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Abstract Telecommunication networks play a major role in today’s society as they
support the transmission of information between businesses, governments, and indi-
viduals. Hence, ensuring excellent service quality and avoiding service disruptions
are important. For this purpose, fault management is critical. It consists of detecting,
isolating, and fixing network problems, a task that is complex for large networks,
and typically requires considerable resources. As a result, an emerging research area
is to develop machine learning and data mining-based techniques to improve vari-
ous aspects of the fault management process. This chapter provides a survey of data
mining and machine learning-based techniques for fault management, including a
description of their characteristics, similarities, differences, and shortcomings.

1 Introduction

Computer networks are crucial to today’s society as they support communication
between individuals, governments, and businesses. They are used not only to connect
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desktop computers, but also all kinds of electronic devices such as smartphones,
wearable devices, sensors, and industrial machines. They also play a key role in
emerging domains such as sensor networks [66, 87], vehicular networks [86], cloud
computing [8], big data analysis [79], and the Internet of Things [81].

To ensure effective and efficient communication between devices, a network must
be carefully designed in terms of physical and logical topology, and software must
be properly configured. This requires considering various aspects such as budget,
facilities, performance, and security requirements. Then, during a network’s lifetime,
various maintenance tasks must be carried out such as to replace, install, and upgrade
equipment and software. Moreover, a key activity is fault management, which is
carried out to ensure a network’s security, availability, reliability, and optimize its
performance [21, 71].

Fault management aims at solving problems that are occurring in a network. It
consists of four main tasks, which are (1) Detecting, (2) Diagnosing, (3) Isolating,
and (4) Fixing network faults [84, 87]. Fault management is not an easy task because
faults may be caused by complex interactions between network devices and some-
times only appear for a short time. A good fault management process may consist
of (1) Preventive measures and logging solutions that may raise alarms indicating
potential problems, (2) A method for prioritizing the most important alarms or faults
to analyze, and (3) Appropriate methods to isolate and fix the issues. Fault manage-
ment can be quite time-consuming and costly, especially for large and heterogeneous
networks. Hence, it has become critical to develop improved fault management tech-
niques [84, 87].

Since more then two decades, some attempts at developing computer systems for
fault management were made. For instance, in the 1990s, some expert systems were
designed that relied on a knowledge base of rules to diagnose network problems.
But a drawback of such systems was that specifying rules by hand requires expert
knowledge, these rules would not be noise tolerant, and that writing these rules is
time consuming and prone to errors [42, 60].

To build computer systems for fault management that do not rely heavily on
domain experts, a promising fault management approach has been to apply data
mining and machine learning-based techniques [5, 17, 19, 48, 56, 69, 74, 77].
These techniques allow to semi-automatically extract knowledge and learn models
from data. Though there has been several studies in this direction, no survey has been
published on this topic.

This chapter fills this gap by reviewing key studies on data mining and machine
learning for fault management. The chapter provides a brief description of each
study, their key ideas, and the advantages and limitations of the proposed techniques.
The reviewed studies are categorized into two main categories based on the type of
algorithms that they used: (1) Patternmining-based approaches (e.g., itemset mining,
association rule mining, and clustering) and (2) Machine learning-based approaches
(e.g., neural networks, decision trees, Bayesian networks, and dependency graphs).

The rest of this chapter is organized as follows: Sect. 2 reviews some important
concepts related to telecommunication network fault management. Then, Sects. 3
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and 4 survey data mining-based approaches andmachine learning-based approaches,
respectively. Finally, a conclusion is drawn.

2 Network Fault Management

This section introduces important concepts related to telecommunication networks
and fault management.

A computer network connects a set of devices that can exchange information
and share resources. Typical devices found on a network are end-user computers
(e.g., workstations), servers, mobile devices, and networking devices (e.g., routers
and switches). Because networks can be used in a wide range of contexts and to
address different use cases, numerous hardware and software technologies have been
proposed for networking. Choosing a set of technologies requires considering various
criteria such as cost, security, and performance. For example, some key requirements
for building a sensor network may be to preserve battery life and perform distributed
calculations. This is quite different from the requirements for large-scale computer
networks such as the Internet, or those of a mobile GSM or UMTS network.

The goal of fault management is to detect, identify, and correct malfunctions in
telecommunication networks [21, 71, 84, 87]. A fault is a malfunction that occurs
on a network and may cause errors. A fault can have various consequences such as
making a network device unavailable or degrading its performance. For example, a
router hardware malfunction may cause the device to reboot and to be temporarily
unavailable. Though a fault may cause several undesirable events, a fault is said to
not be caused by any other events. In other words, a fault is the root cause of some
error(s). An error is defined as a discrepancy between some observed values and
some expected values or the violation of some conditions [71]. An error is caused
by a fault and can propagate inside a network causing other errors.

Twomain types of faults may occur [84, 87]: hard faults (a device cannot commu-
nicate with others) and soft faults (a device continues to operate but with an abnormal
behavior such as sending corrupted data or incorrectly routing data). Moreover, from
the perspective of time, faults can be categorized as permanent (an action must be
taken to fix the issue), temporary/transient (the faultmay appear only for a short time)
and intermittent (the fault may periodically re-appear if no action is taken) [87].

Fault are sometimes not observable for various reasons such that no evidences
have been collected. To more easily detect faults, alarms may be raised by network
devices. An alarm is a symptom that can be observed of a potential fault. Alarms
can be generated by devices or network management systems to provide information
about potential faults that may cause errors. Alarms are very important as they allow
to infer the existence of faults so that remediation steps can be taken [71]. Many
alarms may appear in a network because a single fault may cause multiple alarms
and because some alarms may be triggered in situations where no fault has occurred.

To facilitate alarmmanagement, alarms are often categorized into different sever-
ity levels such as cleared, low, medium, high, and critical. Based on severity levels,
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1) Fault
detection

2) Fault
localization

3) Fault
isolation

4) Fault
recovery

Fig. 1 A generic network fault management process

alarms may be treated differently [74]. For instance, while an alarm of the cleared
level may be ignored, an alarm considered as critical may trigger an emergency
message sent by SMS to a network administrator so that he can take quick action.
Moreover, alarms can be recorded in logs on each device or can be collected from
all devices by some fault management software to facilitate alarm analysis. In pas-
sive fault management, each device is responsible of communicating its alarms to
other devices or the user, while in active fault management, a device may be peri-
odically probed by other devices to verify its state. Because device clocks may not
be synchronized, it is sometimes not possible to know which alarms occurred first.
A solution to this issue can be to use distributed algorithms to synchronize logical
clocks [50]. A human can investigate an alarm and fix a fault. Besides, it is also pos-
sible to put recovery procedures into place (scripts) to automatically handle faults or
errors detected by some specific alarm types [71].

