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Abstract Big data analytics is one of the best ways of extracting values and benefits
from the hugely accumulated data. The rate at which the global data is accumu-
lating and the rapid and continuous interconnecting of people and devices is over-
whelming. This further poses additional challenge to finding even faster techniques
of analyzing and mining the big data despite the emergence of specific big data tools.
Indexing and indexing data structures have played an important role in providing
faster and improved ways of achieving data processing, mining and retrieval in rela-
tional database management systems. In doing so, index has aided in data mining
by taking less time to process and retrieve data. The indexing techniques and data
structures have the potential of bringing the same benefits to big data analytics if
properly integrated into the big data analytical platforms. A lot of researches have
been conducted in that direction, and this paper attempts to bring forward how the
indexing techniques have been used to benefit the big data mining and analytics.
Hence, this can bring the impact that indexing has on RDBMS to the folds of big
data mining and analytics.
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1 Introduction

The exponential growing nature of global data was collated and presented by the
Statista in their report titled—Volume of data/information created worldwide from
2010 to 2025. The report indicated that the world’s overall volume of both created
and copied data as of that 2020 year would be 50.5ZB. Also, this volume is expected
to rise three-fold within five years and is estimated to be 175 by 2025 [38]. This fact
gives a sense of hugeness of data size that is termed as big data [9, 10]. This global
data is accumulated from various forms, comprising structured, semi-structured and
unstructured masses of data that need analysis so dearly. Since the data are collated
and stored into datasets, then those enormous datasets are also referred to as big
data/datasets [5, 34, 44].

According to Chen et al. [9, 10], the increase in volume indicates how big the
generation, the collection and the scaling of data masses have become. While increase
in velocity indicates the need for timely and rapid collection and analysis of big data
in order to maximally utilize its commercial value, the increase in variety indicates
that big data comprises various forms which may include unstructured and semi-
structured, besides the usual structured data [4].

The IDC on its part presented a different opinion on big data. In its 2011 report,
IDC viewed big data from its technological and architectural angle as the data is
designed for extraction of economic value. The economic value comes from the very
large volume and widely varied data, which have high velocity of discovery, capture
and analysis [44].

The IDC definition added another ‘V’ to make it 4Vs model, with the fourth
‘V’ being value. Therefore, a broader definition of the big data could be derived
from all earlier ones as the term is used in describing enormous datasets, whose
contents are characterized by the 4Vs: (i) Volume—very large amount of data; (ii)
Variety—different forms of the data, i.e., structured, semi-structured and unstructured
gathered from different sources including images, documents and complex record;
(iii) Velocity—the data has been constantly changing contents, which come from
complementary data collection, archived and streamed data [6, 10, 45]; and (iv)
Value—very huge value and very low density [10].

In addition, recent literatures include veracity as the fifth “V’, the characteristic of
the big data after being convinced that none of the earlier described characteristics
of big data have covered that. By veracity, it means that there are uncertainty and
effect of accuracy on the quality of collected data [4, 5, 42, 44].

The value in big data is extracted by proper and efficient retrieval of the data from
the big datasets. Thus, fast processing of the retrieved data is determinant to faster
and timely analysis and access to the required data. Indexing is one of the most useful
techniques for faster data retrieval during processing and accessing. Therefore, the
industrial 4.0 data-driven processes are in need of such faster data retrieval. Once
the retrieval and access processes involving big data usage are made faster, a lot of
benefits are achieved. These benefits include energy/power saving and improving
hardware durability and reduce heat generation.
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1.1 Objective of the Chapter

The main objective of this chapter was to present indexing techniques that can be
used in searching and effective retrieval of data during data mining. The strategy of
all the indexing techniques is to restrict the amount of input data to be processed
during the mining of any dataset. The chapter highlights those indexing techniques
that have the potentials of working better with big data.

1.2 Taxonomy of the Chapter

The focus of the chapter is to include in it all relevant literatures that are searched and
downloaded from the major publication databases. The databases include IEEEX-
plore, DBLP, Scopus, Springer and others. Then, titles, abstracts, introductions and
conclusions of papers that covered application of indexing in big data mining and
analytics were described. This was done using selection criteria in order to pick
the papers that matched and have highlighted the structure of various indexing
approaches used for big data mining and analytics. In addition, the chapter iden-
tifies the indexing approaches that have potential for big data mining and those that
have less potential. Figure 1 depicts the diagrammatic sketch of the taxonomy used
for the chapter.

