
Chapter 6
Berkovich Curves and Schottky
Uniformization II: Analytic
Uniformization of Mumford Curves

Jérôme Poineau and Daniele Turchetti

Abstract This is the second part of a survey on the theory of non-Archimedean
curves and Schottky uniformization from the point of view of Berkovich geometry.
It is more advanced than the first part and covers the theory of Mumford curves
and Schottky uniformization. We start by briefly reviewing the theory of Berkovich
curves, then introduce Mumford curves in a purely analytic way (without using
formal geometry). We define Schottky groups acting on the Berkovich projective
line, highlighting how geometry and group theory come together to prove that the
quotient by the action of a Schottky group is an analytic Mumford curve. Finally,
we present an analytic proof of Schottky uniformization, showing that any analytic
Mumford curve can be described as a quotient of this kind. The guiding principle
of our exposition is to stress notions and fully prove results in the theory of non-
Archimedean curves that, to our knowledge, are not fully treated in other texts.

6.1 Introduction

In the first part [PT20] of this survey, we provided a concrete description of the
Berkovich affine line over a non-Archimedean complete valued field (k, | · |) and
investigated its main properties. It is a remarkable fact that, combining topology,
algebra, and combinatorics, one can still get a very satisfactory description of more
general analytic curves over k, in the sense of Berkovich theory.

If k is algebraically closed, for instance, one can show that a smooth compact
Berkovich curve X can always be decomposed into a finite graph and an infinite
number of open discs. If the genus of X is positive, there exists a smallest graph
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satisfying this property. It is classically called the skeleton of X, an invariant that
encodes a surprising number of properties of X. As an example, if the Betti number
of the skeleton of X is equal to the genus of X and is at least 2, then the curve X

can be described analytically as a quotient �\O , where O is an open dense subset
of the projective analytic line P

1,an
k and � a suitable subgroup of PGL2(k). This

phenomenon is known as Schottky uniformization, and it is the consequence of a
celebrated theorem of D. Mumford, which is the main result of [Mum72a].

Obviously, D. Mumford’s proof did not make use of Berkovich spaces, as they
were not yet introduced at that time, but rather of formal geometry and the theory
of Bruhat-Tits trees. A few years later, L. Gerritzen and M. van der Put recasted
the theory purely in the language of rigid analytic geometry (using in a systematic
way the notion of reduction of a rigid analytic curve). We refer the reader to the
reference manuscript [GvdP80] for a detailed account of the theory and related
topics, enriched with examples and applications.

In this text, we develop the whole theory of Schottky groups andMumford curves
from scratch, in a purely analytic manner, relying in a crucial way on the nice
topological properties of Berkovich spaces, and the tools that they enable us to use:
the theory of proper actions of groups on topological spaces, of fundamental groups,
etc. We are convinced that those features, and Berkovich’s point of view in general,
will help improve our understanding of Schottky uniformization.

In this second part of the survey, we have allowed ourselves to be sometimes
more sketchy than in the first part [PT20], but this should not cause any trouble to
anyone familiar enoughwith the theory of Berkovich curves.We begin by reviewing
standard material. In Sect. 6.2, we define the Berkovich projective line P1,an

k over k,
consider its group of k-linear automorphisms PGL2(k) and introduce the Koebe
coordinates for the loxodromic transformations. In Sect. 6.3, we give an introduction
to the theory of Berkovich analytic curves, starting with those that locally look like
the affine line. For the more general curves, we review the theory without proofs,
but provide some references.We conclude this section by an original purely analytic
definition of Mumford curves. In Sect. 6.4, we propose two definitions of Schottky
groups, first using the usual description of their fundamental domains and second,
via their group theoretical properties, using their action of P1,an

k . We show that
they coincide by relying on the nice topological properties of Berkovich spaces. In
Sect. 6.5, we prove that every Mumford curve may be uniformized by a dense open
subset of P1,an

k with a group of deck transformations that is a Schottky group. Once
again, our proof is purely analytic, relying ultimately on arguments from potential
theory. To the best of our knowledge, this is the first complete proof of this result.
We conclude the section by investigating automorphisms of Mumford curves and
giving explicit examples.

We put a great effort in providing a self-contained presentation of the results
above and including details that are often omitted in the literature. Both the
theories of Berkovich curves and Schottky uniformization have a great amount of
ramifications and interactionswith other branches of mathematics. For the interested
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readers, we provide an appendix with a series of references that will hopefully help
them to navigate through this jungle of wonderful mathematical objects.

The idea of writing down these notes came to the first author when he was taking
part to the VIASM School on Number Theory in June 2018 in Hanoi. Just as the
school was, the material presented here is primarily aimed at graduate students,
although we also cover some of the most advanced developments in the field.
Moreover, we have included questions that we believe could be interesting topics for
young researchers (see Remarks 6.4.20 and 6.5.7). The appendix provides additional
material leading to active subjects of research and open problems.

The different chapters in this volume are united by the use of analytic techniques
in the study of arithmetic geometry. While they treat different topics, we encourage
the reader to try to understand how they are related and may shed light on each other.
In particular, the lecture notes of F. Pellarin [Pel20], about Drinfeld modular forms,
mention several topics related to ours, although phrased in the language of rigid
analytic spaces, such as Schottky groups (Section 5) or quotient spaces (Section 6).
It would be interesting to investigate to what extent the viewpoint of Berkovich
geometry presented here could provide a useful addition to this theory.

We retain notation as in [PT20]. In particular, (k, | · |) is a non-Archimedean
complete valued field, ka is a fixed algebraic closure of it, and ̂ka is the completion
of the latter.

6.2 The Berkovich Projective Line and Möbius
Transformations

6.2.1 Affine Berkovich Spaces

We generalize the constructions of [PT20], replacing k[T ] by an arbitrary k-algebra
of finite type. Our reference here is [Ber90, Section 1.5].

Definition 6.2.1 Let A be k-algebra of finite type. The Berkovich spectrum
Specan(A) of A is the set of multiplicative seminorms on A that induce the given
absolute value | · | on k.

As in [PT20, Definition 5.3.1], we can associate a completed residue fieldH (x)

to each point x of Specan(A). As in [PT20, Section 5.4], we endow Specan(A) with
the coarsest topology that makes continuous the maps of the form

x ∈ Specan(A) �−→ |f (x)| ∈ R

for f ∈ A. Properties similar to that of the Berkovich affine line still hold in this
setting: the space Specan(A) is countable at infinity, locally compact and locally
path-connected.
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We could also define a sheaf of function on Specan(A) as in [PT20, Defini-
tion 5.5.1]1 with properties similar to that of the usual complex analytic spaces.

Lemma 6.2.2 Each morphism of k-algebras ϕ : A → B induces a continuous map
of Berkovich spectra

Specan(ϕ) : Specan(B) −→ Specan(A)

| · |x �−→ |ϕ( ·)|x .

Let us do the example of a localisation morphism.

Notation 6.2.3 Let A be a k-algebra of finite type and let f ∈ A. We set

D(f ) := {x ∈ Specan(A) : f (x) �= 0}.

It is an open subset of Specan(A).

Lemma 6.2.4 Let A be a k-algebra of finite type and let f ∈ A. The map
Specan(A[1/f ]) → Specan(A) induced by the localisation morphism A → A[1/f ]
induces a homeomorphism onto its image D(f ). ��

6.2.2 The Berkovich Projective Line

In this section, we explain how to construct the Berkovich projective line over k. It
can be done, as usual, by gluing upside-down two copies of the affine line A

1,an
k

along A
1,an
k − {0}. We refer to [BR10, Section 2.2] for a definition in one step

reminiscent of the “Proj” construction from algebraic geometry.
To carry out the construction of the Berkovich projective line more precisely,

let us introduce some notation. We consider, as before, the Berkovich affine line
X := A

1,an
k with coordinate T , i.e. Specan(k[T ]). By Lemma 6.2.4, its subset U :=

A
1,an
k − {0} = D(T ) may be identified with Specan(k[T , 1/T ]).
We also consider another Berkovich affine lineX′ with coordinate T ′ and identify

its subset U ′ := X′ − {0} with Specan(k[T ′, 1/T ′]).
By Lemma 6.2.2, the isomorphism k[T ′, 1/T ′] ∼−→ k[T , 1/T ] sending T ′ to 1/T

induces an isomorphism ι : U
∼−→ U ′.

1Note however that the ring of global sections is always reduced, so that we only get the right
notion when A is reduced. The proper construction involves defining first the space A

n,an
k :=

Specan(k[T1, . . . , Tn]), then open subsets of it, and then closed analytic subsets of the latter, as we
usually proceed for analytifications in the complex setting.
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Definition 6.2.5 The Berkovich projective line P1,an
k is the space obtained by gluing

the Berkovich affine lines X and X′ along their open subsets U and U ′ via the
isomorphim ι.

We denote by ∞ the image in P1,an
k of the point 0 in X′.

The basic topological properties of P1,an
k follow from that of A1,an

k .

Proposition 6.2.6 We have P1,an
k = A

1,an
k ∪ {∞}.

The space P
1,an
k is Hausdorff, compact, uniquely path-connected and locally

path-connected. ��
For x, y ∈ P

1,an
k , we denote by [x, y] the unique injective path between x and y.

6.2.3 Möbius Transformations

Let us recall that, in the complex setting, the group PGL2(C) acts on P
1(C) via

Möbius transformations. More precisely, to an invertible matrix A =
(

a b

c d

)

, one

associates the automorphism

γA : z ∈ P
1(C) �−→ az + b

cz + d
∈ P

1(C)

with the usual convention that, if c �= 0, then γA(∞) = a/c and γA(−d/c) = ∞,
and, if c = 0, then γA(∞) = ∞.

We would like to define an action of PGL2(k) on P
1,an
k similar to the complex

one. Let A :=
(

a b

c d

)

∈ GL2(k).

First note that we can use the same formula as above to associate to A an
automorphism γA of the set of rational points P1,an

k (k).
It is actually possible to deal with all the points this way. Indeed, let x be a point

of P1,an
k − P

1,an
k (k). In [PT20, Section 5.3], we have associated to x a character

χx : k[T ] → H (x). Since x is not a rational point, χx(T ) does not belong to k,
hence the quotient (aχx(T ) + b)/(cχx(T ) + d) makes sense. We can then define
γA(x) as the element of A1,an

k associated to the character

P(T ) ∈ k[T ] �→ P
(aχx(T ) + b

cχx(T ) + d

)

∈ H (x).

This construction can also be made in a more algebraic way. By Lemmas 6.2.2
and 6.2.4, the morphism of k-algebras

P(T ) ∈ k[T ] �→ P
(aT + b

cT + d

)

∈ k
[

T ,
1

cT + d

]
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induces a map γA,1 : A1,an
k − {− d

c
} → A

1,an
k ⊆ P

1,an
k (with the convention that

−d/c = ∞ if c = 0).
Similarly, the morphism of k-algebras

Q(U) ∈ k[T ′] �→ Q
( c + dT ′

a + bT ′
)

∈ k
[

T ′, 1

a + bT ′
]

induces a map γA,2 : P1,an
k −{0,− b

a
} → P

1,an
k (with the convention that −b/a = ∞

if a = 0).
A simple computation shows that the maps γA,1 and γA,2 are compatible with the

isomorphism ι from Sect. 6.2.2. Note that we always have − d
c

�= − b
a
. If ad �= 0, it

follows that we have
(

A
1,an
k − {− d

c
}) ∪ (

P
1,an
k − {0,− b

a
}) = P

1,an
k , so the two maps

glue to give a global map

γA : P1,an
k → P

1,an
k .

We let the reader handle the remaining cases by using appropriate changes of
variables.

Notation 6.2.7 For a, b, c, d ∈ k with ad −bc �= 0, we denote by

[

a b

c d

]

the image

in PGL2(k) of the matrix

(

a b

c d

)

.

From now on, we will identify each element A of PGL2(k) with the associated
automorphism γA of P1,an

k .

Lemma 6.2.8 The image of a closed (resp. open) disc of P
1,an
k by a Möbius

transformation is a closed (resp. open) disc.

Proof Let A ∈ GL2(k). We may extend the scalars, hence assume that k is
algebraically closed. In this case, A is similar to an upper triangular matrix. In
other words, up to changing coordinates of P1,an

k , we may assume that A is upper
triangular. The transformation γA is then of the form

γA : z ∈ P
1,an
k �→ αz ∈ P

1,an
k

or

γA : z ∈ P
1,an
k �→ z + α ∈ P

1,an
k

for some α ∈ k. In both cases, the result is clear. ��
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6.2.4 Loxodromic Transformations and Koebe Coordinates

Definition 6.2.9 Amatrix in GL2(k) is said to be loxodromic if its eigenvalues in ka

have distinct absolute values.
A Möbius transformation is said to be loxodromic if some (or equivalently every)

representative is.

Lemma 6.2.10 Let a, b, c, d ∈ k with ad−bc �= 0 and set A :=
(

a b

c d

)

∈ GL2(k).

Then A is loxodromic if, and only if, we have |ad − bc| < |a + d|2.
Proof Let λ and λ′ be the eigenvalues of A in ka . We may assume that |λ| � |λ′|.

On the one hand, if |λ| = |λ′|, then we have

|a + d|2 = |λ + λ′|2 � |λ′|2 = |λ| |λ′| = |ad − bc|.

On the other hand, if |λ| < |λ′|, then we have

|a + d|2 = |λ + λ′|2 = |λ′|2 > |λ| |λ′| = |ad − bc|.

��
Let A ∈ PGL2(k) be a loxodromic Möbius transformation.
Fix some representative B of A in GL2(k). Denote by λ and λ′ its eigenvalues

in ka . We may assume that |λ| < |λ′|. The characteristic polynomial χB of B cannot
be irreducible over k, since otherwise its roots in ka would have the same absolute
values. It follows that λ and λ′ belong to k. Set β := λ/λ′ ∈ k◦◦.

The eigenspace of B associated to the eigenvalue λ (resp. λ′) is a line in k2.
Denote by α (resp. α′) the corresponding element in P1(k).

Definition 6.2.11 The elements α, α′ ∈ P
1(k) and β ∈ k◦◦ depend only on A and

not on the chosen representative. They are called the Koebe coordinates of A.

There exists a Möbius transformation ε ∈ PGL2(k) such that ε(0) = α and
ε(∞) = α′. The Möbius transformation ε−1Aε now has eigenspaces corresponding
to 0 and ∞ in P1(k) and the associated automorphism of P1,an

k is

γε−1Aε : z ∈ P
1,an
k �→ βz ∈ P

1,an
k .

We deduce that 0 and ∞ are respectively the attracting and repelling fixed points
of γε−1Aε in P

1,an
k . It follows that α and α′ are respectively the attracting and

repelling fixed points of γA in P1,an
k .
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The same argument shows that the Koebe coordinates determine uniquely the
Möbius transformation A. In fact, given α, α′, β ∈ k with α �= α′ and 0 < |β| < 1,
the Möbius transformation that has these elements as Koebe coordinates is given
explicitly by

M(α, α′, β) =
[

α − βα′ (β − 1)αα′
1 − β βα − α′

]

, (6.2.1)

In an analogous way, whenever ∞ ∈ P
1,an
k is an attracting or repelling point of a

loxodromic Möbius transformation, we can recover the latter as:

M(α,∞, β) =
[

β (1 − β)α

0 1

]

or M(∞, α′, β) =
[

1 (β − 1)α′
0 β

]

. (6.2.2)

Remark 6.2.12 Let A ∈ PGL2(k) be a Möbius transformation that is not loxo-
dromic. Then, extending the scalars to ̂ka and possibly changing the coordinates,
the associated automorphism of P1,an

̂ka is a homothety

z ∈ P
1,an
̂ka �→ βz ∈ P

1,an
̂ka with |β| = 1

or a translation

z ∈ P
1,an
̂ka �→ z + b ∈ P

1,an
̂ka .