Finding the reason(s) why some error occurs in a network can sometimes be
quite difficult because of the complex and dynamic interaction between devices, and
because some faults are not permanent, errors can propagate or are influencedbyother
faults or events. For example, some faults may only appear in some circumstances
such as when the battery level of a sensor is low.

Managing faults in a telecommunication network is generally done by the follow-
ing steps [71]: (1) Automatically collecting data about alarms generated by devices,
(2) Preparing the data and enriching the data with additional information (if needed),
(3) Identifying alarms that should be investigated with higher priority and inferring
the root cause of alarms, (4) Applying recovery procedures or dispatching techni-
cians to specific locations (physically or virtually) to isolate and fix the issues. This
process is illustrated in Fig. 1. Step 1 is called fault detection, Step 2 is named fault
localization, while Step 3 is sometimes called fault localization, fault isolation or
root cause analysis. Finally, Step 4 is named fault recovery [71].

Another reason why fault management is challenging is that while thousands of
alarms may be generated in network devices, the number of technicians or budget for
maintaining a network is limited. Hence, it is easy for technicians to be overloaded
with thousands of alarms and being unable to investigate all of them. Accordingly, it
is critical to be able to prioritize some alarms and their relationships to investigate the
most important alarms first. However, identifying the most important alarms is not
easy. In some case, some fault in a device may cause many other alarms. Moreover,
some alarms may only be triggered in some very specific and complex situations
involving multiple devices.

The following Sects. 3 and 4 give a survey of the different approaches for fault
management using pattern mining and machine learning techniques, respectively.
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3 Pattern Mining-Based Approaches

To develop innovative fault management approaches, several studies have used pat-
tern mining techniques. Pattern mining is a key task in the field of data mining, which
consists of analyzing data to identify interesting patterns that may help to understand
the data or support decision-making [3, 28, 57, 59, 64, 80]. Several pattern mining
algorithms have been designed to search for patterns. To apply an algorithm, a user
typically has to set constraints on patterns to be found. For example, some algorithms
are designed to find frequent patterns (patterns that appear at least a minimum num-
ber of times in a database) [3, 28, 59, 64], while others for clustering can find groups
of similar data records [80]. Most of pattern mining algorithms are unsupervised as
the goal is to discover new knowledge.

Pattern mining techniques have been used to analyze telecommunication data and
findvarious types of patterns for faultmanagement. The next three subsections review
studies that have used three main types of pattern mining techniques: (1) Episode and
association rule mining, (2) Sequential pattern mining and (3) Clustering algorithms.

3.1 Episode and Association Rules Mining-Based
Approaches

Hatonen et al. [38] and Klemettinen et al. [48] first proposed using pattern min-
ing techniques to analyze telecommunication network data. They designed a system
called Telecommunication Alarm Sequence Analyser (TASA) to discover correla-
tions between alarms.

Let A be a set of alarm types and T be a set of timestamps. The input of TASA
is a sequence of alarms S = 〈(a1, t1), (a2, t2), . . . (an, tn)〉 that has been recorded
from a network, where each alarm ai ∈ A(1 ≤ i ≤ n) is annotated with a timestamp
ti ∈ T . From such sequence of alarms, TASA applies a frequent episode mining
algorithm [33, 34, 59] to extract episode rules [48].

An episode E is a tuple that has the form 〈a1, a2, . . . ak〉 where ai ∈ A, for all
i ∈ {1, . . . , k}. An episode rule has the form E1, E2, . . . Em ⇒(x,y) a, where E j ⊆
A(1 ≤ j ≤ m) and a ∈ A, and x and y are two amounts of time where y > x . This
rule is interpreted as if all alarms of E1 appears in any order, and then are followed
by alarms of E2 in any order, . . ., and then are followed by alarms of Em in any order,
and all of this happens in no more than x seconds, then the alarm a will appear no
more than z = (y − x) seconds later.

To find interesting episode rules, twomeasures are used called the support and the
confidence. Let there be an episode rule α = (X ⇒(x,y) Y ) and a sequence S, where
X and Y are the rule antecedent and consequent, respectively. The support of the
episode rule α in TASA is the absolute number of occurrences of the episode 〈X,Y 〉
in the sequence. Formally, given an episode rule α = X ⇒(x,y) Y and a sequence S,
Support(α) = |Occ(〈X,Y 〉, S)|, where Occ(〈X,Y 〉, S) is the set of time intervals
where the episode 〈X,Y 〉 occurs in sequence S.
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Fig. 2 Example of discovering episode rules between alarms with TASA

The confidence measure can be interpreted as the conditional probability that the
whole episode occurs within time y given that the left side of the episode rule has
already occurred within time x . Formally, we refer to the set of occurrences of an
episode 〈X,Y 〉 in a sequence S within time t as Occ(〈X,Y 〉, S, t). Based on this, the
confidence of an episode rule α = X ⇒(x,y) Y is Confidence(α) = |Occ(〈X,Y 〉,S,y)|

|Occ(〈X〉,S,x)| .
The TASA system outputs all rules having at least a minimum support and a

minimum confidence [48] defined by the user. Moreover, the user can set constraints
on the maximum amount of time for the duration x and y of a rule.

