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Abstract Big data analytics platforms are designed to improve performance by
avoiding the extract transfer load approach. Also, there are techniques which have
worked very well in performance optimization for relational databases. Yet these
techniques are in the process of integration into big data analytics. Indexing and its
data structure is an example of such techniques. Despite its popularity in query opti-
mization for efficient data mining, the indexing was not integrated into the MapRe-
duce platform. By design the MapReduce was made to perform a full scan of the
input data. However, there were attempts made to incorporate the indexing for perfor-
mance improvement in MapReduce in recent years. However, these attempts have
not exhausted the potentials of indexing in the MapReduce query processing. Conse-
quently, this chapter presents an indexing approach that uses the partitioned B+-Tree
as its data structure to index the InputSplit component of the Hadoop distributed
file system. This was done to achieve efficient data mining query processing when
used with the Hadoop MapReduce. The results of this study showed that the proposed
index method has significantly reduced the index size as well as the execution runtime
of all search queries by at least 50% for all the used data sizes when compared with
the Normal MapReduce processing and another clustered index approach. Thus, the
use of the proposed index approach has the potential to significantly reduce the time
taken in mining data within a dataset by half.
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1 Introduction

Indexing, as an information retrieval technique, is the process of generating all the
suitable data structures that allow for efficient retrieval of stored information [9, 21].
The term index referred to the suitable data structure needed to allow for the efficient
information retrieval [21]. The data structures used in index in most cases do not
store the information itself rather it uses other data structures and pointers to locate
where the data has been stored. Also, the indexing have played a very important role
in performance improvement of relational databases. The indexing techniques in
relational database management systems (RDBMS) are well developed and matured
[9, 18].

However, in big data analytics the indexing concept is still at the developmental
stage and needs more attention from researchers as pointed out by Yang and Parker
[34], An [2], Richter et al. [25] and Sevugan et al. [28]. There are two indexing
concepts when it comes to indexing in big data analytics. The first one is the document
indexing, which is the use of the MapReduce process to index the contents of any
stored document for easy retrieval. Usually, the most used indexing technique for
this task is the inverted index [21]. In this concept the main goal of the MapReduce
job is the indexing of content of the document itself [20]. Early works of indexing
in MapReduce were concentrated on this aspect. This was supported by the fact that
the developers of MapReduce (Google) dealt mainly with searching through large
document datasets [6, 7, 31]. Basically the search engine companies are interested
in fast retrieval of their queried stored data [15, 18, 19, 30, 35].

The second concept is indexing for speeding up the process of the MapReduce’s
job execution. The indexing here performs the same function it does with the tradi-
tional databases of restricting the query processing to only the input data to be affected
by any given query [2, 5, 10, 17, 34]. This indexing is similar to the one found in most
structured query language (SQL)-on-Hadoop, and even in other variants of distributed
files systems (DFS), like BigTable. However, the way and manner in which the index
approach works in the traditional database, SQL-on-Hadoop and even on table-based
DFS, is that it is usually based on the storage structure, i.e., table for those platforms
that use tables as storage structure [14, 16, 19]. This fact means that indexes are
usually provided for each table making the amount of data to be scanned before
query processing to increase. On the contrary, the user-defined indexing approach is
quite different when it is used directly on Hadoop, where Hadoop distributed files
systems (HDFS) components that handle the stored data are indexed [22, 33].

Particularly in the case of MapReduce, this indexing concept ensures the scanning
of only those blocks/chunks/splits that are targeted by the query to be processed. The
study presented in this chapter is focused on this second indexing concept as a way
of improving big data analytics using the MapReduce programming paradigm for
data mining [14].

This concept of indexing, if integrated into the MapReduce execution process can
help solve the following problems: (1) The scanning of the whole input data, (2)
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The same ways of handling both low and high selectivity tasks and (3) The lack of
robust access method for information retrieval in online access processing (OLAP)
situations.

In an effort to overcome these problems some researchers have attempted to
incorporate the indexing mechanism into the MapReduce framework. For instance,
Yang and Parker [34] have employed HDEFS files as B-Tree nodes to achieve indexing.
Also, An [2] used blocklds from the HDFES as B+Tree search keys for determining
the start and the end of the contiguous blocks to scan, which is used as index. In
addition, Richter et al. [25] used the copies of the replica stored by HDFS, to form a
clustered index of different data attributes that may likely be used as incoming query
predicates. Clustered indexes are built on those fields, which is subsequently used
for query processing.

In all of these studies, the authors used an indexing data structure that scale
logarithmically, thereby preventing the MapReduce from performing a full scan of
the input data. Thus, guiding the process is to just scan and process the data that
corresponds to the output of the indexes. Notwithstanding the prevention of full
scanning of the input data by these approaches, their indexes are built using all of the
keys from the stored data. So, the full scanning of the indexing structure itself is done
due to the nature of the components of the HDFS used. Furthermore, when the B-
Tree and B+-Tree as indexing data structures are used in MapReduce it can facilitate
the scanning of relevant portions of the stored data to answer range queries covering
small sections (low selectivity) or wider sections of the data (high selectivity).

