making · Negotiation · Hierarchical clustering

1 Introduction

Negotiation complexity significantly grows when self-interested agents must make a
choice involving several issues and when each agent may be interested only in a subset
of the issues at stake. Previous studies [1,3–5] propose multi-lateral negotiation proto-
cols, but they typically rely on a mediator that facilitates the negotiation by suggesting
contracts or by preventing fraud. Those solutions are centralised and suffer from a sin-
gle point of failure. Additionally, designing a mediator with such skill may be compu-
tationally prohibitive. In the alternating affers protocol [2], the agents negotiate without
mediator they sequentially take a turn. The first agent submits an offer, the next evalu-
ates it and makes a decision by accepting, counter-offering or walking. However, in a
context where agents may have (non) overlapping subsets of issues they are interested
in, each agent makes offers which concern its issues of interest and it could happen
that the agent who’s turn it is to evaluate an offer may have to evaluate issues it is not
interested in. Thus, this may affect the negotiation convergence and the agents’ order
turn-taking has a major influence on the negotiation outcome. Our solution aims to
c© Springer Nature Switzerland AG 2020
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overcome these limitations by structuring the process in terms of the multi-agent organ-
isation and agents’ tactics to make offers [6]. In decentralized negotiation settings of
the sort we study, agent communication and reasoning may be prohibitively complex.
We relax this complexity via careful design of organizational aspects of the multi-agent
system, as organisational relationships may have a significant effect on complexity,
flexibility and reactivity, and impose computation and communication overheads [7,8].

We propose a novel negotiation model based on a multi-step approach that fully
distributes the negotiation and facilitates the search for agreements. The underlying
approach is based on the “divide and rule” approach. It consists of two iterative steps:
Firstly, we partition agents into groups based on their overlapping subsets of issues
(not the values of the issues) and this is done in a centralized way. We search through
this decomposition to gather the agents which share the maximum number of issues.
In this way, they can construct partial solutions by focusing on their common issues.
Each agent can evaluate an offer from its group’s member. So we explicitly decompose
the agents into groups and implicitly the issues, in contrast to existing works which
focus only on decomposing the issues into groups [1,9]. Secondly, after the partitioning,
agents in each group negotiate in a fully decentralized way (with no mediator) to find
partial solutions over their overlapping issues. The motivation of our approach is to limit
the scope of the agents’ interactions and hence to reduce agent reasoning complexity.
The agents progressively build a solution by merging their solutions throughout their
interactions and form alliances.

2 Negotiation Framework

We focus on self-interested agents that negotiate over multiple issues1. To illustrate the
problem at hand, we consider a scenario where a set of households decide to join a
bundled offer to reduce their energy costs. So they must agree upon the energy con-
tract, they will subscribe for. Issues for an energy contract could be energy type, energy
provider, contract duration, tariff type, conditions for retracting, and so on. Each of
these issues is effectively an attribute of the collective contract. The energy consumers
may wish to focus only on a subset of the issues above, depending on their consumption
profiles and their needs and preferences.

Let A = {a1, ..., an} be the set of agents and E the set of issues at stake. Each
agent ai chooses the attributes it wants to negotiate; we denote these by Ei. Let Di

e be
a subset of values for e which are acceptable for ai. Each agent ai assigns a weight
wi

e ∈]0, 1] to each attribute e ∈ Ei which represents its importance in the negotiation.
The value of each attribute’s weight is defined such that

∑

e∈Ei

wi
e = 1.

An agent assigns a score to a value of an attribute according to its evaluation criteria.
For example, a household may evaluate an energy provider according to its reliability
and its service levels. Before the negotiation, ai sets for each attribute e ∈ Ei a range
of acceptable score values denoted by [minV i

e ,maxV i
e ]. So Di

e matches to the set of
values for e such that the score values belong to this interval. minV i

e , maxV i
e are,

1 Here, the negotiated issues match the attributes of the solution. Thus we may use these con-
cepts interchangeably.
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respectively, the minimal and maximal expected scores agent wants to obtain for e
during the negotiation. Thus, ai could offer or accept over time every value of attribute
e whose the score is between [minV i

e ,maxV i
e ].

EXAMPLE 1. We consider a set of households which negotiate to decide upon the
energy provider (attribute e). Let {p1, p2, p3, p4, p5} be the set of energy providers
and (0.9, 0.7, 0.8, 0.3, 0.5) be, respectively, the scores that ai assigns to each energy
provider. For example, an agent ai aims to contract with a provider whose the score
value is between minV i

e = 0.5 and maxV i
e = 0.9. Its Di

e = {p1, p2, p3, p5}. Thus, the
value that ai offers at each time depends on the score it wants to get for this attribute
at this time. The first value ai proposes when the negotiation starts is p1 and the last
value (reservation value) ai proposes when the deadline is almost reached is p5.

At the beginning of the negotiation process, each agent forms a singleton alliance and
defines for each attribute e ∈ Ei a negotiation tactic [6]. A negotiation tactic is a deci-
sion function which allows to determine the values of an attribute e to be offered when
negotiation progresses. This value can be computed by considering multiple criteria
such as time and resource [6]. Here, we focus on a time-dependent tactic. It consists of
deciding for each attribute e ∈ Ei an acceptable value in Di

e to be offered according to
the remaining negotiation time.

3 Negotiation Protocol

Our solution approach draws on hierarchical agglomerative clustering [10] and allows
the agents to progressively build an agreement while limiting their reasoning complex-
ity. The proposed protocol is a multi-step process. At each round, it clusters pairs of
alliances. Pairing is based on similarity among the alliances over their issues. Specifi-
cally, alliances whose subsets of issues of interest overlap are paired in order to allow
them to progress the negotiation. Agents in each cluster negotiate in order to build a
solution about their common attributes. They form a new alliance when they reach an
agreement for each negotiated attribute. The protocol builds incrementally, over multi-
ple steps, the grand alliance (including all or the majority of the agents) that supports a
proposal that addresses all issues, i.e complete proposal (Fig. 1). The negotiation termi-
nates with an agreement or a disagreement over the set of issues at stake. In summary,
the proposed protocol involves two key steps that are executed iteratively: clustering
phase and negotiation phase.

3.1 Clustering Phase

This phase consists of clustering pairs of alliances. The partitioning is done by the sys-
tem based on the subsets of issues from the agents. We define similarity functions over
overlapping issues which are used to identify candidates for clustering. Each alliance is
characterised by the number of agents and the number of attributes it holds. We present
two similarity functions named SimL and SimL+ .

– SimL is based on a simple Jaccard index, named SimL. LetLx, Ly be two alliances,
ELx

, ELy
represent, respectively, their sets of attributes they hold. The similarity
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Fig. 1. 6 agents a1 to a6 negotiate over the issues e1 to e5. s1 to s5 are the different rounds.

function between alliances is defined as follows:

SimL = J(ELx
, ELy

) = ELx ∩ELy

ELx ∪ELy
.

– SimL+ takes into account additional criteria, e.g.., the fact that each alliance aims
to get the maximum number of agents via an offer that addresses a maximal number
of attributes. We define a gain function gain which gives a real value representing
the gain obtained by cluster’s alliances when they merge.

SimL+ = SimL + gain gain(Lx, Ly) =
|ELx

∪ ELy
|

k
× |Lx ∪ Ly|

n
n, k represent, respectively, the number of agents in the system and the number of
all attributes at stake.

Alliances are clustered according to the following rules:

– R1: only the alliances that have overlapping attributes are clustered.
– R2: when an alliance does not find another with which it forms a cluster, it will not
participate in the negotiation at this round. But at the next round, it will be considered
to generate new clusters.

These rules facilitate efficient negotiation and help limit the negotiation time.

EXAMPLE 2. Consider the agents in Fig. 1. Tables in Fig. 2 show, respectively, the
set of attributes chosen by each agent (Table 1) and their similarity matrix computed
according to SimL (Table 2) and SimL+ (Table 3). These agents form clusters g1 =
{a4, a6}, g2 = {a3, a5}, g3 = {a1, a2}.
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Fig. 2. Similarity matrix

3.2 Negotiation Phase

We denote by S = {S1, ..., SQ} the set of negotiation rounds. At each Sq, alliances
are paired into several clusters in which negotiations take place simultaneously. We
denote by Gsq

= {gx} the set of clusters at the round Sq. Agents in each cluster gx

negotiate to reach a partial agreement over their common issues named Egx
. To make

more flexible the negotiation and to facilitate the research of agreements, the proposed
protocol allows the agents to have more flexibility about the offers they submit.

Offer Types: An attribute may be negotiated in a cluster holding either all agents or a
part of the agents which are interested in this attribute. Thus, for these both cases, we
distinguish two offer types. In each cluster, the set of attributes Egx

is divided into two
subsets Ef

gx
, Ed

gx
which represent, respectively, the attributes for which all of the agents

which are interested in this attribute belong to this cluster and the attributes for which a
part of these agents belong to this cluster.

– When an attribute is negotiated in a cluster which holds all agents which are inter-
ested in this attribute, these latter must find a final solution. This is because this
attribute will not be negotiated in future rounds when an agreement is found. We
denote byOf a fixed offer which consists of assigning a single value to each attribute
in Ef

gx
.

– When an attribute is negotiated in a cluster which holds a part of the agents which are
interested in this attribute, these latter must find a partial solution since this attribute
interests other agents outside this cluster. We denote by Od a partial offer which
consists of assigning a range of values over the attributes in Ed

gx
.

The range of values of attributes supported by different alliances may overlap and this
may facilitate agreements among the alliances.

The decomposition of Egx
into Ef

gx
and Ed

gx
may be performed by every agent

in the cluster since the subset of issues for each agent is a public information. Each
agent ai knows the set of agents whose subset of issues overlap with theirs. In a cluster,
for each attribute in Egx

an agent may verify if all of the agents with which it shares
this attribute are present in the cluster. If so, then there exists no agent outside the
cluster which is interested in this attribute. Otherwise, this attribute is susceptible to be
negotiated outside the cluster.
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Making an Offer: Alliances in a cluster gx exchange offers in a round-robin way. They
make offers about the attributes inEgx

. For each attribute e, each alliance must compute
either a point value or a range of values to be proposed. For the example in Fig. 1, let
L1,2, L3,5 be the alliances formed, respectively, by {a1, a2} and {a3, a5} during the
round S1. EL1,2 = {e1, e2, e3, e4} EL3,5 = {e3, e4, e5}. L1,2, L3,5 are clustered during
the round S2 and they negotiate over their common attributes EL1,2 ∩EL3,5 = {e4, e5}.
Before the negotiation in the round S2 : alliance {a1, a2} has already agreed on a final
solution (fixed value) for e1 but {e2, e3, e4} have not been negotiated in the previous
round. Alliance {a3, a5} has already agreed on partial solutions for {e3, e5} and the
agents have defined a common negotiation tactic for these attributes. Attribute e4 has
not been negotiated in the previous round.

• When an alliance holds an attribute not negotiated, this attribute interests only one
agent in this alliance. This is because a cluster holds two alliances which become
one alliance when they agree on all of their common attributes.

When an alliance submits an offer in a cluster gx:

– for each attribute e ∈ Egx
already negotiated, the value or range of values to be

offered is computed by using the common negotiation tactic they defined.
– for each attribute e ∈ Egx

not negotiated, the value or range of values is proposed
by the agent which holds this attribute. It uses its own negotiation tactic.

Decision-Making: Alliances interact between them by using speech acts: Propose,
Accept and Refuse. Each ai uses its utility function ui to evaluate an offer and to make
a decision. When an alliance receives an offer, each agent in this alliance evaluates it.

Accepting an Offer: An alliance Lk accepts an offer OLr,t made by an alliance
Lr at time t, if every agent in Lk accepts this offer. An agent accepts an offer
if its utility is superior or equal to the utility of its alliance’s offer at time t + 1,
ui(OLk,t+1) ≤ ui(OLr,t) otherwise the offer is refused.

Merging Alliances: When in a cluster, the pairs of alliances agree on an offer they
merge and become a new alliance formed by the agents of this cluster. For each attribute
e ∈ Ed

gx
whose range of values has been negotiated, they define a common negotiation

tactic they use in the next round. For each attribute e ∈ Ef
gx
, a final solution has been

found and it will not be negotiated in the next round.

4 Negotiation Tactics

In the beginning, each agent tries to reach a maximum score value for each attribute it
negotiates. The proposed protocol allows the agents to make concessions. This consists
of reducing its maximal expected score values over time in order to facilitate the search
of agreements.
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A negotiation tactic defined by an agent ai for an attribute e is a function V i
e (t)

which determines at time t the expected score value ai wants to get at this time.

V i
e (t) = minV i

e + (1−αi
e(t))×[maxV i

e − minV i
e ].

αi
e(t) is a time-dependent function. [6] describes a range of time-dependent functions

which can be defined by varying the strategies to compute αi
e(t).

αi
e(t) is defined such that:

0 ≤ αi
e(t) ≤ 1, αi

e(0) = ki
e, αi

e(t
i
max) = 1

timax is the deadline at which the reservation value is proposed, dl is the negotiation
deadline. 0 ≤ t ≤ timax ≤ dl.

Each ai chooses a constant ki
e ∈ [0, 1] for each of its attributes. This constant ke

i

determines the first score value the agent wants to get and hence the first value of the
attribute e it will propose or accept. αi

e(t) may be a polynomial or exponential function
parameterized by a value βi

e ∈ R+ which determines the convexity degree of V i
e curve.

Polynomial and exponential functions are significantly different in the way they model
concessions according to the value of βi

e [6]. As part of this paper, we work on a range
of families of functions with arbitrary values for βi

e ∈ [0, 50]. This covers different ways
to concede, showing significant differences.

– The case of βi
e < 1 is denoted the Boulware tactic. It maintains the initially offered

value until the time is almost exhausted, where it concedes by proposing the reser-
vation value.

– The case of βi
e > 1 is denoted Conceder tactic, in which case the agent will offer

very quickly its reservation value.

We present below polynomial and exponential functions we consider.

αi
e(t) = ki

e + (1 − ki
e)(

min(t, timax)
timax

)
1

βi
e

αi
e(t) = e

(1− min(t,ti
max)

ti
max

)βi
e ln ki

e

In our framework, we propose some methods to compute the βi
e parameter according

to the weight of attribute e. Intuitively, a higher weight is associated with lower agent
willingness to compromise its initial value; a lower weight indicates the opposite. For
each of its issues of interest, an agent holds a negotiation tactic according to the weight
it assigns to that issue.

4.1 Methods to Compute βi
e

Let βmin, βmax the domain of βi
e. Here, we set βmin = 0, βmax = 50.

We present below some ways to compute βi
e according to the weight of the

attribute wi
e:

– Method A: βi
e = βmin + (βmax − βmin) × (1 − wi

e), 0 < wi
e ≤ 1
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Fig. 3. agents a1, a2, a3, a4 negotiate over an attribute e. They assign a same weight equal to 0.9
to e but they use different methods and parameters (ki

e, k
i) to define their negotiation tactic. This

table presents the parameters for each agent.

– Method B: βi
e =

{
1 + (βmax − 1) × (1 − 2wi

e), 0 < wi
e ≤ 0.5

1 + (1 − βmin) × (1 − 2wi
e), 0.5 ≤ wi

e ≤ 1

The difference between strategies A and B is such that in B the range of weight [0, 1]
is split into two ranges [0, 0.5], [0.5, 1] and it assigns them, respectively, a family of
tactics with βi

e > 1 and family of tactics with βi
e < 1. This means that the agent assigns

a Boulware tactic [14] to the attributes whose the weight is in [0.5, 1] and a Conceder
[15] to the attributes whose the weight is in [0, 0.5].

4.2 Methods to Compute a Range of Values for an Attribute

Making a partial offer consists of proposing for each concerned attribute a range of
values to be offered. However, a negotiation tactic produces a single value. Hence, for
each attribute e, we define a couple of parameters (βim

e , βiM
e ) to define a couple of time-

depending functions αim
e (t), αiM

e (t) and hence a couple of functions V im
e (t), V iM

e (t)
which allow to compute a range of score values ai wants to get at time t.

V im
e (t) = minVe + (1−αim

e (t))×[maxVe − minVe]

V iM
e (t) = minve

+ (1−αiM
e (t))×[maxVe − minVe]

. The values of βim
e , βiM

e for an attribute e are determined according to βi
e:

– Method A’: βim
e = βi

e, βiM
e = βi

e+ki(βmax−βi
e), βmin≤ βi

e≤ βmax

– Method B’: βim
e = βe, βiM

e =
{

βi
e + ki(1 − βi

e)), βi
e ≤ 1

βi
e + ki(βmax − βi

e), βi
e ≥ 1

ki is a constant in ]0, 1] defined by each agent.
V im

e (t) ≥ V iM
e (t) because βiM

e leads to concession more quickly than βim
e . Thus

the range of values to be offered at time t is the set of attribute’s values such that the
score values are between V iM

e and V im
e (t) (Fig. 3).

4.3 Common Tactic Defined by an Alliance

When the alliances in gx agree on an offer and form a new alliance Lk, they establish
common negotiation tactics to be used at the next round. This is done by computing the
average weight across all agents belonging to this alliance. Specifically, βL

e is computed

according to wL
e with wL

e =

∑

i∈L

wi
e

2 . The couple of parameters (βLm
e , βLM

e ) to be used
when they must negotiate a partial solution for e is determined according to βL

e .
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Fig. 4. a1, a2 use, respectively, methods A, A′ and B, B′ to compute, respectively, parameters
β1
e , β1m

e , β1M
e and β2

e , β2m
e , β2M

e for attribute e. a1 will concede faster than a2.

Fig. 5. a3, a4 use, respectively, methods A, A′ and B, B′ to compute, respectively, parameters
β1
e , β1m

e , β1M
e and β2

e , β2m
e , β2M

e for attribute e. They use, respectively, k3
e = 0.5 and k4

e = 0.5.
Thus, they first expected score value is equal to 0.63. a1 will concede faster than a2.

4.4 Negotiation Outcome

At the end of the negotiation, it could happen that several alliances are formed. These
alliances may share attributes of which values may be different. To determine the
negotiation outcome, only alliances that share no attributes are merged. There may
exist several alternatives to merge alliances. The merging process we propose aims
to determine the alliances to be merged in order to get an effective and fair solution.
A solution is acceptable when it is supported by more than 50% of the agents (i.e.
the majority) and holds all of the attributes at stake. In Fig. 1, the solution supported by
{a1, a2, a3, a5, a6} is acceptable. The merging process may generate several acceptable
solutions which are compared in order to determine a unique effective solution.
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5 Theoretical Analyse

To analyse the complexity of our negotiation mechanism, we focus on evaluating the
number of formed clusters during the negotiation process. Each attribute at stake may
interest one or more agents. We denote by ne the number of agents which negotiate
over the attribute e. To reach a final solution for this attribute, all of the ne agents must
meet to exchange in different clusters when the negotiation progresses. Each agent must
negotiate with all of the agents with which it shares its attributes. We analysed the
number of clusters in which attribute e is negotiated. We consider two situations: the
negotiation in both best and worst cases (Fig. 5).

5.1 Negotiation in the Best Case

The best case: whenever the agents in a cluster negotiate, they find an agreement and
become one alliance (see Fig. 6).

– In the best case, the number of clusters to be formed to reach a final solution for e
is the sum of geometrical sequence’s terms with a common ratio 1

2 and a first term
equal to � 1

2 × ne�.
At round S1 of the negotiation, the number of formed clusters is: US1 = � 1

2 × ne�.

USq
= � 1

2q
× ne� if

1
2q

× ne − � 1
2q

× ne� ≤ 0.5 with 1 ≤ q ≤ Q

USq
= 	 1

2q
× ne
 if

1
2q

× ne − � 1
2q

× ne� > 0.5 with 1 ≤ q ≤ Q

Q is the number of negotiation rounds. USq
is the number of clusters to be formed at the

round Sq. The expression of USq
allows taking into account the case where the number

of alliances to be clustered is an odd number. The total number of clusters to be formed
during all of the negotiation rounds is the sum of the Q first terms of the geometrical
sequence. Q is such that USQ+1 = 0.

5.2 Negotiation in the Worst Case

The worst case: whenever the agents in a cluster negotiate no agreement is found. The
cluster will be split (see Fig. 6).

– In the worst case, the number of formed clusters is the number of 2-combinations
that can be formed from the ne. More formally, the number of 2-combinations is
equal to the binomial coefficient.

(
ne

2

)
= ne!

2!(ne−2)! .

– For each attribute e, the number of clusters where it is negotiated is limited. This

number is between
Q∑

q=1
USq

and ne!
2!(ne−2)! .

In our protocol, several attributes may be negotiated in a cluster.
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Fig. 6. Example of a negotiation between 4 agents over an attribute e.

– When all of the attributes interest all of the agents the number of clusters in which

these attributes are negotiated is limited. This number is between
Q∑

q=1
USq

and

ne!
2!(ne−2)! .

In each round, the agents in each cluster negotiate over the set of attributes at stake. So
the number of clusters to be formed does not depend on the number of attributes but it
depends on the number of agents.

– When each agent is interested in a part of the attributes at stake and their subset of
attributes are disjoint no cluster will be formed. This case is not interesting because
there is no negotiation.

– When each agent is interested in a part of the attributes at stake and the subsets of
attributes from these agents overlap, the number of clusters to be formed depends
on the degree of the similarity of the agents according to their subsets of attributes.

6 Experimental Results

We have implemented our model in Java/Jade. We considered a set of agents A which
negotiate over multiple attributes E. Each agent ai selects randomly its attributes in E

and randomly assigns a weight to each one. It computes, for each chosen attribute e, the
parameters βi

e,βim
e ,βiM

e . Each agent selects randomly the criteria that it uses to generate
its offers. We tested our protocol with each of these strategies and we analyse their
effect on the results of the negotiation. To evaluate the convergence of our protocol we
performed several tests by varying negotiation parameters such as the deadline and the
strategies used to compute the negotiation tactics.

We performed several tests by varying the number of agents and the strategies they
use to compute negotiation tactics. We tested our protocol with up to 50 agents. We
compared our protocol with a negotiation model where all of the agents form only one
group to negotiate. We ran the protocol several times and computed the average of the
obtained convergence rates for each execution. In these tests, the number of issues at
stake was not varied. The graphs in Fig. 7 show the convergence rate obtained for each
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Fig. 7. Comparison between our model and the centralized model (all of the agents form one
group) according to agreement rate. In our model the agents use with strategies A,A’ and B,B’.

Fig. 8. The rate of agreement reached by varying number of agents and issues. Text in grey and
bold represent, respectively, the best rate of agreement and the worst rate of agreement. This
table shows the rate of agreement reached by agents after three negotiation rounds. Columns 2

to 4 represent, respectively, the results for 20 agents, 40 agents and 50 agents while varying the
number of issues from 5 to 20.

pair of strategies A,A′ and B,B′ used to compute the negotiation tactics. The empirical
results in Fig. 4 show that agents concede more quickly when they use A,A′ than when
B,B′ are used. The graph in Fig. 7 proves that when the agents concede, this facilitates
the convergence of the negotiation. We observe that our protocol converges faster when
strategies A,A′ are used. Figure 7 shows also the convergence rate obtained when a cen-
tralized model is used (where all of the agents form one group to negotiate) by varying
the number of agents. Our protocol allows the agents to reach more agreements when
the number of agents grows. The results show that our protocol allows the agents to
reach more agreements than the centralized mechanism as the number of agents and
issues grow. We also observe that when the ratio between the number of agents and the
number issues grows the number of agreements reached is lower (Fig. 8).

7 Conclusion

This paper presented a multi-lateral negotiation model over multiple issues. Our app-
roach allows the agents to progressively build a collective solution addressing all of the
issues at stake. We present various negotiation tactics that enable the agents to deter-
mine the offers to be proposed and to make concessions. In our empirical analysis,
we tested the influence of the negotiation tactics on the negotiation outcome. We have
additionally evaluated the convergence of the negotiation under various settings and
have demonstrated promising convergence rates.
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Abstract. Automated negotiation has been used in a variety of dis-
tributed settings, such as privacy in the Internet of Things (IoT) devices
and power distribution in Smart Grids. The most common protocol under
which these agents negotiate is the Alternating Offers Protocol (AOP).
Under this protocol, agents cannot express any additional information
to each other besides a counter offer. This can lead to unnecessarily
long negotiations when, for example, negotiations are impossible, risk-
ing to waste bandwidth that is a precious resource at the edge of the
network. While alternative protocols exist which alleviate this problem,
these solutions are too complex for low power devices, such as IoT sen-
sors operating at the edge of the network. To improve this bottleneck,
we introduce an extension to AOP called Alternating Constrained Offers
Protocol (ACOP), in which agents can also express constraints to each
other. This allows agents to both search the possibility space more effi-
ciently and recognise impossible situations sooner. We empirically show
that agents using ACOP can significantly reduce the number of messages
a negotiation takes, independently of the strategy agents choose. In par-
ticular, we show our method significantly reduces the number of messages
when an agreement is not possible. Furthermore, when an agreement is
possible it reaches this agreement sooner with no negative effect on the
utility.
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1 Introduction

Autonomous agents, in particular those at the edge of the network—near to the
source of the data like single or cooperative sensors—often need to coordinate
actions to achieve a shared goal: for instance, they might need to negotiate either
access to local data to learn a shared model; or access to a shared resource like
bandwidth; or joint actions for complex activities such as patrolling an area
against wildfires (cf. Sect. 2).

Automated negotiation can provide a solution, by allowing agents to reach a
mutual consensus on what should and what should not be shared. However, the
standard method of negotiation under the Alternating Offers Protocol (AOP,
Sect. 3) [1] can be resource intensive and in particular bandwidth intensive due
to the number of messages that need to be exchanged before an outcome can be
determined. This might be particularly wasteful when considering autonomous
agents at the edge of the network, which have limited bandwidth resources. At
the same time, because such agents are often deployed on low-power devices,
they cannot be equipped with extremely complex reasoning capabilities able to
learn and predict other agents’ behaviour.

In Sect. 4 we present a novel extension of AOP called Alternating Constrained
Offers Protocol (ACOP), that provides a suitable trade-off between reasoning
capabilities and bandwidth usage, allowing agents to express constraints on any
possible solution along with the proposals they generate. This allows agents to
search more effectively for proposals that have a higher probability of being
accepted by the adversary. To measure the impact of this on the length and
outcomes of negotiations, we perform empirical analysis on a dataset of simulated
negotiations (Sect. 5). To summarise, in this work we will address the following
questions:

Q1. Do negotiations operating under ACOP exchange fewer messages than nego-
tiations operating under AOP in similar scenarios?

Q2. Does adopting ACOP negatively impact the outcome of negotiations when
compared to negotiations using AOP?

Results summarised in Sect. 6 provide evidence that negotiations operating
under ACOP require substantially fewer messages than negotiations operating
under AOP, without negatively affecting the utility of the outcome.

2 Context and Motivating Examples

Automated negotiation [5] is a wide field: while our focus is much narrower,
it encompasses a substantial number of application domains such as but not
limited to, resource allocation, traffic flow direction, e-commerce, and directing
Unmanned Vehicles (UxVs) [13,20,21]. As mentioned before, the most commonly
used protocol for automated negotiation, AOP, can require large amounts of mes-
sages to be communicated before an outcome can be determined. While more
sophisticated methods that alleviate communication bottlenecks by using, for
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example, fully-fledged constraint satisfaction solvers [6] exist, these can include
very complex reasoning that is not appropriate for agents deployed on low-power
devices that operate at the edge of a network. Additionally, many of these solu-
tions require a neutral third party to act as a mediator, which is not always
possible in distributed or adversarial settings. Below we will explore three exam-
ples to illustrate some of these applications.

Firstly, autonomous agents can share the burden of learning a model. Fed-
erated Learning is a machine learning setting where the goal is to train a high-
quality model with training data distributed over a large number of agents,
each possibly with unreliable and relatively slow network connections [12] and
with constraints such as limited battery power. For instance, in [17] the authors
introduce an incentive mechanism using auction-like strategies to negotiate with
bidding in a format similar to [18].

A second domain concerns the negotiation of wireless spectrum allocation
[9,18]. For instance, due to the low cost of IP-based cameras, wireless surveillance
sensor networks are now able to monitor large areas. These networks thus require
frequency channels to be assigned in a clever way: to this end, in [9] the authors
propose to use a text mediation protocol [11].

Consider now our third case, that involves a fully distributed and autonomous
surveillance system such as using Unmanned Aerial Vehicles (UAVs) to patrol
an area at high risk of wildfires. Each UAV is fully autonomous and equipped
with processing capability for analysing their sensor streams and detect early
signs of wildfire. The uplink to the command control centre is via a slow and
unreliable satellite connection. However, each UAV is aware of the existence of
other UAVs via low-bandwidth wireless connections. Each UAV has access to
commercial-grade GPS. All UAVs are programmed to jointly cover a given area,
and have access to high-quality maps of the area which includes detailed level
curves. For simplicity, let us assume that the area is divided into sectors, and
each UAV announces the sector where it is, and the sector where it intends to
proceed.

Each UAV begins its mission randomly choosing a direction, and hence the
next sector it will visit. Its main goal is to preserve its own integrity—after all
it is worth several hundreds thousands dollars—while collaborating towards the
achievement of the shared goal. It is therefore allowed to return to base, even if
this will entail that the shared goal will not be achieved. Examples of this include,
when its battery cell level is too low, when adverse weather conditions affect the
efficiency of the UAV rotors, or when it has been damaged by in-flight collision
or some other unpredictable situation. In the case two UAVs announce that
they are moving towards the same sector, a negotiation between them needs to
take place in order to achieve coverage of the sector, while avoiding unnecessary
report duplication.

Let us suppose UAV1 receives an update that UAV2 can visit sector Sierra,
the same sector it was also aiming at. It can then send a negotiation offer to
UAV2 asking to be responsible for Sierra. UAV2 most likely will at first reply
that it should take care of Sierra, while UAV1 can take care of the nearby Tango:



354 S. Vente et al.

after all, it announced it first, it is already en route, and it needs to protect its
own integrity. Let us suppose that UAV1 knows that with its current power
level and/or performance of its 18 rotors, it cannot visit sector Tango as it
would require a substantial lifting. It would then be useful for it to communicate
such a constraint, so to shorten the negotiation phase and proceed towards an
agreement (or a certification of a disagreement) in a short time frame. Indeed,
knowing of UAV1’s constraint, UAV2 can accept to visit Tango, or maybe not,
due to other constraints. In the latter case, UAV1 can then quickly proceed to
search for other sectors to visit, or, alternatively, to return to base.

This last example illustrates potential uses of being able to communicate
constraints to other agents. In the next section we will set up the necessary
theory to discuss our proposed solution.

3 Background in Alternating Offers Protocol

Firstly we will give a brief overview of the basic negotiation theory used in this
work. Here all negotiations are assumed to be bilateral, meaning between only
two agents, referred to as A and B respectively. The negotiation space, which
is denoted Ω, represents the space of allowable proposals. This consists of the
product of several sets called issues, each containing a finite number of elements
called values. So, to reiterate, when we write Ω =

∏N
i=0 Λi with |Λi| = Mi that

means that the negotiation consists of N issues consisting of Mi values. In the
case that ∀i, j ∈ {1, . . . , N} : Λi = Λj we may also write Ω = ΛN . Each agent
is also assumed to have a utility function uA, uB : Ω → R which each induce a
total preorder �A and �B on Ω via the following relation

∀ω, ζ ∈ Ω : ω �A ζ ⇐⇒ uA(ω) ≥ uA(ζ)

and analogous for B, allowing the agents to decide whether they prefer one
proposal to another, vice versa or are indifferent towards them. Each agent also
has a reservation value ρA, ρB respectively, which is the minimum utility an offer
must have to an agent to be acceptable. A utility function u is called linearly
additive when the following identity holds:

∀ω ∈ Ω : u(ω) =
n∑

i=1

wiei(ωi) (1)

Here
∑N

i=0 wi = 1 and ∀i ∈ {1, . . . , N} : wi ∈ [0, 1]. Here the wi represents the
relative importance of the ith issue. This makes explicit that the assignment of
any issue does not influence the utility of any of the other issues.

The way in which the agents communicate is detailed by the protocol. This
is a technical specification of the modes of communication and what types of
communication are allowed. The most commonly used protocol is called the
Alternating Offers Protocol (AOP). In this protocol, the agents have only three
options: make a proposal, accept the previous proposal or terminate the interac-
tion without coming to an agreement. Here we use ωt to denote the offer made
at time-step t. Note that t is discrete.
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Finally, agents explore the negotiation space according to their strategy. Two
well known examples, known as zero intelligence and concession [3]. The zero
intelligence strategy is also referred to as a random sampling strategy. Agents
using a random sampling strategy generate offers by simply defining a uniform
distribution over the values of each issue, and constructs offers by sampling from
those distributions until they find one that is acceptable to them. Agents using
a concession strategy might just simply enumerate the offers in the negotiation
space in descending order of preference, either until the other accepts or until
they are unable to find offers that they find acceptable. We will use these two
strategies in our empirical analysis below. Both these strategies are well known
in the literature [2,4,7,8,14,16,19]. Zero Intelligence agents are often used as
a baseline for benchmarks and concession strategies in various forms are well
studied [3]. We therefore use them here as a proof of concept.

4 Our Proposal: Alternating Constrained Offers Protocol

Almost any negotiation is subject to certain constraints. For example, a good
faith agent will never be able to agree to sell something they do not have. When
constraints are incompatible, this can dramatically increase the length of the
negotiation, since under AOP there is no way to communicate boundaries of
acceptable offers. In an effort to alleviate this problem, without introducing
too much complexity, we propose an extension of AOP called Alternating Con-
strained Offers Protocol (ACOP). Using this protocol agents have the opportu-
nity to express a constraint to the opponent when they propose a counter offer.
This constraint makes evident that any proposal not satisfying this constraint
will be rejected apriori.

In this way, agents can express more information to the opponent about
which part of the negotiation space would be useful to explore without having to
reveal too much information about their utility function. This can even present
some strategic options. Cooperative agents could express all their constraints
as fast as possible to give the opponent more information to come up with
efficient proposals. On the other hand, more conservative agents can express
constraints only as they become relevant, which might lead to expose fewer
information in the case the negotiation terminates with an agreement before
exposing red lines. In this work we focus on the use of atomic constraints. These
are constraints that express which one of single particular issue value assignments
is unacceptable. These constraints can either be given to the agent apriori, or
they can be deduced by the agent themselves. Especially in the discrete case
with linear utility functions, a simple branch and bound search algorithm can
be enough to deduce where certain constraints can be created, which we illustrate
with the following example.

Example 1. Let A,B both be negotiation agents having the reservation value 1
3

and linear additive utility functions uA, uB respectively, using uniform impor-
tance weights. Furthermore, let Ω = Λ3 with Λ = {v1, . . . , v6}. Therefore we
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have 3 issues, with 6 values each. In this setup we can represent uA and uB as
matrices which are depicted in Fig. 1, with the rows representing the issues and
the columns possible values. For example the offer ω = (v1, v1, v1) would have
0 utility for A and thus be unacceptable but utility 1 for B and be acceptable.
Due to the scale of the potential losses A can deduce using branch and bound
that ω2 = v2 can never be part of a solution they could accept. Therefore they
can record this constraint, and express this to B according to their strategy. An
example of a negotiation under ACOP of this scenario can be seen in Fig. 2.

(a) A’s utility matrix (b) B’s utility matrix

Fig. 1. Utility matrices for A and B respectively for example 1

This kind of reasoning is simple enough that it could be evaluated in response
to new information, such as an opponent ruling out a crucial option during
a negotiation. These constraints can help agents find acceptable options more
efficiently, but are also useful to help agents terminate faster by letting them
realise that a negotiation has no chance of succeeding. For example, when each
possible value of a particular issue is ruled out by at least one of the participants,
agreement is impossible and the agents can terminate early.

5 Experimental Methodology

Our empirical analysis provides evidence that ACOP improves over AOP in
terms of negotiation length and does not negatively impact utility. We simulated
a variety of negotiations with randomly generated problems and agents using
either a random sampling or concession strategy as defined earlier, both under
AOP and ACOP. At the end of a simulation we recorded metrics such as length
of the negotiation and the outcome. In this section we will first detail how the
problems were generated and how the simulations were run. Then we will discuss
the results in more detail in the next section.
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A

ω0 = (v6, v6, v6)

B

ub ω0 = 0

ω1 = (v2, v2, v2)

ua ω1 = −33 1
3

ω2 = (v5, v5, v5)
ω2 = v2

ub ω2 = 0

ω3 = (v2, v5, v2)

ua ω3 = 1
3

ACCEPT ω3

Fig. 2. A schematic representation of an example negotiation under ACOP in the
setting set out in Example 1 assuming both agents use uniform weights

5.1 Problem Generation

To run a simulation of a negotiation, four things are required:

1. A negotiation space.
2. The utility functions for the two agents.
3. The reservation value for both agents.
4. The strategy and protocol the agents will use (in this case they are always

equal for both agents).

To make the results easier to compare, the negotiation space remained con-
stant, consisting of 5 issues each with 5 values across all negotiations. The utility
function and the reservation value determine which part of the negotiation space
is acceptable to which of the agents, whereas an agent’s strategy determines how
they explore the possibility space. We refer to an offer which is acceptable to
both participants of a negotiation as a solution to that negotiation. Furthermore
we call a negotiation possible if there exists at least one solution, and otherwise
impossible. We use configuration to refer to a pair of utility functions and a pair
of reservation values. A pair of utility functions is referred to as a scenario. Note
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that for any configuration, the number of solutions can be calculated to any
outside observer with perfect information, since this is deterministic given the
parameters. In total 261, 225 configurations were generated, for each of which
4 negotiations were simulated, each corresponding to one of the strategy and
protocol pairs. This means that in total 1, 044, 900 negotiations were simulated
and for each of them the length of the negotiation and the utility the agents
achieved at the end were recorded.

Initially 300 unique pairs of utility functions were generated by drawing from
uniform distributions on either {0, 1, . . . , 100} or {0, 1, . . . , 25}. The scenarios
were drawn from two possible distributions to ensure that both sufficient impos-
sible and possible configurations would be tested. Whether there are many, if
any, mutually agreeable options in a configuration can be quite sensitive to ran-
domness in the utility functions, and the reservation values the agents adopt,
especially when the utility functions have a wide range. For each of the 300 base
scenarios, several variants were created by adding an equal number of constraints
in both utility functions, up to a maximum of 12 per agent. Note that if we were
to create a constraint in a value assignment where the opponent has very low
utility, the constraint is unlikely to make a difference, since the opponent is not
likely to make an offer that violates that constraint, meaning that the additional
information doesn’t get utilised. To avoid this problem we applied what we call
constraint injection. This means that if we want to introduce n constraints in
the utility function of agent A, we do this by determining the n most favourable
assignments for B and overwrite the utilities for those assignments in A’s utility
function with a value that is low enough to create a constraint. If A has a max-
imum utility of umaxA then a value lower than −umaxA is enough to ensure a
constraint will be created. In this scenario, the theoretical best utility possible is
100. Therefore we used −1000 as our constraint value, to avoid potential bound-
ary issues. An example of a generated scenario sampled from [0, 100] before and
after injecting 1 constraint in each utility function can be seen in Fig. 3.

(a) Scenario as originally generated (b) Scenario after injecting 1 constraint in
each utility function. Note that the colour
of the constrained cells is not to scale to pre-
serve differentiability of the other colours

Fig. 3. Examples of generated utility matrices before and after injecting 1 constraint
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We express reservation values as a percentage of the agent’s maximum pos-
sible utility: an agent with a reservation value of 1

2 will only accept offers
that have at least half the utility of the best possible outcome. Firstly let
Rlin =

{
1
2 + i

20 |i ∈ {0, 1, . . . , 9}}
, i.e. 10 points spaced equally apart on [12 , 1].

Furthermore let Rlog =
{

10log10(
1
2 )−

i log10( 1
2 )

10 |i ∈ {0, 1, . . . , 9}
}

, i.e. 10 points in

[12 , 1] such that they are equally spaced in log-space. Pairs of reservation values
were taken from either (Rlin)2 or (Rlog)2. Again, taking pairs from these two
sets was to ensure that enough possible and impossible configurations would be
explored.

5.2 Running the Simulations

We introduced the two strategies used in this work—random sampling and
concession—and how they work under AOP back in Sect. 3. We will now first
explain how the agents adapt these strategies to function under ACOP.

The constraint-aware version of the random sampling agent will adjust the
distribution it samples from, when a new constraint is introduced so that any
assignment that has been ruled out is given probability 0. Since base random
sampling agents construct offers by independently sampling from the possible
values for each issue, an agents using ACOP can simply assign probability 0 to
the values that were ruled out, and renormalise the distribution.

The concession agent explores the negotiation space using breadth-first search
with the utility function as a heuristic. When the constraint aware version of this
agent receives a constraint, they adjust their utility function, but overwriting the
utility of the value that is being ruled out by a value that is smaller than negative
their best utility. This ensures that all offers not satisfying it will fall below the
reservation value, ensuring that they will never generate an offer that violates a
known constraint.

To summarise, for each of the configurations generated, as discussed in the
last section, 4 simulations were run, corresponding to one of the following strat-
egy and protocol pairs:

1. Random sampling using AOP.
2. Concession using AOP.
3. Random sampling using ACOP.
4. Concession using ACOP.

To ensure that the negotiations would terminate, even if the configuration
was impossible, a timeout of 400 rounds was introduced, meaning that each agent
is allowed to make at most 200 offers. After this number of offers, agents would
simply terminate the negotiation without reaching an agreement. In addition,
the random sampling agent also terminates if it cannot discover an offer that
is acceptable to themselves after 1000 samples, and the concession agent would
terminate as soon as it cannot find new offers that have a utility above the
reservation value. We chose these values as they were deemed to provide generous
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upper bounds for agents on the edge of a network. At the end of the negotiation
three variables were collected:

1. Whether the negotiation was successful.
2. How many messages were exchanged during the entire negotiation.
3. The utility achieved at the end of the negotiation by both agents.

Here the utility achieved by each of the agents was equal to the utility of the
offer that was accepted or 0 if no agreement was reached.

6 Results

6.1 Impact of Adopting ACOP on Negotiation Length

In this section, we study the impact that changing protocols, i.e., using con-
straints, has on negotiation length, keeping everything else fixed. Figure 4 plots
for each strategy the frequency of different negotiation lengths, in a logarithmic
scale.

(a) Distribution of the length of the negotiations using concession

(b) Distribution of the length of the negotiations using random

Fig. 4. A distribution plot of the length of all the negotiations simulated. Note the
logarithmic scale.
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This shows that ACOP requires substantially fewer messages than AOP on
average, evidenced by the fact that much more of the mass of the ACOP bars
is concentrated near the left in both graphs. It is worth noting that the peak at
the right of the graphs is mostly due to impossible negotiations. This solidifies
the idea that no matter the ‘difficulty’ of a negotiation, ACOP will on average
terminate faster than AOP. We will investigate whether this means that ACOP
achieves lower outcomes than AOP in the next section.

We can get a more detailed understanding of the impact of using ACOP
compared to AOP by looking at the box-plot in Fig. 5. This figure depicts the
number of messages saved by using ACOP instead of AOP in an identical con-
figuration. Here we have broken down the data by two categories: The strategy
used, and whether the configuration had a solution or not.

For the agents using a random strategy, by far the most gains were made in
the impossible configurations. Note that there are some configurations for which
ACOP performed worse than AOP, as evidenced by the lower whisker. However,
this is due to the randomness of the bidding. In these cases, the agents using
AOP were simply unable to find an offer they found acceptable themselves, and
thus terminated, while the constraints allowed the agents using ACOP to find
proposals that were acceptable to themselves and thus kept negotiating. However
we can deduce from the box plot that this is actually a relatively rare case. Even
in cases where ACOP did not save a large number of messages, it almost never
prolonged the negotiation by much if at all.

For concession agents, ACOP saved more messages when the configurations
did have a solution, meaning that ACOP allowed the concession agents to search
the negotiation space much more effectively. In the case where the configurations
were impossible, ACOP still decreased the number of messages used even if
fewer messages were saved. This is due to the fact that a lot of the impossible
negotiations still have large sets of offers that are acceptable to just one of the
agents that have to be ruled out. When considering all simulations run, we see
that ACOP saves an average of 75 messages and with a median of 8 messages
saved. Considering that the distribution of negotiation lengths is heavily skewed
towards the lower end, we consider this to be a very favourable result. With
these observations we conclude that ACOP performs at least as well as AOP
and improves upon AOP substantially in the majority of cases when considering
the length of a negotiation.

6.2 Impact of Adopting ACOP on Competitive Advantage

Before analysing the outcome of a negotiation in terms of utility two key obser-
vations need to be made. First of all, these results are highly dependent on the
range of the utility functions. Secondly, the cost that agents incur by ending a
negotiation without agreement can have a big impact on the results. The impact
of having different non-agreement costs or very different utility functions is out-
side of the scope of this work. Therefore the agents in this work did not receive
an additional penalty for failing to reach an agreement (i.e., a non-agreement was
given utility 0 for both agents) and they were all given similar utility functions
as discussed previously.
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Fig. 5. A box plot detailing the messages saved by using ACOP compared to AOP
with identical configurations.

Here we will investigate whether adopting ACOP negatively impacts the
outcome of identical negotiations in which agents use AOP. To this end we
compared the utility of the negotiations using ACOP to that of the negotiations
of the same configuration but using AOP. In Table 1 a per-strategy-breakdown
can be seen of what percentage of the negotiations using ACOP had a much
better, better, equal, worse or much worse outcome than negotiations of equal
configurations using AOP. If ACOP has a higher utility, the configuration was
classified as better. If ACOP had a utility of at least 10 higher (10% of the
theoretical maximum utility) it was classified as much better, with worse and
much worse being defined similarly in the other direction.

In this table, we can see that for the concession agent, the vast majority
of negotiations using ACOP (81.68%) had the exact same utility at the end as
a negotiation of an identical configuration using AOP. While there were some
cases in which ACOP performed slower, this happened in only roughly 3% of
all cases, and in only 0.55% was the difference in utility bigger than 10. Con-
versely, in about 15% of the cases ACOP achieved a higher utility at the end of
a negotiation, and in roughly 9% did it gain more than 10 utility above what
AOP achieved.

Looking at the percentages for the random agent, we see that while there
are more negotiations where ACOP achieves a lower utility than AOP. This
was to be expected, since agents will immediately accept any offer from the
adversary they find acceptable. Furthermore, we can see that the frequencies are
symmetrically distributed, meaning there are roughly equal numbers of config-
urations that achieved a higher utility using ACOP as there are configurations
that achieved a lower utility using ACOP. This pattern can be easily explained
by the randomness of the bidding of the agents.

With all of these observations, we conclude that using ACOP does not neg-
atively affect the outcome of the negotiations in any systematic way.
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Table 1. Table detailing the percentages of configurations broken down by strategy
and how the utility of the outcome of ACOP compared to that of AOP. Configurations
for which the difference in utility was greater than 10 would be classified as either much
better (if ACOP did better), or much worse (if AOP did better)

Strategy ACOP compared to AOP Percentage of total

Concession Much better 9.06

Better 5.88

Equal 81.68

Worse 2.82

Much worse 0.55

Random Much better 3.40

Better 27.83

Equal 38.44

Worse 27.62

Much worse 2.70

7 Conclusion

In this paper we proposed a novel extension to the Alternating Offers Proto-
col (AOP) called Alternating Constrained Offers Protocol (ACOP) which allows
agents to express constraints to the adversary along with offering counter pro-
posals. These constraints can be given to an agent apriori, or discovered using
branch-and-bound algorithms. This protocol allows agents—especially agents
deployed on low-power devices at the edge of a network—to terminate negotia-
tions faster without consistently negatively impacting the utility of the outcome,
allowing them to save bandwidth without the need to equip them with sophis-
ticated reasoning capabilities. We explored the impact that this extension has
on the length of the negotiations as well as on the utility achieved at the end of
the negotiation. We empirically showed that this extension substantially reduces
the number of messages agents have to exchange during a negotiation. When
agreement is possible, using ACOP helps agents to come to an agreement faster,
and when agreement is impossible, agents using ACOP terminate much faster
than agents using AOP both when agents adopt a probabilistic or a determinis-
tic search method. In addition, we showed that using ACOP has no systematic
negative impact on the quality of the outcome in terms of utility when compared
to the same strategies using AOP.

While the results of this work were promising, the scenarios and strategies
used to produce them were not very complex. Future work will include inves-
tigating the performance of ACOP under non-linear utility functions, and with
more sophisticated strategies and opponent models, comparing also with other
approaches for dealing for instance with fuzzy constraints [15], and with also
much larger large, non-linear agreement spaces [10]. Another avenue will be to
understand the impact of using soft constraints rather than hard ones.
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Abstract. The Automated Negotiating Agents Competition (ANAC)
is a yearly-organized international contest in which participants from all
over the world develop intelligent negotiating agents for a variety of nego-
tiation problems. To facilitate the research on agent-based negotiation,
the organizers introduce new research challenges every year. ANAC 2019
posed five negotiation challenges: automated negotiation with partial
preferences, repeated human-agent negotiation, negotiation in supply-
chain management, negotiating in the strategic game of Diplomacy, and
in the Werewolf game. This paper introduces the challenges and discusses
the main findings and lessons learnt per league.

1 Introduction

Negotiation has become a well-established research field within the area of Arti-
ficial Intelligence and multi-agent systems. The research has focused on for-
malization of negotiation process (i.e., domain and preference representation,
and protocols) and the design of intelligent negotiating agents (i.e., bidding
strategies, opponent models, and acceptance strategies) in order to automate
this complex process. Automated negotiation dates back to the 1980’s when e-
commerce took flight, see e.g., [29,37]. The field was formalized in the 1990’s
(see e.g., [34,36,38]). Over the years negotiating agents have been developed
for automated negotiation, human-agent negotiation, and negotiation support.
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In automated negotiation all negotiation parties are automated agents, while
in human-agent negotiation, some of them are human [31]. Negotiation support
agents form a team with one or more humans to play together as one negoti-
ation party in any kind of negotiation (automated, human-human, or human-
agent) [18].

With the growing number of proposed negotiation agents, the need for com-
parison and rigorous evaluation of the quality of the negotiating agents increases
as well. This led to formal evaluation metrics [12,14,21,23], the open-source
negotiation platform GENIUS to enable benchmarking [20], and in 2010 it ini-
tiated the annual ANAC (Automated Negotiation Agents Competition) [5].

The competition turned into a mechanism for the field to organize itself as the
researchers use the yearly meetings to jointly set the research agenda. Over the
years, the negotiation problems studied in the context of ANAC [3] span bilateral
[5], non-linear [2], multilateral [11], and repeated [1] negotiations. As an added
advantage, by now GENIUS holds a host of agents, negotiation domains and
preference profiles.

Since 2017, ANAC has added two new leagues: a Human-Agent league and a
league for the game Diplomacy. In the Human-Agent league, which is based on
the IAGO framework [24], agents exchange partial offers, preferential information
and through emoji’s some emotional information with their human opponents,
see e.g., [26]. In the game Diplomacy the agents have to negotiate on the basis of
heuristics, as there is no explicit utility function available [15]. In 2019, two more
leagues were added: the Supply Chain Management league (SCM) [28] and the
Werewolf League [30]. The SCM league allows researchers to study negotiation
and partner selection in a recurring setting of trade. In the Werewolf game the
essence of negotiation studied is that agents need to assess the utility functions
of the other players and convince others to play a successful voting strategy.
The challenges for the ANAC 2019 competition were as follows (organised per
league):

– Automated Negotiation Main League: preference uncertainty.
Human negotiators do not necessarily know their own utility function explic-
itly, and there are practical limits on the preference elicitation process. There-
fore, the challenge is to design an agent that can do bilateral negotiations
receiving only partial qualitative preference information.

– Human-Agent League: building cooperation. The challenge is to estab-
lish a cooperative relationship with the human participant in repeated nego-
tiations with the same human opponent. Successful agent strategies capture
human behavior. While an aggressive strategy in the first negotiation may
prove effective, it could have such a backfire effect by the last negotiation
that it is not the right choice overall.

– Diplomacy: beat the basic agent. Like last year, the challenge was to beat
the standard agent provided by the BANDANA framework. No participating
agent managed this in 2018.

– Supply Chain Management: recurrent chain negotiations. The chal-
lenges are to decide on their own utility function, when and with whom to
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negotiate and how to negotiate in a supply chain in order to maximize their
overall profit.

– The Werewolf game. The challenge for the agents is to estimate possible
allies and deceivers (estimated utility), to communicate strategy and infor-
mation to other agents, and to negotiate a voting pattern that is beneficial
to one’s own team.

This paper consists of sections for each league in which the challenges and
main competition results are discussed. The last section presents some of the
upcoming challenges.

2 Automated Negotiation Main League

There are still many open challenges for automated negotiation [6,7], such as
strategy learning, opponent recognition, domain learning, preference elicitation
and reasoning. The Automated Negotiation league in 2019, informally known as
the GENIUS league, focused on negotiating agents that receive partial prefer-
ence information. This challenge is part of the larger research problem of domain
learning and preference elicitation. The motivating idea is that when a negoti-
ating agent represents a user in a negotiation, it cannot know exactly what the
user wants due to practical limits on the preference elicitation process [4].

For ANAC 2019, the preferences of the agent were given in the form of a
ranking of a limited number of possible agreements ωi; i.e. ω1 ≤ · · · ≤ ωd. The
rankings were generated randomly from existing negotiation scenarios in which
full utility information was available from a standard additive utility function
u. Intuitively, the number of rankings d that the agent receives is inversely cor-
related to the preference uncertainty of the agent. The agent has to negotiate
based on these ordinal preference information, and if it manages to reach a cer-
tain outcome ω∗, then the score the agent receives for this agreement is based
on the original utility function, i.e., u(ω∗). An overview of this procedure is
presented in Fig. 1. In short, the agent receives ordinal information only, but is
evaluated based on the underlying cardinal ground-truth.

Table 1 shows the average individual utility and the average product of util-
ities gained by all participants in a tournament in which each agent negotiated
with all other agents five times for each negotiation scenario. When evaluating
on individual utility, AgentGG won the competition with an average of 0.76, the
agents KakeSoba and SAGA were awarded second and third place. When evalu-
ating on fairness (i.e. the product of the utilities of the negotiated agreements),
winkyAgent won the competition with an average utility of 0.56, and agents
FSEGA2019 and AgentGP were awarded second and third place respectively.

As intended, the key to win this league is for agents to predict both their
own and their opponent’s utility accurately from uncertain information. The
top agents were able to obtain high individual utilities even under high prefer-
ence certainty, using a variety of preference estimation techniques. In estimating
the preferences, the top ranking agents used techniques such as batch gradient
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Fig. 1. Uncertainty challenge in ANAC 2019

descent (e.g. winkyAgent), genetic algorithms using spearman’s rank correlation
(e.g. SAGA), and statistical frequency modelling (e.g. AgentGG).

The performance of the top ranking agents suggests that it is possible to
reconstruct enough of the true utility function based on partial information
about the ranking of a number of bids. The next question is of course, how
much partial information is required. Therefore, the ANAC community decided
to formulate the next challenge, which incentivizes agent designers to use as
little information as possible to still get good performance: next year, the agents
initially will receive very sparse preference data, and will be allowed to ask for
more preference information against an elicitation cost.

3 Human-Agent League

The human-agent league focuses on the myriad social effects present in mixed
human-agent interactions. Indeed, understanding how humans negotiate has
been a key question in business and psychological literature for many years—it is
a complex social task [19,25,32,33]. But as automated agents are used more fre-
quently in real-life applications (e.g., chatbots), we should design agents that are
capable of interacting with humans in social settings. As human-agent negotia-
tion is fundamentally different from agent-agent negotiation, the Human-Agent
League (HAL) was added in 2017 to promote research into this promising area.

HAL utilizes the IAGO Negotiation platform, which was proposed and
designed by Mell et al. [24]. IAGO provides a front-facing GUI for the human
participants. This feature allows subjects to be recruited using online platforms,
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such as Amazon’s Mechanical Turk (MTurk). Additionally, IAGO provides the
features necessary for simulating the characteristics of human negotiation. These
include an expanded set of channels for communication between both sides of
negotiation, such as by sending text, expressing preferences, and transmitting
emotions. Text is transmitted through a set of pre-selected utterances, and emo-
tions are transmitted by selecting from a variety of prototypical “emojis” within
the interface. Furthermore, IAGO allows “partial offers” (i.e., offers not contain-
ing values for all negotiation issues) and implements a flexible, human-inspired
protocol: few enforcement mechanisms for incomplete deals, and no explicit turn-
taking.

These features of IAGO mean that it provides a platform to address the basic
features that intelligent agents require to negotiate with humans. It provides
information that allows for human-opponent modeling, and for agents to pursue
more complex strategies that require specific features (such as partial offers),
and the information from the multiple channels for communication.

Results from the first and second human-agent leagues (see [25,26]) show
that while certain strategies may be effective in the short term, there is a trade-
off between agent likeability and agent success. To further examine this, the
structure of the repeated negotiations were changed.

In this year’s competition, three back-to-back negotiations were conducted.
Similar to previous competitions, the negotiation involved a 4-issue bargaining
task. Each issue could take from 4 to 8 items, e.g., offering 4 to 8 bananas.
Each of the three negotiations took up to 7 min, and a BATNA was available
for those who could not reach an agreement. Each agent negotiated against at
least 25 human participants using Amazon’s Mechanical Turk subject pool, and
those participants were subject to attention checks and filtering. All participants
were US-residing, and English-speaking. Per standard practice, incentives were
scaled with performance, so participants were encouraged to do well. Data was
collected on demographics, performance metrics, and subject-reported likeability
measures of the agent. All procedures were approved by University of Southern
California’s Institutional Review Board, including the informed consent process.

In contrast to previous years, the negotiations were not identical in structure.
Instead, while there were integrative opportunities to “grow the pie” within each
negotiation, there was a larger, cross-negotiation possibility to find integrative
potential between negotiations #1 and #3. This higher performance opportunity
is reflected in negotiation #3, where agents generally have more points due to
structural differences.