Figure2 shows an example of episode rule extraction from a sequence of
alarms using TASA. For this example, only timestamps from the 9th to the 20th s
of that sequence are considered. Alarms are denoted as A, B, C , D, E , and
F . We can see from Fig. 2 that Occ(〈A, B,C〉, S) = {[9, 18], [15, 18]}. Thus,
Support(A, B ⇒(x,y) C = 2). If we consider the time durations x and y as x =
3 and y = 5s, then Occ(〈A, B,C〉, S, 5) = {[15, 18]} and Occ(〈A, B〉, S, 3) =
{[9, 11], [15, 16]}. Accordingly, Confidence(A, B ⇒(3,5) C) = 1/2. Taking another
episode rule (C, E ⇒(3,5) F), Since Occ(〈C, E, F〉, S) = {[10, 13], [10, 20],
[18, 20]}, Support(C, E ⇒(x,y) F) = 3. Moreover, since Occ(〈C, E, F〉, S, 5) =
{[10, 13], [18, 20]} and Occ(〈C, E〉, S, 3) = {[10, 12], [18, 19]}, Confidence(C,

E ⇒(3,5) F) = 2/2 = 1.
Besides finding episode rules, TASA can also discover interesting associations

between alarm properties by applying an association rule mining algorithm [3, 63].
Let there be a set of property values P to describe alarms. Furthermore, let DE =
{D1, D2, . . . Dl} be the descriptions of l alarm occurrences, where Dh ∈ P(1 ≤ h ≤
l). An association rule has the form X ⇒ Y , where X,Y ⊆ P and X ∩ Y = ∅, and is
interpreted as if an alarm occurrence has property values X , then it also has property
values Y . For example, a rule link Alarm ⇒ BF may indicate that if an alarm of type
link Alarm occurs, it is associated to a network device called BF . Two measures
are used to select rules. The support of an association rule X ⇒ Y is calculated
as sup(X ⇒ Y ) = |{D|X ∪ Y ⊆ D ∈ DE}|, and the confidence of a rule X ⇒ Y
is calculated as con f (X ⇒ Y ) = sup(X ⇒ Y )/|{D|X ⊆ D ∈ DE}|. An example
of association rule extraction using TASA is shown in Fig. 3, where properties are
denoted as A, B, C , and D. Contrarily to episode rules, association rules do not
consider time.
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Description of four alarm occurrences

Description Properties

D1 A  B  C  D

D2 A  B

D3 C

D4 A B C D

Association 
rule mining

Association rules

A support = 2    confidence = 100%
C support = 2   confidence = 66 %
D support = 2   confidence = 100 %
A support = 2   confidence = 66 %

…

Fig. 3 Example of discovering association rules between alarm properties with TASA

The TASA system also offers various tools to visualize rules, sort rules, and
group rules having similar properties. A drawback of the TASA system is that it is
not suitable for processing long alarm sequences.

3.2 Sequential Pattern Mining-Based Approaches

Another pattern mining technique that has been applied for fault management is
sequential pattern mining [28, 64].

Lozonavu et al. [56] proposed a method to discover alarm correlation patterns
using sequential pattern mining [64]. This method not only discovers sequential pat-
terns indicating interesting relationships between alarms instances, but also studies
correlation and the relationships between different network elements such as net-
work nodes and network problems [56]. The input is a sequence of alarms with
their timestamps 〈(a1, t1), (a2, t2), . . . (an, tn)〉, as defined in the previous subsec-
tion. The approach of Lozonavu et al. first partitions the input sequence into sev-
eral sequences based on the timestamps of alarms. Two consecutive alarms (av, tv)
and (av+1, tv+1) of the input sequence are put in the same sequence partition if
tv+1 − tv < maxGap, where maxGap is a user-defined parameter. The result is a
sequence database containing multiple input sequence partitions. In that sequence
database, the timestamps of events are discarded. Then, the PrefixSpan [64] algo-
rithm is applied on that database to find subsequences that appear in at leastminsup
sequence partitions, where minsup is a parameter set by the user. The result is a set
of sequential patterns (frequent subsequences of alarms). A sequential pattern has
the form 〈b1, b2, b3, . . . , by〉 indicating that some alarm b1 appeared before another
alarm b2, was followed by b3 and so on.

Then, the approach of Lozonavu et al. constructs a relationship graph, which
shows the relationships between different alarms. This is done by transforming the
discovered sequential patterns into relations. More precisely, the relationship graph
is a directed weighted graph where each node represents a distinct alarm, a directed
edge between two alarms indicates that an alarm occurred before the other in at least
one discovered sequential pattern, and the weight of a relation reflects the strength
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maxgap

A    B    C A    C   D A    B   C   D

Input: a sequence of alarms with timestamps (not shown)

time

Sequence database

< A, B, C>

<A, C, D>

<A, B, C, D>

Partitioning

Sequential patterns with 
support (frequency) Sequential 

pattern mining
with minsup =2<A, B>  support = 2

< A, C> support = 3
<A, D> support = 2
<A, C, D> support = 2
<B,C> support = 2
<C,D> support = 2
…

Relationship graph for alarms

A B

CD

Graph 
construction

Fig. 4 Example of applying Lozonavu et al.’s approach to study temporal relationships between
alarms

of this relation which is calculated by the confidence measure. The confidence of
a pattern 〈b1, b2〉 is defined as how many sequence partitions contains the pattern
〈b1, b2〉 divided by how many sequence partitions contain b1. An example of using
the approach of Lozonavu et al. is illustrated in Fig. 4, where alarms are denoted as
A, B,C and D.

Lozonavu et al. also presented a second type of relationship graph where the
relationships between network devices are studied instead of the alarms. This graph
is also derived from the sequential patterns because each alarm instance is associated
with a device. It has been demonstrated that these graphs can then be used by network
experts to better understand the network behavior and to discover hidden relations
between network elements that were not known by network experts.

In another study,Wang et al. [74] have presented a system calledAutomaticAlarm
Behavior Discovery (AABD) to study the behavior of alarms and select important
alarms that should be brought to the attention of network operators from the thousands
of alarms that may occur in a network. The AABD system takes as input a sequence
of alarms, where each alarm is described using several fields such as the alarm type,
the time that the alarm was produced and that it was cleared, the name of the device
that has sent the alarm, and the network domain of the device.

AABD first preprocesses the input sequence to filter out invalid alarm instances.
An alarm is said to be invalid if some of its fields contain invalid or missing values.
For example, an alarm having no timestamp will be discarded as it will not be useful
for the subsequent analysis performed by AABD. During the pre-processing step,
alarm instances are also grouped by network domains as the behavior of an alarm
may not be the same for devices of different domains.