However, the search algorithm in the B-Tree takes a non-uniform time for different
types of queries, due to the storing of the search key’s corresponding values/records
at all levels of the tree [29], while the search algorithm in the B+-Tree involves
searching the whole of the tree all the time [3]. This is relevant because the search
in the tree structures is the basic process that all other processes are based on. The
search algorithm of B-Tree has been improved in the B+-Tree variants and those
variants can be used to further improve the performance in the MapReduce query
processing.

Lastly, any indexing approach to be used in MapReduce should improve the two
problems mentioned for the effectiveness of MapReduce in mining data stored in the
warehouse for OLAP. Thus, the indexing approach proposed in the chapter chooses an
improved variant of the B+-Tree called partitioned B+Tree introduced by Abdullahi
et al. [1]. The partitioned B+-Tree provides an improved search algorithm, which
ensures reduced execution time for query retrieval. This fact is what influences a quick
record retrieval during mining of big data using MapReduce platforms [16, 26].

1.1 Objective of the Chapter

The main objective of this chapter was to present an indexing approach that puts
together partitioned B+-Tree as data structure and its algorithms for inserting and
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searching of data. The strategy of the proposed index approach is to restrict the
amount of the input data to be processed by the MapReduce platform to only the part
of the input data that is required for the query processing.

The remaining sections of the chapter are as follows: Sect. 2 presents the review
of the literatures, Sect. 3 discusses the methodology used in the study and Sect. 4
presents the experimental setup and the results of the experiments conducted. The
conclusion and future work are discussed in Sect. 6.

2 Literature Review

In this section the review of the two concepts of indexing that were used in
MapReduce is presented.

2.1 Inverted Index in MapReduce

The first concept of the indexing involves a simple inverted index which was said
to be implemented trivially in MapReduce as one of the effective tasks for textual
data retrieval. This was highlighted in the original paper on MapReduce [8] cited
by Graefe and Kuno [12] and discussed in Cao et al. [4], Stewart et al. [32] and
Mofidpoor et al. [22]. The inverted index works by parsing the split of the input data
to the map function, which performs the filtering of the data as defined in it and emits
a sequence of <key,value> pairs. Then, the reduce function accepts all of the pairs
of the same key, sorts the corresponding values and emits <key,list(value)> pair. The
set of all the output pairs form a simple inverted index. McCreadie, Macdonald and
Ounis [20] concluded that two interpretations of the above scenario can be a per-token
indexing or a per-term indexing in relation to the indexing of corpus datasets: The
per-token indexing strategy involves emitting <term,doc—ID> pairs for each token
in a document by the map function, while the reduce function does the aggregation
of each unique term with its corresponding doc-ID to obtain the term frequencies
(tf), after which the completed posting list for that term is written to a disk.

On the other hand, the per-term indexing is the one in which the map function
emits tuples in the form <term,(doc—ID,tf)> and this reduces the number of emitted
operations as only unique terms per document are emitted. The reduce function only
sorts the instances by document to obtain the final posting list sorted by ascending
doc-ID.

Apart from these two methods the inverted index is also used by MapRe-
duce to index a whole document in what is called per-document indexing. In
the per-document indexing, the map function emits tuples in the form of <docu-
ment,doc—ID>, while the reduce phase writes all the index structures. Though this
strategy emits fewer key/value pairs, the value of each pair emitted used to have
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more data and has a reduced intermediate result. Thus, this approach achieves higher
levels of compression than the single-term approaches. Also, the documents are easily
indexed on the same reduce task due to the sorting of the document names [20].

In addition, there is the per-posting list indexing. This approach is based on a
single-pass indexing, which splits data onto multiple map tasks with each operating
on its own data subset. The map task serves as the scanning phase of the single-pass
indexing. As this process runs on the document, a compressed posting list is built in
the memory for each term. This partial index is flushed by the map task when the
memory runs low or when all the documents are processed. The flushing is done by
emitting a set in the form of <term,postinglist> pairs for all the term present in the
memory. In all of these four strategies of document indexing in MapReduce the main
task focus is on and carried out by the MapReduce job, which is the indexing of the
document’s contents [20].

2.2 User-Defined Indexing in MapReduce

The indexing here focuses on restricting the query processing to include only those
parts of the input data to be effected by the query [2, 34]. For the MapReduce
framework, this concept achieves its purpose by only scanning of the blocks or splits
or files that contain the input data. This study has focused on the second indexing
concept as a way of improving big data analytics using the MapReduce programming
paradigm.

In big data analytics, the second indexing concept has been initially seen as being
less important or a costly one due to the fact that infrequent updating is not acommon
characteristic of big data. However, later works in the area indicated that indexing
can play a major role in the information retrieval aspect of the big data analytics. This
makes its benefit to surpass its cost. Yang and Parker [34], for instance, implemented
indexing by employing a HDFS file as B-Tree node. The index used by the authors is
considered non-clustered index [27]. This in turn was due to the fact that the reading
of the index is not done sequentially. Their approach adds a primitive function to
traverse the tree in order to locate the required segment of the data to be processed by
their improved Map-reduce-merge-traverse version of MapReduce. This introduction
of the B-Tree index has improved the performance of the MapReduce (changed to
Map-reduce-merge-traverse). The improvement is up to 50% and above for a three-
node cluster when compared to any number of nodes less than 10 with the normal
MapReduce.

