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Abstract Feature selection (FS) is the process of eliminating irrelevant features and
improving classification performance while maintaining the standard of the data.
Based on evaluation criteria, FS can be either filter or wrapper. Wrappers are com-
putationally expensive due to many feature interactions in the search space. In this
study, cuckoo optimisation algorithm (COA) along with its binary (BCOA) are used
as wrapper-based FS for the first time to explore the promising regions in the search
space, which obtained improved classification accuracy and selected better quality
subsets of features within a shorter time. Based on that we developed two differ-
ent fitness functions. The first one (BCOA-FS) and (BCOA-FS) adopt the standard
wrapper-based evaluation with emphasis mainly on the classification performance.
Whereas in the second one (BCOA-2S) and (COA2S) combine the first one in another
evaluation process with a focus on both the number of features and classification
accuracy. The results obtained indicate that COA-FS and BCOA-FS can select fewer
features with better accuracy on both categorical and continuous label data, with
BCOA-FS better than COA-FS. Similarly, COA-2S performed better than BCOA-
FS and COA-2S and is comparable to the existing works. BCOA-2S outperformed
the three of the existing studies on the majority of the datasets with almost 10 and
5% on both classification accuracy and number of selected features, respectively.
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1 Introduction

In classification, feature selection (FS) is mainly used to minimise the features in
a data set while maintaining its standard [23, 68]. The aim is to select the most
relevant subsets that are sufficient enough to describe the target class [62]. FS can be
supervised [51], non-supervised [12] and semi-supervised [61]. In dealing with the
supervised type, the class label of the data set is defined already in contrast with the
non-supervised that the class label is unaware. Whereas, semi-supervised combine
both supervised and non-supervised (i.e. with both label and unlabelled data) [32].

The supervised FS is classified further as a filter, wrapper and hybrid approach
depending on their evaluation criteria [64]. In the filter-based approach, the features
are evaluated without considering any classification algorithm, which makes them
computationally fast. However, the filter ignores feature dependence or relationship
among selected or ranked features, which subsequently affects the classification
performance (i.e. either error rate or accuracy) [15].

In the wrapper-based method, a classification algorithm is used to evaluate each
subset of features selected, and hence, it achieves better classification accuracy or
error rate [26, 32, 64]. The major shortcomings of the wrapper-based approach
are computationally expensive and not favourable on high-dimensional data sets.
The most common examples of the wrapper-based approach are sequential forward
selection (SFS) [60], sequential backward selection (SBS) [36] plus q take away r
[16] and genetic algorithm (GA) [37] among others.

In FS, the classification performance of any of the approach (filter or wrapper)
is measured in according to feature size (number of selected features), error rate (or
accuracy) and computational time. Machine learning algorithms are commonly used
to measure or evaluate the goodness of the selected subset of features in terms of
accuracy or error rates [64]. Examples of the most widely used ones include support
vector machine (SVM) [57], K-nearest neighbour (KNN) [24] and Gaussian Naïve
Bayes (GNB) [34] among others.

The wrapper-based approach requires one to determine a classification algorithm
and uses its performance as the evaluation standard. It searches for features that
are suitable to the machine learning algorithm that increases the accuracy [39,
40]. Classification accuracy, as well as the selected subsets of features, are used to
determine the prediction performance in wrappermodel [54, 66]. As such, prediction
accuracy and less prone to local optima are the critical advantage of wrapper over
the filter. Hence, the outcomes are mostly more encouraging than the findings of the
filter models.

However, the shortcomings of the wrapper-based approach include a high risk
of overfitting data, classifier dependency, highly computationally intensive and not
favourable for astronomical dimensional data [41]. Examples of wrapper techniques
are a sequential forward selection (SFS), sequential backward elimination (SBE),
plus q take away r and beam search. Others include simulated annealing, randomised
hill-climbing, genetic algorithm and estimation of distribution algorithm among oth-
ers [40, 46]—the steps on how the wrapper-based approach is illustrated in Fig. 1.
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Fig. 1 Wrapper-Based
feature selection procedure

Finding the optimal subsets of features with the less computational cost is quite
a demanding task because of the search space, and the number of features needed
to search in the solutions are too many. Hence, FS is considered as an NP-hard
problem [33, 39, 52, 64]. In searching for the best subsets of features, [26, 39]
identified three search strategies: complete search, sequential or heuristic search and
the random search.

The complete search works by finding all the possible feature subsets while eval-
uating them one after the other to select the best subset of features with the highest
classification performance. There is a guarantee of getting the optimal results based
on the laid down criteria in it. However, for a data set with N number of features,
there will be 2N subsets to be generated and evaluated, which is almost impractical
for a considerable value of N . More so, [41] argued that ‘search is complete does
not mean that it must be exhaustive’.