Regardless of this effect, we did find a variety of performance differences
across the submitted agents. In particular, we had two standout agents in terms
of performance: agents Dona and Draft (See Fig. 2). The Draft Agent was sub-
mitted by Bohan Xu, Shadow Pritchard, James Hale, & Sandip Sen from the
University of Tulsa, while the Dona Agent was submitted by Eden Shalom Erez,
Inon Zuckerman, and Galit Haim of Ariel University and The College of Manage-
ment Academic Studies. These agents took unique approaches to the challenges
of negotiation by making agents be guided by the “meta-rules” of negotiation.
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Table 1. Results of automated negotiation league

Individual utility Nash product

Agent � Mean � Mean

AgentGG 1 0.7574 5 0.5398

AgentGP 10 0.6948 3 0.546

AgentLarry 15 0.5984 11 0.5082

AgentPeraltaV2 18 0.5528 17 0.4012

AuthenticAgent 20 0.3882 20 0.1947

dandikAgent 9 0.6995 13 0.4628

EAgent 14 0.6553 16 0.4286

FSEGA2019 8 0.7002 2 0.5495

GaravelAgent 13 0.6571 15 0.4365

Gravity 17 0.5782 18 0.361

Group1 BOA 11 0.6927 6 0.5392

HardDealer 5 0.7245 9 0.5172

IBasic 21 0.32 21 0.136

KAgent 16 0.5943 14 0.4569

KakeSoba 2 0.7433 7 0.5259

MINF 4 0.728 10 0.5133

SACRA 19 0.4901 19 0.3166

SAGA 3 0.7315 4 0.5423

SolverAgent 6 0.7126 8 0.5257

TheNewDeal 12 0.6863 12 0.4873

winkyAgent 7 0.7093 1 0.5625

Dona agent customized the interface to instruct the user to answer questions
using the emoji buttons. Draft agent enforced strict protocols for the humans
to follow; it required human participants to describe their preferences in a set
order. The success of these agents speaks to the importance of setting a clear
protocol in negotiations that cannot be manipulated by the agents. Furthermore,
we learned that humans are inclined to adhere to changes in protocol made by
their automated counterparts.

For the next Human-Agent competition, we have decided to adapt the task
beyond the 2019 competition. Firstly, while the novelty of the agents that mod-
ified the interface led to some unexpected yet interesting results, we will be
returning to a competition in which the interface protocols are set at the begin-
ning of the interaction. The lessons learned from this competition have led to
new insights in UI design which have been integrated into the IAGO platform.
Secondly, we will be allowing the human users to set their own preferences in the
negotiation. This is both more realistic to the real world, and will also ensure
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that the agent designers have to contend with a set of potential negotiation struc-
tures. We hope that this next competition will continue to push the envelope in
designing more realistic and useful social agents.

Fig. 2. Total agent score (summed over all negotiations)

4 The Diplomacy League

Diplomacy [9] is a deterministic board game for seven players, with no hidden
information. It is designed such that players need to form coalitions and nego-
tiate with each other. The interesting aspect of Diplomacy as a test case for
Automated Negotiations is that there is no explicit formula to calculate utility
values. Just as in games like Chess or Go, it is simply too complex to calculate
such values exactly, so agents have to apply heuristics to estimate the values
of their deals. Although Diplomacy has been under attention of the Automated
Negotiations community for a long time [8,10,17,22,35], to date few successful
negotiating Diplomacy players have been developed.

In the previous two editions of the ANAC Diplomacy League ANAC [15]
none of the submitted agents was able to beat the challenge and outperform even
a non-negotiating agent. Therefore, we decided to make the challenge slightly
easier by making sure that negotiating agents were always assigned to ‘Powers’
that are known to work well together [15]. Other than this, the setup of the 2019
competition was kept practically identical to the previous years.

Participants had to implement a negotiation algorithm on top of the existing
D-Brane agent [17], which by itself does not negotiate. Negotiations took place
under the Unstructured Negotiation Protocol [16]. The competition consisted of
two rounds. In Round 1, each agent only played against three copies of itself
and three non-negotiating instances of D-Brane, while in Round 2, all submitted
agents played against each other. In order to beat the challenge, an agent had to
satisfy two criteria: it would have to outperform the non-negotiating D-Branes
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in Round 1, as well as beat all opponents in Round 2. In case no agent was able
to beat the challenge (as in previous years) the Backup Rule would come into
effect, which states that the agent that made the most proposals in Round 2
that were eventually accepted by other agents would be declared the winner.

The competition received five submissions. Unfortunately, none of them was
able to outperform D-Brane in Round 1 (Table 2). This suggests that the agents
were not cooperative enough to be able to strike a good deal even when their
opponents are identical to themselves. On the plus side, in Round 2 we did
see that for the first time in the history of the ANAC Diplomacy league one
agent, namely Oslo A, by Liora Zaidner et al., was able to clearly outperform
all other agents (Table 3). However, according to the rules of the competition it
was Saitama, by Ryohei Kawata that was declared to be the winner, by virtue
of the Backup Rule (Table 4).

Table 2. Results of round 1. None of the agents outperformed D-Brane

Agent Score Result

D-Brane 15.15

Saitama 14.75 FAIL

Oslo A 14.62 FAIL

DipBrain 14.56 FAIL

Biu3141 14.48 FAIL

BackstabAgent 14.47 FAIL

Table 3. Results of round 2. Oslo A outperforms all other agents, and is the only one
that outperforms the non-negotiating D-Brane. Biu3141 could not participate in this
round because it was too slow. GamlBot and M@stermind are submissions from previous
years that were added to complete the field.

Agent Score

1 Oslo A 6.68 ± 0.31

D-Brane 5.56 ± 0.27

2 DipBrain 5.06 ± 0.24

3 Saitama 4.88 ± 0.23

GamlBot 4.79 ± 0.21

4 BackstabAgent 4.20 ± 0.25

M@sterMind 2.83 ± 0.17

Analyzing the source code of Oslo A we noticed that its bidding strategy was
surprisingly simple. At the beginning of each round it simply asks the underlying
D-Brane module which moves it would make if no agreements are made. Then, for
each of these moves, it asks the other players to support those moves. The authors
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Table 4. Results according to the Backup Rule. This table displays the number of
proposals proposed by each agent in Round 2 that were eventually accepted by the
other agents. Saitama was declared the winner.

Agent Accepted proposals

1 Saitama 9091

2 BackstabAgent 6585

3 Oslo A 4393

4 DipBrain 4373

also intended their agent to react to incoming proposals by either accepting them
or making counter proposals, but due to bugs in the code, these components did
not work. This also explains why Oslo A failed in Round 1: if all players are
copies of Oslo A then no proposal is ever accepted, so no deals are made at all.

From this competition (as well as its predecessors in 2017 and 2018) we
learn that it is still very hard to implement successful negotiation algorithms for
domains as complex as Diplomacy. So far, no submission has been able to beat
the challenge. Specifically, we make the following observations:

1. Most agents never make any proposals for any of the future turns. They only
make proposals for the current turn.

2. Many agents do not outperform the non-negotiating D-Brane, or even score
worse. This means that the deals they make often have a detrimental effect.

3. Many of the agents seem to have bugs in their code.

Regarding the first point, we remark that in Diplomacy it is essential to plan
several steps ahead, because it does not often occur that two players can both
directly benefit from cooperation. Players should therefore be willing to help
another player while only expecting the favor to be returned at a later stage.
However, most submissions do not seem to exhibit this behavior. The second
point might explain the success of Oslo A. After all, this agent only asked the
other agents to support the orders that it was already going to make anyway.
Therefore, its agreements can never have any detrimental effect. Furthermore,
these observations suggest that Diplomacy is so complex that it requires a long
time to design sophisticated agents for the game. This may explain that within
the design time given in the ANAC competition, none of the participating teams
managed to develop an agent that can beat D-Brane.

5 The Werewolf League

Werewolf, also known as Mafia, is a communication game where an uninformed
majority team (the village) plays against an informed minority team (the were-
wolves). The goal of the game is to eliminate all players from the opposing team
through a voting process: at each turn, the players must agree on one player to
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eliminate. This takes the shape of a discussion, followed by a vote, and a simple
majority eliminates one player from the game.

From an Automated Negotiation point of view, the challenge for an agent
in Werewolf is to successfully engage in coalition-building. In other words, the
agent must identify other players in the game that share the same utility values
as itself, at the same time that it must avoid deceitful agents. This requires
the agent to communicate its own utility to the other agents, and engage in
discussion to obtain the necessary information.

In the past six years, the AIWolf Project has proposed the Werewolf game
as a benchmark for AI research [39] and organized four national competitions
on the game. Compared to other AI benchmark games such as Go, Starcraft or
Poker, Werewolf is unique in that the communication between agents is the key
skill that must be mastered to obtain high levels of play. A successful Werewolf
agent must be able to build a model of the other players’ beliefs, identify allied
players, and exchange this information through communication [13].

The 2019 Automated Negotiating Agents Competition was the first time that
the AIWolf Project competition was held for an international audience. The
participants were tasked to implement an agent capable of playing the Werewolf
game against other automated players. The interaction of the agents is governed
by a communication protocol1. This protocol uses a formal grammar, a fixed set
of keywords, basic logic and causal expressions [30]. The keywords enable the
players to express intent, beliefs about the game state, requests for information,
and requests for action. For example, to express the following sentence:
“I vote for agent 3 because agent 3 did not vote for agent 4, and agent 4 was a
werewolf”,

An agent would have to use the following protocol sentence:
BECAUSE (AND (NOT <agent3> VOTE <agent4>)

(COMINGOUT <agent4> <werewolf>))
(VOTE <agent3>)

The competition happens in two stages. In the preliminary stage, all agents
play in a large number of trials. Each trial is composed of one hundred 15-player
games, where the players are chosen randomly from the competition pool, and
the roles are also distributed randomly. These trials are repeated until all agents
have played a minimum number of games. The agents are ranked by their victory
rate, and the 15 highest agents advance to the next stage. In the finalist stage,
the participating design teams are allowed to modify their agents and submit
source code and a description document. Then, the agents play several games
against each other in 15-player games. The agent with the highest victory rate
is declared the winner of the competition.

A total of 94 people registered to the competition, and 74 submitted agents.
Out of those agents, 43 were disqualified due to bugs. Many of these disqualified
competitors submitted a single version of their agents, which indicates that they
did not review their agent based on the feedback from the testing server. Among
the 15 finalists, 8 submitted agents in Java, 6 in Python, and 1 in C-Sharp. The

1 AIWolf Protocol Version 3.6.
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winning agent, “Takeda”, had a 0.6 overall win rate, and a 0.68 villager win rate.
Two of the finalists had to be disqualified due to bugs in their code.

Most of the finalist agents were forks of the agents that won the 4th Japanese
AIWolf competition. Here we highlight the “Fisherman” agent, which used three
different winners from the previous competition as basis, and chose which winner
to play based on a multi-armed bandit strategy. Five agents, including the grand
winner “Takeda”, used some form of machine learning to estimate the team
allegiance of the other players. The other nine agents used hand-crafted scripts
to define the actions of the agents. Among these hand crafted rules, we highlight
trying to remove agents with the highest or lowest winning rate on previous
game, and rules for estimating the best timing for revealing role information.

We were satisfied with the high number of participants in this competition.
However, the large number of disqualified agents shows that there is still a lot
of work necessary in providing good quality English translations of the reference
materials in Japanese, as well as better guidance on the use of the training
server. In fact, all of the 15 finalists were from Japanese institutions, indicating
that much work needs to be done for the internationalization of the Werewolf
competition.

Regarding the strategies of the finalist agents, this year’s protocol had many
new features compared to last year’s competition, in particular the introduction
of logical and causal statements to the communication protocol. However, none
of the winning agents made heavy use of these new features. In fact, it seems that
the current winning strategy is to fine tune the ability of the agent to estimate
the role of the other players based on their output, with very little back and forth
happening between the players. This indicates that the best agents in werewolf
are stuck in “wait and detect” local optima for their strategy. We hope that
participants in future competition will find ways to exploit this fixed strategy.

With this in mind, the ANAC 2020 werewolf challenge will focus on refin-
ing the development environment by providing more documentation, example
code, and tools, so that the participants can spend less time finding bugs in
their agents, and more time developing interesting and diverse strategies for the
Werewolf game.

6 Supply Chain Management

The SCM league models a real-world scenario characterized by profit-maximizing
agents that inhabit a complex, dynamic, negotiation environment [28]. A distin-
guishing feature of the SCM league is the fact that agents’ utility functions
are endogenous. The agents are responsible for devising their utilities for vari-
ous possible agreements, given their unique production capabilities, and then to
negotiate with other agents to contract those that are most favorable to them.

The world modeled by SCML2019 consists of four types of entities: factories,
miners, consumers, and an insurance company. In more detail:

Factories. Entities that convert raw materials and intermediate products into
intermediate and final products by running their manufacturing processes.
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Different factories are endowed with different capabilities, specified as private
production profiles, known only to the factory’s manager.

Miners. Facilities capable of mining raw materials as needed to satisfy their
negotiated contracts. Miners act only as sellers in the SCM world.

Consumers. Companies interested in consuming a subset of the final prod-
ucts to satisfy some predefined consumption schedule. Consumers act only as
buyers in the SCM world.

Insurance Company. A single insurance company that can insure buyers
against breaches of contract committed by sellers, and vice versa.

Fig. 3. SCML Organization. Factory managers controlled by participants negotiate
with each other and the organization-committee provided miners, consumers and fac-
tory mangers.

In the SCM world, each type of entity is run by a manager agent. The
organizing committee provided manager agents for miners, consumers, and the
insurance company. Figure 3 shows the organization of SCML. The organizing
committee provided a description of the behavior of these agents, including the
miners’ and consumers’ (exact) utility functions, the factory managers’ schedul-
ing algorithm, and an estimation method for the factory managers’ utility func-
tions to all participants [28]. The simulation used NegMAS as the negotiation
platform [27].

The committee also provided a default agent: i.e., a greedy factory manager,
instances of which participated in the competition to ensure sufficiently many
trading opportunities. The goal of each factory manager agent is to accrue as
much wealth (i.e., profit) as possible.

Participants needed to write and submit code (in Java or Python) for an
autonomous agent that acts as a factory manager trying to maximize its total
profit on multiple simulations with varying world configurations.
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The competition was conducted in three tracks: basic, collusion and sabotage.
In the basic and collusion tracks, agents were tasked with maximizing their own
profit. In the sabotage track, they were tasked with minimizing everyone else’s
profits. The difference between the basic and collusion tracks is that in the former
at most one instance of every submitted agent was running in any simulation. In
the collusion tracks, participants were encouraged to find ways for their agents
to collude together to maximize their profit (e.g. by cornering the market). The
sabotage track was introduced to find problems in the league design that could
be exploited to block trade in the market.

After disqualifying agents that did not conform to the rules of the competi-
tion, six agents ran in the basic and collusion tracks and two agents ran in the
sabotage competition.

7 Future Directions

This paper presents the challenges and discusses the results of the competition
leagues. Future directions for research are determined by the participants in
ANAC’s leagues after the lessons learned have been shared. These directions per
league are as follows.

For the Automated Negotiation Main league, the challenge for 2020 is to
design a negotiating agent that can elicit preference information from a user
during the negotiation. The idea is that when a negotiating agent represents a
user in a negotiation, it does not know exactly what the user wants, and therefore
the agent needs to actively improve its user model through a preference elicita-
tion process. To improve the user model, the agent may elicit further information
about the ranking against an elicitation cost.

For Diplomacy, we have concluded that the challenge requires a long-time
effort beyond the possibilities for the current competitors, which may also explain
the low number of competitors. Therefore, we decide to discontinue this league
for the time being.

For the Werewolf league, we will focus in providing a more complete suite of
manuals and sample code to participants, and extend the communication with
organizers during the initial agent testing phase, with the objective of reducing
the number of agents rejected due to bugs and crashes.

For the next Human-Agent competition, we have decided to continue to
expand the problem by allowing human users to specify their own preferences.
We hope this may help increase participant investment in the scenario, as well
as encourage agent designers to respond to a variety of negotiation structures.

For the SCM league, we plan to strengthen the competition while reducing its
complexity. This will be achieved by removing the insurance company, avoiding
any sources of external funds from being inducted into the system, removing
built-in agents from the simulation, having a larger variety of built-in agents and
decomposing the agent into easy to manage components allowing participants
to focus all of their efforts on the main challenge of situated negotiation.
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Abstract. We consider social dynamics determined by voting in a
stochastic environment with qualified majority rules for homogeneous
society consisting of classically rational economic agents. Proposals are
generated by means of random variables in accordance with the ViSE
model. In this case, there is an optimal, in terms of maximizing the
agents’ expected utility, majority threshold for any specific environment
parameters. We obtain analytical expression for this optimal threshold
as a function of the parameters of the environment and specialize this
expression for several distributions. Furthermore, we compare the rela-
tive effectiveness of the optimal and simple (with the threshold of 0.5)
majority rule.
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1 Introduction

Collective decisions are often made based on a simple majority rule or qualified
majority rules. A certain proportion of voters (more than 0.5 in case of the sim-
ple majority rule) must support an alternative for its approval. Society chooses
from two alternatives (status quo and reform) in the simplest case. We focus on
the iterated game where reforms may be beneficial for some participants and
disadvantageous for others in order to reveal whether qualified majority rules
surpass the simple one in dynamics. The study may be applicable to optimize
the work of local governments, senates, councils, etc.

1.1 The Model

We use the ViSE (Voting in a Stochastic Environment) model proposed in [5].
It describes a society that consists of n economic agents. Each agent is charac-
terized by the current value of individual utility. A proposal of the environment
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is a vector of proposed utility increments of the agents. It is stochastically gen-
erated by independent identically distributed random variables. The society can
accept or reject each proposal by voting. If the proportion of the society support-
ing this proposal is greater than a strict relative voting threshold α ∈ [0, 1],
then the proposal is accepted and the participants’ utilities are incremented in
accordance with this proposal. Otherwise, all utilities remain unchanged1. The
voting threshold (quota) α can also be called the majority threshold or the
acceptance threshold, since α < 0.5 (minority) is allowed and sometimes more
effective. After accepting/rejecting the proposal, the environment generates a
next one and puts it to a general vote over and over again.

Each agent chooses some cooperative or non-cooperative strategy. An agent
that maximizes his/her individual utility in every act of choice will be called
an egoist. Each egoist votes for those and only those proposals that increase
their individual utility. Cooperative strategies where each member of a group
votes “for” if and only if the group gains from the realization of this proposal
(the so-called group strategies) are considered in [5]. The key theorems showing
how the utility increment of an agent depends on the mentioned strategies and
environmental parameters are obtained in [6]. The case of gradual dissemina-
tion of group strategy to all egoists is presented in [7]. In [13], a modification
of the group strategy by introducing a “claims threshold,” i.e., the minimum
profitability of proposals the group considers acceptable for it, is examined. The
agents that support the poorest strata of society or the whole society are called
altruists (they were considered in [9]).

1.2 Related Work and Contribution

The subject of the study is the dynamics of the agents’ utilities as a result of
repeated voting.

There are several comparable voting models. Firsts, a similar dynamic model
with individual utilities and majority voting has been proposed by A. Malishevski
and presented in [14], Subsection 1.3 of Chap. 2. It allows one to show that a
series of democratic decisions may (counterintuitively) systematically lead the
society to the states unacceptable to all the voters.

Another model with randomly generated proposals and voting was presented
in [10]. The main specificity of this model is in a discount factor that reduces
utility increment for every rejection. This factor makes the optimal quota lower
to speed up decision-making.

Unanimity and simple majority rule (which are special cases of majority rule)
are considered in [3]. In this paper agents are characterized by competence (the
likelihood of choosing a proposal that is beneficial to all agents). Earlier in [2]
the validity of the optimal qualified majority rule under subjective probabilities
was studied within the same model.

An interesting model with voting and random agent types was studied in [1].
If we consider environment proposals (in the ViSE model) as agent types in the

1 This voting procedure called “α-majority” is also considered in [11,15–17].
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model of [1] and are limited to qualified majority rules, then we get the same
models.

Another model whose simplest version is very close to the simplest version
of the ViSE model was studied in [4]. The “countries” of n agents with rep-
resentatives and two-stage voting (a representative aggregates agents’ opinions
and representatives’ choices are aggregated on the second stage) is considered.
If each country consists of 1 agent, the agent’s strategy is the first voting, and
the second voting is “α-majority”, then the models coincide.

On other connections between the ViSE model and comparable models, we
refer to [9].

In this paper, we show that when all agents are classically rational, then
there is an optimal, in terms of maximizing the agents’ expected utility, accep-
tance threshold (quota) for any specific stochastic environment. Furthermore, we
focus on four families of distributions: continuous uniform distributions, normal
distributions (cf. [8]), symmetrized Pareto distributions (see [9]), and Laplace
distributions.

Each distribution is characterized by its mathematical expectation, μ, and
standard deviation, σ. The ratio σ/μ is called the coefficient of variation of a
random variable. The inverse coefficient of variation ρ = μ/σ, which we call
the adjusted mean of the environment, measures the relative favorability of
the environment. If ρ > 0, then the environment is favorable on average; if
ρ < 0, then the environment is unfavorable. We investigate the dependence of
the optimal acceptance threshold on ρ for several types of distributions and
compare the expected utility increase of an agent when society uses the simple
majority rule and the optimal one.

2 Optimal Acceptance Threshold

2.1 A General Result

The optimal acceptance threshold solves one serious problem of simple majority
rule that can be revealed from the dependence of the expected utility increment
of an agent on the adjusted mean ρ of the environment [8].

Consider an example. The dependence of the expected utility increment on
ρ = μ/σ for 21 participants and α = 0.5 is presented in Fig. 1, where proposals
are generated by the normal distribution.

Figure 1 shows that for ρ ∈ (−0.85,−0.266), the expected utility increment
is a negative value, i.e., proposals approved by the majority are unprofitable for
the society on average. This part of the curve is called a “pit of losses.” For
ρ < −0.85, the negative mean increment is very close to zero, since the proposals
are extremely rarely accepted.

Let ζ = (ζ1, . . . , ζn) denote a random proposal on some step. Its component ζi

is the proposed utility increment of agent i. The components ζ1, . . . , ζn are inde-
pendent identically distributed random variables. ζ will denote a similar scalar
variable without reference to a specific agent. Similarly, let η = (η1, . . . , ηn) be
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Fig. 1. Expected utility increment of an agent: 21 agents; α = 0.5; normal distribution.

the random vector of actual increments of the agents on the same step. If ζ is
adopted, then η = ζ; otherwise η = (0, . . . , 0). Consequently,

η = ζI(ζ, αn), (1)

where2

I(ζ, αn) =

{
1, #{k : ζk > 0, k = 1, ..., n} > αn

0, otherwise.
(2)

Equation (1) follows from the assumption that each agent votes for those and
only those proposals that increase his/her individual utility.

Let η be a random variable similar to every ηi, but having no reference to a
specific agent. We are interested in the expected utility increment of an agent,
i.e. E(η), where E(·) is the mathematical expectation.

For each specific environment, there is an optimal acceptance threshold3 α0

that provides the highest possible expected utility increment E(η) of an agent.
The optimal acceptance threshold for the normal distribution as a function

of the environment parameters has been studied in [8]. This threshold turns out
to be independent of the size of the society n.
2 #X denotes the number of elements in the finite set X.
3 See [1,15] on other approaches to optimizing the majority threshold and [18,19] for

a discussion of the case of multiple voting in this context.
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The following theorem, proved in [12], provides a general expression for the
optimal voting threshold, which holds for any distribution that has a mathemat-
ical expectation.

Theorem 1. In a society consisting of egoists, the optimal acceptance threshold
is

α0 =
(

1 +
E+

E−

)−1

, (3)

where E− =
∣∣E(ζ | ζ ≤ 0)

∣∣, E+ = E(ζ | ζ > 0), and ζ is the random variable
that determines the utility increment of any agent in a random proposal.

Voting with the optimal acceptance thresholds always yields positive
expected utility increments and so it is devoid of “pits of losses.”

Let ᾱ0 be the center of the half-interval of optimal acceptance thresholds for
fixed n, σ, and μ. Then this half-interval is [ᾱ0 − 1

2n , ᾱ0 + 1
2n ). Figures 2 and

3 show the dependence of ᾱ0 on ρ = μ/σ for normal and symmetrized Pareto
distributions used for the generation of proposals.

For various distributions, outside the segment ρ ∈ [−0.7, 0.7], if an accep-
tance threshold is close to the optimal one and the number of participants is
appreciable, then the proposals are almost always accepted (to the right of the
segment) or almost always rejected (to the left of this segment). Therefore, in
these cases, the issue of determining the exact optimal threshold loses its prac-
tical value.

2.2 Proposals Generated by Continuous Uniform Distributions

Let −a < 0 and b > 0 be the minimum and maximum values of a continuous
uniformly distributed random variable, respectively.

Corollary 1. The optimal majority/acceptance threshold in the case of propos-
als generated by the continuous uniform distribution on the segment [−a, b] with
−a < 0 and b > 0 is

α0 =
(

1 +
b

a

)−1

. (4)

Indeed, in this case, E− = a
2 , E+ = b

2 , and R = b
a , hence, (3) provides (4).

If b approaches 0 from above, then α0 approaches 1 from below, and the
optimal voting procedure is unanimity. Indeed, positive proposed utility incre-
ments become much smaller in absolute value than negative ones, therefore, each
participant should be able to reject a proposal.

As −a approaches 0 from below, negative proposed utility increments become
much smaller in absolute value than positive ones. Therefore, a “coalition” con-
sisting of any single voter should be able to accept a proposal. In accordance
with this, the optimal relative threshold α0 decreases to 0.
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Corollary 2. In terms of the adjusted mean of the environment ρ = μ/σ, it
holds that for the continuous uniform distribution,

α0 =

⎧⎪⎪⎨
⎪⎪⎩

1, ρ ≤ −√
3,

1
2

(
1 − ρ√

3

)
, −√

3 < ρ <
√

3,

0, ρ ≥ √
3.

(5)

This follows from (4) and the expressions μ = −a+b
2 and σ = b+a

2
√
3
. It is worth

mentioning that the dependence of α0 on ρ is linear, as distinct from (4).

2.3 Proposals Generated by Normal Distributions

Fig. 2. The center ā0 of the half-interval of optimal majority/acceptance thresholds
(a “ladder”) for n = 21 and the optimal threshold (6) as functions of ρ for normal
distributions.

For normal distributions, the following corollary holds.

Corollary 3. The optimal majority/acceptance threshold in the case of propos-
als generated by the normal distribution with parameters μ and σ is

α0 = F (ρ)
(

1 − ρF (−ρ)
f(ρ)

)
, (6)

where ρ = μ/σ, while F (·) and f(·) are the standard normal cumulative distri-
bution function and density, respectively.



388 V. Malyshev

Corollary 3 follows from Theorem 1 and the facts that E− = −σ
(
ρ − f(ρ)

F (−ρ)

)
and E+ = σ

(
ρ + f(ρ)

F (ρ)

)
, which can be easily found by integration. Note that

Corollary 3 strengthens the first statement of Theorem 1 in [8].
Figure 2 illustrates the dependence of the center of the half-interval of optimal

majority/acceptance thresholds versus ρ = μ/σ for normal distributions in the
segment ρ ∈ [−2.5, 2.5].

We refer to [8] for some additional properties (e.g., the rate of change of the
optimal voting threshold as a function of ρ).

2.4 Proposals Generated by Symmetrized Pareto Distributions

Fig. 3. The center ā0 of the half-interval of optimal majority/acceptance thresholds
(a “ladder”) for n = 131 (odd) and the optimal threshold (7) as functions of ρ for
symmetrized Pareto distributions with k = 8.

Pareto distributions are widely used for modeling social, linguistic, geophysical,
financial, and some other types of data. The Pareto distribution with positive
parameters k and a can be defined by means of the function P{ξ > x} =

(
a
x

)k
,

where ξ ∈ [a,∞) is a random variable.
The ViSE model normally involves distributions that allow both positive

and negative values. Consider the symmetrized Pareto distributions (see [9]
for more details). For its construction, the density function f(x) = k

x

(
a
x

)k of the
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Pareto distribution is divided by 2 and combined with its reflection w.r.t. the
line x = a.

The density of the resulting distribution with mode (and median) μ is

f(x) =
k

2a

( |x − μ|
a

+ 1
)−(k+1)

.

For symmetrized Pareto distributions with k > 2, the following result holds
true.

Corollary 4. The optimal majority/acceptance threshold in the case of propos-
als generated by the symmetrized Pareto distribution with parameters μ, σ, and
k > 2 is

α0 =
1
2

(
1 + sign(ρ)

1 − (k − 2)ρ̂ − (1 + ρ̂)−k+1

1 + kρ̂

)
(7)

where ρ = μ
σ , C =

√
(k−1)(k−2)

2 = a
σ , and ρ̂ = |ρ/C| = |μ/a|.

Corollary 4 follows from Theorem 1 and the facts (their proof is given below)
that:

E− = σ
(

C+ρ
k−1

)
, E+ = σ

1− 1
2 ( C

C+ρ )k

(
ρ +

(
C

C+ρ

)k
C+ρ

2(k−1)

)
whenever μ > 0;

E− = − σ

1− 1
2 ( C

C−ρ )k

(
ρ −

(
C

C−ρ

)k
C−ρ

2(k−1)

)
, E+ = σ

(
C−ρ
k−1

)
whenever μ ≤

0.
The “ladder” and the optimal acceptance threshold curve for symmetrized

Pareto distributions are fundamentally different from the corresponding graphs
for the normal and continuous uniform distributions. Namely, α0(ρ) increases in
some neighborhood of ρ = 0.

As a result, α0(ρ) has two extremes. This is caused by the following pecu-
liarities of the symmetrized Pareto distribution: an increase of ρ from negative
to positive values decreases E+ and increases E−. By virtue of (3), this causes
an increase of α0.

This means that the plausible hypothesis about the profitability of the voting
threshold raising when the environment becomes less favorable (while the type
of distribution and σ are preserved) is not generally true. In contrast, for sym-
metrized Pareto distributions, it is advantageous to lower the threshold whenever
a decreasing ρ remains close to zero (an abnormal part of the graph).

Figure 3 illustrate the dependence of the center of the half-interval of optimal
voting thresholds versus ρ = μ/σ for symmetrized Pareto distributions with
k = 8.

2.5 Proposals Generated by Laplace Distributions

The density of the Laplace distribution with parameters μ (location parameter)
and λ > 0 (rate parameter) is

f(x) =
λ

2
exp (−λ|x − μ|).
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For Laplace distributions, the following corollary holds.

Corollary 5. The optimal majority/acceptance threshold in the case of propos-
als generated by the Laplace distribution with parameters μ and λ is

α0 =
1
2

(
1 + sign(ρ)

1 − β − exp (−β)
1 + β

)
, (8)

where β = |λμ| = |λσρ| = |√2ρ|.
Corollary 5 follows from Theorem 1 and the facts (their proof is similar to

the proof of Corollary 4) that:

E− = 1
λ , E+ = 2μ+ e−λμ

λ

2−e−λμ whenever μ > 0;

E− = − 2μ− eλμ

λ

2−eλμ , E+ = 1
λ whenever μ ≤ 0.

In Lemma 3 of [9] , it was proved that the symmetrized Pareto distribution
with parameters k, μ, and σ tends, as k → ∞, to the Laplace distribution with
the same mean and standard deviation.

2.6 Proposals Generated by Logistic Distributions

The density of the logistic distribution with parameters μ (location parameter)
and s > 0 (scale parameter) is

f(x) =
1
4s

sech2

(
x − μ

2s

)
.

For logistic distributions, the following corollary holds.

Corollary 6. The optimal majority/acceptance threshold in the case of propos-
als generated by the logistic distribution with parameters μ and s is

α0 =

(
1
2 + 1

2 tanh
(

μ
2s

)) (
s ln 2 + s ln

(
cosh

(
μ
2s

)) − μ
2

)
s ln 2 + s ln

(
cosh

(
μ
2s

)) − μ
2 tanh

(
μ
2s

) . (9)

Corollary 6 follows from Theorem 1 and the facts, which can be easily found
by integration, that:

E− =
s ln 2+s ln (cosh ( μ

2s ))− μ
2

( 1
2− 1

2 tanh ( μ
2s ))

, E+ =
s ln 2+s ln (cosh ( μ

2s ))+μ
2

( 1
2+

1
2 tanh ( μ

2s ))
.

We summarize the results of the above corollaries in Tables 1 and 2.

3 Comparison of the Expected Utility Increments

By a “voting sample” of size n with absolute voting threshold n0 we mean the
vector of random variables (ζ1I(ζ, n0), . . . , ζnI(ζ, n0)), where ζ = (ζ1, . . . , ζn) is
a sample from some distribution and I(ζ, n0) is defined by (2).

According to this definition, a voting sample vanishes whenever the number
of positive elements of sample ζ does not exceed the threshold n0.

The lemma on “normal voting samples” obtained in [6] can be generalized
as follows.
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Table 1. Probabilities of positive and negative proposals for several distributions.

Distribution Parameters p q

Continuous uniform distribution −a < 0, b > 0 b
a+b

a
a+b

Normal distribution μ, σ F (ρ) F (−ρ)

Symmetrized Pareto distr.
(μ > 0)

k > 2, μ, σ 1 − 1
2

(
C

C+ρ

)k
1
2

(
C

C+ρ

)k

Symmetrized Pareto distr.
(μ ≤ 0)

k > 2, μ, σ 1
2

(
C

C−ρ

)k

1 − 1
2

(
C

C−ρ

)k

Laplace distribution (μ > 0) μ, λ 1 − 1
2
e−λμ 1

2
e−λμ

Laplace distribution (μ ≤ 0) μ, λ 1
2
eλμ 1 − 1

2
eλμ

Logistic distribution μ, s 1
2

+ 1
2

tanh
(

μ
2s

)
1
2

− 1
2

tanh
(

μ
2s

)

where C =
√

(k−1)(k−2)
2

, ρ = μ/σ, while F (·) is the standard normal cumulative

distribution function.

Table 2. Expected win and loss for several distributions.

Distribution Parameters E+ E−

Continuous uniform
distribution

−a < 0, b > 0 b
2

a
2

Normal distribution μ, σ μ + σ f(ρ)
F (ρ)

−μ + σ f(ρ)
F (−ρ)

Symmetrized Pareto
distr. (μ > 0)

k > 2, μ, σ σ
p

(
ρ + q C+ρ

k−1

)
σ

(
C+ρ
k−1

)

Symmetrized Pareto
distr. (μ ≤ 0)

k > 2, μ, σ σ
(

C−ρ
k−1

)
−σ

q

(
ρ − pC−ρ

k−1

)

Laplace distribution
(μ > 0)

μ, λ 1
p

(
μ + e−λμ

2λ

)
1
λ

Laplace distribution
(μ ≤ 0)

μ, λ 1
λ

− 1
q

(
μ − eλμ

2λ

)

Logistic distribution μ, s
s ln 2+s ln (cosh ( μ

2s ))+ μ
2

p

s ln 2+s ln (cosh ( μ
2s ))− μ

2
q

where C =
√

(k−1)(k−2)
2

, ρ = μ/σ, while F (·) and f(·) are the standard normal

cumulative distribution function and density, respectively; p and q are presented in
the corresponding rows of Table 1.

Lemma 1. Let η = (η1, . . . , ηn) be a voting sample from some distribution with
an absolute voting threshold n0. Then, for any k = 1, ..., n,

E(ηk) =
n∑

x=n0+1

(
(E+ + E−)

x

n
− E−

)(
n
x

)
pxqn−x, (10)

where E− =
∣∣E(ζ | ζ ≤ 0)

∣∣, E+ = E(ζ | ζ > 0), p = P{ζ > 0} = 1 − F (0), q =
P{ζ ≤ 0} = F (0), ζ is the random variable that determines the utility incre-
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ment of any agent in a random proposal, and F (·) is the cumulative distribution
function of ζ.

In [9], the issue of correct location-and-scale standardization of distributions
for the analysis of the ViSE model has been discussed. An alternative (compared
to using the same mean and variance) approach to standardizing continuous
symmetric distributions was proposed. Namely, distributions similar in position
and scale must have the same μ and the same interval (centered at μ) containing a
certain essential proportion of probability. Such a standardization provides more
similarity in the central region and the same weight of tails outside this region.

In what follows, we apply this approach for the comparison of the expected
utility for several distributions. Namely, for each distribution, we find the vari-
ance such that the first quartiles (and thus, all quartiles because the distributions
are symmetric) coincide for zero mean distributions, where the first quartile, Q1,
splits off the “left” 25% of probability from the “right” 75%.

For the normal distribution, Q1 ≈ −0.6745σN , where σN is the standard
deviation.

For the continuous uniform distribution, Q1 = −
√
3
2 σU , where σU is its stan-

dard deviation.
For the symmetrized Pareto distribution, Q1 = C(1 − 2

1
k )σP , where σP is

the standard deviation and C =
√

(k−1)(k−2)
2 . This follows from the equation

FP (Q1) =
1
2

(
C

C − Q1
σP

)k

=
1
4
,

where FP (·) is the corresponding cumulative distribution function.
For the Laplace distribution, Q1 = − ln 2

λ = −σL
ln 2√

2
, where σL is the standard

deviation.
For the logistic distribution, Q1 = −2

√
3

π tanh−1
(
1
2

)
σLog, where σLog is the

standard deviation.
Consequently, σU ≈ 0.7788σN , σP ≈ 1.6262σN for k = 8,

σL ≈ 1.3762σN and σLog ≈ 1.1136σN .
Figures 4 and 5 show the dependence of the expected utility increment of

an agent on the mean μ of the proposal distribution for several distributions
(normal, continuous uniform, symmetrized Pareto, Laplace and logistic) for the
majority threshold α = 1

2 and difference in expected utility increment of an
agent as a function of μ between the optimal majority/acceptance thresholds
and α = 1

2 cases for several distributions, respectively. They are obtained by
substituting the parameters of the environments into (10), (5), (6), (7), and (8).
Obviously, the optimal acceptance threshold excludes “pits of losses” because the
society has the option to take insuperable threshold of 1 and reject all proposals.

Figure 6 illustrates the dependence of the optimal majority threshold on μ
for the same list of distributions. It helps to explain why for α = 1

2 , the contin-
uous uniform distribution has the deepest pit of losses (because of the biggest
difference between the actual and optimal thresholds), and why the symmetrized
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Fig. 4. Expected utility increment of an agent as a function of μ with a major-
ity/acceptance threshold of α = 1

2
for several distributions: black line denotes the sym-

metrized Pareto distribution, black dotted line the normal distribution (with σN = 1),
black dashed line the logistic distribution, gray line the continuous uniform distribu-
tion, and gray dotted line the Laplace distribution.

Fig. 5. Difference in expected utility increment of an agent as a function of μ between
the optimal majority/acceptance thresholds and α = 1

2
cases for several distributions:

black line denotes the symmetrized Pareto distribution, black dotted line the normal
distribution (with σN = 1), black dashed line the logistic distribution, gray line the
continuous uniform distribution, and gray dotted line the Laplace distribution.
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Fig. 6. The optimal majority/acceptance threshold as function of μ for several distri-
butions: black line denotes the symmetrized Pareto distribution, black dotted line the
normal distribution, black dashed line the logistic distribution, gray line the continuous
uniform distribution, and gray dotted line the Laplace distribution.

Pareto and Laplace distributions have no discernible pit of losses (because those
differences are the smallest).

4 Conclusion

In this paper, we used closed-form expressions for the expected utility increase
and the optimal voting threshold (i.e., the threshold that maximizes social and
individual welfare), as functions of the parameters of the stochastic proposal gen-
erator in the assumptions of the ViSE model, to calculate difference in expected
utility increment of an agent between the optimal majority/acceptance thresh-
olds and simple majority voting rule cases for several distributions. These expres-
sions were given more specific forms for several types of distributions.

Estimation of the optimal acceptance threshold seems to be a solvable prob-
lem. If the model is at least approximately adequate and one can estimate the
type of distribution and ρ = μ/σ by means of experiments, then it is possible
to obtain an estimate for the optimal acceptance threshold using the formulas
provided in this paper.

We found that for some distributions of proposals, the plausible hypothe-
sis that it is beneficial to increase the voting threshold when the environment
becomes less favorable is not generally true. A deeper study of this issue should
be the subject of future research.



Optimal Majority Rule Versus Simple Majority Rule 395

References

1. Azrieli, Y., Kim, S.: Pareto efficiency and weighted majority rules. Int. Econom.
Rev. 55(4), 1067–1088 (2014)

2. Baharad, E., Ben-Yashar, R.: The robustness of the optimal weighted majority
rule to probabilities distortion. Public Choice 139, 53–59 (2009). https://doi.org/
10.1007/s11127-008-9378-7

3. Baharad, E., Ben-Yashar, R., Nitzan, S.: Variable competence and collective per-
formance: unanimity versus simple majority rule. Group Decis. Negot. (2019).
https://doi.org/10.1007/s10726-019-09644-3
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Abstract. Due to e-commerce growth and urbanization, delivery com-
panies are facing a rising demand for home deliveries, which makes it
increasingly challenging to provide parcel delivery that is cheap, sustain-
able, and on time. This challenge has motivated recent interest in crowd-
shipping. In crowdshipping systems, private citizens are incentivized to
contribute to parcel delivery by making small detours in their daily lives.
To advance crowdshipping as a new delivery paradigm, new crowdship-
ping concepts have to be developed, tested, and evaluated. One way to
test and evaluate new crowdshipping concepts is agent-based simulation.
In this paper, we present a crowdshipping simulator where the crowd
workers are modeled as agents who decide autonomously whether they
want to accept a delivery task. The agents’ decisions can be modeled
based on shipping plans, which allow to easily implement the most com-
mon behavior assumptions found in the crowdshipping literature. We
perform simulation experiments for different scenarios, which demon-
strate the capabilities of our simulator.

Keywords: Crowdsourced delivery · Agent-based simulation ·
Agent-based models

1 Introduction

Parcel delivery companies are currently facing a high demand of home deliveries.
Thereby, the so called “last mile” is one of the most costly and time-demanding
delivery legs [11,13,24]: the delivery of parcels from hubs to the recipients’ homes
is served with dedicated trips by professional drivers. These dedicated trips lead
to high costs [11] and contribute to increased traffic and air pollution.

These challenges have lead to increased interest in crowdshipping [3,18,19,
23]. Crowdshipping systems rely on the help of private citizens (the crowd) who
are willing to make small modifications to their daily trips to contribute to
parcel delivery. A person on their way to the supermarket or workplace can
accept a delivery task in exchange for a small monetary compensation. While
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N. Bassiliades et al. (Eds.): EUMAS 2020/AT 2020, LNAI 12520, pp. 396–411, 2020.
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professional drivers probably still are going to deliver parcels that require large
detours, the crowd can help with those deliveries that require only minor detours
and that can be completed quickly, which makes them attractive for the crowd.
With the support of the crowd, the need for dedicated trips can be reduced,
which decreases the burden from the professional drivers and helps to fight air
pollution.

Crowdshipping systems are an interesting problem area for agent-based
systems [27] and agreement technologies [17]. As the crowd workers are self-
interested volunteers rather than permanent employees, they can best be mod-
eled as autonomous agents. Furthermore, multiple agents can possibly avoid
costly and environment-unfriendly trips more efficiently together if they can
agree to cooperate. A group of agents that can find agreements to form a “deliv-
ery chain” could deliver a parcel over a larger distance than a single agent.
In fact, first agent-based contributions in this direction have been put for-
ward [8,12,21,22].

Research on crowdshipping needs testing environments to evaluate new
crowdshipping proposals. Simulation is an established method for exploring and
evaluating new ideas prior to costly real-world deployment. New crowdshipping
concepts – such as new task assignment strategies, compensation schemes, or
cooperation approaches – could be evaluated with agent-based simulation.

In this paper, we present a crowdshipping simulator where crowd workers
are modeled as autonomous agents. While various general-purpose agent-based
simulators [16,25] exist, they provide no explicit support for simulating the par-
ticular characteristics of crowdshipping systems. In contrast to general-purpose
simulators, our crowdshipping simulator is not only able to simulate the agents’
physical movements, but also their cognitive decision making. For example, our
simulator provides explicit support for modeling the agents’ task acceptance
decisions. Additionally, it supports customized task assignment strategies.

The rest of the paper is structured as follows. First, we provide an overview
of related work on crowdshipping (Sect. 2) with special focus on the different
crowd behavior assumptions. In Sect. 3, we describe a model of the crowdship-
ping system we want to simulate. In Sect. 4, we present the architecture of our
simulator and its configuration options based on strategies. Then, we present the
concept of shipping plans that allow to easily implement behavior assumptions
(Sect. 5). In Sect. 6, we report some experiments with our simulator. Finally, in
Sect. 7 we close with our conclusions.

2 Related Work

Crowdshipping is a relatively new research topic with the first wave of publica-
tions having appeared in 2016 (see, e.g., [2,18,26]). Crowdshipping belongs to
the family of crowdsourced systems [9], i.e., systems that operate based on con-
tributions by workers who participate spontaneously and on their own schedule.
In contrast to these “classical” crowdsourcing systems, crowdshipping requires
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the contributors to perform tasks that are spatially distributed. Such crowd-
sourced systems are known under the names location-based crowdsourcing [1]
and mobile crowdsourcing [28].

Research on crowdshipping, the crowdsourced delivery of parcels, focuses on
several different research topics. Some works study the motivations of people
to use the system for shipping their goods and their motivations to participate
as crowd workers [15,19,20]. Other works focus on task assignment and route
planning, mostly with some optimization objective, e.g., to minimize costs [2,3,
6]. Other works focus on sustainability [5,12] and cooperative task fulfillment [6,
21,22]. The crowd workers can be modeled as autonomous agents.

In agent-based modeling [4,14], the actors of a system are modeled as
autonomous decision makers; the interaction of the different agents leads to
a system-level behavior. In the context of crowdshipping, the agents are the
autonomous couriers who decide whether they want to accept a delivery task.
To simulate crowdshipping systems, not only the physical movement of the couri-
ers has to be simulated, but also the cognitive decision making process of the
couriers. In the crowdshipping literature, many different models can be found
for the couriers’ task acceptance decisions. In Table 1 we summarize the models
and provide references to publications that use them.

Table 1. Task acceptance models

Model Couriers accept delivery tasks...

Detour threshold [2,6] ...if the required detour does not
exceed a certain fraction of the length
of their original route

Coverage area [7] ...if the delivery destination lies in the
courier’s personal coverage area, e.g.,
within a certain radius of the courier’s
destination

Capacity-based [26] ...if accepting the task does not exceed
their personal capacity. (This model is
typically used together with other
constraints)

Stochastic [10] ...at a certain probability. The agents’
decision making is not modeled
explicitly; no assumptions are made
about the agents’ internal reasoning

Utility-based [8,22] ...if they provide positive utilities. The
agents are modeled as utility
maximizers that include economic
criteria into their decisions, such as
delivery reward and costs for fuel,
vehicle maintenance, travel distance,
and lost time
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The choice of behavior model determines the agent behavior and thus affects
the simulation outcome. To observe the effects of different models, the simulation
should support the models of Table 1. Additionally, the simulation should make
it easy to adapt existing models or implement completely new ones.

While there are several agent-based simulation tools available, such as Repast
Symphony [16] or NetLogo [25], they provide no explicit support for the simu-
lation of crowdshipping. These simulators aim to be general and adaptable to a
wide range of simulation settings. Being generic, in those simulators there is no
explicit notion of delivery tasks, shipping plans, etc. Therefore, the aim of these
simulators differs from ours. Our simulator is specific to crowdshipping and con-
veniently supports crowdshipping-specific features. To the best of our knowledge
no simulator exists that provides explicit support for the specific characteristics
of crowdshipping.

3 Crowdshipping Model

In this section, we introduce a model of the crowdshipping systems that we want
to simulate.

The crowdshipping system consists of the parcel delivery company, the couri-
ers, and the crowdshipping platform. The crowdshipping system is operated by
the parcel delivery company, which wants to deliver parcels with the help of
the crowd. The crowd consists of couriers, who are registered at the crowdship-
ping platform and principally interested in delivering parcels. The crowdshipping
platform is a web platform where interested individuals can register to receive
delivery tasks; the platform manages the payment of delivery rewards and is
responsible for task assignment.

During the day, the delivery company receives requests for parcels to be deliv-
ered between two locations. The delivery company operates in an operation area
and accepts parcels whose location and destination lie within this area. Delivery
requests are converted to delivery tasks that can be delegated to couriers.

A delivery task requires the delivery of a parcel from its location to the desired
destination. A delivery task is associated with a delivery reward, which is paid
to the courier who completes the task. When a new task is created, it is assigned
to one of the couriers who is currently present and active in the operation area.

Task assignment is performed by an algorithm, which receives as input the
available couriers and decides who should perform the delivery. Thereby the task
assignment decision is constrained by the courier autonomy.

The couriers are usually autonomous and self-interested agents who are
allowed to reject task assignments. If a courier is not interested in a delivery task,
e.g., because its reward is too low or the required effort too high, the courier can
reject the task. If a courier accepts a delivery task, the courier becomes respon-
sible for the delivery of the parcel. The courier travels to the parcel location,
picks the parcel up, carries it to its destination and receives the delivery reward.
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Fig. 1. Architecture of the crowdshipping simulator

4 Crowdshipping Simulator

The model of Sect. 3 is implemented by our simulator, which we describe in this
section together with its most important components and configuration.

Figure 1 shows the simulation environment, which consists of the crowdship-
ping simulator and the scientist who interacts with the simulator. The crowdship-
ping simulator consists of three top-level modules: the graphical user interface
(GUI), the simulation engine, and the configuration. The configuration files are
provided by the scientist and are used by the simulator to control the execution.
The execution is controlled by the simulation engine, which, when it terminates,
generates a simulation log and statistics. This output is analyzed by the scientist
to gain new insights.

In the following sections, we discuss the most important components of the
simulator: the simulation engine and the configuration.

4.1 Simulation Engine

The simulation engine is the core component of the simulator. The simulation
engine implements a simulation loop consisting of six steps.

1. Add new agents : The simulation simulates the appearance of new agents.
2. Add new tasks : The simulation simulates the appearance of new delivery

tasks.
3. Assign tasks : The simulation tries to assign tasks that are currently unas-

signed to agents who are currently active in the simulation. Agents are
autonomous and can reject assignments. Hence, it is possible that some tasks
keep unassigned and an assignment is re-attempted in a future cycle.
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4. Move agents: The simulation moves the active agents. Initially, an agent’s
movement is given by GPS data that is read from a configuration file. When
an agent accepts a delivery task, the agent has to make a detour from their
original route. In this case, the simulator simulates an artificial route at run-
time.

5. Remove tasks: The simulation checks which parcels have been delivered to
their destinations and removes the associated tasks.

6. Remove agents : The simulation checks which agents have arrived at their
destinations and removes them from the simulation.

The most important classes of the simulation engine are the Agent, the Ship-
pingPlan, the MovementController, the Assignment, and the Statistics class.

– The Agent class represents the individual deliverers. Each agent object holds
information about a deliverer’s current location, destination, and task accep-
tance behavior. The agent’s movement and task acceptance behavior are influ-
enced by its shipping plan.

– The ShippingPlan class consists of the locations on the map that the agent
has to visit to pick up and deliver parcels. In Sect. 5, we discuss shipping
plans in detail since they are an important concept of our simulator.

– The MovementController moves the agents on the map.
– The Assignment class is responsible for the assignment of new delivery tasks

to interested agents. Whenever a new delivery task occurs in the simulation,
this class searches for an agent that is willing to accept the task.

– The Statistics class uses the simulation events to generate a log and to com-
pute performance measures, such as delivery times and their mean, median,
minimum, maximum, standard deviation, and variance.

4.2 Simulator Configuration

The simulation behavior can be configured in various ways.

– Parameters: define values that are used during simulation, e.g., the default
reward that is paid for parcel delivery.

– Delivery tasks: define when a task occurs, its initial location, and its destina-
tion.

– GPS events: provide the couriers’ GPS data. For each courier, there exists a
sequence of GPS events. Each GPS event consists of a timestamp, the courier
ID, and a geographic location (latitude, longitude). The simulator can use
real or artificial GPS data provided as CSV files.

– Task Assignment Strategy : determines how tasks are assigned to the available
agents.

– Task Acceptance Strategy : implements the agents’ decision making regarding
task acceptance.

In the remainder of this section, we explain the task assignment strategy and
the task acceptance strategy.
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Task Assignment Strategy. The task assignment strategy determines how
new tasks are assigned to the available couriers. The strategy receives the unas-
signed task and the set of couriers W who are currently active. From W , the
strategy selects one w ∈ W who shall perform the task. If w accepts the task,
the assignment takes place. If w rejects the task, the strategy is queried again,
now with W \ {w}. This procedure is repeated until the task gets assigned or W
is empty. If W is empty, the assignment fails and has to be re-attempted later.

A simple example of assignment strategies is distance-based assignment,
where the task is assigned to the nearest courier who accepts it.

Task Acceptance Strategy. The task acceptance strategy determines whether
an agent accepts a task. The strategy receives the unassigned task and the
agent with their shipping plan. Based on the task properties (pickup location,
destination, reward) and the agent’s shipping plan, the strategy responds with
acceptance or rejection.

The shipping plan includes already accepted tasks and allows to compute
necessary detours. With shipping plans, it is easy to implement the most common
strategies of the crowdshipping literature (see Sect. 2), e.g., acceptance based on
detour thresholds. How these strategies can be implemented is shown in Sect. 5.3.

5 Modeling Agent Behavior with Shipping Plans

In this section, we describe how the agents’ task acceptance decisions can be
modeled and implemented with shipping plans.

5.1 Model

A parcel delivery task p is a tuple (lp, dp) where lp is the current location of the
parcel and dp is its destination.

Each agent a ∈ A consists of the following information: (la, da, φa) where la
is the agent’s current location, da is the agent’s destination, and φa is the agent’s
shipping plan. The agent’s destination da is fixed. The agent’s current location la
changes over time. The agent’s shipping plan φa is a sequence of waypoints that
the agent has to visit to deliver their assigned tasks. Many common assumptions
about the agents’ acceptance behavior can be modeled with shipping plans.

A shipping plan φa is an ordered sequence of waypoints that agent a intends
to visit to pickup and deliver parcels. For each parcel, the agent has to visit two
waypoints: one for pickup and one for dropoff. Whenever the agent accepts a
new delivery task, the two waypoints are inserted into the agent’s shipping plan
such that pickup takes place before dropoff and the additionally required travel
distance is minimal.

More formally, a waypoint w is a tuple (lw, pw, xw) where lw denotes the
location of the waypoint and pw is the parcel on which action xw is performed.
Let action xw be element of the set {pickup, dropoff}. For each parcel p, the two
waypoints are initialized as follows: (lp, p,pickup) and (dp, p,dropoff).
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The agent always moves towards the first waypoint of the shipping plan. As
soon as this waypoint w is reached, the agent performs action xw on parcel pw
and w is removed from the shipping plan. Then, the agent continues the journey
towards the new first waypoint. When the shipping plan is empty, the agent
moves towards their destination.

5.2 Methods of Shipping Plans

Shipping plans have different methods, which are listed in Table 2. While most
of them are self-explanatory, the agent’s detour requires some explanation.

Table 2. Methods of shipping plans

Operation Description

Insert waypoints for delivery task p Adds waypoints for p to the shipping
plan such that the required detour is
minimal

Remove waypoints of delivery task p Removes the waypoints that are
associated with task p

Number of waypoints Returns the number of waypoints
included in the shipping plan

Length of shipping plan Returns the number of delivery tasks
associated with the shipping plan

Length of detour Computes the total detour that has to
be made by an agent to visit the
waypoints in comparison to traveling
from la to da directly

Detour of Shipping Plans. The planDetour(φa) is the additional distance
that agent a has to cover to visit the waypoints in the given order compared to
the shortest route between the agent’s current location la and destination da. As
mentioned, we assume that agents choose the order of waypoints that implies the
minimal necessary travel distance and that agents always travel on the shortest
route between waypoints. When φa is empty, planDetour(φa) is zero.

Figure 2 visualizes the detour computation for an agent a who wants to travel
from la to da. The shortest route has a distance d = D(la, da). If a accepts the
delivery task p, the agent has to visit the pickup location lp and the dropoff
location dp before traveling to destination da. The length of this route is d′ =
D(la, lp) + D(lp, dp) + D(dp, da). The planDetour(φa) = d′ − d.

Knowing the detour, the agent can reject tasks that require travels beyond
their personal detour threshold or that are too costly in terms of required effort
to be compensated by the promised delivery reward.
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Fig. 2. Shipping plan with two waypoints

5.3 Implementing Task Acceptance Strategies with Shipping Plans

We show how the assumptions identified in Sect. 2 can be implemented with
shipping plans.

Agent

+ accepts(delivery_task): boolean

+ assign(delivery_task): void

...

ShippingPlan

+ copy(): ShippingPlan

+ add_task(task): void

+ number_of_tasks(): integer

+ detour(): integer
TaskAcceptanceStrategy

+ accepts(agent, task): boolean

Detour
Strategy

Stochastic
Strategy

Utility-based
Strategy

plan

...

Fig. 3. Class diagram

Figure 3 shows the class diagram of the most important classes that are
involved in the acceptance decision. The Agent class has methods to check
whether the agent is willing to accept a delivery task and to assign the task to the
agent. Each agent has a ShippingPlan, which has different methods to copy an
existing plan, to add tasks to the plan, to obtain the number of tasks included in
the plan, and to obtain the detour that is caused by the shipping plan. To decide
whether to accept a delivery task, the agent uses a TaskAcceptanceStrategy.
The strategy provides an accepts methods, that given the agent and the task
returns whether the agent accepts the task. The concrete strategies are imple-
mented as subclasses of TaskAcceptanceStrategy. We use Python code to
demonstrate how different strategies can be implemented. Stochastic acceptance
and acceptance based on coverage areas can be implemented without shipping
plans. We show code for the acceptance based on capacities, detour thresholds,
and utilities.

Capacity-Based. The capacity-based acceptance can be implemented with the
following lines of code:



Evaluating Crowdshipping Systems with Agent-Based Simulation 405

def accepts(agent, task):
return agent.plan.number_of_tasks() + 1 <= CAPACITY_LIMIT

The given agent accepts the given task if, by adding one more task, the plan
does not exceed the capacity limit. CAPACITY LIMIT is a constant value that is
defined somewhere else and used for all agents.

Detour Threshold

def accepts(agent, task):
plan_with_task = agent.plan.copy()
plan_with_task.add_task(task)
detour = plan_with_task.detour()
return detour < DETOUR_THRESHOLD

The required detour is computed by adding the task to a copy of the agent’s
current plan. The agent accepts the task if the detour does not exceed a certain
detour threshold.

Utility-Based Acceptance. To compute the agent’s utility, the detour can be
computed as in the detour strategy above. Then the costs of the required detour
can be compared with the delivery reward.

def accepts(agent, task):
detour = compute_detour(agent.plan, task)
detour_cost = detour * COSTS_PER_METER_OF_DETOUR
utility = task.reward - detour_cost
return utility > 0

The agent accepts the task if the task yields a positive utility.