On the other hand, An [2] used blockld as the B+-Tree’s search keys and the
offset of the keys as a value to build an index. The built index is stored in a HDFS
file as contiguous blocks rising from the node at the bottom to the root at the top.
The index-based execution of the MapReduce is done by first searching for the keys
that are contained in the queries’ predicate from the already built index. This is done
to determine the starting and the end of the contiguous blocks that represent the
search keys in the index. The blocklds that fall between the two points are those
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that are scanned for query processing by the MapReduce. With these two mentioned
techniques, the amount of data to be scanned by the MapReduce is restricted. The B+-
Tree with blocklds as the keys index scan for MapReduce, outperformed the normal
MapReduce by at most 50%, and below for varying percentage of I/O volume used
by in the study.

Furthermore, Richter et al. [25] used the copy of the replicas stored by the HDFS
to index different data attributes that may likely be used as predicates of incoming
queries. Their approach used a clustered index [24] based on each of these replicas.
The clustered index is first scanned to get the blockld of the data to be processed from
the index. Then, it uses the returned blocklds to locate the input data to be scanned
and used by the MapReduce for processing the query in the question. Then, it used
its customized input-split policy that helped their approach to determine the part of
the input data that could take part in the query processing. After the index result is
returned, the results of using their indexing with other Hadoop settings indicated a
20% reduction of the execution runtime.

3 Methodology

This section of the chapter discusses the methodology used in the study. It gives the
details of how various component of the study come together to achieve its object.
Figure 1 shows the overall picture of the proposed indexing scheme.
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Fig. 1 The block diagram of the scheme indexing for the MapReduce query processing
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The proposed approach basically consists of several components. They include
the query, which is the statement that specifies how the process should be done;
the rebuild index component, which is used for building and subsequent re-building
of the index when needed. Then, there is the search index component, which is
used for searching the index using the values provided in the query’s predicate. This
component searches and returns the location of the data required by the query. Lastly,
the scheme also has another component which is the query processing component.
This component does the actual processing of the query been issued.

The approach works first by building an index using partitioned B+-Tree (the data
structure) with search keys from the input data and their corresponding values (input-
splits) using the rebuild index component. The built index is stored in a temporary file
on the HDFS. When a query for certain processing is to be executed, its predicates
will first be used to search the index to get the input-splits using the search index
component. The search index component also uses the Pat B+-Tree to re-construct
the index and use it to search and return the targeted results.

By doing that, only the input-splits that cover the part of the input data that is
required by the query are returned and stored in yet another temporary file on the
HDFS. The returned input-splits are then read and used by the query processing
component to process the given query. The framework view of the approach’s
working flow, as mentioned, is captured in Fig. 1.

3.1 Partitioned B+-Tree

The partitioned B+-Tree mentioned is an adaptation of the partitioned B-Tree [11],
in which the author proposed the addition of an artificial lead key to the BTree. This
addition resulted in a logical partitioning of the B-Tree based on run generations that
feed the B-Tree during the initial index creation. Graefe [11] implemented his tree
based on the traditional B-Tree. However, in this study the same idea was imple-
mented with some improvements on B+Tree. The choice of partitioned B+-Tree for
this study was due to its performance in a preliminary experiment in comparison
with other variants of B+-Tree as reported in [1].

3.2 InputSplit as Component of Choice in the HDFS

The corresponding values for the search keys used by the proposed indexing approach
are the input-split components of the Hadoop distributed file system (HDFES). The
input-split is the HDFS’s feature that uniquely identifies the chunks of data that the
Hadoop made use of for the proper managing of the blocks of the stored data on its
HDFS [13, 23, 36].

The reason for choosing the input-split is because it provides a better balance
between the index size and searching cost on one side and the size of the input data
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to be scanned on the other. So, even if the blockld is to be used for indexing, the
input-splits that cover those blocks have to be generated first, before extracting the
blocklds from them.

Index Rebuild in MapReduce First, the index needs to be built over the complete
input data before it is used as mentioned earlier. A complete MapReduce program
is used to extract the HDFS components alongside the search key values from the
input data in order to build the index.

Figure 2 has shown the expanded version of the rebuild index block of Fig. 1;
here, the internal workings of the component are depicted. The rebuild index reads the
inputs from the stored data on the HDFS using its Mapper class called the RebuildIn-
dexMapper. This Mapper class has three methods, namely, setup(), map() and the
cleanup(). The setup() method takes a context variable of the context class type as
the argument. The context class is an optimized record reader/writer handler used
by the Hadoop. The setup() method used the variable to extract the Hadoop internal
component’s settings and properties. One such component is the input-split, which
is the targeted component for the proposed index approach as mentioned earlier.

