
Chapter 7
On the Stark Units of Drinfeld Modules

Floric Tavares Ribeiro

Abstract We present the notion of Stark units and various techniques involving
it. The Stark units constitute a useful tool to study the unit and class modules
of a Drinfeld module as defined by Taelman. We review some recent results on
Drinfeld Fq [θ ]-modules which make use of this notion. In particular, we present the
“discrete Greenberg conjectures” which explain the structure of the class module of
the canonical multi-variable deformations of the Carlitz module, and a result on the
non vanishing modulo a given prime of a class of Bernoulli-Carlitz numbers.

7.1 Introduction

This text aims to constitute an introduction, largely accessible to non specialist
readers, to the notion of Stark units of Drinfeld modules. The germs of the
concept of Stark units can be found in [APTR16, APTR18]. The notion has been
conceptualized in [ATR17] for Drinfeld modules over Fq [θ ] and then further
developed in the general context of Drinfeld modules in [ANDTR17] and in
[ANDTR20a] for t-modules.

Let Fq be a finite field with q elements, θ be an indeterminate over Fq , A =
Fq [θ ], and B be a finite integral extension of A, and denote by τ the map x �→ xq . A
DrinfeldA-module defined overB is a ring homomorphismφ : A → B[τ ], a �→ φa

where φa ≡ a (mod τ ). We first define the z-deformation of φ which consists in
twisting the Frobenius τ by a new variable z which commutes with τ . This can
be obtained simply by the formula ˜φ : A → B[z][τ ], a �→ ˜φa where, if φa =
∑r

i=0 aiτ
i , then ˜φa =∑r

i=0 aiz
iτ i .
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This naive construction reveals its interest when one computes the unit module
U(φ) of the Drinfeld module φ. This unit module, introduced by L. Taelman along
with the class module (see [Tae12]), is, roughly speaking, the A-module of the
elements which map to integral elements via the exponential map associated to φ.
One can obtain a submodule of finite index of U(φ) by computing U(˜φ) and then
evaluating at z = 1. This is the module of Stark units of φ.

The terminology of Stark units comes from the remark of Anderson from
[And96] that the elements that he constructed play a role similar to the circular
units, which generalize in the classical case to Stark units. The idea of considering
Stark units indeed arose from investigations on log-algebraicity. A log-algebraicity
result consists in the construction of a specific unit from the L-series of a Drinfeld
module. The concept of log-algebraicity is due to D. Thakur and has been notably
developed by G. Anderson in [And94, And96]. It has become a very lively topic in
the current research. In a log-algebraicity statement, one in fact builds an element in
U(˜φ), its evaluation at z = 1 is then always a Stark unit.

We can track this analogy in particular in Theorem 7.4.6 which states that the
Fitting ideal of the quotient of U(φ) by the module of Stark units is equal to the
Fitting ideal of the class module of φ.

The chapter is organized as follows. We start defining the basic notions involved
in the theory of Drinfeld A-modules and introduce the tools which are necessary
to state Taelman’s class formula. The first three sections are meant to be self
contained and present the general machinery of Stark units in the case of Drinfeld
Fq [θ ]-modules. This machinery has been generalized for Anderson A-modules
with general A without difficulty. We invite the interested reader to [ANDTR17,
ANDTR20a] for more details.

We present in Sect. 7.5 several class formulas and explain how Stark units appear
in these formulas or can be computed from them.

We then turn to a slightly more general kind of objects, which are deformations of
Drinfeld modules, in particular the multi-variable “canonical” deformations of the
Carlitz module, which is canonical in the sense that the Carlitz module is deformed
by its own shtuka function. This is a key object for arithmetic applications that we
then review. First we show that the class module of the canonical deformation of
the Carlitz module is, depending on the case, pseudo cyclic or pseudo null, which
reminds of the classical Greenberg conjectures. Then we prove that, given a prime
P , almost all Bernoulli-Carlitz numbers of a certain form do not vanish modulo P .

We finish with some words on Stark units in more general settings.
Some new proofs are given when possible and references are provided along

the way. For the general references on Drinfeld modules, we refer the reader to
[Gos96, Ros02, Tha04]. There are also obvious links between this survey and F.
Pellarin’s contribution [Pel20] to this volume, although the settings and notation
might sometimes differ.
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7.2 Background

After some notation, we present in this section the notions of Fitting ideals and
ratios of covolumes which will be needed later, in particular in Sect. 7.5 to state
class formulas.

7.2.1 Notation

We will use the following notation:

• Fq : a finite field with q elements, of characteristic p,
• θ : an indeterminate over Fq ,
• A = Fq [θ ], K = Fq(θ), K∞ = Fq(( 1

θ
)),

• v∞: the valuation at the place ∞ such that v∞(θ) = −1,
• C∞: the completion of a fixed algebraic closure of K∞,
• τ : C∞ → C∞, x �→ xq the Frobenius endomorphism.

Note that K∞ is the completion of K with respect to v∞.
If k is a field containing Fq , we set (kK)∞ = k̂⊗Fq K∞ = k(( 1

θ
)). This is a field.

If x ∈ (kK)×∞, we can write x uniquely as x = ∑

n≥N xn
1
θn , xn ∈ k with xN 	= 0.

Then we call xN ∈ k× the sign of x and write sgn(x) = xN . We say that such an
x ∈ (kK)∞ is monic if sgn(x) = 1. The valuation v∞ extends naturally to (kK)∞
which is complete with respect to this valuation.

If L is a finite extension of K we denote by OL the integral closure of A in L. We
write L∞ = L ⊗K K∞ and if k is a field containing Fq , (kL)∞ = L ⊗K (kK)∞.
Note that (kL)∞ 
 L∞ when k = Fq . As a finite dimensional (kK)∞-vector space,
(kL)∞ is endowed with a natural topology. Moreover, OkL or kOL will denote the
sub-k-vector space of (kL)∞ spanned by OL. This is isomorphic to k ⊗Fq OL.

The Frobenius homomorphism τ extends uniquely to a continuous homomor-
phism on (kL)∞ by putting τ (x) = x for all x ∈ k. We then have τ (OkL) ⊂ OkL.

A case of particular interest in this text will be k = Fq(z) where z is a new
indeterminate over Fq . In this case, we will consider the Tate algebra

Tz(L∞) :=
⎧

⎨

⎩

∑

n≥0

anz
n ; an ∈ L∞, lim

n→∞ an = 0

⎫

⎬

⎭

⊂ (Fq(z)L)∞.

We have also the description Tz(K∞) 
 Fq [z][[ 1
θ
]] and more generally

Tz(L∞) 
 Fq [z][[1
θ
]] ⊗K L.

Remark that τ (Tz(L∞)) ⊂ Tz(L∞), and Tz(L∞) ∩ OFq(z)L = OL[z].
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It will be useful to also use the notation (Fq [z]L)∞ = (L[z])∞ = Tz(L∞), and
OFq [z]L = OL[z] = OL[z] so that if k denotes either Fq , Fq(z) or Fq [z], then (kL)∞
stands respectively for L∞, (Fq(z)L)∞ or Tz(L∞), and OkL for OL, OFq(z)L or
OL[z].

7.2.2 Fitting Ideals

In this section, we review basic facts on the theory of Fitting ideals. The standard
references are the appendix to [MW84] and [Nor76, Eis95, Lan02].

We fix a commutative ring R and consider a finitely presented R-module M . If
for a, b ∈ N,

Ra −→ Rb −→ M −→ 0

is a presentation of M , and if X is the matrix of the mapRa → Rb then one defines
FittM (R) to be the ideal of R generated by all the b × b minors of X if b ≤ a, and
FittR (M) = 0 if b > a. This is independent from the presentation chosen for M .
Note that if M is torsion, one has b ≤ a.

In the case where R is a principal ideal domain (or more generally a Dedekind
domain), the structure theorem asserts that if M is a torsion R-module, then there
exist ideals I1, . . . , In ofR such that M is isomorphic to the productR/I1 × · · · ×
R/In. This implies that FittR (M) = ∏n

i=1 Ii . Fitting ideals are also multiplicative
in exact sequences. That is, if 0 → M1 → M → M2 → 0 is exact, then

FittR (M1) · FittR (M2) = FittR (M) . (7.1)

This can be deduced, for instance, from [Bou65, VII. §4 n.5 Proposition 10].
In the case where k is a field andR = k[θ ] we will denote by [M]k[θ] the monic

generator of Fittk[θ] (M). Remark that in this case, there is a simple way to compute
this quantity:

[M]k[θ] = det
k[Z] (Z − θ | M) |Z=θ . (7.2)

We fix a field k ⊃ Fq such that Fq is algebraically closed in k. As an example,
one can choose k = Fq(z). Let us write R = k[θ ]. Let G be a finite abelian group

whose order is prime to p. Let us denote by ̂G = Hom(G,Fq
×
) the set of characters

on G. For χ ∈ ̂G, we denote by Fq(χ) the (finite, Galois) extension of Fq generated
by the values of χ :

Fq(χ) := Fq [χ(g), g ∈ G].
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And similarly,

k(χ) := k[χ(g), g ∈ G]
is the compositum of k and Fq[χ] and is just isomorphic to k ⊗Fq Fq [χ].

For χ ∈ ̂G, we define the idempotent

eχ := 1

|G|
∑

g∈G

χ(g)g−1 ∈ Fq(χ)[G].

If χ ∈ ̂G, we also define:

[χ] := {σ ◦ χ , σ ∈ Gal(Fq(χ)/Fq)} ⊂ ̂G

and the corresponding idempotent:

e[χ] =
∑

ψ∈[χ]
eψ ∈ Fq [G].

We define a map e[χ]Fq [G] → Fq(χ) by associating, for x ∈ Fq [G], to
e[χ]x the unique λ ∈ Fq(χ) such that eχx = λeχ in Fq(χ)[G]. It is not hard to
check that this is a well defined isomorphism, and thus it induces isomorphisms
e[χ]k[G] → k(χ) and e[χ]R[G] → k(χ)[θ ] = R(χ). Remark that the notion of a
monic element in e[χ]R[G] is then well defined and does not depend on the choice
of the representative χ of [χ].

Then, R[G] is the direct sum of its [χ]-components e[χ]R[G]. It is thus a
principal ideal ring, and the notion of monic elements on each component leads to
a natural notion of monic elements onR[G]. Thus, if M is anR[G]-module which
is finite dimensional over k, then we can define [e[χ]M]e[χ]R[G] for all character χ ,
and

[M]R[G] =
∑

χ

[e[χ]M]e[χ]R[G] ∈ e[χ]R[G].

If M is now anR(χ)[G] module which is finite dimensional over k, then we can
define in a similar way [eχM]eχR(χ)[G] ∈ eχR(χ)[G] = R(χ)eχ . So if M is an
R[G]-module which is finite dimensional over k, we can set M(χ) := M ⊗RR(χ)

and then we remark that:

[

e[χ]M
]

e[χ]R[G] =
∑

ψ∈[χ]

[

eψM(ψ)
]

eψR[G] ∈ R[G].

If now M is a freeR[G]-module, then we also have the equality:

[M]R[G] = det
k[G][Z] (Z − θ | M) |Z=θ .
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7.2.3 Ratio of Covolumes

We define here k[θ ]-lattices and the notion of ratio of covolumes which will be used
to compare two lattices.

