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Abstract Clustering as an unsupervisedmachine learning technique has appeared as
a great learningmethod to examine correctly the huge volume of dataset produced by
today’s applications. There is a huge amount of information in the field of clustering
and a lot of attempts have already been made to identify and evaluate it for a wide
number of applications, but the major problemswith the application of classical clus-
tering algorithm for big data analysis are its high complicity,massive volume, variety,
and generation rate. So, the classical clustering methods are becoming increasingly
inept in processing such data. This poses exciting challenges for researchers to
develop modern scalable and efficient methods of clustering that can extract useful
information from these vast amounts of data produced in different areas of life. Here
in this paper we present a classification for the review of big data clustering algo-
rithms by identifying major research subjects. We then present an up-to-date review
of the study works within each of the subject.
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1 Introduction

Clustering is an unsupervised machine learning method used to divide unlabeled
dataset into groups called clusters, which comprise data elements that are dissimilar
from those in other groups and similar to each other in the same cluster [1]. This has
been considered as an important technique for extracting knowledge from databases
and has been widely applied to a variety of scientific and business areas [2]. In the
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present digital age, based on the enormous advancement and growth of the internet
andweb technologies, the data produced bymachines and devices has reached a huge
volume and is expected to increase in the coming years [3]. Data has become themost
integral part of the knowledge-driven society and the economy of today. The goal
of big data clustering is to summarize, segment, and group the enormous volumes
and data diversities generated in groups of similar items at an accelerated rate. In
exploratory data analysis, this has turned out to be one of themost importantmethods.
Sadly, the classical clustering methods are becoming increasingly ineffective in the
processing of these data due to their high complicity, large volume, variety, and
generation rate. This poses exciting opportunities for researchers to develop scalable
and efficient methods of clustering that can extract useful information from these vast
amounts of data produced in different areas of life [4, 5]. Therefore, the proposed
paper presents an up-to-date review of the research works presented to handle big
data clustering. The remainder of this paper is structured as follows: Sect. 2 includes a
summary of the different approaches to clustering. Section 3 provides an overview of
different big data clustering approaches. Section 4 describes numerous applications
in the real world that used specific types of the big data clustering. Finally, the paper
is summarized in Sect. 5.

2 Clustering Techniques

A number of clustering algorithms have been proposed in the literature. These algo-
rithms are typically grouped according to the basic principle that the clustering algo-
rithm is based on [6]. That leads to the following groups being identified as shown
in Fig. 1.

Fig. 1 Grouping of clustering approaches
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2.1 Partitioning Methods

Clustering partitioning algorithms organize items into a given number of groups
by maximizing a specific objection function capturing the grouping structure. Most
partitioning algorithms start via an initial assignment and then use an iterativemethod
which transfers items from cluster to cluster to maximize the objective function.
Convergence is therefore local and the best global solution that cannot be guaranteed.
These methods required that the number of clusters should be known at the initial
stage, and this is normally set by the user [6].Most of the research in clustering comes
from the family of partitioning algorithms. K-means [7], k-mode [8], k-prototype [9],
and fuzzy c-means [10] are the examples of the partitioning methods.

2.2 Hierarchical Clustering Methods

Hierarchical clustering techniques build a clusters hierarchy in a top-down approach
(Divisive) or using bottom-up approach (Agglomerative) [11]. All these approaches
rely on building a similarity matrix between all of the data items; the choice of the
metric for the constructionof thematrixmayaffect the shapeof the clusters. Examples
of common similarity metric that can be employed are: cosine and Jaccard distance
metric. Linkage criteria that calculate the distance between groups of objects is a
function of the similar distance between objects. But the problem with hierarchical
clustering algorithm is that they have large time complexity “O(n3)” and needs
“O(n2)” space, for which n represents the number of data items. It can be never
undone once the merge or the split step is completed. CURE [12], ROCK [13], and
BIRCH [14] are some of the well-known hierarchical clustering algorithms.

2.3 Density-Based Methods

Data items are clustered in density-based method on the basis of their boundary,
connectivity, and regions of density. A cluster described as a dense component that is
connected grows in any direction to which density leads. Such methods are related to
neighbours closest to the point. Density-based algorithms are capable of identifying
clusters of arbitrary types and providing natural immunity to outliers [15]. Therefore,
the total density of a particular point is examined to evaluate the features of the dataset
that influence a particular data point. DBSCAN [16], OPTICS [17], DBCLASD [18],
and DENCLUE [19] are the most widely used density-based clustering algorithms.
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2.4 Grid-Based Algorithms

The data item space in grid-based technique is split into grids. The key benefit for
this method was its great ability to process, and this is because it runs once over the
dataset to measure the statistical grid values. Grid-based clustering is performed on
the grid, instead of clustering directly from the database. Quality is heavily dependent
on the grid size, which is usually smaller than that of the database. However, the use
of a single uniform grid might be insufficient for highly irregular data distributions
to find a reliable clustering performance or to meet the time limitation. STING [20],
CLIQUE [21], OptiGrid [22], and Wave-Cluster [23] are the common examples of
this approach.

