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Abstract Bidirectional gated recurrent unit (BGRU) can learn hierarchical feature
representations from both past and future information to perform multi-class clas-
sification. However, its classification performance largely depends on the choice of
model hyperparameters. In this paper, we propose a methodology to select optimal
BGRU hyperparameters for efficient botnet detection in smart homes. A deep BGRU
multi-class classifier is developed based on the selected optimal hyperparameters,
namely, rectified linear unit (ReLU) activation function, 20 epochs, 4 hidden layers,
200 hidden units, and Adam optimizer. The classifier is trained and validated with a
batch size of 512 to achieve the right balance between performance and training time.
Deep BGRU outperforms the state-of-the-art methods with true positive rate (TPR),
false positive rate (FPR), and Matthews coefficient correlation (MCC) of 99.28 ±
1.57%, 0.00 ± 0.00%, and 99.82 ± 0.40%. The results show that the proposed
methodology will help to develop an efficient network intrusion detection system for
IoT-enabled smart home networks with high botnet attack detection accuracy as well
as a low false alarm rate.
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1 Introduction

Embedded devices are interconnected to each other and further connected to the
Internet to form an Internet of Things (IoT) [1, 2]. Smart home paradigm exploits
the enormous capabilities of IoT technologies to develop intelligent appliances and
applications such as smart televisions, smart fridges, smart lighting, and smart secu-
rity alarm systems [3, 4]. Primarily, IoT-enabled devices in homes autonomously
communicate with residents and other IoT-enabled devices over the Internet. Unfor-
tunately, invalidated assumptions and incompatibility in the integration of multiple
IoT technologies, standards, proprietary communication protocols, and heteroge-
neous platforms have exposed smart homes to critical security vulnerabilities [5].
Most of the IoT devices and applications that are in use today were developed with
little or no consideration for cybersecurity [6]. Hence, IoT devices tend to be easier
to compromise than traditional computers [7].

Cyber attackers exploit the lack of basic security protocols in IoT devices to
gain unauthorized remote access and control over insecure network nodes [8, 9].
Compromised IoT devices (i.e., bots) in smart homes can be connected to a master
bot in a remote location. This kind of connection helps hackers to form a coordinated
network of bots (botnets) [10, 11]. Botnets launch large-scale distributed denial of
service (DDoS) attacks with massive traffic volume [10, 12]. Other botnet scenarios
include port scanning, operating system (OS) fingerprinting, information theft, and
keylogging [13]. Existing security solutions that are primarily designed for traditional
computer networks may not be efficient for IoT botnet detection in smart home
scenarios due to the unique characteristics of IoT devices and their systems [13].

Traffic patterns of different botnet attack scenarios can be detected in IoT network
traffic data using machine learning (ML) approach. Various shallow learning tech-
niques have been proposed to detect botnet attacks in IoT networks. These include
support vector machine (SVM) [13–20], decision trees (DT) [14, 15, 19, 21–25],
random forest (RF) [8, 15, 18, 21, 23, 26], bagging [15], k-nearest neighbor (k-NN)
[15, 19, 21, 23, 24, 26], artificial neural network (ANN) [22, 25, 27], Naïve Bayes
(NB) [22, 23, 25], isolation forest [16], feedforward neural network (FFNN) [18],
k-means clustering [28, 29], and association rule mining (ARM) [25]. However,
data generation in IoT networks is expected to be big in terms of volume, variety,
and velocity [30]. Therefore, machine learning techniques with shallow network
architecture may not be suitable for botnet detection in big IoT data applications.

Deep learning (DL) offers two main advantages over shallow machine learning,
namely, hierarchical feature representation and automatic feature engineering, and
improvement in classification performance owing to deeper network architecture.
DL techniques have demonstrated good capability for botnet detection in big IoT
data applications. State-of-the-art DL techniques for IoT botnet detection include
deep neural network (DNN) [14], convolutional neural network (CNN) [8, 31–34],
recurrent neural network (RNN) [13, 29], long short-term memory (LSTM) [13, 29,
35, 36], and bidirectional LSTM (BLSTM) [36, 37]. The classification performance
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of DL methods depends on the choice of optimal model hyperparameters. However,
model hyperparameters are often selected by trial and error methods in previous
studies.

Gated recurrent unit (GRU) is a variant of RNN, and it is suitable for large-scale
sequential data processing [38]. Bidirectional GRU (BGRU) has a unique advan-
tage of accessing both past and present information to make an accurate decision
for efficient classification performance with lower computational demands [39]. To
the best of our knowledge, previous researches have not investigated the capability
of BGRU for botnet detection in a smart home scenario. In this paper, we aim to
find the optimal hyperparameters for efficient deep BGRU-based botnet detection in
IoT-enabled smart homes. The main contributions of this paper are summarized as
follows:

a. A methodology is proposed to determine the most suitable hyperparameters
(activation function, epoch, hidden layer, hidden unit, batch size, and optimizer)
for optimal BGRU-based multi-class classification.

b. A deep BGRUmodel is designed based on the selected model hyperparameters
to distinguish normal network traffic from IoT botnet attack scenarios.

c. The proposed methodology is implemented, and the deep BGRU model is
developed with the bot-IoT dataset.

d. We evaluate the performance of the deep BGRU model based on training loss,
validation loss, true positive rate (TPR), false positive rate (FPR), Matthews
correlation coefficient (MCC), and training time.