6 Simulation Experiments

We performed explorative experiments with our simulator1 to demonstrate its
capabilities. Even though it is hard to show whether a deployed crowdshipping
system would behave exactly like in our simulation, we will show that our simula-
tor produces plausible results. We demonstrate the plausibility of the simulation
results by running the simulation with different parameter values and observing
their effects. For instance, if agents are willing to accept larger detours, it can
be expected that it is easier to find agents willing to deliver parcels and that
therefore parcels arrive at their destinations faster. We demonstrate such depen-
dencies for three input-output pairs: detour and delivery time, required reward
and delivery time, and acceptance probability and delivery time.

1 The simulator is available online:
sw-architecture.inform.hs-hannover.de/en/files/crowdsim.
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6.1 BiciMAD GPS Dataset

Our simulator can use real GPS data to simulate the agents’ movements. Unfor-
tunately, there is no open data set of crowdshipping GPS data that we could use
as input for simulation. Therefore, we used GPS data from BiciMAD, the Bike
Sharing System of Madrid2. The users of BiciMAD rent a bike at one of the bike
stations, ride the bike, and then return it at any of the stations. The data set
contains the trips performed by the users and the GPS events that were gath-
ered during each trip. For each trip, the data set contains the start timestamp
(with some artificial noise for privacy), the start location, the end location, and
the GPS traces. We used data from two dates (15 January 2019 and 16 January
2019) with around 17,000 users and 175,000 GPS events in total.

We used this data as bike sharing systems are conceptually similar to crowd-
shipping systems. There are users that log into the system, move in the city, and
log out of the system.

Table 3. Simulation parameters

Parameter Value

Operating area Radius of 1.5 km

Delivery tasks 50 per hour (600 total)

Delivery reward AC5

Default agent speed 5 m/s

Task assignment Assign to nearest

Task acceptance Detour model | Utility-based model | Stochastic model

6.2 Simulation Setup

We simulated parcel delivery in the urban center of Madrid in an operating area
with a radius of 1.5 km. The occurrence, start location, and destination of the
couriers were derived from the BiciMAD data set. We generated 50 tasks for
each hour between 8:00 and 20:00 o’clock (600 tasks in total). The 50 tasks
were uniformly distributed over the hour. The tasks have random origins and
destinations within the operating area. Each task completion is rewarded with
AC5. Tasks are assigned to the nearest agent who accepts. After task acceptance,
the agents move with 5 m/s (18 km/h) on a straight line to the parcel location,
the parcel destination, and eventually to their personal destination.

We performed experiments with three different task acceptance models: the
detour model, the utility-based model, and the stochastic model. The simulation
setup is summarized in Table 3.

2 opendata.emtmadrid.es/Datos-estaticos/Datos-generales-(1) (Accessed: 2020-03-12).
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For each simulation scenario, we measured the mean and median delivery
time. By delivery time, we refer to the time that passed between the occurrence
of a parcel and the arrival at its destination. We will show that changing the
values of the simulation parameters has the expected effect on the measured
delivery time.

6.3 Simulation Results

In this section, we discuss the simulation results under the three different models.
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Fig. 4. Delivery times using the detour model

Detour Model. Figure 4 shows the delivery times for different instantiations
of the detour model. When all agents accepted a detour of at most 400 m, the
median delivery time was about 13 min. As expected, the median delivery time
decreased when agents accepted larger detours. When agents accepted a detour
of up to 1600 m, the median delivery time was about 7 min.

The mean delivery times follow a similar curve. However, while most tasks
find a willing agent reasonably quickly, there are some that require larger detours
and therefore a lot of time to get delivered. When agents accepted detours of
at most 400 m, the longest delivery time was 32 h. This causes the difference
between the median and mean delivery times. Such parcels should be delivered
by professional drivers or by a group of cooperating agents.

Utility-Based Model. Figure 5 shows the delivery times for different instan-
tiations of the utility-based model. All tasks were compensated with a reward
of AC5. When the agents demanded at least AC1 for each kilometer of detour, the
median delivery time was about 6 min. As expected, when agents demanded
higher compensations, the median delivery times increased. When all agents
demand more, it takes generally longer to find an agent for whom the detour
is small enough to be acceptable. When agents demanded at least AC8 for each
kilometer of detour, the median delivery time was about 10 min.
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Fig. 5. Delivery times using the utility-based model and a reward of AC5

The mean delivery times also increased when agents demanded higher com-
pensation. In comparison with the median delivery times, the mean delivery
times increased faster. Again, this is caused by a small number of parcels that
require large detours. In one case, the parcel could only be delivered after 23 h.
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Fig. 6. Delivery times using the stochastic model

Stochastic Model. Figure 6 shows the delivery times for the stochastic model.
When agents accepted tasks with a probability of 0.5%, the median delivery time
was 18 min. By increasing the acceptance probability, the median delivery time
decreased, as was expected. For an acceptance probability of 2.5%, the median
delivery time was about 10 min.

As in the other models, the median delivery time is affected by a small
fraction of parcels whose delivery takes very long. In the worst case, the delivery
took 2 h and 38 min.

In summary, we observed the expected behavior for all of the three behav-
ior models. Delivery times decreased when agents were willing to make larger
detours, when agents were satisfied with lower rewards, and when the accep-
tance probability was increased. Even though it is unlikely that the simula-
tion outcomes correspond exactly to the outcomes that would be observed in a
deployed crowdshipping system, the behavior of our simulator responds plausi-
bly to changes of the simulation parameters. While realistic values would require
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careful calibration, ideally guided by real-world observations, with our simulator
different assignment and acceptance strategies can be tested and the tendencies
of their effects can be observed.

7 Conclusion

Crowdshipping is a promising paradigm to face the challenges of last-mile deliv-
ery and is an interesting application area for agent-based systems and agreement
technologies. To test and evaluate new crowdshipping concepts prior to deploy-
ment, a crowdshipping simulator is required. In this paper, we have presented
an agent-based crowdshipping simulator, in which the individuals of the crowd
are modeled as autonomous agents that take decisions based on shipping plans.
Shipping plans allow modeling a wide range of agent behaviors that can be
found in the crowdshipping literature. The runtime behavior of the simulator
can be adapted and extended via strategies. Our experiments demonstrated the
capabilities of our simulator and showed that plausible results can be obtained.
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Abstract. Rhetorical arguments are used in negotiation dialogues when
a proponent agent tries to persuade his opponent to accept a proposal
more readily. When more than one argument is generated, the propo-
nent must compare them in order to select the most adequate for his
interests. A way of comparing them is by means of their strength values.
Related articles propose a calculation based only on the components of
the rhetorical arguments, i.e., the importance of the opponent’s goal and
the certainty level of the beliefs that make up the argument. This article
aims to propose a model for the measurement of the strength of rhetori-
cal arguments, which is inspired on the pre-conditions of credibility and
preferability stated by Guerini and Castelfranchi. Thus, we suggest the
use of two new criteria to the strength calculation: the credibility of the
proponent and the status of the opponent’s goal in the goal processing
cycle. The model is empirically evaluated and the results demonstrate
that the proposed model is more efficient than previous works of the
state of the art in terms of number of exchanged arguments and number
of reached agreements.

Keywords: Rhetorical arguments · Strength calculation · Persuasive
negotiation

1 Introduction

Negotiation is a key form of interaction, among agents, that is used for resolving
conflicts and reaching agreements. Arguments used in negotiation dialogues are
generally explanatory ones and allow agents to argue about their beliefs or other
mental attitudes during the negotiation process [16]. Nevertheless, there are
other types of arguments that may act as persuasive elements. These ones are
called rhetorical arguments1 and are the following:
1 When an agent uses rhetorical arguments to back their proposals, the negotiation is

called persuasive negotiation [17].
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– Threats carry out sanctions when the opponent does not accept the proposal
sent by the proponent.

– Rewards are used when the proponent wants to entice an opponent to do
a certain action by offering to do another action as a reward or by offering
something that the opponent needs.

– Appeals try to persuade the opponent by offering a reward; however, this
recompense is not a consequence of an action of the proponent. If the propo-
nent does not have a recompense to offer, he can appeal to one goal of the
opponent that does not need the proponent’s intervention. Appeals can be
seen as self-rewards [3].

Let us consider a scenario of a Consumer Complaint Website whose goal is
to try to resolve a conflict between consumers and companies. In this scenario,
a software agent (denoted by CONS) complains about a service on behalf of a
human user and another software agent acts in behalf of a company (denoted
by COMP), offers possible solutions. In the following example, the user of CONS
missed an international flight due to a schedule change and he wants the airline
company to reimburses him the total price of the ticket; however, the airline
company only wants to refund the 20% of the total price of the ticket. At this
point, CONS tries to force COMP to accept his proposal and decides to send a
threat. The following are two threats that CONS can generate:

– th1 : You should refund the total price of the ticket, otherwise I will never buy
a ticket in your company anymore, so you will not reach your financial goals.

– th2 : You should refund the total price of the ticket, otherwise I will destroy
your reputation in social networks, so you will not gain the award to the Best
Airline Frequent Flier Loyalty Program (BAFFLP).

The question is: which of these threats (arguments) will CONS choose to try to
persuade COMP to accept his proposal? According to Guerini and Castelfranchi
[9], a rhetorical argument has to meet some pre-conditions in order for the propo-
nent to reach a negotiation favorable to him; therefore, the chosen argument has
to be in the set of arguments that meet such pre-conditions. However, before the
proponent decides what argument to send, he needs to have a way of differenti-
ating the arguments of that set. A way of doing it is by measuring their strengths
[17]. Thus, the research question of this article is: What criteria should an agent
take into account in order to measure the strength of a rhetorical argument and
how should this measurement be done?

Some studies about rhetorical arguments strength take into account the
importance of the opponent’s goal and the certainty level of the beliefs that
make up the argument [3,5]. However, there exist situations in which other cri-
teria are needed in order to perform a more exact measurement of the arguments
strength. To make this discussion more concrete, consider the following situa-
tions:

– CONS knows that “reaching the financial goals” (denoted by go1) and “gain-
ing the award to the BAFFLP” (denoted by go2) are two goals of COMP –the
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opponent– that have the same importance. If CONS only considers the impor-
tance of the opponent’s goal to calculate the strength of the threats built with
these goals, he cannot decide which threat to send because all of them have
the same strength. Thus, there exist the need of another criterion –related
to the COMP’s goals– that helps CONS to break the ti.e. In order to achieve a
goal, it has to pass for some states before be considered achieved. For instance,
assume that go1 has already been achieved; hence, threatening this goal would
not be useful for CONS. On the other hand, COMP has not achieved go2 yet;
hence, attacking it can make COMP lose the award; and consequently, he will
not achieve go2.

– CONS has already threaten other companies before and rarely he has fulfilled
his threats, and agent COMP knows about it. In this case, the strength of a
threat sent by CONS is also influenced by his credibility.

In the first case, notice that besides importance, there is another criterion to eval-
uate the worth of an opponent’s goal, because it does not matter how important
a goal is if it is far from being achieved or if it is already achieved. In the sec-
ond case, the credibility of the proponent should also be considered, since even
when the an opponent’s goal is very important and/or achievable, a low level of
credibility could impact on the strength value of an argument. Thus, the new
suggested criteria for the measurement of the strength of rhetorical arguments
are the proponent’s credibility and the status of the opponent’s goal.

To determine the possible statuses of a goal, we base on the Belief-based
Goal Processing (BBGP) model [8]. In this model, the processing of goals is
divided in four stages: (i) activation, (ii) evaluation, (iii) deliberation, and (iv)
checking; and the status a goal can adopt are: (i) active (=desire), (ii) pursuable,
(iii) chosen, and (iv) executive (=intention). The status of a goal changes when
it passes from one stage to the next. Thus, when it passes the activation stage
it becomes active, when it passes the evaluation stage it becomes pursuable,
and so on. A goal is closer to be achieved when it is closer of passing the last
stage. Besides, we consider the cancelled status. A goal is cancelled when it is
not pursued anymore.

Next Section presents the knowledge representation and the architecture of
BBGP-based agent. Section 3 is devoted to the logical definition of rhetorical
arguments. Section 4 presents the strength calculation model. It includes the
analysis of the criteria that will be considered and the steps of the model.
Section 5 presents the empirical evaluation of the proposed model. In Sect. 6,
we discuss the related work. Finally, Sect. 7 summarizes this article and outlines
future work.

2 Knowledge Representation and Negotiating Agents

We use rule-based systems to represent the mental states of the agent. Thus,
let L be a set of finite literals2 l, l1, ..., ln in first order logical language and C
2 Literals are atoms or negation of atoms (the negation of an atom A is denoted ¬A).
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a set of finite constant symbols. Facts are elements of L, strict rules are of the
form r = l1, ..., ln → l, and defeasible rules are of the form r = l1, ..., ln ⇒ l.
HEAD(r) = l denotes the head of a rule and BODY(r) = {l1, ..., ln} denotes the
body of the rule. We assume that the body of every strict/defeasible rule is finite
and not empty. We now define a theory as a triple T = 〈F ,S ,D〉 where F ⊆ L
is a set of facts, S is a set of strict rules, and D is a set of defeasible rules. As
consequence operator, we use derivation schemas.
Definition 1 (Derivation schema [2]). Let T = 〈F ,S ,D〉 be a theory and
l ∈ L. A derivation schema for l from T is a finite sequence T = {(l1, r1), ...,
(ln, rn)} such that:
- ln = l, for i = 1...n, li ∈ F and ri = ∅, or ri ∈ S ∪ D and HEAD(ri) = li and
BODY(ri) ⊆ {l1, ..., li−1}

- SEQ(T ) = {l1, ..., ln}, FACTS(T ) = {li | i ∈ {1, ..., n}, ri = ∅}
- STRICT(T ) = {ri | i ∈ {1, ..., n}, ri ∈ S}, DEFE(T ) = {ri | i ∈ {1, ..., n}, ri ∈ D}
- CN(T ) denotes the set of all literals that have a derivation schema from T , i.e.,
the consequences drawn from T .

T is minimal when �T ′ ⊂ (FACTS(T ), STRICT(T ), DEFE(T )) such that
l ∈ CN(T ′). A set L′ ⊆ L is consistent iff �l, l′ ∈ L′ such that l = ¬l′;
otherwise, it is inconsistent.

Definition 2. A negotiating BBGP-based agent is a tuple 〈T ,G,Opp,GO,
SOpp,SGO,A,AO, REP〉 such that:

– T is the theory of the agent;
– G is the set of goals of the agent, whose elements are ground atoms of L;
– Opp is the opponents base, whose elements are constants of C;
– GO = GOa ∪ GOp ∪ GOc ∪ GOe ∪ GOcanc is the set of the opponent’s goals.

GOa is the set of the active opponent’s goals, GOp the set of the pursuable
ones, GOc the set of the chosen ones, Ge is the set of the executive ones,
and GOcanc is the set of the cancelled ones. These sets are pairwise disjoint.
Finally, elements of GO are ground atoms of L;

– SOpp is a set of tuples (op, THRES, LGO) where op ∈ Opp,
THRES ∈ [0, 1] is the value of the threshold of the opponent3, and LGO =
THGO ∪RWGO ∪APGO is the set of goals of opponent op such that these goals
can be threatanable (go ∈ THGO), rewardable (go ∈ RWGO), or appealable
(go ∈ APGO). It holds that ∀go ∈ LGO, go ∈ GO, this means that if a goal
is in the goals list of an opponent – LGO – it is also in the opponent’s goal
set GO. It also holds that THGO, RWGO, and APGO are pairwise disjoint.
Finally, let TH GO(op) = THGO, RW GO(op) = RWGO, and AP GO(op) = APGO
be three functions that return the sets of threatanable, rewardable, and appeal-
able goals of op, respectively;

– SGO is a set of pairs (go, IMP) such that go ∈ GO and IMP ∈ [0, 1] represents
the importance value of go;

3 The threshold is a value used in the strength calculation model. This is better
explained in Sect. 4.
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– A (resp. AO) is the base of the proponent’s actions (resp. opponent’s
actions). The elements of both bases are ground atoms. The role of action
in our calculation model will be further explained in next section;

– Aval is a set of pairs (ac, val) such that ac ∈ A or ac ∈ AO is an action and
val ∈ [0, 1] is a real number that represents the value of action ac where zero
means that ac is not valuable at all whereas one is the maximum value of an
action. VALUE(ac) = val is a function that returns ac;

– REP is the reputation value of the proponent, which is visible for any other
agent.

Furthermore, goals in G are divided in (i) goals that the agent himself has to
perform actions to achieve them, and (ii) goals that need the opponent involve-
ment to be achieved. For example, the goal of CONS is that COMP refunds the
total price of the ticket. For this goal to be achieved, it is necessary that COMP
executes the required action. We call this type of goal outsourced.

Definition 3 (Outsourced goal). An outsourced goal g is an expression of the
form g(op, ac), such that, op ∈ Opp and ac ∈ AO represents an action that op
has to perform. Let OPPO(g) = op and ACT(g) = ac be the functions that return
each component of the outsourced goal g, respectively.

We assume that a negotiating agent has in advance the necessary informa-
tion for generating rhetorical arguments and for calculating their strengths. This
information is related to the opponent’s goals, the status of these goals, the oppo-
nent’s actions, and the values of these actions. In order to obtain such informa-
tion, the agent can gather information about his opponent(s). This approach is
known as opponent modelling4.

3 Threats, Rewards, and Appeals

In this section, we present the logical definitions of the rhetorical arguments that
are being studied in this article.

Based on the example presented in Introduction, we can say that a threat
(and a reward or appeal) is mainly made up of two goals: (i) an opponent’s
goal, which is the goal of the opponent that is being threatened by the propo-
nent. It is a goal that the opponent wants to achieve. For example, “reaching the
financial goals” and (ii) an outsourced goal of the proponent, which is the
goal of the proponent that needs the opponent involvement to be achieved. For
example, “getting that COMP refunds the ticket’s money”. Following, we present
the formal definition of a threat, reward, and appeal. These definitions are based
on the definition given in [3], with some modifications that consider the mental
states of the negotiating BBGP-based agent and the rule-based approach.

4 Baarslag et al. [6] present a survey about some techniques of opponent modeling
that are based on learning. Other works about opponent modelling with focus on
argumentation are [10–12,18].
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Definition 4 (Threat). Let T be the theory of a negotiating BBGP-based
agent, G his goals base, and GO his opponent’s goals base. A threat constructed
from T , G and GO is a triple th = 〈T, g, go〉, where:

- go ∈ GO such that go ∈ TH GO(OPPO(g)),
- g ∈ G,
- T ∪ ¬ACT(g) is a derivation schema for ¬go from T ,
- SEQ(T ) is consistent and T is minimal.

Let us call T the support of the threat, g its conclusion and go the threatened
goal.

Example 1. Let us formalize one of the threats of CONS. Consider the following
mental state of agent CONS:

S = {¬ref(ticket) → ¬buy(ticket),¬buy(ticket) → ¬reach(fin goa)}
Opp = {COMP}, G = {g} such that g = get(COMP, ‘ref(ticket)’) GO = {go1}

such that go1 = reach(fin goa) SOpp = (COMP, THRES, {go1}) such that go1 ∈
THGO

The following threat can be generated:
th1 = 〈T1, g, go1〉 such that
T1 ∪ ¬ACT(g) = {(¬ ref(ticket), ∅),

(¬buy(ticket),¬ ref(ticket) → ¬buy(ticket)),
(¬reach(fin goa),¬buy(ticket) → ¬reach(fin goa)}

Definition 5 (Reward/Appeal). Let T be the theory of a negotiating BBGP-
based agent, G his goals base, and GO his opponent’s goals base. A reward/appeal
constructed from T , G, and GO is a triple re/ap = 〈T, g, go〉, where:

- g ∈ G, go ∈ GO,
- For rewards: go ∈ RW GO(OPPO(g)) and for appeals: go ∈ AP GO(OPPO(g)),
- T ∪ ACT(g) is a derivation schema for go from T ,
- SEQ(T ) is consistent and T is minimal

Let us call T the support of the reward/appeal, g its conclusion and go is the
rewardable/appealable goal. Furthermore, let RHETARG denote the set of threats,
rewards, and appeals that an agent can construct from his theory T .

4 Strength Measurement Model

In this section, we start by analysing the pre-conditions for considering a rhetor-
ical argument convincing. Then we detail the steps of the measurement model,
including the formula for calculating the arguments’ strength.

4.1 Pre-conditions: Credibility and Preferability

Guerini and Castelfranchi [9] claim that a rhetorical argument can be considered
convincing when it is both credible and preferable. Consequently, the rhetorical
argument that will be sent to the opponent has to belong to the set of rhetorical
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arguments that meet such pre-conditions. Next, we analyze each pre-condition
and establish how each of them will be evaluated.
4.1.1 Credibility
When a proponent P utters an influencing sentence to an opponent O, there
exists a goal cognitive structure [7,9]. Thus, when P utters a sentence for O
about his intention of performing an action, his first goal is that O believes that
P is indeed going to benefit or damage O. We can note that this first goal of
the proponent is related to his credibility. In other words, when a proponent
wants to persuade an opponent, the opponent has to believe that the proponent
is credible.

In this work, in order to evaluate the credibility of the proponent, we take
into account the following concepts:

1. The Proponent’s Reputation: Reputation can be defined as a social
notion associated with how trustworthy an individual is within a society5.
In this work, reputation can be seen as the “social” notion – within an agents
society – about how trustworthy the proponent is with respect to fulfil his
threats, rewards, and appeals. In other words, it is an evidence of the pro-
ponent’s past behavior with respect to his opponents. We assume that this
value is already estimated and it is not private information. Thus, reputation
value of the proponent is known by any other agent. It means that when the
proponent begins a negotiation with other agent (his opponent), this one is
conscious of the reputation of the proponent. We also assume that the propo-
nent has only one reputation value for the three kinds of rhetorical arguments.
The reputation value of a proponent agent P is represented by a real number:
REP(P ) ∈ [0, 1] where zero represents the minimum reputation value and one
the maximum reputation value.

2. The Opponent’s Credibility Threshold: It is used to indicate the lowest
value of the proponent’s reputation so that the opponent considers a rhetorical
argument credible. Thus, the credibility threshold of an opponent agent O
is represented by a real number: THRES(O) ∈ [0, 1] where zero represents
the minimum threshold value and one the maximum threshold value. A low
threshold denotes a trusting (or easier to be persuaded) opponent whereas
a high threshold denotes a mistrustful opponent, i.e., more difficult to be
persuaded. We assume that the proponent knows the values of the thresholds
of his possible opponents.

The proponent evaluates his credibility by comparing both values: his repu-
tation and the opponent’s threshold.

5 The estimate value of reputation is formed and updated over time with the help
of different sources of information. Several computational models of reputation con-
sider that reputation can be estimated based on two different sources: (i) the direct
interactions and (ii) the information provided by other members of the society about
experiences they had in the past (e.g., [15,19,20]).
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Definition 6 (Proponent’s credibility). Let P be a proponent agent, REP(P )
his reputation, and THRES(O) the threshold of his opponent O. P is credible if
REP(P ) � THRES(O); otherwise, P is not credible.

4.1.2 Preferability
The second pre-condition a rhetorical argument has to meet is the preferability.
This pre-condition is based on the relation between the opponent’s goal and the
action that the opponent is required to perform. Thus, the opponent’s goal must
be more valuable for him (the opponent) than performing the required action [9].
If the value of the opponent’s goal is greater than the value of the required action
then, the argument that uses that goal is considered preferable. Let us explain it
with human examples. During an assault, a thief (the proponent) threatens the
victim (the opponent) with the following sentence: “If do not give me your bag,
I hurt you”. In this situation, it is rational to think that the physical well-being
is more valuable than the required action (giving the bag). In another scenario,
a boss (the proponent) tries to convince one of his employees (the opponent) to
work on Saturdays with the following reward: “If you work every Saturday, then
I will give you a Panettone in Christmas”. In this situation, it is reasonable to
believe that that the value of the opponent’s goal (receiving a Panettone) is not
grater than the value of the required action (working every Saturday).

Next, we present the criteria that will be evaluated in order to estimate the
value or worth of an opponent’s goal.

1. Importance of the Opponent’s Goal: It is related to how meaningful
the goal is for the opponent. The value of the importance of a given goal
go is a real number represented by IMP(go) ∈ [0, 1] where zero means that
the goal is not important at all, and one is the maximum importance of the
goal. The more important a goal is for the opponent, the more threatenable,
rewardable, or appealable this goal is.

2. Effectiveness of the Opponent’s Goal: It is related to the degree to which
an opponent’s goal is successful for persuasion and it is based on the status of
the goal in the goal processing cycle. Let us recall that we are working with
BBGP-based agents; therefore, the goals base of the opponent is divided in
five sub-sets: active, pursuable, chosen, executive, and cancelled goals. A goal
is close of be achieved when its status is chosen or executive and it is far of
be achieved when its status is active or pursuable. Thus, depending on its
status, a goal can be considered more or less threatenable, rewardable, or
appealable. Let us analyse each case:

– Threatenable Goal: Recall that threats have a negative nature. In
terms of the status of a goal it means that a threat may make a goal
go back to a previous status. In this work, we assume that every threat-
ened goal will become cancelled; so a goal is more threatenable when its
status is executive and less threatenable when its status is active. This
is because an agent has more to lose when an executive goal is threaten
than when an active goal is threaten. Regarding a cancelled goal, it is not
threatenable at all.
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– Rewardable/appealable Goal: In this case, both rewards and appeals
have a positive nature. In terms of the status of a goal it means that a
reward/appeal may make a goal go forward to an advanced status. In this
work, we assume that every rewarded/appealed goal will become execu-
tive. Therefore, a goal is considered more rewardable/appealable when
its status is cancelled and less rewardable/appealable when its status is
chosen. This is because an agent has more to win when a cancelled goal
is rewarded/appealed than when a chosen goal is rewarded/appealed.
Executive goals cannot be rewarded/appealed because the proponent has
nothing to offer that makes them go forward. Therefore, executive goals
are not rewardable/appealable at all.

The value of the effectiveness of a goal go depends on the argument that is
built using it. We denote by arg(go) ∈ {th, rw, ap} the type of argument
that can be built where th means that the argument is a threat, rw means
that it is a reward, and ap means that it is an appeal. The effectiveness of an
opponent’s goal go is represented by EFF(go) ∈ {0, 0.25, 0.5, 0.75, 1} such that
zero means that go is not effective at all and one means that go is completely
effective. The effectiveness is evaluated as follows:

EFF(go) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

if arg(go) = th and go ∈ GOcanc, or
0 if arg(go) = rw/ap and go ∈ GOe

if arg(go) = th and go ∈ GOa, or
0.25 if arg(go) = rw/ap and go ∈ GOc

if arg(go) = th and go ∈ GOp, or
0.5 if arg(go) = rw/ap and go ∈ GOp

if arg(go) = th and go ∈ GOc, or
0.75 if arg(go) = rw/ap and go ∈ GOa

if arg(go) = th and go ∈ GOe, or
1 if arg(go) = rw/ap and go ∈ GOcanc

Based on the importance and the effectiveness of a opponent’s goal, we esti-
mate how valuable the goal is. Thus, the worth of an opponent’s goal is a function
WORTH : GO → [0, 1] and it is estimated as follows.

Definition 7 (Worth of the opponent’s goal). Let go be an opponent’s goal,
IMP(go) its importance, and EFF(go) its effectiveness. The equation for calculat-
ing the worth of go is:

WORTH(go) =
IMP(go) + EFF(go)

2
(1)

We use the average value because we consider that both criteria are equally
significant to make the calculation and they do not overlap each other, since
each of them characterizes a different aspect of the goal.

So far, we have analysed the criteria to estimate how valuable an opponent’s
goal is. In order to evaluate the pre-condition preferability, the proponent has
to compare this value with the value the opponent gives to the required action.
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Definition 8 (Preferability of an opponent’s goal). Let go ∈ GO be an
opponent’s goal and ac ∈ AO an opponent’s action. Goal go is preferable if
WORTH(go) > VALUE(ac); otherwise, it is not preferable.

4.2 Steps of the Model

During a dialogue, an agent may generate more than one convincing rhetorical
argument, so he needs a way to compare such arguments. Thus, the strength
value of each argument is necessary to make such comparison. In this sub-section,
we study how the previously studied pre-conditions are part of the measurement
model and how to obtain the strength values. The output of this model is a set
of rhetorical arguments along with their respective strength values.

Before presenting the measuring model, let us analyse de following situa-
tion, which will allow to understand the formula for calculating the arguments
strength value. Let P be a proponent agent and O his opponent, let REP(P ) = 0.6
be the reputation of P and THRES1(O) = 0.5 and THRES2(O) = 0.2 be two possi-
ble thresholds of O. We can notice that THRES1 reflects a less credulous attitude
than THRES2; thus, although P is credible in both cases, the “accurate” value of
P ’s credibility is different for each case since the difference between REP(P ) and
THRES1 is less than the difference between REP(P ) and THRES2. Therefore, the
credibility value of P has a different impact on the calculation of the strength
of the arguments because the higher the difference between the threshold value
and the reputation value is, the higher the credibility of the proponent is. We
use next Equation to calculate the “accurate” value of the credibility of P
with respect to an opponent O, whose threshold is THRES(O).

ACCUR CRED(P,O) = REP(P ) − THRES(O) (2)

This value is used to obtain the strength value of the arguments. Thus, the
strength of an argument depends on the worth of the opponent’s goal and the
“accurate” value of the proponent’s credibility.

Definition 9 (Strength Value). Let A = 〈T, g, go〉 be a rhetorical argument
and O ∈ Opp be an opponent whose threatened/rewarded/appealed goal is go.
The strength of A is obtained by applying:

STRENGTH(A) = WORTH(go) × ACCUR CRED(P,O) (3)

We can now show the steps of our proposed model. Figure 1 depicts these
steps in a work-flow fashion.

5 Empirical Evaluation

In this section, we present an experiment that aims to evaluate our proposal.
For this evaluation, we compare our proposal with its closest alternative app-
roach (i.e., [1,3]), which is based on the importance of the opponent’s goal. The
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Fig. 1. Work-flow of the proposed strength measurement model.

environment is an abstract one involving just two agents. The experiment was
implemented in C++ and the values of the importance and the effectiveness
of each argument were generated randomly in the interval [0,1] and in the set
{0, 0.25, 0.5, 0.75, 1}, respectively. These values were always different for each
individual negotiation encounter. We use an elementary protocol, where the two
agents make moves alternately. The nature of the rhetorical argument is not
taken into account, which means that the agents may use any type of argument
to defend their interests. An agent sends an argument if he has a stronger argu-
ment than the one sent previously by his opponent; otherwise, he accepts the
proposal of his opponent.

In our experiment, a single simulation run involves 1000 separate negotiation
encounters between two agents. For all the negotiations, the agents were paired
against agents that use the same mechanism of strength calculation. We call
“BBGP-based agents” the agents that use the strength evaluation model pro-
posed in this article and “IMP-based agents” the agents that use the strength
evaluation model based on the importance of the opponent’s goal. We performed
negotiations where agents generate 10, 25, 50, and 100 rhetorical arguments. This
means that an agent has at most 10, 25, 50, or 100 arguments to defend his posi-
tion. We make the experiments with different amounts of arguments in order to
analyse the bias of the efficiency of our proposal. For each setting of number of
arguments, the simulation was repeated 10 times. This makes a total of 10000
encounters for each setting. Finally, the experimental variables that were mea-
sured are: (i) the number of reached agreements made and (ii) the number of
arguments (threats, rewards, appeals) used.

Considering that BBGP-based agents evaluate the credibility before engaging
in a negotiation, this leads to three possible situations:

1. Both the proponent and the opponent agents are credible. In this case, a
negotiation dialogue begins.
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2. The proponent agent is credible, whereas the opponent agent is not credible.
In this case, any argument used by the opponent will be evaluated by the pro-
ponent due to the opponent low credibility. This means that, the proponent
does not believe that any of his goals can be threatened/rewarded/appealed.
On the other hand, the arguments used by the proponent can impact on the
goals of the opponent. Thus, we settled that the opponent has to accept to
do the required action.

3. The proponent agent is not credible, whereas the opponent agent is credible.
In this case, the negotiation does not even begin, because the proponent will
never convince the opponent.

Figures 2 and 3 show the behavior of the variables number of exchanged
arguments and number of reached agreements, respectively. Recall that for each
experiment, we run 1000 negotiation encounters; however, BBGP-based agents
only engage in a negotiation when either both are credible or the proponent is
credible. We run experiments taking into account different reputation values for
the agents and we have noticed that the less the reputation value is the less the
number of negotiation encounters is. This is quite rational because low reputa-
tion values mean that it is more difficult that agents engage in a negotiation.
For the results presented in this experiment, we used a reputation value of 0.8
for both agents and the thresholds are generated randomly in the interval [0, 1]
before each negotiation encounter.
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Fig. 2. Comparison of the variable number of exchanged arguments. The labels of each
group denote the percentage difference between both values represented by the bars.

In summary, we can notice that our mechanism fares better than the other
mechanism. This means that when both the worth of the opponent’s goal and the
proponent’s credibility are taken into account, our proposal has better results
than the approach based only on the importance of the opponent’s goal.
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Fig. 3. Percentage of negotiations that end in an agreement versus percentage of negoti-
ations that do not end in an agreement. (a) For IMP-based agents. (b) For BBGP-based
agents.

6 Related Work

Ramchurn et al. [17] propose a model where the strength value of rhetorical argu-
ments varies during the negotiation depending on the environmental conditions.
For calculating the strength value of an argument, it is taken into account a set
of world states an agent can be carried to if he uses such argument. The intensity
of the strength values depends on the desirability of each of these states. For a
fair calculation, an average over all possible states is used.

Amgoud and Besnard [3–5] present a formal definition of rhetorical argu-
ments and a strength evaluation system. For the evaluation of the strength, the
certainty of the beliefs that are used for the generation of the argument and the
importance of the opponent’s goal are considered.

In previous articles, Morveli-Espinoza et al. [13,14] employ the criteria status
of the opponent’s goal and proponent’s credibility; however, the pre-conditions
that define convincing arguments were not taken into account. Therefore, the
proponent’s credibility and the preferability of the arguments were not evaluated.
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Although the proponent’s credibility is considered, the accurate credibility value
is not defined, which is important for the strength calculation.

Comparing with the above related work, this article proposes more than a
way of calculating the strength of rhetorical arguments, in terms of arithmetical
operations. Thus, this article proposes a model that guides the agent during
the strength measurement process as can be seen in Fig. 1. The fact of using a
criterion related to the participant agents gives to the measure one more dimen-
sion and is also useful for avoiding agreements that possibly will not be fulfilled,
which may happen when low-credibility agents reach agreements.

7 Conclusions and Future Work

In this article, we have first presented a formalization of a negotiating agent,
which is based on the BBGP model. For the measurement of the strength of
rhetorical arguments, we base on the proposal of Guerini and Castelfranchi [9],
which states that (1) the credibility of the proponent and (2) the preference
of the opponent’s goal with respect to the value of the required action are two
pre-conditions to consider an argument convincing. We use the reputation of the
proponent and the threshold of trust of the opponent to evaluate the credibility
of the proponent and the opponent’s goal importance and its status to evaluate
the preferability. We do not use directly the status of an opponent’s goal but
we judge its effectiveness based on the type of rhetorical argument it makes up
and the its status. Based on these pre-conditions, we have proposed a model
for evaluating and measure the strength value of the rhetorical arguments. The
model starts evaluating the credibility of the proponent agent. The proponent
agent can continue to the calculation of the rhetorical arguments only if he is
considered credible by his opponent; otherwise, the process ends. We consider
that this model is the main contribution of this article.

While it is true that our approach has a better performance, it is also true
that it is necessary to model further knowledge about the opponent. This need
of further modelling may be seen as a weakness of the model; however, we can
notice that in the evaluated variables, the model is always more efficient than the
compared approach. Specifically, BBGP-based agents achieved more agreements
with fewer exchanged arguments than the IMP-based agents.

We have worked under the premise that the proponent agent knows in
advance the information about his opponent. An interesting future work is to
complement this model with the study of an adequate opponent modelling app-
roach. We can also consider that the information of the opponent is uncertain,
which may directly impact on the strength calculation. Furthermore, in the pro-
posed approach, there is no a model of the environment or the context where
the negotiation occurs, especially in terms of organizational structure. We believe
that this information can influence on the strength of the arguments and there-
fore on the persuasion power of the agents, specifically it can influence on the
credibility of the agent. Finally, defeasible rules are part of the theory of the
agent; however, they were not explored in the article. Another direction of future
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work will be endow the agents with the ability of generating attacks, such that,
during the persuasive negotiation the agents may exchange both arguments and
counter-arguments. Such attacks can be directed to the defeasible rules.
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Abstract. Mistrust poses a significant threat to the widespread adop-
tion of intelligent agents. Guarantees about the behaviour of intelligent
systems could help foster trust. In this paper, we investigate mecha-
nisms to integrate value-based reasoning in practical reasoning as a way
to ensure that agents actions align not only with society norms but also
with user’s values. In particular, we expand a normative BDI agent archi-
tecture with an explicit representation of values.

Keywords: Norms · Values · BDI · Responsible AI

1 Introduction

There is a social need to offer guarantees about the behaviour of artificial
agents. Endowing agents with the ability to reason about norms and values
could enhance not only safety but also trustworthiness of these agents. Values
are what we find important in life and they can be used, for example, in expla-
nations about agent behaviour [14]. Furthermore, values can anchor agents to
certain behaviours [10] and more generally, values can align the behaviour of
agents with our own values, for example in cases of moral reasoning [2]. In fact,
value alignment has emerged as one of the basic principles that should govern
agents and is an important part of responsible AI [13]. Norms are regulative
mechanisms in a society [12] and any responsible agent should be able to behave
in a norm-conforming way [9]. Hence, both norms and values are needed to
ensure that agents behave in a human-aligned manner [2].

In this paper we will use the following motivational example: Jay is at a
restaurant and is using a software assistant to handle the payment. However,
Jay is having trouble financially, and so would prefer to tip as little as possible.
What should the software assistant consider to find the ideal amount to pay?
There are social norms such that tipping 12.5% is ideal, but tipping at least a
certain amount, say 5%, is expected. Furthermore, Jay values the happiness of
the waiter, conforming to social norms and his financial security; these values
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conflict, making the decision non-trivial. Thus, the software assistant should
recommend an amount based on Jay’s desire to pay as little as possible, the
norms about tipping and Jay’s values.

In this paper, we argue that the best way to incorporate values to a cognitive
agent architecture is to make values basic mental attitude. In particular, we will
augment a normative BDI agent [6] with values to create an agent architecture
whose behaviour is aligned with societal norms and user’s values. We give a way
of doing this and identify key properties of this representation of values. We also
show how our architecture leads to the correct suggestion in Jay’s case. Finally,
we discuss related work, limitations and future work.

2 Background

2.1 Preliminaries

We focus on the integration of values and norms in practical reasoning. For this
purpose, we use a normative multi-context BDI agent architecture [6] to address
the different mental, ethical and normative attitudes in a modular way. A context
in a normative BDI agent contains a partial theory of the world. In particular,
there are contexts for beliefs, desires, intentions and norms. Reasoning in one
context may affect reasoning in other contexts, which is represented by across-
context inference rules, named bridge rules.

Let L be a classical propositional language (built from a countable set of
propositional variables with connectives → and ¬). A normative BDI Agent [6]
is defined by a tuple 〈B,D, I,N〉, where:

– B is the belief context, which language is formed by (γ, ρ) expressions, where
γ is a grounded formula of L; and ρ ∈ [0, 1] represents the certainty degree
associated to this proposition. The logical connective → is used to represent
explanation and contradiction relationships between propositions.

– D is the desire context, which language is formed by (γ, ρ) expressions, where
γ is a grounded formula of L; and ρ ∈ [0, 1] represents the desirability degree
associated to this proposition.

– I is intention context, which language is formed by expressions such as (γ, ρ)
expressions, where γ is a grounded formula of L; and ρ ∈ [0, 1] is the inten-
tionality degree of proposition γ.

– N is the set of norms that affect the agent. Its language is composed of
(〈D,C〉, ρ) expressions, where D is the deontic modality of a norm (i.e.,
Obligation or Prohibition), C is a literal of L representing the situations
that the agent needs to bring about or avoid according to the norm, and
ρ ∈ [0, 1] is a real value that assigns a relevance to the norm. This relevance
represents the degree in which the norm concerns the agent.
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In normative BDI agents the information flows from perception to action
according to three main steps (see Fig. 1). Here, we briefly describe these steps1,
and explain those processes affected by the incorporation of values:

1. The agent perceives the environment and updates its beliefs, and norms.
2. In the deliberation step, the desire set is revised. New desires may be created

from the user preferences as formulae according to the following bridge rule:

B : (desire(α), ρ)
D : (α, ρ)

(1)

meaning that if (desire(α), ρ) is deduced in context B, then (α, ρ) is inferred
in D. Similarly, desires that have been achieved must be dropped. At this
step the agent considers the norms and makes a decision about which ones it
wants to obey. As a result, new desires are created for fulfilling norms. If the
agent is willing to comply with an obligation, then a desire for reaching the
state imposed by the obligation is created by the following bridge rule:

N : (〈O, C〉, ρ), w(C) > δ

D : (C, c(ρ,w(C)))
(2)

where w calculates the agent willingness to comply with a given norm:

w(C) =

∑

B:(C→γ,ρB),D:(γ,ρD)

ρB × ρD

∑

B:(C→γ,ρB)

ρB
−

∑

B:(¬C→γ,ρB),D:(γ,ρD)

ρB × ρD

∑

B:(¬C→γ,ρB)

ρB
(3)

This function considers the desirability of the consequences of fulfilling and
violating the norm together with the plausibility of these consequences to
calculate the agent willingness to comply with the norm. When the willing-
ness is greater than δ, it means that the agent is willing to comply with the
obligation. The degree assigned to the new desire is calculated by the compli-
ance function (c) that considers the relevance of the norm and the willingness
to comply with it. For prohibition norms there is an analogous bridge rule
creating desires to avoid forbidden states.

3. In the decision making step, desires help the agent to select the most suitable
plan to be intended. This is implemented by the following bridge rule:

D : (ϕ, δ), B : ([α]ϕ, ρ), P : plan(ϕ,α, cα)
I : (αϕ, h(ρ × (u(δ) − cα)))

(4)

A formula ([α]ϕ, ρ) is interpreted as the probability that ϕ satisfies the user
by executing α. Then, the intention degree to reach a desire ϕ by means of
a plan α is taken as a trade-off between the benefit of reaching this desire
(calculated by u, which is a mapping that transforms desire degrees into
benefits); and the cost of the plan (cα), weighted by the belief degree ρ. h is a
transformation that maps global benefits back to normalized utility degrees.

1 Neither normative nor practical reasoning is the focus of this paper. We use a simple
normative definition to illustrate the interplay between norms and values. For a
detailed description of normative and practical reasoning see [6] and [3], respectively.
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Fig. 1. Reasoning Phases in a normative BDI Agent. Context are represented as circles
and bridge rules are represented as boxes. Note white boxes and circles correspond to
the inclusion of values into the normative BDI architecture.

2.2 Values

Values are “what is important to us in life” [11] and play a critical role in
how people behave. The most widely accepted system of values is the Schwartz
Theory of Basic Values [11], which identifies 10 different basic values shared
by everyone: self-direction, stimulation, hedonism, achievement, power, security,
conformity, tradition, benevolence and universalism. However, how people order
values can be different from person to person. For example, in the scenario Jay
considers universalism, security and comformity important, in that order2. Uni-
versalism means to value the welfare of all people and nature. In the scenario
to care for the wealth of a waiter would be valued by universalism and so uni-
versalism would imply giving a good tip. Security means to value stability in
relationships, society and one’s self. In the scenario security means to value not
wasting money on optional expenses (because in this scenario even such small
expenses could cause financial instability) and so would imply giving a low tip or
no tip at all. Conformity means to value behaving according to society’s rules and
expectations. In the scenario conformity values behaving according to the norm
that one should tip 12.5%. As we can see values can be aligned with each other
or in conflict with each other and humans make decisions considering the relative
importance of multiple values. Assuming that universalism, security, conformity
is the order of Jay’s values, we can intuitively conclude that Jay should leave a
good tip.

3 Integrating Values in Normative BDI Agents

Values are fundamentally different from beliefs, desires, intentions and norms
[11]: beliefs refer to the subjective probability that something is true, not to
the importance of goals as a guiding principles in life; similarly, desires, inten-
tions and norms are about specific situations, whereas values transcend specific
situations. Hence, we propose to include a new value context (see Fig. 1).

2 We are using a subset of the ten basic values for brevity.
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Our definition of this new context is inspired by Schwartz’s theory of val-
ues and the 4 key properties necessary for a representation of values [11]:
(i)comparability, it should be possible to assess values in specific situations and to
compare these different situations with respect to a specific value; (ii)orderability,
values should be ordered by importance; (iii)practicality, the agent should con-
sider multiple values and their relative importance when selecting a course
of action; and (iv)normativity, values influence whether the agent (or person)
accepts or rejects a norm.

3.1 Value Language

Syntax. VC is a set formed by 10 constants, one per each Schwartz value.
The language of the value context, denoted by V , is formed by three pred-
icates. Predicates promote(v, γ, ρ) and demote(v, γ, ρ) —where v ∈ VC , γ is
a propositional variable of L, and ρ ∈ [0, 1]— represent to what degree a
state of the world promotes or demotes a value. For example, the statement
demote(security, bigtip, 0.8) expresses that leaving a big tip demotes the value
of security. Predicate weight(v, ρ) —where v ∈ VC , and ρ ∈ [0, 1]— repre-
sents the extent the agent holds a value important. For example, the statement
weight(security, 0.7) expresses that the agent holds the value of security fairly
important.

Semantics. For every v ∈ VC and propositional variable γ, there is exactly one
ρ such that promote(v, γ, ρ) holds (and respectively for demote). Note that if
a proposition doesn’t promote a value, it is expressed by promote(v, γ, 0) (and
respectively for demote)3. For every v ∈ VC , there is exactly one ρ such that
weight(v, ρ) holds.

3.2 Value-Based Reasoning

The value context endows agents with an explicit representation of values and
their importance, and knowledge about which situations promote or demote
some values. This representation will allow values to influence the actions taken
by agents. To this aim, we need to associate each propositional variable γ of L
with its valuing: i.e., a numerical value representing to what degree states of the
world satisfying γ promote the agent’s values:

val(γ) =

∑

v∈VC

(ρpromoted − ρdemoted) × ρweight

∑

v∈VC

ρweight

where promote(v, γ, ρpromoted), demote(v, γ, ρdemoted) and weight(v, ρweight)
hold in context V . Note the above function will calculate the valuation as a
3 Depending on the particular domain of application, a constraint to ensure that one

of promote(v, γ, 0) or demote(v, γ, 0) holds could be added to the V context.
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value within the [−1, 1] interval, the normalized valuation is defined as:

val(γ) =
val(γ) + 1

2

Desire Revision Bridge Rules. The desire revision bridge rules are modified
to avoid the generation of any desire incompatible with the agent’s values. For
example, the desire generation bridge rule is modified as follows:

B : (desire(ϕ), ρ), val(ϕ) > δv

D : (ϕ, ρ)
(1*)

A desire to achieve ϕ is generated if val(ϕ) > δv, where δv is a domain-dependent
threshold determining the trade-off between the user goals and desires.

Norm Compliance Bridge Rules. Values guide the selection or evaluation of
norms and, hence, it is necessary to update the Norm Compliance Bridge Rules
to account for values. In particular, we propose here to modify the willingness
function w to include the valuation of each consequence of a norm:

w(C) =

∑

B:(C→γ,ρB),D:(γ,ρD)

(ρB × ρD) ⊕ val(γ)

∑

B:(C→γ,ρB)

ρB
−

∑

B:(¬C→γ,ρB),D:(γ,ρD)

(ρB × ρD) ⊕ val(γ)

∑

B:(¬C→γ,ρB)

ρB
(3*)

where ⊕ is a operator that combines the desirability and probability of a
consequence with their valuation as a real value within the [0, 1] interval. ⊕ is
a function such that: ⊕(1, 1) = 1, ⊕ has as null element 0, and ⊕ is increasing
with respect to both arguments and is continuous.

Intention Generation Bridge Rule. This rule is modified to consider how
intentions affect values. In particular, each plan is assessed not only in terms of
cost and benefit but also in terms of the valuation of its consequences:

D : (ϕ, δ), B : ([α]ϕ, ρ), P : plan(ϕ,α, cα)
I(αϕ, h((r × (u(d) − cα)) ⊕ ⊎

γ∈postcond(α)

val(γ)))
(4*)

where postcond maps each plan into its postconditions and
⊎

combines different
normalized valuation values into a single value within the [0, 1] interval.

In our tipping example, there is a social norm of tipping 12.5% represented
in context N . When the agent considers this norm, the agent creates a desire
to adhere to the norm (through the norm compliance bridge rules and the will-
ingness function) because the high importance of universalism and conformity
values. From this normative desire, an intention is created. Although the plan
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to pay an ideal tip compromises the financial security of Jay (i.e. the value of
security), this negative impact is drowned out by the positive impact the plan
has on the values of universalism and comformity. Finally, the agent acts on its
intention to leave an ideal tip and recommends it to its user.

3.3 Value Properties

Once the language and rules for representing and reasoning about values have
been proposed we will formally discuss the ways in which this formalization
satisfies the key 4 key properties of values:

– Comparability, predicates promote and demote allows to compare different
situations with respect to a specific value.

– Orderability, the weight predicate defines an ordering on values. Associating
each value with a weight is more general than an ordering on the set of values.

– Practicality, actions available to the agent are shaped by their desires and
intentions, which themselves are generated and filtered based on values.

– Normativity, the modified willingness function considers not only the desir-
ability of each norm consequence but also their impact on the agent’s values,
thus allowing the agent to reason about which norms to adhere to based on
the relative importance of multiple values.

Note that none of these properties would be satisfied in the absence of an explicit
representation of values.

4 Discussion

Recent research has looked at ways to integrate values and norms into practi-
cal reasoning. For example, Mercuur et al. [10] have incorporated values and
norms into social simulations. In their work, agents can act in accordance with
values or norms, but they do not consider the interplay between norms and val-
ues. However, several authors have claimed that agents should use value-based
arguments to decide which action to take, including whether to comply with
or violate norms [2,12]. Cranefield et al. [5] have studied how to consider val-
ues in plan selection algorithm used by a BDI agent, choosing the plan that is
most consistent with the agent’s values to achieve a given goal. However, other
aspects of value-based reasoning, such as the interplay between values and goals
and norms are not considered.

In our work we state that values and norms play a more fundamental role in
the functioning of a BDI agent, and a combination of these two mental attitudes
enable agents behave in a way that is more aligned with human expectations. In
particular, we have made a first attempt to expand a normative BDI architecture
[6] with an explicit representation of values and identified 3 key ways in which
values influence behaviour: (i) determining which norms should be complied
with; (ii) determining which goals are worth pursuing; and (iii) determining the
course of action to achieve a goal.
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In this paper, we have proposed ways to integrate value-based reasoning in
a normative BDI agent by focusing on the quantitative aspects of value promo-
tion and demotion. However, values are usually the object of deliberations of a
different nature:

– Values rarely play an explicit role in common decisions. Value-based reasoning
is more frequent when humans are faced with new dilemmas usually having
conflicting implications for different values [11].

– Situations with respect to a value can not only differ in the degree that the
value is promoted or demoted but also in what quality of the value is being
promoted or demoted: consider the difference between the relaxing and lux-
urious pleasure one gets from lying in the sun and the intense and sharp
pleasure one gets from quenching a thirst [4]. Even though both actions pro-
mote pleasure, they do it in a way that differs not only in how much pleasure
is being promoted but also in what kind of pleasure is being promoted.

– Research suggest that humans have an ordering among values. However, it is
not clear that humans can state quantitatively value importance or assess in
absolute terms how particular situations promote and demote values.

As future work we will work on how to incorporate quantitative reason-
ing with forms of reasoning that more adequate for value-based reasoning; e.g.,
severity-based approach [8], coherence maximisation [7] or argumentation [1].
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Wooldridge, M.J., Ansótegui, C.: Exploiting moral values to choose the right
norms. In: Proceedings of AIES, pp. 264–270 (2018)

13. Sierra, C., Osman, N., Noriega, P., Sabater-Mir, J., Perello-Moragues, A.: Value
alignment: a formal approach. In: Responsible Artificial Intelligence Agents Work-
shop (RAIA) in AAMAS 2019 (2019)

14. Winikoff, M., Dignum, V., Dignum, F.: Why bad coffee? Explaining agent plans
with valuings. In: Proceedings of SAFECOMP, pp. 521–534 (2018)



Predicting the Winners of Borda,
Kemeny and Dodgson Elections

with Supervised Machine Learning

Hanna Kujawska(B), Marija Slavkovik, and Jan-Joachim Rückmann

University of Bergen, Bergen, Norway
Han.Kujawska@gmail.com, {marija.slavkovik,Jan-Joachim.Ruckmann}@uib.no

Abstract. Voting methods are widely used in collective decision mak-
ing, not only among people but also for the purposes of artificial agents.
Computing the winners of voting for some voting methods like Borda
count is computationally easy, while for others, like Kemeny and Dodg-
son, this is a computationally hard problem. The question we explore
here is can winners of Kemeny and Dodgson elections be predicted using
supervised machine learning methods? We explore this question empiri-
cally using common machine learning methods like XGBoost, Linear Sup-
port Vector Machines, Multilayer Perceptron and regularized linear clas-
sifiers with stochastic gradient descent. We analyze elections of 20 alter-
natives and 25 voters and build models that predict the winners of the
Borda, Kemeny and Dodgson methods. We find that, as expected, Borda
winners are predictable with high accuracy (99%), while for Kemeny and
Dodgson the best accuracy we could obtain is 85% for Kemeny and 89%
for Dodgson.

Keywords: Computational social choice · Voting · Machine learning
application

1 Introduction

Voting theory is concerned with the design and analysis of methods that choose
a winner for elections. An election is a pair (C, V ) where C is a finite set of
candidates (also called options or alternatives) and V is a set of voters, each
represented as a total, strict, asymmetric order �i over C. As a collective deci-
sion making method, voting theory finds its implementation not only in politics,
but also in automated decision making [22]. One of the computationally sim-
plest methods is, for example, plurality where the winner is the alternative top
ranked by the highest number of voters. It is well documented that with some
voting methods, such as Kemeny and Dodgson computing the winners is com-
putationally hard, winner determination in the case of both voting methods is
Θp

2 [2,11,12].
Efficient computing of a representative rank of alternatives is also of interest

to recommender systems, specifically in collaborative filtering [20]. Unlike vot-
ing theory, which has extensively studied what it means for a collective rank
c© Springer Nature Switzerland AG 2020
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to be representative of individual ranks, in collaborative filtering, the represen-
tativeness of a “collective” rank is measured by user satisfaction, which is not
always available. Social choice methods, like the Kemeny and Dodgson methods,
may have valuable properties [16]1, but it is the high computational complexity
that deters from their use. It is therefore interesting to explore whether some
“precision” can be “traded off” for computing time. Clearly this is not of inter-
est where exactly the Kemeny/Dodgson winners are sought, but for situations,
such as collaborative filtering, where imprecision can be afforded while gaining
“representability” of the collective rank in a classic social choice sense.

We ask whether machine learning, specifically classification with supervised
learning, can be used to predict the winners of Dodgson and Kemeny elections.

Classification is the problem of assigning a label to a given data point, using
a set of labeled data points as examples, called a training set. A data point is
a vector of values, where each value is associated with a feature. Features are
used to build a factorized representation of an entity or event. A label, or class,
of a data point is the feature we are trying to predict. Training the classifier
over a dataset is the process of building a model that when presented with
feature values of an unknown instance (example or datapoint) on input, outputs
a classification (or a label) for that instance.

We are motivated by the work of Devlin and O’Sullivan [7] who treat satisfi-
ability (sat) of a Boolean formula2 as a classification problem. They do this by
labeling examples of formulas as satisfiable or unsatisfiable (by having calculated
them) and using then these examples as a training data set to build a model
that predicts the satisfiability of a formula. They accomplish 99% accuracy for
hard 3-SAT problems, and accuracy in excess of 90% for “large industrial bench-
marks”.

For a given set of candidates C and number of voters |V |, it is possible to
calculate all the profiles of voters that can occur, that is combinations (with
repetition) of strict, total, asymmetric orders over C. For a nontrivially large C
and |V | this number can be very big. Can we then, calculate the election winners
for some of these profiles, use the so calculated winners as a label for the profile,
and use these labeled profiles as a training data set to build a winner prediction
model? This is the question we address here. We use a data set of 12360 profiles
for 20 candidates and 25 voters and for each of this profiles we calculate the
Borda, Kemeny and Dodgson winners.

We hypothesize that the Borda winners can be predicted with high accuracy
and use Borda as a kind of “benchmark”. We test the predictability of Kemeny
and Dodgson winners, as these are computationally hard to calculate. We would
like to point out that, it was shown in [18] that the class of scoring rules, of
which the Borda method is a member, is efficiently probably approximately
correct (PAC) learnable.

1 To be fair, the value of the properties that Dodgson satisfies has been disputed [3].
2 The satisfiability problem sat is the problem of deciding whether a given a Boolean

formula is admits a truth assignment to each of its variables such that the formula
evaluates true.
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The first problem of feeding profiles as training examples to a machine learning
algorithm is to represent the voting profiles as data points, i.e., use factorized rep-
resentation of collections of preference orders. There are different ways in which
the factorization of profiles can be accomplished and the way a profile is factorized
can affect the classifier performance. We consider three different factorizations and
analyze their fitness for Borda, Kemeny and Dodgson respectively.

Voting rules often are irresolute, namely, for some elections they identify
more than one winner in a ti.e. We intend to use the winner as a label that
needs to be predicted, however to do this we need to address the problem of ties.
We break ties using a lexicographic tie-breaking, which is common in the voting
literature, to choose a label for an irresolute profile. However we find out that
ties do matter in the accuracy of predicting winners.

To find the right methods for classification, we explored the large pool of
all available machine learning classification methods in the scikit-learn library3

through a process of trial and error. We lastly settled using on ten different
classifiers and compared their performance.

Code and datasets for this paper are given at https://github.com/hanolda/
learning-election-winners.

This paper is structured as follows. In Sect. 2 we introduce the basic concepts
and definitions from voting and machine learning. In Sect. 3 we give an overview
of the data sets we used in our experiments. In Sect. 4 we present how profiles
can be represented as data sets for supervised machine learning. In Sect. 5 we
describe our experiments, results and evaluation methods, while in Sect. 6 we
discuss the experiments’ outcomes. Related work is discussed in Sect. 7. Lastly,
in Sect. 8 we make our conclusions and outline directions for future work.