We fix k a field containing Fq and recall that (kK)∞ = k̂⊗Fq K∞ = k(( 1
θ
)).

In what follows, we fix V to be a finite dimensional (kK)∞-vector space endowed
with the natural topology coming from (kK)∞.

Definition 7.2.1 A sub-k[θ ]-module M of V is a k[θ ]-lattice in V if M is discrete
in V and if M generates V over (kK)∞.

Lemma 7.2.2 Let M be a sub-k[θ ]-module of V . If M is discrete in V , then M is
finitely generated over k[θ ] and its rank is lower or equal to the dimension of V

over (kK)∞. Equality holds if, and only if, M is a k[θ ]-lattice in V .

Proof We choose a norm of (kK)∞-vector space on V . Let e1 ∈ M be an element
of minimal norm among the non zero elements of M . Let d be the dimension of the
(kK)∞-vector space generated by M . We build by induction a family (e1, . . . , ed )

of elements of M such that for 1 ≤ i ≤ d , ei is an element of minimal norm among
the non zero elements of M \ ((kK)∞e1 ⊕ · · · ⊕ (kK)∞ei−1). If x ∈ M , then
there are λ1, . . . , λd ∈ (kK)∞ such that x = ∑d

i=1 λiei . For 1 ≤ i ≤ d , write
λi = λi,0 + λi,1 with λi,0 ∈ k[θ ] and λi,1 ∈ 1

θ
k[ 1

θ
]. Then

x −
d
∑

i=1

λi,0ei =
d
∑

i=1

λi,1ei ∈ M. (7.3)

Let j be the maximal index, if it exists, for which λj,1 	= 0. Then (7.3) contradicts
the minimality of ej . We therefore must have λi,1 = 0 for all i, and thus, M =
⊕d

i=1 k[θ ]ei . We get the desired inequality.
This also proves that the dimension of the (kK)∞-vector space generated by M

is the rank of M , whence the case of equality. ��
As an immediate consequence, we can state:

Proposition 7.2.3 Let M be a sub-k[θ ]-module of V . The following are equiva-
lent:

(i) M is a k[θ ]-lattice in V ,
(ii) There exists a (kK)∞-basis (e1, . . . , en) of V such that M is the free k[θ ]-

module of basis (e1, . . . , en),
(iii) M is discrete in V and its k[θ ]-rank is equal to the dimension of V over (kK)∞.

We can now proceed with the definition of ratio of co-volumes of lattices.
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Let M and M ′ be two k[θ ]-lattices in V . Let B and B′ be k[θ ]-bases of M and
M ′, respectively. The ratio of co-volumes of M in M ′ is then defined as

[

M ′ : M
]

k[θ] = detB′ B
sgn(detB′ B)

∈ (kK)∞.

Note that this is independent of the choices of B and B′.

Remark 7.2.4

• The definition immediately implies that if M0, M1 and M2 are lattices in V , then

[M0 : M1]k[θ] [M1 : M2]k[θ] = [M0 : M2]k[θ] .

• We also see that for two lattices M , M ′ in V ,
[

M ′ : M
]

k[θ] = [M : M ′]−1
k[θ].

The two following results are also immediate:

Proposition 7.2.5 Let M be a k[θ ]-lattice of V and u be a (kK)∞-automorphism
of V . Then u(M) is a lattice of V and

[M : u(M)]k[θ] = detu

sgn(detu)
.

Proposition 7.2.6 If M and M ′ are two k[θ ]-lattices of V and M ′ ⊂ M , then
M/M ′ is a torsion k[θ ]-module and

[

M : M ′]
k[θ] = [M/M ′]

k[θ] .

Now let G be a finite abelian group whose order is prime to p. We suppose
further that V is a free (kK)∞[G]-module. Write R = k[θ ]. AnR[G]-lattice M in
V is an R-lattice in the (kK)∞-vector space V which is anR[G]-submodule of V .

Let us fix a character χ ∈ ̂G. Then e[χ]M is an e[χ]R[G] lattice in e[χ]V .
Thus it makes sense to define for two R[G]-lattices M and M ′ in V the ratio
[

e[χ]M : e[χ]M ′]
e[χ]R[G]. We then set

[

M : M ′]
R[G] =

∑
[

e[χ]M : e[χ]M ′]
e[χ]R[G]

where the sum runs over the classes of characters [χ].

7.3 Drinfeld Modules

We review in this section the definition of Drinfeld modules and of the two
fundamental associated maps: the exponential and the logarithm maps. We finish
with the simplest example of a Drinfeld module, the Carlitz module, which allows
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some explicit computations. We also refer the reader to [Pel20, §3] where Drinfeld
modules are presented for a general ring A.

7.3.1 Drinfeld Modules

In what follows, we fix k = Fq or k = Fq(z) and R = kA, that is, R = A = Fq[θ ]
or R = Fq(z)[θ ]. Let L be a finite extension of K . We write S = OkL, that is
S = OL if R = A and S = OFq(z)L otherwise. We recall that S is endowed with the
Frobenius homomorphism τ .

Definition 7.3.1 A Drinfeld R-module defined over S is a k-algebra homomor-
phism φ : R → S[τ ]; a �→ φa such that φa ≡ a (mod S[τ ]τ ) for all a ∈ A.

We remark that the data of φθ is sufficient to define the Drinfeld module φ. In
particular, a Drinfeld A-module over OL extends naturally to a Drinfeld Fq(z)[θ ]-
module over OFq(z)L.

The degree degτ φθ is called the rank of φ.

Example 7.3.2 We do not exclude the rank 0 case. In this case the Drinfeld module
is the trivial map φ : a �→ φa = a.

Example 7.3.3 The Carlitz module is the Drinfeld A-module C over A defined by
Cθ = θ + τ . It is of rank 1. See Sect. 7.3.3 below.

Definition 7.3.4 Let φ be a Drinfeld A-module over OL given by φθ =∑n
i=0 aiτ

i

with ai ∈ OL. The z-twist of φ is the Drinfeld Fq(z)[θ ]-module ˜φ over OFq(z)L

given by ˜φθ =∑n
i=0 aiz

iτ i and extended by Fq(z)-linearity for any a ∈ Fq(z)[θ ].
If M is an S[τ ]-module and φ is a Drinfeld R-module over S, then φ induces a

structure of R-module on M via (a,m) ∈ R × M �→ φa(m). We then write φ(M)

for the R-module M considered with this structure of R-module.

7.3.2 Exponential and Logarithm

We keep the notation of the previous section. Let φ be a Drinfeld kA-module over
OkL.

Let M be a finitely generated and free (kL)∞-module equipped with a semi-
linear map τ , that is:

∀a ∈ (kL)∞, ∀m ∈ M, τ(a.m) = τ (a).τ (m).

We call such a module a τ -module over (kL)∞. It is in particular a finite dimensional
(kK)∞-vector space, and all norms of (kK)∞-vector space on M are equivalent.
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Proposition 7.3.5 There exists a unique series expφ = ∑

i≥0 eiτ
i ∈ kL[[τ ]] such

that:

(i) e0 = 1,
(ii) expφ a = φa expφ holds in kL[[τ ]] for all a ∈ A.

Moreover, if ‖ · ‖ is a norm of (kK)∞-vector spaces over (kL)∞, then

lim
n→∞ ‖en‖q−n = 0.

As a consequence, if M is a τ -module over (kL)∞, then expφ defines a function
which converges everywhere on M .

Proof We refer the reader to [And86, Proposition 2.1.4] for a proof of this classical
result. Since this will be useful later on, we give a short proof of the last assertion:
expφ converges on the whole M .

We fix a norm ‖ · ‖ of (kK)∞-vector spaces on M . From the identification
(kK)∞ 
 k(( 1

θ
)), we see that for all x ∈ (kK)∞, we have |τ (x)| ≤ |x|q . Thus,

since M is finite dimensional over (kK)∞, there exists some constant α ≥ 1 such
that for all x ∈ M , ‖τ (x)‖ ≤ α‖x‖q . Thus for all x ∈ M and all n ≥ 1, we have:

‖τn(x)‖ ≤ α
qn−1
q−1 ‖x‖qn ≤ (α‖x‖)qn

. Thus for all n,

‖enτ
n(x)‖ ≤

(

‖en‖q−n

α‖x‖
)qn

(7.4)

which concludes the proof. ��
We call expφ the exponential map associated to the Drinfeld module φ.

Corollary 7.3.6 If M is a τ -module over (kL)∞, then the exponential map expφ :
M → M is locally an isometry.

Proof We use the same notation as in the previous proof. Let us write m =
maxn ‖en‖q−n

. From Inequality (7.4), we get that for all n ≥ 1, and for all x ∈ M

such that ‖x‖ ≤ (mα)−1,

‖enτ
n(x)‖ ≤ (mα‖x‖)q .

Thus, if ‖x‖ < min
(

(mα)−1, (mα)
q

1−q

)

, and for all n ≥ 1, ‖enτ
n(x)‖ < ‖x‖. It

implies that ‖ expφ(x)‖ = ‖x‖. The proof is finished. ��
Proposition 7.3.7 There exists a unique series logφ = ∑

i≥0 liτ
i ∈ kL[[τ ]] such

that:

(i) l0 = 1,
(ii) logφ φa = a logφ holds in kL[[τ ]] for all a ∈ A.
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Moreover, we have expφ logφ = logφ expφ = 1 in kL[[τ ]] and if ‖ · ‖ is a norm of

(kK)∞-modules over (kL)∞, then ‖ln‖q−n
is bounded. As a consequence, if M is a

τ -module over (kL)∞, then logφ converges on a neighborhood of 0 in M .

Proof The construction of logφ is standard: if it exists, then we must have
expφ logφ = logφ expφ = 1. So it can be obtained as the inverse series (in τ ) of the
exponential map, and this gives both (i) and (ii). Note that it can also be constructed
directly by solving the equation logφ φθ = θ logφ .

Let m = max(1,maxn ‖en‖). We prove by induction that for all n, ‖ln‖ ≤ mqn
.

The case n = 0 is trivial. The inequality

‖ln‖ = ‖ −
n−1
∑

i=0

lie
qi

n−i‖ ≤ max
i

‖lieqi

n−i‖ ≤ max
i≤n−1

m2qi ≤ mqn

concludes the proof. ��
We call logφ the logarithm map associated to the Drinfeld module φ.

Corollary 7.3.8 The logarithm map logφ is an isometry on a neighborhood of 0.

Proof The proof can be done along the same lines as that of Corollary 7.3.6. It
is also a consequence of the fact that the logarithm map is formally an inverse
map of the exponential map, that it converges on a neighborhood of 0 and that the
exponential map is locally an isometry. ��

If φ is a Drinfeld A-module over OL, and ˜φ denotes its z-twist, then we
have exp

˜φ(Tz(L∞)) ⊂ Tz(L∞), and if x ∈ Tz(L∞) and log
˜φ(x) converges in

(Fq(z)L)∞, then it converges in Tz(L∞). Thus Corollary 7.3.6 and 7.3.8 remain
true on Tz(L∞).

7.3.3 The Carlitz Module

The Carlitz module is often considered as the first case of a Drinfeld module, and
we can make a lot of the constructions completely explicit here. We give a short
overview of these explicit constructions and refer the reader to [Pel20, §4] or, for
instance, to [Gos96, §3] for more details.