Note that those automorphisms have several fixed points in P
1,an
̂ka (ηr with r � 0 in

the first case and r � |b| in the second). It follows that A itself also has infinitely
many fixed points in P1,an

k .

6.3 Berkovich k-Analytic Curves

6.3.1 Berkovich A
1-like Curves

In this section we go one step beyond the study of affine and projective lines, by
introducing a class of curves that “locally look like the affine line”, and see that
there are interesting examples of curves belonging to this class.

A much more general theory of k-analytic curves exists but it will be discussed
only briefly in this text in Sect. 6.3.2, in the case of smooth curves. For more on this
topic, the standard reference is [Ber90, Chapter 4]. Themost comprehensive account
to-date can be found in A. Ducros’ book project [Duc], while deeper discussions of
specific aspects are contained in the references in the Appendix A.1 of the present
text.
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Definition 6.3.1 A k-analyticA1-like curve is a locally ringed space in which every
point admits an open neighborhood isomorphic to an open subset of A1,an

k .

It follows from the explicit description of bases of neighborhoods of points
ofA1,an

k (see [PT20, Proposition 5.4.11]) that each k-analyticA1-like curve admits a
covering by virtual open Swiss cheeses. By local compactness, such a covering can
always be found locally finite. It can be refined into a partition (no longer locally
finite) consisting of simpler pieces.

Theorem 6.3.2 Let X be a k-analytic A1-like curve. Then, there exist

(i) a locally finite set S of type 2 points of X;
(ii) a locally finite set A of virtual open annuli of X;
(iii) a set D of virtual open discs of X

such that S ∪ A ∪ D is a partition of X.

Proof Each virtual open Swiss cheese may be written as a union of finitely many
points of type 2, finitely many virtual open annuli and some virtual open discs (as
in Example 6.3.5 below). By a combinatorial argument that is not difficult but quite
lengthy, the covering so obtained can be turned into a partition. ��
Definition 6.3.3 Let X be a k-analytic A1-like curve. A partition T = (S,A,D)

of X satisfying the properties (i), (ii), (iii) of Theorem 6.3.2 is called a triangulation
of X. The locally finite graph naturally arising from the set

�T := S ∪
⋃

A∈A
�A

is called the skeleton of T . It is such that X − �T is a disjoint union of virtual open
discs.

A triangulation T is said to be finite if the associated set S is finite. If this is
the case, then �T is a finite graph. By the results of [PT20, Section 5.9], for each
triangulation T , �T may be naturally endowed with a metric structure.

Remark 6.3.4 It is more usual to define a triangulation as the datum of the set S

only. Note that S determines uniquelyA and D since their elements are exactly the
connected components of X − S, so our change of convention is harmless.

Example 6.3.5 Consider the curve

X := D−(0, 1) − (D+(a, r) ∪ D+(b, r))

for r ∈ (0, 1) and a, b ∈ k with |a|, |b| < 1, |a − b| > r . Set

S := {ηa,|a−b|},

A := {A−(a, |a − b|, 1), A−(a, r, |a − b|), A−(b, r, |a − b|)}
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ηa,|a−b|

a

b

Fig. 6.1 The Swiss cheese X described in Example 6.3.5. Its skeleton �X is the union of the three
edges in evidence

and

D := {D−(u, |a − b|), u ∈ k, |u − a| = |u − b| = |a − b|}.

Then, the triple T := (S,A,D) is a triangulation of X. The associated skeleton is a
finite tree with three (half open) edges (Fig. 6.1).

Proposition 6.3.6 Let X be a connected A
1-like curve. Let T = (S,A,D) be a

triangulation of X such that S �= ∅ or A �= ∅.
There exists a canonical deformation retraction τT : X → �T . Its restriction

to any virtual open annulus A ∈ A induces the map τA from [PT20, Proposi-
tion 5.8.11] and its restriction to any connected component D of A − �A (which is
a virtual open disc) induces the map τD from [PT20, Proposition 5.8.10].

In particular, for each η ∈ �A, the set τ
−1
T (η) is a virtual flat closed annulus. ��

Definition 6.3.7 Let X be a k-analytic A
1-like curve. The skeleton of X is the

complement of all the virtual open discs contained in X. We denote it by �X.

Remark 6.3.8 Let X be a k-analytic A1-like curve. It is not difficult to check that
we have

�X =
⋂

T
�T ,
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for T ranging over all triangulations of X. In particular,�X is a locally finite metric
graph (possibly empty).

Assume that X is connected and that �X is non-empty. Then there exists a
triangulation T0 of X such that �X = �T0 . In particular, there is a canonical
deformation retraction τX : X → �X.

6.3.2 Arbitrary Smooth Curves

It goes beyond the scope of this survey to develop the full theory of Berkovich
analytic curves.We only state a few definitions and general facts, to which we would
like to refer later.

Definition 6.3.9 A smooth k-analytic curve is a locally ringed space X that
is locally isomorphic to an open subset of a Berkovich spectrum of the
form Specan(A), where A is the ring of functions on a smooth affine algebraic
curve over k.

For each smooth k-analytic curve X and each complete valued extension K of k,
one may define the base-change XK of X to K , by replacing each Specan(A)

by Specan(A ⊗k K) in its definition. It is a smooth K-analytic curve and there
is a canonical projection morphism πK/k : XK → X. The analogues of [PT20,
Proposition 5.6.5] and [PT20, Corollary 5.6.6] hold in this more general setting.

Example 6.3.10 For each complete valued extension K of k, the base-change
of A1,an

k to K is A1,an
K .

If one starts with a smooth algebraic curve X over k, one may cover it by
curves of the form Spec(A), with A as in Definition 6.3.9 above, and then glue the
corresponding analytic spaces Specan(A) to get a smooth k-analytic curve, called
the analytification of X , and denoted by X an.

Example 6.3.11 The analytification of A1
k is A

1,an
k .

As in the complex case, smooth compact k-analytic curves are automatically
algebraic.

Theorem 6.3.12 Let X be a smooth compact k-analytic curve. Then, there exists a
projective smooth algebraic curve over k such that X = X an.

The invariants we have defined so far for the Berkovich affine line A
1,an
k have

natural counterparts for smooth k-analytic curves. Let X be a smooth k-analytic
curve. For each point x ∈ X, the completed residue fieldH (x) is the completion of
a finitely generated extension of k of transcendence degree less than or equal to 1.
We may then define integers s(x) and t (x) such that s(x) + t (x) � 1 and the type
of x, as we did in the case of A1,an

k (see [PT20, Definition 5.3.9]).



236 J. Poineau and D. Turchetti

If x is of type 2, then, by the equality case in Abhyankar’s inequality (see [PT20,
Theorem5.3.8]), the group |H (x)×|/|k×| is finitely generated, hence finite, and the
field extension H̃ (x)/k̃ is finitely generated.

Let us fix the definition of genus of an algebraic curve.

Definition 6.3.13 Let F be a field and let C be a projective curve over F , i.e. a
connected normal projective scheme of finite type over F of dimension 1.

If F is algebraically closed, then C is smooth, and we define the geometric genus
of C to be

g(C) := dimF H 0(C,�C).

In general, let F̄ be an algebraic closure of F . Let C′ be the normalization of a
connected component of C ×F F̄ . It is a projective curve over F̄ and we define the
geometric genus of C to be

g(C) := g(C′).

It does not depend on the choice of C′.

Definition 6.3.14 Let X be a smooth k-analytic curve and let x ∈ X be a point of
type 2.

The residue curve at x is the unique (up to isomorphism) projective curve Cx

over k̃ with function field H̃ (x). The genus of x is the geometric genus of Cx . We
denote it by g(x).

The stable genus of x, is the genus of any point x ′ over x in X
̂ka . We denote it

by gst(x). It does not depend on the choice of x ′.

Example 6.3.15 Let α ∈ k and r ∈ |k×|Q. By [PT20, Example 5.3.10], the residue
curve at the point ηα,r in A

1,an
k is the projective line P1

k̃
over k̃. In particular, we have

g(ηα,r ) = 0.
By [PT20, Lemma 5.3.11], any point of type 2 in A1,an

k (hence in any k-analytic
A
1-like curve) has stable genus 0.

The fact that the stable genus does not need to coincide with the genus is what
motivates our definition. Let us give an example of this phenomenon.

Remark 6.3.16 Let p � 5 be a prime number. Consider the affine analytic
plane A

2,an
Qp

with coordinates x, y. Let X be the smooth Qp-analytic curve

inside A
2,an
Qp

given by the equation y2 = x3 + p and let π : X → A
1,an
Qp

be the
projection onto the first coordinate x.
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The fiber π−1(η0,|p|−1/3) contains a unique point, that we will denote by a. One

may check that H̃ (a) is a purely transcendental extension of Fp generated by the
class u of px3 (which coincides with the class of py2):

H̃ (a) � Fp(u).

In particular, we have Ca = P
1
Fp

and g(a) = 0.
Let us now extend the scalars to the field Cp, whose residue field is an algebraic

closure Fp of Fp. Let b be the unique point of XCp over a. The field H̃ (b) is now
generated by the class v of p−1/3x and the class w of p−1/2y:

H̃ (b) � Fp(v)[w]/(v3 − w2 + 1).

In particular, Cb is an elliptic curve over Fp, and we have gst(a) = g(b) = 1.

We always have an inequality between genus and stable genus.

Lemma 6.3.17 Let X be a smooth k-analytic curve and let x ∈ X be a point of
type 2. Then, we have g(x) � gst(x).

Proof Let x ′ be a point of X
̂ka over x. By definition, the residue curve Cx at x is

defined over k̃ and the residue curve Cx ′ at x ′ is defined over an algebraic closure ¯̃
k

of k̃.
The projection morphism π

̂ka/k : X
̂ka → X induces an isometric embedding

H (x) → H (x ′), hence an embedding H̃ (x) → H̃ (x ′). It follows that we have a
morphismCx ′ → Cx , hence a morphism ϕ : Cx ′ → Cx×k̃

¯̃
k. Its image is a connected

componentC of Cx ×k̃
¯̃
k. The morphism ϕ factors through C, and even through the

normalization ˜C of C. By definition, we have g(˜C) = g(x) and g(Cx ′) = gst(x).
The result now follows from the Riemann–Hurwitz formula. ��
Proposition 6.3.18 Let X be a smooth k-analytic curve and let x ∈ X be a point of
type 2. There is a natural bijection between the closed points of the residue curve Cx

at x and the set of directions emanating from x in X. ��
Example 6.3.19 Assume that k is algebraically closed. For X = A

1,an
k and x = η1,

the result of Proposition 6.3.18 follows from [PT20, Lemma5.4.9].

The structure of smooth k-analytic curves is well understood.

Theorem 6.3.20 Every smooth k-analytic curve admits a triangulation in the sense
of Theorem 6.3.2.

The result of Proposition 6.3.6 also extends. If T is a non-empty triangulation
of a smooth connected k-analytic curve X, then there is a canonical deformation
retraction of X onto the skeleton �T of T , which is a locally finite metric graph.
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We may also define the skeleton of X as in Definition 6.3.7, and it satisfies the
properties of Remark 6.3.8.

Remark 6.3.21 With this purely analytic formulation, Theorem 6.3.20 is due to
A. Ducros, who provided a purely analytic proof in [Duc]. It is very closely related to
the semi-stable reduction theorem of S. Bosch and W. Lütkebohmert (see [BL85]):
for each smooth k-analytic curve X, there exists a finite extension �/k such that X�

admits a model over �◦ whose special fiber is a semi-stable curve over �̃, that is, it
is reduced and its singularities are at worst double nodes.

If a smooth k-analytic curve X admits a semi-stable model over k◦, then we
may associate to it a triangulation of X. The points of S, A and D then correspond
respectively to the irreducible components, the singular points and the smooth points
of the special fiber of the model. Moreover, the genus of a point of S (which, in this
case, coincides with its stable genus) is equal to the genus of the corresponding
component. We refer to [Ber90, Theorem 4.3.1] for more details.

In the other direction, it is always possible to associate a model over k◦ to a
triangulation of X, but it may fail to be semi-stable in general. The reader may
consult [Duc, Sections 6.3 and 6.4] for general results.

Definition 6.3.22 Assume that k is algebraically closed. Let X be a smooth
connected k-analytic curve. We define the genus of X to be

g(X) := b1(X) +
∑

x∈X(2)

g(x),

where b1(X) is the first Betti number of X and X(2) the set of type 2 points of X.
If k is arbitrary, we define the genus of a smooth geometrically connected k-

analytic curve X to be the genus of X
̂ka .

This notion of genus is compatible with the one defined in the algebraic setting.

Theorem 6.3.23 For each smooth geometrically connected projective algebraic
curve X over k, we have

g(X ) = g(X an).

Let us finally comment that, among the results that are presented here, Theo-
rem 6.3.20 is deep and difficult, but we will not need to use it since an easier direct
proof is available for k-analytic A1-like curves (see Theorem 6.3.2). The others are
rather standard applications of the general theory of curves.
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6.3.3 Mumford Curves

Let us now return toA1-like curves over k. A special kind of such curves is obtained
by asking for the existence of an open covering made of actual open Swiss cheeses
over k rather than virtual ones. Recall that open Swiss cheeses over k are defined as
the complement of closed discs in an open disc over k.

Definition 6.3.24 A connected, compact k-analytic (A1-like) curve X is called a k-
analytic Mumford curve if every point x ∈ X has a neighborhood that is isomorphic
to an open Swiss cheese over k.

Remark 6.3.25 Such a curve is automatically projective algebraic by Theo-
rem 6.3.12.

The following proposition relates the definition of a k-analytic Mumford curve
with the existence of a triangulation of a certain type, and therefore with the original
algebraic definition given by Mumford in [Mum72a]. Its proof uses some technical
notions that were not fully presented in the first sections of this text, but we believe
that the result of the proposition is important enough to deserve to be fully included
for completeness.

Proposition 6.3.26 Let X be a compact k-analytic curve.
If g(X) = 0, then X is a k-analytic Mumford curve if and only if X is isomorphic

to P1,an
k .
If g(X) � 1, then X is a k-analytic Mumford curve if and only if there exists a

triangulation (S,A,D) of X such that the points of S are of stable genus 0 and the
elements ofA are open annuli.

Proof

• Assume that g(X) = 0. If X is isomorphic to P
1,an
k , then it is obviously a

Mumford curve.
Conversely, assume that X is a k-analytic Mumford curve. By Theo-

rems 6.3.12 and 6.3.23, it is isomorphic to the analytification of a projective
smooth algebraic curve over k. Therefore, to prove that it is isomorphic to P

1,an
k ,

it is enough to prove that it has a k-rational point.
By assumption, X contains an open Swiss cheese over k. In particular, it

contains an open annulus A over k. Let x be a boundary point of the skeleton
of A. By assumption, x has a neighborhood that is isomorphic to an open Swiss
cheese over k. It follows that A is contained in a strictly bigger annulusA′ whose
skeleton strictly contains that of A. Arguing this way (possibly considering the
union of all the annuli and applying the argument again), we show thatX contains
an open annulus over k of infinite modulus. At least one of its boundary points is
a k-rational point, and the result follows.