Also, the context variable in the setup() method is used alongside the extracted
input-split to further get the properties of other components, such as the filename
of the input files. In some cases, the extracted filenames are concatenated with the
extracted values from the records in order to form unique search key values. The use
of the filename as part of the unique search key values is to avoid the treating of the
keys from files with the same values as one and the same entry.

HADOOP
HDFS
| Inputs I Temporary Files | |0utput [index |
A
" "Rebuild Index v :
i |RebuildindexMapper RebuildindexReducer :
. setup() E
5 Extracts '
InputSplits reduce()
File Name '
: = :
: map()
5 :
1 cleanup()
] cleanup() .
' Write ind \

Fig. 2 Block diagram for index building process
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However, if the input data is contained in a larger file, then only the unique key
values will be extracted and used as the index search keys.

Then, the map() method of the RebuildIndexMapper class reads each record from
the input file(s) using its defined key/value arguments. The method passes the values
as arguments to an external method. The function of this external method is just to
extract and return the values designated for use as the index search keys. After that,
the input data is grouped in small files with similar values in the field intended for
use in the index.

Then, the map() method concatenates the returned values with the file names
extracted in the setup() method to form the unique search key values; else, the returned
values from the extra method are used as the search keys. The search key extracted
formed together with the input-split for each record are passed to the Pat B+-Tree
for index building.

Furthermore, the index building is done by the build() method of the Pat B+-Tree.
The build() builds the tree as the Map() method iterates over the input records and
passes the key/value pairs to it. A modification was made to the insertion condition
in the insertRecord() of the Pat B+-Tree to only allow the insertion of one search key
value for a range of keys having the same input-split value. This was done to prevent
multiple insertion of input-split values for all of the keys that fall under it, hence,
compressing and compacting the index to a smaller size.

In addition, the cleanup() method was used to capture the final state of the tree and
to write the subtree as a single object from a chunk of the stored data. The cleanup()
method calls the toString() method of the Pat B+-Tree, which in turn, prints the
subtree onto temporary file(s) within the HDFS. The output at the mapper stage
produces subtrees from the chunks of data processed by different map jobs.

Searching the Index using MapReduce The second step for the integration, which
was represented by the second block in Fig. 1, is the searching of the index. Figure 3
presents the details of the internal workings for the processes involved in the searching
of the index. Here also, the mapper class’s only program is used to read from the
index file generated by the previous scheme’s component, the rebuild index. This
simply means that the program only has a mapper called the SearchIndexMapper
class.

Also, this mapper class has the same three methods as the previous one, which are:
the setup(), the map() and cleanup() methods. The setup() uses its context variable as
an argument to read the range of keys, to be searched for within the index, through
the context variable’s configuration instance, which helps in accepting arguments at
runtime.

Then, the map() method of the SearchIndexMapper class reads each record from
the index file(s) using its defined key/value arguments to rebuild the tree in the
same way as described earlier. This is done to ensure that the tree is rebuilt and
retained/cached by the Hadoop for faster searching. Algorithm 1 shows the pseudo-
code of the map() method highlighting the functions explained
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Fig. 3 Block diagram for the index searching process

Algorithm 1: Algorithm for SearchIndexMapper Class

Input: Range of Keys
Result: Input-Split values
SearchIndexMapper extends Mapper<inkeyType ,
invalue,outkey Type,outvalueType >{
Setup(Context context){ get configuration args at runtime }
map (inkey,invalue, contetx){
if indexValue then

split the indexValue

if indexValuelength >= 3 then

| build Pat B+-Tree

end
end
} cleanup (Context context){
iterate through the values returned by Pat B+4-Tree search
print with context(null, value) }

}

After that, the cleanup() method of this class captures the final state of the tree
and calls the searchRange() method of the Pat B+-Tree by passing the range of keys
from the query’s predicates to it. The searchRange() method of the Pat B+-Tree has
been modified to search and return the appropriate value that corresponds to any
given search key. The search is done by comparing the given search key with a range
of separator keys in the tree. This is possible due to the logic used in building and
compressing the Pat B+-Tree explained earlier.
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Then, the cleanup() method uses its context’s write() method to iterate and print
the returned values onto the output file(s) within the HDFS as the index’s result.

Using the Index in MapReduce Execution Process: In order to make use of
the index in the main MapReduce query execution process, i.e., query processing
of Fig. 1, another complete MapReduce program is required. The program oper-
ates in a normal way as an ordinary MapReduce function, with the exception of
using a customized FileInputformat. Figure 4 shows the processes, especially the
IndexFilelnputFormat component.

The query processing uses three classes, namely, The Mapper, the Reducer and
the IndexFileInputFormat classes. The Mapper class consists of two methods: the
setup() and the map() methods.

The setup() method of the Mapper class uses its context variables’ configuration
property to get runtime arguments in the same way as explained in the details earlier.