Let us recall that the Carlitz module is the Drinfeld A-module C over A defined
by Cθ = θ + τ . We define D0 = 1, and for i ≥ 1, Di+1 = D

q
i (θqi+1 − θ), so that

v∞(Di) = −iqi . Then the exponential map associated to C is expC = ∑i≥0
1
Di

τ i .

Similarly, if l0 = 1, and for i ≥ 1, li+1 = li(θ − θqi
), then logC = ∑

i≥0
1
li
τ i .

The kernel of expC : C∞ → C∞ is a rank one A-module. One can give an explicit
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description of a generator of this kernel as

π̃ := (−θ)
1

q−1 θ
∏

j≥1

1

1 − θ1−qj
(7.5)

where (−θ)
1

q−1 is a fixed q − 1-st root of −θ in C∞. We call π̃ “the” period of the
Carlitz module (uniquely determined up to F

×
q ).

7.4 Stark Units

We come to the definition of the Stark units. We first review Taelman’s class and
unit modules. Then we will be able to define the module of Stark units which is a
submodule of the unit module. The section ends with some words on Anderson’s
[And94] which inspired the notion of Stark units.

7.4.1 Taelman Modules

We define here the class module and the unit module of a Drinfeld module as
introduced by L. Taelman in [Tae12].

Let L/K be a finite extension and let φ denote a Drinfeld A-module over OL.
We define the unit module of φ to be

U(φ; OL) = {x ∈ L∞, expφ(x) ∈ OL

}

and the class module of φ to be

H(φ; OL) = φ(L∞)

φ(OL) + expφ(L∞)
.

Since expφ is a homomorphism of A-modules, those are naturally A-modules.
We also write ˜φ for the z-twist of φ and define the corresponding Taelman

modules:

U(˜φ; OFq(z)L) =
{

x ∈ (Fq(z)L)∞, exp
˜φ(x) ∈ OFq(z)L

}

and

H(˜φ; OFq(z)L) = ˜φ((Fq(z)L)∞)

˜φ(OFq(z)L) + exp
˜φ((Fq(z)L)∞)

.
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And finally, at the “integral” level, we define:

U(˜φ; OL[z]) =
{

x ∈ Tz(L∞), exp
˜φ(x) ∈ OL[z]

}

and

H(˜φ; OL[z]) = ˜φ(Tz(L∞))

˜φ(OL[z]) + exp
˜φ(Tz(L∞))

.

We fix from now on a Drinfeld A-module φ over OL and write k = Fq , Fq(z) or
Fq [z] and ϕ = φ in the first case and ϕ = ˜φ otherwise.

Proposition 7.4.1

1. The class moduleH(ϕ; OkL) is finitely generated over k, thus a finitely generated
and torsion kA-module.

2. Suppose that k = Fq or k = Fq(z). The unit module U(ϕ; OkL) is a kA-lattice
in (kL)∞.

Proof We use the proof of [Dem14, Proposition 2.6].
For Part 1, since expϕ is locally an isometry on (kL)∞, we can find a

neighborhood V of 0 such that expϕ is an isometry on V , expϕ(V ) = V and

V ∩ OkL = {0}. We remark that (kL)∞
OkL+V

is finitely generated over k. But we have a

surjection (kL)∞
OkL+V

� H(ϕ; OkL) so that H(ϕ; OkL) is also finitely generated.
For Part 2, since expϕ is locally an isometry, we get that U(ϕ; OkL) is discrete in

(kL)∞. The exponential map induces a short exact sequence of kA-modules:

0 −→ (kL)∞
U(ϕ; OkL) + V

−→ ϕ((kL)∞)

ϕ(OkL) + V
−→ H(ϕ; OkL) −→ 0.

Since the vector space in the middle is finite dimensional over k, then so is the
first one. If U(ϕ; OkL) did not generate (kL)∞ over (kK)∞, we could find x ∈
(kL)∞ such that (kK)∞U(ϕ; OkL) ∩ (kK)∞x = {0}. But, there is an injection
OkL ↪→ (

k
L)∞V , and (kL)∞

U(ϕ;OkL)+V
is the cokernel of the natural map U(ϕ; OkL) →

(
k
L)∞V . We deduce that the kA-ranks of OkL and U(ϕ; OkL) must coincide. Thus

U(ϕ; OkL) is a lattice in (kL)∞. ��
Proposition 7.4.2 We have:

1. U(˜φ; OFq(z)L) = Fq(z)U(˜φ; OL[z]) ⊂ (Fq(z)L)∞,
2. H(˜φ; OFq(z)L) 
 Fq(z) ⊗Fq [z] H(˜φ; OL[z]).
Proof For Part 1, we mimic the proof of [APTR16, Proposition 5.4].

The inclusion Fq(z)U(˜φ; OL[z]) ⊂ U(˜φ; OFq(z)L) is clear.
We have that Fq(z)Tz(L∞) is dense in (Fq(z)L)∞. We fix a neighborhood

V of 0 in Tz(L∞) such that exp
˜φ(V ) = V . We write V ′ for the closure of
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Fq(z)V in (Fq(z)L)∞. We still have exp
˜φ(V ′) = V ′. We then have (Fq(z)L)∞ =

Fq(z)Tz(L∞) + V ′. Let f ∈ U(˜φ; OFq(z)L). We can write f = g + h with
g ∈ Fq(z)Tz(L∞) and h ∈ V ′. We get:

exp
˜φ(h) = exp

˜φ(f ) − exp
˜φ(g) ∈ (OFq(z)L + Fq(z)Tz(L∞)

) ∩ V ′.

But

(

OFq(z)L + Fq(z)Tz(L∞)
) ∩ V ′ = Fq(z)Tz(L∞) ∩ V ′ = Fq(z)V .

Thus, h ∈ Fq(z)V and f ∈ Fq(z)Tz(L∞). This proves Part 1.
Part 2 is a consequence of the fact that Fq(z)Tz(L∞) is dense in (Fq(z)L)∞ and

exp
˜φ is locally an isometry. ��

Proposition 7.4.3 The A[z]-module H(˜φ; OL[z]) is a finitely generated and tor-
sion Fq [z]-module, with no z-torsion.

Proof We copy the proof of [ATR17, Proposition 2].
By Proposition 7.4.1,H(φ; OL[z]) is finitely generated overFq [z]. Since exp

˜φ ≡
1 (mod L[z][[τ ]]zτ), we get:

Tz(L∞) = zTz(L∞) + exp
˜φ(Tz(L∞)).

We deduce that the multiplication by z is surjective on H(˜φ; OL[z]). Thus, if we
denote by H(˜φ; OL[z])[z] the z-torsion of H(˜φ; OL[z]), the multiplication by z

induces an exact sequence of finitely generated Fq [z]-modules:

0 −→ H(˜φ; OL[z])[z] −→ H(˜φ; OL[z]) −→ H(˜φ; OL[z]) −→ 0.

By the structure theorem for finitely generated modules over Fq [z], this implies that
H(˜φ; OL[z])[z] = 0 and that H(˜φ; OL[z]) is a torsion Fq [z]-module. ��
Corollary 7.4.4 The class module H(˜φ; OFq(z)L) vanishes.

Proof This is a consequence of the previous proposition and Proposition 7.4.2. ��

7.4.2 The Module of Stark Units

We define here the module of Stark units, and compute its covolume in the unit
module.

We keep the notation of Sect. 7.4.1. The evaluation z �→ 1 induces a map ev :
Tz(L∞) → L∞.
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Definition 7.4.5 The module of Stark units is defined as:

USt(φ; OL) = ev
(

U(˜φ,OL[z])) .

We observe that USt(φ; OL) ⊂ U(φ; OL). We will now prove the following
theorem by using the proof of [ATR17, Theorem 1] or [ANDTR17, Proposition
2.7].

Theorem 7.4.6 The A-module USt(φ; OL) is an A-lattice in L∞ and

[

U(φ; OL)

USt(φ; OL)

]

A

= [H(φ; OL)]A .

We introduce a map on L∞:

α :
{

L∞ → Tz(L∞)

x �→ exp
˜φ(x)−expφ(x)

z−1 .

The map is well defined since ev(exp
˜φ(x)) = expφ(x) so that z − 1 divides

exp
˜φ(x) − expφ(x) in Tz(L∞).

Proposition 7.4.7 The map α induces an isomorphism of A-modules:

α : U(φ,OL)

USt(φ; OL)

 H(˜φ; OL[z])[z − 1]

where H(˜φ; OL[z])[z − 1] is the (z − 1)-torsion of H(˜φ; OL[z]).
Proof Let us first show that α : U(φ,OL) → H(φ;Tz(L∞)) is a homomorphism
of A-modules. Let x ∈ U(φ,OL) and a ∈ A. Write φa =∑n

i=0 aiτ
i with ai ∈ OL.

Thus,

α(ax) = exp
˜φ(ax) − expφ(ax)

z − 1

=
˜φa(exp˜φ(x)) − φa(expφ(x))

z − 1

= ˜φa(α(x)) +
n
∑

i=0

ai

zi − 1

z − 1
τ i(expφ(x))

and this equals ˜φa(α(x)) in H(˜φ; OL[z]) since expφ(x) ∈ OL.
We now prove that the image of U(φ,OL) in H(˜φ; OL[z]) through α lies in

H(˜φ; OL[z])[z − 1].
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Let x ∈ U(φ; OL). We then have

(z − 1)α(x) = exp
˜φ(x) − expφ(x) ∈ expφ(Tz(L∞)) + OL[z]

so that it vanishes in H(˜φ; OL[z]).
We now show that α is surjective on H(˜φ; OL[z])[z − 1].
Let x ∈ Tz(L∞) be such that its image in H(˜φ; OL[z]) lies in H(˜φ; OL[z])[z −

1]. Thus, (z − 1)x ∈ exp
˜φ(Tz(L∞)) + OL[z]. Write (z − 1)x = exp

˜φ(u) + v

with u ∈ Tz(L∞) and v ∈ OL[z]. Write u = u1 + (z − 1)u2 with u1 ∈ L∞ and
u2 ∈ Tz(L∞) and v = v1 + (z − 1)v2 with v1 ∈ OL and v2 ∈ OL[z]. Then we have

(z − 1)x = exp
˜φ(u1) + v1 + (z − 1)(exp

˜φ(u2) + v2)

so that, by evaluating at z = 1, we get expφ(u1) + v1 = 0. Thus u1 ∈ U(φ; OL).
Moreover, we get:

α(u1) = exp
˜φ(u1) − expφ(u1)

z − 1

= exp
˜φ(u1) + v1

z − 1

= x − exp
˜φ(u2) + v2

so that the images of α(u1) and x in H(˜φ; OL[z]) coincide.
We claim that the kernel κ of α : U(φ; OL) → H(˜φ; OL[z]) equalsUSt(φ; OL).