The chapter’s perspective is to center the discussion of literatures on the indexing
approaches, their data structure, their mode of application, their pros and cons, and
prospect for big data mining. In addition, the chapter attempts to cover indexing from
its application on RDBMS up to it’s use in big data mining and analytics. This may
enable specialist and practitioners of big data mining and analytics to have wider
view on the indexing approaches, and when, how and where to apply each of the
approaches for better results.

[ Databases: Scopus, IEEEEXplore, Google Scholar, DBLP, ]

L]
[ Search using keywords: Index, Indexing Techniques, Big ]

Data mining, Big data analytics

L]

[ Selection Criteria: Reading Title, Introduction and ]

Paper
Matched
criteria?

—

[ Paper Accepted for Review - [ Paper Rejected

Fig.1 A sketch of the taxonomy used for the chapter
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The remaining part of the chapter is organized as follows. Sect. 2 presents the basic
types of the indexing, Sect. 3 discusses the online indexing which is improvement of
the basic indexing. Section 4 enumerates the indexes inbuilt to MapReduce process,
which is a dedicated process of big data processing. Then, Sect. 5 presents the
user-defined indexes, and finally, Sect. 6 concludes the paper.

2 Index and Indexing

Indexing, as information retrieval technique, is the process of generating all the
suitable data structures that allow for efficient retrieval of stored information [35].
The term index refers to the suitable data structure needed, to allow for the efficient
information retrieval [26]. Usually, the data structures used for indexing in most cases
do not store the information itself. Rather, it uses other data structures and pointers
to locate where the data is actually being stored. A meta index is also used to store
additional information about stored data like the external name of a document, its
length, which can be ranked as the output of the index.

InRDBMS, the index is a data structure that speed up the operation of data retrieval
from database tables. The index comes with additional cost for writing/reading it
into/from the index table. This leads to more storage usage in order for the extra
copy of data created by the index to be maintained. The indexes are used in locating
data quickly by going straight to the data location without having to search all the
rows in the database table every time that table is accessed. Indexes are the bases for
providing rapid random lookups and efficient access of ordered recorded.

While in big data, if index is to be implemented the same way as it works with
the RDBMS, there is no doubt that it will be so big to the extent that the intended
fast record retrieval may not be achieved. Therefore, there is a need for a closer look
at the indexing technique in a way that will be reasonably small and maintain the
targeted goal of faster record retrieval.

2.1 Index Architecture and Indexing Types

The index has two architectures: non-clustered and clustered index, as shown in Fig. 3.
The non-clustered architecture presents data in an arbitrary order, but maintains a
logical ordering in which rows may be spread out in a file/table without considering
the indexed column expression. This architecture uses a tree-based indexing that has
a sorted index keys and pointers to record at its leaf node level. The non-clustered
index architecture is characterized by having the order of the physical rows of the
indexed data differing with the order in the index [32]. The non-clustered index
sketch is displayed in Fig. 3 (Fig. 2).

On the other hand, clustered index architecture changes the blocks of data into
a certain distinct order to match the index. This results in the ordering of the row
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Fig. 2 A sketch of index types
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Fig. 3 A sketch of non-clustered index

data. It can greatly increase the overall speed of retrieval in a sequential accessed
data or reverse order of the index or among a selected range of items. The major
characteristic of the clustered index architecture is that the ordering of the physical
data rows is in accordance with that of the index blocks that points to them [29]. The
clustered index sketch is displayed in Fig. 4.

There are many types of indexing in existence, and below is the overview of some
of them, as well as some of the studies involved each of them and their applicability
in big data situation.

2.2 Bitmap Index

The bitmap index uses bit array called bitmaps to store the bulk of its data. Bitmap is
a special type of index that uses bitwise logical operation on the bitmaps to answer
most of the queries run against it. The bitmap index works basically in situations
where index values are repeated very frequently unlike other index types commonly
used. The other types are most efficient when indexed values are not repeated at all
or they are repeated smaller number of times. The gender field of a database table is
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Fig. 4 A sketch of clustered index

a good example for a bitmap index. This is so because no matter how many tuples
there are in a database table, the field will only have two possible values: male or
female. A typical bitmap index data structure is shown in Fig. 5.