2.5 Model-Based Methods

Model-based techniques attempt to adjust the fit between some predetermined math-
ematical formula and data based on the idea that data is created by a combination of
simple distributions of probability. This results in the automated detection of number
of clusters based on standard statistics, bringing outliers into perception, and thereby
building a reliable clustering strategy. Statistical and neural networks are the two
major approaches on the model-based techniques. MCLUST by Fraley and Raftery
[24] is regarded as the most common model-based algorithm but there are other
algorithms like COBWEB [25] (conceptual clustering), EM [26], and neural network
methods like self-organizing featuremaps [27]. Neural network system uses a combi-
nation of linked input/output units with each connection’s weight associated. Neural
network uses several attributes for clustering which made them famous. The statis-
tical methods employ probability procedures when evaluating clusters. Probabilistic
definitions are usually used to describe any idea derived from them [15].

3 Big Data Clustering Approaches

Based on the combination of conventional clustering and acceleration techniques,
many approaches have been proposed in the literature to manage huge data. This
approach focuses on increasing the speed of the clustering process by decreasing the
complicacy of the computation. On the basis of the acceleration method that is used
to enhance the scalability, big data clustering methods can be classified into parallel
techniques, data reduction-based techniques, and centre reduction-based techniques
as shown in Fig. 2.
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Fig. 2 An overview of big data clustering

3.1 Data Reduction-Based Methods

This technique attempts to reduce the number of data items during cluster devel-
opment in order to hasten the clustering technique. The MinBatch k-means method
(MBKM) was introduced by Sculley [28]. Its basic idea is the use of random small
split of fixed size data items which can be placed in memory. This technique is based
on the fact that random lots appear to be noisier than single data points. Alterna-
tive to k-means for massive-scale data processing named recursive partition k-means
(RPKM) has been introduced by Capó et al. [29]. The idea of this technique is to
estimate the k-means for the entire dataset by attempting the iterative application of
a weighted version of k-means over a small number of data subsets. RPKM’s key
steps are defined as follows: first, the data are divided into a number of sets of data
in which each set is defined by a member and their corresponding weight. Secondly,
over the collection of members, weighted variant of k-means is used.

3.2 Centre-Based Reduction Methods

This technique tries to decrease the amount of evaluations when searching for the
nearby cluster centres, which are the most time-consuming step. Kanungo et al.
[30] proposed the use of kd-tree structure to speed up k-means (KdtKM). kd-Tree
is defined as a binary tree which divides the data space constructed by piercing
hyperplanes. The k in kd-tree signify data dimension. Chen et al. [31] proposed a
fast density peak clustering for large-scale data based on kNN. Density peak (DPeak)
clustering algorithm is not valid for large-scale data, due to two quantities, i.e., both of
which are acquired with complexity O(n2) by brute force algorithm. Hence, a simple
but fast DPeak was proposed, namely FastDPeak, which runs in projected time in
the intrinsic dimensionality around O(nlog(n)). This replaces density with kNN-
density, which is determined by fast kNN algorithms such as cover tree, resulting in
enormous density calculation improvements. Based on kNN-density, local density
peaks and non-local density peaks are defined, and a fast algorithm is also proposed
with complexity O(n), which uses two different strategies to calculate for them.
Experimental tests show FastDPeak to be successful and to outperform other DPeak
variants.
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3.3 Parallel Techniques

Parallelization technique is among the most frequently used method to reduce the
time complexity of traditional clustering techniques. Parallelization is described as a
method that splits the task into chunks and executes them in parallel. In the literature,
manyparallel clustering techniqueswere proposed.Various frameworks like graphics
processing unit [32], message passing interface [33], MapReduce [34], or Spark [35]
may be used for parallelization. In this part, we review various research works on
parallel clustering techniques with focus on such frameworks.

Graphical Processing Unit-Based Techniques (GPU). GPU is a customized tech-
nology built to speed up graphical activities like photo and video formatting. A
parallel programming paradigm called compute unified device architecture (CUDA)
was used to shorten the development implementations of parallel GPUwithout going
into the details of the technology. Particularly in comparison to a central processing
unit (CPU), GPU consists of a huge number of processing cores. It also offers two
parallelization stages. GPU will have many multiprocessors on the initial stage; then
at the next stage every multiprocessor will also have several streaming processors.
Having followed this layout, the GPU application is split into chunks running on
streaming processors, and then these chunks are gathered to form chunks blocks
running on a multiprocessor [32]. Compared with the few terabytes of RAM now
allowed in servers, the comparatively small amount of video random access memory
(VRAM) on a GPU card has prompted some to assume that GPU acceleration is
restricted to applications with “small data.” But, the assumption lacks two common
practices in applications of “big data.” One is that processing a whole dataset at
once is rarely needed to achieve the desired effect. GPU VRAM, system RAM,
and storage [direct attached storage (DAS), storage area networks (SAN), network-
attached storage (NAS), etc.] can provide virtually unlimited large data workload
volume. For machine learning, for instance, the training data can be streamed from
memoryor storage as required.Live streamsof data coming from the internet of things
(IoT) or other applications such as the Kafka or Spark may also be consumed in a
common “incremental” method. The second technique is being able to scale up and
out GPU-accelerated configurations. Numerous GPU cards can be cited in a single
server, and several servers can be organized in a cluster. This scaling resulted in more
cores and more memory, all functioning concurrently and enormously in parallel to
process data at unparalleled speed. Therefore, the only real limit to GPU accelera-
tion’s potential computing power is the budget. However, whatever the budget avail-
able, it will still be possible for a GPU to speed up configuration and produce more
flops per dollar because CPUs are and will remain much more costly than GPU. The
GPU database offers a simple and potentially significant price/performance advan-
tage in a single server or cluster [36]. To quicken data clustering via GPU, several
works have been proposed, such as the work of Che et al. [37] that introduced a
k-means algorithm based on GPU (GPUKM). First, the initial centroid is posted into
the GPU’s shared memory and the input data is split and send to each of the multipro-
cessor. And from there, the distance from each corresponding data item is computed
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by each multiprocessor and allocated to the nearest cluster. Depending on the subset
of the data items, a local cluster centroid is computed. The central processing unit
(CPU) updates the new cluster centroids after each data items is allocated to cluster
centroids and submits them to the multiprocessors once more. The above steps will
be called multiple times using the same technique until convergence is achieved. The
parallel k-means reduces the time complexity of the algorithm. Andrade et al. [38]
proposed a GPU-enhanced algorithm for density-based clustering (G-DBSCAN).
This is split into two phases: the first phase involves building graph. Each objects
represent a node and an edge is created between two objects if the distance is lower
than or equal to a predefined thresholds. Once the graph is set, the second phase is
the identification of clusters that use breath first search algorithm (BFS) to traverse
the graph produced from the first phase. Both phases of the algorithm have been
parallelized to achieve better performance. Result indicates that in comparison to the
serial implementation, G-DBSCAN is 112 times faster.