Then,AABDapplies an algorithmcalledTransient FlappingDetermination (FTD)
to detect alarms that are transient, i.e., alarms that usually only appear for a short time
before they are cleared. A simple approach to determine if an alarm is transient is
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to calculate the duration of each of its instances. Then, given two parameters Ω and
CT , an alarm is called transient (flapping) if the proportion of its instances that have a
durationnogreater thanCT is greater thanΩ . Then, for each transient alarm, all alarm
instances having a duration that is less than CT are discarded to reduce the number
of instances. It was shown that this approach based on transient alarm detection
can reduce the number of alarms presented to operators by more than 84% [74].
However, a drawback of this definition is that setting the CT parameter for different
alarm types in different situations requires expert knowledge and is time-consuming.
Thus, Wang et al. also proposed a method to automatically set these parameters for
each alarm type based on the distribution of each alarm’s duration [74]. The settings
of the CT parameter for an alarm type is called a flapping rule.

Then, AABD divides the sequence of alarms into several sequences to obtain
a sequence database and applies the PrefixSpan [64] algorithm to extract frequent
sequential patterns representing temporal correlations between alarm instances. This
process is similar to the approach of Lozonavu et al. but the transformation from the
input sequence to a sequence database is done differently. First, AABD calculates
the support (occurrence frequency) of each alarm to find the N most frequent alarms,
calledmain alarms, where N must be set by the user. Then, AABD creates a sequence
for eachmain alarm. The created sequence contains thatmain alarm and all the alarms
that occurred in the same timewindowwidth (w)with thatmain alarm. In otherwords,
the created sequence will contain that main alarm and all the alarms that occurred
no more than w/2 s before and w/2 s after. In the experiments, the value of the time
window width w was set to 5min because it was empirically observed that 90% of
related alarms occurred within 5min. Sequential patterns are then extracted from the
resulting sequence database. Note that each network domain is treated individually
because the behavior of the same alarm type may not be the same for different
domains.

Then, the AABD system creates rules called P-C Rules (Parent-Child rules) to
reduce the number of alarms presented to users. A PC-rule indicates that an alarm
(called parent) may cause several other alarms (called child). A PC rule generation
is done using an algorithm named PCRG, which takes as input the sequential pat-
terns and also a knowledge-base called the P2 lookup table. This latter is created
by network administrators for each network domain based on historical trouble tick-
ets as well as based on their rich experience. The P2 table specifies two possible
relationships between alarm pairs, that is an alarm may cause another alarm or two
alarms are mutually exclusive. In the P2 lookup table, each potential parent alarm
is represented by its name and a serial number which is an ordered list of integers
that reveal the ranking property of this potential parent alarm. The PCRG algorithm
utilizes the serial numbers to determine the relationship between alarms, to test the
possibility of generating a PC rule from each discovered sequential pattern. It was
found that PC rules can greatly reduce the number of alarms presented to users.

Costa et al. [19] proposed a complete alarm management system. The system’s
architecture has twomainmodules. The first one is a rule management system, which
discovers rules in alarm data using a modified sequential pattern mining algorithm
(GSP) [70], which reveals alarm correlation and can be used to perform root cause
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analysis. Rules can be edited by hand. Moreover, a reinforcement learning algorithm
is applied to evaluate how these rules are used for network malfunction resolution
to refine the rule database. The second module performs alarm prioritization using a
neural network to select alarms that should be treated with higher priority.

The system first pre-processes raw alarm data to keep only the relevant alarm
attributes and sorts alarm instances by their start time. Moreover, if several alarm
instances of the same type appear within a small amount of type, they are replaced by
a single alarmwith a counter so that patterns found only contain different alarms. The
result is a sequence of alarms with timestamps. Then, sequential pattern extraction
is performed by applying a modified GSP algorithm that extracts frequent sequential
patterns using a sliding-window. From these patterns, rules are generated, which are
evaluated using the lift and confidence measures to filter out spurious rules. To iden-
tify root cause problems, each extracted sequence is divided into two parts: The first
part is the first alarm instance of the sequence and the second part is the following
alarm instances with their occurrence counts. This method has some similarity to the
approach of Lozonavu et al. [56] but it can be seen as more elaborated. The approach
of Raúl is quite flexible as the sliding-window can be automatically enlarged in spe-
cific situations. The systemwas applied to data from a large Portugese telecommuni-
cation company and reduced the number of alarms presented to the user by up to 70%.

3.3 Clustering-Based Approaches

Clustering algorithms are another type of unsupervised data mining techniques that
have been used to perform alarm correlation and root cause analysis in telecom-
munication networks. Generally, the goal of clustering is to extract clusters (groups
of instances) from a dataset, such that similar instances are grouped together while
dissimilar instances are put in different clusters [40]. Instances are described using
attributes and similarity between instances can be measured using various measures.

Clustering techniques, as other data mining techniques, have been studied for
detecting and diagnosing faults in alarms data of telecommunication networks. In
the context of alarm correlation analysis, clustering is used to automatically group
alarms that occurred within a same short period of time and may have been triggered
by the same cause. Clustering is interesting for fault management because it does not
require training data and it can group alarms that are related into clusters based on
various criteria such as their occurrence times. Then, experts can further analyze these
clusters to discover the root cause of problems. For example, it has been suggested
that the earliest alarm of a cluster may be considered as its root cause.

Sozuer et al. [69] proposed a method to discover clusters in alarm event data.
Let A be a set of alarm types. The proposed approach first transforms raw alarm
event data into a sequence database, defined as a set of n sequences SDB =
{s1, s2, . . . , sn}. Each sequence si (1 ≤ i ≤ n) is an ordered list of alarm sets
〈(A1, t1), (A2, t2), . . . (Am, tm)〉 where each alarm set A j (1 ≤ j ≤ m) has a times-
tamp t j and A j ⊆ A. Each alarm instance has a start time and clearance time, which
defines a time interval called its life cycle. An alarm set is created by picking an
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alarm instance and adding all other alarm instances that have a start time within its
life cycle. Moreover, alarm instances within an alarm set are sorted by time. This
approach allows capturing that an alarm may trigger other alarms until it is cleared.
After the sequence database creation, two weight metrics are calculated for each
item (alarm type) in the sequence database. These metrics are the term frequency
and inverse item frequency, which are typically used for document classification.
Then, item vectors are formed based on these weight vectors. Thereafter, the K
means clustering algorithm is applied on the normalized item vectors to obtain a set
of clusters where each cluster contains alarms that are highly related in view of the
selected weight measure.