The bitmap index has been used in wide variety of areas and in big data analytics.
For instance, bitmap index application was used in the aspect of index compression.
The approach helps the compression to work better with high cardinality attribute
data. Wuetal. [39] present a study and analysis of some of the compression techniques
that use bitmap indexing, namely, byte-aligned bitmap compression (BBC) and word-
aligned hybrid (WAH). These techniques were able to reduce compressed data sizes
and improve their performance. The authors’ motivation was the fact that most of
the empirical researches do not include comparative analysis among these different
techniques, and the result of their own work showed that compressed bitmap indexes
appeared to be smaller in size compared to that of B+-Tree, with WAH occupying
half of the space of B+-Tree while the BBC occupies half the space of WAH.

Table
Record Gender
Row 1 M
Row 2 E Bitmap Index
B Gender Rowl Row2 Row3 Row4 Row5 Row6 Row?7
e Male 1 0 1 0 1 0 1
Rovd 1 Female 0 1 0 1 0 1 0
Row 5 M
Row 6 F
Row 7 M

Fig. 5 A bitmap index form from gender table
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Another work was done by Fusco et al. [13] using bitmap index as a compres-
sion approach to minimize CPU workload and consumption rate of disk. The plat-
form used for the work was a streaming network data, which requires a real-
time indexing. The authors introduced what they called COMPAX, a variant of
compressed bitmap index that supersedes the word-aligned hybrid (WAH) in terms
of throughput of indexing, shorter retrieval time and higher compression rate. The
NETwork Flow Index (NET-FLI), which highly optimizes real-time indexing as well
as data retrieval from larger-scale repositories of network, was used. The NET-FLI
synergies COMPAX and locality-sensitive hashing (LSH) are used for streaming
reordering in an online setup to achieve the target of the research. This combination
results in higher insertion rates of up to 1 million flows per second many folds over
what is obtainable in typical commercial network flow. The ISPB also allows the
performance of complex analysis jobs by administrators.

In addition, an effort was made to automate indexing process as well as resolving
the index selection problem (ISP) using bitmap by [27]. They came up with a tech-
nique that merges the features of index selection techniques (IST) and those of
linear programming for optimization to minimize cost. The result was a new method
that solves ISP externally and uses optimizer for choosing the set of indexers to
be used. The clustering data mining technique was used and when benchmarked it
outperformed Microsoft SQL Server Index Selection Tool (IST) in terms of speed of
selection and suggestion of indexes. Even though the bitmap index was designed for
RDBMS, it has also been used on some HLQLs on big data to improve information
retrieval. For example, a group of students incorporated bitmap index into Hive to
improve the retrieval of Facebook users information using gender field.

The bitmap technique as a candidate of indexing in big data has been tried, and in
some specific situation it gives some improved results. However, the bitmap index
does generate large volume of data as its data structure alongside the volume of the
big data itself. Hence, it cannot be used for general data retrieval in big data because
big data contains variety of data values.

2.3 Dense Index

The dense indexing approach uses a file/table with pair of keys and pointers to
each record in the data file/table, which is sorted. Every key in the dense index is
associated to a specific pointer to one of such records. If the underlining architecture
of the indexes is a clustered one with duplicate keys, dense index just points to the
first record with the said key [15]. Figure 6 displayed a sample of the dense index. In
the dense index, each index entry consists of a search key and a pointer. The search
key holds the value to be searched while the pointer stored the identifier to the disk
location containing the corresponding record and the offset that identifies the point
where the record starts within the block.

The dense index as an ordered index either stores index entry for all records when
the approach it is using is non-clustered, or it just stores the index entry to the first
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Index Table
10101 » 10101 Ado Comp. 65000
Sci.
12121 — » 12121 wu Finance 90000
15151 g 15151 Muizat  Music 40000
22222 | 22222 Essah  Physics 95000
a4z —— 32343 Said History 60000
33456 Gorden Physics 87000
33456 Y
45565 Katz Comp. 75000
45565 ——p Sci.
S p 58583 Califieri History 62000
76543 Singh Finance 80000
76543 - .
/,,. 76766 Clarck  Biology 72000
76766 83821 Brando Comp. 92000
83821 - n Sci.
98345 Kimo Elec. 80000
| Eng.