A GPU fuzzy c-means technique (GPUFCM) was proposed by Al-Ayyoub et al.
[39]. The starting cluster locations are first stored in the shared memory. It then
produces from the dataset the starting participation matrix and the starting cluster
centroids. After that, by calculating distances, each multiprocessor calculates partial
participation. It then calculates the participation values by adding partial participa-
tion. The added participation values are transferred from the GPU to the CPU to
calculate new cluster centroids from which the algorithm will move to the next iter-
ation. Cuomo et al. [40] suggest an enhanced GPU-based k-means algorithm. The
proposed work adopted a parallel processing structure of the graphical processing
unit (GPU). The design proposed was optimized to handle CPU space inefficiency
and data transmission time for the host device. A parallelize kernel k-means using
CPU andGPUwas proposed by Baydoun et al. [41]. Kernel k-means involves several
computational phases and has additional computational criteria. As a consequence,
kernel k-means has not seen the same value and much can still be achieved with
respect to its parallelization and stable implementations. Several databases are used,
with varying number of features and patterns. The findings show that CUDA typi-
cally has the best runtimes with speed-ups ranging from two to more than 200 times
over a single-core CPU implementation depending on the dataset used. Shahrezaei
and Tavoli [42] studied parallelization of k-means++ with CUDA. k-means ++ is
an algorithm developed to boost the method of locating initial seeds in the algorithm
k-means. In this algorithm, the initial seeds are selected consecutively through a prob-
ability proportional to the distance from the nearest node. The most critical problem
of this algorithm is that it reduces the speed of clustering while running in serial way.
This work parallelized the k-means ++ algorithm’s most time-consuming steps to
increase the runtime of the k-means algorithm while using the k-means++ seeding
technique. In the k-means ++ algorithm, the distance of all points to the selected
centre should be determined and the seeds are selected according to a probability
formula. Those are the most difficult things for the k-means ++ algorithm being
parallelized. This work’s parallelization process starts with the partitioning of the
points into l different points. Then the measurement of the distance of points to
the centres remains parallel until the end of the algorithm. The results of this work
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show that the algorithm performs more efficiently over GPU than CPU. It has also
been shown that constant memory and texture memory have greater effectiveness in
this research than global memory. Even with GPU’s certified success in managing
massive-scale dataset, it tends to suffer from memory threshold. For instance, it may
not handle terabyte data with a bound of 12 GB of memory for every GPU. The
efficiency of the GPU-based technique goes way down once the size of the data
surpasses the GPU memory capacity. Therefore, developers should first configure
the memory before implementing programs via GPU. The drawback to this is the
small number to usable GPU tools and algorithms.