The heuristic or sequential search add or remove features in sequential order; the
remaining features that are not selected are considered later for selection in that man-
ner. By doing so, the choice of the features may likely end upwith the same pattern as
complete search. However, there is no guarantee of finding the target solution [52].
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Random search is the most popularly used among all the search strategies [42]. It
aims at creating stability between the heuristic and complete search by combining the
advantages of both. It begins with a randomly selected subset of features and progress
in two ways. Either to follow the heuristic search and insert some randomness or to
generate the next subset in a completely random manner [39, 42].

Out of all these search strategies, the random search is the only one that can escape
from local optimum in the vast search space due to the involvement of randomness
and mostly finish within the shortest time [26, 40, 64].

There are someworks on thewrapper-based FS that applies different search strate-
gies on different meta-heuristic algorithms. For example, [9, 10] used an artificial
immune system for the FS. Also a particle swarm optimisation (PSO) is reported in
[31, 44, 52–54, 63, 65].

Recently, differential evolution (DE) in [27], cuckoo search in [13, 18], grasshop-
per optimisation algorithm in [43], genetic algorithm (GA) in [3, 19, 30, 59, 66] are
reported. In addition to that, genetic programming is used for the wrapper-based FS
in [48], and recently a flower pollination algorithm for FS as also in [56]. It clearly
shows that the meta-heuristic algorithms are suitable for addressing these problems.
Despite the attempt to solve the lingering issues of the wrapper-based FS still, the
existing works cannot successfully evolve the best subset of features with improving
accuracy on some of the data sets [23].

The cuckoo optimisation algorithm (COA) presented in [49] is among the evolu-
tionary algorithms that show promising results in handling different combinatorial
optimisation problem including NP-hard, despite its proven records, especially in
dealing with filter-based FS in [55]. Its application, specifically for the wrapper-
based FS, is not fully investigated.

This study aimed to find the best subsets of features with lesser feature size and
yet maintain the same or even better classification accuracy compared to using full-
length features within a short period. Also, investigate the difference between COA
and BCOA in wrapper-based FS.

To accomplish this goal, a pair of two FS frameworks are developed based on
BCOA and COA. These proposed algorithms were studied and compared with
other FS algorithms presented in other works on benchmark problems of varying
difficulties.

Precisely, this study will examine

1. Whether adopted COA wrapper-based FS algorithms would choose the best sub-
sets of feature, that has least feature size, less computational and accomplish the
best error rate compared to full-length features, and would outpace the adopted
BCOA wrapper-based single objective algorithms;

2. Whether adopted BCOA wrapper-based FS algorithms would choose the best
subsets of feature and can attain the best performance than the adopted COA
wrapper-based algorithms above;

3. Whether COA wrapper-based algorithm with two steps evaluation would choose
sets of best features subsets and would outpace the two steps BCOA wrapper-
based algorithm, and other existing works; and
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4. Whether BCAOwrapper-based algorithmwith two steps evaluationwould choose
sets of best features subsets andwould outpace all other approaches stated directly
above.

The rest of the paper is prearranged as follows: Part 2 is the background containing
the details about the adoptedCOAandBCOAalongwith relatedworks. The proposed
wrapper-based feature selection approaches are presented in Part 3, while Part 4 is
the experimental design, data sets used along with benchmark approaches. Then Part
5 is the presentation of the results while Part 6 concludes the entire work and suggests
future work areas.

2 Background

2.1 Cuckoo Optimisation Algorithm

The original CuckooOptimisationAlgorithm (COA) is strictlymade for a continuous
optimisation problem. At the same time, the binary version (BCOA) can be applied to
solve problems that are in binary or discrete form. COA used for FS is very scarce in
the literature. The size or dimension of the search space (i.e. the full-length features
in every data set) is n. Every habitat in the COA is assigned by using a vector of n
decimal numbers. The location of habitat i in dth length is xid normally in the range
[0, 1]. To know in case if a feature is selected or otherwise, a verge 0 < θ < 1 is
mandatory to equate it with the decimal numbers in the habitat position. If eventually,
xid > θ , then feature d is chosen else d is not be chosen.

COA developed by [49] is adopted, and the detail of how it works is

1. An array called “habitat” is used for the optimisation problem as show in Eq.1.

habitat = [x1, x2, . . . , xNvar ] (1)

2. Five and twenty eggs are used as the lower and upper limits, respectively, for
every iteration.

3. They lay their eggs within a maximum range distance from their habitat in
Equation.

ELR = α × number of current cuckoos

total number of eggs
× enew (2)

An α represent an integer number.
4. P% (those without any profit value) of the laid eggs are killed.
5. A k-means (K = 3 or 5) clustering is used for the grouping.
6. All cuckoos deviate ϕ radians while flying λ% to the goal, as shown in Eq.3.