Our contribution is twofold. Our results in predicting Kemeny and Dodgson
winners are promising, but admittedly explorative. We have established feasibility
of the approach and are thus opening the possibility to use machine learning for
predicting winners in voting and social choice theory. Once learned, a model for a
particular size of candidate set and voter set, can be reused for any election of that
“size”. Predicting the outcomes of functions that can be computed, however com-
putationally inefficient, allows us to check at any point how well the predictor is
performing which opens exciting opportunities for predicting instead of calculat-
ing voting outcomes when precision is not critical, for example, for the purposes of
collaborative filtering, or in pre-election estimation of election results in politics.

2 Background

We first introduce the basic definitions and concepts from voting theory and
supervised machine learning.

2.1 Voting Theory

An election is a pair (C, V ) where C is a finite set of alternatives (or candidates)
C = {c1, c2, . . . , cm} and V is a finite collection of agents or voters. Each voter i
3 https://scikit-learn.org/stable/.

https://github.com/hanolda/learning-election-winners
https://github.com/hanolda/learning-election-winners
https://scikit-learn.org/stable/
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is represented with her preference relation i.e., a strict, complete, transitive and
antisymmetric order �i over the set C of alternatives. The top-ranked candidate
of � is at position 1, the successor at position 2, while the last-ranked candidate
is at position m. A collection of preference orders V = (�1, . . . ,�n) is called a
preference profile. A voter i prefers candidate c over candidate c′ iff c �i c

′. A
voting rule F is a mapping from an election E to a non-empty subset of C called
winners of the election.

The Borda method, or Borda count, is a positional scoring rule. Each can-
didate in C is associated with a score that is obtained by the position that
candidate has in the preference orders of the profile. A candidate c ∈ C receives
m−1 points from each �i where it is top ranked, m−2 points from all �i where
it is second ranked, and so on, receiving 0 points when it is the last ranked alter-
native. Borda winners are the candidates that have a maximal sum of points,
which is called Borda score.

The Kemeny method is a distance-based rule. For two preference orders �i

and �j we can define the swap distance, also called Kendall Tau distance, as the
minimal number of pairwise swaps required to make the two orders the same.
Formally we can define the swap distance d between two orders � and �′ over
a set of candidates C with ci, cj ∈ C:

d(�,�′) = |{(ci, cj) : (ci � cj ∧ cj �′ ci) ∨ (cj � ci ∧ ci �′ cj)}|. (1)

The collective preference order of a profile V is the order � for which the
sum of swap distances from � to each �i∈ V is minimal. This collective pref-
erence order is called a Kemeny ranking of election E. Kemeny winners are the
top-ranked alternatives in a Kemeny rank (there could be more than one rank
“tied”). Formally we can define the Kemeny method as follows. Let C be the set
of all total, strict and antisymmetric orders that can be constructed over a set
of alternatives C.

Kemeny(V ) = argmin
�∈C

∑

�i∈V

d(�,�i) (2)

Before defining the Dodgson method, we need to introduce the concept of
Condorcet winner. The Condorcet winner of an election E is the candidate that
defeats all other candidates in a pair-wise comparison. Condorcet winners do not
exist for every election, but when they do exist, they are unique. Let V be the
set of all profiles for |V | agents that can be formed from C. The Dodgson winner
of a profile V is either its Condorcet winner when it exists, or the Condorcet
winner of a profile V’ which is obtained from V by a minimal number of adjacent
swaps. Formally

Dodgson(V ) = Condorcet(argmin
V ′∈V

∑

�i∈V

�′
i∈V ′

d(�i,�′
i)), (3)

where V is the set of profiles that have a Condorcet winner and d is the swap
distance defined in (2).
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Example 1. Let us consider an election E with four candidates C = {a; b; c; d}
(|C| = 4) and |V | = 7 voters. Table 1 presents the preference profile of the V
voters. Each row represents the preference order of a subset of voters, where the
first column is the number who voted with this preference order, and the follow-
ing column is the order of the vote. For instance, 3 voters have the preference
order: a � b � c � d.

Table 1. Preference profile example.

Number of voters Preference order

3 voters a � b � c � d

1 voter d � b � a � c

1 voter d � c � a � b

1 voter b � d � c � a

1 voter c � d � b � a

The Borda winner is b, the Kemeny winner is a, and the Dodgson winner
is b. This profile does not have a Condorcet winner because a defeats b and c
but not d; b defeats only d, c defeats only d and d defeats only a, in a pairwise
comparison.

2.2 Machine Learning

We now introduce the machine learning methods we use in our experiments.
These are: XGBoost, Linear Support Vector Machines (SVM), Multilayer Per-
ceptron and regularized linear classifiers with stochastic gradient descent (SGD).
These approaches were chosen through a process of trial and error that con-
sidered all available machine learning classification methods in the scikit-learn
library4.

Support Vector Machines (SVM). Conceptually, a data point, for which all
feature values are real numbers, can be seen as a point in hyperspace. Binary
classification would then be the problem of finding a hyper-plane that separates
the points from one class from the points of the other class. SVM’s find this
hyper-plane by considering the two closest data points from each class. Since not
all datasets can be separated with a hyper-plane, SVM’s use kernels to transform
the dataset into one that can be split by a hyper-plane. Both linear and nonlinear
kernels can be used. The efficiency of a machine learning method can be improved
by tuning the so called hyper-parameters of an SVM classifier. The SVM we used
provides one hyper-parameter to tune: cost of miss-classification of the data on
the training process.

Gradient Boosted Decision Trees (GB) are among the most powerful and
widely used models for supervised learning. Predicting a label can be done with
4 https://scikit-learn.org/stable/.

https://scikit-learn.org/stable/
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a decision tree built using the training data. To increase the prediction perfor-
mance, GB builds an ensemble of decision trees in a serial manner: each new tree
is built to correct the mistakes of the previous one. GB’s offers a wide range of
hyper-parameters that can be tuned to improve prediction performance, among
else the number of trees (n estimators) and learing rate, which controls the
degree to which each tree is allowed to correct the mistakes of the previous
trees.

Multilayer Perceptrons (MLP) are feed-forward neural networks. MLPs are
often applied to supervised learning problems: they learn to model the correlation
(or dependencies) in two phases process: forward pass - the training data flow
moves from the input layer through the hidden layers to the output layer (also
called the visible layer). There, the prediction of the output layer is measured
against the target labels. The error can be measured in a variety of ways, e.g.
root mean squared error (RMSE). In the backward pass, backpropagation is used
to make model parameters, i.e. weigh and bias adjustments relative to the error.
That act of differentiation, based on any gradient-based optimization algorithm,
gives us a landscape of error. During the convergence state, the parameters are
adjusted along the gradient, which minimize the error of the model.

Regularized Linear Classifiers with Stochastic Gradient Descent
(SGD). SGD is very efficient approach in the context of large-scale learning.
For classification purposes, regularized linear classifiers use a plain stochastic
gradient descent learning routine which supports different regression loss func-
tions, that measures the model (mis)fit and the penalties, regularization term
that penalizes model complexity. SGD is fitted with the training samples and
the target values (class labels) for the training samples and for each observation
updates the model parameters: weights and bias (also called offset or intercept).
A common choice to find the model parameters is by minimizing the regularized
training error.

3 Datasets and Preprocessing

We originally intended to use datasets from the preflib.org, however we found
them unsuitable for various reasons such as there were too few candidates, or
too few profiles in the data set. We used a dataset of 361 profiles of ranked lists
of music tracks (songs) from Spotify5 as a basis to generate a high-dimensional
dataset of 12360 profiles. The such obtained datasets consist of profiles for |C| =
20 candidates with |V | = 25 voters per profile.

The Spotify dataset consists of daily top-200 music rankings for 63 countries
in 2017. Ranked are 20 music tracks (songs) described by position, track name,
artist, streams and URL. A single voter’s preference order represents one ranking
for one day in one country. We considered 25 countries on 361 days, as some
days had to be removed due to preference order incompleteness. We also only
considered profiles that have a unique winner under the three voting methods
we studied, as is was our intention to not consider ties.
5 https://spotifycharts.com/regional.

https://spotifycharts.com/regional
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Analyzing the Spotify dataset, however, we observed that the profiles’ labels
are not uniformly distributed, namely not all candidates are winners of an
approximately equal number of the profiles in the dataset. Specifically, the Spo-
tify dataset contains many profiles where the winner is candidate number 16
or candidate 18. We handled this issue by generating a synthetic dataset with
the same number of candidates |C| and voters |V | as in Spotify. In the newly
built dataset, we kept only those profiles that ensured class-balanced output,
i.e., the same number of profiles for each possible winner. The synthetic dataset
extends the Spotify dataset into a total of 12360 profiles, which were generated
by creating permutations of |C| = 20 alternatives and joining them into |V | = 25
combinations with repetitions.

For the synthetic dataset we further created three datasets: separately for
Borda, Kemeny and Dodgson winners. Each dataset consists of preference ranks
(the same for all voting methods) along with labels denoting the winner, as per
voting method. For Borda we used all of the 12360 labeled profiles, synthetic
and from Spotify. To label the profiles with Kemeny and Dodgson winners,
we calculated the winners using Democratix6[5]. Democratix was not able
to process all of our 12360 profiles. For Kemeny we were able to label 10653
profiles, and for Dodgson we had 11754 labeled profiles.

We split the dataset into a training, validation and testing sets (70/15/15[%]),
using the Stratified ShuffleSplit cross-validator from the Model Selection module

Table 2. No. profiles for train-
ing, validation and test.

Dataset Training set Validation set Test set

Borda 6666 1429 1429

Kemeny 6921 1484 1483

Dodgson 7362 1578 1578

Table 3. Borda, Kemeny and Dodgson winner dis-
tribution.

Candidate As
Borda
winner

In
training

As Kemeny
winner

In
training

As
Dodgson
winner

In
training

1 483 338 597 418 483 338

10 358 250 299 209 551 386

11 481 337 419 293 511 358

12 307 215 322 225 460 322

13 491 344 397 278 542 379

14 544 381 401 281 519 363

15 522 365 387 271 499 349

16 404 283 381 267 1156 809

17 387 271 360 252 206 144

18 479 335 496 347 513 359

19 513 359 585 409 522 365

2 497 348 613 429 515 361

20 553 387 598 419 500 350

3 494 346 563 394 502 352

4 550 385 612 428 489 342

5 453 317 565 396 501 351

6 475 332 522 365 535 375

7 508 355 633 443 512 358

8 484 339 590 413 513 359

9 541 379 548 384 489 342

6 http://democratix.dbai.tuwien.ac.at/index.php.

http://democratix.dbai.tuwien.ac.at/index.php
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of scikit-learn library7, which creates a single training/testing set having equally
balanced (stratified) classes. Table 2 presents the train, validation and test split
of profiles in the generated dataset. The detailed final distribution of total and
training samples per candidate is presented in Table 3.

4 Factorization of Profiles

A profile of votes is a list of total orders, typically encoded as a nested list of
ordered lists representing the voters. To be able to use profiles as training data
in ML algorithms, we need to find a way to model the profiles using factorized
representation. There are several ways in which this can be done and the choice
of representation can have a substantial impact on the winner prediction. We
explored three different approaches. The approaches differ in what is considered
a feature of a voting profile.

4.1 Labeling Profiles

Each of the voting methods we consider, Borda, Kemeny and Dodgson, admit
non-unique election winners. Namely, more than one candidate can appear in a
tie as a winner. We use supervised learning with the profile of votes as a data
point and the winner for a given election as the class or label for that profile.

Typically, voting methods are accompanied by tie-breaking mechanisms.
There are numerous approaches to tie-breaking including randomly choosing one
among the winners or pre-fixing an order over C that will be used for breaking
ties. The tie-breaking mechanism does have an impact on the election outcome
and the properties of the method [1,15]. We here applied a lexicographic tie-
breaking and used this winner to label the profiles in the training set.

Other possible approaches we could take, which we leave for future work,
is to use the whole set of winners as a label. In this case the set of possible
labels for a profile would be the power set of C rather than C as is the case
now. Allowing a datapoint to be labeled as a member of more than one class
is a subject of study of multi-label classification methods [21]. Both of these
approaches pose considerable challenges. Using subsets of C as labels makes the
feature engineering and data pre-processing task more elaborate, while multi-
class classification methods are not as off-the-shelf wide spread as classification
methods.

Observe that the Borda winners can be exactly computed from all three
representations, the Kemeny winners from Representation 3, while the Dodgson
winners cannot be exactly computed from any of the three.

4.2 Representation 1

In this representation the set of features is the set of candidates C and the value
for each feature is the Borda score of the feature. The profile from Example 1 is
given in Table 4.
7 The seed for the random number generator during the split is equal to 42.
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Table 4. The profile from Example 1 in Representation 1.

f-a f-b f-c f-d Label

11 12 9 10 b

The shape of the new representation is:

(#profiles,#candidates).

Here, the shape of the Spotify model is (361, 20) and of our generated model is
(12360, 20).

The main drawback of this factorization is that it forces anonymity on the
profile. Namely the factorized representation loses the information about who
voted for whom. The main advantage is that the original profiles don’t have to
be the same size (number of voters) to transform the dataset to this feature
representation. That means that once learned, the prediction model can be used
for winner prediction of any new election.

4.3 Representation 2

In this representation there is one feature for each candidate-possible rank pair.
The value of the feature is the number of voters ranking the candidate at the
featured position. In other words, we count the number of times each of the
candidates is ranked at each position. This is the so called positional information
of a profile. For example, if the set of candidates has four candidates, we obtain
16 features. The profile from Example 1 is given in Table 5.

Table 5. The profile from Example 1 in Representation 2.

f-a1 f-a2 f-a3 f-a4 f-b1 f-b2 f-b3 f-b4 f-c1 f-c2 f-c3 f-c4 f-d1 f-d2 f-d3 f-d4 label

3 0 2 2 1 4 1 1 1 1 4 1 2 2 0 3 b

The shape of the new representation is:

(#profiles, |C| · |C|).
Thus, for given N = 20 candidates and length of each vote (ranking) equal to
20 positions, we obtain 400 features. Here, the shape of the Spotify model is
(361, 400) and of the generated model: (12360, 400).

The main drawback of this transformation is that we lose the information
about the sequence of individual preferences. Although time efficiency was not
something we directly were interested in increasing, this representation was
observed to lead to a significant reduction in model training time, in partic-
ular in when predicting Kemeny winners.
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4.4 Representation 3

As a third way to factorize profiles we consider the set of features to be the set
of unique pairs of candidates. The value of the feature then is the number of
voters that prefer the first candidate to the second in the pair. This is the so
called pairwise majority matrix. The profile from Example 1 is given in Table 6.

Table 6. The profile from Example 1 in Representation 3.

ab ac ad ba bc bd ca cb cd da db dc label

4 4 3 3 5 4 3 2 5 4 2 3 b

For given N = 20 candidates we have 380 possible combinations (without
repetition, order matters). The shape of the representation is:

(#profiles,

(|C|
2

)
).

The shape of the Spotify model is: (361, 380) and the generated model:
(12360, 380).

5 Experiments and Testing

The three different profile representations yielded nine dataset, three for each
voting methods. We considered ten different classifiers. We tested the perfor-
mance of the classifiers on each representation using cross-validation testing. As
evaluation metrics to assess the performance of the ten classifiers we used accu-
racy and F1-score. Accuracy is the proportion of correctly classified instances
from the total number of instances. The F1-score is calculated for each class (cat-
egory) separately and the average is taken as the final F1-score. For each class
the F1-Score is 2 ∗ precision·recall

precision+recall , where precision = tp
tp+fp

, recall = tp
tp+fn

, tp is
the number of true positive, namely the number of samples correctly predicted
as positive and fp is the number of false positive, namely number of samples
wrongly predicted as positive.

5.1 Borda Results

Table 7 summaries the performance of the classifiers using Representation 1. We
obtain the best accuracy by using the Gaussian Naive Bayes classifier (100%) and
XGBclassifier (99,5%). We noticed that the top-performing classification models
are those generated by the group of algorithms capable of generating probability
predictions. These also had the highest F1-scores. The 100% accuracy of the
Naive Bayes classifier could be the result of overfitting, however we did not
succeed in underfitting without reducing the size of the training dataset.

To understand better the “behavior” of the models we also considered wether
the miss-predictions are actually other winners that were in a tie which were not
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used for labeling due to the lexicographic tie-breaking we used. If the predicted
winner was a true winner in a tie we counted that datapoint as true positive.
That improved the accuracy results by 0–6%. It is interesting to mention that we
noticed that GaussianNaiveBayes tended to push probabilities of the likelihood
of a candidate being a winner to 0 or 1. The reason for it is because it assumes
that features are conditionally independent given the class, which is the case in
this dataset in Representation 1 containing not redundant features.

Table 7. Representation 1: Borda predic-
tions after hyper-parameter tuning.

Accuracy
[%]

Precision
[%]

Recall
[%]

F1score
[%]

# In ties
[# samples]

ties [%] Acc. with
ties [%]

GaussianNB 100 100 100 100 0 0 100

XGBClassifier 99.5 66.56 66.37 66.47 4 0.22 99.79

RandomForestClassifier 90.29 33.34 31.88 32.52 2 0.11 90.4

SGDClassifier 85.6 49.58 46.82 47.92 26 1.4 87

SVC(kernel = ‘linear’) 76.86 27 23.05 24.79 20 1.08 77.94

RidgeClassifier 70.01 26.25 21.1 21.95 5 0.27 70.28

DecisionTreeClassifier 66.07 49.94 57.14 52.33 0 0 66.07

RandomForestClassifier 4.91 25.04 17.54 19.37 44 2.37 57.28

LinearSVC (C = 1.0) 52.32 25.82 16.05 16.64 38 2.05 54.37

AdaBoostClassifier 48.33 33.21 42.86 35.58 0 0 48.33

MLPClassifier 43.37 19.18 13 15.16 111 5.99 49.36

SVC (C = 1, kernel =
‘rbf’)

22.55 86.3 22.49 15.87 0 0 22.55

Table 8. Representation 2: Borda predic-
tions after hyper-parameter tuning.

Accuracy
[%]

Precision
[%]

Recall
[%]

F1score
[%]

# In ties
[# samples]

ties [%] Acc. with
ties [%]

XGBClassifier 100 100 100 100 0 0 100

GaussianNB 100 100 100 100 0 0 100

DecisionTreeClassifier 66.07 49.94 57.14 52.33 0 0 66.07

SVC(kernel =′ linear′) 64.72 33.04 29.97 30.75 0 0 64.72

AdaBoostClassifier 48.33 33.21 42.86 35.58 0 0 48.33

LinearSVC 41.96 19.57 13.33 15.58 2 0.11 42.07

SGDClassifier 40.45 20.3 14.38 16.18 0 0 40.45

RidgeClassifier 30.04 17.12 9.09 11.45 52 2.8 32.84

MLPClassifier 29.29 11.43 9.74 9.87 1 0.05 29.34

SVC(kernel = ‘rbf ′) 22.55 86.3 22.49 15.87 0 0 22.55

RandomForestClassifier 17.31 9.4 5.2 6.4 151 8.14 25.45

Table 8 and Table 6 respectively summarize the ML performance under Rep-
resentations 2 and 3. We also observed best performance for the ML methods
that performed well with Representation 1 (Table 9).

Table 9. Representation 3:Borda predic-
tions after hyper-parameter tuning.

Accuracy
[%]

Precision
[%]

Recall
[%]

F1score
[%]

# In ties
[# samples]

ties [%] Acc. with
ties [%]

XGBClassifier 100 100 100 100 0 0 100

GaussianNB 100 100 100 100 0 0 100

SVC(kernel=‘linear’) 81.55 26.87 24.49 25.57 2 0.11 81.66

LinearSVC 70.12 26.04 21.07 23.2 9 0.49 70.61

DecisionTreeClassifier 66.07 49.94 57.14 52.33 0 0 66.07

SGDClassifier 60.46 29.33 19.66 19.67 20 1.08 61.54

AdaBoostClassifier 48.33 33.21 42.86 35.58 0 0 48.33

MLPClassifier 46.44 18.87 13.92 15.74 72 3.88 50.32

RandomForest(depth = 5) 45.47 19.74 13.66 15.47 76 4.1 49.57

RidgeClassifier 38.78 20.57 11.65 14.16 36 1.94 40.72

RandomForestClassifier 31.45 17.29 9.4 11.17 76 4.1 35.55

SVC(kernel = ‘rbf’) 22.55 86.3 22.49 15.87 0 0 22.55

Table 10. Representation 1: Kemeny pre-
dictions.

Accuracy [%] Precision [%] Recall [%] F1score [%] # In ties [# samples] ties [%] Acc. with ties [%]

XGBClassifier 51.81 38.96 37.51 37.4 101 6.32 58.13

GaussianNB 44.43 35.39 36.51 34.88 95 5.94 50.37

RandomForestClassifier 42.55 34.31 35.42 33.47 138 8.64 51.19

SVC(kernel = ‘linear’) 40.43 32.57 31.91 31.08 136 8.51 48.94

RidgeClassifier 35.48 36.86 33.36 28.43 205 12.83 48.31

LinearSVC 35.23 40.81 27.36 24.62 97 6.07 41.3

RandomForest(depth = 5) 34.61 31.47 27.64 26.26 130 8.14 42.75

SGDClassifier 25.34 30.36 23.42 20.94 93 5.82 31.16

AdaBoostClassifier 24.97 21.46 18.59 17.7 472 29.54 54.51

MLPClassifier 18.46 19.86 19 15.02 253 15.83 34.29

SVC(kernel = ‘rbf’) 8.64 90.14 10.46 10.42 151 9.45 18.09

DecisionTreeClassifier 5.94 16.57 12.84 6.88 109 6.82 12.76

5.2 Kemeny Results

Tables 10, 11 and 12 respectively, summarize the performance of the classifiers
on predicting Kemeny winners. All the measures are calculated after hyper-
parameter tuning. Here the results are discouraging compared with the Borda
winner predictions. We obtained the best results for SVC(kernel=‘rbf’) and the
RandomForestClassifier when using Representation 3. However, after analyzing
the miss-predictions and comparing them with the tied winners, we observed
that the SGDClassifier actually has an accuracy of 85%, which is still low, but
a considerable improvement. The percentage of the correctly predicted winner
involved in the ties varied considerably across classifiers.
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Table 11. Representation 2: Kemeny pre-
dictions.

Accuracy [%] Precision [%] Recall [%] F1score [%] # In ties [# samples] ties [%] Acc. with ties [%]

XGBClassifier 21.53 24.42 21.8 18.02 188 11.76 33.29

LinearSVC 19.27 19.89 19.28 16.71 149 9.32 28.59

SVC(kernel = ‘linear’) 19.21 21.67 19.19 16.49 201 12.58 31.79

SGDClassifier 17.83 24.42 18.43 16.14 91 5.69 23.52

RidgeClassifier 17.65 19.46 17.6 15.23 151 9.45 27.1

GaussianNB 16.21 22.71 18.24 14.7 189 11.83 28.04

RandomForestClassifier 9.64 15.38 10.75 9.09 278 17.4 27.04

SVC(kernel = ‘rbf’) 8.64 90.14 10.46 10.42 151 9.45 18.09

MLPClassifier 7.32 11.25 8.93 6.38 241 15.08 22.4

AdaBoostClassifier 6.7 15.65 7.98 5.46 402 25.16 31.86

RandomForest(depth = 5) 5.51 9.43 8.14 5.15 272 17.02 22.53

DecisionTreeClassifier 3.5 7.04 5.41 2.88 189 11.83 15.33

Table 12. Representation 3: Kemeny pre-
dictions.

Accuracy [%] Precision [%] Recall [%] F1score [%] # In ties [# samples] ties [%] Acc. with ties [%]

SGDClassifier 2.44 0.12 5.0 0.24 1771 83.11 85.55

RandomForestClassifier 60.86 57.18 61.32 55.78 128 6.01 66.87

SVC(kernel = ‘rbf’) 60.58 95.26 61.82 71.49 82 3.85 64.43

GradientBoostingClassifier 59.5 55.43 58.66 54.09 79 3.71 63.21

XGBClassifier 26.94 38.13 28.27 25.07 175 8.21 35.15

RandomForest(depth = 5) 7.74 37.15 14.93 8.26 348 16.33 24.07

AdaBoostClassifier 6.29 7.04 7.32 5.04 232 10.89 17.18

DecisionTreeClassifier 5.02 10.71 6.6 3.65 252 11.83 16.85

GaussianNB() 6.34 8.28 7.72 5.37 219 10.28 16.62

RidgeClassifier 4.27 8.11 6.99 3.09 245 11.5 15.77

MLPClassifier 4.41 2.54 4.71 1.7 115 5.4 9.81

LinearSVC 6.62 0.33 5.0 0.62 15 0.7 7.32

5.3 Dodgson Results

Surprisingly, we obtained better results predicting Dodgson winners than
Kemeny winners, but still with a relatively lower accuracy than Borda win-
ners: 87% with the GradientBoostingClassifier under Representations 1 and 3.
Tables 13, 14 and 15 respectively summarize our results. Again, all the mea-
sures are calculated after hyper-parameter tuning. Here again, after analyzing
the miss-predictions, we observe that the GradientBoostingClassifier actually
correctly predicts winners that are among ties.

Table 13. Representation 1: Dodgson
prediction.

Accuracy [%] Precision [%] Recall [%] F1score [%] # In ties [# samples] ties [%] Acc. with ties [%]

GradientBoostingClassifier 87.2 81.37 75.34 77.95 51 2.17 89.37

RandomForestClassifier 84.22 75.05 73.68 73.87 54 2.3 86.52

XGBClassifier 77.63 65.96 48.98 53.13 90 3.83 81.46

GaussianNB 66.31 42.34 41.84 41.63 120 5.1 71.41

RandomForest(depth = 5) 66.57 55.43 36.24 39.26 88 3.74 70.31

SVC(kernel = ‘rbf’) 68.06 97.07 61.14 73.34 10 0.43 68.49

RidgeClassifier 63.16 40.37 38.84 38.73 114 4.85 68.01

MLPClassifier 57.64 43.33 44.4 38.79 113 4.81 62.45

AdaBoostClassifier 55.98 35.27 36.61 35.32 117 4.98 60.96

SGDClassifier 50.91 27.14 30.64 23.01 129 5.49 56.4

LinearSVC 34.11 34.02 25.55 19.77 116 4.93 39.04

DecisionTreeClassifier 23.52 17.17 12.22 8.5 25 1.06 24.58

Table 14. Representation 2: Dodgson pre-
dictions.

Accuracy [%] Precision [%] Recall [%] F1score [%] # In ties [# samples] ties [%] Acc. with ties [%]

GradientBoostingClassifier 80.77 68.75 73.07 70.46 59 2.51 83.28

MLPClassifier 77.16 63.44 71.98 66.57 68 2.89 80.05

XGBClassifier 69.72 53.67 57.13 54.12 97 4.13 73.85

SVC(kernel = ‘rbf’) 68.06 97.07 61.14 73.34 10 0.43 68.49

LinearSVC 62.91 51.52 55.26 50.62 125 5.32 68.23

RandomForestClassifier 61.93 52.59 62.03 52.66 141 6.0 67.93

RidgeClassifier 63.16 46.38 51.67 47.73 102 4.34 67.5

GaussianNB 57.59 42.61 51.65 44.99 120 5.1 62.69

SGDClassifier 53.21 48.54 40.55 37.82 93 3.96 57.17

AdaBoostClassifier 25.1 19.39 22.26 18.23 195 8.29 33.39

DecisionTreeClassifier 21.23 9.1 9.0 5.52 66 2.81 24.04

RandomForest(depth = 5) 22.59 1.13 5.0 1.84 19 0.81 23.4

Table 15. Representation 3: Dodgson predictions.

Accuracy [%] Precision [%] Recall [%] F1score [%] # In ties [# samples] ties [%] Acc. with ties [%]

GradientBoostingClassifier 87.28 80.85 77.62 78.91 50 2.13 89.41

XGBClassifier 85.92 77.83 78.41 77.9 66 2.81 88.73

RandomForestClassifier 71.08 59.15 69.32 60.71 105 4.47 75.55

GaussianNB 65.76 50.52 45.52 45.62 115 4.89 70.65

SVC(kernel = ‘rbf’) 68.06 97.07 61.14 73.34 10 0.43 68.491

RidgeClassifier 62.14 42.01 43.51 41.85 113 4.81 66.95

MLPClassifier 54.4 39.04 42.54 38.8 110 4.68 59.08

SGDClassifier 50.87 36.31 29.72 22.74 128 5.44 56.31

LinearSVC 41.56 46.0 19.17 20.69 51 2.17 43.73

RandomForest(depth = 5) 26.8 62.52 10.2 10.87 23 0.98 27.78

DecisionTreeClassifier 17.31 10.01 18.27 9.93 192 8.17 25.48

AdaBoostClassifier 15.06 11.9 14.83 9.21 172 7.32 22.38

6 Discussion

A learning curve is a graphical representation of model’s learning performance8

over ‘experience’ or time. We used learning curves here as an ML diagnostic tool
8 Algorithms that learn from a training dataset incrementally.
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for the behavior (underfitting, overfitting or good fit) of ML models and as a
diagnosis tool to evaluate if the datasets (training and validation) are represen-
tative of the problem domain. We omit including all the learning curve graphs
due to space restrictions and only highlight the most interesting observations.

Borda Model Behavior. We identified underfitting in the following models:
SVM with RBF kernel and Random Forest, where the training loss remains
flat regardless of experience. We identify under-fitted models by analyzing the
learning curve of the training loss. A learning curve shows under-fitting if : (i)
the training loss continues to increase until the end of the training, i.e. premature
halt occurs or (ii) the training loss remains flat regardless of training. Some of
the ML methods showed over-fitting in their learning curves. A learning curve
shows over-fitting if: (i) the training loss continues to increase until the end of
training, i.e. premature halt occurs, which we observed with the MLP and SGD
classifiers; or (ii) validation loss increases in order to decrease again, which we
observed with the Random Forest classifier at its late state. The learning curves’
plot showed a good fit for XGBoost, linear SVM and the AdaBoost classifiers,
where we observed (i) the training loss decreases to the point of stability and (ii)
the validation loss increases to a stability point but there remained a small gap
with the training loss. Here, the suitable model fit was presented by the XGBoost,
Linear SVM with SGD classifiers. The Representation 2 training set was easier
to learn compared to Representation 1, namely more algorithms achieved 100%
accuracy for the training set while at the same time increasing accuracy for the
test set. Figure 1 presents an example of the train and validation learning curves
for models learned in Representation 2.

Kemeny and Dodgson Miss-predictions
We observed that in the case of predicting Kemeny winners, a model using
Representation 3 was very well learnable by the SGD classifier. Here, however,
the accuracy of the original dataset was very low ca. 2% and the number of
miss-prediction was very high – ca. 83 % were wrongly classified (false positive).
After checking the miss-classified profiles, we found that 83% of the original
miss-predictions were found in ties, meaning a true winner was predicted, but
not the winner that was selected by the lexicographic tie-breaking. That anal-
ysis revealed that the model accuracy is actually ca. 85%. Figures 2 and 3 (in
the Appendix) present an example of the train and validation learning curves
for models learned in Representation 3. For predicting Dodgson winners, we
obtained the best accuracy with the Gradient Boost classifier learned using
Representations 1 and 3. Curiously, here although some winners were correctly
classified, but not used as labels due to the tie-breaking rule, their numbers did
not make for such a drastic difference as with Kemeny winner predictions. Fig-
ures 4, 5 and 6 presents an example of the train and validation learning curves
for models using Representations 1, 2 and 3 respectively.
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7 Related Work

Machine learning, in the context of social choice, has been used to predict the
missing components of preference orders (ballots) in [8]. Machine learning has
also been used to do political sentiment analysis, namely predict winners of
elections given Twitter data (not preference rankings) in [19]. Data science tech-
niques for handling large elections have been used in [6].

Most similar to our work is perhaps Neural networks are used in [4] where
the authors train the network to classify profiles with their unanimity winner,
their Condorcet winners and unique Borda winner (only profiles that have such
a respective winner are used). Burka et al. use, what we call representation 3
and profiles in which the number of voters equals 7, 9 or 11, while the number
of alternatives equals 3, 4 or 5. Their best Borda accuracy is 92.60%, while their
best Condorcet winner accuracy is 98.42%.

Procaccia et al. [18] consider the problem of PAC-learnability of scoring meth-
ods. We present methods in which the winners of a scoring method, Borda, can
be predicted.

Apart from the work we already discussed [7], machine learning, specifically
neural networks, have been applied to solve NP-complete problems, specifically
the traveling salesman problem [17]. Prates et al. accomplish 80% accuracy with
their approach.

8 Conclusions

We asked if winners of computationally hard to compute voting methods can be
predicted using machine learning classification. We considered two voting meth-
ods for which it can be hard to compute the winners: Kemeny and Dodgson
and also one method, Borda, for which winners can be efficiently computed. We
considered ten different machine learning classifiers. We constructed considered
elections with 20 alternatives for 25 voters. For training machine learning classi-
fiers, we constructed 12360 profiles which we factorized three different ways and
for which we computed the Borda, Kemeny and Dodgson winners. Predicting
election winners is a robust approach. Once a model is created for an election of
a particular size, it can be reused for any election of that size regardless of what
the options or who the voters are.

Our answers are, as expected, Borda winners can be predicted with high
accuracy. Kemeny and Dodgson winners can be predicted with relative accuracy
of 85%-89%. It is important to emphasize that the 12360 profiles we used in
training comprise less than 0.01% of all possible profiles for 20 alternatives and 25
agents. The total number of all possible profiles for |C| alternatives and |V | voters
is: (|V |+|C|!−1)!

|C|!(|V |−1)! . Better accuracies can be obtained with a higher percentage of
labeled profiles for training. Further experiments are needed, with different sets
of candidates and voters (sets of different sizes that is) to explore the impact of
the data set dimensions on the performance of classifiers.
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Surprisingly, the Kemeny winners, which in the worst case are computation-
ally easier to compute that the Dodgson winners, are predictable with a lower
accuracy than the Dodgson winners. Also surprisingly, our models were able to
predict the correct winners for elections when the winners were in a tie (and not
used to label a profile because the lexicographic tie-breaking mechanism did not
select them).

It would be interesting to see where the miss-predictions occur in the aggre-
gated preference order of Kemeny and Dodgson, are they from among the top
ranked or low ranked alternatives or whether there is no correlation between the
prediction and a specific position in the Kemeny/Dodgson rank. Democratix
calculates just the winner(s) not a full preference order, so we were not able to
do this analysis at present. In the future we will consider building prediction
models for smaller profiles for which the full Kemeny and Dodgson ranks can be
computed for analysis.

An interesting avenue to explore is the learnability of collective judgment
sets in judgment aggregation. Judgment aggregation studies how the opinions
of different individuals on the truth value of a issues can be aggregated into a
collective judgment set when the issues that need to be decided upon are possi-
bly logically interconnected [9,14]. Judgment aggregation is known to generalize
voting, namely the problem of finding winners for an election can be repre-
sented as the problem of finding collective judgment sets [9,14]. Furthermore,
Borda, Kemeny and Dodgson are generalizable to judgment aggregation methods
[10,13]. The complexity of finding collective judgements using these generalized
“voting” methods is typically higher than that of calculating election winners.
Furthermore, while the models that predict election winners can be reused for
elections of same size of candidate and voter sets, the logic relations between the
issues on which opinions are given, would prevent this re-usability in judgment
aggregation.
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Appendix -Figures

Fig. 1. Train and validation learning curves for Borda models learned in Repres. 2.
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Fig. 2. Train and validation learning curves for Kemeny using Repres. 3., SDG classi-
fier.

Fig. 3. Train and validation learning curves for Kemeny using Repres. 3., SDG classifier
top, 2Random Forest classifier bottom.

Fig. 4. Learning curve for Dodgson using Representation 1
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Fig. 5. Learning curve for Dodgson using Representation 2

Fig. 6. Learning curve for Dodgson using Repres. 3
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Abstract. Extended Reality (XR) refers to applications that blend the
digital and the physical worlds in different ways: both by situating virtual
worlds into physical environments by means of Augmented and Mixed
Reality Technologies, and by exploiting smart things and devices in the
physical environment connected to the Virtual World, in a pervasive
computing perspective. Like in the case of Virtual Worlds and Intelligent
Virtual Environments, XR applications are a relevant application domain
for multi-agent systems and AI—for instance, for designing XR-based
smart environments. The research question addressed by this paper is
about the definition of a model for conceiving and designing agent-based
XR applications, effective enough to capture essential aspects in spite
of the specific implementing technologies. To this purpose, the paper
describes a model based on the Mirror World conceptual framework and
a concrete platform used to evaluate its strengths and weaknesses.

Keywords: eXtended Reality · Mirror worlds · Agents · BDI · Virtual
worlds

1 Introduction

Since their appearance, virtual worlds [14,16] have been considered an interesting
application context for agents, multi-agent systems and AI in general, to develop
the so called Intelligent Virtual Environments (IVEs) [15]. Virtual worlds and
IVEs typically do not consider the physical world: every interaction occurs in
the virtual world. The physical environment plays an essential role instead in
Augmented and Mixed Reality (AR, MR), where the virtual world is overlaid
onto the physical reality [1,6]. In AR/MR, human users can interact with vir-
tual objects (holograms) that are situated in their physical environment—either
indoor or outdoor. The last decade has witnessed a remarkable development
of AR/MR technologies. Examples of commercial technologies range from MR
based on head-mounted displays such as Microsoft Hololens and Magic Leap
up to smartphone solutions based on technologies such as Google ARCore, Apple
ARKit.
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eXtended Reality systems (XR) [9] further extend this view by devising an
even more deeper blending between the virtual and the physical worlds, involv-
ing pervasive computing/IoT (Internet of Things) technologies, aside to Virtual
Worlds and MR. In XR applications, the physical environment is augmented,
on the one hand, by computing devices equipped with sensors and actuators
embedded in things, tools in the environment; on the other hand, by holograms
situated in the same environment, enriching the functionalities beyond the limits
imposed by the physical reality.

The research question addressed by this paper is about the definition of a gen-
eral model that would make it possible to think about and design agent-based
XR applications. Like IVEs, agent-based XR is about virtual worlds, eventu-
ally distributed, where multiple users can interact with both agents and virtual
objects. Like in the case of MR/AR, such virtual worlds are situated in the
physical reality. Like in the case of pervasive computing, such virtual worlds can
be understood as a digital layer augmenting the functionality of physical objects
and environment, being coupled to smart things.

In this paper we propose an approach for modelling and building agent-
based XR based on mirror worlds (MW). The basic concepts and vision about
MWs have been already introduced elsewhere in literature [10,20]. As a further
development of previous work, in this paper:

– we introduce a concrete model for mirror worlds as a blueprint for designing
agent-based XR (Sect. 3). The value of the model is to be the first formalisa-
tion in literature of mirror worlds, useful for rigorously defining the structure
and behaviour abstracting from specific implementations;

– we introduce an open-source platform implementing the model (Sect. 4). The
value of the platform is both to be used for validating the model and as
a practical tool developing and exploring agent-based XR applications in
different application domains. The platform can be easily integrated with
existing agent programming languages, tools and technologies for developing
individual agents.

Before introducing the model, in next section (Sect. 2) we provide a background
of our work, including also a discussion of related works.

2 Background and Related

In this section we first provide a background about Mirror Worlds, used in this
paper as reference conceptual model. Then, before get into the main contribu-
tion of the paper, we provide an overview of main related research works, in
the context of Intelligent Virtual Environments, Intelligent Virtual Agents and
agent-based Mixed Reality/Augmented Reality.

2.1 Mirror Worlds

The term Mirror World (MW) has been introduced by D. Gelernter to define
software models of some chunk of reality [10]. Using his words, a MW represents a
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Fig. 1. A conceptual representation of a Mirror World.

true-to-life mirror image trapped inside a computer, which can be then viewed,
zoomed, analysed by real-world inhabitants with the help of proper software
(autonomous) assistant agents.

Inspired by the Gelernter’s vision, a concrete research work on mirror worlds
has been carried on in the context of agents and multi-agents systems [20]. In
this work, a mirror world is conceived as an open society/organisation of cog-
nitive software agents spatially layered upon some physical environment, aug-
menting its functionalities [18]. Mirroring occurs when physical things, which
can be perceived and acted upon by humans in the physical world, have a digi-
tal counterpart (or extension) in the mirror world so that they can be observed
and acted upon by agents. Vice versa, an entity in the mirror world that can be
perceived and acted upon by software agents can have a physical appearance (or
extension) in the physical world – for example, through augmented reality – so
that it can be observed and acted upon by humans. See Fig. 1 for a conceptual
representation of a Mirror World.

The coupling between the physical world and the corresponding mirror digital
layer could have a deep impact on humans and their sociality, with different
levels of augmentations [22]—social, cognitive, temporal. In [21], a toy practical
framework based on the JaCaMo platform [4] to design and simulate mirror
worlds is introduced. There, the CArtAgO framework [19] has been extended to
support situated workspaces and situated artifacts as extensions of regular ones.
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2.2 Features and Challenges

From an engineering point-of-view, MWs expose several technical challenges.
Generally speaking, a MW is a hybrid environment where both humans and
proactive autonomous entities can interact and cooperate through the digital
layer. Among others, the following paragraphs reports main technical features
(and challenges) considered by mirror worlds.

Distributed nature. Although from a logical perspective a MW can be observed
as a concentrated system, consider its nature, is obviously that each instance
of a MW should be deployed as a distributed software system. This requires
considering all of the issues exposed by distributed software systems about time
and temporal synchronization, information and event propagation, causal con-
sistency, etc.

Real-time constraint. The execution and propagation of information among a
mirror world instance should be done in real time. This feature is important
at any level. From the users perspective, since the current state of the world’s
entities is shared by all, each update to this state performed by a user should be
instantly available to other users taking in account concurrency issues coming
from concurrency actions performed by different users on the same entity. Also
from agents perspective, the constraint of real-time is mandatory if these entities
need to reason on and act upon the current state of the digital world. Finally,
because the digital layer is strongly coupled with the physical world (see next
proposed feature for details), the digital state must be rapidly informed and
updated according to real-time changes of the physical world.

Cooperative environments. A mirror world is a context where multiple human
users could be concurrently involved. Each user, equipped with a proper compu-
tational device, must be allowed by the system to enter in the extended reality
mainly for both observe and interact with digital entities. The system has to
perceive the presence of each user, allowing to all of them to cooperate and
collaborate exploiting provided functionalities.

2.3 Related Work

Besides Mirror Worlds, we report here a selection of research works proposed in
the agents and MAS literature related to the purposes of our contribution.

Intelligent Virtual Environments. A first interesting related work can be
found in the literature on Intelligent Virtual Environments (IVEs) [15]. In partic-
ular, considering those contributions extending the basic IVEs definition towards
the integration in their models of the physical environment (e.g., [23]). IVEs
are the result of the combination between autonomous agents – equipped with
intelligent techniques and tools provided by Artificial Intelligence (AI) – with
significant graphical representation for both agents and digital environment [3].
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The primary objective of an IVE is to provide a context where simulate a physi-
cal/real environment with autonomous software entities as inhabitants, interact-
ing with the simulated environment as they were the real entities (e.g., humans)
of the simulated real world.

Intelligent Virtual Agents. Intelligent Virtual Agents (IVAs) can be defined
as embodied digital characters situated in a mixed reality environment that
look, communicate, and act like real creatures. A primary feature of IVAs is
that their behaviour should exhibit some aspects of human intelligence. Exam-
ples of IVAs are: non-player characters in computer games, virtual tutors in
educational software, virtual assistants or chat-bots, virtual guides in digital her-
itage environments, and so on. Intelligent virtual agents software has improved
with advances in AI and cognitive computing. Current conversational technology
allows virtual agents to go far beyond interactive voice response (IVR) systems;
virtual agents understand users intent and can provide personalised answers to
customer questions in a human-like manner. An avatar is often used to provide
a visual representation of the virtual agent.

Mixed and Augmented Reality Cognitive Agents. In agents literature,
concepts of MiRA (Mixed Reality Agents) [13] and AuRAs (Augmented Reality
Agents) [5] offers a full description about the role of agents and MAS in MR
and AR contexts. The main aim of MiRA and AuRAs is about agents having a
representation in an AR/MR environment, making them perceivable by human
users and enabling interaction both with them and with other agents. Avoiding
entering in details – even though both works referring to similar concepts – we
can consider MiRA as the broadest concept, used to delineate an agent living in
a mixed reality context. Vice versa, AuRAs identify those mixed reality agents
that can both sense and act in the virtual component of their reality but can
only sense in the physical.

3 A Model for Mirror Worlds

In this section we describe a model for mirror worlds, first describing the MW
structure and then the laws that govern that structure. The main point about
the model is capturing the bidirectional coupling that occurs between the digital
layer and physical layer. By virtue of that coupling, from the agents perspec-
tive, a mirror world is a distributed environment composed by virtual objects
(called mirror objects) that are the digital twins of physical entities situated in
the physical world. These physical entities include physical things, as well as pro-
cesses, phenomena, activities occurring in the physical reality – anything that
can be perceived and acted upon by human users. This includes also holograms
as defined in mixed reality. In our case, a hologram is modelled as a physical
manifestation of mirror objects living in the mirror world.
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3.1 Structure

A mirror world (MW) can be represented by a 5-tuple 〈A,U ,Mobj ,Pe,SS〉
where:

– A = {a1, a2, . . . , aN} is the set of agents that operate in the mirror world;
– U = {u1, u2, . . . , uN} is the set of users (i.e. human users) that interact with

and within the mirror world;
– Mobj = {mobj1,mobj2, . . . ,mobjN} is the agents’ environment composed by

a set of mirror objects, as digital entities that – on the one hand – can be
perceived/acted upon by agents, and – on the other hand – are the digital
twin of some entity pe ∈ Pe situated in the physical environment.

– Pe is a set of entities situated in a physical environment that can be per-
ceived/acted upon by users, including both physical objects – each one cou-
pled with a corresponding mirror object – and holograms as defined in MR,
as physical manifestation of mirror objects.

– SS – referred as shared space – defines the spatial model of mirror world and
its mapping on the spatial structure of the physical environment and reality
where the MW is situated.

Agents. Each element of A is an autonomous computational entity acting in the
extended reality shaped by the mirror world. Examples could be personal assis-
tant agents of human users working in the mirror, or intelligent agents encapsu-
lating smart functionalities of the environment. MW is not bound to any specific
model for agents. Nevertheless, it is useful in the following to consider a cogni-
tive model so we can talk about agent beliefs and goals. To achieve their goals,
agents in MW have the ability to perceive the properties exposed by mirror
objects, mapped into beliefs about the state of the MW, and act through the
actions provided by mirror objects.

Agents, in this model, do not have and can not have percepts from the
physical world directly: in order to perceive some state or event from any phys-
ical entity or phenomenon, there should be a corresponding mirror object mobj

among Mobj modelling it. Dually, the only way to affect the physical world is
through actions provided by a mirror object.

The perception of mirror objects by agents can occur either by intentionally
observing/tracking individual mirror objects, or by specifying some observable
region of the shared space to track, perceiving any event about any mirror object
– including appearance and disappearance – situated there. Observable regions
are modelled here as part of the shared space, described later.

For the purpose of this paper an agent a ∈ A can be represented by a 4-tuple
〈aid, B,Obsm, ObsR〉 where aid is the agent identifier, B is the belief base, Obsm
and ObsR are the set of identifiers of, respectively, mirror objects and observable
regions observed by the agent.

Users. Users refer to the human users that are working and cooperating in same
MW, equipped with proper MR devices (e.g., MR visors, smartglasses or MR-
enabled smartphones). Users are meant to be physically situated in the physical
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environment bound to the MW. Users can interact with the MW by acting upon
and observing the physical entities Pe, including holograms, which are bound to
some mirror object in Mobj .

Mirror Objects and Physical Entities. Mirror objects are used to explicitly model
and represent in the mirror any asset of the physical world that can be relevant
to observe, to reason about, to act upon from the agent point of view. A mirror
object can be conceived as the digital twin [11] of some physical entity situated
in the physical world, possibly extending its functionalities. As a digital twin, a
mirror object reflects the dynamic state (or, a model of) of the physical counter-
part, to which it is coupled. Such a state can be observed and tracked by agents
living in the MW.

Physical entities here are not limited to physical things or objects, but may
include also physical phenomena (e.g., the wind) and physical manifestation,
such as holograms. In MW a hologram is the physical manifestation of mirror
object, as a kind of view that can be perceived by human users equipped by
proper MR devices. Besides, even activities occurring in the physical reality (e.g.,
an ongoing rescue) can be coupled to a mirror object, in order to be tracked by
agents. Physical entities include also the users’ physical bodies, that are then
modelled by proper mirror objects in the mirror: for each user u ∈ U , it exists a
mirror object mu ∈ Mobj that makes it observable relevant information – both
static and dynamic – about the user, including her position and gaze direction.
We refer to these mirror objects as user avatars.

In our model, a mirror object mobj ∈ Mobj is represented by a 5-tuple
〈moid,mos, obsp, acts, peid〉 where moid represents a unique identifier, mos the
internal (non observable) state, props = {p1, p2, . . . , pn} is the set of observable
properties exposed by the object and actions = {a1, a2, . . . , an} is the set of
actions that be invoked by agents. An observable property o ∈ props can be
represented as a couple (key, value). Each mirror object is coupled to a physical
entity pe ∈ Pe, identified by the peid identifier. In user avatars, the physical
entity is the user (body) itself.

Shared Space. Every mirror object is coupled to a physical entity which is located
in some position1 of the physical world. Such a position is included among the
observable properties of the mirror object, to be observable by agents. To give
a meaning to that concept, a shared spatial reference system is needed, defining
a coordinate space in the mirror which could be a meaningful mapping of the
one adopted in the physical space, in order to represent locations as well as
the geometry and extension of objects, and for computing distances. In the
model, this is captured by the shared space component SS . The shared space
is coupled with the physical space through a mapping function M responsible
of the conversion of the coordinates of the physical space into the ones of the
digital layer and viceversa. Every mirror object mobj ∈ Mobj has a position

1 Note that with the term position referred to a particular element, we refer both to
its location and its orientation.
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defined by SS , modelled as built-in observable property pos (a 3D point). All
mirror objects that represent user avatars track also user gaze, modelled by a
further observable property gaze (a 3D vector).

In a mirror world, agents may want to observe what happens in any spatial
regions of the physical environment on which the MW is mapped. For instance:
tracking if/what mirror objects are going to appear in that region. An example of
a region could be some part of a room (e.g., a corner), but also a sphere around a
human user moving inside the room. To that purpose, the concept of observable
region is introduced in the model, as part of the shared state component. An
observable region r ∈ Regs is modelled here by a 2-tuple 〈regid, ext〉, where regid
is the identifier of the region, and ext is a representation of its (geometrical)
extension, that can change dynamically.

3.2 Mirror World General Laws

In this section, we describe a core set of laws that capture the key aspects related
to the dynamics of a MW. Such laws can be expressed by means of transitions
that define the MW dynamics, that is: the MW is modelled as a transition
system in which the state – represented by a tuple as defined in previous section
– evolves, atomically.

Coupling laws. These laws define the bidirectional coupling between a mirror
object and a corresponding physical entity. Given a mirror object mobj ∈ Mobj

and a physical entity pe ∈ Pe that are coupled, i.e.:

mobj = 〈moid,mos, props, acts, peid〉, pe = 〈peid, pes,moid〉
then, a change of the state of the physical entity pes (either because of human
users actions or because of the internal behaviour of the objects e.g. a clock)
triggers a transition of the MW in which also the full state of the corresponding
mirror object is updated:

pe −→ 〈peid, pe′
s,moid〉, mobj −→ 〈moid,mo′

s, props
′, acts, peid〉

This holds also dually, that is: any state changes of the mirror object mobj

(either because of agents’ actions or internal object mechanics) cause a transition
of the MW in which the state of the coupled physical entity pe is updated
correspondingly, according to the coupling relationship.

These laws concern also physical entities that are holograms, as part of the
mixed reality level. So a human user interacting with an hologram can lead
to state changes of the hologram itself, that are then propagated to the corre-
sponding mirror object and can be eventually perceived by interested agents,
observing the mirror object. Viceversa, a human user can observe changes to the
hologram that are caused by agents acting in the mirror on the corresponding
mirror object.

In this model, transitions are atomic, in spite of the fact the coupled entities
(the mirror object and the physical entity) are distributed. This implies that any
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action done either by agent(s) on a mirror object or by user(s) on the coupled
physical entity (including holograms) must be performed transactionally with
respect the two entities. This is a strong requirement to guarantee the consis-
tency of the state of mirror objects and physical entities. At the implementation
level, this implies that e.g. any actions performed by agents on a mirror object
are actually transactions involving also the physical entities, and viceversa any
physical actions performed by a human user on a physical entity are transactions
as well, involving the mirror object. At the implementation level such a strong
consistency has a price in terms of latency and availability. Actually, this strong
requirement can be relaxed when either the mirror object or the physical entity
do not provide actions, but only an observable state: in this case the state of the
“observe-only” element can be eventually updated by events generated by the
coupled element, preserving the order of events but without the need of using
transactions.

A further related remark – which is important from an implementation point
of view, in particular – is that holograms, as well as physical entities and mirror
objects, could have a part of their state not coupled with the corresponding
twin, so that changes that that part do not require synchronisation. A typical
example in the practice is given by the animation of holograms, that typically
needs to be executed with real-time constraints that would make it prohibited a
synchronisation with the corresponding distributed mirror object.

Agent observation laws. These laws define how agents can be aware of what
happens in a MW. If a mirror object mobj = 〈moid,mos, props, acts, peid〉 is
observed by an agent a ∈ A, that is:

a = 〈aid, B,Obsm, Obsr〉,moid ∈ Obsm

then the agent beliefs B include a subset of beliefs that are about the observable
properties props. Then, a change of the observable state of mirror object (because
of e.g. the execution of an action by some agent) causes a transition of the
MW in which the beliefs of any agents observing the mirror object are updated
accordingly:

mobj −→ 〈moid, s
′, props′, acts, peid〉

a −→ 〈aid, B′′, Obsm, Obsr〉, B′′ = buf(B, props′)

where buf is a belief update function, updating the belief base with the updated
value of the observable properties.

Besides individual mirror objects, agents can track also observable regions.
In that case, if a region reg = 〈regid, ext〉, part of the observable regions Regs
defined in SS , is observed by an agent a ∈ A, that is:

a = 〈aid, B,Obsm, ObsR〉, regid ∈ ObsR

then, the agent has beliefs about all mirror objects that are situated in that
region, according to the shared space model/geometry and the extension of the
region. In this case, a change of the state of the observable region – either because
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of mirror object appears/enters or disappears/exits as effect of agent actions or
the observable state of mirror objects in the region changes, like in the previous
case – involves a transition of the MW:

a −→ 〈aid, B′, Obsm, ObsR〉

in which the belief base B of the agent observing the region gets updated.

4 A Platform for Agent-Based XR Based on Mirror
Worlds

In this section, we discuss a software platform that implements the mirror worlds
formal model presented in the previous section.

A first proposal for a platform to design and develop mirror worlds was pro-
posed in [21] where JaCaMo [4] was extended with several features and concepts
to deal with mirror worlds main elements. Nevertheless, this solution can not be
considered as a real platform for building robust agent-based extended realities.
It does not offer concrete support for dealing with mixed reality issues and chal-
lenges, and also the support for agents technologies is limited to Jason program-
ming languages and, potentially, to others able to interact with CArtAgO [19]
environments.

The platform that we discuss in this paper, instead, extends and refactors the
first version of a software platform proposed by us in [8] called MiRAgE (acronym
for Mixed Reality Agent-based Environments) that is a general-purpose frame-
work for building software systems where agents can live and interact in a mixed
reality environment where the physical and the digital layer are deeply cou-
pled through the software layer. The refactoring mainly consists in injecting into
MiRAgE the mirror world formal model with its abstractions in place of the ad-
hoc model upon which it was originally built, redesigning abstraction for agent
interaction with the mirror world.

4.1 Platform Architecture

Figure 2 depicts the logical architecture of the MiRAgE framework, showing its
main components. Following paragraph enter into details.

The Platform Runtime. The main core of the platform is encapsulated by
the MW-Runtime, representing the virtual machine supporting the execution of
an instance of a MW and the creation and the evolution of all mirror objects.
In other words, the MW-Runtime is responsible (1) to keep updated the state
of each involved mirror object, (2) to allow to each mirror object to obtain the
required resources to evolve their internal state, and (3) to provide a standard
and interoperable interface for agents to interact with the MW and its entities.
The MW-Runtime can be alternatively hosted on a single server node or can be
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Fig. 2. The MiRAgE logical architecture and main components.

distributed on several machines. In any case, from the agent perspective, the
runtime is always access with a single reference.

The access to the running instance of a MW, to its mirror objects – to observe
them or to invoke their operations – is mediated by a RESTful API to maximize
interoperability. In fact, this API is the only way to access to mirror objects
from external active entities, e.g. agents. The API is based on self-descriptive
messages, HTTP operations and event-oriented mechanisms (e.g. web-socket)
[7]. Observable properties defining the observable state of each mirror object are
naturally mapped onto Web-of-Things (WoT) [12] properties and, analogously,
actions (operations) are naturally mapped onto actions of the WoT model. More-
over, like WoT, to support event-oriented interactions, in the MiRAgE RESTful
API mirror object can be subscribed both at the resource level and the prop-
erty/action level.

The Hologram Engine The platform architecture introduces the component
called Hologram Engine to support the interaction of human users and allow them
to perceive the mixed reality. It is a part of the platform running on the user’s
device and responsible both to generate and show holograms in relation with the
user reference system and to keep them updated according to the evolving state
of the mirror world. The hologram engine exploits a dedicated/infrastructural
bidirectional TCP-based channel to communicate with the platform runtime
through a dedicated bridge (HEB, Hologam Engine Bridge). This represents
an important feature of the platform because ensures a real-time, effective and
reliable experience to users observing and interacting with holograms.

4.2 The Platform Model and APIs

The mirror worlds model has been developed into MiRAgE as a set of first-class
concepts summarized in Fig. 3. The structure and the laws previously discussed
have been mapped into MiRAgE to govern each running instance of a mirror
world. Agents deal with such concepts to join and manage mirror objects com-
posing the extended reality represented by the mirror world.
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Fig. 3. A UML diagram representing MW concepts.