Message Passing Interface Techniques. MPI is a language-independent parallel
computing communication protocol that supports point-to-point and collective
communication [43]. High performance, scalability, and portability are MPI targets.
MPI is typically the prevalent model used in high-performance computing [44]
and provides portability among parallel programs running on distributed memory
systems. But the standard presently does not really support fault tolerance [44]
because it primarily addresses problems with high performance computing (HPC).
Another MPI downside is that leveraging the parallelism of multicore architec-
tures for shared memory multiprocessing, for example, is not ideal for small grain
degree of parallelism. Most researchers seek to combine the MPI with other appli-
cation programming interface (API), such as the OpenMP, to overcome this issue.
OpenMP is an API that enables multiplatform multiprocessing programming for
shared memory [45] on most processor architecture and operating systems. OpenMP
for its high performance is becoming the standard for parallel shared memory
computing but it is not suitable for distributed memory system. The combination
of these methods therefore allows for two levels of granularity: a small grain parallel
with OpenMP and a large grain parallel with MPI. MPI is implemented in the design
of master/slave whereby the master transmits tasks to slaves and collects computed
outcomes. However, the job of the slave is to accept tasks, process, and then send the
output to the master. Many techniques of clustering that use the MPI paradigm were
proposed. For example, Kwok et al. [46] proposed a parallel fuzzy c-means algorithm
based on the MPI paradigm (MPIFCM). The master first divides the input data into
chunks and sends it to slaves. Each slave gets the associated chunk; it updates the
membership matrix based on the distance measurement. The master then receives
all the information needed for the slaves to measure the new cluster. These steps are
repeated until convergence. A comparative study was made between the MPIFCM
and the parallel k-means, which shows a similar structure of parallelism between the
two algorithms. A particular implementation of the proposed algorithm is used and
tested to cluster a large dataset. It is shown that the MPIFCM algorithm has nearly
ideal speed-ups for large dataset and performs equally well when demanding more
clusters. Experimentally, the scale-up performance regarding the size of the dataset
is also shown to be excellent. Zhang et al. [47] developed a k-means (MPIKM) based
on MPI. In this technique, the input data is shared among the slaves. After that, the
master chooses k data items as the starting centroid and sends them to the slaves.
Each one of the slaves then determines the distance between each data object and
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the cluster centroids and assigns it to their nearest cluster. The master then receives
all the necessary information from the slaves. The entire process is reiterated until
convergence. The experimental results based on the seven datasets used have shown
that by increasing the dataset the running time of the proposed MPIKM algorithm
is slightly lower than that of the standard k-means. The result also shows that for a
small-scale dataset, it is not a good choice to use the proposed algorithm because
the time of dividing the dataset and assigning the task into each process occupies a
certain proportion. Savvas and Sofianidou [48] proposed a new semi-parallel variant
of the k-means algorithm for n-dimensional data objects via MPI. The first step of
the proposed strategy is for the master node to discover the resources available and
to divide the data into equal or nearly equal parts. The master node passes the data
subsets to the workers who in turn start applying the original sequential k-means
algorithm on it after obtaining the data. The worker nodes move the local centroids
and the number of data points allocated to each centroid to the master node after its
termination, and their job ends here. The master node calculates the global centroids
which apply the weighted arithmetic mean after collecting this information. The
master node at first sorts out the centroids and then divides them into k subgroups
and determine the global centroids (by the use of weighted arithmetic mean). The
centroids generated from the sequential algorithm by the proposed technique use
one-dimensional data points. On increasing the size of n-dimensional data points,
the technique generates centroids very similar to the original algorithm with simi-
larities varying from 91 to 100%. Shan et al. [49] proposed a new parallel k-means
algorithm for high-dimensional text data using both GPU and MPI. The GPU part
design of this work focuses on the measure of similarity between text objects, that is,
the computation of the matrix. The original complexity of computation is O(nd). In
parallel design, it is designed to start n threads, which runs in parallel. Complexity
becomes O(d) which greatly reduces runtime of the algorithm. The portion of the
MPI divides nodes into one control node andmultiple compute nodes. In order to test
the runtime of the proposed technique, the algorithm was tested on CPU, GPU, and
GPU +MPI platforms. The results show that the use of MPI and GPU can not only
increase the performance of the algorithm, but can also be easily potted to the GPU
cluster. However, even with the effectiveness of the MPI paradigm for massive-scale
data handling, it is affected by fault intolerance limit. MPI seems to have no fault
management tool. A machine downfall in the system can make the entire system to
be closed down. In MPI-based techniques developers, therefore, must introduce a
fault tolerance method in the design of master/slave to handle machine failures.