An experimental evaluation with two weeks of data from a radio network was
performed to evaluate the approach. It was found that clusters could be used to
perform prediction more accurately than using the RuleGrowth [32] sequential rule
mining algorithm. A limitation of the approach of Sozuer et al. is that clustering is
applied separately on each network node. Thus, generalizations for multiple nodes
cannot be found.

In another study, Hashmi et al. [37] used various clustering and outlier detection
techniques to analyze one year of network failure data collected from a national
broadband network. Each failure was analyzed with respect to five attributes: fault
occurrence date, time of the day, geographical region, fault cause (from 92 pos-
sible causes), and resolution time. Using clustering (k-means, fuzzy c-means or
self-organizing maps), interesting spatio-temporal clusters of faults were found. For
example, one cluster indicated that fault resolution typically takes a long timebetween
1 and 4 PM in a specific region for some fault types. Such insights can be use-
ful to improve service in that area. Moreover, anomaly detection techniques were
applied (either local outlier factor or local outlier probabilities) to identify abnormal
data points. For example, some detected anomalies were faults occurring during the
night [37]. In experiments, the sumof squared errors (SSE) andDavies-Bouldin index
(DBI) values were used to evaluate the performance of different techniques. Note
that the DBI is the average ratio of intra cluster variance and inter cluster distance of
all clusters. Obtaining a low DBI value is desirable because it indicates that there is
a high separation between clusters. The results indicated that the k-means clustering
method outperformed fuzzy c-means clustering. In fact, the k-means clustering algo-
rithmwas able to create a larger separation between different clusterswhich improved
the accuracy by obtaining clusters that are very different from each other. Moreover,
experiments have shown that clustered self-organizing maps outperformed k-means
and fuzzy c-means in terms of both SSE and DBI.

3.4 Summary and Perspective

This section has reviewed some key approaches for fault management using pat-
tern discovery algorithms. The reader can refer to Table 1 for a summary of these
approaches. The main benefit of using a pattern mining approach is that patterns
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Table 1 Summary of reviewed pattern mining-based approaches

Study Category Input Output Observation Measure Dataset

[38, 48] Episode
mining

Event
sequence
extracted from
alarms data
records

Episode rules,
association
rules

(1) Not
suitable for
long event
sequences (2)
The number of
generated
rules is large

Support,
confidence

Several
real-world
datasets from
telecommuni-
cation
companies

[56] Sequential
pattern mining
(PrefixSpan)

Alarm
sequence
database
extracted using
silent periods
as delimiters

Relationship
graph is
extracted from
frequent
sequential
patterns

The graph
relationship is
difficult to
extract and to
use by experts
in case of large
alarm datasets

Support,
confidence

Dataset
triggered in a
3G mobile
network

[74] Sequential
pattern mining
(PrefixSpan)

Alarm
sequence
database
extracted using
occurrence
number of
alarms with
time window

Flapping rules,
Parent–Child
rules

a P2 lookup
table is
required for
each network
domain which
is not easy to
create

Support 6 alarms
datasets with
several
network
domains:
2G,3G,4G, CS
and PS

[19] Sequential
pattern mining
(GSP)

Alarm
sequence
database
extracted
using a sliding
window

Association
rules extracted
from frequent
sequential
patterns

Reinforcement
learning is
performed to
filter
unimportant
rules

Support,
confidence, lift

Real-world
dataset
containing
alarms from a
Portuguese
telecommuni-
cations
company

[69] Clustering
(K-means)

Alarm
sequence
database
extracted
using the life
cycle of alarms

Clusters of
alarms

The clustering
method is
applied only
on data of each
node
separately.

Term
frequency
(TF), inverse
item frequency
(ITF)

Alarms data
extracted from
a Nokia radio
access
network logs

[37] Clustering
(various)

Network
failure log

Clusters of
failures and
anomalies

Can discover
spatio-
temporal
clusters of
failures and
anomalies

Various Data from a
national
broadband
provider

found can be easily understood by humans. There are many interesting possibili-
ties for carrying further research on pattern mining for fault management. The next
paragraphs discusses some of these possibilities.

First, it is observed that most of the above approaches are designed to handle
rather simple data types (mostly discrete sequences) where alarms are viewed as
events that have some attribute values. It would be interesting to consider more
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complex data representation to extract richer patterns. For instance, none of the
above studies consider the spatial dimension (the network topology) in the pattern
mining process. An interesting possibility is to view the network as a dynamic graph
where alarms are spreading along edges (communication links) between vertices
(network devices) to find spatio-temporal patterns. To extract such patterns, graph-
based patternmining algorithms could be considered or extended. For example, there
exists several algorithms for discovering patterns in dynamic attributed graphs. A
dynamic attributed graph is a graph where vertices may be described using multiple
attributes, and the graph evolves over time (edges and vertices may be added or
deleted, and attribute values may change) [20, 25]. A network can be modeled as
such a graph, where node attributes can be used to represent alarms. Then, various
types of patterns could be discovered to reveal relationship between alarms such as (1)
Cohesive co-evolution pattern [20] (a set of vertices that are similar and display the
same trends for some attribute(s) during a time interval), (2) Triggering patterns [45]
(a rule of the form L → R where L is a sequence of attribute variations followed
by a single topological change, R), and significant trend sequences [25] (correlated
attribute variations for connected nodes).

Another possibility is to use other time representations for the input data as well
as for patterns found. For example, while most of reviewed studies consider a strict
sequential ordering between events in patterns, some algorithms have been designed
to extract partial orders (patterns where events are partially ordered) [23, 65]. It is
possible to consider richer relationships between events by explicitly representing
each event as a time interval [18].

Another possibility is to consider extensions of traditional frequent patternmining
algorithms. For example, some extensions were proposed to handle items (events)
having weights indicating their relative importance [53], weights and quantities [29,
72, 73], and cost values [27], as well as to use fuzzy functions [54] and taxonomies of
items [12, 30, 82]. Using such algorithmswould allow to consider richer information.

Another research direction is to explore the use or development of appropriate
techniques for visualizing alarm patterns. For example, Jentner and Keim presented
a detailed survey of many visualization techniques for patterns [41].