The remaining part of this paper is organized as follows: Sect. 2 describes the
proposed methodology for selection of optimal BGRU hyperparameters; the method
is employed to develop a deep BGRU model for efficient IoT botnet detection; the
results of extensive model simulations are presented in Sect. 3, and Sect. 4 concludes
the paper.

2 Deep BGRU Method for Botnet Detection in IoT
Networks

In this section, we describe the concept of BGRU, the proposed methodology for
optimal BGRU hyperparameters, and the development of efficient deep BGRU clas-
sifiers for botnet detection in the context of a smart home. The overview of the
framework is shown in Fig. 1.

2.1 Bidirectional Gated Recurrent Unit

GRU is a variant of RNN. This hidden unit achieves performance similar to LSTM
with a simplified gatedmechanism and lower computation requirements [40]. Unlike
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Fig. 1 Optimal hyperparameters of BGRU

LSTM, GRU discards the memory unit and replaces the input and forget gates with
an update gate. Figure 2 shows the standard structure of a GRU. A GRU has two
gates, namely, the reset gate (ri) and the update gate (zi). These gates depend on
past hidden state (ht−1) and the present input (xt). The reset gate determines whether
the past hidden state should be ignored or not, while the update gate changes the

Fig. 2 The architecture of
GRU
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past hidden state to a new hidden state (h̃i ). The past hidden state is ignored when
ri � 0 such that information that is not relevant to the future is dropped and a more
compact representation is obtained. The update gate regulates the amount of data
that is transmitted from the past hidden state to the present hidden state.

GRU is a unidirectional RNN, i.e., it employs a single hidden layer, and its recur-
rent connections are in the backward time direction only. GRU cannot update the
present hidden state based on the information in the future hidden state. Interest-
ingly, BGRU updates its current hidden state based on both the past and the future
hidden state information [41]. A single BGRU has two hidden layers, which are both
connected to the input and output. The first hidden layer establishes recurrent connec-
tions between the past hidden states and the present hidden state in the backward time
direction. On the other hand, the second hidden layer establishes recurrent connec-
tions between the present hidden state and the future hidden states in the forward
time direction. The computation of BGRU parameters is obtained by (1)–(9):
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ỹi = ϑ

(
W y

←−
h(t)
t + U y

−→
h(t)
t + by

)
, (9)

where x, r, z, h, ỹ and i are the input, reset gate, update gate, hidden state, output,

and hidden unit index, respectively;
←−
(·) and−→

(·) represent the parameters of the hidden
layers in the backward and forward time directions, respectively; W (·) and U(·) are
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the weight matrices while b(·) is the bias vector; σ (·) is a logistic sigmoid activation
function; φ(·) is either hyperbolic tangent (tanh) or rectified linear unit (ReLU)
activation function; and ϑ(·) is a softmax activation function.

2.2 The Proposed Method for Selection of Optimal BGRU
Hyperparameters

The proposed method for optimal selection of BGRU hyperparameters is presented
in Algorithm 1. Network traffic features are considered as sequential data given by
(10):

X =
⎡
⎢⎣
x1,1
...

xδ,1

x1,2 · · · x1,μ
...

. . .
...

xδ,2 · · · xδ,μ

⎤
⎥⎦ (10)

where μ is the number of network traffic features, and δ is the number of network
traffic samples. The network traffic features in the training, validation, and testing
sets are represented by Xtr , Xva, and Xte, respectively. The ground truth labels for
training, validation, and testing are represented by ytr , yva, and yte, respectively.

The selection of optimal BGRU hyperparameters will lead to efficient detection
and classification of IoT botnet attacks. These hyperparameters include activation
function (af ), epoch (ep), hidden layer (hl), hidden unit (hu), batch size (bs), and
optimizer (op). The optimal choice is made from a set of commonly used hyper-
parameters through extensive simulations. The collection of the hyperparameters is
given by (11)–(16):

a f = [
a f,1, a f,2, . . . , a f,n

]
, (11)

ep = [
ep,1, ep,2, . . . , ep,m

]
, (12)

hl = [
hl,1, hl,2, . . . , hl,k

]
, (13)

hu = [
hu,1, hu,2, . . . , hu,q

]
, (14)

bs = [
bs,1, bs,2, . . . , bs,v

]
, (15)

op = [
op,1, op,1, . . . , op,g

]
, (16)
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where n is the number of activation functions in af ; m is the number of epochs in
ep; k is the number of hidden layers in hl; q is the number of hidden units in hu; v is
the number of batch sizes in bs; and g is the number of optimizers in op. The default
hyperparameters are the first elements in each of the sets.

Algorithm 1. Optimal BGRU hyperparameter selection method
Input:
Initialization:
Output:
1. def
2.
3.
4.
5.
6. return
7. for to
8.
9. for to
10.
11. for to
12.
13. for to
14.
15. for to
16.
17. for to
18.

The development of the BGRU model for efficient IoT botnet detection in smart
homes involves two main processes, namely, the choice of suitable deep network
architecture and loss minimization through model training and validation. Deep
network architecture (N) for BGRU is determined by af,c, hl,d , and hu,j. The selected
BGRU architecture is trained with Xtr , ytr , Xva, yva, ep,α , bs,β , and op,γ using back-
propagation through time (BPTT) algorithm [42]. Loss minimization during training
and validation is assessed based on the values of training loss (ltr) and validation loss
(lva). A categorical cross-entropy loss function was used for loss minimization in a
multi-class classification scenario.