MapReduce-Based Techniques. MapReduce has recently become one of the most
widely used parallel programming paradigms for handling massive-scale data along
clusters systems. It is defined for its strong openness, which enables designers to
easily and accurately parallelize algorithms. The MapReduce paradigm consists of
two parts, which are Map and Reduce. The map component runs the map func-
tions to create a set of intermediate <key/value> pairs that process each <key/value>
in parallel. All intermediate values connected to the same intermediate key are
grouped together, while the reduce part executes the reduce function to combine
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all intermediate values linked to the same intermediate key. The key factors that
make MapReduce a good paradigm for handling massive data are the fault toler-
ance, linear scalability, and simple programming paradigm [34]. A large number of
research works have suggested in the literature that clustering method is suitable via
MapReduce. For instance, Zhao et al. [50] implemented k-means based on MapRe-
duce (MRKM) in Hadoop framework. This approach divides the input dataset into
blocks, where each block is sent to the mapper and each data element is assigned
to its closest cluster based on the distance computation by the map function. By
computing the mean data item of each cluster, the reduce function updates the new
cluster centroids at the reduce phase. Then the new cluster centroids are taken to
the Hadoop distributed file system (HDFS) for the next iteration which is to be
used by the map function. In conclusion, until convergence, this whole process will
continue. This way the time complexity of the k-means algorithm is reduced. Kim
et al. [51] proposed an effective clustering algorithm based on density for massive
data using MapReduce (DBCURE-MR). Although the conventional density-based
methods discover every cluster one after the other, the proposed algorithm discovers
multiple clusters together in parallel. The DBCURE parallelization using MapRe-
duce was performed in four stages. First, the matrix of neighbourhood covariances
was calculated in parallel for every point. Similarity joins were performed in the
second stage to explore all pairs of points, each of which is inside each of their
neighbourhood. In the third stage, core clusters were identified. The core clusters
were continuously fusing through the last stage to create the final clusters. Exper-
imental results indicate that DBCURE-MR proficiently discovers specific groups
and scales well with MapReduce paradigm. Ludwig [52] proposed a MapReduce
fuzzy c-means clustering (MRFCM). Two MapReduce jobs were used in this work.
First MapReduce job computes the cluster centre matrix and the second MapReduce
calculates the distances that will be used to update the matrix. Using this method
the time complexity of the fuzzy c-means was reduced in comparison with the serial
fuzzy c-means algorithm. Another MapReduce-based k-prototype (MRKP) for clus-
tering massive-scale mixed data was also proposed by Ben HajKacem et al. [53].
Shahrivari and Jalili [54] implemented a single-pass model based on MapReduce
termed as (MRK-means) using the re-clustering strategy. Unlike other MapReduce-
based k-means implementations, MRK-means needs only to read the dataset once
and is therefore multiple times faster than the original k-means. MRK-means time
complicacy is linearwhich is smaller than that of iterative k-means.Because of the use
of the seeding method, MRK-means also lead to clusters of greater quality. Dongbo
et al. [55] also proposed a canopy k-means (CK-means) clustering algorithm based
on MapReduce. Two MapReduce are being used in this work. The first MapReduce
estimates the number of clusters and centroids to be used by the second MapReduce
using a pre-clustering algorithm. The second MapReduce performed the clustering
of k-means by dividing the dataset in which each partition is associated with a map
function. The map function assigns every data point of the associated segment to the
nearest cluster by measuring the distance between the objects and the cluster centres.
In the reduction function the cluster centres are then updated by computing the cumu-
lative average of all data points in each cluster. The new centres are then moved to
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the HDFS, which the map function can use for the next iteration. The whole process
is repeated until convergence, which reduces the time complexity of the algorithm
compared to the original k-means algorithm. Nonetheless, the algorithm’s immunity
to noise is low and the threshold values of the canopy algorithm are very difficult to
determine, which has some effect on the result. In the work of Valcarce et al. [56],
an implementation of posterior likelihood clustering and recommendation-relevance
models based on MapReduce was proposed. In the current environment where the
number of recommendations hitting the big data scale is rising day after day, high
efficiency estimates are not sufficient. This research addresses one urgent and impor-
tant critical need for recommendation systems, which is scalability of algorithms.
The research adapted these highly effective algorithms to the functional MapReduce
paradigm, which was earlier proved as an appropriate tool to allow scalability of the
recommender. A good scalability behaviour was achieved with respect to the number
of nodes in theMapReduce cluster. To evaluate large datasets, the impulse for today’s
scenario is to boost the conventional methods. Tripathi et al. [57] suggest an effi-
cient clustering tool called an enhanced grey wolf optimizer (MR-EGWO) based
on MapReduce for clustering large-scale datasets. The method implemented a new
type of grey wolf optimizer, called enhanced grey wolf optimizer (EGWO), in which
grey wolf’s hunting strategy is hybridized with binomial crossover and levy flight
steps are induced to boost the searching capability for pray. The suggested variant is
further used to improve the clustering method. The EGWO’s clustering performance
is evaluated on seven UCI benchmark datasets and compared to the five current
clustering techniques, namely k-means, particle swarm optimization (PSO), gravita-
tional search algorithm (GSA), bat algorithm (BA), and grey wolf optimizer (GWO).
The EGWO’s convergence behaviour and consistency were validated through the
convergence graph and boxplots. Therefore, in the Hadoop context the proposed
EGWO is parallelized on the MapReduce model and called MR-EGWO to manage
the large-scale datasets. Furthermore, the MR-EGWO’s clustering accuracy is also
validated in terms of F-measure and compared to four state-of-the-art MapReduce-
based algorithms, namely, parallel k-means, parallel K-PSO,MapReduce-based arti-
ficial bee colony optimization (MR-ABC), and dynamic frequency-based parallel
k-bat algorithm (DFBPKBA). Experimental findings confirm that the proposed tech-
nique is promising and effective substitute for the efficient and large-scale data clus-
tering. Classical clusteringmethods generally represent each cluster in all dimensions
without any difference and depend only on an individual dimension of projection as
the weight of an attribute ignores relevance among attributes. Pang et al. [58] address
these two problems with the use of multiattribute weights using a MapReduce-based
subspace clustering algorithm called PUMA. The subspaces attribute is developed
into the PUMA by calculating a value weight attribute dependent on the proba-
bility of co-occurrence of attribute values between different dimensions. PUMA
obtains parallel sub-clusters of each computing node corresponding to the respective
attribute subspaces. Finally, by applying the hierarchical clustering method, PUMA
tests different scale clusters to iteratively combine sub-clusters. PUMAwas deployed
on an Hadoop cluster of 24-nodes. Findings show that using multiattribute weights
with subspace clustering can achieve better clustering accuracy in both the artificial
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and the real-world large datasets. The results also show that in terms of number
of nodes PUMA achieves great success in terms of extensibility, scalability, and
the almost linear speed-up. In addition, experimental findings show that PUMA is
realistic, efficient, and functional for expert systems such as automatic abstracting,
acquiring information, recommending systems, and disambiguating word sense.
While MapReduce tends to be ideal for clustering large-scale data, it tends to suffer
from the inefficiency of performing iterative operations [59]. The whole data must be
read and written back to the HDFS at each iteration of the technique. Consequently,
multiple I/O memory operations occur during every iteration, and this significantly
reduces the effectiveness of MapReduce-based technique.