• Assume that g(X) � 1. If X is a k-analytic Mumford curve, then it may be
covered by finitely many Swiss cheeses over k. The result then follows from the
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fact that every Swiss cheese over k admits a triangulation (S,A,D) such that the
points of S are of stable genus 0 and the elements of A are annuli.

Conversely, assume that there exists a triangulation (S,A,D) of X satisfying
the properties of the statement. Since g(X) � 1, we have A �= ∅. Up to adding
a point of S in the skeleton of each element of A, we may assume that all the
elements of A have two distinct endpoints in X.

Let x ∈ S. Denote by Dx (resp. Ax ) the set of elements of D (resp. A) that
have x as an endpoint and set

Ux := {x} ∪
⋃

D∈Dx

D ∪
⋃

A∈Ax

A.

It is an open neighborhood of x in X. Let us now enlarge Ux in the following
way: for each A ∈ Ax , we paste a closed disc at the extremity of A that is
different from x. The resulting curve Vx is compact, hence the analytification of a
projective smooth algebraic curve over k, by Theorem 6.3.12. Since x is of stable
genus 0, the genus of the base-change (Vx)̂ka of Vx to ̂ka is 0. By Theorem 6.3.23,

we deduce that (Vx)̂ka is isomorphic to P1,an
̂ka . Since Vx contains k-rational points

(inside the pasted discs, for instance), Vx itself is isomorphic to P1,an
k . We deduce

that Ux is a Swiss cheese over k.
Since any point of X has a neighborhood that is of the form Ux for some

x ∈ S, it follows that X is a Mumford curve.
��

Remark 6.3.27 If X is a compact k-analytic curve and k is algebraically closed,
then Proposition 6.3.26 shows that the following properties are equivalent:

(i) X is a Mumford curve;
(ii) X is an A

1-like curve;
(iii) the points of type 2 of X are all of genus 0.

Remark 6.3.28 Using the correspondence between triangulations and semi-stable
models (see Remark 6.3.21), the result of Proposition 6.3.26 says that k-analytic
Mumford curves are exactly those for which there exists a semi-stable model over k◦
whose special fiber consists of projective lines over k̃, intersecting transversally
in k̃-rational points. This is indeed how algebraic Mumford curves are defined in
Mumford’s paper [Mum72a].

Corollary 6.3.29 Let X be a k-analytic Mumford curve and T be a triangulation
of X. Then the following quantities are equal:

(i) the genus of X;
(ii) the cyclomatic number of the skeleton �T ;
(iii) the first Betti number of X.

Proof We may assume that T = (S,A,D) satisfies the conclusions of Proposi-
tion 6.3.26. We will assume that A �= ∅, the other case being dealt with similarly.
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Consider the base-change morphism π
̂ka/k : X

̂ka → X. By assumption, every

element A of A is an annulus over k, hence its preimage π−1
̂ka/k

(A) is an annulus

over ̂ka . In particular, π
̂ka/k induces a homeomorphism between the skeleton of

π−1
̂ka/k

(A) and that of A. Since each point of S lies at the boundary of the skeleton of

an element ofA, we deduce that each point of S has exactly one preimage by π
̂ka .

It follows that the set T ′ = (S′,A′,D′) of X
̂ka , where

• S′ is the set of preimages of the elements of S by π
̂ka/k;

• A′ is the set of preimages of the elements of A by π
̂ka/k;

• D′ is the set of connected components of the preimages of the elements of D
by π

̂ka/k

is a triangulation of X
̂ka and, moreover, that π

̂ka/k induces a homeomorphism
between the skeleta �T ′ and �T . In particular, their cyclomatic numbers are equal.

Since X is a Mumford curve, all the points of type 2 of the curve X
̂ka are of

genus 0, hence the genus of X
̂ka coincides with its first Betti number, hence with the

cyclomatic number of �T ′ , by Proposition 6.3.6. The equality between (i) and (ii)
follows.

The equality between (ii) and (iii) follows from Proposition 6.3.6 again. ��

6.4 Schottky Groups

Let (k, | · |) be a complete valued field. Some of the material of this section is adapted
from Mumford [Mum72a], Gerritzen and van der Put [GvdP80] and Berkovich
[Ber90, Section 4.4].

6.4.1 Schottky Figures

Let g ∈ N�1.

Definition 6.4.1 Let γ1, . . . , γg ∈ PGL2(k). Let B = (D+(γ ε
i ), 1 � i � g, ε ∈

{±1}) be a family of pairwise disjoint closed discs in P1,an
k . For each i ∈ {1, . . . , g}

and ε ∈ {−1, 1}, set

D−(γ ε
i ) := γ ε

i (P1
k − D+(γ −ε

i )).

We say that B is a Schottky figure adapted to (γ1, . . . , γg) if, for each i ∈
{1, . . . , g} and ε ∈ {−1, 1}, D−(γ ε

i ) is a maximal open disc inside D+(γ ε
i ). (See

Fig. 6.2 for an illustration.)
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D+(γ1)

D+(γ−1
1 )

D+(γ2)

D+(γ−1
2 )

γ2

γ2

γ1

γ1

Fig. 6.2 A Schottky figure adapted to a pair (γ1, γ2)

Remark 6.4.2 Let i ∈ {1, . . . , g}. It follows from Remark 6.2.12 that γi is
loxodromic. Moreover, denoting by αi and α′

i the attracting and repelling fixed
points of γi respectively, we have

α′
i ∈ D−(γ −1

i ) and αi ∈ D−(γi).

The result is easily proven for γ =
[

1 0
0 q

]

and one may reduce to this case by

choosing a suitable coordinate on P1,an
k .

For the rest of the section, we fix γ1, . . . , γg ∈ PGL2(k) and a Schottky figure
adapted to (γ1, . . . , γg), with the notation of Definition 6.4.1.

Notation 6.4.3 For σ ∈ {−,+}, we set

Fσ := P
1
k −

⋃

1�i�g
ε=±1

D−σ (γ ε
i ).

Note that, for γ ∈ {γ ±1
1 , . . . , γ ±1

g }, D+(γ ) is the unique disc that con-
tains γ (F+) among those defining the Schottky figure.

Remark 6.4.4 The sets F− and F+ are open and closed Swiss cheeses respectively.
Denote by ∂F+ the boundary of F+ in P

1,an
k . It is equal to the set of boundary

points of the D+(γ ±1
i )’s, for i ∈ {1, . . . , g}. The skeleton �F+ of F+ is the convex
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envelope of ∂F+, that is to say the minimal connected graph containing ∂F+, or

�F+ =
⋃

x,y∈∂F+
[x, y].

The skeleton �F− of F− satisfies

�F− = �F+ ∩ F− = �F+ − ∂F+.

Set � := {γ1, . . . , γg}. Denote by Fg the abstract free group with set of
generators � and by � the subgroup of PGL2(k) generated by �. The existence
of a Schottky figure for the g-tuple (γ1, . . . , γg) determines important properties
of the group �. In fact, we have a natural morphism ϕ : Fg → � inducing an

action of Fg on P
1,an
k . We now define a disc in P

1
k associated with each element

of Fg . As usual, we will identify these elements with the words over the alphabet
�± := {γ ±1

1 , . . . , γ ±1
g }.

Notation 6.4.5 For a non-empty reduced word w = w′γ over � and σ ∈ {−,+},
we set

Dσ (w) := w′ Dσ (γ ).

Lemma 6.4.6 Let u be a non-empty reduced word over �±. Then we have uF+ ⊆
D+(u).

Let v be a non-empty reduced word over �±. If there exists a word w over �±
such that u = vw, then we have uF+ ⊆ D+(u) ⊆ D+(v). If, moreover, u �= v,
then we have D+(u) ⊆ D−(v).

Conversely, if we have D+(u) ⊆ D+(v), then there exists a word w over �±
such that u = vw.

Proof Write in a reduced form u = u′γ with γ ∈ �±. We have γF+ ⊆ D+(γ ),
by definition. Applying u′, it follows that uF+ ⊆ D+(u).

Assume that there exists a word w such that u = vw and let us prove that
D+(u) ⊆ D+(v). We first assume that v is a single letter. We will argue by induction
on the length |u| of u. If |u| = 1, then u = v and the result is trivial. If |u| � 2,
denote by δ the first letter of w. By induction, we have D+(w) ⊆ D+(δ). Since
δ �= v−1, we also have D+(δ) ⊆ P

1
k − D+(v−1). The result follows by applying v.

Let us now handle the general case. Write in a reduced form v = v′γ with
γ ∈ �±. By the former case, we have D+(γw) ⊆ D+(γ ) and D+(γw) ⊆ D−(γ )

if w is non-empty. The result follows by applying v′.
Assume that we have D+(u) ⊆ D+(v). We will prove that there exists a word w

such that u = vw by induction on |v|. Write in reduced forms u = γ u′ and v = δv′.
By the previous result, we have D+(u) ⊆ D+(γ ) and D+(v) ⊆ D+(δ), hence
γ = δ. If |v| = 1, this proves the result. If |v| � 2, then we deduce that we have
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D+(u′) ⊆ D+(v′), hence, by induction, there exists a word w such that u′ = v′w.
It follows that u = vw. ��
Proposition 6.4.7 The morphism ϕ is an isomorphism and the group � is free on
the generators γ1, . . . , γg .

Proof If w is a non-emptyword, then the previous lemma ensures thatwF+ �= F+.
The result follows. ��

As a consequence, we now identify � with Fg and express the elements of � as
words over the alphabet �±. In particular, we allow us to speak of the length of an
element γ of �, that we denote by |γ |. Set

On :=
⋃

|γ |�n

γF+.

Since the complement of F+ is the disjoint union of the open disks D−(γ ) with
γ ∈ �±, it follows from the description of the action that, for each n � 0, we have

P
1,an
k − On =

⊔

|w|=n+1

D−(w).

It follows from Lemma 6.4.6 that, for each n � 0, On is contained in the interior
of On+1. We set

O :=
⋃

n�0

On =
⋃

γ∈�

γF+.

We now compute the orbits of discs under Möbius transformations P1,an
k . Set

ι :=
[

0 1
1 0

]

∈ PGL2(k). It corresponds to the map z �→ 1/z on P1,an
k . The first result

follows from an explicit computation.

Lemma 6.4.8 Let α ∈ k× and ρ ∈ [0, |α|). Then, we have ι
(

D+(α, ρ)
) =

D+
(

1
α
,

ρ

|α|2
)

. ��

Lemma 6.4.9 Let r > 0 and let γ =
[

a b

c d

]

in PGL2(k) such that γ
(

D+(0, r)
) ⊆

A
1,an
k . Then, we have |d| > r|c| and γ

(

D+(0, r)
) = D+

(

b
d
,

|ad−bc| r
|d |2

)

.

Proof Let us first assume that c = 0. Then, we have d �= 0, so the inequality
|d| > r|c| holds, and γ is affine with ratio a/d . The result follows.
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Let us now assume that c �= 0. In this case, we have γ −1(∞) = − d
c
, which does

not belong to D(0, r) if, and only if, |d| > r|c|. Note that we have the following
equality in k(T ):

aT + b

cT + d
= a

c
− ad − bc

c2

1

T + d
c

.

By Lemma 6.4.8, there exist β ∈ k and σ > 0 such that ι
(

D+( d
c
, r)

) = D+(β, σ ).
Then, we have γ

(

D+(0, r)
) = D+( a

c
− ad−bc

c2
β,

∣

∣
ad−bc

c2

∣

∣ σ) and the result follows
from an explicit computation. ��
Lemma 6.4.10 Let D′ ⊆ D be closed discs in A

1,an
k . Let γ ∈ PGL2(k) such that

γD′ ⊆ γD ⊆ A
1,an
k . Then, we have

radius of γD′

radius of γD
= radius of D′

radius of D
.

Proof Let p be a k-rational point in D′ and let τ be the translation sending p to 0.
Up to changing D into τD, D′ into τD′, γ into γ τ−1 and γ ′ into γ ′τ−1, we may
assume that D and D′ are centered at 0. The result then follows from Lemma 6.4.9.

��
Proposition 6.4.11 Assume that ∞ ∈ F−. Then, there exist R > 0 and c ∈ (0, 1)
such that, for each γ ∈ � − {id}, D+(γ ) is a closed disc of radius at most R c|γ |.

Proof Let δ, δ′ ∈ �± such that δ′ �= δ−1. By Lemma 6.4.6, we have D+(δ′δ) ⊂
D−(δ′) ⊆ D+(δ′). Set

cδ,δ′ := radius of D+(δ′δ)
radius of D+(δ′)

∈ (0, 1).

For each γ ∈ � such that γ δ′ is a reduced word, by Lemma 6.4.10, we have

radius of D+(γ δ′δ)
radius of D+(γ δ′)

= radius of γD+(δ′δ)
radius of γD+(δ′)

= cδ,δ′ .

Set

R := max({radius of D+(δ) | δ ∈ �±})

and

c := max({cδ,δ′ | δ, δ′ ∈ �±, δ′ �= δ−1}).
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By induction, for each γ ∈ � − {id}, we have

radius of D+(γ ) � R c|γ |.

��
Corollary 6.4.12 Every element of � − {id} is loxodromic.
Proof In order to prove the result, we may extend the scalars. As a result, we may
assume that F− ∩ P

1,an
k (k) �= ∅, hence up to changing coordinates, that ∞ /∈ F−.

Let γ ∈ � − {id}. By Proposition 6.4.11 the radii of the discs γ n(D+(γ )) tend to 0
when n tends to ∞, which forces γ to be loxodromic, by Remark 6.2.12. ��
Corollary 6.4.13 Let w = (wn) �=0 be a sequence of reduced words over �± such
that the associated sequence of discs (D+(wn))n�0 is strictly decreasing. Then,
the intersection

⋂

n�0 D+(wn) is a single k-rational point pw . Moreover, the discs

D+(wn) form a basis of neighborhoods of pw in P
1,an
k .

Proof Let k0 be a finite extension of k such that F− ∩ P
1(k0) �= ∅. Consider

the projection morphism π0 : P1,an
k0

→ P
1,an
k . For each i ∈ {1, . . . , g}, γi may

be identified with an element γi,0 in PGL2(k0). The family (π−1
0 (D−(γ ±1

i ), 1 �
i � g, ε = ±1) is a Schottky figure adapted to (γ1,0, . . . , γg,0). We will denote
with a subscript 0 the associated sets: F−

0 , D+
0 (w), etc. Note that these sets are all

equal to the preimages of the corresponding sets by π0.
Up to changing coordinates on P

1,an
k0

, we may assume that ∞ ∈ F−
0 . The

sequence of discs (D+
0 (wn))n�0 is strictly decreasing, so by Lemma 6.4.6, the

length of wn tends to ∞ when n goes to ∞ and, by Proposition 6.4.11, the radius
of D+

0 (wn) tends to 0 when n goes to ∞. It follows that
⋂

n�0 D+
0 (wn) is a single

pointpw,0 of type 1 and that the discsD+
0 (wn) form a basis of neighborhood of pw,0

in P1,an
k0

.
Set pw := π0(pw,0). It follows from the results over k0 that

⋂

n�0 D+(wn) =
{pw} and that the discs D+(wn) form a basis of neighborhoods of pw in P1,an

k .
It remains to show that pw is k-rational. Note that pw belongs to the closure

of P1(k), since it is the limit of the centers of the D+(wn)’s. Since k is complete,
P
1(k) is closed in P1(̂ka) and the result follows. ��

Corollary 6.4.14 The set O is dense in P
1,an
k and its complement is contained

in P1(k). ��
Definition 6.4.15 We say that a point x ∈ P

1,an
k is a limit point if there exist

a point x0 ∈ P
1,an
k and a sequence (γn)n�0 of distinct elements of � such that

limn→∞ γn(x0) = x.
The limit set L of � is the set of limit points of �.