The performance of BGRU classifier is based on TPR, FPR, and MCC when
evaluated with highly imbalanced testing data (Xte, yte). The definition of these
performance metrics is given by (17)–(20) [43]:
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TPR = TP

TP + FN
(17)

FPR = FP

FP + TN
, (18)

λ = 2

[
TP + FN

TP + FN + FP + TN

]
− 1 (19)

MCC = 1

2

{[
TPR + TNR − 1

TPR + (1 − TNR)
(
1−λ
1+λ

)
]

+ 1

}
, (20)

where true positive (TP) is the number of attack samples that are correctly classified;
false positive (FP) is the number of normal network traffic samples that are misclas-
sified as attacks; true negative (TN) is the number of normal network traffic samples
that are correctly classified; false negative (FN) is the number of attack samples that
are misclassified as normal network traffic; λ is the class imbalance coefficient. For
each of the simulation scenarios, an optimal BGRU hyperparameter is expected to
produce the lowest ltr , lva, and FPR as well as the highest TPR and MCC.

2.3 Deep BGRU Classifier for IoT Botnet Detection

Bot-IoT dataset [13] is made up of network traffic samples that were generated from
real-life IoT testbed. The testbed is realistic because IoT devices were included.
These IoT devices include a weather station, a smart fridge, motion-activated lights,
a remote-controlled garage door, and an intelligent thermostat. This network of IoT
devices is considered to be a good representation of an IoT-enabled smart home. The
Bot-IoT dataset also contains recent and complex IoT botnet attack samples covering
five common scenarios, namely, DDoS, DoS, reconnaissance, and information theft.
Accurate ground truth labels are given to the IoT botnet attack samples. The samples
of DDoS attack, DoS attack, normal traffic, reconnaissance attack, and information
theft attack in the Bot-IoT dataset are 1,926,624, 1,650,260, 477, 91,082, and 79,
respectively.

Network traffic samples, IoT botnet attack samples, and ground truth labels were
pre-processed into appropriate formats suitable for deep learning. First, the complete
dataset was randomly divided into a training set (70%), validation set (15%), and
testing set (15%) as suggested in the literature [44, 45]. Non-numeric elements
in feature matrices (Xtr , Xva, Xte) and label vectors (ytr , yva, yte) were encoded
using integer encoding and binary encoding methods, respectively. Furthermore,
the elements of feature matrices were transformed using a min–max normalization
method such that the value of each element falls between 0 and 1 [46].
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The proposed method for the selection of optimal BGRU hyperparameters was
implemented.All simulationswere performed at a learning rate of 0.0001.Thedefault
hyperparameters for the simulations were the ReLU activation function, five epochs,
a single hidden layer, 200 hidden units, a batch size of 128, and Adam optimizer.
We investigated the suitability of the following: tanh and ReLU activation functions;
epochs of 5, 10, 15, and 20; hidden layers of 1, 2, 3, and 4; hidden units of 10,
50, 100, 150, and 200; batch sizes of 32, 64, 128, 256, and 512; and finally, the
optimizers (Adam, SGD, RMSprop, and Adadelta). Model training, validation, and
testing were implemented using Keras library developed for Python programming
running on Ubuntu 16.04 LTS workstation with the following specifications: RAM
(32GB), processor (Intel Core i7-9700KCPU@3.60GHz× 8), Graphics (GeForce
RTX 2080 Ti/PXCIe/SSE2), and 64-bit operating system. The optimal BGRU hyper-

parameters
(
ã f , ẽp, h̃l , h̃u, b̃s, õp

)
were used to develop a multi-class classifier for

efficient IoT botnet detection in smart homes.

3 Results and Discussion

In this section, we evaluate the effectiveness of the method proposed for the selection
of optimal BGRU hyperparameters in our attempt to develop an efficient IoT botnet
detection system for smart home network security. Specifically, we examine the
influence of different activation functions, number of epochs, number of hidden
layers, number of hidden units, batch sizes, and optimizers on the performance of
BGRU-based multi-class classifier.

3.1 Influence of Activation Functions on Classification
Performance

To determine the right activation function for multi-class classification, ReLU and
tanh activation functions were independently employed in two distinct BGRU neural
networks, namely, BGRU-ReLU andBGRU-tanh. Apart from the activation function
that differs, each of the BGRU neural networks is made up of a single hidden layer
with 200 hidden units. BGRU-ReLU and BGRU-tanh were separately trained and
validated with five epochs, 128 batch size, and Adam optimizer.