Spark-Based Techniques. Spark is a distributed model of data processing devel-
oped to resolve the MapReduce limitations. It has been introduced as part of the
Hadoop, and is designed to run with Hadoop, specifically by accessing HDFS data.
This paradigm is based on resilient distributed datasets (RDDs) which is a particular
form of data structure used to coordinate computations transparently. Spark offers a
collection of in-memory operators in addition to the standard MapReduce to analyse
data faster in distributed settings [35]. A number of research works on big data clus-
tering with Spark paradigm were proposed. For instance, Zayani et al. [60] recom-
mended the parallelization of overlapping k-means clustering technique based on the
Spark paradigm (SOKM). The proposed technique can carry out parallel clustering
processes that result to pre-disjoint data segmentation. Current DBSCAN parallel
algorithms produce data partitions in which the initial data are usually split into
many disjoint partitions. But by the increase in data dimensions, dividing and reor-
ganizing huge dimensional space can take much time. In order to solve this problem,
Luo et al. [61] propose a Spark-based parallel DBSCAN method (S-DBSCAN) that
can rapidly split the data and combine the results of the clustering. The suggested
work is broken down into three phases. The first phase is partitioning the set of data
based on the strategy of random samples. The aim is to calculate the number of parti-
tions based on the actual computing nodes, and on this basis, the original random data
will operate through a custom random function. The original random data would be
exporting to each slice. Slice of data points has approximately the same data volume
and is similar to a simple random sampling. When the number of samples each slice
extracts is large enough, it has a similar distribution with the original raw data. After
the data is split, the local DBSCAN is calculated in parallel, so partial clustering
results are produced. At the map task, partial cluster is created. The partial cluster is
saved to HDFS as a new RDD, and at the reduced task each partial cluster centroid
is computed. At the last point, the results of global clustering were created by fusing
the partial cluster. They suggested a merger strategy based on the centroids. The idea
is to measure the distance in the same partition between each of the two partial clus-
ters, and use a sorting technique to determine the minimum distance. Moreover, it
determines the minimum value by sorting the minimum distance. Thirdly, threshold
is set to merge partial clusters. Finally, construct a matrix with a centroid distance
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and traverse every element in the matrix. If the distance is below the threshold then
add it to the merge queue until each element is visited. The experimental results indi-
cate a large speed-up of the S-DBSCAN. For the same number of nodes, the larger
the dataset, the greater the speed-up. This completely illustrates the superior effi-
cacy of the S-DBSCAN algorithm compared to other parallel DBSCAN algorithms
when dealing with huge data. Ben HajKacem et al. [62] presented a k-prototypes
clustering technique for massive-scale data with mixed attributes (KP-S). An RDD
object with the input dataset from the m partitions of the dataset was generated to
parallelize the k-prototype algorithm using Spark. To accomplish this, a Spark frame-
work operation testfile() was used. The map task selects a partition of the dataset,
performs the k-prototypes algorithm on that partition, and releases the intermediate
centres extracted and their weights as the output. MapPartition() transformation was
used in this work which runs the k-prototype algorithm separately on each RDD
block. Upon completion of the map phase, a set of intermediate weighted centres
is obtained as the map phase output and this collection of centres is released to
a single reduce step. The reduction step takes the set of intermediate centres and
their weights, performs the k-prototype method on them again, and releases the final
centres as the output. ReduceByKey() transformation from the Spark framework
was used to simplify implementation. When the final cluster centres are established,
the closest cluster centre is assigned to each data point. The obtained results show
that KP-S always completes many times faster than existing methods. For instance,
with 100 clusters on the Poker dataset, the KP-S algorithm can decrease runtime by
94.47 and 85.72% in comparison to k-prototypes and k-prototype using MapReduce
(KP-MR), respectively. In all of the analysis, over 95% of the running time is spent
in the map process, which indicates that KP-S is actually performed in memory. An
effective parallel density peak clustering technique using GraphX was implemented
based on Spark technology to decrease high time complexity of density peak clus-
tering method by Liu et al. [63]. This implementation is based on construction of
graph, computing the truncated distance, computing the local density and computing
the distance from higher density points. Construction of graph consists of three
phases. First, importing vertex and edge data stored on HDFS or other file systems
separately to vertex RDD and edge RDD, and setting each edge’s initial value to a
constant. Secondly, measuring the distance of each edge based on a distance measure
formula updating the value of each edge by the distance. Thirdly, the combination
of vertex RDD and edge RDD in GrapgX to form a graph. When the vertex set and
edge set are updated, the initial value for each edge is set to 1. When measuring
the distance of each edge, the distance is changed to the value of each edge. To
reduce the computation load, the truncated distance is measured before calculating
the local density. After the truncated distance is measured, the local density and the
distance from points of higher density is determined. Experimental result shows that
the Spark implementation can improve significantly (10x) compared to MapReduce
implementation. K-prototype is an iterative algorithm that requires some iteration for
generating best results. Conversely, MapReduce has a significant issue with iterative
algorithms. As a result, the entire dataset at each iteration must be loaded into the
main memory from the file system. Then, the data must be written to the file system
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again after it is processed. Consequently, several I/O disk operations occur during
each iteration, and this reduces runtime. To overcome this problem, Ben HajKace
et al. [64] proposed a scalable random dampling k-prototypes implemented on the
Spark paradigm. A reservoir random sampling technique was used for selecting
random data sample from the original dataset. The data sampling MapReduce job
first generates an RDD object with input data X form by m partitions. In the map
phase, each partition is then processed to generate the intermediate data samples. The
reduce phase then receives the set of intermediate data samples to produce the final
data sample. The map function takes a partition during the map process and applies
the random reservoir sampling algorithm to create an intermediate data sample of
size r. Themap function then releases the intermediate data samples as a single-phase
reduce output. The reduce phase gathers the intermediate data samples generated in
the map phase to create the final data sample. Upon generating the data sample, the
second MapReduce job checks for cluster centres. First, it generates an RDD object
with the data sample S form by m partition. Then, each partition is analysed in map
phase to generate the intermediate centres. The reduction step afterwards processed
the collection of intermediate centres to produce the final clusters. The map func-
tion selects a partition during the map process and executes the k-prototypes on that
partition to obtain the cluster centres. To achieve good quality, for each obtained
centre a weight that signifies the number of assign data points was recorded. The
number of allocated data points per cluster centre reflects the centre’s importance. At
last, the map function releases the intermediate centres extracted and their weights
as the output to a single reduce step. In this implementation, mapPartition(func)
transformation was used separately on every partition of the RDD. The reduce step
takes the intermediate centres and their weights, runs the k-prototypes algorithm on
them again, and returns the final centres as the output. ReduceByKey(func) trans-
formation from the Spark framework was used to simplify the implementation. The
experimental results obtained show that the method proposed often finishes many
times faster than the classical k-prototypes and the k-prototype based on MapRe-
duce. The method proposed was found to be 14 times faster than the classical k-
prototypes and four times faster than the MapReduce-based method. However, it
was found that most of the running time was spent on the step of the map which indi-
cates that the proposed method is actually being performed in memory. In the field
of agricultural image segmentation, the fuzzy c-means (FCM) algorithm has been
commonly used because it provides easy computation and high quality segmenta-
tion. However, the sequential FCM is too slow due to its large amount of computation
to complete the segmentation task in an appropriate time. Liu et al. [65] suggest a
parallel FCM segmentation algorithm based on the Apache Spark for clustering agri-
cultural images. The input image is first converted to the Lab colour space from the
RGB colour space and generates point cloud data. Point cloud data is then split and
stored in separate computer nodes where the membership degrees of pixel points to
separate cluster centres are determined and the cluster centres are modified itera-
tively in parallel form until the stop condition is met. In the RDD, point cloud data
is finally restored after clustering to reconstruct the segmented image. The FCM
output is measured on the Spark platform and achieves an average speed of 12.54
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on 10 computing nodes. Experimental results show that the Spark-based parallel
fuzzy c-means algorithm can achieve substantial speed-up improvements, and the
agricultural image test set provides a 128% better performance improvement than the
Hadoop-based solution. This work shows that the Spark-based parallel FCM algo-
rithm provides faster segmentation speed for big data on agricultural images and has
better scale-up and size-up. Yu et al. [66] presented an effective three-way cluster
ensemble approach based on Spark to solve the difficulty of clustering on large-scale
data; this methodology has the potential to deal with both soft and hard clustering. A
three-way cluster ensemble based on Spark was suggested, inspired by the principle
of three-way decisions, and a distributed three-way clustering algorithm for k-means
was developed. Also introduced was the concept of cluster unit, which represents the
minimum structure of distribution of granularity decided upon by all members of the
ensemble. This research also incorporates quantitative tests to determine the relation-
ship between units and between clusters. Eventually, a consensus-based clustering
algorithm was suggested, and several three-way decision strategies were developed
to assign small cluster units and non-unit objects. The experimental tests using 19
real-world datasets were used with various metrics such as ARI, ACC, NMI and F1-
Measure to verify the feasibility of the proposed method. The experimental result
shows that the proposed technique can manage large-scale data effectively, and the
proposed consensus clustering algorithm has a lower time cost without loss of the
consistency of the clusters.