The map() method, on the other hand, iterates through the input data records
comparing the keys/values from the records with the lower and upper bounds from
the query’s predicates. The map() method emits only those records that have met the
condition set by the query’s predicates.

Then, the class’s getSplit() method calls yet another feeder method the readln-
putSplitFromFile() method that reads the index result which was returned by the
SearchIndex class discussed earlier. The readInputSplitFromFile() method iterates
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Fig. 4 Block diagram for integrating the index using IndexFileInputFormat class
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through the index of the result entries, which has “null’ as the value of all the keys and
a string form of the input-splits as their corresponding values. The index results are
the ones printed out during the searching of the index using the query’s predicates.

The string form of the input-splits is not recognized by the FileInputFormat as valid
input-splits, hence another method that transforms the strings into a valid input-split
is needed.

4 Experimental Results and Discussion

In this section the setup of the experiment as well as the results obtained and their
interpretations are discussed.

4.1 The Dataset

In this study, three different datasets were used.

The dataset, which is related to oil and gas domain. Meteorological and Oceanog-
raphy data (Modata) is the data used by the Oil and Gas (O&G) industries for explo-
ration sites analysis and forecasting. Modata is quite different from the previous
datasets discussed, because it comes in multiple small files, as opposed to one large
file like the other benchmark datasets. Each file contains data for a single point out
of several thousand others in an exploration site.

In addition, the files have varied sizes according to the number of informa-
tion/columns/parameters that they capture. For instance, files that have the minimum
number of columns, i.e., 20 columns, have the size of 60 MB, while files which have
maximum number of columns, i.e., 300 columns, have the size of 307 MB.

Furthermore, each tuple in the file represents data taken for a particular hour of
the day. For example, in a site called Sea Fine central (SF-Central), there are 14,881
points, and each point will have several tuples of data which are recorded every hour.
Since site SF-Central is nearer to the shoreline, there are 20 parameters or features
recorded in each tuple such as ‘wind direction’, “Wind speed’, ‘date’ and ‘time’.
Besides raw data, other derived statistical data such as the ‘mean’ and the ‘variation’
of the parameters are also included in the data collection.

For sites that are more toward the ocean, the parameters collected will be even
more. Moreover, each file contains the tuples described for six decades. From this
description of the Modata, one can imagine the hugeness and complexity the data
files. Figure 5 shows sample of data from one file of Modata.

On the other hand, for the Modata, a record volume of 10, 20, 40, 80, 160 and
320 million were queried from the data sizes mentioned above, respectively. Also,
Table 1 shows the summary of the query sets with their expected returning records.
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CCYYMM DDHHmm WD WS ETOT TP VMD ETTSea TPSea VMDSea ETTSw TPSwVMDSw MO1 MO2Z HS
DMDIR ANGSPR INLINE

195607 010000 107.1 9.04 0.066 4.621 2885 0.065 4.622 288.5 0.000 6.057 165.9 0.100 0.160 1.024 289.5 0.8748 0.7926
195607 010100 107.8 9.03 0.075 4.854 289.1 0.075 4.854 289.1 0.000 6.047 153.1 0.112 0.177 1.092 290.0 0.8803 0.7996
195607 010200 108.6 9.02 0.082 4.971 289.9 0.082 4.971 289.9 0.000 5.989 132.4 0.122 0.191 1.148 290.7 0.8819 0.8013
195607 010300 109.4 9.01 0.089 5.042 290.6 0.089 5.042 290.6 0.000 5.898 79.7 0.130 0.201 1.192 291.4 0.8816 0.8006
195607 010400 110.2 9.00 0.094 5114 291.2 0.094 5.114 291.2 0.000 5.847 53.8 0.136 0.209 1.227 292.0 0.8807 0.7990
195607 010500 111.0 .99 0.098 5219 291.8 0.098 5.219 291.8 0.000 5.845 44.0 0.141 0.214 1.253 292.5 0.8795 0.7972
195607 010600 111.8 8.99 0.102 5341 292.3 0.101 5.340 292.2 0.000 5.889 36.9 0.145 0.219 1.274 292.9 0.8784 0.7955
195607 010700 109.4 8.55 0.102 54222925 0,102 5421 2924 0.000 5940 33.7 0.146 0.220 1.280 293.0 0.8734 0.7885
195607 010800 106.6 8.11 0.100 5.485292.4 0.099 5.481 292.1 0.001 5.508 334.0 0.142 0.214 1.264 292.9 0.8674 0.7804
195607 010900 103.6 7.68 0.095 5520 292.1 0.092 5.508 291.1 0.003 5.557 322.1 0.135 0.203 1.235 292.5 0.8607 0.7718
195607 011000 100.1 7.24 0.090 5561 291.6 0.082 5.285 289.1 0.008 5.643 316.5 0.127 0.190 1.198 292.0 0.8559 0.7659
195607 011100 96.2 6.81 0.084 5592 291.0 0.069 5059 286.3 0.015 5737 3126 0.118 0.177 1.158 291.5 0.8521 0.7616
195607 011200 91.9 6.37 0.078 5.625290.5 0,052 4.670 2828 0.026 5789 305.3 0.109 0.163 1.117 291.0 0.8493 0.7586
195607 011300 95.3 6.74 0.073 5.660 289.9 0.060 5.113 285.2 0.013 5835 310.9 0.103 0.154 1.084 290.4 0.8486 0.7583