Training and validation losses in BGRU-ReLU and BGRU-tanh were analyzed
to understand the extent of model underfitting and overfitting, respectively. Figure 3
shows that the ReLU activation function is more desirable than tanh activation func-
tion. Generally, training and validation losses reduced in both BGRU-ReLU and
BGRU-tanh as the number of epochs increased from 1 to 5. However, training and
validation losses were lower in BGRU-ReLU than in BGRU-tanh throughout the
5-epoch period. At the end of the experiment, we observed that training loss in
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Fig. 3 Training and validation losses of two activation functions

BGRU-ReLU reduced to 0.1000, while validation loss reduced to 0.0721. Also,
BGRU-ReLU reduced the average training and validation losses in BGRU-tanh by
31.16% and 35.07%, respectively. The reduction in training and validation losses
implies that the likelihood of model underfitting and overfitting is minimal when the
ReLU activation function was used in BGRU. Model underfitting will lead to poor
classification accuracy while model overfitting will adversely affect the generaliza-
tion ability of BGRU classifier when applied to previously unseen network traffic
samples. Consequently, the adoption of the ReLU activation function in BGRU will
help to achieve high classification accuracy and good generalization ability required
for efficient IoT botnet detection in smart homes.

Multi-class classification performance ofBGRU-ReLUandBGRU-tanhwas eval-
uated with respect to the ground truth labels based on TPR, FPR, and MCC. TPR,
also known as sensitivity or recall, is the percentage of samples that were correctly
classified; FPR, also known as fall-out or false alarm ratio (FAR), is the percentage of
samples that were wrongly classified; and MCC is a balanced measure that accounts
for the impact of class imbalance on classification performance. Table 1 shows that
BGRU-ReLU performed better than BGRU-tanh. BGRU-ReLU increased TPR and
MCC in BGRU-tanh by 24.37% and 25.47%, respectively, while FPR was reduced
by 40.86%. The lower the TPR and MCC values, the higher the chances that the
BGRU classifier will fail to detect IoT botnet in smart homes. Also, the higher the
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Table 1 Performance of BGRU with different activation functions

Metric AF DDoS DoS Normal Reconn. Theft Mean ± Stdev

TPR tanh 96.55 98.60 63.53 99.90 0.00 71.72 ± 42.85

ReLU 98.01 98.86 74.12 99.99 75.00 89.20 ± 13.38

FPR tanh 1.33 3.30 0.00 0.00 0.00 0.93 ± 1.45

ReLU 1.08 1.90 0.00 0.00 0.00 0.60 ± 0.87

MCC tanh 98.16 97.34 89.85 99.97 0.00 77.06 ± 43.25

ReLU 98.72 98.38 93.05 99.99 93.30 96.69 ± 3.27

FPR value, the higher the probability that the BGRU classifier will produce a false
alarm, i.e., it is more likely that the classifier will wrongly classify incoming network
traffic or IoT botnet attack. Therefore, the choice of the ReLU activation function in
BGRU will ensure a high detection rate and reduce false alarm in botnet detection
system developed for smart homes.

3.2 Influence of the Number of Epochs on Classification
Performance

In this subsection, we determine the optimal number of epochs required for efficient
BGRU-based IoT botnet detection in smart homes. Four single layers BGRU neural
networks were trained and validated with 5, 10, 15, and 20 epochs to produce BGRU-
EP5, BGRU-EP10, BGRU-EP15, and BGRU-EP20 classifiers, respectively. Each of
these classifiers utilized 200 hidden neurons, the ReLU activation function, a batch
size of 128, and Adam optimizer.

Training and validation losses in BGRU-EP5, BGRU-EP10, BGRU-EP15, and
BGRU-EP20 were analyzed to understand the extent of model underfitting and over-
fitting, respectively. Figure 4 shows that the lowest average training and valida-
tion losses were realized with 20 epochs. In general, training and validation losses
reduced in all the classifiers throughout the epoch period. However, average training
and validation losses were lower in BGRU-EP20 than in BGRU-EP5, BGRU-EP10,
and BGRU-EP15. At the end of the experiment, we observed that training loss in
BGRU-EP20 reduced to 0.0095, while validation loss reduced to 0.0094. BGRU-
EP20 reduced the average training losses in BGRU-EP5, BGRU-EP10, BGRU-EP15
by 58.89%, 37.99%, and 17.87%, respectively, while the average validation losses
were reducedby53.80%,35.22%, and15.82%, respectively.The reduction in training
and validation losses implies that the likelihood of model underfitting and overfitting
is best minimized when the number of epochs in BGRU was 20. In other words,
a sufficiently large number of epochs in BGRU will facilitate high classification
accuracy and good generalization ability that are required for efficient IoT botnet
detection in smart homes.
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Fig. 4 Mean training and validation loss of different epochs

Multi-class classification performance of BGRU-EP5, BGRU-EP10, BGRU-
EP15, andBGRU-EP20was evaluatedwith respect to the ground truth labels based on
TPR, FPR, andMCC. Table 2 shows that BGRU-EP20 performed better than BGRU-
EP5, BGRU-EP10, andBGRU-EP15. BGRU-EP20 increasedTPRby 7.97%, 3.65%,
and 1.05% relative to BGRU-EP5, BGRU-EP10 andBGRU-EP15, respectively; FPR
decreased by 87.27%, 73.08%, and 46.15%, respectively; and MCC increased by