4 Big Data Clustering Applications

Most applications in the real world generate vast amounts of data. Some of these
are (but not restricted to) healthcare applications, IoT applications, detection of
anomalies. Here we present a list of applications for big data clustering as shown in
Fig. 3.

Fig. 3 Taxonomy of big data clustering applications
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4.1 Healthcare

Several researchers have used different forms of clustering strategies for big data
in occupational medicine [67], acute inflammation [68], and grouping of cancer
samples [69]. McParland and Gormley [70] and Mcparland et al. [71] develop
a clustering algorithm for studying high-dimensional categorical genotypic and
numerical phenotypic data. The research contributes to a greater understanding of
metabolic syndrome. Narmadha et al. [72] use a hybrid fuzzy k harmonic means
(HFKHM) for the categorization of tumours as benign or malignant. Su et al. [73]
also employs a hierarchical clustering to continually group respondents based on
similarity structures of 27 different factors of asthma symptoms and 14 different
product applications.

4.2 Internet of Things (IoT)

Amini et al. [74] suggested a hybrid clustering algorithm built on density-based
clustering method for the IoT streaming data. The proposed method consists of three
phases under which the new data point is connected to a grid or embedded into
a current mini cluster, the outliers are eliminated and arbitrary shape clusters are
formed through the use of an enhanced DBSCAN. A new data clustering framework
is used for big sensory data generated by IoT applications byKaryotis et al. [75]. This
framework can also be used for community detection and performing more energy-
efficient smart-city/building sensing. Clustering algorithms have been widely used
in IoT applications such as looking for similar sensing patterns, identifying outliers,
and dividing massive real-time behavioural groups [76].