Fig. 6 A dense index on employee table

search key when using the clustered index approach [35]. The dense index uses file
in storing its index data structure and there is a dedicated pointer to each record and
the data has to be ordered. These two facts suggested that the index is going to grow
so big that it will be close to the size to that of the stored data. Hence, there are no
studies using dense index in big data retrieval.

2.4 Sparse Index

The sparse indexing method also uses a file/table that contains pair of search keys
and pointers. The pointers are pointing to blocks instead of individual records in the
data file/table, which is sorted in the order of the search keys. In sparse index, index
entries appeared for some of search key values. An index entry is associated to a
specific pointer to one of such blocks. If the underlining architecture of the indexes
is a clustered one with duplicate key, then the index just points to the lowest search
key in each block [15]. To locate any search key’s record, an index entry is searched
with the largest value that is less than or equal to the given search key value. Then,
the searching starts at the record pointed to by the index entry and moves down until
the target is found [32, 35]. Figure 7 depicts the explanation given above for sparse
index.
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Index ID Name Departm Pay
ent
10100 . 10101 Ado Comp. 65000
Sci.
22222
12121 Wu Finance 90000
45565 15151 Muizat Music 40000
83821 22222 Essah Physics 95000
32343 Said History 60000
33456 Gorden Physics 87000
45565 Katz Comp. 75000
Sci.
58583 Califieri History 62000
76543 Singh Finance 80000
76766 Clarck Biology 72000
83821 Brando Comp. 92000
n Sci.
98345 Kimo Elec. 80000
Eng.

Fig. 7 A sparse index on employee table

The dense and sparse indexes are the most common types of ordered index that
most relational databases use for generating query execution plans. However, for
both the dense and sparse index types, the use of files/tables to keep the pairs of
search keys and pointers may make them very unsuitable for big data indexing due
to two reasons: (1) The records and block of data file for big data will be distributed
over different clusters, which will make it very difficult to maintain such files. (2)
The volume of the big data will make the size of such index files to be unnecessarily
very large, which may lead to unreasonable costs of space and maintenance time.

3 Online Indexes

3.1 Online Indexing

Most techniques of indexing are having one drawback or the other. Thus, the big data
indexing requires the study of other modified indexing techniques. Some of these
modified indexes include the work of Chaudhuri et al. [8], which introduced the
online indexing. The online index is an extension to the use of external tuning tools
to optimize the physical design of a database through the analysis of representative
workload set.
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This technique works by monitoring the steps of an actual workload without
knowing it upfront, and to create an index automatically when one of the query’s
execution plans is generated. The index is created at the background of a running
workload in one complete go. The online indexing has lessened the work on the side
of the database administrator and on the side of the system by avoiding the need of
creating the index externally.

However, the online indexing usage has not covered the multi and partial indexes,
which are necessary and important approaches for query processing in both OTP and
OLAP. The results of comparison between the online indexing and the conventional
indexing showed that the online index performed better than the conventional one due
to the following: knowledge of workload is not required before creating the index.
Since the index is created as side effect of query execution, its entries cover only what
is specified in the query’s predicates; hence, the reason for better performance. The
online index can use any of the basic indexing data structure for its implementation,
be it B-Tree or ordered tables-based index [8, 16, 21].

Amir et al. [2] used online indexing to solve the problem of managing unbounded
length keys that are found in XLM paths, IP addresses, multi-dimensional points,
multi-key data and multi-precision numbers. This type of data is categorized as big
data. These types of string-based keys are usually atomic and indivisible; hence
requires a customized comparison data structure. Their proposed online indexing
happens to work with any data structure with a worst-case complexity of O(logn),
which they reported to be the best based on their experiment. A suffix tree was cited
as one of the application area of the proposed online indexing [2].

3.2 Database Cracking

Another effort in the direction of ‘on-the-fly’ indexing was made by Idreos et al.
[21]. The authors introduced a combination of automatic index selection and partial
indexes called database cracking. This approach uses the side effect of running current
query and future ones to refine the structure of its index. The database cracking substi-
tuted the normal scanning of stored data for index creation and query processing,
with pivoted partitioning of the data using the predicates from the query.

By doing that, one of the partitions will be containing only the tuples that answers
the query. The underlining data structure used by the cracker index could be quick
sort generated B-Tree or a hash, whose partitions expected to be beneficial to arriving
queries.