We start with the inclusion USt(φ; OL) ⊂ κ .
Let x ∈ USt(φ; OL), it is the evaluation at z = 1 of some u ∈ U(˜φ; OL[z]), so

there exists v ∈ Tz(L∞) such that x = u + (z − 1)v. Thus

α(x) = exp
˜φ(u) − expφ(x)

z − 1
+ exp

˜φ(v)

but expφ(x) is the evaluation at z = 1 of exp
˜φ(u) ∈ OL[z]. Thus α(x) ∈ OL[z] +

expφ(Tz(L∞)).
Lastly, we show the other inclusion: κ ⊂ USt(φ; OL). Let x ∈ U(φ; OL) be such

that α(x) vanishes in H(˜φ; OL[z]), that is, α(x) ∈ OL[z] + exp
˜φ(Tz(L∞)). Thus

(z−1)α(x) = exp
˜φ(x)−expφ(x) = (z−1)u+exp

˜φ((z−1)v) for some u ∈ OL[z]
and v ∈ Tz(L∞). Thus x − (z − 1)v ∈ U(˜φ; OL[z]) and its evaluation at z = 1 is
x, that is, x ∈ USt(φ; OL). ��
Proposition 7.4.8 We have:

[

H(˜φ; OL[z])[z − 1]]
A

= [H(φ; OL)]A .
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Proof The evaluation map ev induces an exact sequence of A-modules:

0 −→ (z − 1)H(˜φ; OL[z]) −→ H(˜φ; OL[z]) −→ H(φ; OL) −→ 0

from which we get the exact sequence of finitely generated k-vector spaces

0 → H(˜φ; OL[z])[z − 1] → H(˜φ; OL[z]) z−1−→ H(˜φ; OL[z]) → H(φ; OL) → 0.

By (7.1), the multiplicativity of the Fitting ideal in exact sequences, we obtain

[

H(˜φ; OL[z])[z − 1]]
A

= [H(φ; OL)]A .

��
Proof of Theorem 7.4.6 It only remains to show that USt(φ; OL) is an A-lattice. It
is a direct consequence of the fact that U(φ;OL)

USt(φ;OL)
is a finite dimensional Fq -vector

space. ��
Let now E/L be a finite abelian extension of degree prime to p and let G =

Gal(E/L). Then U(φ; OE) and USt(φ; OE) are both A[G]-lattices in E∞ = E ⊗K

K∞ and H(φ; OE) is naturally an A[G]-module. We remark that the map α of
Proposition 7.4.7 is G-equivariant, so that the equivalent of Theorem 7.4.6 remains
true in the equivariant setting:

Proposition 7.4.9 We have

[

U(φ; OE)

USt(φ; OE)

]

A[G]
= [H(φ; OE)]A[G] .

An example will be given in Theorem 7.5.10 below in the context of the equivariant
class formula.

7.4.3 Link with Anderson’s Special Points

Let us finish this section with a few words on the origin of the notion of Stark Units.
This notion grew up from attempts to understand the fundamental work [And94]
of Anderson. Following Thakur, Anderson considers the formal power series for
integers m ≥ 0:

lm(X,Z) :=
∑

a∈A monic

Ca(X)m

a
Zqdeg a ∈ K[X][[Z]]
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where τ acts on X and Z via τ (X) = Xq and τ (Z) = Zq . He shows [And94,
Theorem 3] the following log-algebraicity result:

Sm(X,Z) := expC(lm(X,Z)) ∈ A[X,Z].

Let us fix now a monic irreducible polynomial P ∈ A of degree d and define λ :=
expC( π̃

P
). Then L = K(λ) is the “cyclotomic” extension associated with P . We

refer the reader to [Ros02, Chapter 12] for more details on this extension. Anderson
considers the A-submodule S of C(OL) generated by Sm(λ, 1) for all m ≥ 0. He
(see [And94, §4.5]) calls S themodule of special points and remarks that the special
points play a role analogue to the circular units in the classical setting of cyclotomic
fields.

It turns out that those special elements are just the images under the exponential
map of what we called Stark units. More precisely (see [AT15, §7, in particular
Theorem 7.5]):

S = expC(USt(C; OL)).

Stark units are therefore a generalization of the analogue of circular units for the
Carlitz module, which explains their name.

7.5 Class Formulas

This section is devoted to class formulas: the original Taelman class formula from
[Tae12] and some generalizations, in particular in the equivariant setting. We also
give some explicit examples.

In what follows, we keep considering a finite extension L of K and a Drinfeld
Fq [θ ]-module φ defined over OL.

7.5.1 Taelman’s Class Formula

We present Taelman’s class formula and how it can be expressed in terms of the
regulator of Stark units.

Let I be a non-zero ideal of OL. Then OL/IOL is a finite dimensional Fq -
vector space. Since τ (I) ⊂ I , it makes sense to define both [OL/IOL]A and
[φ(OL/IOL)]A.

Remark that the first one is easy to compute:

Lemma 7.5.1 Let I be a non-zero ideal of OL and denote by NL/K the norm map
from the ideals of OL to the ones of A. Then [OL/IOL]A is the monic generator of
NL/K(I).
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Proof The equality FittA (OL/IOL) = NL/K(I) is immediate from the
definitions. ��

If P is a prime ideal of OL, the Euler factor at P is then the quotient
[OL/POL]A / [φ(OL/POL)]A. By putting together all these local factors, we
obtain the L-series:

L(φ/OL) :=
∏

P

[OL/POL]A
[φ(OL/POL)]A

(7.6)

where the product runs over all the non-zero prime ideals of OL.

Lemma 7.5.2 Let I be a non-zero ideal of OL. Let n ≥ 1. Then:

[

OL/InOL

]

A
· [φ(OL/IOL)]A

= [φ(OL/InOL)
]

A
· [OL/IOL]A .

Proof We prove this equality by induction on n. The case n = 1 is clear. The short
exact sequence

0 → InOL/In+1OL → OL/In+1OL → OL/InOL → 0

gives

[

OL/In+1OL

]

A
= [OL/InOL

]

A
·
[

InOL/In+1OL

]

A
.

Similarly, we have the short exact sequence

0 → φ(InOL/In+1OL) → φ(OL/In+1OL) → φ(OL/InOL) → 0

but for any x ∈ InOL, a ∈ A, φa(x) ≡ ax (mod I)qnOL, thus

φ(InOL/In+1OL) 
 InOL/In+1OL,

so that
[

φ(OL/In+1OL)
]

A
= [φ(OL/InOL)

]

A
·
[

InOL/In+1OL

]

A
.

Putting altogether we get the desired result. ��
The previous lemma, together with the Chinese Remainder Theorem allows to

write the L-series as:

L(φ/OL) :=
∏

P

[OL/POL]A
[φ(OL/POL)]A

(7.7)
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where the product runs over all the monic irreducible polynomials P of A. In this
form, the numerator is also very easy to compute:

[OL/POL]A = P [L:K].

The main result of [Tae12] is the following class formula:

Theorem 7.5.3 (Taelman) The product defining L(φ/OL) converges in K∞, and
the following equality holds:

L(φ/OL) = [OL : U(φ; OL)]A [H(φ; OL)]A .

Corollary 7.5.4 We have:

L(φ/OL) = [OL : USt(φ; OL)]A .

Proof This is immediate from Taelman’s class formula and Theorem 7.4.6. ��
The co-volume of the Taelman units or the Stark units in OL is very similar to

the classical notion of a regulator, so that the previous corollary can nicely translate
as: the L-value attached to φ is the regulator of its module of Stark units.

Remark that, as in (7.6), we can also define the z-twisted version of the L-series:

L(˜φ/OFq(z)L) :=
∏

P

[

OFq(z)L/POFq(z)L

]

Fq(z)A
[

˜φ(OFq(z)L/POFq(z)L)
]

Fq(z)A

where the product runs over all the non-zero prime ideals of OL. Here again, the
numerator of the local factor atP is

[

OFq(z)L/POFq(z)L

]

Fq(z)A
= NL/K(P).

And, similarly to (7.7), we have the alternative expression:

L(˜φ/OFq(z)L) :=
∏

P

[

OFq(z)L/POFq (z)L

]

Fq(z)A
[

˜φ(OFq(z)L/POFq (z)L)
]

Fq(z)A

where the product runs over all the monic irreducible polynomials P of A. And
again:

[

OFq(z)L/POFq (z)L

]

Fq(z)A
= P [L:K].
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By Demeslay’s adaptation of the work of Taelman, [Dem14, Theorem 2.7], we
also have the class formula:

Theorem 7.5.5 (Demeslay) The product defining L(˜φ/OFq(z)L) converges in
(Fq(z)K)∞, and the following equality holds:

L(˜φ/OFq(z)L) = [OFq(z)L : U(˜φ; OFq(z)L)
]

Fq(z)A

[

H(˜φ; OFq(z)L)
]

Fq(z)A
.

Remark that, because of Corollary 7.4.4, this result can simply be stated as

L(˜φ/OFq(z)L) = [OFq(z)L : U(˜φ; OFq(z)L)
]

Fq(z)A
.

Corollary 7.5.6 The L-series L(˜φ/OFq(z)L) converges in Tz(K∞).

Proof For any monic irreducible polynomial P ∈ A, we have:

[

˜φ(OL/POL)
]

Fq(z)A
= det

Fq(z)[Z]
(

Z − θ |˜φ(OL/POL)
) |Z=θ

which is a polynomial in z which evaluates to P [L:K] at z = 0. But

degθ

(

[

˜φ(OL/POL)
]

Fq(z)A

)

= dimFq OL/POL = degθ P [L:K].

We deduce that the local factor at P belongs to Tz(K∞). The convergence of
L(˜φ/OFq(z)L) in (Fq(z)K)∞ then implies its convergence in Tz(K∞). ��

7.5.2 The Equivariant Class Formula

We present now the class formula in the equivariant setting.
We consider as previously a Drinfeld A-module φ defined over OL, and E/L a

finite abelian extension of degree prime to p and we let G = Gal(E/L).
In this context, we can define an equivariant L-series via:

L(φ/(OE/OL),G) :=
∏

P

[OE/POE]A[G]
[φ(OE/POE)]A[G]

where the product runs over the non-zero prime ideals of OE . As in (7.7), it is
equivalent to taking the product over the non-zero prime ideals of OL or of A. And
we have the z-twisted version:

L(˜φ/(OFq(z)E/OFq(z)L),G) :=
∏

P

[

OFq(z)E/POFq(z)E

]

Fq(z)A[G]
[

˜φ(OFq(z)E/POFq(z)E)
]

Fq(z)A[G]
.
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The convergence of the L-series L(φ/(OE/OL),G), and an equivariant class
formula involving it was proved, in an even more general setting, by Fang in [Fan18,
Theorem 1.12]:

Theorem 7.5.7 (Fang) We have:

L(φ/(OE/OL),G) = [OE : U(φ; OE)]A[G] [H(φ; OE)]A[G] .

The equivariant class formula has its origin in [AT15, TheoremA] for the Carlitz
module. We also signal to the reader the recent work [FGHP20] of Ferrara, Green,
Higgins and Popescu where an equivariant class formula is proved without the
restrictions that G is abelian and of order prime to p.

Following the proof of [AT15, Theorem A] (the details can be found in [ATR17,
Proposition 4]), one can show the z-twisted version:

Theorem 7.5.8 The L-series L(˜φ/(OFq(z)E/OFq(z)L),G) converges in (Fq(z)

K)∞[G] and we have:

L(˜φ/(OFq(z)E/OFq(z)L),G) = [OFq(z)E : U(˜φ; OFq(z)E)
]

Fq(z)A[G] .

As for L(˜φ/OFq(z)L), the convergence of L(˜φ/(OFq(z)E/OFq(z)L),G) in
(Fq(z)K)∞[G] implies that it actually converges in Tz(K∞)[G]. We can then
evaluate it at z = 1, and we see that the result is just L(φ/(OE/OL),G).