Fig. 5 Sample of data from Modata files

Table 1 Data s'izes and S/no. Data size Number of target records
expected returning records for
Modata 1 20GB 10,000,000

2 50 GB 20,000,000

3 100 GB 40,000,000

4 200 GB 80,000,000

5 500 GB 160,000,000

6 1TB 320,000,000

4.2 Index Building Using the Datasets

On the other hand, the search keys for the Modata were formed by concatenating the
individual filename to the timestamps. The timestamps are the field with the unique
values in each of the files.

However, the same timestamps are found in all other files, which are in their
thousands in the Modata dataset. Hence, the search keys in the Modata are lengthier.
For the search keys’ corresponding values, the proposed index method used the input-
split component of the HDFS. The decision to use the input-split comes through the
observation made from the reviewed literatures. This is due to the fact that, using any
other HDFS components required the authors to develop algorithms to work with
the index.

4.3 Test Queries

The queries used in the experiment of this research were formed into sets targeting
the restrictive clauses that were relevant to indexing, namely, WHERE, JOIN and
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Table 2 Sample select queries with WHERE, JOIN and GROUP BY for Modata
Query type no | MOData dataset

1 select * from Modata.Mdata20 where gpt <= Modata
‘SF000150° and datadate >=°1956-07-31 00:00:00" AND ‘SF000320’ and
2000-12-31 00:00:00° distribute by wd

2 select sc.gpt, sc.wd, sc.datadate, mk.gpt, mk.wd, Modata mk.datadate from
Modata.Mdatal0a sf JOIN Modata.MdatalOb sc ON sc.datadate = sf.datadate
where sc.gpt <="SF000150” and sf.gpt <= ‘SF000320’ and sc.datadate =
2000-12-31 00:00:00’ distribute by sf.wd, sc.wd

3 select year(sf.datadate), sf.ws, avg(sf.wd) from Mo- Modata data.Mdata20 sf
where sf.gpt <=*SF000150” and datadate >= ‘1956-07-31 00:00:00° AND
‘SF000320’ and ‘2000-12-31 00:00:00” group by year(sf.datadate) order by dd

Note ‘wd’ = Wind Direction, ‘ws’ = Wind Speed, ‘gpt’ = location ‘datadate’ = timestamps

GROUP BY. The reason for their choice was due to the fact that they were respon-
sible for determining the data size to be considered in their query process. Further-
more, indexing was also used to restrict the amount of data to take part in the query
processing.

The query sets are given in Table 2.

4.4 The Experiment and Its Setup

This section describes, in detail, the steps followed in conducting the evaluation of
the experiment. The experiment was performed on the datasets mentioned earlier.

The research experiment was setup to evaluate the indexing scheme. The exper-
iment was setup on a cluster of nine nodes, i.e., one Namenode (master) and eight
Datanodes (slaves). Each had the following configuration: 8 core CPU, 8 GB RAM,
1 TB HDD, 1 GB bandwidth Ethernet card and running the Ubuntu 12.0.4 (LINUX)
Operating System. The platform used was the Hadoop-2.7.1.

4.5 Index Creation Performance Evaluation

In order to see how the index creation time of the proposed index fares, it was
compared to yet another indexing approach that is based on the same HDFS compo-
nent of input-splits, but uses clustered index approach. Also, due to the nature of the
queries that would use the proposed indexing when created, two different indexes
are needed. One for queries, which work on single file, the SELECT ... WHERE
and SELECT ... WHERE... GROUP BY queries, and the other for multiple files
queries, that use SELECT... WHERE...JOIN query.
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5 Results and Discussions

This section presents the experimental results and their discussions for both the index
creation and query performance evaluation.

Modata Dataset Index Creation Performance

Table 3 shows the execution runtime for both the proposed index and the clustered
index approaches to create index for queries on Modata. The same results were
presented in Fig. 6 for better view.

From both the table and figure, it can be seen that the index creation for the
proposed index was still faster than that of the clustered index. The index for the
clustered index takes time more than that of the proposed indexing for the data sizes.

Similarly, Table 4 and Fig. 7 show that the index creation time for all data sizes
using the proposed indexing fared better than that of the clustered index when used
with join query. The index creation runtime for the clustered index was at least double
the time of the creation of the proposed indexing for all the data sizes.