@HOLOGRAM(geometry = "CubeHologram") class Cube extends MirrorObject {

@PROPERTY String color = "white";

@ACTION void changeColor(String color) {

customProperty("color", color);

}

@ACTION void rotate(Double degrees) {

Orientation o = this.orientation();

this.orientation(new Orientation(

o.roll(), (o.pitch() + degrees) % 360, o.yaw()));

}

}

Fig. 4. The cube mirror object implementation.

To give a taste of how the model can be used in MiRAgE to design mirror
worlds, consider an instance of a MW with just one mirror object: a cube cou-
pled with a hologram, created by an agent and active within the digital reality.
Let assume that the cube has a state represented by two observable properties
referring to its rotation and its color. Moreover, let assume the availability of an
action for rotating the cube and another one for changing its color. The mirror
object structure can be coded in MiRAgE through an annotate Java class using a
specific syntax built upon the OOP model (see Fig. 4). It can declare both oper-
ations (fields annotated with @OPERATION) and actions (methods annotated with
@ACTION). Each instance of a mirror object is in execution on the node where the
platform runtime runs. Exploiting specific APIs, remote agents can interact with
the runtime to join the mirror world and act within it. To guarantee a wide level
of interoperability for agents interaction, the architecture of MiRAgE provides
web-based APIs to observe and act on mirror object. Nonetheless, assuming BDI
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!test.

+!test

<- observe("cube");

changeColor("red").

+color("green")

<- .println("done!").

+rotation(Degrees) : Degrees < 45

<- rotate(Degrees + 1).

+rotation(Degrees) : Degrees >= 45

<- changeColor("green").

Fig. 5. An agent using the generated artifact.

cognitive agents in the A&A [17] perspective as the way for implementing agents,
through a dedicated library developed in CArtAgO, MiRAgE offers to agents the
possibility to see mirror objects as artifacts. In other words, although the state
of the shared mirror world is kept within the platform runtime, each agent can
count on a proper local representation in terms of artifacts of the interesting
subset of mirror object allowing the agent for a more smooth-less interaction
with them. It is in charge of the platform to create, dismiss and keep updated
local artifacts considering the global state of the running system.

The snippet of code reported in Fig. 5 is a portion of the agent code reacting
to changes of observable properties and using operations of the artifact repre-
senting, locally to the agent, the cube mirror object real instance.

4.3 Evaluation in a Real Context

A first real test-bed for the MiRAgE platform is provided by a project2 developed
in the context of cultural heritage enhancement. The case study allowed us to test
main MiRAgE features and to conduct a first qualitative and technical evaluation
considering a real complex running instance of a mirror world.

We built a mirror world within the internal courtyard of an ancient fortress to
offer visitors a memory of a medieval scenario in shared mixed reality where they
can also interact with digital entities (see Fig. 6). Exploiting Android Tablets, vis-
itors can share, see and interact with the medieval holograms. Agents control the
environments and digital entities encapsulated into mirror objects. As this case
study shows, agents can focus their behaviours in managing mirror objects, rea-
soning considering beliefs about the whole mirror world state (including human
users current state) and acts within the extended reality. The complete process

2 In collaboration with “Rocca delle Caminate”, Meldola, Italy.
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Fig. 6. A picture of holograms composing the Mirror World developed within the
fortress courtyard.

to build the shared, cooperative, agent-based extended reality environment is in
charge of the MiRAgE platform.

5 Concluding Remarks

In this paper we described a model for mirror worlds used as conceptual refer-
ence for designing agent-based XR applications. The main value of the model is
to provide a simple set of concepts and laws that makes it possible to capture
key points of XR applications, integrating aspects from virtual worlds, AR/MR
and pervasive computing, in spite of specific implementing technologies. Besides,
we introduced also a concrete platform, implementing the model. The platform
makes it possible to evaluate the effectiveness of the model by developing con-
crete agent-based XR applications, eventually using different agent technologies.

So far, the platform has been used to develop simple case studies, as the ones
described in [8]—not discussed in this paper for lack of space. Nevertheless, a
very important part of ongoing and future work is about tackling the develop-
ment of more complex real-world case studies, both to stress the effectiveness of
the underlying mirror world model defined in this paper and to stress platform
robustness and performances. The main application domains that we are con-
sidering for this purpose concern smart environments in the context of Pervasive
Healthcare and Hospital 4.0 [2], modelled as mirror worlds.
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Abstract. In this paper we present an agent-based approach to for-
malising information diffusion using Markov models which attempts to
account for the internal informational state of the agent and investi-
gate the use of probabilistic model-checking for analysing these models.
We model information diffusion as both continuous and discrete time
Markov chains, using the latter to provide an agent-centred perspective.
We present a negative result - we conclude that current model-checking
technology is inadequate for analysing such systems in an interesting
way.

Keywords: Verification of agent behaviour in a social network ·
Information diffusion

1 Introduction

Interest in social networks research is increasing, following the rise of social net-
work services in the last decade. Various aspects of networks have been studied,
see e.g., [13].

Social network analysis is concerned with the structures of social relations and
the graph they form, as well as how that structure influences, and is influenced
by, the spread of information in the networks e.g., [12,27]. Recently we see also
see work that brings together social network research and logic. Informational
and motivational states of the agents in the network are modelled, not just
the relations between agents, e.g., [4,11,21,25,28]. Network phenomena are also
being given formal models and specifications e.g., [4,20,21].

Diffusion is the process of spreading information through a network of agents.
A social network is given as a graph of agents (vertices) and there exists an edge
between two agents if they communicate/share information with each other.
Depending upon a number of factors, an agent that has received information
might be socially influenced to adopt it as true (believe it) and share it further
in the network. There are several social influence models proposed in the lit-
erature, each describing different conditions under which the agent spreads the
received information. An example of a question typically studied in diffusion is:
c© Springer Nature Switzerland AG 2020
N. Bassiliades et al. (Eds.): EUMAS 2020/AT 2020, LNAI 12520, pp. 475–492, 2020.
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will a point be reached where the information is adopted by all agents? Following
early work studying social networks as part of epidemiology, this is referred to as
full contagion. We are particularly interested in how the internal informational
state of the agent affects its decisions to spread information, and so have devel-
oped an agent-based model for information diffusion which explicitly uses this
information. We adopted a Markov chain formalisation for this model since we
were secondarily interested in using formal verification to analyse the network.

Formal verification involves proving or disproving that a system is compliant
with a formally specified property [10]. Arguably the most practical method of
formal verification is model-checking [7], in which all possible executions of a
system can be examined automatically based on a model of the system.

Diffusion has been extensively studied in the social network analysis liter-
ature, see for example [13,19] for an overview, in particular the impact of the
social network graph on the diffusion process has been studied. Social networks of
communication have physically changed. In particular aspects of these networks,
such as the distance between two nodes, and the speed of communication, have
changed drastically. This observation has revived interest in the study of infor-
mation diffusion, including work that represents the phenomena using Markov
chains (e.g., [3]) as we do here.

In our work we have built formal specifications of social networks and dif-
fusion properties using the input language of a probabilistic model-checker
(PRISM). Unfortunately even simple models that take account of both network
structure and an agent’s informational state proved largely intractable for model-
checking on networks of any significant size. This essentially gives us a negative
result for the use of probabilistic model-checking for information diffusion on
social networks. However the formal Markov chain framework for studying the
effect of an agent’s informational state on information diffusion should also be
amenable to study using simulation based techniques which we leave for further
work.

Contribution. We provide a framework for formalising information diffusion in
a way that takes account of an agent’s internal informational state as Markov
chains which focuses on the broadcasting of opinions as a key feature of study.

Model-checkers can be used as simulation systems, but their value is in their
ability to exhaustively explore all possible system states and produce highly
accurate results, exploring best and worst outcomes. Their weakness is that such
exploration is computationally expensive and necessarily limits the size of the
systems that can be examined. We determine experimentally that the PRISM
model-checker – arguably the state of the art in terms of probabilistic model-
checkers can not be used to analyse networks of any significant size – a negative
result and a challenge to the developers of such tools.

2 Information Diffusion in Social Networks

Several models of information diffusion through influence have been proposed,
although the task of finding a good model remains challenging [6]. The social



Model-Checking Information Diffusion in Social Networks with PRISM 477

influence models used to define processes of diffusion can broadly be classified
into two classes: infection models and threshold models, with the possible excep-
tion of the recent Simmelian model [25]. In an infection model, each node is
assigned a probability of being influenced [20]. In threshold models, an agent
is influenced when the number of her influenced neighbours passes a certain
threshold [29].

The SIS model. One of the classic infection models is the SIS model [1]. In this
infection model each of the nodes in the graph can be in one of two states:
infected or susceptible to infection. At time t, s(t) represents the susceptible
proportion of the total population N , i(t) represents the infected proportion, and
λ represents the daily contact rate, which means the proportion of the susceptible
users infected by infected users in the total population, where s(t) + i(t) = 1.
There will be λs(t) susceptible users infected at time t. At time t = 0 the
proportion of infected nodes is i0.

The SIS model assumes that μ represents the daily rates of the “cured” nodes
(a mode can now become uninfected). The SIS model can be described by

di
dt = λi(1 − i) − μi
i(0) = i0.

Threshold influence models. Threshold influence models define the choice of
whether a node will become infected or not as a function of the degree (or set of
neighbours) of the node in question. Given an agent (node) x, let n(x) be the set
of agents that are directly connected to x in the social graph. Threshold models
define a threshold q. The agent x will become infected if |n(x)| ≥ q.

Other influence models. In the Simmelian model [25] of influence x gets infected
if x is in a clique in which all other nodes are infected.

We will use the SIS model and threshold influence model as our starting
point for introducing an agent’s information state into models of information
diffusion.

3 PRISM Background and Theory

PRISM [17] is a probabilistic symbolic model-checker in continuous development
since 1999, primarily at the Universities of Birmingham and Oxford. Typically a
model of a system is supplied to PRISM in the form of a probabilistic automata.
This can then be exhaustively checked against a property written in PRISM’s
own probabilistic property specification language, which subsumes several well-
known probabilistic logics including PCTL, probabilistic LTL, CTL, and PCTL*.
PRISM has been used to formally verify a variety of systems in which reliability
and uncertainty play a role, including communication protocols and biological
systems [9,18].

In our models we use discrete-time and continuous-time Markov Chains as
our probabilistic automata.
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Definition 1. [16] (Discrete-time Markov chain (DTMC)). A discrete-time
Markov chain (DTMC) is a tuple D = (S, si, P, L), where is S a finite set of
states, si ∈ S is a distinguished initial state, P : S × S → [0, 1] is a transition
probability matrix such that

∑
s′ ∈ S. P (s, s′) = 1 for all s ∈ S, and L(s) ⊆ AP

is labelling with atomic propositions.

A discrete-time Markov Chain describes a set of execution paths through the
state space S where P gives the probability of one state moving to the next and
L describes propositions that are true in any given state. PRISM explores the
state space and can calculate the probability that various logical properties are
always true, sometimes true, or true at some time t and so on in the model.

Definition 2. [16] (Continuous-time Markov chain (CTMC)). A continuous-
time Markov chain (CTMC) is C = (S, si, R, L) where:

– S, si and L are defined as for DTMCs
– R : (S × S) → R≥0 is the rates matrix.

Intuitively a CTMC describes a set of states and the rate at which one state
moves to another. It is possible that for any state s there are several states s′

such that R(s, s′) > 0 and whichever state it transitions to first will determine
the resulting behaviour of the system. Given a set of rates, R(s, s′) for some
state s it is possible to infer the probability with which it will transition to each
s′ for any given time step t. PRISM can then explore this state space.

As well as calculating probabilities, PRISM is able to calculate the expected
reward in some system. We can specify a rewards function, ρ : S → R which
assigns some reward value to the states in S. Among other things, this allows
us to investigate the expected reward at some time step, t, in the system. This
proves a particularly powerful tool in the study of information diffusion since we
can model the number of agents adopting some idea as a reward.

4 Model-Checking Infection Models

4.1 Classic SIS Model

We choose as a first example the classic SIS infection model. This model takes
neither the network structure nor the informational state of the agents into
account, beyond the infection and recovery rates. We model this as a continuous
time Markov Chain (CTMC). Our main aim in presenting this model is to illus-
trate the kinds of questions that can be asked and answered using a probabilistic
model-checker.

Model 1. We consider a network with ma agents. This network contains ma+1
states, si, 0 ≤ i ≤ ma. There are ma + 1 propositional variables pi, 0 ≤ i ≤ ma

where pi means that i agents in the model are infected. The labelling function is
L(si) = pi (i.e., i agents are infected in state si). The initial state is s1 (1 agent
is infected at the start).
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λ and μ are the infection and recovery rates from the SIS infection model
and these give us the following rate matrix:

R(si, si+1) = λ(ma − i) if 0 < i < ma (1)
R(si, si−1) = μ(i) if 0 < i (2)

We use PRISM to explore the behaviour of this model for different values of
λ, μ, ma and so on. For instance, Fig. 1 shows the probability of full contagion
for all values of μ given λ = 0.5 and ma = 20. We can see that where μ < λ
there is a high probability that all agents will adopt some information while as
soon as μ ≥ λ this probability drops.

Fig. 1. Probability that all agents are infected in model 1 where λ = 0.5 and ma = 20

This result doesn’t hold for all network sizes. As the network grows the
probability of full infection increases. Figure 2 shows that even when μ = 1 the
probability of full infection occurring at some point is over 0.9 once there are
more than 30 agents.

Figure 3 shows the probability that all agents will be infected before time t
(for t < 100, 000) given various values of μ when ma = 20. From this we can see
that when μ = 0 (i.e., when there is no possibility of recovery) or μ = 0.2 the
model rapidly reaches a point where the probability that all agents are infected
is close to 1. However with μ = 0.4 it takes in the region of 65,000 time steps
for the probability of full infection to converge (to a value of 0.92). For higher
values of μ the probability of full infection remains very low.

However as the network size increases (to numbers where we know the overall
probability of full infection at some point is high for all μ) then this difference
disappears. It becomes a more interesting question to ask how many people do we
expect to be infected at any point in time. Figure 4 shows the expected number
of infected agents at time T for various values of μ in a network of 200 agents.
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Fig. 2. Probability that all agents are infected in model 1 for λ = 0.5

As can be seen this value stabilizes quite rapidly and then remains steady, but
as the value of μ increases the expected number of infected agents decreases (as
the rate at which agents are recovering from infection has increased).

Fig. 3. Probability that all agents are infected by time T in model 1 for λ = 0.5 and
ma = 20

4.2 Taking the Agent View: Informational State and Opinion
Broadcast

As has been noted in the literature [4,5] the transmission of information around
a social networks may depend both on the features of the specific agents in the
network and on the structure of the social network itself. We are interested in the
possibility of using model-checking to explore traditional social analysis aspects
of how network structure affects the spread of ideas. Further we want to see how
agent properties contribute to the global effect (and ultimately in how actions
by a mediating platform in a network service may contribute).
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Fig. 4. The expected number of infected agents at time T in model 1 for λ = 0.5 and
ma = 200

As an example of an agent feature that might influence contagion we consider
how one idea may be associated with an “anti-idea” which might either cause
an idea to be abandoned (analogous to recovering from infection in traditional
model) or might cause other behaviour (e.g., greater adherence to the original
idea, modifications to network structure and so on). Taking this example, which
to the best of our knowledge has not been considered in social network analysis,
is motivated by the insight from psychology that “once formed impressions are
remarkably perseverant” [22]. In this case we use the current informational state
of the agent to inform both how likely it is to adopt an opinion. Once adopted
it will broadcast the opinion to its network.

It is natural, in such a case, to consider the transition system of our model
in terms of the transitions of the individual agents. PRISM provides support for
constructing a DTMC from a specification of a transition relation on individual
modules within a system were the state s of the system is the product of the
states, smi

, of each module, s = (sm1 , . . . , smn
). This support uses a labelling on

transitions within modules which synchronizes across all modules. Each module
specifies the probability that the module will transition to some new state when a
particular labelled transition, say l, occurs within the system. From this PRISM
can calculate the probability distribution for the next state of the whole system
given transition l. PRISM then assigns an equal probability that any transition
that can occur will occur to derive the transition probability matrix over all
possible transitions1.

In order to take an agent view of a social network, we will model each agent
as a PRISM module and use the notation sai

l−→ p1 : sai
1 ∧ . . . ∧ pn : sai

n to
indicate that agent, ai in state, sai transitions to state sai

j with probability pj

where
∑n

i=1 pi = 1 when the transition labelled l occurs.

Model 2. We will use a DTMC to model a network of agents. Each agent, ai,
in the network is a PRISM module and can be in one of three states. Either
the agent agrees with some idea φ (written as state sai

φ ) or it disagrees with the

1 This is detailed in http://www.prismmodelchecker.org/doc/semantics.pdf.

http://www.prismmodelchecker.org/doc/semantics.pdf
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idea (sai

¬φ) or it is indifferent to φ (written as sai

⊥ )). If there are n agents in the
network, there are 3n states in S.

An agent will broadcast a message in favour of φ (respectively ¬φ) to all of
its connections if it agrees with φ. We treat this as a transition labelled ai saysφ.
On receiving a message in favour of φ (respectively ¬φ) there is a probability of
λ that the agent will adopt the idea φ (abandoning the idea ¬φ if necessary).

sai
φ

ai saysφ−−−−−−→ 1 : sai
φ (3)

sai
φ

aj saysφ−−−−−−→ 1 : sai
φ if cn(i, j) (4)

sai
φ

aj says¬φ−−−−−−−→ λ : sai
¬φ ∧ (1 − λ) : sai

φ if cn(i, j) (5)

sai
¬φ

ai says¬φ−−−−−−−→ 1 : sai
¬φ (6)

sai
¬φ

aj says¬φ−−−−−−−→ 1 : sai
¬φ if cn(i, j) (7)

sai
¬φ

aj saysφ−−−−−−→ λ : sai
φ ∧ (1 − λ) : sai

¬φ if cn(i, j) (8)

sai
⊥

aj saysφ−−−−−−→ λ : sai
φ ∧ (1 − λ) : sai

⊥ if cn(i, j) (9)

sai
⊥

aj says¬φ−−−−−−−→ λ : sai
¬φ ∧ (1 − λ) : sai

⊥ if cn(i, j) (10)

Fig. 5. Transition System for agent ai in model 2

Figure 5 shows the transition system for agent ai where cn(i, j) means i is
connected to j in the network. Where a transition isn’t specified (i.e., for all the
agents i is not connected to) then PRISM assumes ai’s state is unchanged by
that transition (after all ai is unaware of what aj is saying). Where a transition
is specified for only some of ai’s states (e.g., ai saysφ is specified only for state
sai

φ ) then that transition can only occur when ai is in one of those states (ai can
not broadcast φ unless it agrees with φ).

To start with we considered a fully connected network (FCN) of 10 agents.
We seeded the network with one agent believing φ and one agent believing
¬φ and set the probability of infection, λ to 0.5. We created a reward function
ρ(s) =

∑n
i=0 : sai = sai

φ (i.e., the reward for a state s is the number of agents who
believe φ in that state). Figure 6 shows that this network as quickly converges
to a state where the expectation is that half the agents believe φ – the expected
reward is 5.

We are not very interested in FCNs. Research in the information diffusion
under the SIS model from early on has shown that the structure of the network
has a big influence on the effectiveness of the contagion [26]. Mathematical anal-
ysis shows that the diffusion likelihood increases with the number of connections
[19].

We want to have a “higher detail” insight into the impact a particular graph
has on the spread of information. We generated a random network that satisfies
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Fig. 6. Expected number of infected agents per message sent for model 2 on a FCN

the criteria for modelling a social network as a random graph as outlined in
[23]: the maximal degree of separation is low, the probability of an edge between
two agents is higher if they have mutual neighbours, and the network has a
skewed degree distribution. This network contained 10 agent nodes, some with
a minimum of 2 connections within the network and one with 8 connections.
We initially studied the spread of ideas within this network with an λ of 0.5
and φ and ¬φ inserted in poorly connected agents (i.e., agents with only two
connections within the network), well-connected agents (i.e., agents with six
connections) and when the agent with idea φ had 8 connections while the agent
with idea ¬φ had only 2 connections. The results are shown in Fig. 7.

As it can be seen in the case where the initial agents have similar numbers
of connections, the expected number of infected agents converges to 5 (converg-
ing more rapidly in the case where the initial agents have more connections).
However in the case where the agent initially wishing to disseminate φ has more
connections than the agent wishing to disseminate ¬φ then the number of agents
believing φ converges to just under 6 – showing that the initial advantage had
a long term effect. This result came as a surprise to us and, as far as we are
aware, is not one that has been studied in the context of diffusion in the liter-
ature. We generated a further 9 networks (for a total of 10) and observed the
same effect in all of them. However we were unable to investigate whether the
same effect held for larger network sizes using PRISM.

We also investigated the probability that all agents in the network would
become infected with the idea φ – i.e., that its opposite idea was completely
eradicated from the network. In the case of the unbalanced starting position the
probability was 0.58 while in the balanced starting conditions the probability
was 0.5.
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Fig. 7. Expected number of infected agents per message sent for model 2 on a randomly
generated network

5 Model-Checking Threshold Influence Models

We now consider threshold influence models. In these models it is not the receipt
of a message bearing the idea φ that causes an agent to adopt the idea, but the
perception that most of the agent’s connections agree with φ.

We start with a FCN, as before.

Model 3. We assume that an agent, ai, can be in one of two states, sai

φ (the
agent publicly supports φ) or sai

⊥ (the agent does not publicly support φ). All
agents that publicly support φ broadcast the fact to all their neighbours, but we
don’t represent this as a transition in the network. Instead we have a joint tran-
sition, think, on all agents where they update a decision on whether or not they
believe (or at least publicly support) φ themselves. Here the probability that they
will adopt φ is proportional to the number of their connections who publicly sup-
port φ. nci is the number of connections ai has in the network and nci

φ is the
number of their connections who are broadcasting messages in support of φ so

the chance of an agent deciding to espouse φ is λ.
n

ci
φ

nci
for some λ.

This gives us the following transition system for agent ai:

sai

⊥
think−−−→ λ.

nc
φ

nc
: sai

φ ∧ (1 − λ.
nc

φ

nc
) : sai

⊥ (11)

sai

φ
think−−−→ 1 : sai

φ (12)
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Figure 8 shows the expected number of agents who support φ, in a fully
connected network of 10 agents, after T think transitions, given an influence
probability of λ = 0.5. As can be seen this network converges to a state where
we expect all 10 agents to support φ after 17 transitions.

Fig. 8. Expected number of agents expressing φ after T transitions in model 3 on a
FCN

Figure 9 shows the spread of φ on our more realistic network in the case
where φ is first adopted by an agent with only 2 connections and in the case
when φ is first is first adopted by an agent with 8 connections.

As in infection models, we can also add ¬φ into our influence model – with
the chance that an agent expresses the opinion φ or ¬φ depending upon their
perception of how many of their connections believe φ or ¬φ.

Model 4. We extend our transition system from model 3 with an agent state,
sai

¬φ (the agent is expressing support for ¬φ) and the variable nci

¬φ (the number
of ai’s connections expressing support for ¬φ). Therefore an agent’s transitions
become:

sai

⊥
think−−−→ λ.

nci

φ

nci
: sai

φ ∧ λ.
nci

¬φ

nci
: s¬φai∧

(1 − λ.
nci

φ + nci

¬φ

nci
) : sai

⊥

(13)

sai

φ
think−−−→ λ.

nci

¬φ

nci
: sai

¬φ ∧ (1 − λ.
nci

¬φ

nci
) : sai

φ (14)

sai

¬φ
think−−−→ λ.

nci

φ

nci
: sai

φ ∧ (1 − λ.
nci

φ

nci
) : sai

¬φ (15)

As before we start with a fully connected model the results of which are
shown in Fig. 10. Here, instead of all agent eventually expressing φ, we expected
to reach a state where half the agents express φ (and by extension half are
expressing ¬φ).
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Fig. 9. Expected number of agents expressing φ after T transitions in model 3 on a
randomly generated network

Now we turn to our randomly generated model and examine the effect on
the expected spread of φ, given the connectivity of the initial agents expressing
φ and ¬φ. The results are shown in Fig. 11. In the infection models (Fig. 7) the
models converged to a state where half the agents adopted φ when both φ and
¬φ had similar starting states while it converged to a state where roughly 60%
of the agents adopted φ when φ had an advantage over ¬φ at the start. In the
case of influence models we see that the advantage conveyed by a better initial
state is larger than it is in infection models, with the network converging to a
state where we expect over 8 agents to be expressing φ.

Fig. 10. Expected number of agents expressing φ after T transitions for model 4 on a
FCN



Model-Checking Information Diffusion in Social Networks with PRISM 487

Fig. 11. Expected number of agents expressing φ after T transitions for model 4 on a
randomly generated network

6 Analysing Larger Networks

Clearly networks of 10 agents are inadequate models of behaviour over large
social networks. Unfortunately PRISM proved incapable of analysing larger mod-
els. In some cases PRISM couldn’t even construct a larger model rendering even
its simulation capabilities out of reach. Figure 12 shows the time taken to build
a model of a FCN and to use PRISM model-checking to find the probability that
the entire network would be fully infected with φ after 10 time steps for both
model 2 and model 4.
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Fig. 12. Times taken to build a model and perform model checking for fully connected
networks
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The reasons for these problems are unclear2. While we did not expect to
be able to model networks containing hundreds of agents in PRISM we had
expected to model networks of more than ten. We have been invited to submit
the social network models as challenge problems.

This does mean, however, that for the time being the use of model-checking
as a tool for analysing information diffusion in social networks is limited although
the same formalism can be used for simulation based analysis.

7 Related Work

The influence of network structure on diffusion has been extensively studied in
economics, see e.g., [19] for an extensive literature list and [14] for a more general
overview of the impact of social network structure on behaviour.

The methodology used to study network structure impact on diffusion
throughout the literature is numerical analysis, simulation and experiments.
Both micro and macro aspects of the network structure have been considered,
but in both cases these aspects refer to statistical properties of the network. For
example, a macro network aspect example is the degree distribution in the net-
work, while a micro network aspect example is the average distance between two
agents in the network and network component diameters. In nearly all diffusion
models, the likelihood of adopting new information or behaviour increases with
the increase of adjacent agents who have adopted it and a higher agent degree
leads to higher contagion [19]. We also observe this here.

Bolzern et al.’s [3] approach is most similar to our own, using Markov chain
models to capture network structure and to show how opinions among the agents
in the network may vary among a fixed set of opinions (a generalisation of the
idea of an idea, an “anti-idea”, and indifference that we use here). However in
their model the chance an agent will change its opinion does not depend upon
its existing opinion, only upon the opinions of its neighbours. They use both
formal analysis to generate results about the behaviour of the general system
and monte-carlo simulation to analyse a specific system consisting of a fully
connected network and two possible opinions.

Model-checking information in social networks has been studied from a theo-
retical perspective in [24] and [8]. Pardo and Schneider [24] consider the problem
of verifying knowledge properties over social network models (SNM’s) and shows
that the model checking problem for epistemic properties over SNMs is decidable.
Dennis et al. [8] introduce a formal specification for SNM’s and privacy properties
that can be established to hold using model-checking using PRISM. Belardinelli
and Grossi [2] present a model-checking algorithm and property specification
logic for studying contagion-type models in open dynamic networks. This takes
an agent view but does not explicitly consider the informational states of the
agents. The proposed model-checking algorithm has not been implemented. Kou-
varos and Lomuscio [15] use parameterised model-checking in the MCMAS system

2 Ernst Moritz Hahn, private communication.
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to study opinion formation protocols for swarm robotics. These protocols are sim-
ilar to threshold models and involve agents in a swarm switching their opinion to
the majority opinion of their neighbours. The interest in this work was primarily
on answering whether the protocol guaranteed convergence to an opinion, not on
analysing the behaviour of information diffusion itself and probabilistic aspects
were not studied. Lastly, Zonghao et al. [30] use PRISM to evaluate the efficacy
of methods for controlling harmful network propagation using different protec-
tion strategies for individual nodes. Although Zonghao et al. [30] are interested
in security an protecting networks from e-viruses, the approach and methodology
can be seen as related to ours in the case of information diffusion.

8 Discussion

While we have successfully made steps to account for internal informational
states of agents in models of information diffusion. We have not successfully
managed to use formal verification to analyse these models.

Clearly, there is no free lunch and, at least for now, there are technical limita-
tions to the number of agents we can model. While we did not expect to model
networks containing thousands of agents we had hoped that model-checking
would provide a useful tool for exploration of networks of sufficiently large size
to allow reasonable variation in network structure to be studied. This has not
proved to be the case.

There are two approaches to overcoming this problem both of which we intend
to pursue. We intend to continue using Markov chain models to study informa-
tion diffusion in social networks – in particular we wish to study networks where
an agent’s informational state, its decision to broadcast a particular opinion and
the decision of the network itself to propagate a broadcast to particular other
agents all interact. While we could not use PRISM to simulate on our models
we hope to either adopt or build a suitable alternative tool that can be used in
this way.

Secondly, it is common in model-checking to develop abstractions of the prob-
lem which allow systems of realistic size to be studied. Work on parameterised
model checking in swarm scenarios is also a promising avenue of research and,
indeed, this is the approach taken in [15].

9 Summary

We have developed an initial framework for modelling information diffusion in
social networks which takes an agent-centred view that includes an account of
the agent’s informational state when considering changes in the network. This
framework uses Markov chain models to represent the agents within the network
and their relationships to each other. Unfortunately even comparatively simple
models proved intractable for analysing models of interesting size in PRISM, a
current state-of-the-art tool for probabilistic model-checking.
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Open Data

The PRISMmodels, network graphs, output and timing data reported in this
paper can all be found in the University of Liverpool Data Catalogue DOI:
https://doi.org/10.17638/datacat.liverpool.ac.uk/909.
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Abstract. The opportunity to connect distant areas in quick and economical ways
has always been a critical element for trade and economic development. Significant
progress is often accompanied by the emergence of new transport models, as it
happened in 21st century China with high-speed railways, a driving force for its
economic growth. In 2013, theHyperloopAlphawhite paper publication presented
the opportunity for a significant innovation in transportation, which could have
an even more disruptive effect. In this paper, we will estimate the possible impact
on a Supply Chain of constructing a Hyperloop line for goods transportation. We
develop an agent-based model of a simple Supply Chain system to simulate the
introduction of a faster transport line. We observed that a positive relationship
exists between the introduction of a faster line and the performance of the firms
near the cities connected by the new line. We conclude that the adoption of a
Hyperloop could significantly affect the region in which it is implemented. Since
the technology is in its infancy, there is still room for further research.

Keywords: Agent-based modeling · Hyperloop · Economic models · Supply
chain · Regional development · Infrastructure development

1 Introduction

Individuals’ desire to travel has led to some of humanity’s most amazing creations,
like ships, cars, and airplanes, which now have an enormous influence on our life. The
more the technologies advance, the more the quantity of goods and products transported
becomes vital for theworld’s development. In 2013, ElonMusk presented a first proposal
for the Hyperloop, a new technology that could radically revolutionize the transportation
of goods and people. It consists of capsules traveling inside airless tubes, reaching speeds
over 1200 kmper hour [13]. This innovation could offermany advantages over traditional
travel methods. For example, it could reduce travel time, ticket costs, and construction
costs compared to a conventional high-speed line [5, 19]. In thefield of freight transport, it
can lead to the development of on-demand freight services in a short time frame, reducing
the need for high advance planning and increasing transport reliability and flexibility for
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companies [11]. This preliminary research aims to understand if the practical application
of Hyperloop technology could lead to improvements in freight transport and supply
chain performance, and in which kind of regions would be better to implement it. The
methodology we adopt is agent-based modeling, a well-known technique for modeling
real-world dynamical systems in a wide set of applications [1]. We developed an agent
model of a trading system based on a simple supply chain, and we analyzed the impact of
a new single fast line, which stands for theHyperloop, on the firms in the connected areas.
First, we found a positive correlation between the introduction of a Hyperloop and the
performances of the firms nearby it. Second, we concluded that the first Hyperloop line
should be introduced in a region already economically and infrastructurally developed.
Third, we proposed a list of some possible developments and future research that are
needed to be addressed. The remaining of the paper is structured as follows: in Sect. 2,
we introduce previous research on the topic; in Sect. 3, we show the model and the
methodology adopted; in Sect. 4, we show the results and discuss them. Finally, in
Sect. 5, we conclude and define future possible research trajectories.

2 Literature Analysis

2.1 Hyperloop

Although Hyperloop has begun to spread through newspapers and companies reports,
scientific production on the subject is still limited. We performed a literature search on
Scopus to find scientific works available on the topic, finding only 16 documents. The
query was asked on February 1st 2020, with the next research key: ((TITLE (hyperloop*)
AND KEY (hyperloop*)) AND (LIMIT-TO (DOCTYPE, “ar”) OR LIMIT TO (DOC-
TYPE, “cp”)) AND (LIMIT-TO (SRCTYPE, “j”) OR LIMIT-TO (SRCTYPE, “p”))).
All the results were recent. The first document on this topic was published in 2017 [22].
However, the number of papers published is also growing over the years, suggesting
increasing interest in the field. The majority of the papers regarded the different areas of
design and construction of a Hyperloop system. The main topics were magnetic levita-
tion systems [3, 12] and testing activities [11, 14]. Some papers [6, 16] focused on safety
and the possible physical impacts on passenger’s transportation of the use of Hyperloop
technology. There was also a work related to the modeling and analysis of the possi-
ble performances of the Hyperloop technology [18], comparing it with high-speed rail
and air transport. However, the analysis only concerned passenger transport, without
considering the possible effects of the Hyperloop introduction on freight transport.

2.2 Impact of High-Speed Trains

In the previous paragraph, it is clear that, to the best of our knowledge, there isn’t in the
literature any work related to the possible impact of a Hyperloop on the development of
a region. Hence, we collected information on the impact of high-speed trains, the latest
technologies introduced for the rapid transport of goods. This choice was made to have
a clearer image of the phenomenon we wanted to analyze. The research was carried
out with Scopus on February 1st 2020, with the following key: (TITLE (“railway*”
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OR “ high speed trains” OR “ High* Rail*” OR “Transport Development”) AND KEY
(“Development” OR “accessibility” OR “economic growth” OR “Urban growth”)). The
following thematic areas have been excluded because they are not congruent with the
aims of the research: “EART, PHYS, MATE, ARTS, MEDI, CHEM, CENG, BIOC,
HEAL, PHAR, PSYC, IMMU, VETE.” The main results are reported in Table 1.

Table 1. Main results of bibliographic research about high-speed trains.

Finding Sources

There was a positive relationship between rail
transport and GDP growth, a relationship not
necessary present with passenger transport.
This was especially true for high capacity lines

Weidong 2008, Hang 2011, Sun 2012, Wang
et al. 2009

The evolution of the railway network was also
capable of changing the pace and development
paths of urban areas

Wang et al. 2009, Huang et al. 2016

Accessibility of stations is a key element for
attractiveness of high-speed lines, since it
influenced the total travel time. With lower
accessibility (or reduced interconnections),
total travel time was stable and there were not
significant benefits

Wang et al. 2013, Brezina and Knoflacher
2014

For passenger transport, high-speed trains had
no advantages over traditional lines under
150 km, while they are particularly effective
between 400 and 800 km

Gleave 2004, Chen & Hall 2011

3 Model Presentation

The proposed model allows to observe how the introduction of a higher speed trans-
portation line dedicated to goods between two urban centers impact the performance
of the firms around them. To achieve this goal, we simulated the behavior of a simple
supply chain composed of different levels, in which a single kind of good is produced,
exchanged in a single direction, and consumed.

Themodel scenario is a squared territory onwhich are distributed twokinds of agents,
Cities, and Suppliers. In every simulation, Cities are uniformly randomly distributed in
the territory, and Suppliers are uniformly randomly distributed around the Cities. Each
Supplier is connected to his City by “roads,” while the Cities are connected to each other
by “railroads.” The link breeds differ from each other in travel time and the travel cost
per unit of space, which is higher for the “roads” connection. It stands by the higher
cost and lower speed of local transport. The supply chain is divided into different tiers.
Suppliers with a tier equal to one are directly supplying the Cities, the final market of the
model, and the final destination of goods. At the same time, suppliers with the highest
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tier are producers. Each tier has the same number of Suppliers. In every tier, Suppliers
define their selling price by applying a mark-up to their average cost of the stock, which
includes buying and transportation cost. Agents have some commerce constraints. First,
they can only commerce with agents with an adjacent tier (plus or minus one). Second,
agents can receive goods only from Suppliers with a higher tier. Third, agents can ask
for products only to a limited set of suppliers, which is selected through an evaluation
score (from now on ES). ES is the mean of normalized values of travel time to the
Supplier, travel cost to the Supplier, quality of Supplier goods, and cost of Supplier
goods. Selected Suppliers are ranked by the ES. Except for producers, every agent has
the same number of selected Suppliers. Cities’ demand is generated by a pseudo-random
continuing uniform distribution and depends on the City’s population level, a constant
parameter defined at the beginning of the simulation. At each time step, Cities have
an incoming demand and ask the Suppliers in their network to fulfill it. If a Supplier
has enough stock, the demand is satisfied. Otherwise, the City receives all the stock of
the first Supplier and ask another Supplier for goods. This process keeps on until the
demand is satisfied or available Suppliers finish. Suppliers with higher ES would be
chosen before Suppliers with lower ES. The same supplying process is also repeated
for every non-producing Supplier. So, at each time step, the demand of the City goes
upstream on the supply chain until it arrives to producers, which generates a number of
goods equal to the minimum value between the production constraint and the incoming
demand. There is no limit in the quantity of goods an agent can sell in a single time step
(except for a non-negative constraint for sold goods and stock level). Thus, at every time
step, some goods are still in transit. To conclude, each agent starts the simulation with
the same amount of cash. Every time step, it will earn cash for selling goods, spend cash
for buying goods, and for covering fixed costs, equal for every agent in the market.

4 Model Analysis

4.1 Methods

We executed an experiment on the model to observe the effect of the introduction of
a single Hyperloop line on the supply chain. We analyzed the impact on a ten-year
time frame (520 steps of one week), introduced the new connection after five years,
and observed if it implied a higher differential performance of the Suppliers around the
Cities connected by the Hyperloop compared to the others. We implemented both the
model and experiment with NetLogo, a well-known agent-based simulation platform.
We especially exploited BehaviourSpace, a tool for performing multiple experiments
at the same time with different parameters. We executed 128000 simulations overall to
have highly reliable results [17]. The measure we used to evaluate the relative effect
of a faster line for the Suppliers near the connected Cities is the difference between
the average percentual increase of cash level of Suppliers near the connected Cities
and the average percentual increase of cash level of the other Suppliers (from now on
REFL). The increase is calculated when the fast line is introduced to the last time step
of the simulation. The idea behind this measure is to detect the effect of the fast line
without interferences since the supply chain had already stabilized before. The higher the
REFL, the higher the impact of the new line on Suppliers’ performances in the simulated
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model. Furthermore, the measure is a proxy of the differential performance of Suppliers
connected with the new link.

4.2 Results

In our analysis, we focused on five parameters: the number of Cities in the model, the
number of connections for every City, the number of Suppliers in the model, the number
of tiers in the supply chain, and the transportation cost per unit of space. We chose these
parameters because they were the ones that could give us better insights about where
and how a Hyperloop connection should be developed.

From Table 2, it is possible to observe that the average impact of the introduction of a
high-speed line is positive (a global performance better by 284,4%). Additionally, RELF
decreased with the number of Cities and increased with the number of Cities connected
to each City. A single line’s impact is diluted with a bigger number of Cities because a
random Supplier is more probable to have a nearer Supplier from another City. On the
other side, more connections between Cities meant more possible paths in the network
to go from one City to another. The consequence was that, with the same number of
agents, on average, each Supplier was easier to reach than before, and then the part of
ES related to distance was more sensitive to small variations. With the introduction of
a new line, it was more likely than before that the increase of the track’s performance
changed the previous equilibrium in the selection process of Suppliers.

Table 2. REFL per different number of Cities and connections between Cities.

# Cities
connections (per
City)

# Cities 2 4 Total

5 322,8% 351,6% 337,2%

20 171,0% 262,0% 216,5%

Total 256,5% 312,4% 284,4%

FromTable 3,we learned that theRELF increasedwith the number of Suppliers in the
model and decreased with the number of tiers in the supply chain. Ceteris paribus, there
weremoreSuppliers in the area influenced by the newconnections, andwe expected them
to select more often Suppliers from the new connected Cities with high frequency than
others. So, the first relation was justified by the presence of an aggregation phenomenon.
The other could be explained analogously to the relation with the number of Cities.

In Table 4, we observed a negative correlation between the transport cost per unit
of space of the new fast line and the REFL. The explanation of this negative correlation
is related with the fact that the more the line cost, the less likely it was for Suppliers
around the Cities to be selected because the ES would be lower.
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Table 3. REFL per different number of Suppliers and tier of the supply chain.

# tiers of supply
chain

# Suppliers 2 4 Total

40 373,6% 89,1% 229,2%

80 498,8% 182,6% 337,8%

Total 437,2% 136,7% 284,4%

Table 4. REFL per different level of transport cost.

Transport cost REFL

0.02 424,0%

0.08 153,8%

Total 284,4%

4.3 Discussion

From the analysis of experiments, we got four main insights. First, to have a higher
marginal benefit, the positive relationship between RELF and the increment of connec-
tions between Cities could suggest that the first Hyperloop lines should be developed in
regions with already a higher infrastructural development. This was confirmed by the
negative correlation between RELF and the number of Cities in the model, and by the
higher connections/Cities ratio. Second, the positive association between the number of
Suppliers and RELF indicated that a Hyperloop line would bring higher benefits if it
would be developed in regions with a higher index of competitiveness. Third, the pres-
ence of higher travel costs of the goods time implied lower values of REFL. It hinted
that the effect of Hyperloop on a supply chain system would depend on the technology’s
performance. Also, there would be a threshold in the performance/cost ratio under which
it would not be convenient to invest in a Hyperloop line. This was relevant for policy-
makers and also for the firms that are developing the technology and their stakeholders.
They could know in advance the technological standards they had to achieve to sell their
transportation systems and have a positive return from the investment. Fourth and last, in
our experiment, the RELF decreased when the supply chain’s number of tiers increased.
This meant that a line’s development could be more efficient if the supply chain would
be shorter.

5 Conclusions and Future Research

In conclusion,we can confirm the idea present in literature that faster transport lines could
positively affects on the area in which they would be developed. To analyze the global
benefit of the investment, it would still be necessary on one side to also quantify and study
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the impact on the transportation of people, and on the other to have more information
about the performances and costs of a Hyperloop. Regardless, our study concluded that
the development of a Hyperloop line for transporting goods would be positive, especially
for regions with a high number of firms and a high level of infrastructure development.

Still, this is preliminary work, and there is space for further development. For exam-
ple, it is possible to expand the actual model in order to replicate better real scenarios.
It could also be interesting to add multiple goods in the supply by introducing a sort
of circular economy. In this simulation, the Cities could be bought from the produc-
ers, introducing maximum transport capacity for each transport line, or implementing
a more sophisticated decision making for both Cities and Suppliers. Another remark-
able advance could be to simulate the introduction on a Hyperloop line directly on a
real-world case, with real data, to give new highlights to investors and policymakers. In
conclusion, it would also be interesting to change the subject of study and analyze the
impact of a Hyperloop on tourism and economic growth of different regions through an
agent-based model.
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Abstract. In the last thirty years, agent-based modelling has become a well-
known technique for studying and simulating dynamical systems. Still, there are
some open issues to be addressed. One of these is the substantial absence of studies
about the sensitivity to initial conditions, that is the effect of small variations at the
beginning of simulation on themacro-level behaviour of themodel. The goal of this
preliminary work is to explore how a single modification on one agent affects the
evolution of the simulation. Through the analysis of two deterministic models (a
simple market model and Reynolds’ flocking model), we obtain two main results.
First, we observe that the impact of the variation of a single initial condition on
the simulation behaviour is high in both models. Second, there is evidence of
an at least qualitative relation between some general agent-based model settings
(numerosity of agents in the model and rate of connections between agents) and
the sensitivity to the modified initial condition. We conclude that at least some
significant classes of agent-basedmodels are affected by a high sensitivity to initial
conditions that have a negative effect on the predictive power of simulations.

Keywords: Agent-based modeling · Initial conditions · Sensitivity analysis

1 Introduction and Motivations

Agent-based modelling is a well-known technique for “describing and simulating a
system composed of ‘behavioral’ entities” [3]. Unlike in other kinds of dynamic systems
models, what is observed in agent-based simulations is not only a behavior of some
kind but also the behaving subjects (ibidem). These subjects may be studied in their
interaction topologies and behavioral heterogeneity [5], and with the aim of predicting
specific outcomes. For these reasons, initial settings such as the topology of the model
and all of those “conditioning assumptions imposed or implicit in the model” [4] may
influence the predictive power and accuracy of the simulation.

Although sensitivity analysis is generally considered a fundamental element of the
analysis of agent-based models [9, 13], to the best of our knowledge the effect of the
sensitivity to initial conditions was never investigated in a systematic way [6–8], with
the exception for spatial conditions in geosimulation models [10]. With this study, we
propose to fill a gap in the direction of the research questions whether and how the
sensitivity to initial conditions in agent-based models impacts their prediction power.
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To this goal, we analyzed two simple agent-based models, of a simple market and
of a simple swarm [11], and we tested the effects of two small changes in the initial
conditions: the small increase of a single parameter of one of the agents and the removal
of one agent from the model. We show that, in both cases, there is a high impact on the
macro-behavior of the system, and a negative relationship between the numerosity of
the agents in the model and the sensitivity to the initial condition.

The remaining of the paper is structured as follows: in Sect. 2 we introduce the two
models exploited in the experiments; Sect. 3 presents the methodology adopted; Sect. 4
shows the results and discusses them; Sect. 5 concludes and outlines future research
directions.

2 Models and Methods

In this work, we analyzed a simple market model and a variation of traditional Reynolds’
flocking, to get information related to their sensitivity to the variation of a single initial
condition. The model selection follows the following criteria:

1. the models should be simple so that it is easier to detect the effect of the modification
of an initial condition;

2. themodels should be natively deterministic, or at least it should be possible to remove
the stochasticity without modifying neither their macro- nor their micro-behavior so
that the effect of a single variation can be analyzed independently of the presence of
noise;

3. themodels should differ from each other in topology, rules of interaction and domain,
to confer genericity to the results.

In what follows, we introduce the two models and show the methodology used to obtain
the results.

2.1 A Simple Market Model

To the best of our knowledge, no classic simple agent-based model of a generic market
exists in the literature, so we developed one. The purpose of the model is to simulate
an elementary dynamical trading system in which heterogeneous individuals produce,
exchange and trade one kind of good over time. The agents are connected through each
other with a Scale-Free distributed network [2], representing the structure of the market.
Hence, the spatial distribution is irrelevant.

Each agent follows the same set of rules in each time step. First, it produces goods.
Second, it trades them under these conditions:

• if the level of goods is below a “security threshold” and some of the neighbors has a
level of goods beyond a “plenty threshold” (push trading);

• if the level of goods is beyond a “plenty threshold” and some of the neighbors has a
level of goods below a “security threshold” (pull trading).
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The number of goods exchanged in every transaction is equal to a “trading quantum” set
at the beginning of the simulation. Third, each agent consumes goods at an individual
consume rate. If the level of goods is lower than that consume rate, the agent consumes
everything. Agents can not die of starvation. The rate of production and consumption
are individual parameters, independent one to each other and randomly generated at the
beginning of the simulation.

2.2 The Reynold’s Flocking Model

The flocking model is a traditional agent-based model developed by Reynolds [11]. Its
purpose is to show how a collective swarm behavior can emerge from a set of “bird-oid
objects” (from now on “boids”) that interact according to three simple rules:

• separation from other boids;
• cohesion with other boids;
• alignment of the heading with the direction of nearby boids.

We adapted the implementation by Wilensky [15], by removing all the stochasticity.
In this version separation is the overriding rule, which means that cohesion and align-
ment are taken into consideration only if a minimum separation threshold is exceeded.
Furthermore, all boids flock on a toroidal surface with the same constant speed.

3 Methods

To the best of our knowledge, in agent-based modelling there is not a well-established
method to analyze the sensitivity to the variation of a single initial condition related to a
single agent. Therefore, we developed aworkflow on three steps: model implementation,
measure development, and simulation cycle.

First, we developed a deterministic implementation of the simulation models under
study.Wewrote themarketmodel from scratch,whilewe slightlymodified theReynolds’
flocking model from NetLogo library (Wilensky 1998). Both models are implemented
in NetLogo, a well-known agent-based simulation platform [1, 14]. Second, we defined
some functions to evaluate the sensitivity to initial conditions. In the market model, we
calculated the percentage difference between the average goods level of each agent at the
final step of two simulations with the same seed of the pseudo-random number generator
(“seed” from now on), one with the initial modification and one without. In Reynolds’
flocking model, we defined how the initial condition variation impacts on the position
of each boid by computing the average distance of the position (in the percentage of the
size of the world) of the same boid at the end of two different simulations with the same
seed, one with the initial variation and one without.

Third, we translated into code the simulation process shown in Fig. 1.
The entire simulation (both agents and global variables)was initialized in the “Setup”

phase. Then there was a four steps cycle made by two simulation runs (“Go” phases) and
two special setup processes: “Setup2” and “Setup3”. In “Setup2”, the model was reset
without changing the seed, agents were created, and the target initial condition modified.
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Fig. 1. Simulation process developed for testing the sensitivity of a model to the variation of a
single initial condition on a sole agent.

In “Setup3” the difference between the two simulations (from the “Go” phases) was
calculated and saved on an external file with the progressive number of the simulation,
the seed and the setup general parameters. Then, the model was initialized with a new
seed and the whole model was reset, with exception of global variables designed to take
track of the experiment. For every experiment, we executed 75000 pairs of simulations,
after which the gate “End?” opens. The number of repetitions was chosen to have reliable
results [12].

4 Results and Discussion

4.1 Simple Market Model

We performed a total of 150000 simulations on this model, using two kinds of variation
of the initial conditions:

1. A 1% increment in the production rate parameter of one of the agents (“IPR
experiment” from now on);

2. the removal of one of the agents.

The test was performed on different general parameters of themodel, to discover possible
relations between them and the sensitivity to the variation of the initial condition. The
analyzed parameters were the numerosity of the agents in the model and the minimum
degree of the scale-free network generator algorithm.

Table 1 and Table 2 show that the average value is high, due to a strong sensitivity
to the variation of the initial condition. In the IPS experiment, the total and subtotals
average percent differences were lower than in the removal experiment. This could
be a consequence of the more invasiveness of the second experiment: we expected
that deleting a single agent from the model had a greater impact than increasing a
single parameter. Furthermore, it was possible to see qualitative relations between the
characteristic of the model and the sensitivity to the initial condition.

In both experiments, a greater number of agents implied a lower sensitivity to the
initial condition, which could be a consequence of the dilution of the impact in a bigger
model. It hinted that it could be possible to lower this phenomenon by developing
simulated models with more agents. Besides, in the first experiment, a higher minimum
degree in the network topology of agents brought to a lower effect of the modification
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Table 1. Absolute percentage difference of the mean of good level of each agent at the end of the
simulation in the IPR experiment.

# Agents Min degree % Total

2 3 4 5 6

15 152.9 95.5 87.4 84.8 87.8 101.5

45 105.1 39.0 33.2 33.9 30.9 48.4

135 71.2 19.3 17.0 17.5 17.2 29.7

405 47.1 12.0 10.0 10.1 9.8 17.8

1205 26.5 7.3 5.9 5.8 5.5 10.2

Total 84.1 36.7 33.0 33.0 32.8 44.1

Table 2. Absolute percent difference of the mean of good level of each agent at the end of
simulation in the removal experiment

# Agents Min degree % Total

2 3 4 5 6

15 121.0 107.0 113.5 108.0 109.6 111.8

45 93.2 92.8 95.6 96.2 96.8 94.9

135 72.3 80.7 90.6 94.7 96.0 86.9

405 55.0 52.4 61.2 72.3 81.9 64.5

1205 36.8 26.9 28.8 33.3 38.4 32.8

Total 75.5 71.9 77.9 80.9 84.5 78.1

of the initial parameters. We suggest that a higher level of connectivity between the
agents could have brought to a better compensation of production rate from the market,
and then to a lower effect on the macro-behaviour of the model. This relationship was
reversed in the second experiment, since the more the network was connected the more
increased the probability that an agent lost a trading partner. Also, higher connectivity
implied also that a greater number of agents were indirectly connected by the removed
agent, and since all these links were ended, we awaited a positive relationship between
the increment of connection rate and the variation ofmacro-behaviour. In conclusion, the
kind of connection between sensitivity to initial condition and the level of connectivity
depended on the kind of modification.
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4.2 Reynolds’ Flocking Model

As in the previous model, two experiments were performed, each with 75000 simulation
runs:

1. a 1% increment of pace of one of the boids (“IPP experiment” from now on);
2. the removal of one of the boids (Tables 3 and 4).

Table 3. Average of percentage distance of each boid at the end of the two simulations in IPP
experiment.

# Agents Vision radius (in patches) % Total

2 3 4 5 6

15 33.5 36.9 37.0 37.0 36.6 36.2

45 37.4 37.8 37.6 37.1 37.0 37.4

135 38.0 37.9 37.3 36.8 35.9 37.2

405 38.0 37.4 36.9 36.1 35.5 36.8

1205 38.0 37.5 37.0 36.6 36.3 37.1

Total 37.0 37.5 37.2 36.7 36.3 36.9

Table 4. Average of percentage distance of each boid at the end of the two simulations in removal
experiment.

# Agents Vision radius (in patches) % Total

2 3 4 5 6

15 28.5 31.7 32.2 32.6 32.5 31.5

45 35.9 36.2 36.2 36.2 36.0 36.1

135 37.5 37.4 37.2 36.9 37.0 37.2

405 37.9 37.6 37.2 36.8 36.6 37.2

1205 38.0 37.6 37.3 37.1 36.9 37.4

Total 35.6 36.1 36.1 35.9 35.8 35.9

In both cases, the average percentage distance between boids was near 38%, which
is the expected distance between two random points on a torus. It means that in both
the experiment the modification was enough to completely shuffle the boids’ topology
during the simulation. As a consequence, in this second model, it was not possible to
highlight any qualitative relationship between the sensitivity to the initial condition and
the general parameters of the model. We suppose that this was due to the measure we
chose. Since in the majority of the observed cases the impact was near the expected
value for a random distribution, it was not possible to observe any clear trend.



Sensitivity to Initial Conditions in Agent-Based Models 507

5 Conclusions, Limitations and Future Works

Evidence suggests that small variations in single initial conditions strongly influence
the global behavior of agent-based simulations. This is relevant because it could have
a negative effect on the forecasting power of the technique, which is considered one of
the main reasons to develop an agent-based model [6, 7]. Furthermore, the results in the
market model imply that there could be a negative correlation between the impact of
variation and the numerosity of the agents in the model. It suggests that it is possible to
mitigate the effect of the sensitivity to initial conditions by performing simulations with
a higher number of agents. Still, this is a preliminary study: a statistical analysis of data
taken from a wider variety of models is required before to confirm this hypothesis and
generalize the results.

Future research could lead to different directions. First, to individuate a class of
models for which these findings are valid. Second, to define general rules that link the
sensitivity to initial conditions of different model parameters. These rules could depend
also by the typology and the size ofmodification. Third, appraise the relationship between
sensitivity to initial conditions and the topology of the agents’ network.
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Abstract. This work aims to bring forward the intersection between
the world of statecharts and that of agent technology. We begin by
disambiguating the different terms related to statecharts, i.e. state
machines and finite state automata/machines. Subsequently we review
their impact to agent technology, mainly in the area of Agent-Oriented
Software Engineering. Our findings are that multi-agent systems mod-
eling has used and, some times, extended the language of statecharts,
mainly for modeling agent interaction protocols and for coordinating the
different modules of an agent. We conclude with some future directions
related to the use of statecharts by the Multi-agent Systems community
in the coming years.
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1 Introduction

Agent Technology and Statecharts technology are two worlds that started almost
at the same time, in the eighties, the first as Distributed Artificial Intelligence [30]
and the second as a method for engineering complex and reactive systems [19].
Since then, a lot has happened, this work will focus in their intersection.

Agent-oriented Software Engineering (AOSE) has long used statecharts. Ini-
tially, they were employed for modeling agent interactions [27,35] but also agent
plans [10,31,32]. Agent interaction modeling is mainly concerned with defin-
ing protocols that govern an interaction. Such models have also been referred
to as inter-agent control models [10,42]. Later, statecharts were used by AOSE
methodologies for the coordination of the different agent modules, and such mod-
els are also referred to as intra-agent control models [10,41]. Moreover, agent
platforms like the popular Java Agent Development Framework (JADE [2,3])
base complex agent behaviour to the definition of state machines.

This paper aims to collect the experience of using statecharts for agent-
related research and propose some future directions based on the modern devel-
opment for statecharts but also the needs of the agents community.
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Section two provides a background on statecharts and finite state machines,
also trying to disambiguate these terms. Then, section three provides an overview
of the use of the language of statecharts in AOSE and generally in multi-agent
systems (MAS) research. Section four discusses these findings. Section five pro-
poses several research directions, and, finally, section six concludes.

2 Background on Statecharts

Statecharts are often confused with automata [12], finite state automata, or
finite state machines (FSMs [4]). Let’s try to give a formalism that will aid us
throughout this paper.

Definition 1. An FSM-like statechart can be defined as a tuple (L, δ) where:

– L = (S,Name) is a set representing the states of the statechart, and:
• S ⊆ N

∗

• Name is a mapping from nodes to their names
– δ ⊆ S ×TE ×S is the set of state transitions, where TE is a set of transition

expressions

Harel proposed statecharts for modeling software systems [20]. According to
that work, statecharts are based on an activity-chart that is a hierarchical data-
flow diagram, where the functional capabilities of the system are captured by
activities and the data elements and signals can flow between them. The behav-
ioral aspects of these activities (what activity, when and under what conditions
it will be active) are specified in statecharts.

While in FSMs states represent different states of the world and actions take
place in the transitions, in statecharts states represent activities. Actions are still
possible in transition expressions, however, these are instant actions that modify
variable values and generally affect the data structures of the modeled system.
On the other hand, the ability of the transition expressions to allow for events
makes them compatible with FSMs in the sense that the outcomes of activities
can be sensed and lead to the next state of the world. Moreover, activities can
occur concurrently, or can be complex, i.e. can be analyzed to more “basic” ones.