An important issue that could be also studied is how to reduce the number of
patterns presented to the user by selecting themost important patterns or summarizing
these patterns by reducing redundancy. There are several studies on this direction
in the field of pattern mining such as to mine concise summary of patterns such as
closed patterns [35, 51], maximal patterns [31, 58], and generator patterns [26, 83].

Another research direction is to go beyond the classicalmeasures to select patterns
such as the support and the confidence. A well-known problem with the support
measure is that frequent alarms are sometimes unimportant and a limitation of the
confidence is that it is very sensitive to the frequency of a rule’s consequent in
a database. Thus, other measures could be considered such as the lift [11], and
application-specific measures could be designed.

Lastly, it is possible to build upon the research on stream pattern mining to adapt
the current approaches for real-time processing [15, 61].
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4 Machine Learning-Based Approaches

Apart from pattern mining-based techniques, several studies have applied machine
learning techniques for network fault management. The next subsections review
studies that have used different types of machine learning techniques: (1) artificial
neural networks, (2) decision tree learning, (3) Bayesian networks, (4) Support-
Vector Machines, (5) dependency graphs, and (6) other approaches.

4.1 Artificial Neural Networks-Based Approaches

Artificial Neural networks (ANN) are one of themost popular types ofmachine learn-
ingmodels [52, 55]. Their structure and learningmechanisms are loosely inspired by
the human brain. Over the years, multiple ANN architectures have been proposed for
different needs. A traditional feed-forward ANN contains multiple layers of neurons
that are interconnected, where some neurons receive some numeric values as input,
while others output numeric values. AnANN is typically trained in a supervisedman-
ner using some examples of inputs and corresponding desired outputs. After training,
a neural network can predict output values for new input values. Some key properties
of artificial neural networks is that they can approximate various nonlinear functions
(mapping inputs to outputs), and that they are resilient to noise [21, 71]. Because of
these properties, artificial neural networks are suitable for fault management.

Wietgrefe et al. [77] presented an artificial neural network-based alarm correlation
system for correlating alarms in a GSM network. The proposed system is called
CascadeCorrelationAlarmCorrelator (CCAC). It relies on anANN to find the causes
of alarms. Each input neuron of the ANN represents an alarm type and takes a binary
value (the alarm is active or inactive), while each output layer neuron correspond to a
problem’s cause. The neural network is trained using sets of alarms with their known
causes. During the training, weights of an hidden layer of neurons are adjusted. Then,
after training, the neural network can be fed with alarm data to obtain the likely alarm
causes. It was demonstrated that CCAC works well even in the presence of noisy
data, where noise is defined as some missing alarms or some additional irrelevant
alarms. In a comparative study done by Wietgrefe [76], it was found that the trained
ANN is more accurate at finding alarm causes than several other approaches such
as case-based reasoning and rule-based reasoning approaches. A limitation of this
study is that it does not consider the temporal relationships between alarms, and how
devices are interconnected.

To take the time ordering of alarms into account, Marilly et al. [60] proposed
an hybrid approach for fault management that combines a multi-layer feed-forward
ANN with signal-processing techniques. This method receives as input an alarm log
and first removes redundant alarms. Then, each alarm is feed to the input layer of
the ANN. Each input neuron represents either an alarm type or a logical network
entity. These inputs then pass through two hidden layers to produce an output (an
alarm class). After repeating this process for each alarm, a sequence of alarm classes
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is obtained ordered by time, which forms a signal. Then, the signal is treated using
signal-processingmethods such as a time-frequency visualization to extract pertinent
information that could help identifying the cause of the malfunction (e.g., peaks of
alarms that could indicate an equipment breakdown). This approach is robust to noise
but still requires that an expert intervenes to identify malfunction in signals.

In another study, Arhouma and Amaitik [5] have compared different types of
ANN models for alarm correlation in the ALMADAR GSM network by changing
parameters of a neural network such as the network type, number of hidden neurons,
and the learning algorithm. As in the work ofWietgrefe et al. [77], input neurons rep-
resent alarms while output neurons represent an initial cause of failure. It was found
that the cascade-forward network type with Levenberg–Marquardt back-propagation
training function gave the best diagnoses.

Differently, from the above studies, Barreto et al. [7] designed a fault detection
approach to monitor the condition of a cellular network and detect abnormal behav-
iors. In this approach, the current state of a network is described as a vector of KPI
(key performance indicator) values. Then, an ANN is trained with normal and abnor-
mal states to then be able to classify a novel network state as abnormal or not. In that
study, various neural network types were compared such as Self-Organizing Maps
(SOM) and Neural Gas using a simulator.

In summary, although neural network-based approaches have the ability to extract
patterns from complex and noisy data, these methods sometimes have a long training
time and have difficulty to predict correctly for data that is largely different from the
training data [21, 71]. Another issue with neural network-based approaches is that
it is sometimes difficult to understand their inner-working.

4.2 Decision Tree-Based Approaches

Another machine learning technique that has been used for fault management is
decision tree learning. It is a supervised learning method, which requires to provide
a set of training instances described using some attributes and where an attribute
is selected as the target attribute to be predicted. Each possible value for the target
attribute is called a class. From the training data, a decision tree is built using a
learning algorithm. Then, the model (tree) can be used to classify (predict the class)
new instances (data records).

A decision tree is a tree-like structure that is designed to support the classification
of data instances based on their attribute values. In a decision tree, each leaf represents
a decision (a class), while internal nodes represent a test of an attribute and each
outgoing branch from an internal node represents a possible value of this attribute.
An instance can be classified using a decision tree by traversing it from the root node
and following the branches based on the instance’s attribute values until a leaf node
is reached [14].

Chen et al. [17] proposed a decision tree based method for failure diagnosis in
large Internet systems.Adecision treewas trained to classify the failed and successful
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requests occurring during faulty periods. In the tree, the leaf nodes indicate whether
a request is successful or has failed while internal nodes represent different system
features such as a Machine’s name and the name of a software program running on
that machine. To identify causes of failures, post-processing is performed on paths of
the generated decision tree by ranking them based on their correlation with failures.
At this point, important features that correlate with the largest number of failures are
selected.