Table 3 Execution runtime . L
. . . Data size Index creation time (sec)

for index creation on single

file Modata Clustered index Proposed Index Method
20 GB 1167 596
50 GB 1673 1367
100 GB 3860 3619
200 GB 6731 5577
500 GB 12209 11591
1TB 21821 20837

M Clustered Index
Index Creation Time M Proposed Index

Runtime(SEC)

20GB 50GB 100GB 200GB 500Gb 178
Data Size(GB)

Fig. 6 Execution runtime for the index creation on single file Modata
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Table 4 Execution runtime . S
. . Data size Index creation time

for multiple files index

creation on Modata Clustered index Proposed index
20 GB 1021 410
50 GB 3025 879
100 GB 10689 1695
200 GB 10128 3646
500 GB 66227 8421
1 TB 75600 17014

W Clustered Index
Index Creation Time M Proposed Index

70000

Runtime (SEC)

30000

10000

20GB  50GB  100GB 200GB 500Gb  1TB
Data Size (GB)

Fig. 7 Execution runtime for the multiple files index creation when applied to Modata

Thus, from the experiment conducted, we could say that our proposed indexing
method performed better by taking lesser time to create its index for both single file
query as well as multiple files for all different datasets and different data sizes. As
mentioned earlier, this was attributed to the way the approach handled the creation
of the index’s data structure, the partitioned B+-Tree. The partitioned B+-Tree has
an internal sorting that enabled it to compare and store only search keys that have
unique corresponding values in the tree. So, for the proposed indexing the major
determinant for runtime is the comparison amongst key/value entries, while disk I/O
operation was less. On the other hand, the clustered index’s runtime is determined
by the I/O operation time as all search keys and their corresponding values must be
stored.

Also, the high increase in the execution runtime for creating the index noticed,
for both index approaches for 500 GB and 1 TB, may be largely attributed to the
high increase in the number of map tasks (the total number of map tasks lunched):
Data local map task (the total number of map tasks that reside on the same node on
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which they are processed) and the rack map tasks (the number of map tasks that need
to be transferred to another node for processing). Increase in number of map tasks
is translated into increase in time for each of the map tasks to run to its completion.
While the increase in the difference between the map tasks launched and that of data
local map tasks means there is going to be more of shuffling and sorting, which in
turn led to transferring of data across the nodes of the Hadoop cluster, and that also
increases the execution runtime.

Modata Execution Runtime Performance: Similarly, this subsection also presents
the results of running the three queries in Table 2 using the normal MR, the clustered
index and proposed indexing. However, the dataset used here is called the Modata
dataset. First, the performance of the normal MR was compared with that of the
proposed index as well as the clustered index approaches.

Query Execution Runtimes for the Normal MapReduce and Clustered Index
versus Proposed indexing Methods: Query 1 in Table 2

Table 5 shows the results of the MapReduce job execution runtime for the Query 1,
i.e., SELECT .. WHERE, on the Modata for all data sizes using the normal Hadoop
MapReduce, the clustered index and the proposed indexing approaches. In similar
pattern with the previous dataset, Fig. 8 presents the column chart for the results.
Based on the results, the normal MR has the highest runtime for all the data since
full input scan was used during the query processing. Then, the next highest runtime
was that of the clustered index approach.

The runtime of the proposed indexing was 399 s lower than that of the normal
MR and 78 s lower than that of the clustered index for 20 GB of data. The runtime
was also lower, i.e., 807 s lower than that of normal MR and 31 s lower than that of
the clustered index for 50 GB of data. For 100 GB of data size the runtime for the
proposed indexing takes 2125 s less than the normal MR and 357 s lower than that of
the clustered index. The same goes for 200 GB of data; the runtime of the proposed
indexing takes lesser time, i.e., 2575 s to complete than that of normal MR as well as
1044 s lower than that of the clustered index. The runtime of the proposed indexing
was 143 s lower than that of the normal Hadoop MR and 11 s lower than that of the
clustered index for 500 GB of data. Then, for 1 TB data size, the runtime for the

Elilzilfnzs g)lrlet;}é :15?5?1“;/([)12 Data size | Query 1 execution runtime (sec)
versus clustered index versus Normal MR | Clustered index | Proposed index
proposed index methods method
(Modata) 20 GB 724 403 325

50 GB 1641 865 834

100 GB 3578 1810 1453

200 GB 7236 5705 4661

500 GB 12924 12892 12781

1 TB 22451 16010 15909
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B Normal MR
m Clustered Index

Query 1 MapReduce Job Runtime m Proposed Index

25000

Runtime(SEC)

20GB 50GB 100GB 200GB 500Gb 1TB
Data Size(GB)

Fig. 8 Query 1 execution runtimes for the normal MR versus clustered index versus proposed
indexing methods (Modata)

proposed indexing was also 6542 s lower than the normal MR and 101 s lower than
that of the clustered index. The trend of the runtime increased with the increase of
the data size significantly for both approaches. However, the time difference between
the clustered index and proposed indexing was not so wide. This was due to the small
files nature of the Modata. This may require more resources for their handling as the
number of input-splits increased significantly.

Query 2 in Table 2

Table 6 presents the Query 2 type, i.e., SELECT .. WHERE .. GROUP BY query,
job processing runtime for all data sizes using the normal MR, the clustered index
and the proposed indexing approaches, and Fig. 9 gives the results in column chart
form.