4.3 Anomaly Detection

Fanaee-T and Gama [77] uses an expectation maximization to model an anomaly
detection using structural time series for industrial Ethernet congestion into four
sections cantered on a method with a specific significance for detection. This model
helps to improve the efficacy of identifying irregular and low false alarm levels. A
new developed clustering algorithm was also used in the work of Alguliyev et al.
[78] for detection of anomalies. Yin et al. [79] used a self-organizing maps to detect
anomalous risk in mobile apps
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4.4 Social Media

Alsayat and El-Sayed [80] use an improved k-means algorithm to identify commu-
nities by clustering posts from huge streams of social data. In the work of Gurusamy
et al. [81], k-means algorithm is also used to exploit social network users’ attitudes.
On the basis of textual similarity, spectral k-means clustering is used to group people
in social network by Singh et al. [82]. A varied density-based spatial clustering
for twitter data algorithm that extracts clusters from geo tagged twitter posts using
heterogeneity in space. The algorithm uses incremental spline interpolation to ascer-
tain various cluster detection search radii [83]. They were successfully tested for
event detection in social media using geo tagged twitter post received in the course
of a storm in the United States.

5 Discussion

Parallel methods for big data clustering have been categorized in this work into
four GPU-based, MPI-based, MapReduce-based, and Spark-based methods groups.
But before applying clustering to any of the parallel frameworks, consideration of
certain challenges for each of the framework is necessary. GPU suffers from limited
memory. If the data size exceeds the GPU memory size, the performance reduces
the GPU-based approach significantly. For example, it is not acceptable to handle
terabyte data with a maximum of 12 GB of memory per GPU. Moreover, MPI
has no fault control function at all. One system failure in the network will cause
the entire network to shut down. Practitioners also need to incorporate some kind
of fault tolerance system inside the software to resolve mistakes. The MapReduce
architecture looks better than MPI as it is defined by a straightforward structure for
programming, linear scalability, and tolerance of faults. It is, however, inappropriate
to run iterative algorithms, because the entire dataset must be read and written to
disks at each iteration and this results in high (I/O) operations. This significantly
degrades the performance of MapReduce-based method. Finally, Spark framework
is an alternative toMapReducewhich is designed to overcome the disk I/O limitations
and improve the performance ofMapReduce framework.A recent survey outlined the
various frameworks for big data analytics and presents the advantages and drawbacks
of each of these frameworks based on different metrics such as scalability, data I/O
rate, fault tolerance, and iterative task support [84, 85].

While most of the big data partition clustering methods described in this work
provide an efficient analysis for large-scale data for users, some parameters have to
be calculated before the learning is finished. The methods include configuring the
number of clusters in advance,which is not a trivial task in real-life applicationswhere
the number of clusters predicted is typically unknown. One could use various model
heuristics as a solution to determine the optimal number [86, 87]. For instance, with
an increased number of clusters, the usermay check various clusters and then take the
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clustering that has the best balance between minimizing the objective function and
number of clusters. In addition, the partitioning methods must initialize the centres
of the clusters. However, initialized centres of high quality are critical, both for the
accuracy and performance of traditional clustering methods. In order to overcome
this problem, users may use random sampling methods to obtain cluster centres or
initialization techniques that exploit the fairlywidespread use of good clustering [88–
90]. The outcome of the described methods, using centre initialization techniques,
often converges to a local optimum of the objective criterion, rather than the global
optimum. To resolve this problem, users should combine traditional methods with
heuristic techniques to avoid optimum local clustering results [3, 21, 29, 91–93].

6 Challenges and Future Research Work

Despite the growth in these technologies and algorithms to handle big data, there are
still challenges such as:

• Scalability and storage issues: Data rises aremuch higher than existing computing
systems. Storage devices are not adequately capable of processing these data [94–
97]. A processing system needs to be built which not only addresses the needs of
today but also future needs.

• Analytical timeliness: Data value decreases over time. Many applications, such
as telecom, insurance, and banking fraud detection, require real-time or near-real-
time transactional data processing [94, 95].

• Heterogeneous data representation: Data derived from different sources are of
heterogeneous type. It is difficult to store and process unstructured data such as
images, videos, and social media data using conventional methods such as SQL.
Smartphones are now capturing and exchanging images, audios, and videos at
an exponentially higher pace, pushing our brains to further process. However,
there is a lack of effective storage and processing of the medium for representing
pictures, audios, and videos [94, 95, 98].

• Privacy and security: New devices and technologies like cloud computing provide
a gateway to access and to store information for analysis. This integration of IT
architectures will pose greater risks to data security and intellectual property.
Access to personal information like buying preferences and call detail records
will lead to increase in privacy concerns [96, 99]. Researchers have technological
infrastructure to access data from any source of data, including social networking
sites, for potential use, although users are unaware of the benefits that can be
made from the information they post [100]. The disparity between privacy and
convenience is unknown to big data researchers.

Based on this review, the following future works have been formulated.
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• Hybrid approaches that combine multiple acceleration techniques showed great
promise for big data clustering. For the development of a reliable hybrid approach
for big data clustering, further work is needed, however.

• Due to the effectiveness of the big data parallel methods, a method for the
parallelization of the hybrid methods is highly needed.

7 Conclusion

This paper offers an in-depth analysis of the big data clustering algorithms to guide
the selection of the big data algorithms.We also include categorization of various big
data clustering research works. At the end, we describe various applications where
big data clusteringwas used. In sumup, though conventional sampling and dimension
reduction algorithms are still useful, but they don’t have enough power in managing
massive quantities of data because even after sampling a petabyte of data, it is still
very large and clustering algorithms cannot cluster it, so the future of clustering
is related to distributed computing. Although parallel clustering is potentially very
useful for clustering, but the complexity of implementing such algorithms is still a
challenge.
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