Combining Theorem 7.5.7 with Proposition 7.4.9, we also get:

Theorem 7.5.9

L(φ/(OE/OL),G) = [OE : USt(φ; OE)]A[G] .

In the case where L = K , we have a simple description of the Stark units in
terms of the equivariant L-series (see [ATR17, Theorem 2]):

Theorem 7.5.10 Let φ be a Drinfeld A-module defined over A and E/K be a finite
abelian extension of degree prime to p, and G = Gal(E/K). We have:

U(˜φ; OE[z]) = L(˜φ/(OFq(z)E/Fq(z)A),G)OE[z]

and

USt(φ; OE) = L(φ/(OE/A),G)OE.

Proof Since A[G] and Fq(z)A[G] are principal ideal rings, we see that OE is a
rank 1 free A[G]-module, and that OFq(z)E and U(˜φ; OFq(z)E) are free Fq(z)A[G]-
modules of rank 1. By Theorem 7.5.8, we then have:

L(˜φ/(OFq(z)E/Fq(z)A),G)OFq(z)E = U(˜φ; OFq(z)E).
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And since L(˜φ/(OFq(z)E/Fq(z)A),G) converges in Tz(K∞)[G], we get:

L(˜φ/(OFq(z)E/Fq(z)A),G)OE[z] ⊂ U(˜φ; OE[z]).

If conversely x ∈ U(˜φ; OE[z]) ⊂ Tz(E∞), there is y ∈ OFq(z)E such that

x = L(˜φ/(OFq(z)E/Fq(z)A),G)y.

Since L(˜φ/(OFq(z)E/Fq(z)A),G) has sign 1, this implies that y ∈ OE[z]. Thus

U(˜φ; OE[z]) = L(˜φ/(OFq(z)E/Fq(z)A),G)OE[z].

The second assertion comes now from the evaluation at z = 1. ��

7.5.3 Examples

Let us now work out some examples of the class formula. We first treat the Carlitz
module C with L = K . We refer to Sect. 7.3.3 for the basic facts and notation on
the Carlitz module. The L-series associated to C is easily computed. Let P ∈ A be
monic and irreducible. Then obviously [A/PA]A = P . Moreover, as CP ≡ τ degP

(mod PA[τ ]), we get C(A/PA) 
 A/(P − 1)A so that the local factor at P is just
(1 − 1

P
)−1 and

L(C/A) =
∏

P

(1 − 1

P
)−1 =

∑

a∈A+

1

a

where A+ stands for the subset of monic polynomials in A. This is also the zeta
value at 1 as defined by Carlitz. The other values are, if n ≥ 0:

ζA(n) =
∑

a∈A+

1

an
.

Note that at a negative integer, the zeta value is also defined as the (finite!) sum, for
n ≥ 0:

ζA(−n) =
∑

d≥0

∑

a∈A+,deg a=d

an.

Let us define

N = {x ∈ K∞, v∞(x) > −1} .
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Because v∞(Di) = −iqi , we can make Corollary 7.3.6 explicit: expC is isometric
on N , so that expC(N ) = N . Consequently, expC(K∞) + A = K∞ so that
H(C; A) = {0}. Hence, by Theorem 7.4.6, U(C; A) = USt(C; A). This is a rank
one A-module, and since 1 ∈ N , we see that U(C; A) = A logC(1). The class
formula for C can then be written as:

ζA(1) = L(C/A) = [A : U(C; A)]A = logC(1).

We thus recover this well-known equality which is a consequence of a result of
Carlitz [Gos96, Theorem 3.1.5].

Let us now fix an integer d ≥ 0 and consider the Drinfeld A-module φ over A

defined by φθ = θ + (−θ)dτ . We see that if a ∈ A and Ca = ∑k
i=0 aiτ

i then

φa = ∑k
i=0 ai(−θ)

d
qi−1
q−1 τ i . Let P ∈ A be monic and irreducible. We thus get that

φP ≡ (−θ)
d

qdegP −1
q−1 τ degP (mod PA[τ ]). But

θ
qdegP −1

q−1 = θ1+q+···+qdegP−1 ≡ (−1)degP P (0) mod P.

We deduce that φP−P(0)d is identically zero on A/PA and since for any Q ∈ A,
φQ is a polynomial of A[τ ] of degree degQ in τ , P(X) − P(0)d is the minimal
polynomial of φθ , that is φ(A/PA) 
 A/(P − P(0)d)A. Thus [φ(A/PA)]A =
P − P(0)d . We get:

L(φ/A) =
∏

P

(

1 − P(0)d

P

)−1

=
∑

a∈A+

a(0)d

a
.

These computations are also consequences of Sect. 7.6.2 below. See in particular
Eq. (7.9). Let us now describe the units and Stark units of φ. For that purpose, we
use results that will be proved later on. We have by Proposition 7.6.5:

USt(φ; A) = L(φ/A)A.

There are now two different cases, whether n ≡ 1 (mod q − 1) or not. This
difference is linked to the fact that the kernel of expφ : K∞ → K∞ is non trivial if
and only if n ≡ 1 (mod q − 1).

In the case n 	≡ 1 (mod q − 1), by the proof of Theorem 7.7.1 we have
H(φ; A) = {0} and thus

U(φ; A) = USt(φ; A) = L(φ/A)A.

In the case n ≡ 1 (mod q − 1), the unit module is the kernel of expφ if n 	= 1 and
more generally the inverse image of the A-torsion submodule of φ(K∞) if n = 1.
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More explicitly, if n = 1:

U(φ; A) = π̃

(−θ)
1

q−1 θ

A

and if n > 1:

U(φ; A) = π̃

(−θ)
1

q−1 θ
n−1
q−1

A

where (−θ)
1

q−1 is the fixed (q − 1)-st root of −θ (see Eq. (7.5)). Thus, if n > 1,
there is Bn ∈ A of degree n−q

q−1 such that

(−θ)
1

q−1 θ
n−1
q−1 L(φ/A) = π̃Bn.

Taelman’s class formula (Theorem 7.5.3) tells us that [H(φ; OL)]A = Bn.
Moreover, [H(φ; OL)]A just vanishes when n = 1.

7.6 The Multi-Variable Deformation of a Drinfeld A-Module

7.6.1 The Multi-Variable Setting

We have presented in the previous section the z-deformation of a Drinfeld module
φ, which, roughly speaking, “evaluates” at z = 1 to φ. It turns out that there are
other natural ways to twist a Drinfeld module using multiple variables. The idea
here is still to twist the Frobenius τ by a polynomial in the new variables. It is
also of interest to combine those two deformations and define Stark units for the
multiple variable deformation of our Drinfeld module. Let us now give more precise
statements:

Let t1, . . . , tn be new variables, with n ≥ 1. We will denote by t the set of
variables t1, . . . , tn. We fix some additional notation:

• k = Fq(t) = Fq(t1, . . . , tn),
• A = k[θ ], K = k(θ), K∞ = k(( 1

θ
)),

• v∞ the valuation at the place ∞ such that v∞(θ) = −1, extending the valuation
on K∞.

We fix a complete algebraically closed extension of K and we identify C∞ with
the completion of the algebraic closure of K in this extension. For L a fixed finite
extension of K , L will denote the compositum of L and K, and OL the integral
closure of A in L. We set L∞ = L ⊗K K∞. We extend τ to L by k-linearity and
thus to L∞.
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Then, the theory developed in the previous sections remain valid by replacing
Fq by k. We leave to the reader as an exercice to check that the arguments carry
over. We will then be interested in Drinfeld A-modules φ defined over OL with an
obvious definition. The existence of the exponential and logarithmic maps and their
properties described in Sect. 7.3.2 remain valid and we can define the A-modules
U(φ; OL) and H(φ; OL). By Demeslay’s work [Dem14], we have in particular:

Theorem 7.6.1 (Demeslay) Let φ be a Drinfeld A-module defined over OL.
Then:

1. the unit module

U(φ; OL) = {x ∈ L∞, expφ(x) ∈ OL

}

is an A-lattice in K∞,
2. the class module

H(φ; OL) = φ(L∞)

φ(OL) + expφ(L∞)

is a finite dimensional k-vector space and an A-module via φ,
3. the infinite product

L(φ/OL) :=
∏

P

[OL/POL]A
[φ(OL/POL)]A

,

where the product runs over the monic irreducible polynomialsP ∈ A, converges
in L

×∞ and we have the class formula:

L(φ/OL) = [OL : U(φ; OL)]A[H(φ; OL)]A.

Proof Part 1 and Part 2 follow from [Dem14, Proposition 2.6] and Part 3 from
[Dem14, Theorem 2.7] ��

As previously, we can define the z-twist˜φ of a DrinfeldA-module φ defined over
OL by twisting the frobenius τ by z. It is thus a Drinfeld k(z)A-module overOk(z)L.
Demeslay’s work also applies to this case and we have similarly:

Theorem 7.6.2 (Demeslay) Let φ be a Drinfeld A-module defined over OL and ˜φ
be its z-twist. Then:

1. the unit module

U(˜φ; Ok(z)L) =
{

x ∈ (k(z)L)∞, exp
˜φ(x) ∈ Ok(z)L

}

is a k(z)A-lattice in (k(z)K)∞,
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2. the class module

H(˜φ; Ok(z)L) = ˜φ((k(z)L)∞)

˜φ(Ok(z)L) + exp
˜φ((k(z)L)∞)

is a finite dimensional k(z)-vector space and a k(z)A-module via ˜φ,
3. the infinite product

L(˜φ/Ok(z)L) :=
∏

P

[

Ok(z)L/POk(z)L

]

k(z)A
[

˜φ(Ok(z)L/POk(z)L)
]

k(z)A

,

where the product runs over the monic irreducible polynomialsP ∈ A, converges
in (k(z)L)×∞ and we have the class formula:

L(˜φ/Ok(z)L) = [Ok(z)L : U(˜φ; Ok(z)L)]k(z)A[H(˜φ; Ok(z)L)]k(z)A.

Remark 7.6.3 As in Proposition 7.4.3, H(˜φ; OL[z]) is a finitely generated torsion
k[z]-module, so that the class module H(˜φ; Ok(z)L) vanishes, which simplifies the
class formula.

We now want to work at the integral level in A or K∞. We then suppose that
φθ ∈ OL[t][τ ]. We can thus consider φ either as a Drinfeld A-module defined over
L or as a Drinfeld A[t]-module defined over OL[t]. We denote by Tn(L∞) the Tate
algebra in variables t1, . . . , tn and coefficients in L∞ and we define the Taelman
modules:

U(φ; OL[t]) = {x ∈ Tn(L∞), expφ(x) ∈ OL[t]} ⊂ U(φ; OL)

and

H(φ; OL[t]) = φ(Tn(L∞))

φ(OL[t]) + expφ(Tn(L∞))
.

Since φ is defined over OL[t], by using the functional equation φθ expφ = expφ θ ,
one shows that expφ has coefficients in L[t], so that expφ(Tn(L∞)) ⊂ Tn(L∞). We
deduce that:

U(φ; OL[t]) = U(φ; OL) ∩ Tn(L∞).

By the same argument as in Proposition 7.4.2, we also have

U(φ; OL) = kU(φ; OL[t])
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and

H(φ; OL[t]) ⊗Fq [t] k 
 H(φ; OL).