In database cracking, no external index or external tuning tools are required, but
just the monitoring of queries. The present and arriving queries are used to build
and optimize the index. Database cracking proves to be advantageous compared to
online indexing, and by extension the ordinary query processing. For the fact that
the partitioning has to be carried out in small number for every predicate (fan-out of
2-3), it takes a lot of queries to get the index fully optimized [17, 18, 41].
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Fig. 8 An example of database cracking

Figure 8 displays an example of database cracking. The database cracking was
implemented in one ‘MonetDB’ as a successful alternative to index scanning [7, 28].

However, the database cracking was observed to be CPU-intensive rather than I[/O
bound. Pirk et al. [28] proposed an enhancement that has taken the database cracking
from being CPU bound to I/0 bound. Input/output bound operation is best suited for
big data processing. The authors used approaches such as predication, vectorization,
data parallelism and CPU multi-thread on SIMD instructions to achieve the method.
The results of their work showed that it is 25 times faster than the first database
cracking.

3.3 Adaptive Merge

Graefe, Goetz, Kuno and Harumi [18] have introduced a modification of database
cracking called adaptive merge. The adaptive merge also creates index by using the
predicates specified in a query and used the partial index to answer that given query.
The process also increments and optimizes the index with the help of the underlining
data structure, the partitioned B-Tree. Adaptive merge uses merge sort for the index
optimization and works based on ‘monitor queries then build index’ approach.
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Fig. 9 An adaptive merge index is based of B-Tree

Unlike database cracking that uses partitioning of its data structure and works
only on in-memory database, the adaptive merge works on external block access like
flash memory and disc as well as in-memory. In terms of performance, the adaptive
merge indexing optimizes with far less number of queries compared to database
cracking. This is due to the fact that merge process’s fan-in is unlimited as against
limited fan-out of partitioning [18, 22]. Then Idreos et al. [22] made a further attempt
to bring the two approaches into one, by replacing the index initial creation stage
of the adaptive merge. The authors suggested a data structure that does not require
much resource to build such as array, but optimizes by merging. This attempt was
believed to work well with bug datasets. Figure 9 presents the partitioned B-Tree
that was generated by adaptive merge index.

The last three indexing methods also referred to as oblivious indexes work by
creating the index on-the-fly and automatically. The indexes use the concept of
monitoring any issued query and then build the index as the side effect of the query’s
execution. However, all the above-discussed indexing techniques work with RDBMS
and in an OLTP approach. The OLTP usually has short queries that are frequently
posed to the database as the main operational system. So, there are number of arriving
queries to increment and/or optimize an index if the need arises. On the contrary,
the situation is different in the case of OLAP, especially in batch-oriented situations,
which are the most common analysis when it comes to big data. Also, the mentioned
cases are mostly different when MapReduce is to be used for such analysis.

The drawbacks of the RDBMS in processing big data imply that their corre-
sponding index types have the same drawbacks. This prompted researchers of big
data to customize and, in some cases, develop different indexing strategies for the
big data analysis as mentioned earlier. These developed indexing strategies for big
data information retrieval systems are being used by big data analytics.
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3.4 Big Data Analytics Platforms

Upon the realization of the drawbacks of the traditional database systems, research
efforts continue with more focus in the direction of fast processing of big data,
especially with OLAP queries (big data analytics). The analytical challenge of big
data indicates that it has outgrown that capacity of traditional DBMS resources. This
further prompts for the development of new technologies to solve the challenge.
As a result of the above, Dean and Ghemawat [11] had presented the notable new
technologies of Google File System (GFS), which is a distributed file system used
for data storage across clusters. The authors also introduced the Google MapReduce
programming model, which is used for data analysis and indexing [9, 10, 14, 23].

The MapReduce is a programming paradigm that uses divide and conquer
approach to problem-solving. MapReduce uses functional programming approach
with only two functions: Map and Reduce. The functions are deployed to the chunks
of data that are stored on the distributed file system. The tasks to be carried out
by the functions are to be defined by the user and they are executed in parallel
on the various blocks of data. The MapReduce works in a key/values filtering and
aggregation manner to solve the problem in question [19, 23, 24, 36, 43].

The MapReduce remained the most powerful and the most accepted approach for
the big data mining and analytics [24, 37]. One of the major reasons for its popularity
among researchers and industry experts is its flexibility. Users can intuitively write
code to solve virtually any problem. Besides that, MapReduce also supports very
high parallel programming, even though at low level. MapReduce design nature was
to eradicate input/output (I/O) problem associated to extract, load and transfer (ELT)
[23].