E;l:il;gs gr]i}?; igzﬁlﬁﬁ Data size | Query 2 execution runtime (sec)
versus clustered index versus The normal MR | Clustered index | ISPB method
proposed indexing methods 20 GB 744 279 176
(Modata) 50GB | 1711 555 404

100 GB 3850 801 633

200 GB 5707 2213 2141

500 GB 12892 4700 4607

1 TB 19562 4841 4580
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W Mormal MR
M Clustered Index

Query 2 Job Execution Runtime EProposed Index

20000
18000
16000
14000
12000

Runtime (SEC)

20GB 50GB 100GB 200GB 500Gb iTB
Data Size (GB)

Fig. 9 Query 2 execution runtimes for the normal MR versus clustered index versus proposed
indexing method (Modata)

The runtime results for individual data sizes are generally lower here than those of
the Query 1. This was so, because the returned record set for the GROUP BY query
was less voluminous. For 20 GB of data size the runtime for the proposed indexing
method takes 568 s lesser than that of the normal MR and 103 s lower than that of
the clustered index. For 50 GB and 100 GB of data sizes the runtime of the proposed
indexing are lower by 1307 s and 3217 s lower than that of the normal MR and 151 s
and 168 s lower than that of the clustered index, respectively. As for 200 GB of data
size, the runtime was lower by 3566 s than that of the normal MR and 72 s lower
than that of the clustered index. At the same time, the runtime of proposed indexing
was 8825 s lower than the normal MR and 633 s lower than that of the clustered
index for 500 GB of data. Lastly, for 1 TB data size, the runtime for the proposed
indexing was also 14982 s lower than the normal MR and 261 s lower than that of
the clustered index. Again, the proposed indexing outperformed the normal MR and
the clustered index in all cases.

Query 3 in Table 2

Running Query 3, which was a query with JOIN clause using both normal MR,
clustered index and the proposed indexing produced results as in Table 7. The same
results are also presented in a chart form in Fig. 10.

The results show that the normal MR has the longest runtime for all the data sizes
as compared to the proposed indexing. This was due to the complete scanning of the
input during the query processing, followed by the clustered index. The runtime of
proposed indexing method was 198 s lower than that of the normal MR and 189 s
lower than that of the clustered index for 20 GB of data. The runtime was also 103 s
lower than that of the normal MR and 293 s lower than that of the clustered index for
50 GB of data. For 100 GB of data size, the runtime for the proposed indexing was
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Table 7 Query 3 execution . . .
runtimes for the normal MR Data size | Query 3 execution runtime (sec)
versus clustered index versus Normal MR | Clustered index | ISPB method
proposed indexing method 20 GB 569 560 371
M
(Modata) 50 GB 795 985 692
100 GB 1866 1238 852
200 GB 3269 2091 1742
500 GB 10199 6061 5865
1TB 23488 11714 9727
B Normal MR
M Clustered Index
Query 3 Job Executiion Time m Proposed Index
25000
20000
o
Wo15000 |
@
=
£
S 10000
@
5000
0
20GB 50GB 100GB 200GB 500Gb 1TB8
Data Size (GB)

Fig. 10 Query 3 execution runtimes for the normal MR versus clustered index versus proposed
indexing methods (Modata)

1014 s lower than that of the normal MR and 386 s lower than that of the clustered
index. Similar trend was observed for 200 GB of data size, where the runtime of the
proposed indexing was 1527 s lower than that of the normal MR and 349 s lower
than that of the clustered index. Furthermore, the runtime of the proposed indexing
method takes 4334 s less than that of the normal MR and 197 s lower than that of
the clustered index for 500 GB of data. Then, for 1 TB data size, the runtime of the
proposed indexing was 13761 s lower than that of the normal MR and 1987 s lower
than that of the clustered index. The trend of the runtime increased significantly with
the increase of the data size for both approaches.

In summary, after all these experiments have been conducted, we can say that
query processing runtime becomes faster with the involvement of index in all cases.
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6 Conclusion

As stated earlier, the index created and used by the proposed index was found to be
far smaller than those created by clustered index approaches reported in this study.
The index of proposed index was at least 1000 times smaller than those produced
by other approaches. The reason for a smaller index size was first due to the fact
that the data structure used by the proposed index. The partitioned B+-Tree enabled
the building of the index using only the search keys, with unique input-splits as a
representative of other search keys as the key value pair entry to the tree.

Secondly, the HDFS component chosen for the indexing in the proposed indexing,
which was the input-split, helped in reducing size of both index and the input data.
By default, the input-split in the Hadoop MapReduce process was what determined
which part of the input data will take part in the query processing. Also, the input-
split determines the number of mappers that the Hadoop needed to deploy to execute
certain task.

Moreover, another reason for the better performance on the side of the proposed
indexing during the query processing was due to the restriction brought about by the
proposed index of processing only those input-splits that are returned by the index
component of the scheme.

In summary, the proposed indexing has through its data structure the Pat B+-Tree,
algorithms and approach (proposed index) has been able to significantly improve the
MapReduce’s query processing capability.
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