Let us add a short reminder on proper group actions.
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Definition 6.4.16 ([Bou71, III, §4, Définition 1]) We say that the action of a
topological group G on a topological space E is proper if the map

� × E → E × E

(γ, x) �→ (x, γ · x)

is proper.

Proposition 6.4.17 ([Bou71, III, §4, Propositions 3 and 7]) Let G be a locally
compact topological group and E be a Hausdorff topological space. Then, the
action of G on E is proper if, and only if, for every x, y ∈ E, there exist
neighborhoods Ux and Uy of x and y respectively such that the set {γ ∈ � |
γUx ∩ Uy �= ∅} is relatively compact (that is to say finite, if G is discrete).

In this case, the quotient space �\E is Hausdorff. ��
We denote by C the set of points x ∈ P

1,an
k that admit a neighborhood Ux

satisfying {γ ∈ � : γUx ∩ Ux �= ∅} = {id}. The set C is an open subset of P1,an
k

and the quotient map C → �\C is a local homeomorphism. In particular, the
topological space �\C is naturally endowed with a structure of analytic space via
this map.

Theorem 6.4.18 We have O = C = P
1,an
k − L. Moreover, the action of � on O is

free and proper and the quotient �\O is a Mumford curve of genus g.
Set X := �\O and denote by p : O → X the quotient map. Let �O , �F+ and

�X denote the skeleta of O , F+ and X respectively. Then, �O is the trace on O of
the convex envelope of L:

�O = O ∩
⋃

x,y∈L

[x, y]

and we have

p−1(�X) = �O and p(�O) = p(�F+) = �X.

(See Fig. 6.3 for an illustration.)

Proof Let x ∈ L. By definition, there exist x0 ∈ P
1,an
k and a sequence (γn)n�0 of

distinct elements of � such that limn→∞ γn(x0) = x. Assume that x ∈ F+. Since
F+ is contained in the interior of O1, there exists N � 0 such that γN(x0) ∈ O1,
hence we may assume that x0 ∈ O1. Lemma 6.4.6 then leads to a contradiction.
It follows that L does not meet F+, hence, by �-invariance, L is contained in
P
1,an
k − O .

Let y ∈ P
1,an
k − O . By definition, there exists a sequence (wn)n�0 of reduced

words over �± such that, for each n � 0, |wn| � n and y ∈ D−(wn). Let y0 ∈ F−.
By Lemma 6.4.6, for each n � 0, we have wn(y0) ∈ D−(wn) and the sequence of
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Fig. 6.3 The closed fundamental domain F + (on the left) of the Schottky group � is a Swiss
cheese. The group � identifies the ends of the skeleton �F + , so that the corresponding Mumford
curve (on the right) contains the finite graph �X

discs (D+(wn))n�0 is strictly decreasing. By Corollary 6.4.13, (wn(y0))n�0 tends
to y, hence y ∈ L. It follows that P1,an

k − O = L.
Set

U := F+ ∪
⋃

γ∈�±
γF− = P

1,an
k −

⊔

|γ |=2

D+(γ ).

It is an open subset of P1,an
k and it follows from the properties of the action (see

Lemma 6.4.6) that we have {γ ∈ � | γU ∩U �= ∅} = {id}∪�±. Using the fact that
the stabilizers of the points of U are trivial, we deduce that U ⊆ C. Letting � act,
it follows that O ⊆ C. Since no limit point may belong to C, we deduce that this is
actually an equality.

We have already seen that the action is free on O . Let us prove that it is proper.
Let x, y ∈ O . There exists n � 0 such that x and y belong to the interior of On. By
Lemma 6.4.6, the set {γ ∈ � : γOn ∩ On �= ∅} is made of elements of length at
most 2n+1. In particular, it is finite. We deduce that the action of � on O is proper.

The compact subset F+ of P1,an
k contains a point of every orbit of every element

of O . It follows that �\O is compact. The set F− is an open k-Swiss cheese and
the map p is injective on it, which implies that p|F− induces an isomorphism onto
its image. In addition, one may check that each subset of the form D+(γ ) − D−(γ )

for γ ∈ {γ ±1
1 , . . . , γ ±1

g } is contained in an open k-annulus on which p is injective.
It follows that any element of �\O has a neighborhood isomorphic to a k-Swiss
cheese, hence �\O is a Mumford curve.

Set � := O ∩⋃

x,y∈L[x, y]. It is clear that no point of � is contained in a virtual
open disc inside O , hence � ⊆ �O . It follows from [PT20, Proposition 5.7.10] that
P
1,an
k − � is a union of virtual open discs, hence �O ∩ (P

1,an
k − �) = ∅. We deduce

that �O = �. Note that it follows that �F+ = �O ∩ F+.
Let x ∈ O−�O . Then x is contained in a virtual open disc insideO . Assume that

there exists γ ∈ � such that x ∈ γF−. Then, the said virtual open disc is contained
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in γF−. Since p|γF− induces an isomorphism onto its image, p(x) is contained in
a virtual open disc in X, hence p(x) /∈ �X. As above, the argument may be adapted
to handle all the points of O − �O . It follows that p−1(�X) ⊆ �O .

Let x ∈ �O . In order to show that p(x) ∈ �X, we may replace x by γ (x) for any
γ ∈ �, hence assume that x ∈ F+∩�O = �F+ . From the explicit description of the
action of � on F+, we may describe precisely the behaviour of p on �F+ = �F− ∪
∂F+: it is injective on�F− and identifies pairs of points in ∂F+. It follows that p(x)

belongs to a injective loop inside X and Remark 6.3.8 then ensures that p(x) ∈ �X.
The results about the skeleta follow directly.

It remains to prove that the genus of X = �\O is equal to g. The arguments
above show that �X � �\�F+ is a graph with cyclomatic number g. The result
now follows from Corollary 6.3.29. ��
Example 6.4.19 (Tate Curves) If g = 1 in the theory above, one starts with the
data of an element γ ∈ PGL2(k) and of two disjoint closed discs D+(γ ) and
D+(γ −1) in such a way that γ (P

1,an
k − D+(γ −1)) is a maximal open disc inside

D+(γ ). Since γ is loxodromic, up to conjugation, it is represented by a matrix of

the form

[

q 0
0 1

]

for some q ∈ k satisfying 0 < |q| < 1. In other words, up to a

change of coordinate in P
1,an
k , the transformation γ is the multiplication by q and

hence the limit set L consists only of the two points 0 and ∞. The quotient curve
obtained from applying Theorem 6.4.18 is an elliptic curve, whose set of k-points is
isomorphic to the multiplicative group k×/qZ.

Remark 6.4.20 It follows from Theorem 6.4.18 and Corollary 6.4.13 that each point
in the limit set may be described as the intersection of a nested sequence of discs
of the form

⋂

n�0 D+(wn), for a sequence of words wn whose lengths tend to
infinity. This is a rather concrete description, that could easily be implemented to
any precision on a computer. The complex version of this idea gave rise to beautiful
pictures in [MSW15].

Actually, we highly recommend the whole book [MSW15] to the reader. It starts
with the example of a complex Schottky group with two generators in a very
accessible way and then carefully presents a large amount of advanced material,
with an original and colorful terminology, enriched with many pictures. Among
the subjects covered are the Hausdorff dimension of the limit set (“fractal dust”),
the degeneration of the notion of Schottky groups when the discs in the Schottky
figures become tangent (“kissing Schottky groups”), etc. We believe that it is worth
investigating those questions in the non-Archimedean setting too. In particular,
finding a way to draw meaningful non-Archimedean pictures would certainly be
very rewarding.
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6.4.2 Group-Theoretic Version

We now give the general definition of Schottky group over k and explain how it
relates to the geometric situation considered in the previous sections. As regards
proper actions, recall Definition 6.4.16 and Proposition 6.4.17.

Definition 6.4.21 A subgroup � of PGL2(k) is said to be a Schottky group over k

if

(i) it is free and finitely generated;
(ii) all its non-trivial elements are loxodromic;
(iii) there exists a non-empty �-invariant connected open subset of P1,an

k on which
the action of � is free and proper.

Remark 6.4.22 Schottky groups are discrete subgroups of PGL2(k). Indeed any
element of PGL2(k) that is close enough to the identity has both eigenvalues of
absolute value 1, hence cannot be loxodromic.

Remark 6.4.23 There are other definitions of Schottky groups in the literature.
L. Gerritzen and M. van der Put use a slightly different version of condition (iii)
(see [GvdP80, I (1.6)]). This is due to the fact that they work in the setting of rigid
geometry, where the space consists only of our rigid points. We chose to formulate
our definition this way in order to take advantage of the nice topological properties
of Berkovich spaces and make it look closer to the definition used in complex
geometry.

D. Mumford considered a more general setting where k is the fraction field of a
complete integrally closed noetherian local ring and he requires only properties (i)
and (ii) in his definition of Schottky group (see [Mum72a, Definition 1.3]). The
intersection with our setting consists of the complete discretely valued fields k.

When k is a local field, all the definitions coincide (see [GvdP80, I (1.6.4)] and
Sect. 6.4.4).

Schottky groups arise naturally when we have Schottky figures as in Sect. 6.4.1.
Indeed, the following result follows from Proposition 6.4.7, Corollary 6.4.12 and
Theorem 6.4.18.

Proposition 6.4.24 Let � be a subgroup of PGL2(k) generated by finitely many
elements γ1, . . . , γg. If there exists a Schottky figure adapted to (γ1, . . . , γg), then �

is a Schottky group. ��
We now turn to the proof of the converse statement.

Lemma 6.4.25 Let γ be a loxodromic Möbius transformation. Let A and A′ be
disjoint virtual flat closed annuli. Denote by I the open interval equal to the interior
of the path joining their boundary points. Assume that γA1 = A2 and γ I ∩ I = ∅.
For ε ∈ {∅,′ }, denote by Dε the connected component of P1,an

k − Aε that does
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not meet I . Then, for ε ∈ {∅,′ }, Aε is a flat closed annulus, Dε is an open disc,
Eε := Dε ∪ Aε is a closed disc and we have

γD = P
1,an
k − E′ and γE = P

1,an
k − D′.

Proof For each ε ∈ {∅,′ }, Dε and Eε are respectively a virtual open disc and a
virtual closed disc. Note that the set P1,an

k − Aε has two connected components,

namely Dε and P1,an
k − Eε , and that the latter contains I .

Since γ is an automorphism, it sends the connected component P1,an
k − E of

P
1,an
k − A to a connected component C of P1,an

k − γA = P
1,an
k − A′. Denote

by η and η′ the boundary points of A and A′. Let z ∈ P
1,an
k − E. The unique

path [η, z] between η and z then meets I . Its image is the unique path [η′, γ (z)]
between γ (η) = η′ and γ (z). If γ (z) /∈ E′, then this path meets I , contradicting the
assumption γ I ∩ I = ∅. We deduce that γ (z) ∈ E′, hence that C = D′. It follows
that we have

γD = P
1,an
k − E′ and γE = P

1,an
k − D′,

as wanted.
In particular, D and D′ contain respectively the attracting and repelling fixed

point of γ . Since those points are k-rational, we deduce that D and D′ are discs.
The rest of the result follows. ��
Theorem 6.4.26 Let � be a Schottky group over k. Then, there exists a basis β of �
and a Schottky figure B that is adapted to β.

Proof By assumption, there exists a non-empty �-invariant connected open sub-
set U of P1,an

k on which the action of � is free and proper. The quotient X := �\U
is then an A

1,an
k -like curve in the sense of Sect. 6.3.1. Since U is a connected

subset of P1,an
k , it is simply connected, hence the fundamental group π1(X) of X

is isomorphic to �. Since X is finitely generated, the topological genus g of X is
finite.

Fix a skeleton � of X and consider the associated retraction τ : X → �. Fix
g elements γ1, . . . , γg of � corresponding to disjoint simple loops in �. Note that
γ1, . . . , γg is a basis of �.

For each i ∈ {1, . . . , g}, pick a point xi ∈ αi that is not a branch point of �. Its
preimage by the retraction Ai := τ−1(xi) is then a virtual flat closed annulus.

Let Y ′ be an open subset of U such that the morphism Y ′ → X induced by the
quotient is an isomorphism onto X − ⋃

1�i�Ai
. We extend it to a compact lift Y

of X in U by adding, for each i ∈ {1, . . . , g}, two virtual flat annuli Bi and B ′
i that

are isomorphic preimages of Ai . Up to switching the names, we may assume that
γiBi = B ′

i .
Let i ∈ {1, . . . , g}. The complement of Bi (resp. B ′

i ) has two connected
components. Let us denote by D−(γi) (resp. D−(γ −1

i )) the one that does not
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meet Y . It is a virtual open disc. We set D+(γ −1
i ) = D−(γ −1

i ) ∪ Bi and D+(γi) =
D−(γi) ∪ B ′

i .
By construction of Y ′, for each γ ∈ � − {id}, we have γ Y ′ ∩ Y ′ = ∅. It now

follows from Lemma 6.4.25 that the family (D+(γ σ
i ), 1 � i � g, σ = ±) is a

Schottky figure adapted to (γ1, . . . , γg).
��

Remark 6.4.27 The fact that � is free is actually not used in the proof of Theo-
rem 6.4.26. As a result, Proposition 6.4.24 shows that it is a consequence of the
other properties appearing in the definition of a Schottky group. It could also be
deduced from the fact that the fundamental group of a Berkovich curve (which is
the same as that of its skeleton) is free.

6.4.3 Twisted Ford Discs

We can actually be more precise about the form of the discs in the Schottky figure
from Theorem 6.4.26. To do so, we introduce some terminology.

Definition 6.4.28 Let γ =
[

a b

c d

]

∈ PGL2(k), with c �= 0, be a loxodromic

Möbius transformation and let λ ∈ R>0. We call open and closed twisted Ford
discs associated to (γ, λ) the sets

D−
(γ ,λ) :=

{

z ∈ k : λ|γ ′(z)| = λ
|ad − bc|
|cz + d|2 > 1

}

and

D+
(γ ,λ) :=

{

z ∈ k : λ|γ ′(z)| = λ
|ad − bc|
|cz + d|2 � 1

}

.

Lemma 6.4.29 Let α, α′, β ∈ k with α �= α′ and |β| < 1 and let λ ∈ R>0. Set

γ := M(α, α′, β) =
[

a b

c d

]

. The twisted Ford discs D−
(γ ,λ) and D+

(γ ,λ) have center

α′ − βα

1 − β
= −d

c

and radius

ρ = (λ|β|)1/2|α − α′|
|1 − β| = (λ |ad − bc|)1/2

|c| .

In particular, α′ ∈ D−
(γ ,λ) if, and only if, |β| < λ.
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The twisted Ford discs D−
(γ −1,λ−1)

and D+
(γ −1,λ−1)

have center

α − βα′

1 − β
= a

c

and radius ρ′ = ρ/λ.
In particular, α ∈ D−

(γ −1,λ−1)
if, and only if, |β| < λ−1. ��

Lemma 6.4.30 Let γ ∈ PGL2(k) be a loxodromicMöbius transformation that does
not fix ∞ and let λ ∈ R>0. Then, we have γ (D+

(γ ,λ)) = P
1,an
k − D−

(γ −1,λ−1)
.