By evaluation at z = 1 of the unit module, we have a well defined notion of the
module of Stark units USt(φ; OL). Let us be more explicit for the construction at
the integral level. We denote by Tn,z(L∞) the Tate algebra in variables t1, . . . , tn, z

and coefficients in L∞. Then we define

U(˜φ; OL[t, z]) =
{

x ∈ Tn,z(L∞), exp
˜φ(x) ∈ OL[t, z]

}

and

H(˜φ; OL[t, z]) = ˜φ(Tn,z(L∞))

˜φ(OL[t, z]) + exp
˜φ(Tn,z(L∞))

.

The evaluation at z = 1 of U(˜φ; OL[t, z]) is our module of Stark units
USt(φ; OL[t]) ⊂ U(φ; OL[t]).

Theorem 7.4.6 remains true here, in particular we have the following version (see
[ATR17, Proposition 6]):

Proposition 7.6.4 The map

α :
{

Tn(L∞) → Tn,z(L∞)

x �→ exp
˜φ(x)−expφ(x)

z−1

induces an isomorphism of A[t]-modules:
U(φ; OL[t])
USt(φ; OL[t]) 
 H(˜φ; OL[t, z])[z − 1].

7.6.2 The Canonical Deformation of the Carlitz Module

We focus here on a natural multi-variable deformation of the Carlitz module built
by means of its shtuka function.

Let φ be a Drinfeld A-module defined over OL and f (t) = f (t1, . . . , tn) ∈
OL[t]. Then we can use f to twist φ: if a ∈ A and φa =∑m

i=0 aiτ
i , then

̂φa =
m
∑

i=0

ai(f (t)τ )i =
m
∑

i=0

ai

⎛

⎝

i
∏

j=0

τ j (f )(t)

⎞

⎠ τ i .
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Remark that, as for the z-twist, we in fact twist here the action of the Frobenius τ by
f (t), which induces the deformation of φ. We get a Drinfeld A[t]-modulêφ defined
over OL[t].

From now on, we will be only interested in the case of the Carlitz module C.
Let us recall (see Sect. 7.3.3) that C is the Drinfeld A-module defined over A by
Cθ = θ+τ . To such a Drinfeld module one can associate a so-called shtuka function
(see e.g. [Gos96, §7.11], or [Tha93]), from which one recovers the Drinfeld module,
and which encodes its arithmetic properties. In the case of the Carlitz module, the
shtuka function is simply t − θ . There is therefore a natural n variable twist of the
Carlitz module, which we call the canonical deformation of the Carlitz module,
given by

f (t) =
n
∏

i=1

(ti − θ).

We thus consider the Drinfeld A[t]-module ϕ = ̂C defined over A[t] by

ϕθ = θ + f (t)τ = θ +
n
∏

i=1

(ti − θ)τ.

We will denote for k ≥ 0, by fk(t) the polynomial appearing in the formula
(f (t)τ )k = fk(t)τ k , that is:

fk(t) =
n
∏

i=1

k
∏

j=0

(ti − θqj

).

We get the exponential map expϕ = ∑

i≥0
1
Di

fi(t)τ i and the logarithm map

logϕ =∑i≥0
1
li
fi(t)τ i .

We also introduce the Anderson-Thakur ω function:

ω(t) := (−θ)
1

q−1
∏

j≥0

(

1 − t

θqj

)−1

∈ T1(K∞)×.

We see from (7.5) that −π̃ is the residue of ω at t = θ and that ω enjoys the
functional equation:

τ (ω(t)) = (t − θ)ω(t).

Thus, we get

expϕ =
(

n
∏

i=1

ω(ti)

)−1

expC

(

n
∏

i=1

ω(ti)

)

.
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In particular, we obtain:

ker(expϕ : Tn(C∞) → Tn(C∞)) = π̃
∏n

i=1 ω(ti)
A[t]. (7.8)

And we remark that this kernel is included in Tn(K∞) if, and only if, n ≡ 1
(mod q − 1).

The L-series associated to ϕ can be computed similarly to the one of C (see
Sect. 7.5.3). We have

ϕP ≡ fdegP (t)τ degP (mod PA[t][τ ])

but

(t − θ)(t − θq) · · · (t − θqdegP−1
) ≡ P(t) (mod PA[t])

so that

ϕP ≡ P(t1) · · · P(tn)τ
degP (mod PA[t][τ ]).

We deduce that P(X) − P(t1) · · · P(tn) is an annihilating polynomial of φθ acting
on A/PA(t). Since it is also a monic irreducible polynomial in Fq(t)[X], of degree
degP , it is its characteristic polynomial and we get by (7.2):

[

A

PA
(t)
]

A

= P − P(t1) · · ·P(tn).

Putting all the local factors together, we obtain

L(ϕ/A) =
∏

P

(

1 − P(t1) · · · P(tn)

P

)−1

=
∑

a∈A+

a(t1) · · · a(tn)

a
∈ Tn(K∞)×.

(7.9)

Similar calculations for the z-twist of ϕ lead to:

L(ϕ̃/k(z)A) =
∏

P

(

1 − zdegP P (t1) · · ·P(tn)

P

)−1

=
∑

a∈A+
zdegP a(t1) · · · a(tn)

a
∈ Tn,z(K∞)×.
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Let us compute the units:

Proposition 7.6.5 We have

U(ϕ̃; A[t, z]) = L(ϕ̃/k(z)A)A[t, z]

so that

USt(ϕ; A[t]) = L(ϕ/A)A[t].

Moreover, [H(ϕ;A)]A ∈ A[t] ∩ Tn(K∞)× and

[H(ϕ;A)]A U(ϕ; A[t]) = L(ϕ/A)A[t].

Proof We give the proof for U(ϕ; A[t]). The other assertion can be proved in a
similar way, since, by Remark 7.6.3, H(ϕ̃; k(z)A) vanishes.

First, since ϕ has coefficients in A[t] and because we can compute [H(ϕ;A)]A
as a determinant by Eq. (7.2), we see that [H(ϕ;A)]A ∈ A[t].

Since the unit module has rank 1, by the class formula (Theorem 7.5.5), we get
[H(ϕ;A)]A U(ϕ;A) = L(ϕ/A)A. Since U(ϕ;A) = kU(ϕ; A[t]), we can find
η ∈ U(ϕ; A[t]) such that U(ϕ;A) = Aη. We can, and will, also assume that η is
primitive in Tn(K∞), that is, not divisible by a non constant polynomial δ ∈ Fq [t].
We get [H(ϕ;A)]A ηA = L(ϕ/A)A, so that

L(ϕ/A) = λ [H(ϕ;A)]A η

for some λ ∈ F
×
q . In particular, [H(ϕ;A)]A ∈ Tn(K∞)×. We get:

U(ϕ; A[t]) = U(ϕ;A) ∩ Tn(K∞) = ([H(ϕ;A)]−1
A

L(ϕ/A)A) ∩ Tn(K∞)

= [H(ϕ;A)]−1
A

L(ϕ/A)A[t]

whence the result. ��
We set

N =
{

x ∈ Tn(K∞), v∞(x) ≥ n

q − 1
− 1

}

.

Lemma 7.6.6 If x ∈ N , v∞(expϕ(x)−x) > v∞(x) and v∞(logϕ(x)−x) > v∞(x).
In particular, both expϕ and logϕ define isometries N → N .
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Proof For k ≥ 0, we compute: v∞(Dk) = −kqk, v∞(lk) = −q
qk−1
q−1 and

v∞(fk(t)) = −n
qk−1
q−1 . Thus, if x ∈ N , and k > 0,

v∞
(

fk(t)
Dk

τ k(x)

)

= v∞(x) + (qk − 1)

(

v∞(x) + k − n

q − 1

)

+ k > v∞(x)

and

v∞
(

fk(t)
lk

τ k(x)

)

= v∞(x) + (qk − 1)

(

q − n

q − 1
+ v∞(x)

)

> v∞(x)

whence the result. ��
Remark 7.6.7 If n ≤ 2q−2, we haveTn(K∞) = N+A[t] ⊂ expϕ(Tn(K∞))+A[t]
so that H(ϕ; A[t]) = {0} and

U(ϕ; A[t]) = USt(ϕ; A[t]) = L(ϕ/A)A[t].

7.7 Applications

7.7.1 Discrete Greenberg Conjectures

As a first application of the notion of Stark Units, we present a pseudo-nullity
and a pseudo-cyclicity result from [ATR17] for the class module of the canonical
deformation of the Carlitz module. These theorems are reminiscent of the Greenberg
conjectures, in particular after evaluation at characters.

We keep the notation of all the previous sections. In particular, we recall that:

N =
{

x ∈ Tn(K∞), v∞(x) ≥ n

q − 1
− 1

}

.

We denote now

Bn(t) = [H(ϕ;A)]A ∈ A[t] ∩ Tn(K∞)×.

By Remark 7.6.7, we have Bn(t) = 1 if 1 ≤ n ≤ 2q − 2. We also introduce the
special elements:

un(t, z) = expϕ̃ (L(ϕ̃/k(z)A)) ∈ A[t, z]
and

un(t) = un(t, 1) = expϕ(L(ϕ/A)) ∈ A[t].
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By Proposition 7.6.5, those elements generate the A[t, z]-module (via ϕ̃)
U(ϕ̃; A[t, z]) and the A[t]-module (via ϕ) of Stark units USt(ϕ; A[t]).

If 1 ≤ n ≤ q−1,L(ϕ/A) ∈ N ; by Lemma 7.6.6, we have un(t) ∈ N∩A[t] = Fq

and un has the same sign as L(ϕ/A). Thus in this case, un(t) = 1.
As we have seen in (7.8), expϕ is injective on Tn(K∞) if and only if n 	≡ 1

(mod q − 1). This leads us to distinguish the two cases, where different phenomena
occur.

7.7.1.1 Case n �≡ 1 (mod q − 1)

We prove in this case the following pseudo-nullity result (see [ATR17, Theorem 3]):

Theorem 7.7.1 We have Bn(t) = 1, that is, H(ϕ; A[t]) is a finitely generated and
torsion Fq [t]-module.
Proof Let r ∈ {2, . . . , q − 1} be such that n ≡ r (mod q − 1). We denote by ψ the
r-variable twist of the Carlitz module:

ψθ = (t1 − θ) · · · (tr − θ)τ + θ.

We set:

� := L(ψ/Fq(t1, . . . , tr ))

ω(tr+1) · · ·ω(tn)
∈ Tn(K∞)×.

We get for a ∈ A[t]:

expϕ (a�) = expψ(aL(ψ/Fq(t1, . . . , tr )))

ω(tr+1) · · · ω(tn)

= ψa(ur(t1, . . . , tr ))

ω(tr+1) · · · ω(tn)
= ψa(1)

ω(tr+1) · · ·ω(tn)
.

Remark now thatN =
{

x ∈ Tn(K∞), v∞(x) ≥ n−r
q−1

}

so that

Tn(K∞) = A[t] ⊕ N ⊕
n−r
q−1−1
⊕

k=1

θ
k− n−r

q−1Fq [t].

We then define for 1 ≤ i, j ≤ n−r
q−1 − 1, βij ∈ Fq [t] by the formula:

expϕ

(

θ i�
)

−
n−r
q−1−1
∑

j=1

θ
j− n−r

q−1 βij ∈ A[t] ⊕ N .
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Our theorem is now equivalent to det(βij ) 	= 0. Since det(βij ) ∈ Fq [t], it will be
enough to show that its evaluation at t1 = · · · tn = 0 does not vanish. Let us denote
by ev0 : Tn(K∞) → K∞ this evaluation. We have:

ev0(expϕ

(

θ i�
)

) = ψ ′
θi (1)

(−θ)
n−r
q−1

∈
n−r
q−1−1
∑

j=1

θ
j− n−r

q−1 ev0(βij ) + A + ev0(N )

where ψ ′
θ = (−θ)rτ + θ. An immediate induction now shows that for i ≥ 1,

ψ ′
θi (1) − θ i ∈ θ i+1A.