Kiciman and Fox [47] have proposed a system for automatic fault detection in
Internet services in which runtime paths of different requests served by the system
are studied to identify the system’s faulty components. A runtime path is a sequence
of components, resources, and control-flow used to service a request. Besides, after
detecting and recording the anomalous or successful requests with their correspond-
ing paths, a decision tree is used to identify the components that may cause the
failures. More precisely, a decision tree classifies the different paths into anomalous
or successful paths based on their properties. Then, from the decision tree, a set of
rules are extracted and used to extract the software and hardware components that
lead to the failures.

Apart from fault localization in computer networks, decision trees have also been
used for fault localization in other domains such as speech recognition [14] andEnter-
prise software systems (ESS) [67]. A drawback of decision tree based approaches
for fault localization is that they may suffer from a degraded accuracy when dealing
with noisy data [21, 71].

4.3 Bayesian Networks-Based Approaches

Bayesian networks are a type of Probabilistic Graphical Models that can be used
to build models from data or from expert opinions. Bayesian networks are directed
acyclic graphs (DAG) in which nodes correspond to random variables over a multi-
valued domain while edges represent the causal relationship between nodes which
is measured by the conditional probability [21]. Bayesian networks can be used to
deal with a wide range of tasks such as prediction, decision under uncertainty, and
diagnosis [13].

Barco et al. [6] proposed a model based on discrete Bayesian networks, namely
smooth Bayesian network, for automatic fault identification in cellular networks. The
main purpose of thismodel is to improve the fault identification process by decreasing
the sensitivity of diagnosis accuracywhich happens principally due to the imprecision
of the model’s parameters. In other words, the model was designed to improve the
diagnosis accuracy by overcoming the inaccuracy of a model’s parameters. The
proposed approach considers alarms and key performance indicators registered daily
by the network management system for fault identification. Experimental results on
data from GSM/GPRS networks have shown that the proposed smooth Bayesian
network outperforms traditional Bayesian networks in case of inaccuracy of the
model’s parameters.
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In another study, Ruiz et al. [68] used a Bayesian Network to identify the causes
of network failures at the optical layer, and give them probabilities. The input of the
Bayesian network is monitoring data represented as two time series about bit error
rates and received power. The data was discretized to train the Bayesian network.
Then, it can predict two types of failures, namely inter-channel interference and
tight filtering. The approach was found to provide high accuracy in a simulated
environment.

Khanafer et al. [46] developed a Bayesian network-based fault isolation approach
for Universal Mobile Telecommunications System (UMTS) networks. Given some
symptoms (KPIs and alarms), the system can predict the cause. Because data about
symptoms is continuous, Khanafer et al. first discretized the data (using twomethods,
namely percentile-based dicretization and entropyminimization discretization). This
allowed to automatically find thresholds for symptoms thatmay indicate faults. Then,
a Naive Bayes networkwas built in which the conditional probabilities linking causes
to symptoms were learnt from training data based on the thresholds. Experiments on
data from a real UMTS network have shown that the proposed approach identified
the correct cause of problems 88% of the time.

To handle time, Ding et al. [42] proposed an approach for fault management in IP
networks, which relies on a dynamic Bayesian network. In that network, dependen-
cies between network objects (e.g., devices, software processes) are modeled, and
how they evolve over time with conditional probabilities. The dynamic Bayesian
network can be used to predict the state of a network object and the evolution of
dependencies between two objects. Moreover, it can also be used to infer the likely
causes of some observed symptoms using backward inference. This study focused on
faults caused by soft changes (changes that gradually occur over time) in a network,
and their causes. The approach was only tested with simulated data.

Besides fault isolation, Bayesian networks were also used to predict faults in
communication networks [2, 39, 49] to perform pro-active maintenance.

The above studies have shown promising results but Bayesian networks have some
limitations. One of them is that several Bayesian models rely on some assumptions
of independence between some events. Another is that a considerable amount of
training data is required to correctly estimate conditional probabilities. A third one
is that complex temporal relationships between alarms and interactions between
devices are difficult to model using Bayesian Networks.

4.4 Support-Vector Machine-Based Approaches

Another popular machine learning technique that is used for fault management is
support-vector machine (SVM). It is a supervised technique that is generally used
for classification or regression analysis. SVM is a linear classifier which is based on
the margin maximization principle [1].

Given labeled data as input, the main idea of SVM is to find an optimal separating
hyperplane that divides the input data into two classes. Note that to deal with non-
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linear problems, the data can be mapped to higher dimensions to find a separating
hyperplane. This mapping is performed using kernel methods and this process is
called nonlinear SVM [4].

Wang et al. [75] have combined SVMwith double-exponential smoothing (DES)
to predict optical network equipment failures. To perform this task, some selected
indicators are used as features to predict equipment failures. If an indicator is related
to equipment failure, a change of this indicator’s value will directly affect the equip-
ment’s state. Besides, since the relation between different indicators and equipment
failures is not linear, a kernel function with punishment vector needs to be selected.
This selection is performed by tryingmultiple kernel functions with different punish-
ment factor values on SVM, using tenfold cross-validation to calculate their accuracy.
Then, the combination that yield the highest accuracy is selected. Before applying
SVM, DES is used to predict the value of each indicator at time (t + T ) taking the
historical data from time (t − n) to (t − 1). At this point, the SVMmethod is applied
to predict equipment failures at time (t + T ). Note that (t − n) to (t − 1) is a period
of time that is selected in terms of days in the experiment and (t + T ) is the next
period of time from the end of the previous time period to the end of the whole
observation period. It was found that this improved SVM method can achieve an
average of 95% accuracy (it can predict 95% of equipment failures).

In another study, Yuan et al. [85] proposed a system to automatically identify
the root causes of problems in computer systems based on low-level traces of their
behavior. This approach is different from that of utilizing a text-based search to find
solutions to problems, which has been used in other systems. The proposed system
has two main components: the tracer and the classifier.

The tracer collects the list of events that occur in the system when a problem’s
symptom is reproduced. Besides, the tracer records most system calls, which have
several attributes such as Sequence number, Process ID, and Thread ID. After col-
lecting all system call sequences related to symptoms, the system extracts n-grams
from them. An n-gram can be viewed as sequential pattern where events must be
consecutive. Then, the system encodes each log sequence as a bit vector where each
dimension indicates the presence or absence of an n-gram.