Proof Let us write γ =
[

a b

c d

]

. Since γ does not fix ∞, we have c �= 0. Let K be a

complete valued extension of k and let z ∈ K . We have | − cγ (z) + a| |cz + d| =
|ad − bc|, hence

z ∈ D(γ,λ) ⇐⇒ λ
|ad − bc|
|cz + d|2 ≥ 1 ⇐⇒ λ−1 |ad − bc|

| − cγ (z) + a|2 ≤ 1.

Since we have γ −1 =
[

d −b

−c a

]

, the latter condition describes precisely the

complement of D−
(γ −1,λ−1)

. ��
Lemma 6.4.31 Let γ ∈ PGL2(k) be a loxodromic Möbius transformation. Let
D+(γ ) and D+(γ −1) be disjoint closed discs in P

1,an
k . Set

D−(γ ) := γ (P
1,an
k − D+(γ −1)) and D−(γ −1) := γ −1(P

1,an
k − D+(γ )).

Assume that D−(γ ) and D−(γ −1) are maximal open discs inside D+(γ ) and
D+(γ −1) respectively and that they are contained in A1,an

k .
Then, there exists λ ∈ R>0 such that, for each σ ∈ {−,+}, we have

Dσ (γ ) = Dσ
γ,λ and Dσ (γ −1) = Dσ

γ −1,λ−1 .

Proof Denote by α and α′ the attracting and repelling fixed points of γ respectively.
By the same argument as in Remark 6.4.2, we have α ∈ D−(γ −1) and α′ ∈ D−(γ ).
Let r, r ′ > 0 such that D−(γ ) = D−(α′, r ′) and D−(γ −1) = D−(α, r).

Write γ =
[

a b

c d

]

with a, b, c, d ∈ k. Since α, α′ ∈ A
1,an
k , we have c �= 0.

By assumption, ∞ ∈ γ (D−(γ −1)), hence −d/c ∈ D−(γ −1) and D−(γ −1) =
D−(−d/c, r). Similarly, we have D−(γ ) = D−(a/c, r ′).
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Writing

aT + b

cT + d
= a

c
− ad − bc

c2

1

T + d
c

,

it is not difficult to compute γ (D−(γ −1)) and prove that we have

r = |ad − bc|
|c|2 r ′ = |β| |α − α′|2

r ′ .

Set

λ := r2

|β| |α − α′|2 = r

r ′ = |β| |α − α′|2
(r ′)2

.

SinceD+(γ ) and D+(γ −1) are disjoint, we have max(r, r ′) < |α−α′|, hence |β| <

min(λ, λ−1). It follows thatD−
γ,λ andD−

γ −1,λ−1 contains respectivelyα′ and α, hence

D−
(γ ,λ) = D−(α′, r ′) = D−(γ ) and D−

(γ −1,λ−1)
= D−(α, r) = D−(γ −1).

��
Corollary 6.4.32 Let � be a Schottky group over k whose limit set does not
contain ∞. Then, there exists a basis (γ1, . . . , γg) of � and λ1, . . . , λg ∈ R>0
such that the family of discs

(

D+
(γ ε

i ,λε
i )
, 1 � i � g, ε ∈ {±1}) is a Schottky figure

that is adapted to (γ1, . . . , γg).

Proof By Theorem 6.4.26, there exists a basis β = (γ1, . . . , γg) of � and a Schottky
figure B = (D+(γ ε

i ), 1 � i � g, ε ∈ {±1}) that is adapted to β. As in Sect. 6.4.1,
define the open discs D−(γ ±1

i ) and set

F+ := P
1
k −

⋃

1�i�g
ε=±1

D−(γ ε
i ).

By Theorem 6.4.18, since ∞ is not a limit point of �, there exists γ ∈ � such that
∞ ∈ γF+.

Set β ′ := (γ γ1γ
−1, . . . , γ γgγ −1). It is a basis of � and the family of discs B′ :=

(γD+(γ ε
i ), 1 � i � g, ε ∈ {±1}) is a Schottky figure that is adapted to it. Since all

the discs γD+(γ ±1
i ) are contained in A

1,an
k , we may now apply Lemma 6.4.31 to

conclude. ��
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6.4.4 Local Fields

When k is a local field, the definition of a Schottky group can be greatly simplified.
Our treatment here borrows from [GvdP80, I (1.6)] (see also [Mar07, Lemma 2.1.1]
in the complex setting).

Lemma 6.4.33 Let (γn)n∈N be a sequence of loxodromic Möbius transformations
such that

(i) (γn)n∈N has no convergent subsequence in PGL2(k);
(ii) the sequence of Koebe coordinates ((αn, α

′
n, βn))n∈N converges to some

(α, α′, β) ∈ (P1(k))3.

Then, (γn)n∈N converges to the constant function α uniformly on compact subsets
of P1,an

k − {α′}.
Proof By definition, for each n ∈ N, we have |βn| < 1, which implies that |β| < 1.

Up to changing coordinates, we may assume that α, α′ ∈ k. Up to modifying
finitely many terms of the sequences, we may assume that, for each n ∈ N, we have
αn, α

′
n ∈ k. In this case, for each n ∈ N, we have

γn =:
[

αn − βnα
′
n (βn − 1)αnα

′
n

1 − βn βnαn − α′
n

]

in PGL2(k).

The determinant of the above matrix is βn(αn − α′
n)

2. Since (γn)n∈N has no
convergent subsequence in PGL2(k), we deduce that β(α − α′)2 = 0. In each of
the two cases β = 0 and α = α′, it is not difficult to check that the claimed result
holds.

��
The result below shows that the definition of Schottky group may be simplified

when k is a local field. Note that, in this case, P1(k) is compact, hence closed
in P1,an

k .

Corollary 6.4.34 Assume that k is a local field. Let � be a subgroup of PGL2(k)

all of whose non-trivial elements are loxodromic.
Let � be the set of fixed points of the elements of �−{id} and let �̄ be its closure

in P
1,an
k . Then, �̄ is a compact subset of P1,an

k that is contained in P
1(k) and the

action of � on P1,an
k − �̄ is free and proper.

Proof Since k is locally compact for the topology given by the absolute value,
P
1(k) is compact. By [PT20, Remark 5.4.1], the topology on k given by the absolute

value coincides with that induced by the topology on A
1,an
k . We deduce that P1(k)

is a compact subset of P1,an
k . It follows that �̄ is contained in P

1(k) and that it is
compact, as it is closed.
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The action of � is obviously free on P
1,an
k − �̄. Assume, by contradiction, that

it is not proper. Then, there exist x, y /∈ �̄ such that, for every neighborhoods U

and V of x and y respectively, the set {γ ∈ � : γU ∩ V �= ∅} is infinite.
Since k is a local field, [PT20, Corollary 5.4.6] ensures that the space A

1,an
k is

metrizable. In particular, we may find countable bases of neighborhoods (Un)n∈N
and (Vn)n∈N of x and y respectively. By assumption, there exist a sequence (γn)n∈N
of distinct elements of � and a sequence (xn)n∈N of elements of P1,an

k −�̄ such that,
for each n ∈ N, we have xn ∈ Un and γn(xn) ∈ Vn. In particular, (xn)n∈N converges
to x and (γn(xn))n∈N converges to y.

Since all the non-trivial elements of � are loxodromic, by the same argument
as in Remark 6.4.22, the group � is discrete. As a result, up to passing to a
subsequence, we may assume that the assumptions of Lemma 6.4.33 are satisfied.
Define α and α′ as in this Lemma. Since x does not belong to �̄, it cannot be equal
to α′. It follows that the sequences (γn(xn))n∈N and (γn(x))n∈N converge to the
same limit y = α, and we get a contradiction since α ∈ �̄. ��
Corollary 6.4.35 Assume that k is a local field. Then, a subgroup � of PGL2(k) is
a Schottky group if, and only if, it is finitely generated and all its non-trivial elements
are loxodromic. ��

6.5 Uniformization of Mumford Curves

The main result of this section, Theorem 6.5.3, states that the procedure described
in Sect. 6.4.1 can be reversed: any Mumford curve may be uniformized by an open
subset of the Berkovich projective line P1,an

k with a Schottky group as group of deck
transformations. The consequences of this result are many and far-reaching. Some
of them are discussed in Appendix A.3.

This was first proved by D. Mumford in his influential paper [Mum72a],
where he introduces this as a non-Archimedean analogue of the uniformization of
handlebodies by means of Schottky groups in the complex setting. His arguments
make a heavy use of formal models of the curves. Here, we argue directly on the
curves themselves, following the strategy of [GvdP80, Chapter IV] and [Lüt16,
Proposition 4.6.6]. Note, however that the proof in the first reference is flawed (since
it relies on the wrong claim that every k-analytic curve of genus 0 embeds into P1,an

k ,
see Remark 6.5.7) and that the second reference assumes that the curve contains at
least three rational points.

As an application, we discuss how Theorem 6.5.3 can be used to study the
automorphism groups of Mumford curves. This is far from being the sole purpose
of uniformization. Other important consequences are mentioned in Appendix A.3.
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6.5.1 The Uniformization Theorem

In this section, we prove that any analytic Mumford curve as defined in 6.3.24 can
be obtained as the quotient of an open dense subspace of P1,an

k by the action of a
Schottky group, leading to a purely analytic proof of Mumford’s theorem. We begin
with a few preparatory results.

Lemma 6.5.1 Let L be a compact subset of P1(k). Set O := P
1,an
k − L.

(i) Every bounded analytic function on O is constant.
(ii) Every automorphism of O is induced by an element of PGL2(k).

Proof

(i) Let F ∈ O(O). The function F is constant if, and only if, its pullback to O
̂ka

is, hence we may assume that k is algebraically closed.
Assume, by contradiction, that F is not constant. Then, there exists x ∈ O

and a branch b at x such that F(x) �= 0 and |F | is monomial at x along b with a
positive integer exponent. We may assume that x is of type 2 or 3. Then, there
exists y ∈ O − {x} and N ∈ N�1 such that, for each z ∈ [x, y], we have
|F(z)| = |F(x)| �([x, z])N .

Let us now consider a path [x, y], with y ∈ P
1,an
k , with the following

property: for each z ∈ (x, y), |F | is monomial at z with positive integer slope
along the branch in (x, y) going away from x. By Zorn’s lemma, we may find
a maximal path [x, y] among those.

We claim that y is of type 1. If y is of type 4, then, by [PT20, The-
orem5.10.10], |F | is constant in the neighborhood of y in (x, y), and we
get a contradiction. Assume that b is of type 2 or 3. Then, the exponent
of |F | at y along the branch corresponding to [y, x] is negative. By [PT20,
Corollary 5.10.12], there exists a branch b at y such that |F | is monomial with
positive exponent at y along b, which contradicts the maximality. Finally, y is
of type 1.

By assumption, |F | has a positive integer exponent everywhere on (x, y). It
follows that, for each z ∈ (x, y), we have |F(z)| � |F(x)| �([x, z]). Since y

is of type 1, by [PT20, Lemma5.9.12], we have �([x, y]) = ∞, hence F is
unbounded. This is a contradiction.

(ii) Let σ be an automorphism of O .
Let us first assume that O contains at least 2 k-rational points. Up to

changing coordinates, we may assume that 0,∞ ∈ O . Let us choose an
automorphism τ ∈ PGL2(k) that agrees with σ on 0 and ∞. Then τ−1 ◦ σ

is an automorphism of O that fixes 0 and ∞. In particular, it corresponds to
an analytic function with a zero of order 1 at 0 and a pole of order 1 at ∞.
Let us consider the quotient analytic function ϕ := (τ−1 ◦ σ)/id. There exist
a neighborhood U of 0 and a neighborhood V of ∞ on which ϕ is bounded.
Since τ−1 ◦ σ is an automorphism, it sends V to a neighborhood of ∞, hence
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it is bounded on O − V . It follows that ϕ is bounded on O − (U ∪ V ), hence
on O . By (i), we deduce that ϕ is constant, and the result follows.

Let us now handle the case where O ∩ P
1(k) = ∅. There exists a finite

extension K of k such that OK contains a K-rational point. Applying the
previous argument after extending the scalars to K , we deduce that σ belongs
to PGL2(K). Since it preserves P1(k), it actually belongs to PGL2(k).

��
Lemma 6.5.2 Let Y be a connected k-analytic A1-like curve of genus 0. Let T =
(S,A,D) be a triangulation of Y . Assume that A is non-empty and consists of
annuli. Let U be an open relatively compact subset of �T . Then, there exists an
embedding of τ−1

T (U) into P
1,an
k such that the complement of τ−1

T (U) is a disjoint
union of finitely many closed discs.

Proof Recall that �T is a locally finite graph (see Theorem 6.3.2). As a conse-
quence, the boundary ∂U of U in �T is finite. For each z ∈ ∂U , let Iz be an open
interval in �T having z as an end-point. Up to shrinking the Iz’s, we may assume
that they are disjoint.

Let z ∈ ∂U . Set Az := τ−1
T (Iz). Since every element of A is an annulus, up

to shrinking Iz (so that it contains no points of S), we may assume that Az is an
annulus. The open annulus Az may be embedded into an open disc Dz such that the
complement is a closed disc.

Let us construct a curve Y ′ by starting from τ−1
T (U) an gluing Dz along Az for

each z ∈ ∂U . By construction, the curve Y ′ is compact and of genus 0. Moreover, it
contains rational points, as the Dz do. It follows from Theorems 6.3.12 and 6.3.23
that Y ′ is isomorphic to P

1,an
k . By construction,

P
1,an
k − τ−1

T (U) =
⋃

z∈∂U

Dz − Az

is a disjoint union of finitely many closed discs. ��
We now state and prove the uniformization theorem.

Theorem 6.5.3 Let X be a k-analytic Mumford curve. Then the fundamental
group � of X is a Schottky group. If we denote by L the limit set of �, then
O := P

1,an
k − L is a universal cover of X. In particular, we have X � �\O .

Proof Assume that the genus of X is bigger than or equal to 2.
Let p : Y → X be the topological universal cover of X. Since p is a local

homeomorphism, we may use it to endow Y with a k-analytic structure. The set Y

then becomes an A
1-like curve and the map p becomes a local isomorphism of

locally ringed spaces. Note that the curve Y has genus 0.
We claim that it is enough to prove that Y is isomorphic to an open subset

of P1,an
k whose complement lies in P1(k). Indeed, in this case, Y is simply connected,

hence the fundamental group � of X may be identified with the group of deck
transformations of p. By Lemma 6.5.1, it embeds into PGL2(k). It now follows
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from the properties of the universal cover and the fundamental group that � is a
Schottky group (see Remark 6.2.12 for the fact that the non-trivial elements of �

are loxodromic). Moreover, by Theorem 6.4.18, we have Y ⊆ P
1,an
k −L, where L is

the limit set of �, hence X = �\Y ⊂ �\(P1,an
k − L). Since �\Y and �\(P1,an

k − L)

are both connected proper curves, they have to be equal, hence Y = P
1,an
k − L.

In the rest of the proof, we show that Y embeds into P
1,an
k with a complement

in P1(k). Since X is a k-analytic Mumford curve of genus at least 2, it has a minimal
skeleton �X and the connected components of �X deprived of its branch points are
skeleta of open annuli over k. Its preimage p−1(�X) coincides with the minimal
skeleton�Y of Y . Similarly, the connected components of �Y deprived of its branch
points are skeleta of open annuli over k. We denote by τY : Y → �Y the canonical
retraction.