Thus ev0(det(βij )) 	= 0 and det(βij ) 	= 0. ��

7.7.1.2 Case n ≡ 1 (mod q − 1)

Let us first describe the unit module in this case:

Proposition 7.7.2 If n = 1 then

U(ϕ; A[t]) = π̃

(t1 − θ)ω(t1)
A[t].

and if n > 1, then

U(ϕ; A[t]) = π̃
∏n

i=1 ω(ti)
A[t].

Proof Since π̃
∏n

i=1 ω(ti )
A[t] = ker expϕ , it is clearly included in U(ϕ; A[t]). As the

unit module has rank 1, we deduce that if x ∈ U(ϕ; A[t]), then y = expϕ(x) is a
torsion point for ϕ, that is there is a ∈ A[t] such that ϕa(y) = 0. But, if v∞(x) ≤ 0,
we see that

v∞((t1 − θ) · · · (tn − θ)(τ (x))) = qv∞(x) − n and v∞(θx) = v∞(x) − 1.

If n > 1, the first quantity is strictly lower than the second, this easily implies that
no non trivial torsion point can exist: if a ∈ A[t], ϕa(x) has the same (negative, and
even explicitly computable) valuation as ϕθdegθ (a)(x). With the same argument in the
case n = 1 we see that if x is a torsion point, it must have valuation 0, so x ∈ Fq(t).
Conversely, for x ∈ Fq(t), we have ϕ(θ−t )(x) = 0. ��

Remark that in both cases we have the decomposition of Fq [t]-modules:
Tn(K∞) = N ⊕ U(ϕ; A[t]). In particular, if n > 1:

expϕ(Tn(K∞)) = N . (7.10)
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In the case n = 1, we know thatBn(t) = 1, so that, units and Stark units coincide,
we deduce that L(ϕ/A) equals, up to the sign, π̃

(θ−t1)ω(t1)
. But both have sign 1, so

that we recover Pellarin’s formula (see [Pel12]):

L(ϕ/A) = π̃

(θ − t1)ω(t1)
.

If n > 1, we obtain another description of Bn(t):

Bn(t) = [H(ϕ;A)]A = (−1)
n−1
q−1 L(ϕ/A)

∏n
i=1 ω(ti)

π̃
.

We deduce in particular that Bn(t) has degree in θ equal to n−q
q−1 . In particular, when

n = q , we recover that Bq(t) = 1 so that

L(ϕ/A) = π̃
∏q

i=1 ω(ti)
.

More generally, if one can explicitly computeBn(t), this gives us an explicit formula

for L(ϕ/A). We also stress that L(ϕ/A)

∏n
i=1 ω(ti )

π̃
∈ A[t] is one of the main results

of [AP15] where it is obtained without using the class formula.
Recall from Proposition 7.4.7 that we can build a map α : U(ϕ;A[t])

USt(ϕ;A[t]) →
H(ϕ̃; A[t, z])[z − 1]. We can compose it with the evaluation at z = 1 and obtain a
map β : U(ϕ;A[t])

USt(ϕ;A[t]) → H(ϕ; A[t]). Let us remark that β is induced by:

exp(1)
ϕ

{

U(ϕ; A[t]) → Tn(K∞)

x �→ ∑

k≥1 k
fk(t)
Dk

τ k(x)

since we essentially differentiate expϕ̃ at 1 with respect to z.
Let us denote by H(1)(ϕ; A[t]) ⊂ H(ϕ; A[t]) the image of β.
We devote the rest of this section to the proof of the following pseudo-cyclicity

result (see [ATR17, Theorem 4]):

Theorem 7.7.3 Let n ≥ q . There is an isomorphism of A[t]-modules:

H(1)(ϕ; A[t]) 
 A[t]
Bn(t)A[t]

and the quotient H(ϕ;A[t])
H(1)(ϕ;A[t]) is a finitely generated and torsion Fq [t]-module.

Proof Since U(ϕ;A[t])
USt(ϕ;A[t]) is an A[t]-module isomorphic to A[t]

Bn(t)A[t] generated by the

image of π̃
∏n

i=1 ω(ti )
, we are led to compute exp(1)

ϕ ( π̃
∏n

i=1 ω(ti )
). But we have once
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again:

exp(1)
ϕ

(

π̃
∏n

i=1 ω(ti)

)

= 1
∏n

i=1 ω(ti)
exp(1)

C (π̃ )

where exp(1)
C = ∑

k≥1 k 1
Dk

τ k . The proof that can be found in [ATR17, Theorem 3]

relies on computations involving exp(1)
C (π̃). We will give here a slightly different

proof, more similar to that of Theorem 7.7.1 above.
We denote by ψ the q-variable twist of the Carlitz module:

ψθ = (t1 − θ) · · · (tq − θ)τ + θ.

We first compute u′ = exp(1)
ψ

(

π̃
∏q

i=1 ω(ti)

)

. Since Bq (t) = 1, we have u′ ∈
A[t1, . . . , tq ]⊕Nq whereNq = {x ∈ Tq(K∞), v∞(x) ≥ 1

}

. But v∞( π̃
∏q

i=1 ω(ti)
) =

0 and for k ≥ 1, v∞(Dk) = −kqk, v∞(lk) = −q
qk−1
q−1 and v∞(fk(t)) = −n

qk−1
q−1 .

v∞(
fk(t1, · · · , tq)

Dk

) = kqk − q
qk − 1

q − 1
= qk(k − q

q − 1
) + q

q − 1

which is positive if k > 1 and equals 0 if k = 1. Thus (t1−θ)···(tq−θ)

θq−θ
π̃

∏q
i=1 ω(ti )

has

sign 1, we obtain that u′ ∈ 1 + Nq .
We get for a ∈ A[t]:

exp(1)
ϕ

(

a
π̃

∏n
i=1 ω(ti)

)

=
exp(1)

ψ (a π̃
∏q

i=1 ω(ti )
)

ω(tq+1) · · ·ω(tn)

≡ ψa(u
′)

ω(tq+1) · · · ω(tn)
(mod N + A[t])

≡ ψa(1)

ω(tq+1) · · · ω(tn)
(mod N + A[t]).

Remark now that

Tn(K∞) = A[t] ⊕ N ⊕
n−q
q−1
⊕

k=1

θ
k− n−1

q−1Fq[t].

We then define for 1 ≤ i, j ≤ n−q
q−1 , βij ∈ Fq [t] by the formula:

exp(1)
ϕ

(

θ i π̃
∏n

i=1 ω(ti)

)

−
n−q
q−1
∑

j=1

θ
j− n−1

q−1 βij ∈ A[t] ⊕ N .
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The injectivity of β is now equivalent to det(βij ) 	= 0. It is again enough to show that
its evaluation at t1 = · · · tn = 0 does not vanish. Let us denote by ev0 : Tn(K∞) →
K∞ this evaluation. We have:

ev0(exp(1)
ϕ

(

θ i π̃
∏n

i=1 ω(ti)

)

) = ψ ′
θi (1)

(−θ)
n−q
q−1

∈
n−q
q−1
∑

j=1

θ
j− n−1

q−1 ev0(βij ) + A + ev0(N )

where ψ ′
θ = (−θ)qτ + θ. But again, for i ≥ 1,

ψ ′
θi (1) − θ i ∈ θ i+1A.

Thus ev0(det(βij )) 	= 0 and det(βij ) 	= 0.
Finally, H(1)(ϕ; A[t]) is a sub-Fq[t]-module of H(ϕ; A[t]) with same rank,

which gives the last assertion. ��

7.7.1.3 Evaluation at Characters

Let us now very briefly explain some consequences of Theorems 7.7.1 and 7.7.3
above. We refer the reader for instance to [APTR16, §9] for more details. Let a be
a non constant and square free element in A and χ : A/aA → Fq be a Dirichlet
character mod a. Let us denote by ka the extension of Fq generated by the roots
of a. Then one can find ζ1, . . . , ζn ∈ ka (in fact all of the ζi’s are roots of a) such
that for all b ∈ A, χ(b) = b(ζ1) · · · b(ζn). We then have a natural homomorphism
of Fq -vector spaces evχ : Tn(K∞) → (kaK)∞ which evaluates ti to ζi for all
1 ≤ i ≤ n.

We get for instance:

evχ(L(ϕ/A)) = L(C/A, χ) :=
∑

b∈A+

χ(b)

b
.

In order to define the class module associated to χ , we define τa : K∞ ⊗Fq

kaK∞ ⊗Fq ka by τa = τ ⊗ id. We use it to define the Drinfeld A-module C′ over
A ⊗Fq ka by C′

θ = θ +∏n
i=1(1 ⊗ ζi − θ ⊗ 1)τa . Then:

Hχ := C′(K∞ ⊗Fq ka)

expC ′(K∞ ⊗Fq ka) + C′(A ⊗Fq ka)
.

In fact, evχ also induces a surjection H(ϕ; A[t]) → Hχ . Moreover, although the
number n of variables involved in this construction is not unique, it is uniquemodulo
q − 1. The minimal number n that can be used is called the type of χ . There is a
well defined notion of “almost all characters of type n” which is, roughly speaking,
all but a Zariski closed non trivial subset.
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Then, Theorems 7.7.1 and 7.7.3 imply:

Theorem 7.7.4

1. If n 	≡ 1 (mod q − 1), then for almost all Dirichlet character χ of type n, we
have Hχ = {0}.

2. If n ≡ 1 (mod q − 1), then for almost all Dirichlet character χ of type n, Hχ is
a cyclic A ⊗ ka-module.

These two results remind of the celebrated Greenberg conjectures. For details on
the analogy between the two contexts we refer the reader to [ATR17, Introduction].

7.7.2 On the Bernoulli-Carlitz Numbers

As a second application, we show the non vanishing of families of Bernoulli-
Carlitz numbers modulo monic irreducible polynomials P for almost all P . This
is a striking result as it is a stronger function field version of an open conjecture on
Bernoulli numbers.

The classical Bernoulli numbers have been discovered and studied by Jacob
Bernoulli during the late seventeenth century. They can be defined as the coefficients
Bm, m ≥ 0 which appear in the power series equality

t

et − 1
=
∑

m≥0

Bm
tm

m! . (7.11)

Euler computed the zeta values ζ(n) = ∑k≥1 k−n for even positive integers n with
the help of the Bernoulli numbers: if n > 0 is even then

ζ(n) = −1

2

(2iπ)n

n! Bn. (7.12)

For more background on Bernoulli numbers, we refer the reader for instance to
[IR90, Chapter 15 §1].