λ ∼ U (0, 1) ϕ ∼ (−ω,ω) (3)

where λ U (0, 1) means that λ is a uniformly distributed random within range of
0 and 1. ω is limits an aberration from goal habitat.
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2.2 Binary Cuckoo Optimisation Algorithm

Binary CuckooOptimisationAlgorithm (BCOA) ismostly used to solve FS problem;
meanwhile, the representation of the habitat is in the form of a binary string, where
the position of every habitat is a boolean 1 which signifies that a feature is chosen
and 0 otherwise. Assuming XG and XC represent the respective goal and current
habitat. Then, Eq.4 computes the XNH next habitat as follows:

XNH = XC + rand(XG − XC) (4)

A sigmoid function is applied in Eq.5 to use XNH as binary to record it within
[0, 1]. Then Eq.6 alters the values to either 0 or 1.

S = 1

(1 + e−XNH )
(5)

I F (S > rand) T HEN XNH = 1 AND I F (S < rand) T HEN XNH = 0 (6)

2.3 Related Works

This part reviews some related works on wrapper-based FS. Both the traditional and
meta-heuristic ones, as shown in the subsequent parts. However, this study focuses
mostly on the evolutionary algorithms; for more details on the swarm intelligence
based approaches refer to [7].

2.3.1 Classical Wrapper-Based Feature Selection

As mentioned earlier, wrapper-based FS algorithms are highly computationally cost
compared to the filter-based FS algorithms [15, 48]. Perhaps, this is due to the longer
evaluation processes involved in the training and testing of the classifier. Furthermore,
since the search space of the FS problem is exponential to the number of features.
Therefore, searching for the entire search space is impractical. Based on that the
existing wrapper-based techniques used stochastic or greedy search [21, 42].

The most common FS techniques that practice the greedy hill-climbing are
sequential feature selection (SFS) [1] and sequential backward selection (SBS) [41].

In SFS, it begins with an empty set of features and keeps on adding one feature at a
time in an iterative manner until adding another feature will not enhance the existing
classification performance then it stops. Unlike, in SBS where it starts with a full
set of features and keeps on looping to remove one feature at a time until removal
of a feature cannot improve the existing classification accuracy (error rate). Apart
from the computational cost incurred on a large number of data sets, another major
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drawback of both SFS and SBS is the nesting effect, since any feature that is added or
removed cannot be undone. Thus, they both are trapped into the local optima easily
[40, 41].

Although, [38] developed a “plus q take away r” technique that will escape the
nesting effect, SBS was applied r times in a back-tracking order while SFS is applied
q times in forwarding step order. Determining better numbers for q and r is required,
to solve this problem of having fixed values for both q and r. Then, [47] enhanced
it by introducing a floating-point in both SFS (sequential forward floating selection
(SFFS)) andSBS (sequential backwardsfloating selection (SBFS)) that automatically
determine the value of q and r. Although, both SFFS and SBFS proved to be useful
in some cases, [67] argued that they could likely trap into local optimal even if
the benchmark function is monotonic (neither decrease nor increase) and yet is a
small-scale problem.

Inline spectral frequencies (LFS), the number of features to be used for evaluation
in every step are limited. As such, the computational efficiency of the sequential for-
ward’s methods was enhanced by the LFS and sustained an analogous accuracy of
the selected subset of features. But, LSF ranks all features without taking into consid-
eration whether some features are present or not, and this restricts the performance
of the LSF algorithm particularly the interaction between features.

2.3.2 Wrapper-Based Feature Selection with Meta-Heuristic
Algorithms

Asmentioned earlier,meta-heuristic algorithmshavebecomemore robust in handling
NP-hard problems, including FS. Huang and Wang [30] employed GA for both FS
and SVM parameter optimisation on a real-world data set. The results obtained are
in favour of the GA in terms of classification accuracy and fewer number of features
compared with the grid algorithm reported in work. Also, [59] proposed another GA
for FS and SVM for parameter selection in the detection of diabetic retinopathy. A
promising result was obtained on 60 images of data sets. An enhanced GA (EGA)
was proposed in [19] to reduce text dimensionality. It is incorporated with six filter
FS methods to create a hybrid one. Finally, experimental results showed that the
hybrid outperformed the single approach as well as the traditional GA. Recently in
[3], the highest accuracy of 99.48% was attained on two different Wisconsin breast
cancer data sets. GA was used for FS before applying the five different classifiers.
The results obtained are better than the others.

Unler and Murat [53] present a discrete PSO for FS in binary classification prob-
lems. The proposed approach incorporates an adaptive FS technique which dynami-
cally takes into consideration the relevance and dependence of the features included
in the feature subset. The experimental results indicated that the proposed discrete
PSO algorithm is competitive in terms of both classification accuracy and computa-
tional performance compared with the scatter search and tabu search algorithms on
openly available data sets.
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Vieira et al. [58] proposed a modified binary PSO (MBPSO) for FS with simul-
taneous optimisation of SVM parameters to predict the outcome of patients with
septic shock. The results indicated that MBPSO performed very well compared with
the standard PSO both in terms of accuracy and features selected. However, when
compared to GA, the same accuracy was recorded, but the MBPSO select fewer
features.