Let x0 ∈ X and y0 ∈ p−1(x0). Let �X be a loop in �X based at x0 that is not
homotopic to 0. It lifts to a path in�Y between y0 and a point y1 of p−1(x0). We may
then lift again �X to a path in �Y between y1 and a point y2 of p−1(x0). Repeating
the procedure, we obtain a non-relatively compact path λ(�X) in �Y starting at y0.
Note that the length of λ(�X) is infinite since it contains infinitely many copies
of �X.

More generally, all the maximal paths starting from y0 in �Y are of infinite
length, since they contain infinitely many lifts of loops from �X.

Since X is of genus at least 2, we may find two loops �X,0 and �X,1 based at x0
in �X that are not homotopic to 0 and not homotopic one to the other. Set �0 :=
λ(�X,0), �∞ := λ(�−1

X,0) and �1 := λ(�X,1). Away from some compact set of Y , the
three paths �0, �∞, �1 are disjoint. Up to moving x0 and y0, we may assume that

�0 ∩ �1 = �∞ ∩ �1 = �0 ∩ �∞ = {y0}.

For i ∈ {0, 1,∞} and r ∈ R�1, we denote by ξi,r the unique point of �i such that
�([y0, ξi,r ]) = r .

Let n ∈ N�1. Set

Un := {z ∈ �Y : �([y0, z]) < 2n} and Yn := τ−1
Y (Un).

We already saw that all the maximal paths starting from y0 in �Y are of infinite
length, hence Un is relatively compact in �Y . Denote by ∂Un the boundary of Un

in �Y . For each z ∈ ∂Un, we have �([y0, z]) = 2n.
By Lemma 6.5.2, there exists an open subset On of P1,an

k and an isomorphism

ϕn : Yn
∼−→ On such that P1,an

k − On is a disjoint union of closed discs. For each

z ∈ ∂Un, we denote by pz the end-point of ϕn([y0, z)) in P
1,an
k − On and by Dz

the connected component of P1,an
k − On whose boundary point is pz. To ease the

notation, for i ∈ {0, 1,∞}, we set Di,n := Dξi,2n .

Let us fix a point at infinity on P
1,an
k and a coordinate T on A

1,an
k ⊂ P

1,an
k . We

may assume that, for each i ∈ {0, 1,∞}, we have i ∈ Di,n. By pulling back the
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analytic function T on On by ϕn, we get a analytic function on Yn. We denote it
by ψn. Recall that it is actually equivalent to give oneself ϕn or ψn, see [PT20,
Lemma5.5.11]. ��
Lemma 6.5.4 We have ϕn(y0) = η1. For each r ∈ [1, 2n), we have

ϕn(ξ0,r ) = η1/r , ϕn(ξ∞,r ) = ηr and ϕn(ξ1,r ) = η1,1/r .

Let C be a connected component C of Y − (�0 ∪ �∞). For each y ∈ C ∩ Yn, we
have

|ψn(y)| =
{

1/r if the boundary point of C is ξ0,r;
r if the boundary point of C is ξ∞,r .

Let N ∈ �1, n�. The image ϕn(YN) is an open Swiss cheese. More precisely, there
exist d ∈ N�2, α2, . . . , αd ∈ k∗ and, for each j ∈ �2, d�, rj ∈ [2−N, |αj |) such
that ϕn(YN) is the subset of A1,an

k defined by the following conditions:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

2−N < |T | < 2N ;
|T − 1| > 2−N ;
∀j ∈ �2, d�, |T − αj | > rj .

Proof It follows from the construction that, for each i ∈ {0, 1,∞}, ϕn([y0, ξi,2n ) is
an injective path joining ϕn(y0) to the boundary point of a disc centered at i. Since
those paths only meet at ϕn(y0), the only possibility is that ϕn(y0) = {η1}.

Let r ∈ [1, 2n). Since lengths are preserved by automorphism (see [PT20,
Proposition 5.5.14]), for each i ∈ {0, 1,∞}, we have �([η1, ϕn(ξi,r )]) = r . Since
ϕn(ξ∞,r ) belongs to [η1,∞], it follows that ϕn(ξ∞,r ) = ηr . By a similar argument,
we have ϕn(ξ0,r ) = η1/r and ϕn(ξ1,r ) = η1,1/r .

Recall that we have I0 = {ηr : r ∈ R�0} ⊂ A
1,an
k . Let C be a connected

component of A1,an
k − I0 and let ηr be its boundary point. Then, for each z ∈ C, we

have |T (z)| = r .
We have ϕ−1

n (I0 ∩ On) = (�0 ∪ �∞) ∩ Yn. By definition of ψn, for each y ∈ Yn,
we have |ψn(y)| = |T (ϕn(y))|. It follows that, for each connected component C of
Y − (�0 ∪ �∞) and each y ∈ C ∩ Yn, we have

|ψn(y)| =
{

1/r if the boundary point of C is ξ0,r;
r if the boundary point of C is ξ∞,r .

The set On is an open Swiss cheese. The set ϕn(UN) is a connected open subset
of its skeleton and ϕn(YN) is the preimage of it by the retraction. It follows that
ϕn(YN) is an open Swiss cheese too, hence the complement in P

1,an
k of finitely

many closed discs E∞, E0, . . . , Ed . Let z∞, z0, . . . , zd denote the corresponding
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boundary points. The set ϕn(YN) contains ϕn(y0) = η1 and, by construction of YN ,
for each i ∈ {∞} ∪ �0, d�, we have �([η1, zi ]) = 2N .

Since 0, 1 and ∞ do not belong to On, some of those discs Ei contain those
points. Since ϕn(YN) contains η1, those discs are disjoint. We may assume that, for
each i ∈ {0, 1,∞}, we have i ∈ Ei . The length property then implies that we have
z∞ = η2N , z0 = η2−N and z0 = η1,2−N . In other words,

P
1,an
k − (E∞ ∪ E0 ∪ E1) = {x ∈ A

1,an
k : 2−N < |T (x)| < 2N, |T − 1| > 2−N }.

For j ∈ �2, d�, let αj be a k-rational point of Ej . The boundary point zj of Ej

is then of the form ηαj ,rj for some rj ∈ R�0. Since Ej does not contain 0, we have
rj < |αj |. Moreover, the condition �([η1, ηαj ,rj ]) = 2N implies that rj � 2−N (see
[PT20, Example 5.9.11]). The result follows. ��

Let N,n,m ∈ N�1 with n � m > N . The analytic function ψm has no zeros
on Ym, hence the quotient ψn|Ym/(ψm) defines an analytic function on Ym. Set

hn,m := ψn|Ym

ψm

− 1 ∈ O(Ym).

Lemma 6.5.5 For N,n,m ∈ N�1 with n � m > N , we have ‖hn,m‖YN �
max(2N−m, 2−m/2).

Proof By Lemma 6.5.4, for each y ∈ Ym, we have |ψn(y)| = |ψm(y)|. It follows
that ‖hm,n‖Ym � 1. We now distinguish two cases.

• Assume that |hn,m| is not constant on YN .

By [PT20, Corollary 5.10.16], there exists y ∈ ∂YN such that ‖hn,m‖YN =
|hn,m(y)| and |hn,m| has a negative exponent at y along the branch entering YN . By
harmonicity (see [PT20, Theorem5.10.14]), there exist a branch b at y not belonging
to YN such that the exponent of |hn,m| along b is positive. Repeating the procedure,
we construct a path joining y to a boundary point y ′ of Ym such that |hn,m| has a
positive exponent at each point of [y, y ′) along the branch pointing towards y ′. It
follows that we have

‖hn,m‖Yn � |hn,m(y)| �([y, y ′]) � ‖hn,m‖YN 2m−N,

hence

‖hn,m‖YN � 2N−m.

• Assume that |hn,m| is constant on YN .
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Let N ′ be the maximum integer smaller than or equal to m such that |hn,m| is
constant on YN ′ . Then, for every r ∈ [1, 2N ′

), we have |hn,m(ξ1,r )| = ‖hn,m‖YN ′ .
We also have

|hn,m(ξ1,r )| = |(ψn − ψm)(ξ1,r )|
|ψm(ξ1,r )|

= |(ψn − ψm)(ξ1,r )|
|T (η1,1/r)|

� max(|(ψn − 1)(ξ1,r )|, |(ψm − 1)(ξ1,r )|)
� |(T − 1)(η1,1/r)|

� 1

r
.

We deduce that ‖hn,m‖YN ′ � 2−N ′
.

If N ′ < m, it follows from the previous case that we have ‖hn,m‖YN ′ � 2N ′−m.
In any case, we have

‖hn,m‖YN � 2−m/2.

��
It follows from Lemma 6.5.5 that the sequence (ψn)n>N converges uniformly

on YN . Let ψ(N) be its limit. It is an analytic function on YN .
The functions ψ(N) are compatible, by uniqueness of the limit, which gives rise

to an analytic function ψ ∈ O(Y ). By [PT20, Lemma5.5.11], there exists a unique
analytic morphism ϕ : Y → A

1,an
k such that the pull-back of T by ϕ is ψ .

Let N ∈ N�1. By Lemma 6.5.5, there exists m > N such that, for each n �
m, we have ‖hn,m‖YN � 2−2N . (For instance, one could choose m = 4N .) By
Lemma 6.5.4, we have ‖ψm‖YN = ‖T ‖ϕm(YN) = 2N . It follows that ‖ψn−ψm‖YN �
‖ψm‖YN ‖hn,m‖YN � 2−N . By passing to the limit over n, we deduce that

‖ψ − ψm‖YN � 2−N .

Lemma 6.5.6 We have ϕ(YN) = ϕm(YN) and ϕ|YN is an isomorphism onto its
image.

Proof By Lemma 6.5.4, there exist d ∈ N�2, α2, . . . , αd ∈ k∗ and, for each j ∈
�2, d�, rj ∈ [2−N, |αj |) such that ϕm(YN) is the subset of A1,an

k defined by
⎧

⎪

⎪

⎨

⎪

⎪

⎩

2−N < |T | < 2N ;
|T − 1| > 2−N ;
∀j ∈ �2, d�, |T − αj | > rj .
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For t ∈ (1, 2N), let Wt be the subset of A
1,an
k defined by

⎧

⎪

⎪

⎨

⎪

⎪

⎩

2−N t � |T | � 2Nt−1;
|T − 1| � 2−N t;
∀j ∈ �2, d�, |T − αj | � rj t.

Each Wt is compact and the family (Wt )t∈(1,2N) is an exhaustion of ϕm(YN).
Let n � m. For t ∈ (1, 2N), the set ϕ−1(Wt ) ∩ YN is the subset of points y ∈ YN

such that
⎧

⎪

⎪

⎨

⎪

⎪

⎩

2−N t � |ψ(y)| � 2Nt−1;
|ψ(y) − 1| � 2−N t;
∀j ∈ �2, d�, |ψ(y) − αj | � rj t.

From the inequality ‖ψ − ψm‖YN � 2−N , we deduce that ϕ−1(Wt ) ∩ YN =
ϕ−1

m (Wt) ∩ YN .
It follows that ϕ(YN) = ϕm(YN) and that the morphism ϕ|YN : YN → ϕ(YN) is

proper. Since YN is a smooth curve and ϕ|YN is not constant, it is actually finite.
To prove that ϕ|YN is an isomorphism, it is enough to show that it is of degree 1.

We will prove that, for each r ∈ [1, 2N), we have ϕ−1
|YN

(ξ∞,r ) = {ηr}. This implies
the result, by [PT20, Theorem5.10.17].

Let r ∈ [1, 2N). Let y ∈ YN such that ϕ(y) = ηr . To prove that y = ξ∞,r , we
may extend the scalars to ̂ka . The point ηr of A

1,an
k is characterized by the following

equalities:
⎧

⎨

⎩

|T (ηr)| = r;
∀α ∈ ̂ka with |α| = r, |(T − α)(ηr )| = r.

Since ϕ(y) = ηr , we have

⎧

⎨

⎩

|ψ(y)| = r;
∀α ∈ ̂ka with |α| = r, |ψ(y) − α| = r.

Since ‖ψ − ψm‖YN � 2−N < r , the same equalities hold with ψm instead of ψ . It
follows that ψm(y) = ηr , hence y = ξ∞,r since ψm is injective. ��

It follows from Lemmas 6.5.4 and 6.5.6 that, for each N ∈ N�1, P
1,an
k − ϕ(YN)

is a disjoint union of closed discs with radii smaller than or equal to 2−N . It follows
that

P
1,an
k − ϕ(Y ) =

⋂

N�1

P
1,an
k − ϕ(YN)
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is a compact subset of P1(k) (see the proof of Corollary 6.4.13 for details on k-
rationality). By Lemma 6.5.6 again, ϕ induces an isomorphism onto its image.

We briefly sketch how the proof needs to be modified to handle the case of
genus 0 and 1. One may use similar arguments but the paths �0, �∞, �1 have to
be constructed in a different way. In genus 0, one first proves that X has rational
points and consider paths joining y0 to them. (In this case, one may also argue more
directly to prove that X is isomorphic to P

1,an
k by Theorems 6.3.12 and 6.3.23.) In

genus 1, the skeleton provides two paths and we can use a rational point to construct
the third one. Such a point has to exist, since any annulus over k whose skeleton is
of large enough length contains some.

Remark 6.5.7 The most difficult part of the proof of Theorem 6.5.3 consists in
proving that the k-analytic curve Y , which is known to be of genus 0, may be
embedded into P1,an

k . Contrary to what happens over the field of complex numbers,
this is not automatic. This problem was studied extensively by Q. Liu under the
assumption that k is algebraically closed. He proved that the answer depends
crucially on the maximal completeness of k. If it holds, then any smooth connected
k-analytic curve of finite genus may be embedded into the analytification of an
algebraic curve of the same genus (hence into P

1,an
k in the genus 0 case), see

[Liu87b, Théorème 3] or [Liu87a, Théorème 3.2]. Otherwise, there exists a smooth
connected k-analytic curve of genus 0 with no embedding into P

1,an
k , see [Liu87b,

Proposition 5.5]. Q. Liu also prove several other positive results that hold over any
algebraically closed base field.

The results of Q. Liu are stated and proved in the language of rigid analytic
geometry. We believe that it is worth adapting them to the setting of Berkovich
geometry and that this could lead to a different point of view on the sufficient
conditions for algebraizablity. One may also wonder whether it is necessary to
assume that the base field is algebraically closed to obtain an unconditional positive
result. The case of a discretely valued base field (hence maximally complete but not
algebraically closed) is, of course, particularly interesting.

6.5.2 Automorphisms of Mumford Curves

In this section, we use the uniformization ofMumford curves to study their groups of
k-linear automorphisms. The fundamental result, proven by Mumford in [Mum72a,
Corollary 4.12], is the following theorem. We include a proof of this fact that relies
on the topology of Berkovich curves.

Theorem 6.5.8 Let X be a k-analytic Mumford curve. Let � ⊂ PGL2(k) be its
fundamental group, and let N := NPGL2(k)(�) be the normalizer of � in PGL2(k).
Then, we have

Aut(X) ∼= N/�.
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Proof Let p : O → X be the universal cover of X provided by Theorem 6.5.3,
and let σ ∈ Aut(X). Since p is locally an isomorphism of k-analytic curves, the
automorphism σ can be lifted to an analytic automorphism σ̃ ∈ Aut(O) such that
p ◦ σ̃ = σ ◦ p. By Lemma 6.5.1, σ̃ extends uniquely to an automorphism of P1,an

k ,
that is, an element τ ∈ PGL2(k). The automorphism τ has to normalize �: in fact,
for any γ ∈ �, the element τγ τ−1 ∈ Aut(O) induces the automorphism σσ−1 = id
on X. It follows that τγ τ−1 ∈ �, so that τ ∈ N .