In 1935, Carlitz introduced analogues of the Bernoulli numbers. Those Bernoulli-
Carlitz numbers are linked with the polynomials Bn(t). We prove in this section a
quite surprising result on the Bernoulli-Carlitz numbers with the help of Bn(t). Let
N > 1 be an integer and N = ∑r

i=0 niq
i be its q-expansion. Then we define the

Carlitz factorial as:

�(N) =
r
∏

i=0

D
ni

i ∈ A



318 F. Tavares Ribeiro

where we recall (see Sect. 7.3.3) that D0 = 1, and for i ≥ 1, Di+1 = D
q

i (θqi+1 −θ).
The Bernoulli-Carlitz numbers are defined as the coefficients BCN , N ≥ 0 which
appear in the power series equality (similar to (7.11)):

t

expC(t)
=
∑

m≥0

BCN
tN

�(N)
.

We also recall that for N ≥ 1, we have the Carlitz zeta value:

ζA(N) =
∑

a∈A+

1

aN
.

Then the N-th Bernoulli-Carlitz number is BCN = 0 if N 	≡ 0 (mod q − 1) and, if
N ≡ 0 (mod q − 1),

ζA(N) = π̃N

�(N)
BCN

reminding of Euler’s formula (7.12). (Remark that the role of 2 is played here by
q − 1.)

If we have the q-expansion N = ∑r
i=0 niq

i , then we denote �q(N) = ∑r
i=0 ni

and define the evaluation map evN : T�q(N)(K∞) → K∞ by evN(tj ) = θqk
if

∑k−1
i=0 ni < j ≤∑k

i=0 ni , so that

evN(a(t1) · · · a(t�q(N))) = aN.

We recall the link between Bernoulli-Carlitz numbers and the polynomials Bn(t):

Proposition 7.7.5 Let N ≥ 2, N ≡ 1 (mod q − 1). Let P ∈ A be a monic
irreducible polynomial of degree d > 1, such that qd > N . Then BCqd−N ≡ 0
(mod P) if and only if evN(B�q(N)(t)) ≡ 0 (mod P).

We do not give the proof, which can be found in [ANDTR19, Proposition 4.3] or
in [AP14, Theorem 2]. Let us just sketch the main ideas: starting with the identity
in �q(N) variables:

(−1)
�q (N)−1

q−1
L(ϕ/A)

π̃

�q(N)
∏

i=1

ω(ti) = B�q(N)(t).

We then apply τd and evaluate with evN so that, up to some terms, the left

hand side becomes ζA(qd−N)

π̃qd−N
= BC

qd−N

�
qd −N

, and the right hand side is congruent to

evN(B�q(N)(t)) mod P since for all a ∈ A, aqd ≡ a (mod P).
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As a consequence of Proposition 7.7.5, we see that if evN(B�q(N)(t)) 	= 0, then
for all P not dividing evN(B�q(N)(t)) and such that qdegP > N , that is, for almost
all P , we have BCqd−N ≡ 0 (mod P). In fact, we have the more precise result:

Theorem 7.7.6 Let N ≥ 2,N ≡ 1 (mod q −1). Let P ∈ A be a monic irreducible

polynomial of degree d > 1, such that qd > N . If d ≥ �q(N)−1
q−1 N, then BCqd−N 	≡

0 (mod P).

This is a strong version of the following open conjecture on classical Bernoulli
numbers:

Conjecture 7.7.7 Let N ≥ 3 be an odd integer, then there exist infinitely many
prime numbers p such that Bp−N 	≡ 0 (mod p).

It seems however reasonable to expect that the equivalent of Theorem 7.7.6
does not hold for Bernoulli numbers. Namely, if N ≥ 3 is an odd integer, then
there should exist infinitely many prime numbers p such that Bp−N ≡ 0 (mod p).

This would be an example where number fields and function fields lead to different
results.

Theorem 7.7.6 is the main theorem of [ANDTR19]. The key result is that
evN(B�q(N)(t)) is not zero. We actually prove more generally:

Theorem 7.7.8 Let n ≥ 2, n ≡ 1 (mod q − 1). Then for any evaluation
homomorphism ev : A[t] → A such that ev(ti) is non constant for all i, we have

ev(Bn(t)) 	= 0.

Proof We give a proof different from the one of [ANDTR19]. Recall:

H(ϕ;A) = ϕ(K)

expϕ(K) + ϕ(A)
.

And Bn(t) = [H(ϕ;A)]A, in particular:

Bn(t) = det(Z − ϕθ | H(ϕ;A))|Z=θ .

We set r = n−q
q−1 . As for (7.10), we have

expϕ(K) =
{

x ∈ K, v∞(x) ≥ n

q − 1
− 1

}

.

Since n
q−1−1 = r+ 1

q−1 , a basis ofH(ϕ;A) is given by 1
θr , · · · , 1

θ
. We compute the

matrix of ϕθ in this basis. It is the sum of a matrixMn that we must determine and of
a nilpotent matrixNn = (δi,j+1)1≤i,j≤r where δi,j is the Kronecker symbol. That is,
the coefficients of Nn immediately above the diagonal are 1, and 0 elsewhere. Note
that Mn is the matrix of (t1 − θ) · · · (tn − θ)τ . Since q(r − k) = r + n − q(k + 1),
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we get in H(ϕ;A):

(t1 − θ) · · · (tn − θ)τ (
1

θr−k
) =

r−1
∑

j=0

σ(q(k + 1) − j)

θr−j

where

σ(j) = (−1)j−1
∑

i1<i2<···<ij

ti1 · · · tij

if 0 ≤ j ≤ n, and σ(j) = 0 otherwise. (Note that σ(0) = −1.) Thus,

Mn = (σ (jq − (i − 1)))1≤i,j≤r .

We will replace the polynomials σ(j) by symbols independent of the number of
variables in order to proceed by induction on n. We define on Fq variables�j, j > 0
and a valuation val on Fq[�j , j > 0] such that val(�j ) = j by stating that if

f =
∑

k1,...,kn≥0

αk1,...,kn

n
∏

j=1

�
kj

j

then val(f ) = −∞ if f = 0 and val(f ) = inf{∑n
j=1 jkj ; αk1,...,kn 	= 0} otherwise.

We moreover set �0 = −1 and �j = 0 if j < 0. Let

Mn = (�jq−(i−1)
)

1≤i,j≤r
.

We have the evaluation map evn : Fq [�j, j > 0] → Fq [t] defined by evn(�j ) =
σ(j) (recall that σ(j) = 0 if n < j ). Then val(f ) equals the valuation of evn(f )

with respect to the ideal (t1, . . . , tn), and

Mn = evn(Mn).

Developing now det(ZIr − Mn − Nn) with respect to the last column, we find

det(ZIr − Mn − Nn) = Z det(ZIr−1 − Mn−(q−1) − Nn−(q−1)) + ε

where ε is a sum of terms which are multiples of elements in the last column of
Mn, that is, �rq−(i−1), 0 ≤ i ≤ r all of them of valuation at least rq − (r − 1) =
r(q − 1) + 1.

Thus, by induction, det(ZIr − Mn − Nn) = Zr +∑r
i=1 βiZ

r−i with val(βi) ≥
i(q − 1) + 1, and thus

Bn = θr +
r
∑

i=1

Bi(t)θr−i
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where the valuation of Bi(t) ∈ Fq [t] with respect to (t1, . . . , tn) is at least i(q −
1) + 1. Thus for every evaluation homomorphism ev, ev(Bn(t)) has valuation r at
the place θ of A. ��

7.8 Stark Units in More General Settings

In this final short section, we want to stress out that the machinery of Stark units
carries over to more general settings than Drinfeld Fq [θ ]-modules. The results
presented in Sect. 7.4 have indeed been developed in [ANDTR17] for Drinfeld
modules over a general A. More precisely, we replace K with a function field in
which Fq is algebraically closed, fix a place ∞ of K and write A for the ring
of functions regular outside ∞ (see [Pel20, §2.2]). If L/K is a finite extension,
a Drinfeld A-module over OL is an Fq -algebra homomorphism

φ :
{

A → OL[τ ]
a �→ φa

such that φa ≡ a (mod τ ) for all a ∈ A. We refer the reader to [Pel20, §3] for
a presentation of the Drinfeld modules in this general setting. We can define units
in this setting, and follow the constructions presented in this text, that is, twist the
Frobenius by a new variable z, define z-units and evaluate them at z = 1 to obtain
Stark units.

Let K∞ denote the completion of K at ∞ and F∞ its residue field. We choose a
sign function sgn : K×∞ → F

×∞, that is, a group homomorphismwhich is the identity
on F

×∞. A rank one Drinfeld module φ is sign-normalized if there is an i ∈ N such
that

∀a ∈ A\{0}, φa = a + a1τ + · · · + sgn(a)q
i

τ deg a.

Stark units are used in [ANDTR17] to obtain various results for sign normalized
rank one Drinfeld modules: explicitly computing the Taelman units, obtaining a
class formula and some log-algebraicity results, that is, constructing explicit units by
the mean of the L-series. As in Sect. 7.6.2, canonical deformations of these Drinfeld
modules are also introduced by means of their shtuka functions.

In [ANDTR20a], Stark units have been extended to Anderson t-modules (for
A = Fq [θ ]) which are defined as Fq-algebra homomorphisms

E :
{

Fq [θ ] → Mn(OL)[τ ]
a �→ Ea = Ea,0 + Ea,1τ + · · · + Ea,r deg aτ

r dega
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such that (Ea −Ea,0)
n = 0 for all a ∈ Fq [θ ]. For instance, the n-th tensor power of

the Carlitz module is the Anderson t-module defined by

Eθ :=

⎛

⎜

⎜

⎜

⎜

⎝

θ 1
. . .

. . .

. . . 1
θ

⎞

⎟

⎟

⎟

⎟

⎠

+

⎛

⎜

⎜

⎜

⎝

0 0 . . . 0
...

...
...

0 0 . . . 0
1 0 . . . 0

⎞

⎟

⎟

⎟

⎠

τ.

We refer the reader to [AT90] for more details about these Anderson t-modules.
Once again, Stark units play a key role in [ANDTR20a] to determine the

Taelman’s units of t-modules which allows to prove that a large class of t-modules
satisfy a conjecture of Taelman stated in [Tae09]. They are also used to establish
log-algebraicity identities for the tensor powers of the Carlitz module.

One can finally extend the definition of t-module to a general A and define Stark
units in this context where the machinery of Sect. 7.4 still works.

We also signal to the reader two very recent works involving Stark units: in
[GND20] Green and Ngo Dac use Stark units to obtain log-algebraic identities for
Anderson t-modules. They derive from it some logarithmic identities on multiple
zeta values. In [ANDTR20b], the authors prove a class formula generalizing
Theorem 7.5.3 to a large class of Anderson modules over a general A, which
includes in particular all Drinfeld modules.

We will end this survey with a remark on the level of generality to which one
can extend the notion of Stark units. At the beginning of this work, we had an
exponential map, that is a power series in the Frobenius τ which satisfies a certain
functional identity involving τ , and we wanted to study the Taelman units, that is
the inverse image of the integral elements through the exponential map. We then
introduced the Stark units by twisting the Frobenius τ with a new variable z and
proceeded to the study of the z-units before evaluating at 1 to get a natural sub-
module of the Taelman units. If we now consider a difference field (K, τ) (see
[DV20, §2]), then the above construction should carry over if we have a suitable
exponential map. It would be interesting to work out Stark units in this general
setting (which involves a definition of a suitable exponentialmap). Due to the formal
nature of the construction, one would expect applications mainly in the case of non
archimedean fields. L. Di Vizio’s contribution [DV20] to this volume gives many
examples of difference fields for which one could try to see what comes out from a
construction of Stark units.
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