In a sense an FSM is a restricted case of a statechart, where there is no
explicit activity associated with a state, there is no hierarchy of states, there are
no history connectors, and, finally, the orthogonality feature is missing. Never-
theless, there are researchers that have proposed hierarchical FSMs [6,17].

In this paper, when we refer to statecharts we imply the formalism given by
Harel [19,20]. Based on that we can extend Definition 1 with regard to nodes
(L) [41] (see Definition 2).

Harel defines several state types. Three are the main types of states in a
statechart, i.e. OR-states, AND-states, and basic states. OR-states have sub-
states that are related to each other by “exclusive-or”, i.e. only one can be active
at any given time, and AND-states have orthogonal components that are related
by “and”, they are active at the same time. Basic states are those at the bottom
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of the state hierarchy, i.e., those that have no sub-states. The state at the highest
level, i.e., the one with no parent state, is called the root. There are some more
states types, such as start and end. These are nodes without activity, which exist
so that execution can start and end inside OR-states. A condition state allows for
branching a transition. Shallow history and history allow for “remembering”
the last active state in an OR-state or a whole branch of L respectively. All
these auxillary state types, i.e. start, end, basic, shallow history, history and
condition are leaves of L.

Definition 2. A Statechart can be defined as a tuple (L, δ) where:

– L = (S, λ,Name,Activity) is an ordered rooted tree structure representing
the states of the statechart, and:

• S ⊆ N
∗

• Name is a mapping from nodes to their names.
• λ : S → {and, or, basic, start, end, shallow history, history, condition},

is a mapping from the set of nodes to labels giving the type of each node.
• Activity is a mapping from nodes to their algorithms in text format imple-
menting the processes of the respective states.

– δ ⊆ S ×TE ×S is the set of state transitions, where TE is a set of transition
expressions

Each transition from one state (source) to another (target) is labeled by a
Transition Expression (TE), whose general syntax is e[c]/a, where e is the event
that triggers the transition; c is a condition that must be true in order for the
transition to be taken when e occurs; and a is an action that takes place when
the transition is taken. All elements of the transition expression are optional.

Moreover, there can also be compound transitions (CT), that can have more
than one source or target states. We will not refer to that level of detail in this
work. The scope of a transition is the lowest level OR-state that is a common
ancestor of both the source and target states.

The statechart formalism also defines execution semantics. We will give a
brief overview, for the details the reader is referred to Harel and Naamad [20].
The execution of a statechart is a sequence of steps. After each step we view
a snapshot of the statechart. Execution starts at start states. When a step is
taken, the events that have happened are sensed, including retrospection events
(such as the entering of a state at the previous step). When the step finishes
the statechart is in a valid configuration, i.e. specific basic states are active and
the respective OR- and AND-states up to the root. Other types of states cannot
be included in the configuration (e.g. the a start state cannot be active in a
snapshot).

When a transition occurs all states in its scope are exited and the target
states are entered. Multiple concurrently active statecharts are considered to be
orthogonal components at the highest level of a single statechart. If one of the
statecharts becomes non-active (e.g. when the activity it controls is stopped) the
other charts continue to be active and that statechart enters an idle state until
it is restarted.
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Fig. 1. FSM representation of an air conditioner. The figure was generated using the
PlantText free tool, https://www.planttext.com/

Fig. 2. Statechart representation of an air conditioner.

To illustrate the difference between a statechart and an FSM, a basic rep-
resentation of an air-conditioner is provided using both formalisms, see Fig. 1
and Fig. 2. The reader will notice that using OR and AND states the statechart
formalism prevents the explosion of states that takes place in FSMs as one com-
bines contexts (in this case the context of the air-conditioner fan speed and its
mode). The depicted events correspond to pressing the power, fan and mode
buttons on the air-conditioner remote control.

In the Unified Modeling Language (UML), which is the mainstream language
for defining object-oriented software and a standard supported by the Object
Management Group (OMG), https://www.uml.org/, statecharts have been used
to model the dynamic behavior of a class instance (object).

https://www.planttext.com/
https://www.uml.org/
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3 Statecharts and Agent Oriented Software Engineering

Statecharts were proposed by Harel for modeling reactive systems [19] and
researchers in AOSE and agent interaction protocols modeling communities were
quick to adopt them and propose formalisms, extentions, languages and seman-
tics for use in agent-based systems engineering.

One of the pioneers, Moore [27], proposed an agent interactions protocol
formalism based on statecharts and the Formal Language for Business Com-
munication (FLBC), an Agent Communication Language (ACL). Usually, the
message types of ACLs (or performatives) are understood as speech acts. A
speech act is an act that a speaker performs when making an utterance [1]. Per-
formatives express the intent of an agent when it sends a message to another
agent. Thus, a message has four parts, a) the sender, b) the receiver, c) the
performative and d) the message content (what is said). For example, the per-
formative “inform” may be interpreted as a request that the receiving agent
adds the message content to its knowledge-base. Thus, an ACL message can be
defined as: performative(sender , receiver , content).

For his work on conversation policies, Moore makes the assumption that
developers that adopt his models can understand a formal specification and
implement it in whatever way they see fit. In the FLBC, Moore defines, for
example, that the message request(sender, receiver, action) can express that:

a. The receiver believes that the sender wants him to do the action
b. The receiver believes that the sender wants the receiver to want to do the

action

According to the work of Moore, a conversation policy (CP) defines a) how
one or more conversation partners respond to messages they receive, b) what
messages a partner expects in response to a message it sends, and, c) the rules
for choosing among competing courses of action.

Moore introduces the idea of modeling the activities of the participants in a
conversation as orthogonal components of a statechart. The transition expres-
sions contain the actions of sending and receiving a message. Moore’s conversa-
tion policies allow for exceptions when a conversation is interrupted by assuming
that an agent has stored all allowed CPs in a kind of repository where he can
browse a new policy to handle the exception in the form of a sub-dialog to the
original one. When this sub-dialog terminates the original one can resume.

Statecharts were introduced in AOSE methodologies by the Multiagent Sys-
tems Engineering methodology (MaSE [9,10]). In the MaSE design phase, the
first activity is about creating agent classes and then agent classes can connect to
other classes indicating the possible interactions or conversations. The latter are
defined in the communication class diagram, which is in the form of a finite state
machine. MaSE defines a system goal oriented MAS development methodology.
The authors define for the first time inter and intra-agent interactions that must
be integrated.

Recognizing the fact that a protocol should have both a graphical and formal
representation, Paurobally et al. [35] combined the language of statecharts and a
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language based on Propositional Dynamic Logic (PDL), the Agent Negotiation
Meta-Language (ANML). PDL blends the ideas behind propositional logic and
dynamic logic by adding actions while omitting data; hence the terms of PDL are
actions and propositions. Then, the authors defined templates for transforming
the ANML formulas to statecharts, extending the statecharts language in the
process. The representation of all computation is in transitions, while states
just describe a situation (where specific conditions hold). The representation
can be general, or specialized for a specific agent participant. The expressions
in the transitions are ANML formulas. The proposal of Paurobally et al. [35]
and later by Dunn-Davies et al. [11] did not employ the orthogonality feature of
the statecharts because they considered that the agents are not subsystems and,
thus, execute on their own. If they were combined as orthogonal components for
execution they would have to combine parts of interactions between temporally
autonomous agents into a pseudo whole.

At the same time, König [23] presented a new possibility in inter-agent proto-
cols definition. He used the state transition diagrams (STD) formalism to model
protocols, but also decision activities, thus, using for both the same formalism.
An STD is a special case of a Finite State Machine (FSM) that allows transitions
between states either when an external or an internal event occurs to the system
(according to his work, transitions in FSMs can only contain external events).

König defined a protocol as a structured exchange of messages. Then, he
compared three approaches to modeling conversation policies, i.e. those based
on STDs, FSMs and Petri nets. He observed that all approaches modeling con-
versations from the viewpoint of an observer are using either STD or petri nets,
in contrast to those using FSM (or statecharts) that are representing the conver-
sation from the viewpoint of a participating agent. For modeling a conversation
from the point of view of a participating agent who receives and sends mes-
sages, König argued that a model supporting input and output operations is
more suitable. When a conversation should be modeled from an observer’s view,
it is sufficient to use a model which is able to express that a message has been
transmitted from one agent to another, like a transition in a STD or in a petri
net. He chose STD aiming to model both activities and protocols, allowing also
for object-oriented development.

König made the assumption that only two agents are involved in a protocol,
i.e. the primary (who initiates the interaction) and the secondary. Moreover, the
messages exchange is always synchronous, when one of them sends a message
the other one is in a state of receiving a message (they cannot both be sending
at the same time). Then, he defines an FSM for the observer and from it he
derives the FSMs of the participants. In a next level (higher level of abstraction)
he defines communication acts that can make use of the protocols in the form
of STDs. Finally, in a third level he defines the activities of the agents that can
invoke one or more communication acts and assume a wait state until the acts
finish. The acts themselves can choose to execute one or more protocols and
enter a wait state until they are finished. All these can only happen sequentially.
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One of the most influential methodologies for AOSE also appeared at that
time. The Gaia methodology [46,47] emphasized the need for new abstractions in
order to model agent-based systems and supported both the levels of the individ-
ual agent structure and the agent society in the multi-agent (MAS) development
process. Gaia added the notion of situatedness to the agent concept. According
to this notion, the agents perform their actions while situated in a particular
environment. The latter can be a computational environment (e.g. a website) or
a physical one (a room) and the agent can sense and act in the environment.

MAS, according to Gaia, are viewed as being composed of a number of
autonomous interactive agents that live in an organized society in which each
agent plays one or more specific roles. Gaia defined the structure of a MAS in
terms of a role model. The model identifies the roles that agents have to play
within the MAS and the interaction protocols between the different roles.

The objective of the Gaia analysis phase is the identification of the roles
and the modelling of interactions between the roles found. Roles consist of four
attributes: responsibilities, permissions, activities and protocols. Responsibili-
ties are the key attribute related to a role since they determine the functionality.
Responsibilities are of two types: liveness properties – the role has to add some-
thing good to the system, and safety properties – the role must prevent some-
thing bad from happening to the system. Liveness describes the tasks that an
agent must fulfil given certain environmental conditions and safety ensures that
an acceptable state of affairs is maintained during the execution cycle. In order
to realize responsibilities, a role has a set of permissions. Permissions represent
what the role is allowed to do and, in particular, which information resources
it is allowed to access. The activities are tasks that an agent performs with-
out interacting with other agents. Finally, protocols are the specific patterns
of interaction, e.g. a seller role can support different auction protocols. Gaia
defined operators and templates for representing roles and their attributes and
schemas for the abstract representation of interactions between the various roles
in a system.

The Gaia2JADE process appeared in 2003 [28,29] and was concerned with
the way to implement a multi-agent system with the emerging JADE framework
using the Gaia methodology for analysis and design purposes. This process used
the Gaia models and provided a roadmap for transforming Gaia liveness formulas
to Finite State Machine diagrams. The JADE framework provided an object-
oriented solution to building MAS and it became the most celebrated framework
for building real-world software agents applications [3].

In 2004 there was also a proposal for the use of distilled statecharts (DSCs)
for modeling mobile agents [16]. The proposal came along an object oriented
implementation based on UML modeling. DSCs define some limitations to the
language of Statecharts, e.g. only the OR-state decomposition is used, states do
not have properties such as activities, therefore activities are only carried out
under the form of atomic actions attached to transitions. If their source is not
start and history states, transitions always include an event. In a later work,
Fortino et al. [14] proposed a JADE implementation for DSC.
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An important work on statecharts based agent development was that of Mur-
ray [31]. The latter, working for defining Robocup soccer player agents, explained
that statecharts is a natural formalism for expressing multi-agent plans, as a
player usually assumes a role, e.g. defender, attacker, goalkeeper, and the role’s
plan can be modeled as a sequence of states an agent passes through. A pass-
ing of a state can be the result of an (external) event or the completion of an
activity, e.g. passing the ball. Moreover, as team players work together towards
a common goal, they need to synchronize their actions and this can be modelled
with one agent waiting for another agent to finish an action. Murray proposed
a methodology and tool (StatEdit) for capturing this behavior based on a three
layered approach:

– In the top level the different roles (modes) that the player can assume when
active are represented as states and the transitions indicate a change of role

– In a middle level an agent chooses among a set of plans adding detail at each
mode of the previous level. The states here capture the agent general activity
and show where the player synchronizes its actions with other roles (e.g. wait
for the center player to pass the ball and then shoot to score).

– On a bottom level of the hierarchy each activity of the role is detailed to
specifc actions (e.g. acquire the ball and then kick towards the goal)

A similar layered approach was used later [22] for modeling the behavior of
non-player characters in computer games. Murray also proposed an extension to
statecharts with synch states for synchronizing the actions of different agents. His
work, along with the previous one of Obst [33] both supported semi-automatic
code generation for Robolog, a robot programming language based on Prolog.

Later, ASEME [40,43], uniquely among AOSE methodologies, used the stat-
echarts formalism both for inter- and intra-agent control modeling. Moreover, it
extended the statechart formalism by adding state-dependent variables. Thus,
each state is associated with variables that it can monitor and change/update.
To propose this extension, the authors were motivated by the Gaia method-
ology and the role’s access to data structures with the read or write/update
permissions [46]. Thus, ASEME proposed the addition of the V ar property to
the statechart nodes. The different states can be connected with variables that
can be used for exchanging information.

Definition 3. The tuple (L, δ) defined in Definition 2 is extended by adding
V ar to L:

– L = (S, λ,Name,Activity, V ar) is an ordered rooted tree structure represent-
ing the states of the statechart, where:

• Var is a mapping from nodes to sets of variables. var(l) stands for the
subset of local variables of a particular node l.

According to ASEME, a state name that starts with the string “send” implies
an inter-agent message sending behavior for the state’s activity. A send state has
only one exiting transition and its event describes the message(s) sent. Similarly,
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a state name that starts with the string “receive” implies that the activity of the
state should wait for the receipt of one or more inter-agent messages. The type
and quantity of the expected messages can be implied by the events monitored
by the transition expressions that have this state as source. The events that can
be used in the transition expressions can be:

– a sent or received (or perceived, in general) inter-agent message,
– a change in one of the executing state’s variables (also referred to as an intra-

agent message),
– a timeout, and,
– the ending of the executing state activity (empty event).

This formalism allows also for environment-based communication by defining
state activities that monitor for a specific effect in the environment. This effect
can be expected to be caused by any other agent or a particular agent. Such
activities can be, for example, “wait for someone to appear” or “wait until my
counterpart lifts the object” respectively.

ASEME defines protocols as statecharts where the participating roles are
defined as orthogonal components. See Fig. 3 as an example. Two roles are con-
nected to this protocol, the service requester (sr) and the service provider (sp).
The reader will notice these two roles as orthogonal components in the Request-
ForServices protocol state. The requester sends a request message using the
Request performative whose variables are the sending and receiving agents (we
use the abbreviation sr for service requester and sp for service provider) and the
request, which can be an object for object oriented implementations or a query
for logic-based implementations. On the other hand, the service provider waits to
receive this message, then processes the request and either replies with a Refuse
(the service is refused for this agent), Failure (failed to reply), or Inform (with
the results of the computation) performative. Note that the protocol terminates
for both roles after a timeout of 10000 ms. A similar model also appears in the
work of Seo et al. [39] for buying products.

The work of Moore [27] supported the possibility of an agent getting involved
in a sub-dialog when in a dialog. In ASEME, the model for describing such dialogs
is the inter-agent control model. Moore supposed that the agent has access to
a repository of dialogs and dynamically selects a sub-dialog model whenever
an incoming message is not permitted by the existing dialog but is permitted
by another in the repository. In the intra-agent control model, ASEME allows
for this possibility as all roles the agent can participate in can be instantiated
as orthogonal components. Information between orthogonal components can be
exchanged through the use of common variables and their usage in transition
expressions, thus, a given protocol can remain in a given state until some infor-
mation becomes available (an implicit intra-agent message).

Another feature of ASEME is the catering for embedded dialogs in an agent’s
design, i.e. in its intra-agent control model. Dialogs occur when an agent partic-
ipates in an agent interaction protocol. Instances of dialogs contained entirely
within other dialogs are said to be embedded [25]. ASEME defines that when a
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Fig. 3. Statechart representation of a protocol for requesting a service. The diamond
shape represents a condition state.

role in a protocol model is integrated in an intra-agent control model, the proto-
col role OR-state is inserted as-is in the intra-agent control. Then, the designer
is free to define the activities of the basic states. The designer can even select to
expand a basic state and turn it to an OR-state.

Thus, the reader can see a broker agent in Fig. 4 realizing the protocol defined
in Fig. 3. The broker agent realizes the service provider role of the service request
protocol. However, for defining the process request state activity, the designer
decided that the broker will initially perform a service matching activity and then
either invoke a web service, or employ an embedded dialog, i.e. the service request
protocol, this time as a service requester. Note that the transition expressions
have been omitted in Fig. 4 so as not to clutter the diagram.

Recently, researchers explored the translation of agent models defined using
the Distilled StateCharts (DSC) [13,16] into a Belief-Desires-Intentions (BDI)
framework [15], including a BDI-like code generation feature. BDI is an example
of an agent architecture including an execution paradigm besides ontological
features [36]. BDI advocates the fact that an agent first senses its environment
and updates its beliefs, then it searches possible desires, i.e. goals that are valid
in this environment state, and, finally, selects some of these desires to actively
pursue. The latter are now its intentions.

Statecharts can be used for modelling the dynamic behaviour of a BDI
agent. See for example the execution model followed by 3APL [8], a BDI-based
agent development language, modelled as a statechart in Fig. 5. The lifecy-
cle of this agent starts in the ReceiveMessage state. Then, as soon as a mes-
sage arrives, or another monitored for event occurs, the BDI agent enters the
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Fig. 4. Statechart representation of a Broker agent embedding a dialog in another
dialog.

ApplyGoalPlanningRules OR state. Within that OR state, more specific activ-
ities match the goals with rules, select rules matching the agent’s beliefs and
apply a goal planning rule. The next OR state, i.e. ApplyPlanRevisionRules, and
its substates find rules matching to the plans, select rules matching the agent’s
beliefs and apply the selected plan revision rule. Finally, the agent reaches the
ExecutePlan state that, depending on the selected plan, may send a message,
take an external action or an internal (or mental) action, or do nothing. After
finishing the plan execution the agent returns to his message receiving state.
This is an example of how someone can use statecharts to coordinate the agent’s
capabilities and to accommodate a well-known type of architecture in a platform
independent manner, i.e. the way to implement this model is not yet chosen at
this time.

In another work, researchers provided the Kouretes Statechart Editor (KSE)
CASE tool for authoring robotic behaviours [44]. Given existing bottom level
functionalities [31], e.g. kick the ball, the modeler could define a robotic
behaviour visually and immediately generate the code and upload it to a
humanoid (Nao) robot.
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Fig. 5. Statechart representation of a BDI agent [41].

4 Discussion

The statecharts main added value is the capability of the language to capture
both the static (activities and variables) and dynamic aspect of a system [19,20].
Thus, one can have a unique design model and use it to generate code for diverse
platforms.

AOSE researchers have argued on other pros and cons of statecharts. Mainly
inspired by the work of Paurobally et al. [35] we present some of their advantages
(+) and disadvantages (-):
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+ States and processes can be treated equally allowing an agent to refer and
reason about the state of an interaction

+ Statechart notation is more amendable for extension thanks to their simple
semantics

+ Visual models are easier to conceive and display [16]
+ Engineers familiar with UML can start working with them immediately [37]
- Participating roles are not shown explicitly
- Compound transitions are not shown in detail
- There is a question of completeness

One of our findings by working with statecharts is that agent behavior spec-
ification is not a trivial task. The development of the simplest possible player
in Robocup took a statechart with 99 states in a hierarchy with a depth of
17 [34,44]. This demonstrated the added value of the ASEME methodology as
it allows for the automatic transformation of Gaia liveness formulas to a stat-
echart [42], which is at least a “good start”, as opposed to starting the design
directly with a statechart CASE tool, as was the case of StatEdit [31], or using a
flat statechart model with no hierarchy, such as the plan diagrams of MaSE [10].

Proposing radical extensions to the language of statecharts may seem to
facilitate or enable new features, e.g. as in the case of ANML, however, it renders
them incompatible with existing CASE tools and they may become difficult for
mainstream software engineers to learn and use [37].

Some times, and especially in works that do not adopt the orthogonal com-
ponents of statecharts (i.e. AND-states), it is not obvious how one develops an
agent realising more than one protocols simultaneously, and/or how to combine
them with other agent capabilities.

The ASEME inter and intra-agent control models, being derived by Gaia for-
mulas, do not use the possibility of the state transitions to traverse levels or the
history connectors. If the developers, however, choose to introduce these features
to the statechart they lose the connection of the design phase models (the state-
charts) to the analysis phase models (i.e. the role model and the Gaia formulas).
This situation can impact the tracing of software features to their requirements
and has been reported as the “round-trip” problem [38]. The acquired experi-
ence after modeling a number of systems for software and robotic agents shows
that the choice to not use state transitions traversing levels or the history con-
nectors does not hinder the possibility to model complex systems, on the other
hand, important engineering concepts, such as comprehension, modularity and
reusability, are enhanced. The same has been reported by the more recent work
on Armax statecharts for modeling robotic behaviour [45].

5 Future Directions

The future holds many challenges. Regarding the use of statecharts, agents and
autonomous systems continuously face the possibility of an unexpected (at design
time) event to happen while they are in operation. Unexpected means that either
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a known event happens that the system is unable to handle at its current state
(unexpected at that time), although it is related to its operation, or an unknown
event happens (totally unexpected), see Marron et al. [24] for a detailed defi-
nition. Although there are some hacks for ad-hoc catering for this issue, such
as having a default handler for incoming messages not handled by a defined
behaviour that replies with information about the services offered by the agent,
this is a valid research direction.

In the area of design for autonomy (empowerment, self-management and self-
regulation) it is very interesting to research how an inter- or intra-agent control
can self-evolve over time. Evolution may be triggered through introspection or
through the desire to maximize or fine-tune an agent’s performance. For example,
a robot may have a failing limb, it may need to fine tune its grasp to manage its
best with the available functionality. Another example is related to the previously
presented broker agent. What happens if, while usually its service matching
activity successfully matches 99% of the requests, suddenly, and for a significant
period, it matches only 30% of the requests. Now the agent needs a strategy
to mitigate, e.g. to reboot its system, or update its services repository. Another
kind of evolution is to evolve the statechart itself. Researchers are already delving
into this area with results only for flat statecharts until now [18].

Recently, researchers proposed the concept of the property statecharts [26]
for expressing and enforcing safety criteria in statecharts. Safety properties have
been defined in AOSE, and the Gaia methodology’s role model [46], however,
statechart-based design models have not yet fully realised this feature, espe-
cially those leading to object-oriented implementations. Property statecharts
are monitoring the events generated by the execution of normal statecharts and
safeguard conditions. For example, and in the area of smart contracts, Mens et
al. [26] have given an example, where an agent A signs a Service Level Agreement
(SLA) with agent B. The SLA dictates that whenever A receives a request from
B, then A must reply within 1 h. The property statechart gets in the monitoring
state whenever A receives a request from B. If the A’s state for sending a reply
to B is not exited within 1 h the contract is considered violated. It would be very
interesting to adapt this idea to safety properties of agents.

To realize implementations of agents in the modern open systems [21], agents
need to use predefined protocols to interact. However, when diverse stakehold-
ers come in, they need to work the protocols with their own algorithms and/or
goals. Currently, protocols focus on defining sequences of exchanged messages.
Adopting the point of view of the ASEME methodology [40,43], where proto-
cols are regarded not as simple communication protocols that determine how
data is transmitted (as in telecommunications and computer networking), but
as their higher level abstractions used by humans, where protocols define codes
of behaviour (or procedural methods), we can use statecharts for defining them.
Thus, a protocol does not only answer the question of what messages are allowed
but also what actions the participants need to do within the protocol. In this
context, an important direction is towards defining new design patterns, that on
the one hand will allow the developers to re-use existing protocol parts and logic
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defined in the open system; and on the other hand to customize key functionality
or capabilities according to their needs and/or goals.

Thus, when defining open systems, or even proprietary systems, the use of
statechart repositories would lead to the simplification of the statechart-based
agent development. Consider for example, the Robocup Player agent that we
referred to in the discussion above. It would be much easier to develop this
agent if some parts of its statechart or intra-agent control model were reused
from local or public repositories.

For example, 28 students taking the Autonomous Agents class at an Electrical
and Computer Engineering school of the Technical University of Crete were
asked to develop a robocup player in one of the 2-h laboratory sessions of the
class. The students worked in small teams of two or three people per team. The
students first went through a quick tutorial on using the ASEME CASE tool,
which demonstrated the development of a Goalie behavior for the Nao robot.
This included the Gaia formulas for the goalie role, and its IAC model. Then,
they were asked to use the existing functionalities of the Goalie (scan for the
ball, kick the ball, approach the ball, etc) to develop an attacker behavior using
KSE. Thus, the students did not have to develop the robot functionalities. They
defined the attacker role’s liveness and then edited the generated statechart, i.e.
they defined variables and transition expressions. All student teams were able to
deliver the requested Attacker behavior and enjoyed watching their players in a
game (for more information the reader can consult [43,44]).

A step forward would be to have the developers not reuse just activities of
states (as they did in the above experiment) but whole statechart components
(including transition expressions) as modules. Modules have also been referred to
as capabilities in the AOSE community [5,43]. Modular programming has been
identified as the ultimate aim of agent programming languages and developing
frameworks be they declarative or imperative [7].

6 Conclusion

Statecharts and agent technology are quite close, as the reader may have already
found out. The future holds more prospects for both areas but also for their coop-
eration. Statechart-based agent modeling has been used for developing software
and physical agents, object-oriented or logic-based agents, agents communicating
through message exchanging or through a blackboard.

We presented several future directions, mainly for the intra-agent’s control,
on one hand monitoring events that are essential for the agent’s successful opera-
tion and detecting failing capabilities, and on the other hand safeguarding restric-
tions and contracts. Statecharts are a still evolving paradigm [6,24,26,45] and
modern AOSE works use it [15,43].

In the future, this work can be expanded by adding a survey on the real-world
multi-agent systems that have been developed using statechart-based designs.
This is interesting as it will flesh out the relevant application domains and gather
the experience that goes along with developing real-world systems. Moreover,
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more related work from the statechart research community can be added, as the
present work was concerned with the works from the autonomous agents and
MAS community.
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Abstract. We introduce a novel variation of the widely used 2-player
Stackelberg game formalism. In our variation, a master player can decide
to act as a leader or as a follower across the iterations of the game. This
model naturally arises in many real-world applications and particularly in
cyber-security scenarios, where an analyzer agent can arbitrarily decide
which role to play in each iteration. We propose a first solution approach
for this model assuming bounded rationality for the players and adopting
a Monte Carlo Tree Search approach to devise the analyzer’s strategy.
We empirically show the effectiveness of our method in two experimental
domains, i.e. synthetic game instances (using randomly generated games)
and malware analysis (using real malware samples).

Keywords: Stackelberg game · Active malware analysis

1 Introduction

In recent years, Stackelberg Security Games (SSG) have been widely employed as
theoretical models to address many safety-critical domains, such as the deploy-
ment of checkpoints in the Los Angeles Airport (LAX) [15], the organization
of US Coast Guard patrols [1] and the detection of illegal fishing and poaching
activities in protected natural reserves [4,18]. Such security games build upon
the formalism of Stackelberg games, which involves two agents, i.e. a leader and
a follower (a.k.a. defender and attacker in security scenarios). Every Stackelberg
game divides in two phases: in the first step, the leader publicly commits to a
strategy; once this operation terminates, the follower player can observe such
strategy and then select a pure strategy in response [5].

Unfortunately, the optimality guarantees associated to the leader solution
rely on some strict hypothesis that rarely occur in real scenarios. One important
assumption is to perfectly know a priori the utility value obtained by any strat-
egy profile composed of the joint actions of the leader and the follower agents.
However, this information is often not available in practical scenarios and is
approximated with an estimation procedure affected by a degree of uncertainty.
Considering such cases, the studies conducted in [10] and [11] point out the need
for the leader agent to use learning methods to profile the follower policy and
c© Springer Nature Switzerland AG 2020
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therefore incrementally refine such estimate in a repeated Stackelberg game, i.e.
performing multiple rounds of interaction. Other works propose to embed the
uncertainty in the utility function by defining intervals of potential payoffs [8].

Another critical point is represented by the rationality of the players: since the
methods constructing the best leader strategy suppose that the follower selects
an optimal response, a follower which deviates from such assumption may cause
a loss for the leader. The main causes of such deviations are the uncertainty
over the agent self-preferences, the partial knowledge about the environment
and the non observability of the rewards. Previous works approach this prob-
lem by proposing bounded rational agent models which exploit subjective util-
ity functions and the distribution of the follower responses [2,13]. Recently these
methods have been improved adding features to reason about the success/failure
of the opponent actions in preceding interactions and on the similarity between
targets [6]. Finally, even though both agents behave as fully rational, the com-
putational costs required to execute the algorithms to find the optimal solution
are often prohibitive, hence agents are unable to compute an optimal strategy
in a reasonable amount of time, even for relatively small problems.

More importantly, in many real interactive systems, the players do not have
a clear, pre-determined role (i.e., always act either as leader or follower). Rather,
they alternate behavioral patterns typical of a leader to others compliant to a
follower, and viceversa. For instance, in the context of Active Malware Analysis
(AMA) [17,20], an analyzer agent selects specific actions (triggers) to induce
the malware sample into showing core behavioral patterns that otherwise would
remain undetected, so as to correctly classify the sample; in this interaction set-
ting the analyzer agent has a follower role since it first monitors the initial trans-
parent (i.e. non concealed) operations performed by the malware and then exe-
cutes a suitable trigger. However, to tackle the problem of anti-emulation mecha-
nisms1 implemented by many malware samples, the analyzer agent must commit
a deceitful policy defining the outputs in response to malware checks, aiming to
mask the true configuration of the analysis environment to trick the malware into
showing its core functionalities [16]. In this second analyzer-malware dynamics,
the analyzer assumes the leader role, because it needs to choose which deceitful
policy to use before the malware does anything, otherwise the analysis would be
ineffective. Such interactive techniques are related because they may interweave
in subsequent analysis steps to achieve a common goal.

This key observation led us to the definition of a novel type of repeated
Stackelberg games where the leader-follower roles assumed by the interacting
agents can be exchanged along the iterations of the process. We apply such
formalism to two case studies: in the first experiment, we aim at validating our
method on synthetic games showing that it allows to optimize the cumulated
reward obtained by the analyzer, while in the second we test our technique in the

1 When using anti-emulation mechanisms, a malware sample starts by querying the
running system to check if it is being executed inside a simulated environment (sand-
box): if this is the case, it does not reveal any malicious behaviors.
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scenario of Android AMA to prove that it can be used to conduct an exhaustive
behavioral profiling of the policy implemented in real malware samples.

In summary, our contributions are the following:

1. We define Stackelberg Switch-Role Game (SSRG), a novel repeated Stackel-
berg game such that, between each round of the game, the agents can switch
the leader-follower roles.

2. We show that computing optimal strategies for a SSRG is intractable. Hence,
we propose a technique to compute an agent policy based on Monte Carlo
Tree Search (MCTS) and a heuristic determining when it is convenient to
switch roles.

3. We empirically evaluate the proposed method on synthetic game instances
and real malware samples. In the former we highlight benefits and limita-
tions of our approach in terms of achievable reward; in the latter we test the
effectiveness of our method in a practical case study.

2 Background

2.1 Bayesian Stackelberg Game

The definition of a Stackelberg game assumes that payoffs of the players are
perfectly known. In order to relax such constraint, the variant called Bayesian
Stackelberg Game (BSG) has been proposed to model the uncertainty in payoff
functions [15]. A BSG is constructed as a Stackelberg game in which a set Θ of
possible types for the follower is defined2. The utility function associated to the
follower uf : Θ × Al × Af → R depends on the specific type θ characterizing the
follower. Hence, the follower type contributes to determine the reward achieved
by the follower together with the joint action profile of leader and follower, pro-
ducing in general different outcomes for distinct types. In BSGs the leader is not
aware about the chosen follower type, knowing only the probability distribution
P (Θ) concerning the elements belonging to the type set Θ.

2.2 Monte Carlo Tree Search (MCTS)

We leverage on MCTS as a technique to implement the policy of our agent in
the proposed framework. MCTS can estimate the most rewarding action for an
agent to execute in a given domain by taking random samples in the agent’s
action space. The algorithm is based on the construction of a tree structure
that is asymmetrically expanded so to explore the space of possible actions
by focusing on the most convenient ones. The tree is initially empty and the
procedure repeatedly performs the 4 phases depicted in Fig. 1: selection aims at
descending the tree to reach the most promising node using a tree policy which
mathematically estimates the attractiveness of the vertices; expansion attaches
a new node to the previously selected vertex; a simulation is therefore run from

2 There might be also a leader type set, but it is usually assumed to be a unit set.
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the expanded node in order to evaluate the reward obtained by executing such
action; finally, in backpropagation, the obtained reward is propagated up to the
root, updating the statistics of the parent nodes.
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Fig. 1. Monte Carlo Tree Search scheme

The application of MCTS has been tested successfully both as a solution pro-
cedure for Stackelberg games [11] and for active malware analysis [17]. Indeed,
assuming a proper choice of tree and default policies [9], the failure probability,
namely the likelihood to return as output a non-optimal explored action, con-
verges to zero at a polynomial rate as the number of simulations grows linearly.

3 Proposed Methodology

The Stackelberg game model can naturally encode many real world scenarios
where agent interactions are not simultaneous and one agent can decide which
actions to perform after observing the other agent’s actions. However, there
are cases in which such model may not accurately represent the dynamics of
the interactions for the agents. In particular, we notice that there is a special
class of scenarios where the agents involved in the interaction can decide to be
either leader or follower, hence switching roles during the game. To capture these
scenarios we propose the Stackelberg Switch Role Game (SSRG) model, that we
define as follows:

Definition 1 (Stackelberg Switch-Role Game (SSRG)). Let p1, p2 be a
couple of agents and R = {(p1 ← lead, p2 ← follow), (p1 ← follow, p2 ← lead)}
the set of possible leader-follower role assignments. Suppose that the agent p1 can
arbitrarily select a role allocation r ∈ R. A SSRG is defined as a repeated Stackel-
berg game s = (s1, s2, . . . , sn) of length n ∈ N, where each si = (r,Al, Af , ul, uf )
is a single Stackelberg game such that:

– r ∈ R is the role assignment chosen by p1 for the i-th stage
– Al is the set of pure strategies of the leader
– Af is the set of pure strategies of the follower
– ul : Al × Af → R is the leader’s utility function
– uf : Al × Af → R is the follower’s utility function
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We call the agent that controls the role switch (i.e., p1) the master and the
procedure it uses to choose in each round the role allocation Role Switch Policy
(RSP)3. In our scenarios, the master agent is decided a priori, without any chance
for the involved agents to affect such choice. We decided to make this assumption
because it captures well the malware analysis domain we are interested in. The
definition above implies that whenever an agent pj switches between leader and
follower, the achievable payoffs may change accordingly, since the ul and uf are
related to the role assumed by pj . In our SSRG model, the aim for the agents is
to maximize the global average reward achievable at the end of the process.

3.1 Assumptions and Complexity Results

We assume that the payoffs for leader and follower are initially unknown to the
agents: players maintain an estimation about the rewards induced by the action
profiles that is updated as the game progresses. This core assumption is justi-
fied by the characteristics related to real-world multi-agent systems, as players
typically are affected by incomplete knowledge due to the lack of information
about strategies and revenues of other agents and the incapability to accurately
evaluate a reliable reward function for themselves.

Corollaries 1 and 2 demonstrate that for any SSRG instance such that there is
at least a not uniquely defined payoff value, the problem of selecting the optimal
policy for the master agent in each SSRG round is NP-hard. In order to prove
such statement we leverage on the theorems 5 and 7 given in [3] which refer
to BSG. Indeed, we show that a similar result holds in our setting by giving a
procedure to reduce a SSRG round to an equivalent instance of BSG.

Corollary 1. Finding an optimal mixed strategy to commit to in a round of a
2-player SSRG is NP-hard if the leader agent is uncertain about the follower
rewards and the follower has at least two actions, even when the leader is fully
aware about its rewards.

Proof. We show that an instance of single round a SSRG can be reduced to
a corresponding instance of a BSG. Accomplishing such goal, we leverage on
theorems 7 reported in [3] to prove corollary 1.

Suppose w.l.o.g. that we are given an instance of a 2-player SSRG where the
leader is uncertain between two different payoff values for a given joint leader-
follower action profile. Then we can formulate equivalently this uncertainty over
the outcome of such action profile by splitting explicitly into two distinct payoff
matrices. The two created matrices can be interpreted as two behavioral types of
follower. Therefore we obtain an instance of BSG where the leader has a single
type and follower has two types. Hence theorem 7 of [3] applies.

Corollary 2. Finding an optimal mixed strategy to commit to in a round of
a 2-player SSRG is NP-hard if the leader agent is uncertain about its rewards,
even when the leader perfectly knows the follower rewards.
3 In general, the choice about the employed RSP might be not determined by one

agent, since it can be affected by environmental aspects or multiple agents.
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Proof. Since we can obtain a transformation of any SSRG round to an equivalent
BSG instance where we have at least two types (payoff functions) defined for
the leader, the obtained BSG matches the hypothesis of theorem 5 shown in [3],
which states the NP-hardness of committing an optimal pure strategy: since the
pure strategies of the leader represent a subset of the possible mixed strategies,
such NP-hardness result applies also generally to mixed strategies.

Whenever an agent behaves as follower, there are no complexity limitations in
computing the optimal response to a committed mixed strategy, since such task
requires a polynomial time for the resolution. However, if the master decides to
address an SSRG interpreting the follower in every round to play optimally (and
avoiding the burden of finding optimal mixed strategies), it may miss the oppor-
tunity to achieve a greater reward, since the leader sub-game might present more
attractive payoffs. Thus the master would not obtain optimal overall results.

In the next section, we focus on a sub-optimal solution approach assuming
that the agent we design is the master in the SSRG.

3.2 Solution Method: SAFE

The main elements to devise a solution procedure for a SSRG are the following:
a) a routine to determine, at the beginning of each round, which leader-follower
assignment is more profitable for the master; b) a method to compute the master
strategy for both the roles; c) a procedure to update the estimated rewards w.r.t.
the actual reward achieved in previous rounds. In Fig. 2, we show a scheme of
Switching Agent FramEwork (SAFE), the framework we design to handle SSRG:
first, a routine chooses the role assumed by each player in the next round; then
a Stackelberg game round is performed between two bounded rational agents,
producing expected and actual payoffs that update respectively the behavioral
model of the adversary the master maintains and the reward estimation of the
master for the chosen joint action profile.

Agents

Master
(Leader)

Opponent
agent

(Follower)

Choose
leader and

follower

Role assignment
probability
distribution Run MCTS

Commit mixed
strategy

Master rewards
estimation

Execute best
response strategy

Expected
reward

Update

Update

Opponent agent
behavioral model

Update

Actual
reward

Fig. 2. Overview of SAFE (master acting as leader)
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Role Switch Policy (RSP). As it can be seen from Fig. 2, the keystone of the
framework is represented by the block that assigns, at each round of the SSRG,
the leader and follower roles to the agents. The implementation of this routine
shapes the evolution of the game, affecting the potential reward score that both
players can achieve and the kind of interaction that takes place4.

We propose a first RSP heuristic that analyzes past rounds of the SSRG
to return in output a probability distribution defined over the possible leader-
follower allocations for the agents. Once the RSP generates such distribution, it
is used to select the role assignment leading the next round accordingly.

In order to explain the RSP modeling features, we sketch an example scenario.
Let’s assume that the SSRG is at iteration n and that in the previous round
n − 1 the master has received a high payoff. Then our speculation would be to
encourage for the round n the same role assignment decided for n − 1, since it
has previously produced a good result. Conversely, we would aim at switching
the roles if at step n−1 the master obtained a poor reward, expecting that such
change might improve the master revenue. In other words, we state that it is
worth to exchange the roles only when the master gains a payoff that it does not
consider sufficient. Moreover, there is another additional property that we want
to insert in the RSP: the output distribution should never present 0 likelihoods,
unless such role assignments are proven to be detrimental for our agent.

Algorithm 1. Role Switch Policy (RSP)

Require:
r - expected reward obtained at step n − 1
a - leader-follower assignment at step n − 1
c - constant value

Ensure:
A leader-follower allocation for round n

1: if n > 0 then
2: update ← c·log (r+1)

1+c·log (r+1)

3: a ← update, ā ← (1 − update)
4: else � 1st SSRG round
5: a ← 0.5, ā ← (1 − a) � Use uniform distribution

6: return Random(a, ā)

We propose Algorithm 1 to implement the RSP for SSRGs we described in
Subsect. 3.1, considering the previous requirements. The heuristic is based only
on the expected reward r obtained in the last round, since we assume that it is
the most reliable estimation of the actual payoff obtainable playing the sub-game
specified by role allocation a. In contrast, if SSRG is at the starting iteration,

4 The leader can have a different action set w.r.t. the follower. Similarly the reward
function of an agent can vary if it plays as a leader or as a follower.
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we just sample the uniform distribution defined over the set of possible leader-
follower assignments (line 5). In the non-trivial case (lines 2–3), the fundamental
point is given in line 2, where a probability value to associate to a is computed,
representing how attractive it appears for the master agent to maintain the a
role in the next round. The formula we suggest fits the features we described,
since it incentives a if it has induced a high reward in the previous round, whilst
penalizes it in the opposite case5. Moreover, the likelihoods associated to the two
possible role assignments will never be equal to 0, no matter how large or small r
is, thus preventing 0 probabilities for any allocation. Once the update value for a
is computed, the probability coupled to ā, the other possible allocation, is defined
as its complement. Finally, line 6 randomly selects the next role according to the
probability distribution between a and ā.

Monte Carlo Tree Search (MCTS). The playing strategy for the master
agent has been realized adopting the MCTS. Our implementation of the MCTS
searches among the set of pure strategies (actions) defined for the role held by
the master. The selection, expansion and backpropagation steps are based on the
Upper Confidence Bound for Trees (UCT) [9]. The tree policy proposed with
UCT addresses the exploration-exploitation dilemma to balance between the
selection of actions that have not been well sampled yet and the promising ones
already executed in previous iterations. Since the master incrementally refines
a behavioral model of the adversary expressing the relationship between joint
action profiles issued and the associated rewards, the simulation step of MCTS
uses the information contained in such model to predict the response of the
opponent agent. We implement such routine with the same approach presented
in [17], both to shape the agent model and to perform the simulation.

When the MCTS terminates, we obtain a tree where at depth 1 there are all
the nodes belonging to the action set of the master: we employ the simulated
rewards embedded in such vertices to construct the master strategy. If the mas-
ter plays as leader in this round, then the mixed strategy committed is built
normalizing to 1 the rewards accumulated in such nodes. This procedure con-
verts the set of considered simulated unbounded rewards into a corresponding
probability distribution, which results to be the mixed strategy for the mas-
ter. Otherwise, if the master decides to play as follower, it will choose as pure
strategy the action with highest simulated reward among the same subset of the
nodes. For example, in Fig. 1e the blue nodes are children of the root used to
compute the master policy. If the master is the leader, we convert the rewards
(upper image) normalizing to 1, obtaining the depicted mixed strategy (lower
image); otherwise, it issues the pure strategy A3 since it achieved the highest
reward.

If the agent running the MCTS is aware about all the information needed (no
uncertainty or noise) then the MCTS would lead to the optimal mixed strategy
asymptotically (see Subsect. 2.2). However, due to the limited amount of time
5 The logarithm has been employed because it has a smooth trend; r is summed to 1

in the logarithm to avoid undefined results.
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the MCTS executes and the incomplete/noisy information available to our agent,
it produces approximated strategies. It is worth to underline that we divided the
RSP and the algorithm generating the strategy of the master because, whenever
the master plays as follower, these two steps are inherently separated by the
observation of the leader committed policy.

Reward Estimation. As mentioned earlier, both players begin an SSRG with-
out knowing any true payoff for any action profile. Therefore, the agents need to
maintain estimates of the actual rewards for themselves and for the opponents
to devise a proper strategy. Initially the agents fix the reward estimation for all
action combinations to an uninformative constant: since all the actions produce
the same value w.r.t. such estimation, they are evaluated likewise. However, as
the SSRG progresses, the players receive reward signals that are useful to revise
such estimation and to learn the actual game payoffs.

In order to implement such refinement process of the agent reward estimation,
we rely on the widely used concept of moving average [7]. In particular we employ
the exponential moving average to update the reward estimation as the tradeoff
obtained balancing the actual reward received by the master at the end of game
iteration n and the estimation computed at the previous round n − 1. Such
update function weights the first mentioned term most in the early stages of the
SSRG, since the reward estimation held by the master is considered inaccurate.
However, as the game advances, the agent reward estimation tends to converge
to the actual reward set for the SSRG instance.

4 Empirical Evaluation

We consider two sets of experiments to show the most important features of our
approach. In the former we are interested in studying the results obtained with
SAFE in normal form Stackelberg game scenarios. For this set of experiments
we use synthetic games built by randomly creating the payoff matrices of the
players. This setting has a double objective: 1. demonstrating that our method
provides key insights increasing the initial knowledge about players’ payoffs and
behavioral policies; 2. proving that modeling a problem as a SSRG is outperform-
ing whenever we do not perfectly know the opponent we face, having a degree
of uncertainty over such agent. In the latter evaluation, we apply our method to
a practical case study, namely the behavioral analysis of real Android malware.
In this context our aim is to investigate whether our methods can provide more
information on the malware samples that we are analyzing.

4.1 Synthetic Games

We start our evaluation creating a set of 2-player normal form game instances,
each one representing the ground truth payoff matrices for a SSRG. For each
game, we are interested in constructing two distinct couples of reward matrices,
i.e. two sub-games: the first couple represents the payoff matrices for leader and
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follower whenever the master holds the leader role, while the second applies when
the master is the follower6. We allow to have asymmetric couples, i.e. the leader
matrices in the two sub-games can differ, as well as the follower ones. As it is
common in the relevant literature, we assume that the payoffs remain constant
for leader and follower in every game iteration.

In order to generate such games, we make use of the GAMUT tool [14].
We build 100 SSRG instances as random games having payoffs sampled in the
interval [0, 100]. The action space assigned to each player is composed by 4 pure
strategies. The mixed strategies issued by the leader, be it the master or the
other agent, are subject to a 0.01 discretization to limit the cardinality of the
possible mixed policies. Moreover, we set the length of each SSRG to 20 as, based
on our empirical tests, going beyond it results do not change.

Once the games are generated, we compare the performance of SAFE with
the results gained with: a) SAFE adopting a fixed uniform switch-role probability
distribution; b) SAFE where the master is always the leader; c) SAFE where
the master is always the follower. Points b) and c) are just SSRG issuing a
constant role assignment. In every setting described, our agent relies on the same
implementation of the MCTS to devise the players’ strategy. Figure 3 shows the
main results obtained running the described approaches on a SSRG instance,
while in Fig. 4 we track how the master weights leader and follower roles, thus
sub-games, during the game rounds using our RSP.

Fig. 3. Average of the expected rewards obtained across the rounds of a single instance
SSRG considering 4 RSP implementations (L and F indicate the role chosen by the
master)

The instance we consider is interesting because leader and follower roles have
similar payoff matrices. The leader sub-game presents a mean payoff equals to
33, a slightly higher value than the follower sub-game mean reward, set to 29.
Both master payoff matrices are characterized by a high standard deviation,

6 We refer to them respectively as leader and follower sub-games.
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Fig. 4. The heat map representing how RSP changes the probability distribution of
role assignment as the SSRG referred by Fig. 3 progresses

since they store sparse utility values (respectively 27.96 and 27.07). Thus the
first sub-game results more profitable than the second for the master. In the
plot of Fig. 3 the key point is that, after an initial confused phase due to the
high estimation error on rewards, our RSP performs better than the ones using
a fixed uniform switch probability distribution and the “only follower” policy.
In particular, the comparison with the uniform distribution case underlines that
a trivial RSP implementation brings no benefits. In this experiment, the SAFE
master tends to exchange roles whenever it detects a not significant improvement
in the reward obtained in consecutive rounds: this policy is needed by the master
in the first steps of the SSRG to evaluate the responses achieved with different
roles and action profiles7. For this reason we obtain an average reward that is
lower than the one for the “only leader” strategy: since our RSP is a stochastic
procedure, the master is induced to play as a follower for a given fraction of
steps even if it is less rewarding (on average), reducing the overall mean expected
reward. Nevertheless it allows to achieve a reward result that progressively gets
closer to the average payoffs of the leader sub-game, since on the long term
our agent significantly reduces the initial uncertainty by incrementally acquiring
information and hence plays choosing the most advantageous sub-game, i.e. role.

This instance is a good representation of the general behaviors observed in
all the synthetic game scenario: SAFE achieves a higher reward with respect to
the constant selection of the less profitable role (in Fig. 3 the follower role) and
to the use of a random uniform RSP. Clearly SAFE achieves a lower reward
with respect to the RSP that always selects the most profitable role, as this
information is not available to our algorithm8.

Such result demonstrates two key insights. Whenever the ground truth pay-
offs remain fixed during all rounds of the SSRG, for both leader and follower
sub-games, it is optimal for the master to choose in each round the most advanta-
geous role assignment. In other terms, once the master identifies which sub-game
is preferable (i.e. most rewarding), it shall opt constantly for the associated role
allocation, avoiding any switch: such policy allows the agent to maximize its goal
and therefore the role switch would deteriorate the overall reward (converging
into playing the optimal role). However, there are many application cases in
which SAFE outperforms the fixed role allocation to the players. Indeed, as a

7 Estimating at the same time the behavioral patterns issued by the adversary.
8 We decided to focus on this particular one because its payoff structure emphasizes

the capability of SAFE to learn the rewards and drive the master effectively in spite
of the high similarity of the leader and the follower sub-games.
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second observation, if we assume that the master does not have a priori informa-
tion (or a limited amount) about the rewards set for the players, the role switch
provided by a SSRG induces a procedure to incrementally acquire knowledge
about the actual game payoffs specific for both leader and follower. As the char-
acterization of game payoffs and opponent behavioral model refines, the RSP
provides role probability distributions that are gradually more stable, indicating
that the master has learned a reliable ranking of the sub-game (i.e. role assign-
ment) that is aligned with the real one. Such property allows to identify the
most beneficial role assignment for the master after a proper amount of steps
and, therefore, to play from that point onward with such chosen leader-follower
allocation. Such feature is clearly observable in Fig. 4 where in the final stages
of the game the heat map of the master role probability distribution becomes
stable, showing a higher evaluation for the leader role. Another interesting point
of Fig. 4 is that the probability difference between the two roles reflects roughly
the gap between the mean utilities of the two sub-games. Indeed, as mentioned
earlier, in this case the leader sub-game returns only slightly higher payoffs to
the master w.r.t. the follower role: this small difference is highlighted in the last
couple of tiles in the heat map, where we have the distribution (0.55, 0.45).

Moreover the SAFE approach brings another key advantage: if we admit a
scenario where the payoff matrices can vary across the rounds, lowering payoffs
in profitable sub-games and increasing in less rewarding sub-games, then role
switch provided by SSRG definition is a fundamental operation to maximize the
reward of the master.

Fig. 5. For each RSP method, the box plot reports the average of the averages expected
rewards obtained from the 100 SSRG instances faced

In order to support such consideration, we compute the average of the mean
reward produced by each SSRG instance we created. Such results are represented
in Fig. 5, where we can see that SAFE outperforms all the other methods. Indeed,
the generated SSRGs are roughly divided into instances favoring the leader role
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and others fostering the follower: SAFE shows the highest average and a limited
standard deviation due to the capability to recognize sub-games issuing poten-
tial good rewards and hence adapting to the most beneficial role assignment;
conversely, the other naive heuristics blindly select role allocations, without rea-
soning on reward signals previously received. Moreover, the long fliers of “only
leader” and “only follower” cases shows that payoffs varies significantly across
the SSRGs population. In other words, SAFE allows to effectively identify after
n repetitions of the game, both the role allocation and the action profile which
induce the best result for the master agent and hence to play such configuration.
Conversely, the other methods perform worse on average because the agent does
not adapt its behavioral policy to the information gained in each interaction,
even though such information may be used to infer that it would be more prof-
itable to change role. The mean value of SAFE shown in Fig. 5 is statistically
different for a T-test with 5% significance level.

4.2 Malware Analysis

Malware analysis is a crucial element to deploy effective countermeasures to
ensure safe operations of cyber-systems. A key point of such analysis consists
in determining the malware family, i.e. verify if the considered program shares
common behavioral patterns with already studied malware.

However, advanced malware use two main methods to hinder the analysis:
environment querying (a.k.a. anti-detection or anti-emulation) and active trig-
gering. The former refers to the ability of the malicious software to infer if it is
running in a simulated environment, e.g. an emulator, or in a real one; in the
first case, the malware stops its execution or behaves as a harmless application
to mislead the analysis. The latter technique consists in the malware require-
ment to be stimulated to perform its payload. For example, an SMS spyware
needs the user to send or receive messages to perform data stealing actions. In
order to thwart such mechanisms, proposed solutions suggest respectively to set
a deceitful environment configuration [16] and executing user actions to induce
the malware to unveil its dynamics [17]. The techniques combining triggering
and deception are studied in a branch of malware analysis called AMA. Our aim
is to prove that SAFE is a suitable method to address an AMA.

We model both in a single SSRG where our analyzer agent (master) acts
as leader when it submits a deceptive configuration of the environment, while
it becomes a follower when performing a triggering action. In fact, as a leader
the analyzer must commit a deceitful configuration of the simulated environ-
ment before the malware starts its execution in order to counter the malicious
query checks returning to the malware a fake result9. If the analyzer succeeds
in its deception attempt, the malware is induced to issue an informative execu-
tion trace as response. On the other hand, triggering the malware is a follower
behavior for the analyzer, since usually the malware executes first a sequence of

9 If the analyzer makes this step later, the malware would perceive to be running in a
simulated environment and hence stop.
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setup operations (e.g. the initialization of event listeners) which are not neces-
sarily exhaustive for the analysis but can guide the analyzer in choosing which
trigger is most suitable to stimulate a significant malicious reaction. After the
observation of such actions, the analyzer executes a user action as pure strat-
egy. Deception and triggering can be considered sub-games composing the same
SSRG.

The goal of our experiment with malware samples is to empirically prove
that the application of SAFE brings a notable improvement in the amount of
recorded malicious behaviors w.r.t. other analysis which only focus either on
triggering or deception. We adapt the tool proposed in [17] with the design prin-
ciples of SAFE and we compare its results with SSRGs fixing the analyzer action
set to either triggering or deceptive actions. The analyzer thus is provided with
the following triggers: send/receive SMS, make/receive call, add/delete contact,
enable/disable GPS position. The analyzer action space defined for the decep-
tion sub-game cannot be extensively reported due to the huge amount of space it
would require. However, we construct first a naive deceitful configuration as the
composition of the values returned by the Android emulator in response to the
most common routines employed by malware to query the system. In other terms,
such configuration represents the environment not subject to any deception mea-
sure. The other 3 configurations are obtained modifying such basic configuration
congruently to the anti-analysis method documented for the malicious families
we took into account in our experiment.

Relying on the dataset built in [19], we select 46 malware samples belonging
to 5 different families containing spyware and ransomware that integrate both
the mentioned anti-analysis techniques. The action set used by the master for
the triggering sub-game is composed by 8 different actions that mimic a standard
user’s behavior. In parallel we define the action set relative to the deception sub-
game with 4 possible configurations for the emulator encapsulating the malware:
when the master (leader) commits to a mixed strategy over such action set, the
analyzer provides to make visible each given configuration for a fraction of time
proportional to the associated probability value. At the end of the SSRG, the
APIs composing the collected malicious execution traces are abstracted as done
in [12] to group similar API calls into the same abstract API and the observed
execution trace is handled by the analyzer to update the behavioral model of the
malware. Similar to the work of [17], the utility function adopted to determine
the analyzer payoffs for such SSRGs corresponds to the entropy of the malicious
execution traces. It is worth to highlight that the entropy represents only an
estimation measure of the real payoff: we used it since there is not any clear and
accepted reward function ranking the malware-analyzer interactions.

Table 1 reports the results obtained by performing the described analysis
modeled as SSRG composed of 20 rounds. The table reports for each mali-
cious family the number of different execution traces extracted using the dif-
ferent methods. In particular, for every malware family we compare the behav-
iors recorded by “only triggering” and “only deceive” with the ones obtained
with SAFE using a substring matching algorithm: if a trace belonging to the
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Table 1. Discovered malicious behaviors comparison

Family SAFE Only triggering Only deception

BankBot 74 19 – 0.26 46 – 0.62

Svpeng 64 52 – 0.81 25 – 0.39

Gumen 120 99 – 0.83 79 – 0.66

Koler 4 2 – 0.5 2 – 0.5

Bankun 26 14 – 0.54 15 – 0.60

Overall 288 186 – 0.64 167 – 0.58

outcome set of the triggering/deception sub-game is contained as substring in
any of SAFE set, then we infer that such behavior has been detected by SAFE
too. Considering such rule, we notice that every execution trace generated with
both “only triggering” and “only deceive” is included in the trace set associ-
ated to SAFE. Nevertheless, SAFE retrieved execution traces characterized by
a greater amount of detail about malicious patterns. For a clear comparison,
we provide in table 1 the absolute number of different malware execution traces
extracted with each method and, for triggering and deception, we add their rel-
ative code coverage w.r.t. SAFE, i.e. the portion of malware behaviors obtained
with SAFE that is also recorded by “only triggering” and “only deception”. The
coverage values reported confirm that the problem modeling and the solution
approach we propose significantly improves the amount of information achieved.

From a high level perspective, our framework proves to be effective due to
the inherent reward function underlying the SSRG. The payoff function depends
from the past interactions occurred between the agents: in an analysis context,
once we received a specific information, we are not interested in getting the same
again; rather, we aim to capture novel undisclosed behaviors. This key point
implicitly suggests that the reward function varies as the SSRG progresses show-
ing that a proper switching of analyzer roles is crucial to achieve high rewards.

5 Conclusions

We propose the Stackelberg Switch-Role Game, a novel Stackelberg formalism
where agents involved in the game can switch between leader-follower roles. In
order to study the features of SSRG, we developed a solution approach tested
on synthetic game instances and on Android malware. Our method is based on
a MCTS, it learns the agents payoffs online and it employs a heuristic routine to
manage the role switching process. Our empirical evaluation verifies the validity
of the approach showing benefits in the achieved reward. In particular in the
case of malware analysis, our method induces a greater coverage of the detected
malicious behaviors w.r.t. other state-of-the-art analysis techniques, unveiling
execution patterns that would have remained hidden otherwise.