Table 2 Performance of BGRU at different number of epochs

Metric Epoch DDoS DoS Normal Reconn. Theft Mean ± Stdev

TPR 5 97.97 99.18 76.47 99.98 75.00 89.72 ± 12.80

10 99.01 99.60 81.18 99.99 87.50 93.46 ± 8.63

15 99.44 99.90 80.00 99.98 100.00 95.86 ± 8.87

20 99.72 99.94 84.71 99.98 100.00 96.87 ± 6.80

FPR 5 0.78 1.94 0.00 0.00 0.00 0.55 ± 0.85

10 0.38 0.95 0.00 0.00 0.00 0.26 ± 0.41

15 0.10 0.54 0.00 0.00 0.00 0.13 ± 0.23

20 0.06 0.27 0.00 0.00 0.00 0.07 ± 0.12

MCC 5 98.92 98.43 93.72 99.99 93.30 96.87 ± 3.12

10 99.48 99.24 95.05 100.00 96.77 98.11 ± 2.11

15 99.79 99.60 94.72 99.99 100.00 98.82 ± 2.30

20 99.89 99.80 96.02 99.99 100.00 99.14 ± 1.75
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2.34, 1.05, and 0.32%. Therefore, a sufficiently large number of epochs in BGRU
will ensure a high detection rate and reduce false alarm in the botnet detection system
developed for smart homes.

3.3 Influence of the Number of Hidden Layers
on Classification Performance

In this subsection,we determine the optimal number of hidden layers required for effi-
cient BGRU-based IoT botnet detection in smart homes. FourBGRUneural networks
with 1, 2, 3, and 4 hidden layers formed BGRU-HL1, BGRU-HL2, BGRU-HL3, and
BGRU-HL4 classifiers, respectively, when trained using 200 hidden neurons, ReLU
activation function, five epochs, a batch size of 128, and Adam optimizer.

Training and validation losses in BGRU-HL1, BGRU-HL2, BGRU-HL3, and
BGRU-HL4 were analyzed to understand the extent of model underfitting and over-
fitting, respectively. Figures 5 and 6 show that the lowest training and validation
losses were realizedwith four hidden layers. In general, training and validation losses
reduced in all the classifiers throughout the five-epoch period. However, training
and validation losses were lower in BGRU-HL4 than in BGRU-HL1, BGRU-HL2,
and BGRU-HL3. At the end of the experiment, we observed that training loss in
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Fig. 5 Training loss of different number of hidden layers
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Fig. 6 Validation loss of different number of hidden layers

BGRU-HL4 reduced to 0.0057, while validation loss reduced to 0.0060. BGRU-
HL4 reduced the average training losses in BGRU-HL1, BGRU-HL2, and BGRU-
HL3 by 79.22%, 45.93%, and 13.43%, respectively, while the average validation
losses were reduced by 82.44%, 43.88%, and 4.67%, respectively. The reduction in
training and validation losses implies that the likelihood of model underfitting and
overfitting is best minimized when the number of hidden layers in BGRU was 4.
In other words, a sufficiently deep BGRU will facilitate high classification accuracy
and good generalization ability that are required for efficient IoT botnet detection in
smart homes.

Multi-class classification performance of BGRU-HL1, BGRU-HL2, BGRU-HL3,
and BGRU-HL4 was evaluated with respect to the ground truth labels based on TPR,
FPR, and MCC. Table 3 shows that BGRU-HL4 performed better than BGRU-HL1,
BGRU-HL2, and BGRU-HL3. BGRU-HL4 increased TPR by 9.80, 1.71, and 1.69%
relative to BGRU-HL1, BGRU-HL2, and BGRU-HL3, respectively; FPR decreased
by 87.27%, 12.50%, and 0%, respectively; and MCC increased by 2.79%, 0.45%,
and 0.44%. Therefore, a sufficiently deep BGRU will ensure a high detection rate
and reduce false alarm in the botnet detection system developed for smart homes.
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Table 3 Performance of BGRU at different number of hidden layers

Metric Layer DDoS DoS Normal Reconn. Theft Mean ± Stdev

TPR 1 97.97 99.18 76.47 99.98 75.00 89.72 ± 12.80

2 99.83 99.74 84.71 99.99 100.00 96.85 ± 6.79

3 99.92 99.72 84.71 99.99 100.00 96.87 ± 6.80

4 99.67 99.98 92.94 99.99 100.00 98.51 ± 3.12

FPR 1 0.78 1.94 0.00 0.00 0.00 0.55 ± 0.85

2 0.24 0.16 0.00 0.00 0.00 0.08 ± 0.11

3 0.27 0.08 0.00 0.00 0.00 0.07 ± 0.12

4 0.02 0.32 0.00 0.00 0.00 0.07 ± 0.14

MCC 1 98.92 98.43 93.72 99.99 93.30 96.87 ± 3.12

2 99.78 99.82 96.02 100.00 100.00 99.12 ± 1.74

3 99.78 99.87 96.02 100.00 100.00 99.13 ± 1.74

4 99.90 99.77 98.20 100.00 100.00 99.57 ± 0.77

3.4 Influence of Hidden Units on Classification Performance

In this subsection, we determine the optimal number of hidden units required for
efficient BGRU-based IoT botnet detection in smart homes. Five single layers BGRU
neural networks with 10, 50, 100, 150, and 200 hidden units formed BGRU-HU1,
BGRU-HU2, BGRU-HU3, BGRU-HU4, and BGRU-HU5 classifiers respectively
when trained using ReLU activation function, five epochs, a batch size of 128 and
Adam optimizer.