Similarly, [31] developed a supervised PSO-based rough set FS for medical data
diagnosis. Two different algorithms PSO-based relative reduct (PSO-RR) and PSO-
based quick reduct (PSO-QR) are presented. The results obtained showed that the
proposed algorithms performed better in terms of the fewer number of features,
classification accuracy and computational time compared to the standard PSO and
other methods reported.

Recently, PSO initialisation and updating mechanism are changed to suit better
FS problems in [52]. The discretisation is applied before the FS since discretisation is
considered an essential task of FS. A potential particle swarm optimisation (PPSO) is
proposed which employs a modern illustration that can minimise the search space of
the problem and an advanced fitness function to assess candidate solutions better and
direct the search process. The results of the experiments on the ten high-dimensional
data sets disclosed that PPSO chooses fewer than 5% of the number of features
for all data sets. Compared with the two-stage method which uses bare-bone PSO
(BBPSO) for FS on the discretised data, PPSO attains a better accuracy on seven data
sets. Furthermore, PPSO gains improved classification accuracy than evolve PSO
(EPSO) on eight data sets with a reduced feature size on six data sets. Moreover,
PPSO also performs better than the three compared approaches and achieves similar
to one approach on majority data sets in terms of both learning capacity as well as
generalisation ability.

To predict heart disease among patients, [18] used cuckoo search and rough set
for FS, and the disease prediction is made using fuzzy. A better result was achieved
in four different benchmark data sets.

Recently, [13] used a modified cuckoo search along with rough set to build the
fitness function that takes several features into the reduce set and classification into
consideration. SVM and KNN are used to evaluate the performance of the proposed
approach. The results obtained indicate the superiority of the method used and can
significantly improve performance.

Despite the attempt to solve the lingering issues of the wrapper-based FS, still the
existing works cannot successfully evolve the best subset of features with improv-
ing accuracy on some of the data sets [23]. COA presented in [49] is among the
evolutionary algorithms that show promising results in handling different combina-
torial optimisation problem, including NP-hard; However, despite its proven records,
especially in dealing with filter-based FS in [55].

COA has been applied to solve different kinds of problems. Recently, it is used
with harmony search for optimum tuning of fuzzy PID controller for LFCof intercon-
nected power systems in [20]. Energy-aware clustering in wireless sensor networks
in [35], accelerated COAwas proposed in [22] where simulated annealing algorithm
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was used in place of the k-means clustering of the standard COA in vehicle routing
problems.

Compared to GA, the imperialist competitive algorithm (ICA), CSA and PSO.
COA is simpler to implement and can converge rapidly [6, 29]. Its application,
specifically for the wrapper-based FS, is not fully investigated.

3 Proposed Wrapper-Based Feature Selection Approaches

Thus, in this part first, both BCOA and COA are adopted and used for wrapper-based
FS. The detail of how each of the experiments was carried out can be seen in the
subsequent parts.

3.1 BCOA and COA for Feature Selection

Two wrapper-based FS are proposed, namely, BCOA-FS and COA-FS. Throughout
the evolutionary training process, Eq. 7 is applied as the fitness evaluation function
to estimate and evaluate the best cuckoo habitat i , where the position xi signifies the
subsets of features.

Fitness(x(i)) = Error Rate (7)

where ErrorRate is calculated based on Eq.8:

Error Rate = (FP + FN )

(T P + T N + FP + FN )
(8)

where FP , FN ,T P , and T N , are the respective false positives, false negatives, true
positives, and true negatives.

3.2 A Combined Fitness Function for BCOA and COA
Feature Selection

The subset of feature selected by both BCOA-FS and COA-FS may probably com-
prise some redundancy since the fitness function in Eq.7 does not reduce the features.
However, it hypothesises that the same or less accuracy might be realised using a
smaller subset of features. To additionally minimise the feature size deprived of
affecting the classification error rate, a two-step FS method (BCOA-2S and COA-
2S) is introduced, where the entire evolutionary procedure is separated into two
steps.
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In step 1, both BCOA-FS and COA-FS emphasises on improving accuracy.
Whereas, in step 2, the features are involved in the fitness function. Furthermore,
step 2 begins with the solutions realised in step 1, which certifies the reductions in
the features according to the subsets of the features with the best accuracy.

The proposed two-step fitness function employed in both BCOA-2S and COA-2S
is shown in Eq.9:

Fitness2(xi ) =
⎧
⎨

⎩

Step 1, Error Rate

Step 2, Error Rate β ∗ M

n
+ (1 − β) ∗ MEror Rate

nEror Rate

(9)

where Error Rate is the classification error rate attained by the selected subset of
features. β ∈ [0, 1] is a constant number within the range [63]. M denotes the size of
selected features and n is the total feature size. nError Rate is the error rate obtained
by using the total feature size for classification on the training set. In step 2, the fitness
function considers both the feature size as well as the error rate. It guarantees that
these two components are in a similar array, i.e. [0, 1], and the of feature size is
normalised and represented by M/n.