The design migrates the computation to various computing units instead of moving
data into memory for computation. Furthermore, the Hadoop MapReduce implemen-
tation remains the fastest, one reported, in handling very large data analysis. In addi-
tion, larger percentage of research works’ experiment involving big data analytics
that are found in the literatures are done using the Hadoop MapReduce or they are
related to it or its associated tools. Lastly, reports and releases coming from the
big IT companies indicate that most of them use tools that are supported by the
Hadoop/MapReduce in performing their big data analysis [24, 31, 33, 37]. Table 1
highlights some of the features of three attempted solutions for big data analytics.

4 Inherent Indexes in MapReduce

A simple inverted index is said to be inherently and trivially implemented in MapRe-
duce as one of the effective tasks for textual data retrieval. This is highlighted by
Dean and Ghemawat [11] in their original paper on MapReduce and cited by Graef
and kuno [18]. When performing inverted index with MapReduce, the map function
parses the split covering certain input, and emits sequence of <key, value> pairs.
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Table 1 Comparison between big data analytics approaches

S. no. Big data Parallel Dynamic | Schema | SQL support Extract,
analytic programming | flexibility | less load and
approach transfer
1 MapReduce Yes Yes Yes No Not
directly
2 Algebraic Yes No Yes Yes No
workflow [12]
3 AterixDB [1] | Yes No No SQL | Semi-structured | Yes
Like

The reduce function accepts all pairs of the same key, sort the corresponding values
and emits <key, list(value)> pair. The set of all output pairs form a simple inverted
index. McCreadie [25] deducted that two interpretations of the above scenario can
be a per-token indexing or a per-term indexing in relation to the indexing of corpus
datasets.

The per-token indexing strategy involves emitting of <term, doc-ID> pairs for
each token in a document by the map function. However, the reduce function does
the aggregation of each unique term with its corresponding doc-ID to obtain the term
frequencies (tf), after which the completed posting list for that term is written to
disk. So, if a term appears tf times it will be indicated as such. The advantage of this
strategy is that it makes the map phase very simple. However, it has the potential of
costing more memory and time due to storage of large intermediate results, network
traffic and prolonging sort phase (Fig. 10).

On the other hand, the per-term indexing uses the map function to emit tuple in
the form <term, (doc-ID, tf)>, and this reduces the number of emit operation as only
unique term per document is emitted. The reduce function in this inter-operation only
sorts the instances by document to obtain the final posting list sorted by ascending
doc-ID. Ivory information retrieval system uses this approach. Also, a combiner
function can be used to generate tfs by performing a localized merge on each map
task’s output (Fig. 11).

4.1 Per Document Indexing

This is the inverted indexing technique used by Nutch platform on the Hadoop to
index document for faster search. Nutch tokenized the document during map phase
and the map function emits tuples in the form of <document, doc-ID >, while the
reduce phase writes all index structures. Though this strategy emits less, the value
of each emit used to have more data and have reduced intermediate results, thus
achieving higher levels of compression than single terms. Documents are indexed
on same reduce task easily due to the sorting of document names [25].
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Fig. 10 A sample of per token index using MapReduce

4.2 Per-Posting List Indexing

This indexing technique is based on a single-pass indexing, which splits data onto
multiple map tasks, with each operating on its own data sub-set. The map task
serves as the scanning phase of the single-pass indexing. As this process run on
the document, compressed posting lists are built in memory for each term. This
partial index is flushed from the map task when the memory run low or when all
the documents are processed. The flushing is done by emitting a set in the form of
<term, posting list> pairs for all terms present in the memory. Before taking up of
intermediate results by reduce task, the flushed partial indexes are sorted and stored
on disk first by map number and then by flushed numbers. In order to achieve globally
correct ordering of posting list for each term, the posting lists are merged by map
number and flushed number. The term, posting lists, is merged together by the reduce
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Fig. 11 A sample of per term index using MapReduce

function to form the standard index comprising full posting lists. The standard index
is compressed using EliasGamma technique by storing only the distance doc-IDs
[25] (Fig. 12).