At this point, the SVM classifier is applied on the set of bit vectors generated
in the previous step for predicting the root cause of new traces from the previous
registered traces with their known root causes. Besides, to prevent over-fitting due
to the limited data, k-fold cross-validation is applied. It divides the training data
into k partitions and then repeat selecting one partition to test it with the classifier
trained with the remaining data until all data has been used for testing. The proposed
approach was evaluated using four case examples containing diverse root causes. A
prediction accuracy of nearly 90% was obtained.

Zidi et al. studied fault management for Wireless Sensor Networks (WSNs). A
WSN is a set of autonomous devices that collaborate together through a wireless
channel. WSNs are used to collect, process, and send data in various situations.
However, WSNs may suffer from numerous failures [88]. Hence, Zidi et al. [88]
proposed a new SVM-based technique for failure detection in WSNs. The proposed
approach has two phases: The first phase is performed on anticipated time; whereas,
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the second one is performed on real time. The first phase is the learning phase where
the main objective is to obtain a decision function from learning data using SVM.
Besides, data is composed of a set of normal data as well as a set of faulty data. Then,
the decision function is further used in the second phase to detect in real timewhether
a newobservation is normal or belongs to faulty cases. To evaluate the performance of
the proposedmethod, 21 datasets were formed from a previously published database.
The collected datasets are composed of a set of sensor measurements where different
types of faults are injected with certain degrees. The experimental results show that
the proposed method achieves high detection rate (99% in most cases).

4.5 Dependency Graph-Based Approaches

These approaches are based on the construction of a dependency graph to represent
different network elements. In [44], a graph-based method is developed for the fault
localization problem. Besides, a dependency graph is constructed for the different
network objects. Each vertex in the graph dependency is assignedwith aweightwhich
represents the probability that this object fails (triggers alarms) independently of other
dependent network elements. On the other hand, each directed edge between two
vertices is assigned with a weight that represents the strength of dependency between
these vertices. In other words, the assigned weight is the conditional probability that
the failure of one object is due to the failure of the other object. These weights can be
estimated from the system specification information or from the history of previous
failures [44].

After the graph construction, the system finds the domain of each alarm in the
system which is defined as the set of objects that can cause this alarm. Note that,
the problem of finding alarm domains is formulated as a variant of single source
problem. At this point, a set of localization algorithms are used to discover alarm
correlation patterns and identify fault locations.

Bouillard et al. [9, 10] have proposed another graph dependency based approach to
correlate alarms in a network. This method is based on the assumption that frequently
occurring alarms just refer to general information about the system, while rare alarms
are viewed as more important since they may reveal a critical problem in the system.
Accordingly, this method focuses on observing rare alarms.

First, this approach calculates the most frequent alarms. Then, based on these
alarms, the alarm sequence is cut into set of small patterns (set-patterns) where
frequent alarms are used as separators. Then, set-patterns are reduced using some
transformation rules to facilitate their analysis.

At this point, the dependency graph from the reduced sets pattern is constructed
and is divided into a set of subgraphs where each subgraph focuses on one rare alarm
or a set of rare alarms. Finally, these subgraphs are further analyzed by network
experts to discover the root cause of these alarms.
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4.6 Other Approaches

Several of the reviewed approaches are passive. Johnsson and Meirosu [43]
proposed an active fault management approach to perform fault localization in a
packet-switched network. In that study, a network is viewed as an undirected graph
connecting devices, and a fault is a performance degradation such as a large packet
loss rate or transmission delay. Periodically, packets are sent between pairs of device
to evaluate the network performance. They collected information about delays, jit-
ters, and errors for the different edges of this graph and then used to calculate the
probability that an edge is the source of a fault. The proposed approach utilizes prob-
abilistic inference with a discrete state-space particle filter (also called histogram
filter) to calculate the most probable location of a fault. This approach is lightweight
and is applied in real time. The approach was evaluated using a simulator.

4.7 Summary and Perspective

This section has reviewed several studies, which have applied machine learning for
fault management. Table2 provides a summary of the main reviewed approaches
discussed in this section. Most of the approaches surveyed in this section can be
viewed as supervised approaches (requiring training data).

There are many possibilities for future work about using machine learning tech-
niques. First, only a handful of machine learning techniques have been used for fault
management, and there has been many advances in this field in recent years. Thus,
newer techniques may be considered such as deep learning models [52], which may
provide better results.

Second, it would be interesting to explore using models that consider richer infor-
mation. For example, some models designed to handle temporal information could
be used such as LSTM (Long Short Term Memory) [36]. Finding a way of also
considering the network topology could lead to interesting results.

Third, the use of larger datasets with more features could be helpful to train better
models. Semi-supervised machine learning techniques could also be used to reduce
the need for human intervention. Synthetic but realistic data could also be generated
to increase the size of the training data.

Fourth, an interesting alternative to passivemonitoring (where a networkmanage-
ment system waits passively for alarms sent by network nodes) is active monitoring
(where the management system probes each nodes to verify its state). The advantage
of active monitoring is that it may help recovering from faults more quickly. How-
ever, designing active monitoring techniques brings more challenges for network
management [21].

Fifth, we have noticed that there are some recent studies on the use of machine
learning in general and neural networks in particular for LTE and 5G networks
[16, 22]. However, to the best of our knowledge, few studies have applied neural
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network in LTE and 5G networks for fault management [24, 62]. Thus, exploiting
recent advances in machine learning in general and neural network in particular for
fault management in 5G and LTE networks is a promising direction for future work.

Another research direction is to develop hybrid machine-learning based systems
for fault management, which is to combine different machine learning techniques in
a complementary way to efficiently perform fault management, while overcoming
the disadvantages of using only one machine learning technique [13].

Moreover, with large and complex networks, both time and complexity become
very large which makes the computation intractable [21]. As a result, developing
techniques to reduce runtime and memory requirements of models while preserving
their accuracy is crucial.

Finally, it is worth noticing that fault management in computer networks is a very
active research topic. The reason is that, even with the development of many tech-
niques based on patternmining andmachine learning, novel networking technologies
and applications raise new challenges. Hence, existing systems become insufficient
and must be improved [78].

5 Conclusion

This chapter has presented a survey of the main studies on using data mining
and machine learnin- based techniques for network fault management, including a
description of their characteristics, similarities, differences, and shortcomings. This
is an active research area with many research opportunities.
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