Many future lines of research can arise from our work. Since we suppose
the a priori determination of the master agent, a first extension may consider
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relaxations of this constraint. In each stage, we could study SSRG where there is
not a unique master affecting the role switch or in which there is a competition
among the players to decide which one will be the master.
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Abstract. In recent years, notable research has been done in the area
of communication in multi-agent systems. When agents have a partial
view of the environment, communication becomes essential for collabo-
ration. We propose a Deep Q-Learning based multi-agent communica-
tion approach: Mediated Differentiable Inter-Agent Learning (M-DIAL),
where messages produced by individual agents are sent to a mediator that
encodes all the messages into a global embedding. The mediator essen-
tially summarises the crux of the messages it receives into a single global
message that is then broadcasted to all the participating agents. The
proposed technique allows the agents to receive only essential abstracted
information and also reduces the overall bandwidth required for commu-
nication. We analyze and evaluate the performance of our approach over
several collaborative multi-agent environments.

Keywords: Multi-agent systems · Multi-agent communication · Deep
Q-learning · Deep reinforcement learning

1 Introduction

Proficient communication between individual agents be it natural, human or
artificial is paramount for success in a collaborative environment [2,7,20]. It is
prevalent among most intelligent species and the sophistication of the language
used is often indicative of the overall competence at any given collaborative
task. Communicating meaningful information and the inferences derived, helps
the agents to coordinate and cooperate towards achieving a common goal. Thus,
learning to communicate becomes inevitable in conditions where agents only
have access to a partial view of the environment but need to work in unison.

Deep Reinforcement Learning (DRL) has seen considerable success in com-
plex single-agent games such as chess, shogi and go [15] and has immense scope in
real-life applications like robotics [9] and self-driving cars [22]. However, owing
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to factors such as ineffective credit assignment, partial observability, and the
non-stationarity of the environment, they tend to underperform in multi-agent
scenarios [13]. The introduction of communication channels between agents alle-
viates the problem of partial observability and non-stationarity as the agents can
communicate observations and intentions which could be crucial information for
another agent.

Initial attempts at communication in Multi-Agent Systems (MAS) used pre-
determined discrete symbols to give the agents a language structure to com-
municate upon. DIAL [3] and CommNet [17] suggested the use of differentiable
message channels which allows these networks to learn communication proto-
cols by passing gradients through backpropagation to optimize a downstream
task. We hypothesize that in order to scale up well the agents must receive an
intelligent summary rather than a myriad of individual messages.

To this end, we propose a cooperative Multi-Agent Deep Reinforcement
Learning (MADRL) system - Mediated Differentiable Inter-Agent Learning (M-
DIAL). We introduce a mediator network, which receives messages from each
agent on every timestep and summarizes them into a global embedding. This
embedding is then forwarded to every agent in the next timestep as a global
message. Each agent then uses this global message and observations from the
environment to take the next action. The mediator network renders control over
the global message dimensions, such that a lesser bandwidth can be used despite
an increase in the number of agents. The reward structures are designed to incen-
tivize cooperative behavior amongst agents.

The rest of the paper is organised as follows : Sect. 2 discusses the related liter-
ature and the motivation for our work. Section 3 gives the necessary background
of the Deep Q-learning algorithm. Section 4 lays out our proposed approach
and the M-DIAL architecture. Section 5 presents the experimental findings and
finally, Sect. 6 presents the conclusion and future work.

2 Related Work

MAS have a rich literature with their own set of unique hurdles [5,11,12]. The
straightforward approach is to use independent Q-Learning agents [20] or its
variants like Deep Q-Learning [10] or Deep Recurrent Q-Learning [4], that treat
the other agents as a part of the environment. A drawback to this is the non-
stationarity of the environment, since each agent experiences changes in its policy
during training. This limits the use of experience replay, thereby not guarantee-
ing convergence. One of the methods to mitigate this problem is the introduction
of inter-agent communication methods.

Differentiable Inter-Agent Learning (DIAL) [3] was the first to introduce a
differentiable message channel between deep Q-agents to enable learnable com-
munication. The agents are allowed to send messages through these channels
to facilitate a downstream task in the next timestep. During backpropagation
gradients are pushed through these channels, thus making the entire network
end-to-end trainable.
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CommNet [17] proposed the cooperation of agents through an aggregated
continuous vector communication channel that carries the mean transmission
from each other agents to the next timestep. The model also allowed for real
time change in the type and number of agents. Vertex Attention Interaction
Networks (VAIN) [6] extended this with an attention mechanism that determines
the weights with which an agent gets a share in the final message.

However, CommNet does not scale well in cases when the state-action space
of the games increases exponentially with an increase in the number of agents.
BiCNet [14] addressed this problem by introducing Bidirectional Coordinated
Network (BicNet), it is modeled using bi-directional RNN’s to allow parameter
sharing amongst agents.

Das et. al. [1] proposed an actor-critic based targeted multi-agent communi-
cation approach wherein the agents decide on what message to send as well as
whom to send it. Each agent sends the communication message to every other
agent along with an additional signature which encodes agent specific informa-
tion. The receiving agents then calculate the relevance of this message using this
signature.

3 Background: DQN

Deep Q-networks are employed to approximate the maximum cumulative reward
function, i.e. the maximum total reward that can be received from the current
state, doing a particular action, till the end of the episode (or forever into the
future for non-terminating tasks), given the current state s and the action a
selected for the current step. Using an ε-greedy approach, we can sample random
actions with probability ε and select the action that yields the maximum reward,
as per the current Q function with probability 1−ε. We aim to carry out updates
using the following equation:

Q(s, a) = E[r|s, a] + γ
∑

s′
P (s′|s, a) arg max

a′
Q(s′, a′) (1)

which is approximated by sampling as

Q(s, a) = r + γ arg max
a′

Q(s′, a′) (2)

where γ is the discount factor, typically chosen to be in the range [0, 1]. This
factor exponentially reduces the weight given to future rewards and is useful in
mathematically establishing that the Q function will converge, given that the
reward sequence is bounded [18]. Using a target network, we compute the right
hand side and improve the Q outputs of the main network by reducing the L2

distance between the target yi
t and proposed Q outputs.

4 Proposed Approach

In this section, we discuss our approach for achieving communication in MAS.
Neural networks are effective feature extractors and are often used to compress
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information [21]. To this end, we introduce a mediating deep network that intakes
sparse, redundant messages from all the agents and amalgamates them into a
compressed encoding.

4.1 M-DIAL Architecture

We present the architecture of the proposed setup as in Fig. 1. For every time
step t, each agent Ai, parameterised by θ (shared between all agents), is a deep
Q-network. Every agent Ai is given a partial observation oi

t of the underlying
environment at time t and the global message mg

t−1 of the previous temporal
layer as the input. Each agent generates the Q-values and a message that is
forwarded to the mediator. The action ai

t for timestep t is selected in an ε-greedy
manner based on the generated Q-value.

Fig. 1. The proposed architecture shows for every timestep t, each agent Ai, with
parameters θ and mediator with parameters φ. The messages mi

t produced by the
individual agents are fed into the mediator, whose output, mg

t is given to each agent
for the next timestep.

The mediator network M parameterized by φ is a multi-layer neural network,
which receives messages of dimensions |ma| from each of the participating agents.
The messages are concatenated and fed into the mediator, which produces a
global encoding of dimensions |mg| that is forwarded to each of the agents in the
next timestep. The mediator doesn’t have any specific loss functions associated
with itself, but is part of the end-to-end training setup and receives gradient
updates from the message channels as described in Sect. 4.2.

The advantage here is that instead of each agent relaying a number of mes-
sages to communicate with each other, the global message is produced as an
optimal encoding of relevant information, transferring processing load to an
external entity. Further, since the mediator concentrates the knowledge gath-
ered by distributed agents into one encoding, it is easier to interpret and explain
the behaviour of the multi-agent system (Fig. 2).
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Algorithm 1: Mediated Differentiable Inter-Agent Learning
Result: Trained parameters θ and φ for the Mediator and Agent Networks
Initialize θ, φ, target parameters θ−, φ−;
for each episode e do

Initialize initial messages and network states mg
0, m

g−
0 , hi

0, h
i−
0 ← 0;

for each agent i do

mi−
1 , hi−

1 , Qi−
1 ← A(mg−

0 , hi−
0 , oi−1 ; φ−);

end

mg−
1 ← M(..., mi−

1 , ...; θ−) //... represents iteration over agents [i];
for t ← 1 to T do

for each agent i do
mi

t, hi
t, Qi

t ← A(mg
t−1, hi

t−1, oit; θ);

ai
t ← ε-greedy-action-select(Qi

t);

end

mg
t ← M(..., mi

t, ...; φ);

(..., rit, ...), (..., o
i
t, ...) ← env.move(...,ai

t,...);
if e is done then

(..., yi
t, ...) ← (..., rit, ...);

else
for each agent i do

mi−
t+1, hi−

t+1, Qi−
t+1 ← A(mg−

t , hi−
t , oi−t+1; θ

−);

yi
t ← rit + γ maxa Qi−

t+1[a];

end

mg−
t+1 ← M(..., mi−

t+1, ...; φ
−);

end

end
∇θ, ∇φ ← 0;
for t ← T downto 1 do

Compute Gradients and find ∇θi
t, ∇φi

t for agent i, using equations (3)
to (10);
for each agent i do

∇θ ← ∇θ + ∇θi
t;

∇φ ← ∇φ + ∇φi
t;

end

end
(θ, φ) ← (θ, φ) + η(∇θ, ∇φ);
Every τ timesteps, update (θ−, φ−) ← (θ, φ);

end

4.2 Training

Gradients pass through the message channels as well, hence we need to sum
the gradients through those channels. The following equations are used to find
out gradients while traversing back in time. We have given equations pertaining
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Fig. 2. A single agent Ai’s interaction with the environment. It is given an observation
oit and the global message from the previous step mi

t−1. The Q values produced are
used to select an action signal that is passed to the environment and a message vector
mi

t is sent to the mediator.

to one-dimensional agent and global messages for simplicity, and equations for
higher dimensional messages can be obtained simply by using transpose opera-
tions and matrix multiplications.

Updates to the Agent’s Network Parameters θ: The updates to θ, denoted
by ∇θ can be computed as the gradient of the squared distance between the
target value yi

t and the current output over θ, as:

∇θ = 2
∑

i

T∑

t=1

(Qi
t − yi

t)(∇θt
i) (3)

where ∇θt
i is the gradient term for the agent i at timestep t. We sum over the

gradients through the internal states hi
t and the messages mi

t, each of which can
be computed using the product rule:

∇θt
i =

∑

i′

∑

t′ <t

∂Qi
t[a

i
t]

∂hi′

t′

∂hi
′

t′

∂θ
+

∂Qi
t[a

i
t]

∂mi′

t′

∂mi
′

t′

∂θ
(4)

∂Qi
t[a

i
t]

∂hi
′

t
′

and ∂Qi
t[a

i
t]

∂mi
′

t
′

can be computed using the following equations, moving

back in time. During backpropagation, we can use the gradients computed for
timesteps t+1, for computing gradients for timestep t. For the internal state hi

t,
this can be done as:

∂Qi
t[a

i
t]

∂hi′

t′
=

∂Qi
t[a

i
t]

∂hi′

t′+1

∂hi
′

t′+1

∂hi′

t′
+

∂Qi
t[a

i
t]

∂mi′

t′+1

∂mi
′

t′+1

∂hi′

t′
(5)

For the message channel mi
t, this can be computed as:

∂Qi
t[a

i
t]

∂mi′

t′
=

∂Qi
t[a

i
t]

∂mg

t′

∂mg

t′

∂mi′

t′
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Updates to the Mediator’s Network Parameters φ: Similarly updates to
φ, denoted by ∇φ can be computed as:

∇φ = 2
∑

i

T∑

t=1
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i) (8)

where ∇φi
t is the gradient term for agent i at timestep t
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can be computed as we did for θ, utilizing the gradients computed for

timestep t + 1:
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5 Experimental Results

We evaluate our model on multi-agent tasks, hidden reward in Sect. 5.1 and a
modified pong environment described in Sect. 5.2. Each agent is fully cooperative,
receives global rewards, and has a partial view of the environment to trigger
communication among the agents. Comparisons are made on varying message
dimensions and an analysis of the content of the messages is done for the pong
environment.

We use the following parameters in all our experiments unless stated oth-
erwise. The optimizer used is Adam [8] with a learning rate η = 0.0005 and
discount factor gamma γ = 0.95. The network trains using an ε-greedy app-
roach with epsilon = 0.05. Each agent Ai is modeled using a DRQN with Gated
Recurrent Networks (GRU) and tanh activations. But this may be modified to
a stateless DQN when the environment calls for it. Here, mathematically the
hidden state hi

t can be set to zero and the remaining terms in the equations will
remain the same (Fig. 3).

5.1 Hidden Reward

The hidden reward [16] is a partially observable multi-agent environment where
the task is to find the location of the reward zone within a stipulated time limit.
This limit is decided such that a single agent cannot randomly explore the entire
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(a) Hidden Reward: The agents (black)
need to explore the map to find the reward
area (red), they then need to broadcast
messages to help the other agents find it
as well.

(b) Pong Game: The agents (paddles) can
only see the ball when it is in their half
of the court. They must communicate to
collaborate and keep the ball in play for
the longest duration.

Fig. 3. Environments used to test our approach.

map. At every time-step, each agent receives the following information from the
environment - a binary value indicating whether or not they have found the
reward and coordinates for all the agents. Each agent can either go up, down,
left, right, or stay to explore its surroundings and a reward is given only to those
agents who have successfully found the reward zone.

We use four stateless agents to evaluate this task. M-DIAL agents are seen
to coordinate among themselves to search in different areas of the overall space
to find the reward zone. Once it is found, the agents tend to quickly converge to
the zone indicating that the communication mechanism is working effectively. On
the other hand, it is seen that in the case of no communication, each agent tries
to individually search its surroundings to find the reward zone. No satisfactory
policy is found as the agents cannot communicate vital information such as the
location of the found reward.

Figure 4 shows the progression of the cumulative rewards received by the
team during training epochs, where each epoch consists of 100 training episodes.
The reward for our best model converges at 92 which is significantly higher
than the convergence value of 30 when there is no communication. Figure 4a
shows a comparison between varying sizes of agent message dimensions while
keeping a constant size for the global message. A performance increase is seen
with an increase in the dimensions of the agent message, while the input to the
agents remains constant in size. This maintains the computational cost at the
input layer of the agent and offloads it to the mediator, while still having the
computational cost increase linearly with the agent message dimensions at the
output layer of the agent. Figure 4b shows a comparison between varying global
message dimensions. A similar convergence value across dimensions indicates
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(a) Comparison of varying the size of the
Agent message channels.

(b) Comparison of varying the size of the
Global message channels.

Fig. 4. Results on the Hidden Rewards Environment, where the curves are a plot
between the cumulative rewards received by the agents and the epochs. G dims rep-
resents the size of the Global message channel and A dims represents the size of the
individual Agent message channel.

that the mediator is effective at performing compression while retaining essential
information.

5.2 Pong

We also demonstrate our approach on our version of the Pong game which is
explicitly tweaked to provoke communication to collaborate. The goal of the
game is to maximize the total number of paddle hits and global rewards [19] are
awarded to promote collaboration. Each paddle is controlled by an independent
agent with partial visibility of their half of the screen along the y axis. The
velocity of the ball increases exponentially at every frame at the rate of ν =
1.0012. The increase in velocity makes it infeasible for the agents to merely
react when the ball becomes visible to them, this drives the agents to develop
strategic communication protocols to overcome the visibility handicap.

To avoid trivial solutions to the game such as playing the game adjacent to
a wall so as to minimize the overall distance that needs to be traveled [19], we
introduce a variable rebound that varies depending on the point of impact on
the paddle with high deviation.

Figure 5 shows the progression of the average number of paddle hits per
episode during training. In both cases, our model outperforms the model without
communication, with a slight increase seen with an increase in the broadcast
dimensions. The paddles were seen to be moving in the direction of the ball even
when it was outside their visibility zone, indicating the messages were effective.
Most of the missed balls were due to the fact that beyond a point (approximately
12 hits) the velocity of the ball increases to the extent that it would be impossible
for the paddles to keep up even at with an optimal strategy.
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(a) Individual agents modelled as DRQN
with varying message dimensions

(b) Individual agents modelled as DQN
with varying message dimensions

Fig. 5. Results on the Pong Environment, where the curves are a plot between the aver-
age paddle hits and the test episodes. G dims represents the size of the Global message
channel and A dims represents the size of the individual Agent message channel.

(a) Analysis of the agent messagema. The
message contains information about both
coordinates of the ball.

(b) Analysis of the global message mg.
The message only contains information
about x coordinates.

Fig. 6. Analysis of the contents of agent messages ma and global message mg in the
Pong environment, where the curves are a plot between the fraction of the screen by
which the coordinate prediction is off and the epochs. del x and del y represent the
difference between the predicted and actual value of the ball for the x and y axes
respectively.

We further carry out an analysis of the content of the agent and global mes-
sages. We train a shallow neural network that takes the messages and predicts
an aspect of the underlying environment: the position of the ball. Figure 6 show
training epochs of this network while plotting the differences between the pre-
dicted coordinates and the ground truth coordinates of the ball as a fraction
of the screen size. In Fig. 6a, while predicting the location of the ball using the
agent messages, the difference of the actual and predicted values of the x and
y coordinates of the ball decreases as our model is trained and converges at a
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0.1 fraction of the screen size. This shows that the agent messages contain infor-
mation about both coordinates of the ball. An interesting counter observation
is seen in Fig. 6b for the global message where the x-coordinate is predicted
correctly but the information for the y-coordinate is not being communicated
and the network always predicts the mean value. This implies that the media-
tor explicitly excludes the y-coordinate information. This is logically explainable
since the agents (paddles) primarily depend on the x-coordinate of the ball to
decide their next actions.

6 Conclusion

In this paper, we have introduced a new multi-agent communication learning
architecture that uses a mediator network to summarise the crux of the input
messages of the agents and produces a global message which is then passed on
to each agent. Our approach uses less overall bandwidth since there is no direct
agent to agent communication and all the communication happens through the
mediator. Our results show that M-DIAL’s protocol of communication performs
significantly better than non communicating agents and we analyze the results
by varying input message dimensions and output message dimensions. Further,
we train a shallow neural network to analyze the content of the agent and global
message and show how the messages accurately predict the actual coordinates
of the ball in Pong.

Future work would entail the use of an attention mechanism to customize
the global message of each agent. We also believe that our approach is a step
towards distributed neural architectural schemes for reinforcement learning.
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Abstract. Deep learning algorithms represent the state of the art for
many problems in robotics and AI. However, they require a large labeled
dataset, are computationally expensive, and the learned models are dif-
ficult to understand. Our architecture draws inspiration from research in
cognitive systems to address these limitations. In the context of answer-
ing explanatory questions about scenes and an underlying classification
task, our architecture uses non-monotonic logical reasoning with incom-
plete commonsense domain knowledge, and the features extracted from
input images, to answer the input queries. Features from images not
processed by such reasoning are mapped to the desired answers using
a learned deep network model. In addition, previously unknown state
constraints of the domain are learned incrementally and used for subse-
quent reasoning. Experimental results show that in comparison with an
“end to end” deep architecture, our architecture significantly improves
accuracy and efficiency of decision making.

1 Introduction

Deep networks represent the state of the art for many problems in robotics and
AI. However, training these data-driven models requires many labeled training
examples and considerable computational resources, which are not available in
many domains. Also, it is difficult to interpret the behavior of the learned models,
whereas humans may want to understand the decisions made by an automated
reasoning or learning system. This “explainability” also helps designers improve
the underlying algorithms1.

In this paper, we consider Visual Question Answering (VQA) as a motivat-
ing example of a complex task requiring explainable reasoning and learning.

1 A journal article based on this work was published in the Frontiers in AI and
Robotics [15].
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Given an image of a scene, the objective is to answer explanatory questions,
e.g., about objects and their relationships, or the outcomes of executing actions.
Deep networks represent the state of the art for VQA, but exhibit the limita-
tions described above. To address these limitations, we draw inspiration from
research in cognitive systems, which indicates that explainable reasoning and
learning can be achieved by jointly reasoning with incomplete domain knowl-
edge and learning from experience. For VQA, our architecture uses Convolu-
tional Neural Networks (CNNs) to extract concise visual features from image(s)
of any given scene. It first attempts to answer the questions about the scene and
an underlying classification problem using non-monotonic logical reasoning with
the extracted features and incomplete commonsense domain knowledge. Feature
vectors not classified by such reasoning train a decision tree classifier that is then
used to answer questions about the classification. The decision tree’s output and
the feature vectors then train a Recurrent Neural Network (RNN) to answer the
questions. Furthermore, feature vectors that are misclassified (or not classified)
are used to learn constraints for subsequent reasoning.

For evaluation, we consider VQA while: (i) estimating the stability of con-
figurations of simulated blocks; and (ii) recognizing traffic signs in a benchmark
image dataset. We also consider a simulated robot computing and executing
plans. We do not consider benchmark datasets and algorithms for VQA that
focus on generalizing across domains, and do not support our architecture’s
capabilities. Our focus is very different; we want to explore the interplay between
commonsense reasoning and learning for explainable, reliable, and efficient scene
understanding in any given domain, especially when a large labeled dataset is
not available. Experimental results show a significant improvement in accuracy,
efficiency, and the ability to compute correct plans, in comparison with an archi-
tecture based only on deep networks. For a more detailed description of this work
and additional experimental results, please see [15].

2 Related Work

Although deep networks represent state of the art for VQA [9] and other pat-
tern recognition tasks, they are computationally expensive, require large, labeled
datasets, and make it difficult to understand the internal representations, trans-
fer knowledge, or identify bias. Methods have been developed to understand the
operation of deep networks, e.g., by computing the contribution of each neuron
in a CNN to the decision [12], or using captions to explain answers to ques-
tions [8]. Methods have also been developed to understand the predictions of
learning algorithms, e.g., by tracing predictions back to data [6].

The training data requirements (or data bias) of a deep network can be
reduced by focusing on data relevant to the task(s) at hand. Examples for VQA
include a stacked attention network that prioritizes relevant features [19], or a
method that reduces data bias by associating questions with images that require
different answers [5]. Learning for VQA has also been made more efficient by
answering common questions using domain knowledge [18], and using physics
engines that simulate domain knowledge [17].
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Fig. 1. Overview of our architecture’s components.

Cognitive systems research indicates that reliable, efficient, and explainable
reasoning and learning can be achieved by jointly reasoning with domain knowl-
edge and learning from experience. Methods that refine first-order logic represen-
tations of action operators do not support commonsense reasoning or merging of
new, unreliable information [4]. Non-monotonic logics such as Answer Set Pro-
log (ASP) address these limitations in different applications [2]. ASP has been
combined with inductive learning to acquire domain knowledge [7], and com-
bined with probabilistic representations for reasoning [1]. Approaches based on
classical first-order logic are not expressive enough, e.g., modeling uncertainty
by attaching probabilities to logic statements is not always meaningful. Logic
programming methods, by themselves, do not support all desired capabilities
such as efficient incremental learning of knowledge and real-time reasoning with
large probabilistic components. Frameworks have ben developed to address these
problems using principles of step-wise refinement, e.g., reasoning with tightly-
coupled transition diagrams at different resolutions [13], or combining common-
sense reasoning with active learning and relational reinforcement learning to
acquire knowledge [14].

Using VQA as a motivating example, and building on work in cognitive
systems and our prior work [10], our architecture combines the complemen-
tary strengths of reasoning with commonsense knowledge, inductive learning of
knowledge, and deep learning. For more details, please see [15].

3 Architecture

Figure 1 is an overview of our VQA architecture, which embeds commonsense
reasoning with incomplete knowledge, and inductive learning, in a deep network
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architecture. CNN-based feature extractors are trained to extract feature vectors
from images of scenes. For each feature vector, an attempt is first made to classify
it and explain the decision using non-monotonic logical reasoning. If this method
fails, a decision tree is trained to classify the feature vector and explain the
outcome. If logical reasoning is used for classification, it is also used to answer
explanatory questions about the scene. If a decision tree is used for classification,
an RNN is trained to map the decision tree output, image features, and the
query, to the answer. Furthermore, decision-tree induction with training data
and existing knowledge identifies previously unknown state constraints used for
subsequent reasoning. We hypothesize that this architecture will make learning
more time and sample efficient, and make decisions more interpretable. Due to
space limitations, we briefly describe the components below.

We use three domains for evaluation. The Structure Stability (SS) domain
(top left, Fig. 2) has 2500 images of structures of simulated blocks from a physics-
based simulator; the objective ois to classify structures as being stable or unsta-
ble, and to answer explanatory questions, e.g., “why is this structure unstable?”
and “what should be done to make this structure stable?”. The Traffic Sign
(TS) domain (bottom left, Fig. 2) uses the BelgiumTS benchmark dataset [16]
with ≈ 7000 real-world images of 62 traffic signs. The objective is to classify
the signs and answers questions such as “what is the sign’s message?” and “how
should the driver respond to this sign?”. The third domain (used for planning)
is introduced later.

Fig. 2. Illustrative domains: (top left) blocks in SS domain; (bottom left) traffic sign
in TS domain; (right) simulated scenario in the RA domain.
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3.1 Feature Extraction Using CNNs

Input images are mapped to concise features. The selection of features is based
on domain expertise, e.g., features of the SS domain include number of blocks in
structure, whether the structure is on a lean etc, and features of the TS domain
include primary and secondary colors and symbols, shape of the sign etc. For
each feature, a simple CNN was trained and additional layers added until training
accuracy converged. For more complex features, previously trained CNN models
can be fine-tuned. The code for this component is in our online repository [11].

3.2 Classification Using Non-monotonic Logical Reasoning
or Decision Trees

A class label is assigned to the extracted feature vector using one of two methods:
(i) non-monotonic logical reasoning; or (ii) a learned decision tree.

ASP Reasoning with Commonsense Knowledge: ASP is a declarative
language based on stable model semantics. Each literal can be true, false or
unknown, and the agent reasoning with domain knowledge does not believe
anything that it is not forced to believe. ASP can represent recursive definitions,
defaults, causal relations, and language constructs difficult to express in classical
logic formalisms [3]. ASP supports default negation, epistemic disjunction, and
non-monotonic logical reasoning, i.e., it can revise previously held conclusions
based on new evidence, which aids in the recovery from errors made by reasoning
with incomplete knowledge.

A domain description in ASP has a system description D and a history
H. D has a sorted signature Σ and axioms. Σ has basic sorts, statics, i.e.,
domain attributes whose values do not change, fluents, i.e., domain attributes
whose values can change over time, and actions. Basic sorts include structure,
color, and size for SS domain; and main color, other color, main symbol
etc for TS domain; both domains have step for temporal reasoning. Statics
and fluents model domain attributes, e.g., num blocks(structure, num) and
stable(structure) in SS domain, and the relations primary symbol(sign,main
symbol) and primary color(sign,main color) in TS domain. Axioms of D gov-
ern dynamics; in our domains, they include:

stable(S) ← num blocks(S, 2),¬structure type(S, lean)
sign type(TS, no parking) ← primary color(TS, blue),

primary symbol(TS, blank), cross(TS), shape(TS, circle)

History H is usually a record of fluents observed to be true or false at a
particular time step, and the occurrence of an action at a particular time step.
This notion is expanded to include default statements that are true in all but
certain exceptional circumstances. e.g., “structures with two blocks of the same
size are usually stable”. For robotics examples, please see [13].
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Reasoning is achieved by translating the domain representation to a program
Π(D,H) in CR-Prolog, a variant of ASP. Each answer set of Π(D,H) represents
the beliefs of an agent associated with Π. Planning and diagnostics are reduced
to computing answer sets of ASP programs. ASP programs for our domains
are in our repository [11]. For the classification task in our domains, relevant
literals in the answer set provide the class label and an explanation for this
label. The accuracy of the decisions made depends on the accuracy and extent
of the knowledge encoded, but encoding comprehensive domain knowledge is
difficult. The decision of what (and how much) knowledge to encode is made by
the designer.

Decision Tree Classifier: If ASP-based inference cannot assign class labels,
the feature vector is mapped to a class label using a decision tree classifier learned
from labeled data. Non-leaf nodes of the tree split the feature vector examples
based on values of particular features. Each such node is also associated with
samples that satisfy the values of the features along the path from the root node,
with the leaf nodes representing class labels. We use a standard implementation
of a decision tree classifier based on the Gini measure of information gain. Note
that this tree’s search space is limited since it only considers samples that could
not be classified by ASP-based reasoning.

3.3 Answering Explanatory Questions

Existing software, controlled vocabulary, and templates of language models and
parts of speech, are used to transcribe questions to text and a relational repre-
sentation, and to generate answers as text that may be converted to speech.

If ASP-based reasoning is able to classify the image feature vector, it is also
used to answer questions about the underlying scene. To provide such answers,
we revise the signature and axioms of D, e.g., sorts such as query type and
answer type, relations to represent abstract attributes, and axioms to reason
with these attributes and construct answers. The answer set(s) of the corre-
sponding program Π(D,H) are computed and parsed to extract relevant literals
that form the answer. If the decision tree is used to classify the image feature
vector, an LSTM network-based RNN is trained to answer the questions based
on the feature vector, class label, and a vector representing the transcribed query.
To build the RNN, we start with one hidden layer and add more layers until the
accuracy converges. In our domains, the RNN had as many as 26 − 30 hidden
layers. The code used is in our repository [11].

3.4 Learning State Constraints

In many domains, the encoded knowledge is incomplete or changes over time,
resulting in incorrect or sub-optimal decisions, e.g., a traffic sign can be mis-
classified. Our architecture supports incremental learning of domain knowledge,
specifically using decision tree induction to learn state constraints. In the con-
text of VQA, we first identify training examples that are not classified or are
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misclassified based on existing knowledge, and built a decision tree. Next, we
identify paths in the tree supported by a sufficient number of examples; these
correspond to partial state descriptions and class labels that occur frequently.
These paths are used to create candidate constraints. We then generalize the can-
didate axioms to remove over-specifications, e.g., the first two axioms (below)
generalize to the third one:

¬stable(S) if num blocks(S, 3), base(S,wide), struc type(S, lean)
¬stable(S) if num blocks(S, 3), base(S, narrow), struc type(S, lean)
¬stable(S) if num blocks(S, 3), struc type(S, lean)

The candidate axioms are validated by adding them to the ASP program and
testing that they do not violate any of the relevant training examples.

3.5 Planning with Domain Knowledge

We also extend reasoning to planning in the Robot Assistant (RA) domain,
in which a simulated robot observes the domain, moves to deliver messages
to people, and answers explanatory questions. Figure 2(right) shows a simulated
scenario. In other work, we have coupled ASP-based reasoning with probabilistic
reasoning to account for the uncertainty in sensing and actuation [13]. Here, we
temporarily abstract away the probabilistic models of uncertainty, focus on the
interplay between reasoning and learning, and evaluate the effect of added noise.

To support planning in the RA domain, we construct a signature Σ with sorts
such as place, robot, and object; fluents such as msg status(mid, person, status)
and loc(agent, place); statics such as next to(place, place); and actions that
include relations such as move(robot, place) and deliver(robot,msg id, person).
For ease of explanation, we assume that the locations of people are determined
by external sensors, and the locations of objects are statics. Axioms of D include:

move(rob1, L) causes loc(rob1, L)
loc(P,L) if work place(P,L), not¬loc(P,L)
impossible move(rob1, L) if loc(rob1, L)

to encode causal laws, constraints, and executability conditions. After adding a
goal and helper axioms, answer sets of Π(D,H) include a plan of actions, and
missing constraints can be learned as described in Sect. 3.4.

4 Experimental Setup and Results

We experimentally evaluated four hypotheses:

– (H1) Our architecture outperforms an architecture based on just deep net-
works for classification and VQA with small training datasets;

– (H2) Our architecture provides intuitive answers to explanatory questions;
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– (H3) Our architecture uses learned constraints to improve the ability to
answer questions; and

– (H4) Our architecture supports planning and uses learned axioms to improve
plan quality.

Hypotheses H1, H2 and H3 are evaluated in the SS and TS domains in the
context of VQA; H4 is evaluated in the RA domain in the context of planning
and VQA. Accuracy was used as the primary performance measure. Accuracy
was measured by: (a) comparing the assigned labels with the ground truth labels
for classification; and (b) heuristically computing whether the answer mentions
all image attributes relevant to the question posed (for VQA); relevance was
established by a human expert, one of the authors of this paper. Plan quality
was measured as the ability to compute minimal and correct plans that achieves
the goal on execution. Two-thirds of the available data is used to train the
deep networks and other models, using the remaining data for testing. For each
image, we randomly chose from the suitable questions for training and testing,
and report the average of multiple such trials. Also, unless stated otherwise, all
claims are statistically significant.

Execution Example 1 [Question Answering, TS domain]. Consider a sce-
nario in the TS Domain with the following exchange for a particular input (test)
image.

• Classification question: “what is the sign’s message?”
• Architecture’s answer: “uneven surfaces ahead”.
• When asked to explain the reason for this answer, the architecture identifies

the features extracted: (i) triangle-shaped; (ii) main color is white and border
color is red; (iii) no background image; (iv) bumpy-road symbol.

• ASP-based inference with domain knowledge and literals of image features is
unable to classify the sign.

• Extracted features were processed using the trained decision tree, which only
used the sign’s colors to assign class label. Colors are normally insufficient
for classification, but the decision tree is only trained to classify signs that
cannot be classified using existing knowledge.

• The decision tree output, feature vector, and question, were processed by
trained RNN to provide the answer.

For other examples such as the image of SS domain in top left of Fig. 2, domain
knowledge is sufficient for classification and answering questions.

4.1 Experimental Results: VQA + Learn Axiom

To evaluate H1 and H2, we ran trials in which we varied the size of the training
dataset, and compared the accuracy of our architecture with a baseline CNN-
RNN architecture. Due to space constraints, we only summarize VQA accuracy
in Fig. 3. We observe that our architecture is better than the baseline architecture
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based on just deep networks for small training datasets. Classification accuracy
(not shown) increases with the size of the training set but VQA accuracy does
not because it also depends on the complexity of the questions. The accuracy
improvement is more pronounced in the more complex (TS) domain.

Next, we designed an ASP program for the SS domain with eight axioms
related to stability, randomly chose four to be removed, and examined the ability
to learn these axioms and use them for classification and VQA, with number
of labeled training examples ranging from 100 to 2000. Since the TS domain
has many more axioms and labeled examples, each experimental trial examines
the effect of removing a quarter of the axioms (randomly), with the number
of training examples varying from 100 to 4000. Results averaged over 30 such
trials are summarized in Fig. 4; the blue (“Original KB”) bars represent baseline
and the orange (“Learned KB”) bars show results with the learned axioms. Our
approach incrementally learns previously unknown axioms, and using axioms
improves VQA (and classification) accuracy significantly; these results support
H3.

4.2 Experimental Results: Learn Axiom + Plan

We evaluated the ability to learn axioms and use them for planning in the RA
domain. The robot had to use domain knowledge to plan, classify, and answer
questions. Results (100 trials) indicate a VQA accuracy of 82% with just 500
labeled images. We first examine an execution trace.

Execution Example 2 [Question Answering, RA Domain]. The robot has to
deliver messages from John to Sally, and return to John to answer questions.

• The robot was initially in John’s office. The computed plan had the robot
move through the library and the kitchen to Sally’s office, deliver the message
to Sally, and return to John’s office through the same route.

• During plan execution, the robot captures and processes images of the scenes.
After returning to John’s office, the robot discusses plans, observations, and
beliefs with the humans. Some statements in the exchange:
John’s question: “is Sally’s location cluttered?”
Robot’s answer: “Yes”.
When asked, robot provides an explanation for this decision: “Sally is in
her office. Objects observed are Sally’s chair, desk, and computer, and a cup,
chair, and plate. The room is cluttered because the cup, chair and plate are
not usually in that room.”

Next, we evaluated the ability to learn and use axioms. In this domain, there
is default knowledge about the initial locations of people (i.e., their office) and
objects, unless the defaults are negated by other knowledge or observations.
Including such knowledge allows the robot to efficiently compute minimal and
correct plans, e.g., when trying to deliver messages to a particular person. How-
ever, this default knowledge may not be known in advance and may change with
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Fig. 3. VQA accuracy as a function of the number of training samples in the SS domain
(top) and TS domain (bottom). (Color figure online)

time. In all our trials, our approach was able to accurately and efficiently learn
unknown information about such defaults and their exceptions.

Finally, we ran 100 paired trials to explore the impact of learned axioms on
planning. In each trial, we randomly chose a particular goal and initial condi-
tions, and measured the ability to computer minimal and correct plans before
and after learning previously unknown axioms. The validity of a plan is estab-
lished by executing it in simulation. Results obtained without the learned axioms
were computed as a ratio of the results with the learned axioms. Before axiom
learning, the robot often explored an incorrect location (e.g., for a person) based
on other considerations (e.g., distance to the room) and ended up having to
replan. After learning the axioms, the robot eliminated irrelevant paths in the
transition diagram from further consideration; we observe a (statistically) sig-
nificant improvement in performance. For instance, in the absence of the learned
axioms, the robot computes four times as many plans taking more than six times
as much time in any given trial (on average) as when the learned axioms were
used for reasoning. Even the time taken to compute each plan is significantly
higher in the absence of the learned axioms. For a more detailed description
of results of additional experiments conducted in simulation and on physical
robots, please see [15].
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Fig. 4. Comparison of VQA accuracy with and without axiom learning in the SS
domain (top) and TS domain (bottom). Reasoning with the learned axioms improves
accuracy. (Color figure online)

5 Discussion and Conclusions

For many critical problems in robotics and AI, explainability can help identify
errors, design better algorithms, and improve trust in automated reasoning and
learning algorithms. In this paper, we considered VQA as a motivating exam-
ple of such a problem that requires explainability in reasoning and learning.
Deep networks represent state of the art for VQA, but they are computation-
ally expensive, require large training datasets, and make it difficult to support
explainability. Inspired by research in cognitive systems, our architecture couples
representation, reasoning and interactive learning, and exploits the complemen-
tary strengths of deep learning, non-monotonic logical reasoning with common-
sense knowledge, and decision tree induction. Experimental results on bench-
mark datasets and simulated images indicate that in comparison with baseline
deep networks, our architecture provides: (i) better accuracy, sample efficiency
and time complexity on classification problems; (ii) more reliable answers to
explanatory questions; and (iii) support for learning unknown state constraints.
Future work will further explore the use of reasoning with commonsense knowl-
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edge to direct and better understand the operation of deep network architectures,
and evaluate our architecture in more complex domains.
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Abstract. In this work, we present a dynamic Task Coordination frame-
work (TasCore) for multiagent systems. Here task coordination refers to
a twofold problem where an exogenously imposed state of affairs should
be satisfied by a multiagent system. To address this problem the involved
agents or agent groups need to be assigned tasks to fulfill (task alloca-
tion) and the behavior of these agents needs to be monitored to evalu-
ate whether their tasks are fulfilled so that responsibility for dismissing
tasks can be determined (task responsibility). We believe the allocation
of tasks should regard both the strategic abilities of agents and their
epistemic limitations. To date, however, existing work on the application
of logical strategic reasoning for task allocation assumes perfect informa-
tion for agents (dismissing imperfect information settings) and allocates
tasks to individual agents (dismissing task allocation to agent groups). In
TasCore, we address this gap by modeling task allocation using imper-
fect information semantics for strategic reasoning and integrate it with
a notion of task responsibility. We formally verify properties of TasCore:
on validity as well as stability of task allocations and fairness as well as
non-monotonicity of task responsibilities.

Keywords: Multiagent systems · Task coordination · Responsibility
and accountability · Strategic reasoning · Temporal and modal logic

1 Introduction

The focus of this paper is on the task coordination (TC) problem in Multiagent
Systems (MAS). Given a state of affairs (exogenously imposed to, and to be
fulfilled by, a MAS) it is crucial to have a systematic method for allocating tasks
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to involved agents (prospectively) and ascribing responsibilities to agents based
on what they were tasked to do and what they actually did (in retrospection).
This way, TC consists of two stages: Task Allocation (TA) and Task Responsi-
bility (TR) [36]. Given a collective state of affairs (to be fulfilled by the MAS)
TA is concerned with how the state of affairs should be distributed among agent
groups in terms of tasks. Then TR is about evaluating the behavior of the MAS
in fulfilling the tasks and ascribing (a degree of) responsibility to agents for dis-
missing/fulfilling tasks. In other words, following the allocation of a task to an
agent or agent group, we see the group as being responsible for fulfilling the
allocated task. In a MAS, there might be tasks for which no single agent has
the required capabilities. Our work allows such tasks to be allocated to capable
agent groups (instead of dismissing the task).

We believe that ascribing responsibility to agents is justified only if the task
allocation process takes into account the strategic abilities of the agents and
their epistemic limitations. In brief, strategic abilities of agents or agent groups
determine what they can do in the MAS (e.g., in terms of properties that they
can ensure or preclude), while epistemic limitations are about their potential
(lack of) knowledge about the MAS. Capturing these two aspects for allocating
tasks and ascribing responsibilities in MAS are focal points of this work.

In general, the TC problem relates to studies on Multiagent Organiza-
tional (MAO) frameworks, task allocation methods in MAS, and responsibil-
ity reasoning concepts in multiagent settings. Reviewing MAO frameworks in
[13,21,24,32], their focus is on how the MAO is organized in terms of its organi-
zational structure and high level constructs to enable role/task allocation. They
abstract from the exact procedure of task allocation and in some cases assume the
availability of agents that are capable of fulfilling any assigned task. In MAO—as
a whole or within any of its organizational units—task allocation techniques are
often employed as a module to determine who should do what task(s) to ensure
the organizational goals (as a collectively defined state of affairs). For instance,
given the goal to have a picnic in the countryside for a two-member organization,
one agent can be responsible for driving while the other one is responsible for
food (i.e., allocating the task to drive to one agent and to prepare the food to
the other one). Then some relevant questions are: “which one is able to drive
(strategic ability)?”; “who knows about potential food allergies (epistemic limi-
tations in imperfect information settings1)?”; “who is able to cook/drive at what
time, as the journey/picnic evolves (temporal dynamics)?”. In most real-world
environments, the task allocation procedure should capture all three aspects, i.e.,
addressing strategic, epistemic, and temporal aspects. However, no such method
currently exists [3,9,11,16,26,29]. In [16], authors capture strategic abilities but

1 By imperfect information settings, we refer to the generic class of multiagent settings
in which agents do not (necessarily) have perfect information about their environ-
ment and all the potential consequences of their actions (also referred to as agents
with epistemic limitations). In most real-life applications of MAS, agents are epis-
temically limited. Thus, it is crucial to develop a model that is capable of capturing
imperfect information settings.
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under a perfect information assumption. The presented approach in [29] relaxes
this assumption for team formation—as a related problem to TC—but has less
temporal expressivity than [16].

Recall that in the picnic example, we said that an agent is responsible for
food or for driving. That is, when we arrive at the picnic spot with no food,
we can justifiably see the agent (to whom we allocated the task of providing
food) as being responsible for the (undesirable) outcome. We argue that dealing
with autonomous agents, allocating tasks (prospectively) needs to be comple-
mented by a (retrospective) phase of responsibility allocation. In TasCore, the
TR component answers this question by ascribing a degree of responsibility to
each agent, for an outcome ϕ. This means seeing an agent as being responsible
(for ϕ) to a degree proportional to its contribution to the occurrence of ϕ. To
model task responsibility, we apply multiagent responsibility reasoning methods
[2,35], in particular the notion of strategic responsibility [37], for ascription of
responsibility in such imperfect information settings.

To overcome these shortcomings, we develop TasCore: a dynamic task coor-
dination method based on formal methods for multiagent strategic reasoning.
TasCore is a two-part method: its prospective part is focused on task allo-
cation, while the retrospective part is focused on task responsibility. For task
allocation, we allocate a task to an agent or agent group that is capable of han-
dling it. One aspect that we see as being crucial to capture is the fact that the
agents’ ability is limited to their knowledge about the environment. It is there-
fore necessary to capture strategic abilities in imperfect information settings and
to avoid assuming perfect information for all agents. In imperfect information
settings, agent A may be able to guarantee the fulfillment of a task τ today, but
not necessarily tomorrow—due to the information and strategies that it pos-
sesses today and may miss tomorrow2. This is a missing aspect in most task
allocation methods for MAS. It also motivates our approach to use the semantic
machinery of multiagent logics that are expressive for modeling temporal and
strategic properties in imperfect information settings. The retrospective part
of TasCore is focused on the history and is about ascribing responsibility to
agents—considering what they did and what they had to do. As we allocate
tasks by taking into account agents’ abilities, the fulfillment of an allocated task
is a justified expectation, hence agents that violate this expectation are justifi-
ably responsible for it. Against this background, for the first time, this paper
captures strategic abilities under imperfect information for task allocation in
multiagent settings and applies responsibility reasoning for task coordination in
organizational settings.

We present a conceptual analysis on the TC problem and recall formal pre-
liminaries in Sect. 2. Then, in Sect. 3, we specify TasCore and its components. In
Sects. 4 and 5, we focus on the allocation of tasks and ascription of responsibil-

2 For instance, an agent may be perfectly capable of planning a chain of actions to
prepare a meal at home—given all the equipment—but not able to do so if she
moves to a picnic camp the day after, e.g., due to inconvenient weather and the lack
of equipment.
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ities, respectively. We formally verify properties of TasCore: on validity as well
as stability of task allocations and fairness as well as non-monotonicity of task
responsibilities. Finally, Sect. 6 discusses the relevance and implementability of
TasCore and presents the concluding remarks.

2 Conceptual Analysis and Formal Preliminaries

In this section, we present the intuition behind our work, analyze conceptual
aspects of TC, and recall key formal notions that form the basis of the TasCore
framework.

2.1 Conceptual Analysis

Imagine a family picnic scenario in which parents allocate different picnic-related
tasks to their children Alex, Bob, Cathy, and see them responsible for organizing
a picnic that satisfies some expectations. They expect the picnic to be organized
in a clean picnic spot in the country side and to have home-made food for the
day. In this case, having a desirable picnic is a collective state of affairs. Then the
first bit of the task coordination problem is to see “who is able to do what” in a
temporal, strategic, and imperfect information setting. The second bit is about
“seeing who did what” and ascribing responsibility to agents for the outcome.
We deem that the second phase (task responsibility) is justified only if in the
first phase (task allocation), the strategic, temporal, and epistemic aspects of
the setting are captured. For instance, if we give the task of driving to the spot
to Cathy while she has no driving licence, it is not reasonable to blame her for
dismissing the allocated task. The analogous case is valid for giving the task of
cleaning to Bob, if he cannot distinguish clean from unclean (e.g., due to a visual
impairment). We later show how these aspects can be modeled and verified using
the semantic machinery of logics for multiagent strategic reasoning. In addition
to these aspects, there are a number of high-level principles that are essential to
effective task coordination:

Suitability of the collective state of affairs: given the set of agents and their
available actions, fulfilling some states of affairs are impossible in principle,
regardless of how we allocate tasks among the agents. For instance, in our pic-
nic scenario, a modest picnic is reasonable to expect but seeing the small group
organize a festival might not be a suitable (collective) state of affairs.

Validity of task allocation: given a suitable state of affairs, the process of task
allocation ought to be such that all that should be done is allocated, neither more
nor less (i.e., if all agents fulfill their tasks, the collective state of affairs will be
fulfilled). For instance, if we tell Alex to take care of driving and give the task
of cleaning the place to Bob and Cathy, the allocation is not valid as preparing
food is dismissed. Basically, we see an allocation of tasks as valid if by assuming
that all agents fulfill their allocated task, we can see the collective state of affairs
will ensure.
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Justifiability of task responsibility: task responsibility should be consistent
with task allocation. In other words, seeing a group as being responsible is not
independent of what tasks they were given in an earlier stage. For instance,
if we give the task of preparing food to Alex, then it is not justifiable to see
Bob responsible for the food quality even if he is able to cook. This shows that
verifying task responsibility is not merely based on agents’ ability but builds
upon the implemented task allocation and the history of realized actions (i.e.,
the evolution of the multiagent system).

In subsequent sections, we provide a formal account of these principles and
then fulfill them using TasCore. To specify the multiagent setting, we use Con-
current Epistemic Game Structures (CEGS) [1] as it allows: modeling the behav-
ior of a MAS, specifying strategic abilities of agents, and representing agents’
knowledge. Then we focus on task and responsibility allocation in TasCore.

2.2 Concurrent Epistemic Game Structures

To model multiagent systems and analyze their strategic behavior under imper-
fect information, we use Concurrent Epistemic Game Structures (CEGS) [1] as
an epistemic extension of Concurrent Game Structures [4]. In addition to being
expressive for specifying temporal, strategic, and epistemic aspects of MAS, mod-
els that use CEGS can benefit from standard model checking platforms (e.g.,
ATL-based model-checking tools in [23,25]) to verify properties of the modeled
MAS.

Concurrent Epistemic Game Structures: Formally, a concurrent epistemic game
structure is a tuple M=⟨Σ,Q,Act,Π, π, ∼1, . . . , ∼n, d, o⟩ where: Σ ={a1, . . . , an}
is a finite non-empty set of agents; Q is a finite non-empty set of states; Act is
a finite set of atomic actions; Π a set of atomic propositions; π ∶ Π ↦ 2Q is a
propositional evaluation function; ∼a ⊆Q ×Q is an epistemic indistinguishability
relation for each agent a ∈ Σ (we assume that ∼a is an equivalence relation,
where q ∼a q′ indicates that states q and q′ are indistinguishable to a); function
d ∶Σ ×Q↦ P(Act) specifies the sets of actions available to agents at each state
(we require that the same actions be available to an agent in indistinguishable
states, i.e., d(a, q) = d(a, q′) whenever q ∼a q′); and o is a deterministic transition
function that assigns the outcome state q′

=o(q, α1, . . . , αn) to state q and a tuple
of actions αi ∈ d(i, q) that can be executed by Σ in q.

To enable the specification of a collective state of affairs, we adopt the stan-
dard language of LTL (Linear Temporal Logic [30]). Formulas of the language
LLTL are defined by the following syntax, ϕ,ψ ∶ ∶ = p | ¬ϕ | ϕ∧ψ |◯ϕ | ϕUψ | ◻ϕ
where p ∈Π is a proposition, ¬ and ∧ are standard logical operators, ◯ϕ means
that ϕ is true in the next state of M, ψUϕ means that ψ has to hold at least
until ϕ becomes true; and ◻ϕ means that ϕ is always true. For convenience, ◇ϕ
is defined as an equivalent to ¬◻ ¬ϕ meaning that ϕ is eventually true. To repre-
sent and reason about strategies and outcomes in agent systems with imperfect
information, we make use of the following auxiliary notions. (References to ele-
ments of M are to elements of a CEGS M modeling a given multiagent system,
e.g., we write Q instead of Q in M.)
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Successors and Computations: For two states q and q′, we say q′ is a successor of
q if there exist actions αi∈d(i, q) for i∈{1, . . . , n} in q such that q′

=o(q, α1, . . . , αn),
i.e., agents in Σ can collectively guarantee in q that q′ will be the next system
state. A computation of a CEGS M is an infinite sequence of states λ=q0, q1, . . .
such that, for all k > 0, we have that qk is a successor of qk−1. We refer to a
computation that starts in q as a q-computation. For k ∈ {0, 1, . . . }, we denote
the k’th state in λ by λ[k], and λ[0, k] and λ[k,∞] respectively denote the finite
prefix q0, . . . , qk and infinite suffix qk, qk+1, . . . of λ. We refer to any two arbitrary
states qk and qk+1 as two consecutive states in λ[k,∞]. Finally, we say a finite
sequence of states q0, . . . , qn is a q-history if qn = q, n ≥ 1, and for all 0 ≤ k < n
we have that qk+1 is a successor of qk. We denote a q-history that starts in qk

and has n steps with λ[qk, n]. The set of q-histories for all q ∈Q is denoted by H.

Strategies and Outcomes: A memoryless imperfect information strategy3 for an
agent a ∈Σ is a function ζa ∶Q↦Act such that, for all q ∈Q: (1) ζa(q) ∈ d(q, a),
and (2) q ∼a q′ implies ζa(q) = ζa(q′). For a group of agents Γ ⊆ Σ, a collective
strategy ZΓ ={ζa | a∈Γ} is an indexed set of strategies, one for every a∈Γ . Then,
out(q, ZΓ ) is defined as the set of potential q-computations that agents in Γ can
enforce by following their corresponding strategies in ZΓ . We extend the notion
to sets of states χ ⊆Q in the straightforward way: out(χ,ZΓ ) =⋃q′

∈χout(q′, ZΓ ).

Uniform Strategies: A uniform strategy is one in which agents select the same
actions in all states where they have the same information available to them. In
particular, if agent a ∈ Σ is uncertain whether the current state is q or q′, then
a should select the same action in q and in q′. Formally, a strategy ζa for agent
a∈Σ is called uniform if for any pair of states q, q′ such that q∼a q′, ζa(q)=ζa(q′).
A strategy ZΓ is uniform if it is uniform for every a ∈ Γ ⊆Σ. Realistic modeling
of strategic ability under imperfect information requires restricting attention to
uniform strategies only.

3 Specification

To specify TasCore, four components are required: a behavior modeling machin-
ery, a collective state of affairs (given to the MAS), the task allocating compo-
nent, and the task responsibility component.

Given a CEGS M=⟨Σ,Q,Act,Π, π, ∼1, . . . , ∼n, d, o⟩ that models the behavior
of the multiagent system, a collective state of affairs Gq (given to MAS in state

3 We relax the assumption that agents have a perfect memory. Thus, as a natural
choice in imperfect information settings, we focus on memoryless strategies and avoid
other forms of strategy that assume the ability of agents to recall the evolution of
the MAS, e.g., perfect recall strategies (see [8]). This captures a more generic class
of agents as we do not expect them to have the capacity to strategize based on their
memory of events.
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q) is a set of formulae from LLTL.4 Then the aim of the task allocation process
is to ensure that all ϕ ∈Gq hold. Finally, the task responsibility process ascribes
a (backward-looking) degree of responsibility to agents given a history h ∈H.

In this approach, M is a standard component (adapted from [1]) for model-
ing the behavior of a MAS in imperfect information settings. Then Gq specifies
the set of properties that are expected to be satisfied by the agents collectively
(we call it the collective state of affairs). Then what each subgroup ought to
do is determined by task allocation and who is responsible to what extent by
task responsibility. We present the exact specification of both in upcoming sec-
tions. This means TasCore is built on a behavior-modeling CEGS, a local state
of affairs, and allocates (forward-looking) tasks as well as (backward-looking)
responsibilities to agent groups. Note that all the elements of TasCore are
defined independently of any desirable properties. So, how an element should
be specified such that desirable properties emerge is not intrinsic to the model
but will be discussed in the following sections. This is to allow a level of flexibil-
ity and to enable capturing context-dependent concerns. TasCore supports task
coordination using two forms of prospective and retrospective organizational rea-
soning. The former is about allocating tasks to agents (Sect. 4) while the latter
is about verifying what went wrong/right and who is responsible to what extent
(Sect. 5).

4 Allocating Tasks in TasCore

Following the specification of TasCore components, and given a local state of
affairs Gq (to be fulfilled collectively by agents in the MAS), “who should do
what, and why?” is the main question that we aim to answer in this section5.
We deem that the ascription of tasks to agents or agent groups (with the aim to
fulfill a collective state of affairs) should take into account the temporal, strategic,
and epistemic aspects of multiagent systems. Temporality is both about the
specification of tasks (e.g., whether some property should be maintained or only
4 One may opt to specify the collective state of affairs simply using propositions from

Π. However, this will limit the expressivity. Our LTL formulas enable the specifica-
tion of temporally-bounded tasks. E.g., simply giving a task to ensure that food is
ready may lead to giving the task to someone with a strategy to ensure it in the next
week while we aim to have the picnic during the weekend (e.g., this can be achieved
by ensuring that food is prepared before the weekend using the “until” modality in
LTL). Moreover, for task specification, it is necessary to be able to express a dynamic
behavioral (semantic) form of task (which is more expressive than a static proposi-
tional (syntactic) notion of a task). For instance, one may give (an agent) the task
of not only ensuring the tidiness of a place but also to maintain it. Such a notion
of task is not about ensuring a state or a set of states (where tidiness holds) but
about ensuring a chain/path/computation of states (through which the tidiness is
maintained). In general, temporal modalities of LTL enable capturing such temporal
subtleties.

5 “Who gets what, and why?” is the focus of the next section (we acknowledge the
title of [33]).
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achieved once) and also about the state of the environment (e.g., whether a task
can be allocated at a current state q1 (today) or at potential states that follow
q1 (tomorrow)). Then it is reasonable to allocate a task to who—either a single
agent or a group of agents—is capable of fulfilling it. While some consider this as
strategic ability, we emphasize the importance of knowledge in “being capable of
doing something”. Basically, as highlighted by [1], the strategic ability of an agent
group is limited to their knowledge of the system and its dynamics (e.g., in a
physical confrontation, even if agent ai is strong enough to capture an adversary
agent aj , not knowing that aj is located in front of ai, avoids it exercising its
potential). This is why we focus on uniform strategies (see Sect. 2.2).

Prior to allocating tasks and building on the notion of a uniform strategy, we
say a local state of affairs Gq is suitable for a multiagent system (the suitability
principle) only if the grand coalition Σ has a uniform strategy in state q to
ensure it (note that we are referring to components of a particular CEGS M
that models a given MAS). Then given a suitable Gq, a task allocation is valid
(the validity principle) only if we assume the compliance of agents with allocated
tasks entail that Gq.

In the following, we specify the task allocation component of TasCore and
show its desirable properties.

Definition 1. Given a multiagent system M, a local state of affairs Gq = ϕ1 ∧

· · · ∧ ϕm, and the assignment of ϕi(1 ≤ i ≤ m) to agent group Γi ⊆ Σ, the
assignment set {⟨ϕ1, Γ1⟩, . . . , ⟨ϕm, Γm⟩} is a TasCore task allocation iff (1) Γi

is a minimal group with a uniform strategy in q to ensure ϕi and (2) for any
two intersecting groups Γi and Γj(1 ≤ j ≤m), Γi ∪ Γj is a minimal group with a
uniform strategy in q to ensure ϕi ∧ ϕj.