All of the four strategies of inverted indexing in MapReduce discussed above are
the main task focused on and carried out by the MapReduce job. This is against the
primary function of indexing in RDBMS, which is to speed up access of stored data in
order to improve the performance of other processes. Thus, the aim of indexing is not
only to use but also to improve parallel processing of the document contents. Rather,
the primary aim of indexing is to improve the performance of parallel processor itself.
This improvement is to be achieved in addition to the underlining parallel processor
that MapReduce is programmed to accomplish. Thus, there is a need for additional
indexing scheme that works with the parallel processor and serves the same purpose
with what index does in RDBMS.
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Fig. 12 A sample of per document index using MapReduce

5 User-Defined Indexing in MapReduce

For the user-defined indexing used in MapReduce and big data analytics, Yang and
Parker [40] have employed HDFS’s file component as B-Tree nodes to achieve
indexing. In their approach each file contains data and pointer to lower files in the
tree hierarchy, which is considered its children. During query processing the tree is
traversed to locate the required segment of data to be processed using an improved
Map-Reduce-Merge-Traverse version of MapReduce. After locating the data, then
the map, the reduce and the merge tasks are performed on it to return the record set
that answers the given query.

Also, An et al. [3] have used blocklds from the HDFS as the search keys of their
B+-Tree-based index. When a given query is to be processed, the B+-Tree-based
index is first searched to determine the start and the end of contiguous blocks that
formed the index, and the result of the search formed the input data to be scanned.
Then, only the blocklds that are returned from such search are used by MapReduce
for main query processing. Hence, through this process preventing the full scan of
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the input data is done. In addition, Richter et al. [30] used the copies of replica stored
by HDFS, to index different data attributes, which may likely be used as incoming
query’s predicates. When a MapReduce query arrives, their library checks the fields
contained in the query’s predicates and used the clustered index built on that field to
return the blocklds of the data required to answer the given query.

Furthermore, in all the mentioned studies, the authors used indexing data structure
that scale logarithmically, thereby improving data processing and retrieval. This is
done by preventing the MapReduce from full scan of input data by guiding the process
to just scanning and processing the data that corresponds to the output of the indexes.
Moreover, many other researches were conducted on indexing using different types
of big data; however, those researches are closely tied to that type of big data as the
indexing data structure and the index implementations are determined by the nature
of the data itself [20]. Table 2 displays the summary of the index approaches, their

memory requirement and big data potentials.

Table 2 Comparison between big data analytics approaches

Reference Indexing approach | Data structure | Memory/storage | Potential for big
data mining
Wau et al. [39], Bitmap Tabular Requires large Has good
Fusco et al. [13] space of memory | potential for big
and storage data mining
Gracia et al. [15], | Dense Tabular Requires large Not a good
and Silberschez space of memory | approach for big
et al. [35] and storage data mining
Gracia et al. [15], | Sparse Tabular Requires large Not a good
Rys [32] and space of memory | approach for big
Silberschez et al. and storage data mining
[35]
Chaudhuri et al. Online indexing Vectors Requires small A good approach
[8] space of memory | for big data
and storage mining
Idreos et al. [21] | Database cracking | Arrays Requires small A good approach
space of memory | for big data
and storage mining
Graefe et al. [18] | Adaptive merge Tree-based Requires average | A very good
space of memory | approach for big
and storage data mining
Yang and Parker | B-Tree Tree-based Requires average | A good approach
[40] space of memory | for big data
and storage mining
An et al. [3] B+-Tree Tree-based Requires small A good approach
space for of for big data
memory and mining
storage
Richter et al. [30] | HAIL File-based Requires large A good approach
space of memory | for big data
and storage mining
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6 Conclusion

Moreover, it can be simply deducted from the above reviews that user-defined index
and content indexing as tool for optimizing the performance of information retrieval
has been successful. It can also be added that there is high potential for improving big
data analytics through the use of advanced indexing techniques and data structures.
Particularly, if these techniques and data structures are hybridized, improved and
customized to work with MapReduce, they will surely improve the performance of
big data analytics.

It has been highlighted that MapReduce is one of the most popular tools for big
data analytics. However, the low-level nature of its implementations has given rise to
the development of HLQLs. The HLQLs ease the programmer’s task of handling the
analysis. The review also highlighted the different types of index in both RDBMS
and those used in big data analytics using different big data analytics platforms,
including MapReduce and its index approaches. The improvement can be achieved
by changing the indexing approach or using more efficient data structure.
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