The classification performance is represented by (MError Rate)/(nError Rate)
rather than Error Rate alone to circumvent the circumstances, whereby Error Rate is
too insignificant (for instance, < 0.005), and M/n plays a significant role inside the
fitness function. In a situation like this, the feature size considers most compared to
the error rate, which might have a subset of features with high error rate compared
to using the full-length feature size. Meanwhile Error Rate would be lesser than
nError Rate at the end of the step 1, (MError Rate)/(nError Rate) is in the
similar array as M/n, i.e. [0, 1].

As soon as they are joined into a single fitness function, β is employed to dis-
play the comparative significance of the chosen features and (1 − β) displays the
outstanding significance of the error rate. The Errorrate is expected to be more
significance compared with feature size, thus β is assign to be lesser than (1 − β)

(i.e. β < 0.5). The pseudocode of (BCOA-FS and BCOA-2S) along with (COA-
FS and COA-2S) can be seen in Algorithm 1 and Algorithm 2, respectively. The
main difference between BCOA-FS, COA-FS and BCOA-2S depend on the fitness
evaluation function, that is illustrated mostly in the grey lines of algorithms.

The detailed of the proposed wrapper-based BCOA is depicted in Algorithm 1,
whereby Eqs. 7 and 8 have been used as the respective fitness functions. The grey
colour signifies the areaswhere the equations and initialisation as per feature selection
problems are used in the proposed algorithms.
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Figure 2 shows that each cuckoo is initialised according to Eq.1 for each of the
data sets. Then, the number of features in each habitat are collected while those
eggs detected in the habitat are killed. At this juncture, the fitness function for both
BCOA-FS and COA-FS are evaluated using Eqs. 7 and 8, respectively.Whereas, the
fitness function for the combined FS (BCOA-2S and COA-2S) are evaluated using



156 A. M. Usman et al.

Fig. 2 Flowchart of the (BCOA-FS and BCOA-2S) and (COA-FS and COA-2S)

the fitness function in Eq.9. The population is compared with maximum value, and
if the population is less than the maximum value, then the cuckoo in the worst area
would be killed, otherwise it gets profit values (check the survival of the egg inside
the nest). Then stop condition evaluated; if yes, it leads the eggs to grow. However,
the nest found with the best survival rate among the cuckoo societies is transferred to
the best society according to Eqs. 5 and 6 for the BCOA. Whereas, Eqs. 2 and 3 are
for the standard COA. Based on Eq.2, one can find the best ELR and repeat all the
steps. Otherwise, return the optimum solution of the highest ranked features. Then,
finally, the best, along with the average of them, are selected using a classifier.
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The time complexity of both BCOA-FS and COA-FS based on the fitness function
in Eq.7 is O( 1

m ) + O( 1n ). The termm and n represent the number of selected features
and the population size, respectively. The binary search for usingBCOA runs in O(n)

time, while the COA search in O(log2n) time. Thus, the computational complexity
of BCOA-FS is O( 1

m ) + O( 1n ) + O(m) and COA-FS is O( 1
m ) + O( 1n ) + O(log2n).

Based on the fitness function in Eq.8, the complexity is O( 1
m2 ) + O( 1

n2 ). There-
fore, the total complexity of the BCOA-2S is O( 1

m2 ) + O( 1
n2 ) + O(n) and that of

COA-2S is O( 1
m2 ) + O( 1

n2 ) + O(log2n). Therefore, BCOA-FS and COA-FS can
complete its process within a shorter time in most cases compared to its BCOA-2S
and COA-2S counterpart.

4 Experimental Design

This part describes the data sets used in conducting the experiments. Parameters
settings, as well as benchmark, approaches are used to test the performance of the
proposed methods.

4.1 Experimental Datasets

The data sets used in this study are the 26 well-known University of California
Irvine (UCI) Machine learning data sets with distinct features. It contains a different
number of features ranging from 9 to 500, 14 categorical and 12 continuous data
type, 72–5000 instances, 13 binary classes and 13 multi-classes. These different
appearances of the data set, especially on the number of features that contain smaller,
medium and large features are the motives behind the selection of the data sets as
shown in Table1. The data sets can be found in [17] or can be downloaded freely at
https://www.ics.uci.edu.ml/~earn.

Furthermore, most of the data sets have been used recently in the works of [2,
15, 43, 44], which clearly show that the data sets are goods for benchmarking FS
problems. The data sets contain both categorical and continuous data that can be
useful in demonstrating the comparison between the categorical discrete and the
continuous data. Continuous data have infinite values in the formof decimal numbers,
while the categorical discrete values are mostly finite values in groups.