Training and validation losses inBGRU-HU1,BGRU-HU2,BGRU-HU3,BGRU-
HU4, and BGRU-HU5 were analyzed to understand the extent of model underfitting
and overfitting, respectively. Figures 7 and 8 show that the lowest training and vali-
dation losses were realized with 200 hidden units. In general, training and valida-
tion losses reduced in all the classifiers throughout the five-epoch period. However,
training andvalidation losseswere lower inBGRU-HU4 than inBGRU-HU1,BGRU-
HU2, and BGRU-HU3. At the end of the experiment, we observed that training loss
in BGRU-HU4 reduced to 0.0486, while validation loss reduced to 0.0458. BGRU-
HU5 reduced the average training losses in BGRU-HU1, BGRU-HU2, BGRU-HU3,
and BGRU-HU4 by 53.54%, 31.72%, 21.14%, and 11.82%, respectively, while the
average validation losses were reduced by 54.83%, 32.94%, 21.85%, and 12.07%,
respectively. The reduction in training and validation losses implies that the likeli-
hood of model underfitting and overfitting is best minimized when the number of
hidden units in BGRUwas 200. In other words, a sufficiently large number of hidden
units in BGRU will facilitate high classification accuracy and good generalization
ability that are required for efficient IoT botnet detection in smart homes.

Multi-class classification performance of BGRU-HU1, BGRU-HU2, BGRU-
HU3, BGRU-HU4, and BGRU-HU5 was evaluated with respect to the ground truth
labels based on TPR, FPR, and MCC. Table 4 shows that BGRU-HU5 performed
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Fig. 7 Training loss of different number of hidden units
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Table 4 Performance of BGRU at different number of hidden units

Metric Units DDoS DoS Normal Reconn. Theft Mean ± Stdev

TPR 10 95.41 97.98 0.00 99.78 0.00 58.64 ± 53.55

50 97.84 98.30 61.18 99.83 0.00 71.43 ± 43.11

100 97.91 98.57 69.41 99.98 75.00 88.17 ± 14.73

150 98.01 98.86 74.12 99.99 75.00 89.20 ± 13.38

200 97.97 99.18 76.47 99.98 75.00 89.72 ± 12.80

FPR 10 1.92 4.40 0.00 0.01 0.00 1.27 ± 1.94

50 1.62 2.07 0.00 0.00 0.00 0.74 ± 1.02

100 1.36 2.00 0.00 0.00 0.00 0.67 ± 0.95

150 1.08 1.90 0.00 0.00 0.00 0.60 ± 0.87

200 0.78 1.94 0.00 0.00 0.00 0.55 ± 0.85

MCC 10 97.43 96.42 0.00 99.94 0.00 58.76 ± 53.65

50 98.28 98.12 89.11 99.96 0.00 77.09 ± 43.30

100 98.49 98.23 91.66 99.99 93.30 96.33 ± 3.63

150 98.72 98.38 93.05 99.99 93.30 96.69 ± 3.27

200 98.92 98.43 93.72 99.99 93.30 96.87 ± 3.12

better than BGRU-HU1, BGRU-HU2, BGRU-HU3, and BGRU-HU4. BGRU-HU5
increased TPR by 53, 25.61, 1.75, and 0.58% relative to BGRU-HU1, BGRU-HU2,
BGRU-HU3, and BGRU-HU4, respectively; FPR decreased by 56.69%, 25.68%,
17.91%, and 8.33%, respectively; and MCC increased by 64.86, 25.66, 0.56, and
0.19%. Therefore, a sufficiently large number of hidden units in BGRU will ensure
a high detection rate and reduce false alarm in the IoT botnet detection system
developed for smart homes.

3.5 Influence of Batch Size on Classification Performance

In this subsection, we determine the optimal batch size required for efficient BGRU-
based IoT botnet detection in smart homes. Five single layers BGRU neural networks
with batch sizes of 32, 64, 128, 256, and 512 formed BGRU-B32, BGRU-B64,
BGRU-B128, BGRU-B256, and BGRU-B512 classifiers, respectively, when trained
using 200 hidden units, ReLU activation function, five epochs, and Adam optimizer.

Training and validation losses in BGRU-B32, BGRU-B64, BGRU-B128, BGRU-
B256, and BGRU-B512 were analyzed to understand the extent of model underfit-
ting and overfitting, respectively. Figures 9 and 10 show that the lowest training and
validation losses were realizedwith a batch size of 32. In general, training and valida-
tion losses reduced in all the classifiers throughout the five-epoch period. However,
training and validation losses were lower in BGRU-B32 than in BGRU-B64, BGRU-
B128, BGRU-B256, and BGRU-B512. At the end of the experiment, we observed
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that training loss in BGRU-B32 reduced to 0.0287, while validation loss reduced
to 0.0262. BGRU-B32 reduced the average training losses in BGRU-B64, BGRU-
B128, BGRU-B256, and BGRU-B512 by 18.49%, 35.38%, 49.58%, and 62.48%,
respectively, while the average validation losses were reduced by 20.52%, 38.3%,
52.24%, and 64.55%, respectively. The reduction in training and validation losses
implies that the likelihood of model underfitting and overfitting is best minimized
when the batch size in BGRU was 32. In other words, a sufficiently small batch size
in BGRU will facilitate high classification accuracy and good generalization ability
that are required for efficient IoT botnet detection in smart homes.