Conversely, let τ ∈ N . By definition, the limit set L of � is preserved by τ . It
follows that τ induces an automorphism of O = P

1,an
k − L. Moreover, for each

γ ∈ � and each x ∈ P
1,an
k , we have

τ (γ (x)) = (τγ τ−1)(τ (x)) ∈ � · τ (x).

It follows that τ descends to an automorphism of X � �\O . ��
As was the case for the uniformization, Mumford’s proof relies on non-trivial

results in formal geometry. The Berkovich analytic proof turns out to be shorter and
much less technical due to the fact that the uniformization of a Mumford curve can
be interpreted as a universal cover of analytic spaces.

Recall fromRemark 6.3.8 that the skeleton�X of theMumford curveX is a finite
metric graph. We will denote by Aut(�X) the group of isometric automorphisms
of �X. An interesting feature of the automorphism group of an analytic curve,
which is immediate in the Berkovich setting, is the existence of a restriction
homomorphism

ρ : Aut(X) −→ Aut(�X)

σ �−→ σ|�X .

Proposition 6.5.9 Let X be a Mumford curve of genus at least 2. Then, the
restriction homomorphism ρ : Aut(X) → Aut(�X) is injective.

Proof Let σ ∈ Aut(X) such that ρ(σ) = id, that is, σ acts trivially on the skeleton
�X. Then, as in the proof of Theorem 6.5.8, one can lift σ to an automorphismof the
universal cover p : O −→ X. By possibly composing this lifting with an element
of the Schottky group, we can find a lifting σ̃ that fixes a point x in the preimage
p−1(�X) ⊂ O . Since σ fixes �X pointwise, then σ̃ fixes the fundamental domain
in p−1(�X) by the action of the Schottky group �X containing x. By continuity of
the action of �X on p−1(�X), the automorphism σ̃ has to fix the whole p−1(�X)

pointwise. But then the corresponding element τ ∈ PGL2(k) obtained by extending
σ̃ thanks to Lemma 6.5.1(ii) has to fix the limit set of �X, which is infinite when
g(X) ≥ 2. It follows that τ is the identity of PGL2(k), hence that σ is the identify
automorphism. ��
Remark 6.5.10 The previous proposition can be proved also using algebraic meth-
ods as follows. The fact that g(X) ≥ 2 implies that Aut(X) is a finite group.
Then, for every σ ∈ Aut(X), Y := X/〈σ 〉 makes sense as a k-analytic curve, and
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the quotient map fσ : X → Y is a ramified covering. Let us now suppose that
ρ(σ) = id. Then Y contains an isometric image of the graph �X, whose cyclomatic
number is g(X), by Corollary 6.3.29. It follows from the definition of the genus that
g(Y ) � g(X). We can now apply Riemann–Hurwitz formula to find that

2g(X) − 2 = deg(fσ )(2g(Y ) − 2) + R,

where R is a positive quantity. Since g(Y ) � g(X) ≥ 2, we deduce that
deg(fσ ) = 1, hence σ = id.

The proposition shows that Aut(�X) controls Aut(X), but it is a very coarse
bound when the genus is high. Much better bounds are known, as one can see in
the examples below and in the first part of Appendix A.3, containing an outline
of further results about automorphisms of Mumford curves, including the case of
positive characteristic.

Example 6.5.11 Let X be a Mumford curve such that Aut(�X) = {1}. Then
Proposition 6.5.9 ensures that X has no non-trivial automorphisms as well. Since,
up to replacing k with a suitable field extension, every stable metric graph can be
realized as the skeleton of a Mumford curve, one can build in this way plenty of
examples of Mumford curves without automorphisms. For example, the graph of
genus 3 in Fig. 6.4 below has a trivial automorphism group, as long as the edge
lengths are generic enough, for example when all lengths are different.

This graph can be obtained by pairwise identifying the ends of a tree as in
Fig. 6.5.

One can realize this tree inside P
1,an
k as the skeleton of a fundamental domain

under the action of a Schottky group in many ways. As an example, if k = Qp

with p ≥ 5, a suitable Schottky group is obtained by carefully choosing the

Fig. 6.4 The metric graph
�X has trivial group of
automorphisms if the edge
lengths are all different

v1

v2 v3

Fig. 6.5 The graph in the
previous figure is obtained
from its universal covering
tree by pairwise gluing the
ends of the finite sub-tree �F .
The gluing is made by
identifying the ends that are
marked with the same shape

p−1(v1)

p−1(v2) p−1(v3)
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0

γ−1
1 (π)

γ−1
1 (0)

γ−1
2 (0)

γ−1
2 (π)

π

1

1 + π
− π

π−2

γ2(1)

γ2(1 + π)

γ1(1)

γ1(1 + π)

x1 x2

D+(γ2)

D+(γ1)

D+(γ−1
2 )

D+(γ−1
1 )

Fig. 6.6 The Schottky figure associated with (γ1, γ2)

Koebe coordinates that give rise to the desired skeleton. One can for instance pick
� = 〈M(0,∞, p3),M(1, 2, p4),M(p, p − 2, p3)〉 and verify that it gives rise to
a fundamental domain whose skeleton is the tree in Fig. 6.5. As a consequence of
Theorem 6.5.8, the normalizer of � in PGL2(k) is the group � itself.

Example 6.5.12 Assume that k is algebraically closed and that its residue character-
istic is different from 2 and 3. Let π, ρ be elements of k satisfying |π | < 1, ρ3 = 1
and ρ �= 1. Fix the following elements of PGL2(k):

a =
[−π 0
−2 π

]

, b =
[

1 + π − ρ (1 + π)(ρ − 1)
1 − ρ (1 + π)ρ − 1

]

.

These elements are of finite order, respectively two and three. The fixed rigid points
of a are 0 and π , while the fixed rigid points of b are 1 and 1 + π .

Thanks to our assumption that char(˜k) �= 2, the transformation a acting on P1,an
k

fixes the path joining 0 and π , and sends every open disc whose boundary point lies
on this path to a disjoint open disc with the same boundary point. For example, the
image by a of the discD−(− π

π−2 , 1) is the disc
2
P
1,an
k −D+(

0, |π |), and vice versa.
The same happens for the action of b: the path joining 1 and 1 + π is fixed,

while any open disc with its boundary point on this path is sent to a disjoint open
disc with the same boundary point. Since b is of order three, the orbit of such a
disc consists of three disjoint discs. For example, the orbit of D−(0, 1) contains
b
(

D−(0, 1)
) = D−(

1 − π
(1+π)ρ−1 , 1

)

and b2
(

D−(0, 1)
) = D−(

1 − π
(1+π)ρ2−1

, 1
)

.

Let us consider the elements γ1 := abab2 and γ2 := ab2ab. Using
the geometry of a and b described above, one can check that the 4-tuple
(

D+(γ1),D
+(γ −1

1 ),D+(γ2),D
+(γ −1

2 )
)

represented in Fig. 6.6 provides a
Schottky figure adapted to (γ1, γ2).

Thanks to Proposition 6.4.24, the existence of a Schottky figure ensures that � =
〈γ1, γ2〉 is a Schottky group of rank 2. Denote its limit set byL. By Theorem 6.4.18,

2Recall that on the projective line we consider also discs “centered in ∞” such as this one.
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Fig. 6.7 The skeleton �X of
the Mumford curve
uniformized by � p(x1) p(x2)

the quotient X := �\(P1,an
k − L) makes sense as a k-analytic space and it is a

Mumford curve of genus 2. Let p : (P
1,an
k − L) → X denote the universal cover.

It also follows from Theorem 6.4.18 that the topology of X may be described quite
explicitly from the action of �. We deduce in this way that the skeleton �X of X

is the metric graph represented in Fig. 6.7. By measuring the lengths of the paths
joining the boundaries of the discs in the Schottky figure, one can verify that the
three edges of �X have equal lengths.

Let us now compute the automorphism group Aut(X). By Theorem 6.5.8, this
can be done by computing the normalizer N of � in PGL2(k). The elements a and
b lie in N , since γia = aγ −1

i for i = 1, 2 and γ1b = bγ −1
2 , but we can also find

elements in N that do not belong to the subgroup generated by a and b. Let

c :=
[

1 + π −π(1 + π)

2 −(1 + π)

]

∈ PGL2(k).

A direct computation shows that the transformation c is such that c2 = id, cac = a

and cbc = b2, so that c belongs to N . The group N ′ = 〈a, b, c〉 ⊂ PGL2(k) is
then contained in N , and the quotient N ′/� is isomorphic to the dihedral group
D6 of order 12. In fact, if we call α, β, γ the respective classes of a, b, c in N ′/�,
we have that αβ = βα, and then 〈α, β〉 is a cyclic group of order 6. However, the
same computation above shows that γ does not commute with β. The group D6
is also the automorphism group of the skeleton �X, and so, by Proposition 6.5.9,
we have N = N ′ and the restriction homomorphism Aut(X) → Aut(�X) is an
isomorphism.

Note that one can extract quite a lot of information from the study of the action
of N on P

1,an
k . In this example, α ∈ Aut(X) is an order 2 automorphism known

as the hyperelliptic involution, since it induces a degree 2 cover of the projective
line ϕ : X → P

1,an
k . This last fact can be checked on the skeleton �X by noting

that α(p(x1)) = p(x2), and hence α has to switch the ends of every edge of �X.
As a result, the quotient X/〈α〉 is a contractible Mumford curve, and hence it is
isomorphic to P

1,an
k .

This description of X as a cover of P
1,an
k is helpful to compute an explicit

equation for the smooth projective curve whose analytification is X. In fact, a
genus 2 curve that is a double cover of the projective line can be realized as the
smooth compactification of a plane curve of equation

y2 =
6

∏

i=1

(x − ai),
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where the ai ∈ k are the ramification points of the cover, and the involution defining
the cover sends y to −y.

In order to find the ai , we shall first compute the branch locus B ⊂ X of
the hyperelliptic cover. The fixed points of a are 0 and π , so the corresponding
points p(0), p(π) are in B. The other branch points can be obtained by finding
those x ∈ P

1,an
k (k) satisfying the condition γi(x) = a(x) for i = 1, 2. We have

γ1(b(0)) = abab2b(0) = aba(0) = a(b(0)), and the same applies to b(π), so
the images by p of these two points are also in B. In the same way, we find that
γ2(b

2(0)) = a(b2(0)) and γ2(b
2(π)) = a(b2(π)). We have found in this way that

B = {p(0), p(b(0)), p(b2(0)), p(π), p(b(π)), p(b2(π))}.
To find the ramification locus, we have to compute ϕ(B). Since 〈α〉 is a normal

subgroup of Aut(X), the element β acts as an automorphism of order 3 of X/〈α〉 ∼=
P
1,an
k . Up to a change of coordinate of this projective line, we can suppose that the

fixed points of β are 0 and ∞, so that β is the multiplication by a primititve third
root of unity, and that the first ramification point is a1 = ϕ(p(0)) = 1. Then, after
possibly reordering them, the remaining ramification points are a2 = ρ, a3 = ρ2

and a4, ρa4, ρ
2a4, with |a4 − 1| < 1.

With a bit more effort, we can actually compute the value of a4. To do this, notice
that the function p is injective when restricted to the open fundamental domain

F− = P
1,an
k − (

D+(γ1) ∪ D+(γ −1
1 ) ∪ D+(γ2) ∪ D+(γ −1

2 )
)

.

If we set F ′ = ϕ ◦ p(F−) we then have a two-fold cover F− −→ F ′ ⊂ P
1,an
k

induced by ϕ ◦ p, which can be explicitly written as a rational function z �→ z2

(z−π)2

(this function can be found by looking at the action of a on F− explicitly). Note
that F− contains both the fixed rigid points of b, i.e. 1 + π and 1, and those of a,
i.e. 0 and π . When we reparametrize the projective line on the target of ϕ to get the
wanted equation, we are imposing the conditions α ◦p(1+π) �→ ∞, α ◦p(1) �→ 0
and α◦p(0) �→ 1 = a1. These choices leave only one possibility for the ramification
point a4: it is

( 1−π
1+π

)2. We have now found the equation of the plane section of our
Mumford curve: it is

y2 = (x3 − 1) ·
(

x3 − (1 − π)6

(1 + π)6

)

.

Note that |a4 − a1| =
∣

∣

∣

(1−π)2

(1+π)2
− 1

∣

∣

∣ = |π |.
A different example of a hyperelliptic Mumford curve with a similar flavour

is discussed in the expository paper [CK05], accompanied with figures and other
applications of automorphisms of Mumford curves.

Example 6.5.13 The curve in Example 6.5.12 has the same automorphism group
in every characteristic (different from 2 and 3). However, Mumford curves in
positive characteristic have in general more automorphism than in characteristic 0.
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An interesting class of examples are the so-called Artin-Schreier-Mumford curves,
first introduced by Subrao in [Sub75]. We sketch here the main results and refer
to [CKK10] for more detailed proofs of these facts. Let p be a prime, q = pe be
a power of p, and k = Fq((t)). Let X be the analytification of the curve defined
inside P1

k × P
1
k by the equation

(yq − y)(xq − x) = f (t) with f ∈ tFq [[t]].

This is an ordinary curve in characteristic p > 0 with many automorphisms, and
for this reason has caught the attention of cryptographers and positive characteristic
algebraic geometers alike. One way to study its automorphisms is to observe that X
is a Mumford curve. A Schottky group attached to it can be constructed by fixing an
element v ∈ k and looking at the automorphisms of P1,an

k of the form

au =
[

1 u

0 1

]

, bu =
[

v 0
u v

]

∈ PGL2(k), u ∈ F
×
q .

These transformations are all of order p, au represent translations by elements
of F×

q and bu their conjugates under the inversion z �→ v
z
. The subgroup �v =

〈a−1
u b−1

u′ aubu′ : (u, u′) ∈ F
×
q
2〉 of PGL2(k) is a Schottky group of rank (q − 1)2,

and for a certain value of v3 it gives rise to the curve X by Schottky uniformization.
The immediate consequence of this fact, is that X is a Mumford curve of genus
(q − 1)2.

The group of automorphisms Aut(X) is isomorphic to a semi-direct product
(Z/pZ)2e �Dq−1, and its action is easy to describe using the equation of the curve:
the elementary abelian subgroup (Z/pZ)2e consists of those automorphisms of the
form (x, y) �→ (x + α, y + β) with (α, β) ∈ (Fq)

2, while the dihedral subgroup
Dq−1 is generated by (x, y) �→ (y, x) and (x, y) �→ (γ x, γ −1y) for γ ∈ F

×
q . We

deduce that the order of Aut(X) is 2(q − 1)q2. In characteristic 0, it is not possible
to have these many automorphisms, thanks to bounds by Hurwitz and Herrlich that
would give rise to a contradiction (see Appendix A.3 for the precise statement of
these bounds).
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Appendix: Further Reading

The theory of Berkovich curves has several applications to numerous fields of
mathematics, and uniformization plays a role in many of these. A complete
description of these applications goes far beyond the scope of the present text, but
we would like to provide the interested reader with some hints about the state of
the art and where to find more details in the existing literature, as well as point out
which simplifications adopted in this text are actually instances of a much richer
theory.

A.1 Berkovich Spaces and their Skeleta

We provided a short introduction to the theory of Berkovich curves and their skeleta
in Sect. 6.3.2 of this text.