4.2 Experimental Parameter Settings

The parameters employed for the experiments were set as follows: initial and maxi-
mum population are set to 5 and 20, respectively. Moreover, the proposed algorithms
were run 40 independent times on each data set. The parameter settings used for the

https://www.ics.uci.edu.ml/~earn
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Table 1 List of data sets

S/N Data set Features Classes Instances Data type

1 Wine 13 3 178 Continuous

2 Australian 14 2 690 Continuous

3 Zoo 17 7 101 Continuous

4 Vehicle 18 4 846 Continuous

5 Lymphography
(Lymph)

18 4 148 Categorical

6 Mushroom 24 2 5644 Categorical

7 Spect 22 2 267 Categorical

8 German 24 2 1000 Continuous

9 Leddisplay 24 10 1000 Categorical

10 WBCD/BreastEW 30 2 569 Continuous

11 Ionosphere (Ionosp) 34 2 351 Continuous

12 Dermatology 34 6 366 Categorical

13 Soybean Large 35 19 307 Categorical

14 Chess (KrvskpEW) 36 2 3196 Categorical

15 Connect4 42 3 44473 Categorical

16 LungCancer (Lung) 56 3 32 Continuous

17 Promoter 57 2 106 Categorical

18 Sonar 60 2 208 Continuous

19 Splice 60 3 3190 Categorical

20 Optic 64 10 5620 Categorical

21 Audiology 68 24 226 Categorical

22 Coil2000 85 2 9000 Categorical

23 Hillvalley 100 2 606 Continuous

24 Musk1 (Clean1) 166 2 476 Continuous

25 DNA 180 3 3186 Categorical

26 Madelon 500 2 4400 Continuous

proposed COA − FS, COA − 2S, BCOA − FS and BCOA − 2S algorithms are
chosen based on the work of [45, 49]. The maximum number of iterations was set
to 100.

Also, similar to the work of [63] and [65]. In the experiments, all the rows in each
of the data sets were partition into two groups: a training group and a test group. The
most partitioning approach is that 2/3 (about 66%) of the rows in the data sets are
in the training group and 1/3 (almost 33%) of the rows are in the test group [11]. To
simplify the process, we divide 70% of the rows into each data set as the training
group and the remaining 30% as the test group. The rows are chosen so that the
percentage of rows from various classes are equal in both the training group. The
proposed wrapper-based methods need a classifier to estimate the suitability of the
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Table 2 Existing wrapper-based approaches

References Type Acronym Year

[8] Single-objective GSBS 1994

[9] Single-objective BAIS 2009

[63] Single-objective ErFS and 2SFS 2012

[27] Single-objective ABC-ER, ABC-Fit2C 2018

selected subsets of features. A KNN (with K = 5) was used in the experiments, to
reduce the wrapper-based computational time [4].

The experiments of GSBS and LFS are carried out using the popularly known
Waikato Environment for Knowledge Analysis (WEKA) [28]. The entire settings in
LFS along with GSBS are saved to the defaults since they can obtain better results.
Also, a 5NN was used in both LFS and GSBS, which generate a unique solution
(feature subset) for each data set.

4.3 Benchmark Approaches

Scrutinise the concert of the proposed wrapper-based approaches in this chapter.
The results found are related to the previous works, as shown in Table2. From
(Table2), two traditionally knownwrapper-based FSmethods, namely linear forward
selection (LFS) [25] and greedy stepwise backward selection (GSBS) [8] are used
as benchmark methods. Both LFS, together with GSBS, were consequential of SFS
and SBS, respectively. LFS [25] limits the number of features that are selected in
each step of the forward selection, which can reduce the number of evaluations. As
such, the LFS is computationally less expensive compared to the SFS and will get
better results. More details about the LFS is in [25].

On the other hand, the greedy stepwise based FS algorithm mostly shifts either
forward or backwards in the search space [8]. Provided that the LFSmakes a forward
selection, a backward search is selected in the greedy stepwise search to create a
greedy stepwise backward selection (GSBS). GSBS begins with all the feature size
and halts if the removal of any outstanding feature results in a reduction in evaluation
measure, i.e. the error rate of the classifier. Also, the work in [63] was used as a
benchmark method for both single and multi-objective wrapper-based approach, due
to the similarities in the data sets. The detail explanation of the results obtained and
the analysis is presented in the subsequent sections.

The details of the results obtained are offered in the subsequent section.
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5 Results and Discussions

This part deliberates on the results of the proposed methods, comparison between
them and other existing works that their work coincide with the data sets apply in
this study.