Multi-class classification performance of BGRU-B32, BGRU-B64, BGRU-B128,
BGRU-B256, and BGRU-B512 was evaluated with respect to the ground truth labels
based on TPR, FPR, andMCC. Table 5 shows that BGRU-B32 performed better than
BGRU-B64, BGRU-B128, BGRU-B256, and BGRU-B512. BGRU-B32 increased
TPR by 0.42%, 0.86%, 12.80%, and 26.49% relative to BGRU-B64, BGRU-B128,
BGRU-B256, and BGRU-B512, respectively; FPR decreased by 35%, 52.73%, 60%,
and 69.05%, respectively; andMCC increased by 0.21%, 0.42%, 3.84%, and 26.24%.
Therefore, a sufficiently small batch size in BGRU will ensure a high detection rate
and reduce false alarm in the botnet detection system developed for smart homes.
Figure 11 shows that training time decreased as the batch size increased. BGRU-
B32 took the longest time (101.35 min) to train, while the shortest training time of
6.70 min was achieved in BGRU-B512.

Table 5 Performance of BGRU at different batch sizes

Metric Units DDoS DoS Normal Reconn. Theft Mean ± Stdev

TPR 32 99.12 99.51 78.82 99.99 75.00 90.49 ± 12.47

64 98.60 99.29 77.65 99.99 75.00 90.11 ± 12.63

128 97.97 99.18 76.47 99.98 75.00 89.72 ± 12.80

256 97.70 98.93 67.06 99.90 37.50 80.22 ± 27.57

512 97.60 98.01 62.35 99.76 0.00 71.54 ± 42.95

FPR 32 0.47 0.85 0.00 0.00 0.00 0.26 ± 0.38

64 0.68 1.34 0.00 0.00 0.00 0.40 ± 0.60

128 0.78 1.94 0.00 0.00 0.00 0.55 ± 0.85

256 1.02 2.21 0.00 0.00 0.00 0.65 ± 0.98

512 1.89 2.31 0.00 0.00 0.00 0.84 ± 1.16

MCC 32 99.44 99.28 94.39 100.00 93.30 97.28 ± 3.18

64 99.16 98.88 94.06 100.00 93.30 97.08 ± 3.14

128 98.92 98.43 93.72 99.99 93.30 96.87 ± 3.12

256 98.68 98.18 90.94 99.97 80.62 93.68 ± 8.11

512 98.02 97.88 89.48 99.94 0.00 77.06 ± 43.27
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Fig. 11 Training time of different batch sizes

3.6 Influence of Optimizers on Classification Performance

In this subsection, we determine the most suitable optimizer required for efficient
BGRU-based IoT botnet detection in smart homes. Four single layers BGRU neural
networkswithAdam, SGD,RMSprop, andAdadelta optimizers formedBGRU-OP1,
BGRU-OP2, BGRU-OP3, and BGRU-OP4 classifiers, respectively, when trained
using ReLU activation function, five epochs, and a batch size of 128.

Training and validation losses in BGRU-OP1, BGRU-OP2, BGRU-OP3, and
BGRU-OP4 were analyzed to understand the extent of model underfitting and over-
fitting, respectively. Figures 12 and 13 show that the lowest training and validation
losses were realized with Adam optimizer. In general, training and validation losses
reduced in all the classifiers throughout the five-epoch period. However, training
and validation losses were lower in BGRU-OP1 than in BGRU-OP2, BGRU-OP3,
and BGRU-OP4. At the end of the experiment, we observed that training loss in
BGRU-OP1 reduced to 0.0486, while validation loss reduced to 0.0458. BGRU-OP1
reduced the average training losses in BGRU-OP2, BGRU-OP3, and BGRU-OP4 by
86.54%, 4.22%, and 90.40%, respectively, while the average validation losses were
reduced by 89.70%, 5.49%, and 92.31%, respectively. The reduction in training and
validation losses implies that the likelihood of model underfitting and overfitting is
best minimized when Adam optimizer was employed in BGRU. In other words, the
use of Adam optimizer in BGRUwill facilitate high classification accuracy and good
generalization ability that are required for efficient botnet detection in smart homes.
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Table 6 Performance of BGRU for different optimizers

Metric Optimizer DDoS DoS Normal Reconn. Theft Mean ± Stdev

TPR Adam 97.97 99.18 76.47 99.98 75.00 89.72 ± 12.80

SGD 82.42 66.80 0.00 0.00 0.00 29.84 ± 41.24

RMSprop 98.35 98.21 22.35 99.82 0.00 63.75 ± 48.64

Adadelta 99.89 3.63 0.00 0.00 0.00 20.70 ± 44.29

FPR Adam 0.78 1.94 0.00 0.00 0.00 0.55 ± 0.85

SGD 35.06 18.19 0.00 0.00 0.00 10.65 ± 15.75

RMSprop 1.70 1.59 0.00 0.01 0.00 0.66 ± 0.90

Adadelta 92.35 3.74 0.00 0.00 0.00 19.22 ± 40.92

MCC Adam 98.92 98.43 93.72 99.99 93.30 96.87 ± 3.12

SGD 72.17 76.90 0.00 0.00 0.00 29.81 ± 40.86

RMSprop 98.35 98.43 73.64 99.95 0.00 74.07 ± 42.83

Adadelta 52.78 49.79 0.00 0.00 0.00 20.51 ± 28.11

Multi-class classification performance of BGRU-OP1, BGRU-OP2, BGRU-OP3,
and BGRU-OP4 was evaluated with respect to the ground truth labels based on TPR,
FPR, and MCC. Table 6 shows that BGRU-OP1 performed better than BGRU-OP2,
BGRU-OP3, and BGRU-OP4. BGRU-OP1 increased TPR by 200.67%, 40.74%,
and 333.43% relative to BGRU-OP2, BGRU-OP3, and BGRU-OP4, respectively;
FPR decreased by 94.84%, 16.67%, and 97.14%, respectively; and MCC increased
by 224.96%, 30.78%, and 372.31%. Therefore, the adoption of Adam optimizer in
BGRUwill ensure a high detection rate and reduce false alarm in the botnet detection
system developed for smart homes.