As discussed earlier, this approach for allocating tasks captures the strategic
abilities of agents and their epistemic limitations for allocating tasks. (We high-
light that the allocation process is based on perfect information about agents,
their abilities, and knowledge. Our reference to imperfect information is to the
information that is available to involved agents in the MAS.) The following the-
orem shows that for a suitable state of affairs, there exists a task allocation that
satisfies the two conditions in Definition 1. In q, we modelcheck to find minimal
agent groups capable of ensuring propositional components of Gq and generate
a task allocation that gives the task of ensuring each component ϕi (the ith
components of Gq) to an agent group Γi which has a uniform strategy to ensure
ϕi. This procedure generates a valid allocation if Gq is a suitable state of affairs.

Theorem 1. Given a suitable Gq, there exists a valid task allocation in q.

Proof. We provide a constructive proof by presenting a task allocation proce-
dure based on ATLir model checking. First, for all ϕi ∈ Gq = {ϕ1 ∧ · · · ∧ ϕm},
we use standard ATLir model checking [23] and apply a minimality-checking
loop to generate the set, denoted by Φi, of minimal agent groups Γ ⊆ Σ with
the ability to ensure ϕi from q. Given all Φi, the set of allocation tuples
{⟨ϕ1, Γ1⟩, . . . , ⟨ϕm, Γm⟩} in which the two conditions of Definition 1 are satis-
fied is non-empty thanks to the suitability of Gq. ∎
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Note that we take the collective state of affairs and allocate each component
to capable groups—with a uniform strategy to fulfill it. Recalling the notion of
uniform strategy (in Sect. 2.1), given that the group has a collective strategy,
each agent has an individual strategy that contributes to the fulfillment of the
task. This way of allocating tasks to group, leaves it to the group to decide
what ultimate individual action (in each state) individuals should take to see
to it that the task is fulfilled. This is to see agents in an organizational setting
as autonomous entities to whom we do not tell what exact action to take. We
see each agent as a group member able to collaborate to execute a strategy,
based on a repository of actions, such that the task that is allocated to the
group is fulfilled. We later show how we can (retrospectively) ascribe a degree of
responsibility to each individual based on what they did (outcome of collective
actions) and what they had to do (allocated tasks).6

As discussed, the notion of the collective state of affairs Gq is a local notion
to specify what properties are valuable in an organizational setting. Hence they
ought to be satisfied by agents in Σ collectively. Gq says what is expected to be
satisfied being in state q assuming that it contains expectations that were given
previously and are not yet satisfied but valuable. In other words, agents are not
required to keep a repository of tasks. This enables the expression of real-life
situations where dynamic task allocation is desirable (i.e., it allows changing the
state of affairs as the system evolves, hence gives the ability to give a different
task to a group). Our approach to consider a local state of affairs gives a form
of deterministic Markov property [27] to task allocation in TasCore. In other
words, local suitability can be extended and if satisfied globally (in all states)
guarantees the existence of a valid task allocation in all states of MAS.

Proposition 1. If Gq is suitable for all states q ∈Q, the procedure presented in
(the proof of) Theorem1 generates a valid task allocation in all states regardless
of the evolution of the system, represented by a materialized q-history h ∈H.

Proof. Note that Gq is a local notion (on state q) and that its suitability is
independent of any q-history h. Then to prove, we need to show that having a
Gq, suitable in all q ∈ Q, there exists a valid task allocation in each q. This is
given by Theorem1. ∎

Under TasCore, agent groups to which we allocate a task may intersect. E.g.,
if we allocate ϕ1 to Γ1 and ϕ2 to Γ2, agents in Γ1 ∩ Γ2 ought to take a part in
ensuring both ϕ1 and ϕ2. Then one may ask whether in such cases, agents in the
intersection are supposed to choose between two alternatives and only satisfy
one task while dismissing the other one. The following proposition shows that

6 One may argue that task allocation is unnecessary as we can simply allocate Gq

to Σ. While such a suggestion works under the perfect information assumption,
the epistemic limitations of agents means such a simplistic approach will not work
under imperfect information. This is because a uniform strategy for Γ to ensure a
property is not necessarily uniform for all super-groups Γ ′

⊃ Γ as knowledge does
not necessarily grow monotonically in groups.
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using the proposed procedure in Theorem 1, allocated tasks are not mutually
exclusive.

Proposition 2. Given a suitable Gq, there are no two exclusively satisfiable
tasks allocated to a group.

Proof. Follows directly from the second condition (in Definition 1) that any gen-
erated allocation—by the procedure presented in Theorem 1—satisfies. Note that
the concern is not only about mutual exclusivity in a logical sense, but in a strate-
gic sense (i.e., that the available strategies for a group to fulfill two properties
are coherent). ∎

In organizational settings, agents are assumed to be a part of a collaborative
practice, hence ought to fulfill their set of allocated tasks. But a valid question
is whether they have any rational reason to avoid fulfilling and deviate from
their tasks. In other words, whether an allocation is stable (in game-theoretic
terminology). The following theorem shows that a TasCore task allocation is
stable as no group has a rational incentive for deviation.

Theorem 2. Given a suitable collective state of affairs Gq, a TasCore task
allocation under the procedure presented in Theorem1 is stable in the sense that
no agent group has a rational incentive to deviate from its allocated task(s).

Proof. Building on Proposition 2, for any allocated task to a group Γ—under
the proposed procedure—any group Γ has a uniform strategy to fulfill the task.
Hence, no group in Σ has a rational incentive to deviate from the allocation (i.e.,
to not fulfill the tasks). Note the assumption that agents are a member of the
organization, hence prefer to deliver their tasks if they are able to do so. ∎

Note that we are focused on the availability of a “task-fulfilling” strategy
to agent groups—assuming that allocated tasks ought to be fulfilled if such a
strategy exists—and abstract from agents’ preferences.

Example 1. In our example (see Fig. 1), there are various ways (with different
levels of control) which the parents can use to express their expectation. One
way would be to have Gq0 = {◯f,◯◯ s,◯◯◯t} which is an explicit form
with temporal limitations. Another more-relaxed form is Gq = {◯f,◇s,◇t}. For
both forms the first element can be allocated as a task to {A,B}, the second
one to {C}, and the last one to {A,C}. Note that for a strategy to be uniform
for a group, it should be accessible to them from all the indistinguishable states.
In this case: {A,B} has a strategy to ensure ◯f from both q0 and q1; {C} can
ensure s either eventually (◇s) or in the state after the next (◯◯s); and {A,B}
can ensure tidiness.
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Fig. 1. Set of agents Σ={A, B, C} (Alex, Bob, Cathy), set of actions Act={ck, dr, cl, id}
(cooking, driving, cleaning, idle, and for any act ∈Act, act denotes any action in Act ∖
{act}), and set of propositions Π = {f, s, t} (ready food, being at spot, tidiness). For
any unmentioned action profile α and arbitrary q ∈Q, we have that o(q, α) = q (i.e., we
avoided an α self-loop on every node). To model epistemic limitations, we assume that
cooking (act ck) is only possible at home while cleaning (act cl) is only possible at the
picnic spot. To model epistemic limitations, some states are indistinguishable for some
agents represented by dashed lines labeled with the agent(s) who can not distinguish
the states that the dashed line connects.

5 Ascribing Responsibility in TasCore

Assuming that the allocation of tasks to agents definitely results in the fulfillment
of tasks—and in turn brings about the collective state of affairs—is unreasonable
in real-life environments. This is because autonomous agents are not artifacts
but entities that may opt to exercise their autonomy and do otherwise. In orga-
nizational settings, such undesirable behavior is possible. But in addition—and
based on the assumption that agents are a member of the organization, hence
expected to deliver their allocated tasks—we can ascribe a degree of responsi-
bility to agents. In particular, to those who contributed to a collective state of
affairs being unfulfilled. This form of reasoning is known in the literature on
responsibility as backward-looking responsibility [31,37]. Basically, the reasoner
observes the materialized history of events/actions (that lead to a given outcome
situation S) and with the knowledge about agents’ available actions, ascribes
responsibility to agents who contributed to the occurrence of S or to those who
could avoid ¬S but apparently did not exercise their avoidance potential. The
former causality-oriented approach is known as causal responsibility [12] based
on the potential to bring about, while the latter is known as strategic responsibil-
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ity [37] based on the potential to avoid. One may refer to this backward-looking
form of responsibility reasoning as evaluating the blameworthiness if S is known
to be a normatively undesirable state of affairs.

In our picnic scenario, imagine that the whole group arrives at the picnic
spot with no food (states q2 or q3 in Fig. 1). Who is responsible for such an
undesirable outcome? Which agent(s) or agent group(s) can be blamed? And
to what extent? One can look at the history of events (i.e., who did what at
any state in the chain of states that ends in the current state), check the list
of allocated tasks in those states, and justifiably blame a group of agents that
ought to deliver the task of preparing food. This procedure is in particular a
justifiable one in imperfect information settings if the agents’ strategic ability
and their epistemic limitations were taken into account in the preceding task
allocation procedure.

To ascribe responsibility to agents, we adopt the approach described in
[37]. The responsibility reasoning notion of [37] is in-line with our approach
in TasCore as we both focus on imperfect information settings. Following this,
we see a group Γ as being responsible for an outcome ϕ in state q given a history
h if ϕ holds in q while ensuring ¬ϕ was among the allocated tasks to Γ in a state
(other than q) in h. Formally:

Definition 2. Given a multiagent system M, TasCore task allocation, and the
materialized q-history h, an agent group Γ is q-responsible for ϕ iff (1) ϕ does
not hold in state q and (2) ϕ is among the allocated tasks to Γ in a state q′

∈ h
for q � =q′.

In this view, a group that is tasked to ensure ϕ is responsible for it until
ϕ becomes true. Note that being responsible for ϕ does not imply any nega-
tive connotation here. (That is why we avoid using the negatively-loaded term
“blameworthy” here.) This is crucial to note because a group might have the
plan to bring about ϕ in a next state or maybe they are assigned a new task
in the dynamic setting of TasCore. Moreover, note that a ϕ being unfulfilled in
q directly implies that any state of affairs that contains ϕ is not satisfied. For
instance, in our picnic scenario, having no food in q2 implies that the collective
state of affairs “well-organized picnic” Gq0 ={f, s, t} that was given to the multi-
agent system in q0 is unsatisfied in q2. This notion of responsibility can be seen
as a measure of the collective state of affairs satisfaction in organizational set-
tings. If ensuring Gq is given to a MAS, a state in which no group is responsible
for any ϕ ∈Gq is a state where Gq is fulfilled completely.

Proposition 3. Given a suitable state of affairs Gq, the TasCore task alloca-
tion, and the materialized history h = q, . . . , q′, we have that Gq is satisfied in q′

if no agent group Γ is q′-responsible for any ϕ ∈Gq.

Proof. Having no group Γ being q′-responsible for any ϕ∈Gq implies that for all
ϕ, either of the two conditions in Definition 2 does not hold in q′. As TasCore
task allocation is applied, the second condition holds for all ϕ. Thus the first
condition does not hold for all ϕ, i.e., that all the elements of Gq are satisfied in
q′. ∎
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Theorem 3. Given a suitable Gq, there exists a nonempty set of states S ⊆ Q
such that for all q′

∈ S, no group Γ is responsible for any arbitrary ϕ ∈Gq based
on history q, . . . , q′.

Proof. In q, such a set in which ⋀

ϕ∈Gq

ϕ holds is foreseeable as, for ensuring a

suitable Gq, a uniform strategy is available to Σ. ∎

As we discussed, responsibility ascription is to agent groups. Then a problem
that we face in multiagent systems—known as the responsibility gap problem—
concerns situations where a group of agents is responsible for an outcome but
the share of each individual agent is not clear [28]. In principle, the question is
about the extent of responsibility of each agent for an unfulfilled task. This is a
translation from group responsibility to individual responsibility. We highlighted
that as we are dealing with tasks in TasCore, responsibility sharing techniques
for MAS (e.g., [12,37]) are not directly applicable. In TasCore, an agent might be
in two different groups with different tasks (coalitional dynamics) and moreover,
may get involved in different tasks as the system evolves (temporal dynamics).
Note that if agent group Γ with n members is found to be responsible for a
given ϕ, sharing the responsibility equally is not a reasonable approach as each
individual possesses different levels of knowledge and ability, and hence had
different levels of contribution to ϕ. A standard approach is to consider fairness
properties7:

Theorem 4. Given a suitable collective state of affairs Gq, TasCore task alloca-
tion, and q′

−history h = q, . . . , q′, the degree of q′
−responsibility of agent a ∈Σ for

ϕ∈Gq, denoted by �(a, ϕ, h), satisfies the fairness properties if �(a, ϕ, h) =Φ(a, ρ)
where Φ returns the Shapley value of agents in the cooperative game ⟨ ⟩Σ, ρ in
which ρ(Γ ⊆ Σ) is equal to 1 if Γ ′

⊆ Γ is q′
−responsible for ϕ based on h and 0

otherwise.

Proof. The game is such that—using the Shapley value—each agent receives a
degree of responsibility with respect to its contribution to responsible groups.

∎

Thanks to the properties of the Shapley value, this degree of responsibility is
a fair way for bridging the responsibility gap and distributing the responsibility
of each individual in TasCore. As a direct result we have:

Proposition 4. For a given ϕ ∈Gq and history h, we have that ∑
a∈Σ

�(a, ϕ, h) ∈

{0, 1}.
Proof. Having h, either q is a state in h or not. If not, then ϕ is not among the
allocated tasks to any agent group in Σ hence the degree of responsibility for all
agents a ∈Σ is zero. The same holds if q is in h and ϕ holds in the last state of

7 By fairness, we are referring to Shapley-based notion of fairness that possesses the
properties of symmetry, additivity, efficiency, and dummy player [34].
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h. The only case in which some agent groups are responsible for ϕ based on h is
when ϕ does not hold in the last state of h; and in this case, the summation is
equal to one thanks to the efficiency property of the degree. ∎

Based on this result we have that in organizational settings, for any allocated
but unfulfilled task, there exists a responsible group if the task manager follows
TasCore. Note that as we are assuming suitability (for the collective state of
affairs) and discussing the ascription of responsibility degrees in the context of
task coordination, impossibilities for which no group is responsible are avoided
automatically. The next property is about the evolution of the notion of task
responsibility and the degree of responsibility though a given history.

Proposition 5. For a given ϕ ∈ Gq and history h, the notion of responsibility
and its degree are non-monotonic through the temporal evolution of h: formally,
(1) being qi−responsible for ϕ (for a qi ∈h) does not imply being qi+1−responsible
for ϕ. Moreover, (2) �(a, ϕ, h′′) (for h′′

= q, . . . , q′, . . . , q′′) is not necessarily
higher or lower than �(a, ϕ, h′) (for h′

= q, . . . , q′ as a part the materialized
history h′′).

Proof. For part (1), we have that ϕ may hold in one state of the history but not
in the next one. In the states where it holds, no group is responsible for it. For
(2), we can rely on part (1) but also have that due to dynamism of TasCore,
the task to satisfy ϕ can be given to new groups through h (e.g., to ensure a
level of fault-tolerance). Therefore the number of responsible groups is not fixed
temporally (through the history h). ∎

Note that TasCore is neither aware of nor requires agents’ preferences as it
respects a separation of concerns in the process of responsibility ascription (i.e.,
it is not designed based on the knowledge about agents’ internal settings, hence is
operational in multiagent organizational settings under imperfect information).
Moreover, we assume that being involved in TasCore implies that the agent is
expected to dedicate its resources (represented in terms of its available actions
in each state) to the organization and is expected to fulfill its allocated tasks.

Example 2. Having the allocation of tasks according to Example 1 and the his-
tory q0, q2, q3, the collective state of affairs Gq0 is not yet fulfilled. Going back
through the steps of history, the task of preparing food was allocated to {A,B}
and they had a uniform strategy to avoid it remaining unfulfilled. They each
have the degree of responsibility of 1/2 due to their symmetric contribution.8

6 Discussion and Concluding Remarks

We discuss the relevance of task coordination under imperfect information, argue
the implementability of TasCore by showing steps toward operationalization,
and relate our contribution to past work.
8 Note that in general, agents may have various forms of (asymmetric) contribution.

Thus, it is not the case that the degree of responsibility of group members is equal
in general (see [37]) for a discussion on various responsibility reasoning cases.
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Perfect vs. Imperfect Information Settings: Although assuming perfect informa-
tion is realistic for closed environments (e.g., in production processes or data-base
systems), in most real-life applications, an agent’s knowledge of the environment,
hence of the consequences of its acts, is limited. In our model, we allow the rep-
resentation of agents with imperfect information and consider uniform collective
strategies to capture the epistemic aspect of the notion of strategic ability. This
means we can both allocate tasks in imperfect information settings and ascribe
responsibility in a justifiable manner. Note that TasCore is also operational in
perfect information settings—simply by assuming an empty indistinguishability
relation (in CEGS M) for all the agents in Σ. In this way, the presented com-
plexity and experimental results in [16] for the perfect information scenarios can
be applied to TasCore if one intends to deploy it in a perfect information task
coordination case. In our running example, if agents had perfect information,
we could dismiss indistinguishability relations (i.e., by deleting the dashed lines
in Fig. 1). Then in the task allocation part of TasCore, agents may have more
strategies available to ensure the components of a given state of affairs—as they
are not epistemically limited. This in turn affects the responsibility ascription
process.

Implementability: As we presented our task coordination concepts and tools
using concurrent game structures, then the logical characterization of TasCore
is standard. To that end, one can use the epistemic variant of ATL proposed
in [22] that adds indistinguishably relations to explicitly specify the epistemic
uncertainty of agents. This allows reasoning about the abilities and responsi-
bilities of agent groups under imperfect information. Providing such a logical
characterization of our notions also enables the systematic verification of the
two parts of TasCore (for task and responsibility allocation). Building on this,
one can use standard model-checking tools [25] to implement TasCore as an
operational task coordination tool and in turn enable its application in real-life
problems (e.g., in the context of business management or collaborative industrial
systems).

Given a state of affairs to be ensured by the MAS, TasCore enables tasks
to be allocated to agents or agent groups such that their fulfillment leads to the
overarching state of affairs being ensured. For task allocation, TasCore is the
first model that considers both the epistemic limitations and strategic abilities
of agents. Moreover, we allow the allocation of tasks not only to individuals but
also to agent groups. We argue that allocation is not enough if we deal with
autonomous agents. Thus, following the task allocation, one can use TasCore
to ascribe a degree of responsibility to agents with respect to a state of affairs.
This work is the first to employ the notion of strategic responsibility for task
coordination in MAS.

Our approach to allocate tasks to agents is complementary to (group) role
assignment in robot systems and open societies [15,17,19,38]. While they gener-
ally assume that roles are to be taken by agents, in TasCore we allocate tasks to
agents based on their ability to ensure a task and accordingly see them as being
responsible for the outcome. In this way TasCore can be used in combination
with multiagent organizational frameworks such as Moise [21] (more precisely,
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within each organizational unit and assuming the availability of knowledge about
the unit to TasCore).

In relation to the multiagent responsibility and accountability literature [5,
12,35,37], our work applies responsibility reasoning (in specific, the ATL-based
notion of strategic responsibility) for task coordination. Based on TasCore’s
degree of responsibility, one can ascribe blameworthiness and sanctioning penal-
ties to agent groups (e.g., to enforce a given norm in MAS). We also highlight a
related but distinguishable approach to this problem that is based on the notion
of causal responsibility in [2,12,18]. Basically, causal responsibility (as presented
in [12]) ascribes a degree of responsibility to agents based on their potential to
provide a situation while strategic responsibility (as presented in [37]) ascribes
responsibility based on their ability to preclude. We see these two perspectives
as complementarily applicable in different domains.

In TasCore, we dismissed incentivization. We see that an interesting exten-
sion is to consider rewarding agents per task fulfillment to provide strategy-
proofness. Otherwise, an agent may strategically block its own strategies to
avoid the allocation of a task. Rewarding can encourage agents to employ their
most “effective” strategy, and by effectiveness we are referring to a strategy
that enables them to fulfill as many tasks as possible. In principle, rewarding
agents following the fulfillment of a task (and sanctioning otherwise) nudges
the behavior of economically-motivated and rational agents towards the fulfill-
ment of collective-level organizational goals. To address this, we aim to integrate
norm-aware incentive engineering techniques [6,7,14] into TasCore and consider
coalition forming aspects [10,20]. In such a line, the degree of responsibility can
be used as a basis to formulate normative notions of blame/praiseworthiness
which in turn enables developing sanctioning/rewarding mechanisms. Moreover,
in TasCore, we merely focused on physical actions of agents. Thus, another
extension is to enrich the repository of actions by adding an explicit represen-
tation of communicative actions. Basically, through communicative actions, the
agents’ epistemic level may change. This extends TasCore and enables us to
reason about subcontracting, delegation, commitment-based agreements, and in
general scenarios in which agents have mixed strategies, consisting of physical
and communicative actions.
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Abstract. The Coalition Formation with Spatial and Temporal con-
straints Problem (CFSTP) is a multi-agent task scheduling problem
where the tasks are spatially distributed, with deadlines and workloads,
and the number of agents is typically much smaller than the number
of tasks. Thus, the agents have to form coalitions in order to maximise
the number of completed tasks. The state-of-the-art CFSTP solver, the
Coalition Formation with Look-Ahead (CFLA) algorithm, has two main
limitations. First, its time complexity is exponential with the number of
agents. Second, as we show, its look-ahead technique is not effective in
real-world scenarios, such as open multi-agent systems, where new tasks
can appear at any time. In this work, we study its design and define
an extension, called Coalition Formation with Improved Look-Ahead
(CFLA2), which achieves better performance. Since we cannot eliminate
the limitations of CFLA in CFLA2, we also develop a novel algorithm
to solve the CFSTP, the first to be simultaneously anytime, efficient
and with convergence guarantee, called Cluster-based Task Scheduling
(CTS). In tests where the look-ahead technique is highly effective, CTS
completes up to 30% (resp. 10%) more tasks than CFLA (resp. CFLA2)
while being up to four orders of magnitude faster. Our results affirm CTS
as the new state-of-the-art algorithm to solve the CFSTP.

Keywords: Coalition formation · Spatial and temporal constraints ·
Anytime · Efficient · Convergence guarantee · Disaster response

1 Introduction

Disasters, man-made and natural, can cause severe loss of life, damage to infras-
tructure and cascading failures in energy systems [1]. In the aftermath of a
disaster, first responders have to be deployed to meet the needs of the commu-
nity. They are responsible for complex tasks such as first aid and infrastructure
restoration, which they must perform during periods of high stress and in envi-
ronments with strict time constraints [4]. During these operations, it is funda-
mental to act as fast as possible, since any delay can lead to further tragedy and
destruction.
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We focus on a class of disaster response problems that has been characterised
by Ramchurn et al. [23] as Coalition Formation with Spatial and Temporal con-
straints Problem (CFSTP). We use the definitions of coalition and coalition for-
mation given in [13,23,26]. Hence, a coalition is a flat and task-oriented organisa-
tion of agents, short-lived and disbanded when no longer needed, while coalition
formation is a consequence of the emergent behaviour of the system [20]. In the
CFSTP, the agents (e.g., ambulances or fire brigades) have to decide which tasks
they are going to execute (e.g., save victims or extinguish fires). The decision
is influenced by how tasks are located in the disaster area, how much time is
needed to reach them, how much work they require (e.g., how large a fire is)
and their deadlines (e.g., estimated time left before victims perish). Given these
conditions, and considering that there could be many more tasks than agents,
it is necessary that agents cooperate with each other by forming, disbanding
and reforming coalitions over time [26]. Coalitions enable agents to complete
tasks more efficiently than working individually. In fact, some tasks may have
constraints that could not be satisfied by single agents. For instance, a fire is
extinguished faster when multiple fire brigades work on it together, rather than
in sequence. Hence, the objective of the CFSTP is to schedule the right coali-
tions (e.g., the fastest ambulances and fire trucks with the largest water tanks)
to the right tasks (e.g., sites with the most victims and the strongest fires) to
ensure that as many tasks as possible are completed.

Our interest is in algorithms that are anytime (i.e., which can return partial
solutions if they are interrupted before completion), have theoretical properties
and can solve the CFSTP efficiently (i.e, approximation algorithms [21]). The
reason is that anytime and approximate solutions are fundamental in real-world
domains, where it is necessary to have theoretical guarantees, but it may be
computationally not feasible or economically undesirable to produce an optimal
solution [31]. In particular, as we said above, the faster the disaster response,
the lower the losses incurred. We also assume that the agents are situated in an
open [12] system, that is, at any time agents can join in or leave, and new tasks
can appear.

To date, the most effective way of solving the CFSTP is to reduce it to
a Distributed Constraint Optimisation Problem (DCOP) [9] and solve it with
the Max-Sum algorithm [8]. The variants relevant to our scope are Fast Max-
Sum (FMS) [23] and Binary Max-Sum (BinaryMS) [22]. FMS has exponential
time, but it can find optimal solutions when the problem is represented by an
acyclic factor graph On the other hand, BinaryMS can only find approximate
solutions, but it has polynomial time. Nonetheless, since they are both based
on binary decision variables, they require a pre-processing phase with expo-
nential time to solve CFSTP instances with n-ary decision variables. Multi-
agent approaches that solve problems similar to the CFSTP make use of social
insects [7], automated negotiation [10,11,29] and evolutionary computation [30],
but without considering the anytime property. In the iTax taxonomy of Kor-
sah et al. [17], the CFSTP is defined as a Cross-schedule Dependent Single-
Task Multi-Robot Time-extended Assignment (XD [ST-MR-TA]) problem [17].
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To date, the approaches proposed to solve XD [ST-MR-TA] problems utilise
linear programming [2,15,16], automated negotiation [18] and memetic algo-
rithms [19]. However, either they do not produce anytime solutions [18,19], or
do not have theoretical properties [2], or are based on a simpler model [14,16].

Against this background, we focus on the state-of-the-art algorithm to solve
the CFSTP, namely, the Coalition Formation with Look-Ahead (CFLA) algo-
rithm [24]. Our rationale is that CFLA is anytime and, although its computa-
tional time is exponential in the worst case, due to its design [24, Section 6] and
to the performance of current computers, a well-engineered implementation can
obtain a complete solution to problems with dozens of agents and hundreds of
tasks in minutes, when it is not necessary to terminate early. Specifically, this
paper advances the state of the art in the following ways.

– We design CFLA2, a novel variant of CFLA that minimises limitations and
improves performance.

– Since we cannot eliminate the limitations of CFLA in CFLA2, we propose
CTS, the first CFSTP solver to be simultaneously anytime, distributed and
with convergence guarantee. CTS asymptotically outperforms both CFLA
and CFLA2.

The rest of the paper is organised as follows. In Sect. 2, we give our CFSTP
model, while Sect. 3 details CFLA2. Given that CFLA2 keeps the main limita-
tions of CFLA, Sect. 4 presents the CTS algorithm. Section 5 reports an empir-
ical evaluation of CTS in settings where CFLA is very competitive, and Sect. 6
concludes.

2 Problem Formulation

In this section, we present a refined model of the CFSTP [24]. More precisely,
we extend the definition of coalition value, define the constraints with fewer and
simpler equations, and introduce the concept of solution degree.

2.1 Basic Definitions

Let V = {v1, . . . , vm} be a set of m tasks and A = {a1, . . . , an} be a set of n
agents. Although not necessary, it is typically assumed that m � n. Let LV and
LA be respectively the set of all possible task and agent locations, not necessarily
disjoint. Hence, more than one agent or task can be at the same location. Time
t is discrete, that is, t ∈ N, each problem starts at t = 0 and agents travel or
execute tasks in measurable time units. The time units needed by an agent to
travel from one location to another are given by ρ : A × (LA ∪ LV ) × LV → N.
Unlike [24], we put A in the domain of ρ to characterise agents with different
speeds. In real-world scenarios, this avoids approximating different speeds to the
same one. Task locations do not change over time, while agent locations can.
Each task v has a demand Dv = {wv, dv}, where wv ∈ R

+ is the workload of v,
or the amount of work required to complete v, and dv ∈ N is the deadline of v,
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or the time until which agents can work on v. Our notion of work will be clear
in Sect. 2.3. Hence, workloads can only be positive, and some tasks may have
a deadline of zero. In other words, a problem may have tasks that cannot be
completed in time, independently of the algorithm chosen to solve it. Tasks can
be heterogeneous, in the sense that they may have different demands. We denote
the location of agent a at time t by lta ∈ LA ∪ LV , the times at which a starts
and finishes working on task v by sv

a ∈ [0, dv] and fv
a ∈ [sv

a, dv], respectively, and
the latest deadline by dmax = maxv∈V dv.

2.2 Coalition Allocations

Agents are cooperative [28] and can work together to complete a task. A subset
of agents C ⊆ A is called a coalition. At time t, the rationale for allocating
coalition C to task v is that C completes v in the fewest time units. An agent
allocation is denoted by τa→v

t and represents the fact that agent a works on task
v at time t. The set of all agent allocations is denoted by:

T = {τa→v
t }a∈A, v∈V, t∈[0, dmax] (1)

and contains all possible agent allocations. A coalition allocation is denoted by
τC→v
t and represents the fact that coalition C works on task v at time t. Given

a set of agent allocations T ′ ⊆ T , and a time t′ ≤ dmax, the set of coalition
allocations corresponding to T ′ over the time period [0, t′] is denoted by:

Γ (T ′, t′) =
{
τC→v
t |C = {a | τa→v

t ∈ T ′} , t ≤ t′
}

(2)

Furthermore, the set of all coalition allocations is denoted by:

Γ = Γ (T, dmax) (3)

Similar to T , Γ contains all possible coalition allocations. An agent allocation
τa→v
t is also denoted as a singleton coalition allocation τ

{a}→v
t .

2.3 Coalition Values

Each coalition allocation has a coalition value, given by the function u :
P (A) × V → R≥0, where P (A) denotes the power set of A and R≥0 denotes
the set of non-negative real numbers. Unlike [24], we put V in the domain of
u to characterise the fact that the same coalition may execute different tasks
with different performances. Hence, given a coalition allocation τC→v

t , the value
u(C, v) expresses the amount of work that coalition C does on task v at each
time t. The workload wv decreases linearly over time, depending only on u(C, v).
Coalition values are not necessarily superadditive [25], that is, in general u(C, v)
is not required to increase with |C|.
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2.4 Constraints

There are three constraint types: structural, temporal and spatial. Structural
constraints require that each task v can be allocated to only one coalition at a
time. This is characterised by the following sets:

∀v ∈ V, Γv =
{

Γ ′ ⊆ Γ : τC1→v
t , τC2→v

t ∈ Γ ′ =⇒ C1 = C2

}
(4)

With an abuse of notation, we write τC→v
t ∈ Γv to indicate that τC→v

t belongs
to a not specified set of Γv.

Temporal constraints require that each task v can be completed only within
its deadline dv. This is characterised by the function Δ : V ×Γ → {0, 1}, defined
as follows:

Δ(v, Γ ) =

{
1, if ∃ t ≤ dv :

∑
t′≤t, τC→v

t′ ∈Γv
u(C, v) ≥ wv

0, otherwise
(5)

Equation 5 utilises Γv (Eq. 4) to count only well-formed coalition allocations (i.e.,
that satisfy the structural constraints).

Spatial constraints require that an agent will not start working on a task
before reaching it. This is characterised as follows:

∀a ∈ A, ∀v ∈ V,∀t ≤ dv, sv
a ≥ t + ρ(a, lta, lv) (6)

∀a ∈ A,∀v1, v2 ∈ V, fv1
a + ρ(a, lv1 , lv2) ≤ sv2

a (7)

A set of agent allocations T ′ ⊆ T is called legal if it exists a time t′ ≤ dmax

such that Γ (T ′, t′) satisfies Eq. 5. A set of coalition allocations Γ ′ ⊆ Γ that
satisfies Eqs. 5, 6 and 7 is called feasible. Consequently, at time t, if τC1→v1

t and
τC2→v2
t are feasible coalition allocations and lv1 �= lv2 , then C1 ∩ C2 = ∅.

2.5 Objective Function

The objective function of the CFSTP is to find a feasible set of coalition alloca-
tions that maximises the number of completed tasks:

arg max
Γ ′⊆Γ

∑

v∈V

Δ(v, Γ ′) subject to Equations 6 and 7 (8)

To solve Eq. 8, an exhaustive search may require to verify all the possible
agent allocations until dmax. Consequently, the time complexity of solving the
CFSTP is O(|A| · |V |! · (dmax)|V |) [24].

A feasible set of coalition allocations Γ ′ ⊆ Γ is called a solution with degree
k if

∑
v∈V Δ(v, Γ ′) = k, with 0 < k ≤ |V |. Moreover, Γ ′ is called a partial

solution if k ≤ |V | and an optimal solution1 if k = |V |. Hence, the argument of
the maxima in Eq. 8 is a solution with the highest degree.

Ramchurn et al. [24] proved that the CFSTP is NP-hard [21], and a gener-
alisation of the Team Orienteering Problem [3], which is a generalisation of the
Travelling Salesman Problem [27]. As we said in Sect. 1, CFLA is the state-of-
the-art CFSTP solver. In the next section, we show how to improve it.
1 Optimal solutions might not exist (Sect. 2.1).
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3 Coalition Formation with Improved Look-Ahead

We now present the Coalition Formation with improved Look-Ahead (CFLA2),
an extension of the CFLA algorithm [24]. More precisely, its look-ahead tech-
nique (Sect. 3.4) has two modifications that, as we shall see in Sect. 5, enhance
the overall performance.

The concept of CFLA2 is the same as CFLA, but for completeness we briefly
report it in Sect. 3.1. After that, we detail the procedures that compose CFLA2,
explaining how they differ from the ones of CFLA. Finally, we list the limitations
that CFLA2 continues to keep from CFLA, which are the rationale for our new
algorithm in Sect. 4.

CFLA and CFLA2 have the same four phases, but [24] describes them in
three algorithms. For readability purposes, we describe them in four algorithms.

3.1 The Concept of CFLA2

CFLA2 is a centralised, anytime and greedy algorithm that solves Eq. 8 by max-
imising the working time of the agents and minimising the time required by
coalitions to complete tasks. It is divided into four phases:

1. Defining the legal agent allocations (Sect. 3.2).
2. For each task v, choosing the best coalition C (Sect. 3.3).
3. For each task v, doing a 1-step look-ahead (Sect. 3.4) to define its degree δv,

or the number of tasks that can be completed after the completion of v.
4. At each time t ∈ [0, dmax], allocating a task not yet completed and with the

highest degree (Sect. 3.5).

3.2 Phase 1: Defining the Legal Agent Allocations

At time t, Algorithm 1 determines which free agents2 (At
free) can reach which

uncompleted tasks (Vunc) before their deadlines. The resulting set of legal agent
allocations is denoted by Lt. This phase is identical in CFLA.

3.3 Phase 2: Selecting the Best Coalition for Each Task

Given a task v and a set of legal agent allocations Lt (computed by Algorithm 1),
Algorithm 2 returns the Earliest-Completion-First (ECF) coalition C∗

v that can
be allocated to v. More precisely, the algorithm minimises both the size of C∗

v

and the time at which it completes v. This is achieved by iterating from the
smallest to the largest possible coalition size (Line 5) and iterating through all
the possible coalitions of each size (Line 6). When the procedure finds a coalition
C that can complete v within its deadline dv (Line 7), then |C| is the minimum
size of the coalitions that can complete v. Hence, C∗

v is identified among the
coalitions that have size |C| (lines 8–11).

2 That is, agents who neither are travelling to nor working on a task.
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Algorithm 1: getLegalAgentAllocations (Phase 1 of CFLA2)
Input: time t
Output: the set of legal agent allocations at time t

1 Lt ← ∅
2 for a ∈ At

free do // for each free agent a
3 for v ∈ Vunc do // for each uncompleted task v
4 if t + ρ(a, lta, lv) ≤ dv then // if a can reach v at t within dv

5 Lt ← Lt ∪ {τa→v
t′ }t+ρ(a,lta,lv)≤t′≤dv

Algorithm 2: ECF (Phase 2 of CFLA2)
Input: task v, a set of legal agent allocations Lt

Output: ECF coalition C
1 At

v ← define from Lt the agents that can reach v at t within dv

2 C∗
v ← ∅ // the ECF coalition

3 t∗
v ← dv + 1 // time at which C∗

v completes v
4 i ← 1
5 while i ≤ |At

v| and C∗
v = ∅ do

6 for C ∈ all combinations of i agents in At
v do

7 if
∑

τC→v
t′ ∈Γv , C′⊆C, t′∈[t,dv ]

u(C, v) ≥ wv then

8 tminmax ← mintmax

(
wv − ∑

τC→v
t′ ∈Γv , C′⊆C, t′∈[t,tmax] u(C, v)

)

9 if tminmax < t∗
v then

10 t∗
v ← tminmax

11 C∗
v ← C

12 i ← i + 1

Unlike the original formulation [24, Algorithm 2], Algorithm 2 clarifies that
the minimum coalition size has to be determined by iterating through the subsets
of the combinations3 of At

v, which is the set of free agents that at time t can
reach v within dv.

3.4 Phase 3: Defining the Degree of Each Task

Given a task v, Algorithm 3 performs a 1-step look-ahead technique (i.e., a brute
force procedure) to define its degree δv (Sect. 3.1). At Line 8, with a procedure
similar to Line 5 in Algorithm2, it checks how many tasks can be completed
after the completion of v.

Algorithm 3 differs from the original [24, Algorithm 3] in two points. First,
it only considers uncompleted tasks that have a deadline greater or equal to dv

(Line 4). This prevents from counting tasks that can be completed before the

3 To date, the most efficient technique to enumerate all such combinations is the Gray
binary code [6, Section 7.2.1.1].
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Algorithm 3: lookAhead (Phase 3 of CFLA2)
Input: task v, its ECF coalition C∗

v , the set of all agent allocations T
Output: the degree δv of task v

1 δv ← 0
2 fv ← time at which C∗

v completes v
3 for v2 ∈ Vunc \ {v} do
4 if dv2 ≥ dv then

5 Afv
free ← agents that are free at fv // derived from C∗

v and T

6 Adv2 ← select from Afv
free the agents that can reach v2 within dv2

7 i ← 1

8 while i ≤ |Adv2 | do
9 for C ∈ all combinations of i agents in Adv2 do

// if C can complete v2
10 if

∑
τC′→v
t ∈Γv , C′⊆C, t∈[fv,dv2 ]

u(C, v) ≥ wv then

11 δv ← δv + 1 + (1 − ηv2)

12 i ← |Adv2 | // break external loop too

13 break

14 i ← i + 1

completion of v. In fact, as defined in Sect. 3.1, δv represents the number of tasks
that can be completed only after the completion of v. Second, at Line 11, δv is
not just incremented by 1, but also by 1 − ηv2 , where ηv2 is the normalisation
of wv2 in the interval [wmin, wmax], with wmin and wmax being respectively the
minimum and maximum task workloads. Hence, δv is also a measure of how much
total workload is left after the completion of v. When δv is maximised (Line 12 of
Algorithm 4), it leads to the remaining tasks with the smallest workloads, thus
increasing the probability of completing more.

3.5 Phase 4: Overall Procedure of CFLA2

Algorithm 4 shows the overall procedure. The repeat-until loop is performed until
all tasks are completed or the latest deadline is expired (Line 22). At each time t,
first the set of legal agent allocations is updated (Line 8), then a task allocation
is defined (Lines 9–18). If no other tasks can be allocated, the algorithm stops
early (Line 19).

3.6 Analysis and Discussion

Algorithm 1 iterates through all free agents and uncompleted tasks. Assuming
that Line 4 requires constant time, the time complexity is α = O(|A| · |V |).

Algorithm 2 iterates (Line 5) from coalition size 1 to |At
v|, where At

v is the
set of agents that can reach task v at time t. This requires O(|A|) time in case
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Algorithm 4: Overall procedure (Phase 4 of CFLA2)
1 t ← 0
2 T ← {τa→v

t }a∈A, v∈V, t∈[0, dmax] // the set of all agent allocations

3 Vunc ← V // uncompleted tasks

4 repeat
5 δmax ← 0 // maximum task degree

6 v∗ ← nil // next task to allocate

7 C∗ ← ∅ // coalition to which v∗ is allocated

8 Lt ← getLegalAgentAllocations(t) // Algorithm 1

9 for v ∈ Vunc do
10 C∗

v ← ECF(v, Lt) // Algorithm 2

11 δv ← lookAhead(v, C∗
v , T ) // Algorithm 3

12 if δv > δmax then
13 δmax ← δv

14 C∗ ← C∗
v

15 if v∗ �= nil and C∗ �= ∅ then
16 Allocate C∗ to v∗

17 Vunc ← Vunc \ {v∗}
18 Reduce T according to new agent locations and availability

19 if At
free = A then // all agents are free

20 break

21 t ← t + 1

22 until Vunc = ∅ or t > dmax

At
v = A. For each s ≤ |At

v|, all possible coalitions of size s could be examined
(Line 6), which requires O(2|A|) time. Assuming that Line 8 requires O(dmax)
time, the total time complexity is β = O(|A| · 2|A| · dmax).

Algorithm 3 iterates through all uncompleted tasks, which requires O(|V |)
time, while Line 8 is computationally identical to Line 5 in Algorithm2. Hence,
the time complexity is γ = O(|V | ·2|A|). Since it uses all the previous algorithms,
Algorithm 4 has a time complexity of:

O (dmax · (α + |V | · (β + γ))) = O
(
(dmax · |V |)2 · 2|A|

)
(9)

Therefore, despite having a lower complexity than an optimal CFSTP solver
(Sect. 2.5), CFLA2 has a run-time that increases quadratically with the number
of tasks and exponentially with the number of agents, which makes it not suitable
for systems with limited computational power or real-time applications. Other
limitations are as follows.

1. It can allocate at most one task per time unit [24, Section 7]. More formally, at
each time unit, the best-case guarantee of CFLA2 is to find a partial solution
with degree k = 1.

2. In general, greedily allocating a task with the highest degree now does not
ensure that uncompleted tasks can all be successfully allocated in future.
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This is particularly relevant in an open system, where there is no certainty
of having further uncompleted tasks (Sect. 1).

3. The more the tasks can be grouped by degree, the more the look-ahead tech-
nique becomes a costly random choice. In other words, at time t, if some tasks
V

′ ⊆ V have all maximum degree, then Algorithm 4 selects v∗ randomly from
V

′
. Hence, the larger V

′
is, the less relevant Algorithm 3 becomes.

4. In Algorithm 4, all tasks have the same weight. That is, tasks with earlier
deadlines may not be allocated before tasks with later deadlines. This is
independent of the order in which the uncompleted tasks are elaborated (Line
9). In fact, the computation of δmax (Line 12) would not be affected.

To overcome the limitations of CFLA2, in the next section we present CTS,
a CFSTP solver that is simultaneously anytime, efficient and with convergence
guarantee, both in closed and open systems.

4 Cluster-Based Task Scheduling

The Cluster-based Task Scheduling (CTS) is a centralised, anytime and greedy
algorithm4 that operates at the agent level, rather than at the coalition level. It
is divided into the following two phases.

1. For each agent a, defining a task v such that v is the closest to a and dv is
minimal.

2. For each task v, defining the coalition of agents to which v has to be allocated.

Algorithm 5 is used in Phase 1, while Algorithm 6 enacts the two phases. We
describe them respectively in Sects. 4.1 and 4.2.

4.1 Selecting the Best Task for Each Agent

Given a time t and an agent a, Algorithm 5 returns the uncompleted task v
that is allocable, the most urgent and closest to a. By allocable we mean that a
can reach v before deadline dv, while most urgent means that v has the earliest
deadline. The algorithm prioritises unallocated tasks, that is, it first tries to find
a task to which no agents are travelling, and on which no agents are working
(vt

a[0]). Otherwise, it returns an already allocated but still uncompleted task such
that a can reach it and contribute to its completion (vt

a[1]). This ensures that
an agent becomes free only when no other tasks are allocable and uncompleted.

Algorithm 5 does not enforce temporal constraints. As we shall see in
Sect. 4.2, it is Algorithm 6 that does it, by allocating a task v to a coalition
C only when C has the minimum size and can complete v within dv.

4 Both CFLA2 and CTS are greedy. However, as we show below, only CTS can be
proven correct in general settings.
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Algorithm 5: getTaskAllocableToAgent (used in Phase 1 of CTS)
Input: time t, agent a

1 vt
a ← (nil, nil) // array in which vt

a[0] (resp. vt
a[1]) is the unallocated (resp.

allocated) task allocable to agent a at time t

2 tmin ← (dmax + 1, dmax + 1) // array in which tmin[0] (resp. tmin[1]) defines the

time units required by agent a to reach vt
a[0] (resp. vt

a[1])

3 dmin ← (dmax + 1, dmax + 1) // array in which dmin[0] (resp. dmin[1]) is the

deadline of vt
a[0] (resp. vt

a[1])

4 for v ∈ V do // for each uncompleted task

5 i ← 0 // v is unallocated

6 if other agents are travelling to or working on v then
7 i ← 1 // v is allocated but still uncompleted

8 tarr ← t + ρ(a, lta, lv)
9 if tarr ≤ dv and tarr < tmin[i] and dv < dmin[i] then

10 vt
a[i] ← v

11 tmin[i] ← tarr

12 dmin[i] ← dv

13 if vt
a[0] �= nil then // prioritise unallocated tasks

14 return vt
a[0]

15 return vt
a[1]

4.2 Overall Procedure of CTS

The overall procedure is described in Algorithm 6. The repeat-until loop is the
same as CFLA2, to preserve the anytime property. Phases 1 and 2 are represented
respectively by the loops at Lines 5 and 16.

Phase 1 loops through all agents. Here, an agent a may either be free or
reaching a task location. In the first case (Line 6), if an uncompleted task v can
be allocated to a (Lines 7 − 8), then v is flagged as allocable (Line 9) and a is
added to the set of agents At

v to which v could be allocated at time t (Line 11).
In the second case (Line 12), a is travelling to a task v, hence its location is
updated (Line 13) and, if it reached v, it is set to working on v (Line 14).

Phase 2 visits each uncompleted task v. If v is allocable (Line 18) then it is
allocated to the smallest coalition of agents in At

v (defined in Phase 1) that can
complete it (Lines 19 − 32). In particular, at Lines 24 − 27, ϕv is the amount of
workload wv done by all the coalitions formed after the arrival to v of the first
i − 1 agents in Πt

v (defined at Line 19). After that, if there are agents working
on v (Line 33), its workload wv is decreased accordingly (Line 34). If wv drops
to zero or below, then v is completed (Lines 35− 37). The algorithm stops (Line
39) when all the tasks have been completed, or the latest deadline is expired, or
no other tasks are allocable and uncompleted (Sect. 4.1).



600 L. Capezzuto et al.

Algorithm 6: Overall procedure of CTS (Phases 1 and 2)
Input: tasks V , agents A, task locations LV , initial agent locations LA, task

demands {Dv}v∈V

Output: A set of coalition allocations Γ ′

1 t ← 0
2 Γ ′ ← ∅ // the partial solution to return

3 Vallocable ← ∅ // allocable tasks

4 repeat
5 for a ∈ A do // Phase 1
6 if a ∈ At

free then
7 v ← getTaskAllocableToAgent(t, a) // Algorithm 5

8 if v �= nil then
9 if v �∈ Vallocable then

10 Vallocable ← Vallocable ∪ {v}
11 At

v ← At
v ∪ {a}

12 else
13 Update a’s location
14 if a reached the task v it was assigned to then
15 Set a’s status to working on v

16 for v ∈ V do // Phase 2
17 Ct

v ← all agents working on v at time t
18 if v ∈ Vallocable then
19 Πt

v ← list of all agents in At
v sorted by arrival time to v

20 C∗ ← ∅
21 for i ← 1 to |Πt

v| do
22 C∗ ← first i agents in Πt

v

23 λi ← arrival time to v of the i-th agent in Πt
v

24 if i + 1 ≤ |Πt
v| then

25 λi+1 ← arrival time to v of the (i + 1)-th agent in Πt
v

26 else
27 λi+1 ← dv

28 ϕv ← ϕv + (λi + λi+1) · u(C∗ ∪ Ct
v, v) // wv done at λi+1

29 if (dv − λi) · u(C∗, v) ≥ wv − ϕv then
30 break // C∗ is the minimum coalition to complete v

31 Tv =
⋃

a∈C∗
{
τa→v

λa

}
// λa is a’s arrival time to v

32 Γ ′ ← Γ ′ ∪ Γ (Tv, t) // add Γ (Tv, t) (Section 2.2) to Γ ′

33 Vallocable ← Vallocable \ {v}
34 if Ct

v �= ∅ then
35 wv ← wv − u(Ct

v, v)
36 if wv ≤ 0 then
37 Set free all agents in Ct

v

38 V ← V \ {v}

39 t ← t + 1

40 until V = ∅ or t > dmax or all agents are free
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4.3 Analysis and Discussion

The approach of CTS transforms the CFSTP from a 1 − k task allocation to a
series of 1 − 1 task allocations. In other words, instead of allocating each task
to a coalition of k agents, we have that coalitions are formed by clustering (i.e.,
grouping) agents based on the closest and most urgent tasks. This enacts an
‘elegibility’ criterion: unlike CFLA2, CTS exploits the distances between agents
and tasks and the speeds of agents to reduce the time needed to define coalition
allocations. Algorithm5 runs in ψ = O(|V |) time, assuming that the operation
at Line 8 has constant time. In Algorithm 6, the time complexity of Phase 1 is
O(|A| · ψ) = O(|A| · |V |), while Phase 2 runs in O(|V | · |A| log |A|) because: in
the worst case, At

v = A and Line 19 sorts A in Ω(|A| · log |A|) time using any
comparison sort algorithm [5]; the loop at Line 21 runs in O(|A|) time. Since
the repeat-until loop is executed at most dmax times, the time complexity of
Algorithm 6 is:

O (dmax · |V | · |A| log |A|) (10)

If both phases are executed in parallel, the time complexity is reduced to:

Ω (dmax · (|V | + |A| log |A|)) (11)

CTS does not have the limitations of CFLA2 because:

1. It can allocate at least one task per time unit. More formally, at each time
unit, if one or more tasks are allocable, CTS guarantees to find a partial
solution with degree 1 ≤ k ≤ |A|.

2. It runs in polynomial time and does not use a look-ahead technique. Thus, it
is efficient and can be used in open systems.

Theorem 1. CTS is correct.

Proof. We prove by induction on time t.
At t = 0, a task v is selected for each agent a such that v is allocable, the

most urgent and closest to a (Sect. 4.1). This implies that the agent allocation
τa→v
0 is legal (Sect. 2.4). Then, Phase 2 of Algorithm 6 (Sect. 4.2) allocates v

to a only if it exists a coalition C such that |C| is minimum, τC→v
0 is feasible

(Sect. 2.4) and a ∈ C.
At t > 0, for each agent a, there are two possible cases: a task v has been

allocated to a at time t′ < t, or a is free (i.e., idle). In the first case, a is either
reaching or working on v (Lines 12 − 15 in Algorithm 6), hence τa→v

t is legal
and τC→v

t is feasible, where a ∈ C. In the second case, a is either at its initial
location or at the location of a task on which it finished working at time t′ < t.
Thus, as in the base case, if it exists a coalition C and a task v such that |C| is
minimum, τC→v

t is feasible and a ∈ C, then v is allocated to a.

As shown in the two previous sections, Algorithm5 iterates exactly once over
a finite set of uncompleted tasks, while the repeat-until loop of Algorithm 6 is
executed at most dmax times. Hence, Theorem 1 also implies that CTS converges
to a partial solution, if it exists.
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The counterexample given by Limitation 2 in Sect. 3.6 does not allow to
prove the convergence of CFLA and CFLA2 in general settings. Since no current
algorithm that solves the CFSTP is simultaneously anytime, efficient and with
convergence guarantee (Sect. 1), CTS is the first of its kind.

5 Comparison Tests

We implemented CFLA, CFLA2 and CTS in Java5, and replicated the experi-
mental setup of [24] because we wanted to evaluate how well CFLA2 and CTS
perform in settings where the look-ahead technique is highly effective. For each
test configuration, we solved 100 random CFSTP instances and plotted the aver-
age and standard deviation of: percentage of completed tasks; agent travel time
(Sect. 2.1); task completion time, or the time at which a task has no workload left;
problem completion time, or the time at which no other tasks can be allocated.

5.1 Setup

Let U(l, u) and U I(l, u) be respectively a uniform real distribution and a uniform
integer distribution with lower bound l and upper bond u. Our parameters are
defined as follows:

– All agents have the same speed.
– The initial agent locations are randomly chosen on a 50 by 50 grid, where the

travel time of agent a between two points is given by the Manhattan distance
(i.e., the taxicab metric or �1 norm) divided by the speed of a.

– Tasks are fixed to 300, while agents range from 2 to 40, in intervals of 2
between 2 and 20 agents, and in intervals of 5 between 20 and 40 agents.

– The coalition values are defined as u(C, v) = |C|·k, where k ∼ U(1, 2). Hence,
coalition values depend only on the number of agents involved, and all tasks
have the same difficulty.

– Deadlines dv ∼ U I(5, 600) and workloads wv ∼ U I(10, 50).

Unlike [24], we set the number of maximum agents to 40 instead of 20, because
it allows in this setup to complete all tasks in some instances. We did not perform
a comparison on larger instances due to the run-time of CFLA and CFLA2
(Sect. 3.6). In fact, while CTS takes seconds to solve instances with thousands
of agents and tasks, CFLA and CFLA2 take days. Consequently, the purpose of
these tests is to highlight the performance of CTS using CFLA and CFLA2 as
a baseline. We aim to verify the scalability of CTS in future investigation.

5.2 Results

In terms of completed tasks (Fig. 1a), the best performing algorithm for instances
with up to 18 agents is CFLA2, while the best performing algorithm for instances

5 https://gitlab.com/lcpz/cfstp.

https://gitlab.com/lcpz/cfstp
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Fig. 1. Comparison of CFLA, CFLA2 and CTS on CFSTP instances with linear coali-
tion values. In each figure, each point is the avg ± std/2, where avg is the average over
100 problems of the value indicated on the Y-axis and std is the standard deviation of
avg. The tasks are fixed to 300, while the number of agents is denoted by the X-axis.

with at least 20 agents is CTS. CFLA is outperformed by CFLA2 in all instances
except those with 2 agents, and by CTS in instances with at least 10 agents. The
reason why the performance of CFLA and CFLA2 does not improve significantly
starting from instances with 20 agents is that the more agents (with random
initial locations) there are, the more tasks are likely to be grouped by degree6.
CFLA2 has a trend similar to that of CFLA because it has the same limitations,
but it performs better due to its improved look-ahead technique. CTS is not
the best in all instances because its average task completion time is the highest
(see the discussion on Fig. 1c below). This implies that the fewer the agents, the
more tasks may expire before they can be allocated. In our setup, 10 (resp. 20)

6 See Limitation 3 described in Sect. 3.6.



604 L. Capezzuto et al.

is the number of agents starting from which this behaviour is contained enough
to allow CTS to outperform CFLA (resp. CFLA2).

Regarding agent travel times (Fig. 1b), it can be seen that CTS is up to three
times more efficient than CFLA and CFLA2. This is due to Algorithm 5, which
allocates tasks to agents also based on their proximity. CFLA2 has lower agent
travel times than CFLA for the following reason. The degree computation in
CFLA2 also considers how much total workload would be left (Sect. 3.4). Higher
degrees correspond to lower workloads, and the tasks with lower workloads are
completed first. Thus, the tasks are less grouped by degree, and more are likely
to be completed. This means that the average distance between task locations
in a CFLA2 solution may be lower than that of a CFLA solution. The agent
travel times increase with all algorithms. This behaviour is also reported, but
not explained, by Ramchurn et al. [24]. To explain it, let us consider a toy
problem with one agent a1 and one task v. If we introduce a new agent a2 such
that ρ(a2, l

0
a2

, lv) > ρ(a1, l
0
a1

, lv), then the average travel time increases. In our
setup, this happens because the initial agent locations are random.

In general, task completion times (Fig. 1c) decrease because the more agents
there are, the faster the tasks are completed. The completion of task v is related
to the size of the coalition C to which v is allocated: the highest the completion
time, the smallest the size of C, hence the highest the working time of the agents
in C. Task completion times are inversely related to agent travel times. Since CTS
has the smallest agent travel times and allocates tasks to the smallest coalitions,
it consequently has the highest task completion times. Therefore, in CTS, agents
work the highest amount of times, and the number of tasks attempted at any
one time is the largest.

The problem completion times (Fig. 1d) are in line with the task completion
times (Fig. 1c) since the faster the tasks are completed, the less time is needed
to solve the problem. The reason why the times of CFLA and CFLA2 do not
decrease significantly from 20 agents up is linked to their performance (see the
discussion on Fig. 1a above). On the other hand, the fact that the times of CTS
decrease more consistently than those of CFLA and CFLA2 indicates that CTS
is the most efficient asymptotically. In other words, CTS is likely to solve large
problems in fewer time units than CFLA and CFLA2.

In terms of computational times, CTS is significantly faster than CFLA and
CFLA2. For example, in instances with 40 agents and 300 tasks, on average7 CTS
is 45106%± [2625, 32019] (resp. 27160%± [1615, 20980]) faster than CFLA (resp.
CFLA2). The run-time improvement of CFLA2 is due to Line 4 of Algorithm 3,
due to which the look-ahead technique elaborates fewer tasks.

6 Conclusions

In this paper, we proposed two novel algorithms to solve the CFSTP. The first
is CFLA2, an improved version of the CFLA, and the second is CTS, which is
7 On a machine with an Intel Core i5-4690 processor (quad-core 3.5 GHz, no Hyper-

Threading) and 8 GB DDR3-1600 RAM.
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the first to be simultaneously anytime, efficient and with convergence guarantee.
CFLA2 can be used in place of CFLA in offline situations or for small problems,
while CTS provides a baseline for benchmarks with dynamic and large prob-
lems. Because it significantly outperforms CFLA and is more applicable than
CFLA2, we can consider CTS to be the new state-of-the-art algorithm to solve
the CFSTP.

The limitation of CTS is that it cannot define the quality of its approximation
(Sect. 4.3). Moreover, the fact that it maximises the agent working times (Sect. 5)
implies that some agents may take longer to complete some tasks and therefore
may not work on others. Thus, if an optimal solution exists, in general CTS
cannot guarantee to obtain it.

Future work aims at creating a distributed version of CTS, and extending
it to give quality guarantees on the solutions found. We also want to test on
hard problems generated with the RoboCup rescue simulation, and to define a
large-scale CFSTP benchmark from real-world datasets.
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