5.1 Results of the Proposed BCOA-FS and COA-FS

The results of both the categorical and continuous data sets for BCOA-FS and COA-
FS are displayed in Tables 4 and 3, respectively. The results showed a comparison
between all the proposed wrapper-based methods. From the tables, “BCOA-FS” and
“COA-FS” represent the proposed wrapper-based methods that adopt both BCOA
and COA, respectively. “All” stands for all features used for each of the data sets.
Besides, “Ave Size”, “Ave Acc” and “Best Acc” represents average feature size,
average accuracy and best accuracy attained by each of the data sets for the 40
independent runs, respectively.

The results proposedBCOA-FS outperformed its COA-FS counterpart on the con-
tinuous data sets. Out of the 12 data sets in the table (Table3), they recorded similar
feature size, best accuracy and average accuracy on WineEW, Australian, Zoo and
to some extents on Vehicle data sets. However, as the number of features increases,
BCOA-FS outperformed COA-FS on the remaining eight data sets. In addition to
that a similar performance was slightly noticed between BCOOA-FS and COA-FS
on HillValley datasets. On the average, it is clear that BCOA-FS outperformed its
COA-FS counterpart on the majority of the data sets, and hence considered the best
wrapper-based feature selection.

Alternatively, a comparison between BCOA-FS and COA-FS was made on cate-
gorical data sets, as shown in the results Table4. Similar to the continuous data sets,
the categorical data sets also recorded similarities in terms of the mean of selected
features, best accuracy and average accuracy on data sets with fewer feature size as
such as Lymph, Mushroom, Spect and Leddisplay. However, from Dermatology that
has 34 total number of available features, there is a change in performance between
BCOA-FS and COA-FS. The results also imply that as the feature size increase the
BCOA-FS perform better than the COA-FS in all the data sets except in Coil2000.
Perhaps due to a large number of instances in the Coil2000 data set.

5.2 Results of the Proposed BCOA-2S and COA-2S

The results of both the categorical and continuous data sets for BCOA-2S and COA-
2S are also displayed in Tables 4 and 3, respectively. The terms “BCOA-2S” and
“COA-2S” represents the proposed combined accuracy and selected features into a
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single fitness function for both BCOA and COA, respectively. All other headings in
the table are the same as explained in the previous subsection.

There are 14 categorical data sets and 12 continuous data sets that make a total of
the 26 data sets used in this research. Out of all the 14 categorical data sets, BCOA-2S
accomplished better results than COA-2S in terms of the average number of selected
features, best accuracy and average accuracy on almost all the data sets. Although in
Leddisplay data set, it has similar performance and same best accuracy onMushroom
data set.

On the other hand, the results of the continuous data sets also are in favour of
BCOA-2S compared to the COA-2S in the majority of the data sets. A similar per-
formance was obtained on some few data sets such as WineEW, Australian, Zoo and
Vehicle. However, as the feature size increases, the BCO-2S also performed better
than COA-2S. It is in contrast with categorical data sets no matter the feature size,
BCOA-2S performed better than its COA-2S counterpart in almost all the data sets
regardless of the number of features in the data sets.

5.3 Comparison Between Proposed Methods and Classical
Methods

A result of LSB and GSBS was reported to further compare with the proposed
methods. The results clearly show that LFS could select fewer number of features than
GSBS in the majority of the data sets. However, GSBS achieve the best classification
results in most of the data sets. Although on some data sets with a fewer number of
features, they recorded similar performance. But as the number of features increases,
LFS select the smallest feature and GSBS obtained the best accuracy.

Comparing LSF and GSBSwith the proposed wrapper-based FS, one can observe
that our proposed approaches outperformed both LSF and GSBS in terms of the
number of selected features, best accuracy, and average accuracy in all most all the
data sets, both continuous (Table 3) and categorical (Table 4).

5.4 Comparison Between Proposed Methods and Other
Existing Methods

To further evaluate the performance of the proposed methods and consequently be
fair in assessing the proposed wrapper-based multi-objective. Some related works
with similar datasets were used for comparison, as shown in Table 2. The details of
the comparison are enumerated below:

1. Comparison with ErFS and 2SFS
The results of the proposed wrapper-based feature selection are compared with
the one in work [63], where ErFS and 2SFS represent the BCOA-FS and BCOA-
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2S used in this research. The significant difference between the two is the use
of the EC algorithm. An outstanding EA, COA, in particular, was used in this
research. Whereas, the exiting works used the most common SI based algorithm
(PSO). The results indicated our proposed COA and BCOA which outperformed
the existing practices of PSO used in [63]. The result is not surprising because
COA is reported to be more robust and can attain better results as claimed in the
work of [5, 49].
FromTable 5, it is clear that all the comparisons weremade on the continuous data
sets. Out of the 10 data sets used, it shows that in almost all cases, our proposed
methods performed better than the existing one. However, in Zoo and Ionosphere
data sets, for example, the existing methods performed better in terms of average
accuracy. Nevertheless, the best accuracy and the number of selected features
clearly show that our proposed methods performed well.