3.7 Performance of Deep BGRU-Based Multi-class Classifier

In this subsection, we evaluate the suitability of deep BGRU for IoT botnet detection
in smart homes. A deep BGRUmulti-class classifier was developed with the optimal
hyperparameters in Sects. 3.1–3.6, namely, ReLU activation function, 20 epochs, 4
hidden layers, 200 hidden neurons, a batch size of 512, and Adam optimizer.

Training and validation losses in deepBGRUmulti-class classifierswere analyzed
to understand the extent of model underfitting and overfitting, respectively. Figure 14
shows that the training and validation losses were shallow when the optimal BGRU
hyperparameters were used. Training and validation losses reduced throughout the
five-epoch period. At the end of the experiment, we observed that training loss in
deep BGRU multi-class classifiers reduced to 0.0018, while validation loss reduced
to 0.0006. The reduction in training and validation losses implies that the likelihood
of model underfitting and overfitting is minimized when the optimal hyperparam-
eters were employed in BGRU. In other words, the choice of the optimal BGRU
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Fig. 14 Training and validation losses of deep BGRU classifier

hyperparameters will facilitate high classification accuracy and good generalization
ability that are required for efficient IoT botnet detection in smart homes. The time
needed to train the optimal deep BGRU classifier was 33.95 min.

Multi-class classification performance of deep BGRU multi-class classifier
was compared with the state-of-the-art methods based on TPR, FPR, and MCC.
Tables 7, 8, and 9 show that deep BGRU multi-class classifier outperforms mixture
localization-based outliers (MLO) [47], SVM[48], RF [49], artificial immune system
(AIS) [50], and feedforward neural network (FFNN) [51]. Deep BGRU multi-class
classifier achieved high detection accuracy and low false alarm with true positive
rate (TPR), false positive rate (FPR), and Matthews coefficient correlation (MCC)
of 99.28 ± 1.57%, 0.00 ± 0.00%, and 99.82 ± 0.40%.

Table 7 TPR of multi-class classifiers for IoT botnet detection in smart homes

Ref DDoS DoS Normal Reconn. Theft Mean ± Stdev

MLO [47] 98.24 98.20 0.00 95.67 95.86 77.59 ± 43.39

SVM [48] 98.95 99.87 87.97 99.33 100.00 97.22 ± 5.19

RF [49] 99.40 0.00 0.00 99.37 99.38 59.63 ± 54.43

AIS [50] 100.00 98.53 0.00 98.22 98.90 79.13 ± 44.24

FFNN [51] 99.414 0.00 98.071 98.38 88.92 76.96 ± 43.23

Deep BGRU 100.00 99.99 96.47 99.96 100.00 99.28 ± 1.57
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Table 8 FPR of multi-class classifiers for IoT botnet detection in smart homes

Ref DDoS DoS Normal Reconn. Theft Mean ± Stdev

SVM [48] 0.00 0.26 0.00 5.96 0.01 1.56 ± 2.36

Deep BGRU 0.01 0.00 0.00 0.00 0.00 0.00 ± 0.00

Table 9 MCC of multi-class classifiers for IoT botnet detection in smart homes

Ref DDoS DoS Normal Reconn. Theft Mean ± Stdev

SVM [48] 99.74 99.81 96.90 96.82 100.00 98.65 ± 1.64

Deep BGRU 99.99 99.99 99.11 99.99 100.00 99.82 ± 0.40

4 Conclusion

In this paper, an optimal model was developed for efficient botnet detection in IoT-
enabled smart homes using deep BGRU. A methodology was proposed to determine
the optimal BGRUhyperparameters (activation function, epoch, hidden layer, hidden
unit, batch size, and optimizer) for multi-class classification. The proposed method-
ology was implemented, and the classification performance was jointly assessed
based on training loss, validation loss, accuracy, TPR, FPR, MCC, and training time.
Extensive simulation results showed that: (a) ReLU performed better than tanh acti-
vation functions; (b) classification performance improved with an increase in the
numbers of epochs, hidden layers, and hidden units; (c) the performance of BGRU
improved as the batch size becomes smaller, but this comeswith a significant increase
in training time; (d) Adam outperformed SGD, RMSprop, and Adadelta optimizers.
Finally, the combination of ReLU activation function, 20 epochs, 4 hidden layers, 20
hidden units, a batch size of 512, and Adam optimizer achieved the best multi-class
classification performance as follows: low training loss (0.0107 ± 0.0219), valida-
tion loss (0.0072 ± 0.0086), FPR (0.00 ± 0.00%); high accuracy (99.99%), TPR
(99.28 ± 1.57), and MCC (99.82 ± 0.40).
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