The first discussion of this topic appears already in Chapter 4 of Berkovich’s
foundational book [Ber90]. In this context, the definition of the skeleton of a
Berkovich curve X makes use of formal models and the semi-stable reduction
theorem, that states that for the analytification of a smooth proper and geometrically
irreducible algebraic curve over k, there exists a finite Galois extension K of k such
that the base changeXK has a semi-stable formal model. Berkovich showed that the
dual graph of the special fiber of any semi-stable formal model embeds in the curve
XK and that it is invariant by the action of the Galois group Gal(K/k) over XK ,
which allows to define skeleta of X as quotients of skeleta of XK . This construction
is again found in A. Thuillier’s thesis [Thu05], where it is exploited to define a
theory of harmonic functions on Berkovich curves.

In Definition 6.3.3, we adopted another approach to the study of skeleta, via the
use of triangulations. This was first introduced by Ducros in [Duc08] to study étale
cohomology groups of Berkovich curves. In the case where k is algebraically closed,
a comprehensive exposition of skeletons, retractions, and harmonic functions on
non-Archimedean curves can be found in the paper [BPR14]. There, the authors are
motivated by connections with tropical geometry, as, for a given algebraic variety
over k, the skeletons of its analytification are tightly related to its tropicalization
maps. Other than in the aforementioned paper, these connections are exposed in
[Wer16], where the higher-dimensional cases are highlighted as well.

As for higher-dimensional spaces, Berkovich introduced skeleta in [Ber99].
They are simplicial sets onto which the spaces retract by deformation. They are
constructed using semi-stable formal models and generalizations of them, so they
are not known to exist in full generality, but Berkovich nonetheless managed to use
them to prove that smooth spaces are locally contractible (hence admits universal
covers).
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The connectionswith tropical geometry have proven fruitful, among other things,
to study finite covers of Berkovich curves Y → X over k. The general pattern is
that these covers are controlled by combinatorial objects that are enhanced versions
of compatible pairs (�Y ,�X) of skeletons of the curves Y and X. Assume that k

is algebraically closed. Whenever the degree of such a cover is coprime with the
residue characteristic of k, the papers [ABBR15a] and [ABBR15b] give conditions
on a pair (�Y ,�X) to lift to a finite morphism of curves Y → X. In the case of
covers of degree divisible by the residue characteristic of k, the situation is still far
from understood, but progress has been made thanks to the work of M. Temkin and
his collaborators in the papers [CTT16, Tem17, BT20]. The main tool used in these
works is the different function.

With regard to higher-dimensional varieties, a new approach to skeletons was
proposed by E. Hrushosvksi and F. Loeser in [HL16] using techniques coming from
model theory. They are able to define skeleta of analytifications of quasi-projective
varieties and deduce the remarkable result that any such space has the homotopy
type of a CW-complex.

In the specific case of curves over an algebraically closed base field, the
paper [CKP18] uses triangulations in order to give a more concrete model-theoretic
version of Berkovich curves (and morphisms between them). In particular, the
authors manage to give an explicit description of definable subsets of curves and
prove some tameness properties.

Without the assumption that k is algebraically closed, or rather thatX has a semi-
stable formal model over the valuation ring of k, the structure of analytic curves is
much harder to grasp, due among other things to the difficulty of classifying virtual
discs and virtual annuli. The curious reader will find much food for thought in the
book by A. Ducros [Duc], which can nevertheless be of difficult reading for a first
approach. If k is a discrete valuation field, a generalization of potential theory on
Berkovich curves is provided in [BN16] thanks to a careful study of regular models,
and the introduction of the notion of weight function. In regard to the problem of
determining a minimal extension necessary for the existence of a semi-stable model,
an approach via triangulations has been recently proposed in [FT19].

Finally, let us mention that we chose to introduce Berkovich curves as A1-like
curves because we are convinced that this is a natural framework for studying
uniformization, but the general theory is much richer, and contains many examples
of Berkovich curves that are not A1-like.

A.2 Non-Archimedean Uniformization in Arithmetic
Geometry

In the case of curves over the field of complex numbers, Schottky uniformization
can be seen in the context of the classical uniformization theorem for Riemann
surfaces, proven independently by P. Koebe and H. Poincaré in 1907. It states that
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every simply connected complex Riemann surface is conformally equivalent to the
complex projective line, the complex affine line, or the Poincaré upper-half plane.
As a consequence, the universal covering space of any Riemann surface X is one
of these, and when X is compact, Koebe-Poincaré uniformization factors through
the Schottky uniformization

(

P
1,an
C

− L
) → X. A remarkable book on complex

uniformization [dSG10] has been written by the group of mathematicians known
under the collective name of Henri Paul de Saint-Gervais. It constitutes an excellent
reference both on the historical and mathematical aspects of the subject.

In the non-Archimedean case, the history of uniformization is much more recent.
The uniformization theory of elliptic curves over a non-Archimedean field (k, | · |)
was the main motivation underlying J. Tate’s introduction of rigid analytic geometry
in the 1960s. Using his novel approach, Tate proved that every elliptic curve with
split multiplicative reduction over k is analytically isomorphic to the multiplicative
group k×/qZ for some q in k with 0 < |q| < 1. Tate’s computations were known to
experts, but remained unpublished until 1995, when they were presented in [Tat95]
together with a discussion on further aspects of this theory, including automorphic
functions, a classification of isogenies of Tate curves, and a brief mention of how to
construct “universal” Tate curves over the ring Z[[q]][q−1] using formal geometry.
These formal curves appeared for the first time in the paper [DR73] by P. Deligne
and M. Rapoport, who attributed it to M. Raynaud and called them generalized
elliptic curves. In loc. cit. the authors exploited them to give a moduli-theoretic
interpretation at the cusps of the modular curves X0(Np) with p � N . Further
reading in this direction include the foundational paper [KM85], that concerns the
case of modular curves X(Npn) and [Con07], that provides a more contemporary
perspective on generalized elliptic curves.

Interpreting the Schottky uniformization of Mumford curves of [Mum72a] as
a higher genus generalization of Tate’s theory inspired several novel arithmetic
discoveries. One of the most important is the uniformization of Shimura curves,
fundamental objects in arithmetic geometry that vastly generalize modular curves.
In [Che76], I. Cherednik considered a Shimura curve C associated with a quaternion
algebra B over Q. For a prime p where B is ramified, he proved that the p-adic
analytic curve (C ×Q Qp)an can be obtained as a quotient of Drinfeld p-adic

halfplane P
1,an
Qp

− P
1,an
k (Qp), by the action of a Schottky group. This Schottky

group can be as a subgroup of a different quaternion algebra B ′ overQ, constructed
explicitly from B via a procedure known as interchange of invariants. The theory
obtained in this way is classically referred to as Cherednik-Drinfeld uniformization,
since V. Drinfeld gave a different proof of this result in [Dri76], building on a
description of C as a moduli space of certain abelian varieties. The excellent paper
[BC91] provides a detailed account of these constructions.

By generalizing Drinfeld’s modular interpretation, the approach can be extended
to some higher dimensional Shimura varieties, resulting in their description as
quotients of the Drinfeld upper-half space via a uniformization map introduced
independently by G. Mustafin [Mus78] and A. Kurihara [Kur80]. For a firsthand
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account of the development of this uniformization, we refer the reader to the book
[RZ96] by M. Rapoport and T. Zink.

Non-Archimedean uniformization of Shimura varieties has remarkable conse-
quences. First of all, it makes possible to find and describe integral models of
Shimura varieties, since the property of being uniformizable imposes restrictions
on the special fibers of such models. Furthermore, it gives a way to compute étale
and �-adic cohomology groups, as well as the action of the absolute Galois group
Gal(Qp/Qp) on these, making it a powerful tool for studying Galois represen-
tations. All the aforementioned results were shown in the framework of formal
and rigid geometry. However, more contemporary approaches to uniformization of
Shimura varieties and Rapoport-Zink spaces make use of Berkovich spaces (see
[Var98, JLV03]), or Huber adic geometry in the form of perfectoid spaces (see
[SW13] and [Car19]). In particular, the perfectoid approach can be used to vastly
generalize the uniformization of Shimura varieties and establish a theory of local
Shimura varieties. This construction is exposed in the lecture notes [SW20] by P.
Scholze and J. Weinstein.

Local and global uniformization of Shimura varieties are investigated in rela-
tion to period mappings, Gauss-Manin connections, and uniformizing differential
equations in the book by Y. André [And03], where striking similarities between the
complex and p-adic cases are highlighted. For more results about the relevance of
Shimura varieties, not necessarily with regard to uniformization,we refer to [Mil05].

Finally, let us mention that Tate’s uniformization of elliptic curves with split
multiplicative reduction generalizes to abelian varieties. This is also a result of
Mumford, contained in the paper [Mum72b], that can be regarded as a sequel to
[Mum72a], since the underlying ideas are very similar. In this case, the uniformiza-
tion theorem is formulated by stating that a totally degenerate abelian variety of
dimension g over k is isomorphic to the quotient of the analytic torus (G

g
m,k)

an by
the action of a torsion-free subgroup of (k×)g . This applies in particular to Jacobians
of Mumford curves, a case surveyed in detail in the monograph [Lüt16]. We shall
remark that Mumford’s constructions are more general than their presentation in
this text: they work not only over non-Archimedean fields, but more generally over
fields of fractions of complete integrally closed noetherian rings of any dimension.

A.3 The Relevance of Mumford Curves

The uniformization theorem in the complex setting is a very powerful tool, and one
of the main sources of analytic methods applied to the study of algebraic curves.
This leads to the expectation that, in the non-Archimedean setting, Mumford curves
can be more easily studied, turning out to be a good source of examples for testing
certain conjectures. This is indeed the case for several topics in algebraic curves
and their applications, as we could already sample in Sect. 6.5.2 on the subject of
computing the group of automorphisms of curves.
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This appendix is a good place to remark that Examples 6.5.12 and 6.5.13 in that
section are instances of a much deeper theory. For a smooth projective algebraic
curveC of genus g ≥ 2 over a field of characteristic zero, the Hurwitz bound ensures
that the finite group of automorphisms Aut(C) is of order at most 84(g − 1). This
bound is sharp: there exist curves of arbitrarily high genus whose automorphism
groups attain it, the so-called Hurwitz curves. However, if we know that C is (the
algebraization of) a Mumford curve, F. Herrlich proved a better bound in [Her80].
Namely, if we denote by p the residue characteristic of K , he showed that:

|Aut(C)| ≤

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

48(g − 1) p = 2

24(g − 1) p = 3

30(g − 1) p = 5

12(g − 1) otherwise.

This result relies on the characterization of automorphism groups of Mumford
curves as quotients N/�, where � is a Schottky group associated with C and N

its normalizer in PGL2(K) (see Theorem 6.5.8). One can show that the group N

acts discontinuously on an infinite tree that contains the universal covering tree of
the skeleton �Can , and use Serre’s theory of groups acting on trees to prove that N
is an amalgam of finite groups. In his paper, Herrlich achieves the bounds above by
classifying those amalgams that contain a Schottky group as a normal subgroup of
finite index.

Over a field of characteristic p > 0, the Hurwitz bound is replaced by the
Stichtenoth bound, stating that |Aut(C)| ≤ 16g4, unless C is isomorphic to a
Hermitian curve. When C is a Mumford curve, this bound can be improved in
principle using Herrlich’s strategy. However, this is not an easy task, as one has to
overcome the much bigger difficulties that arise in positive characteristic. This has
been achieved recently by M. Van der Put and H. Voskuil, who prove in [VvdP19,
Theorem 8.7] that |Aut(C)| < max{12(g − 1), g

√
8g + 1 + 3} except for three

occurrences of (isomorphism classes of) X, which happen when p = 3 and g = 6.
Moreover, in [VvdP19, Theorem 7.1] they show that the bound is achieved for any
choice of the characteristic p > 0. The bound corrects and extends a bound given
by G. Cornelissen, F. Kato and A. Kontogeorgis in [CKK01].

Another application of uniformization of Mumford curves is the resolution of
non-singularities for hyperbolic curves1 over Qp. Given such a curve X, and a
smooth point P of the special fiber of a semi-stable model of X, it is an open
problem to find a finite étale cover Y −→ X such that a whole irreducible
component of the special fiber of the stable model of Y lies above P . Earlier
versions of this problem were introduced and proved by S. Mochizuki [Moc96]
and A. Tamagawa [Tam04], that showed connections with important problems in

1A hyperbolic curve in this context is a genus g curve with nmarked points satisfying the inequality
2g − 2 + n > 0.
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anabelian geometry. The interest of the version proposed here is also motivated
by anabelian geometry: F. Pop and J. Stix proved in [PS17] that any curve for
which resolution of non-singularities holds satisfies also a valuative version of
Grothendieck’s section conjecture. In the paper [Lep13], E. Lepage uses Schottky
uniformization in a Berkovich setting to show that resolution of non-singularities
holds when X is a hyperbolic Mumford curve. His approach consists in studying
μpn-torsors of the universal cover of X, which are better understood since they can
be studied using logarithmic differentials of rational functions. With this technique,
he can show that there is a dense subset of type 2 points V ∈ X, with the
following property: every x ∈ V can be associated with a μpn-torsor τ : Y → X

such that τ−1(x) is a point of positive genus. This last condition ensures that the
corresponding residue curve is an irreducible component of the stable model of Y .

Mumford curves have been also proven useful in purely analytic contexts, for
instance to study potential theory and differential forms. Using the fact that all type 2
points in a Mumford curve are of genus 0, P. Jell and V. Wanner [JW18] are able to
establish a result of Poincaré duality and compute the Betti numbers of the tropical
Dolbeaut cohomology arising from the theory of bi-graded real valued differential
forms developed in [CLD12].

Finally, let us mention that archimedean and non-archimedean Schottky
uniformizations can be studied in a unified framework thanks to work of the
authors [PT], where a moduli space Sg parametrizing Schottky groups of fixed
rank g over all possible valued fields is constructed for every g ≥ 2. This
construction is performed in the framework of Berkovich spaces over Z developed
in [Poi10, Poi13, LP]. More precisely, the space Sg is realized as an open, path-

connected subspace of A3g−3,an
Z

, it is endowed with a natural action of the group
Out(Fg) of outer automorphisms of the free group, and exhibits interesting
connections with other constructions of moduli spaces, in the frameworks of
tropical geometry and geometric group theory. The space Sg seems to be ideal
to study phenomena of degeneration of Schottky groups from archimedean to
non-archimedean.

A different take on the interplay between archimedean and non-archimedean
Schottky uniformizations is provided by Y. Manin’s approach to Arakelov geom-
etry. In the paper [Man91] several formulas for computing the Green function
on a Riemann surface using Schottky uniformization and are explicitly inspired
by Mumford’s construction. These formulas involve the geodesics lengths in
the hyperbolic handlebody uniformized by the Schottky group associated with
such a surface, suggesting connections between hyperbolic geometry and non-
archimedean analytic geometry. This result has been reinterpreted in term of
noncommutative geometry by C. Consani and M. Marcolli [CM04] by replacing the
Riemann surface with a noncommutative space that encodes certain properties of
the archimedean Schottky uniformization. This noncommutative formalism has led
to applications both in the non-archimedean world (see for example [CM03]) and
in the archimedean one, for instance to Riemannian geometry in [CM08]. We think
that the theory of Berkovich spaces could fit nicely in this picture, and it would be an
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interesting project to investigate the relations between noncommutative geometric
objects related to Schottky uniformization (e.g. graph C�-algebras) and Mumford
curves in the Berkovich setting.
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