2. Comparison with ABC-ER and ABC-Fit2C
The comparison between the proposed methods with ABC-ER and ABC-Fit2C
in [27] is shown in Table 6. The comparison shows that our proposed methods
performed better than all the seven data sets on both accuracy and number of
selected features. However, even though ABC-Fit2C chooses slightly fewer fea-
tures on German and Vehicle data sets than the proposed methods, but still, the
proposed methods attained an improved classification accuracy compared to the
ABC-Fit2C and ABC-ER. Therefore, the results displayed in Table 6 indicated
that the proposed methods can effectively evolve a fewer number of features and
yet achieve a better classification performance.

3. Comparison with BAIS
The results obtained by the proposedmethodswithBayesian and artificial immune
system (BAIS) in work [10] is displayed in Table 7. The results show the supe-
riority of the proposed methods on all the five data sets. The proposed methods
outperformed the BAIS with nearly 10% of the classification accuracy on Iono-
sphere and Sonar data sets. Whereas, around 2–3% of improvement was realised
on the proposed methods compared to the BAIS on the Mushroom, WineEW and
WBCD data sets. Moreover, fewer subsets of features were selected in the pro-
posed method than the BAIS. Therefore, both in terms of selected features and
the classification accuracy, the proposed methods outperformed the BAIS in all
aspects.

5.5 Comparisons Between BCOA and COA

Comparing the performance of COA and BCOA for adopted or combined objectives
as shown in tables (Tables 4 and 3) for both categorical and continuous data sets, one
can observe that BCOA outperformed COA in terms of number of selected features,
accuracy and best accuracy for all the proposed methods.
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Even though BCOA is a discrete binary version of COA, however, it can be seen
that it outperformed COA not only on the categorical or discrete data sets but also on
the continuous data sets. Continuous or discrete data sets refer to the data sets that
have their class label either as categorical or continuous.

Analysis of the computational time also shows that BCOA can complete its evo-
lutionary process within the shortest time than the COA on the majority of the data
sets. BCOA is faster than COA in around 10–5% majority of some of the data sets
regardless of the continuous or categorical data sets. Meanwhile, this motivates the
use of BCOA alone in the multi-objective wrapper-based feature selection. More-
over, this will avoid repetition of similar explanation of BCOA of being the best
compared to its COA counterpart.

5.6 Further Discussions

The results show that both BCOA-FS and COA-FS can successfully evolve a set of
features with better classification performance within a short period. However, as
the number of features increase, BCOA-FS perform better than COA-FS, especially
on the categorical datasets. Whereas, the COA-FS performed better mostly on the
continuous class label dataset. It demonstrates that the continuous version works
well on the continuous label datasets. In contrast, the binary version works well on
the majority of the datasets and mostly performed better on the categorical datasets.
Correspondingly, both BCOA-2S and COA-2S can successfully select the best fea-
tures with better classification performance than the COA-FS and BCOA-2S on the
majority of the datasets. Also, BCOA-2S outperformed COS-2S in most cases due
to the use of the two-step evaluation process.

The proposed approaches used a β value of [0,1] in the evolution process. How-
ever, choosing the most appropriate value is quite a challenge. Because most of the
selected features, along with their classification performance, are combined into a
single fitness function. Nowadays, FS is considered as a multi-objective optimisation
problem and treating the FS in that regards will solve the task much better and obtain
the set of nondominated solutions.

6 Conclusions and Future Work

This paper disclosed the first study on wrapper-based feature selection using COA
and BCOA. Four wrapper-based feature selections are presented. Both BCOA and
COA were adopted and used as a wrapper based in the evolutionary process. Then a
two-step fitness function was proposed, whereby the new classification performance
obtained in the first step is combined with the number of selected features in the
second step. The results obtained showed that the proposed methods performed well
compared to the previous work. However, combining the two aims of the feature
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selection into a single fitness function cannot solve the problem better, and there will
be some redundancy still among the number of selected features. Hence there is need
for multi-objective feature selection that treats both numbers of selected features and
classification performance simultaneously.

On the other hand, COA, especially its binary version, has performed well for FS
because (1. COA representation is suitable for FS problems. The habitats in COA is
Nvar -dimensional array representing the current living position of cuckoos, which
looks like the way candidate solutions are represented in the FS problem. In this
case, the size of the dimensionality is the number of features. The values in any
dimension/habitat display whether a feature is chosen or otherwise. (2. The search
space in FS problems is too large and mostly get stuck in local optima in most of the
existing methods. As such, there is a need for a global search technique. These ECs
are well-known for solving problems that do not have a solution; they are robust to
dynamic changes and have broad applicability [14, 49, 50]. COA is an EC; precisely
an evolutionary algorithm based that has effective and efficient search operators
that can search for large space to discover the optimum otherwise nearby optimum
solution [14].
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