
Chapter 4
From the Carlitz Exponential to Drinfeld
Modular Forms

Federico Pellarin

Abstract This paper contains the written notes of a course the author gave at the
VIASM of Hanoi in the Summer 2018. It provides an elementary introduction to the
analytic naive theory of Drinfeld modular forms for the simplest ‘Drinfeld modular
group’ GL2(Fq [θ ]) also providing some perspectives of development, notably in the
direction of the theory of vector modular forms with values in certain ultrametric
Banach algebras.

4.1 Introduction

The present paper contains the written notes of a course the author gave at the
VIASM of Hanoi in the Summer 2018. It provides an elementary introduction to the
analytic naive theory of Drinfeld modular forms essentially for the simplest ‘Drin-
feld modular group’ GL2(Fq [θ ]) also providing some perspectives of development,
notably in the direction of the theory of vector modular forms with values in certain
ultrametric Banach algebras initiated in [Pel12].

The course was also the occasion to introduce the very first basic elements of the
arithmetic theory of Drinfeld modules in a way suitable to sensitize the attendance
also to more familiar processes of the classical theory of modular forms and elliptic
curves. Most parts of this work are not new and are therefore essentially covered by
many other texts and treatises such as the seminal works of Goss [Gos80a, Gos80b,
Gos80c] and Gekeler [Gek88]. The present text also has interaction and potential
developments along with the contributions to this volume by Poineau-Turchetti and
Tavares Ribeiro [Poi20a, Poi20b, Tav20]. It also contains suggestions for further
developments, see Problems 4.4.10, 4.4.15, 4.6.5, 4.8.4 and 4.8.9.

This paper will not cover several advanced recent works such that the higher
rank theory, including the delicate compactification questions in the path of Basson,
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Breuer, Pink [Bas18a, Bas18b, Bas18c], Gekeler [Gek17, Gek19a, Gek18, Gek19b]
and it does not even go in the direction of the important arithmetic explorations
notably involving the cohomological theory of crystals by Böckle [Boc02, Boc15] or
toward several other crucial recent works by several other authors we do not mention
here, at once inviting the reader to realise a personal bibliographical research to
determine the most recent active areas.

Perhaps, one of the original points of our contribution is instead to consider
exponential functions from various viewpoints, all along the text, stressing how
they interlace with modular forms. The paper describes, for example, a product
expansion of the exponential function associated to the latticeA := Fq [θ ] in the Ore
algebra of non-commutative formal series in the Frobenius automorphism which is
implicit in Carlitz’s work [Car35]. It will be used to give a rather precise description
of the analytic structure of the cusp of � = GL2(A) acting on the Drinfeld upper-
half plane by homographies. We will also use it in connection with local class field
theory for the local fieldK∞ = Fq((

1
θ
)). Another new feature is that, in the last two

sections, we explore structures which at the moment have no known analogue in the
classical complex setting. Namely, Drinfeld modular forms with values in modules
over Tate algebras, following the ideas of [Pel12].

Here is, more specifically, the plan of the paper. In the very elementary Sect. 4.2
the reader familiarises with the rings and the fields which carry the values of
the special functions we are going to study in this paper. Instead of the field of
complex numbers C, our ‘target’ field is a complete, algebraically closed field of
characteristic p > 0. There is an interesting parallel with the classical complex
theory where we have the quadratic extension C/R and the quotient group R/Z

is compact, but there are also interesting differences to take into account as the
analogue C∞/K∞ of the extension C/R is infinite dimensional, C∞ is not locally
compact, although the analogue A := Fq [θ ] of Z is discrete and co-compact in the
analogueK∞ = Fq((

1
θ
)) of R.

We dedicate the whole Sect. 4.3 to exponential functions. More precisely, we give
a proof of the correspondence by Drinfeld between A-lattices of C∞ and Drinfeld
A-modules. To show that to any Drinfeld module we can naturally associate a lattice
we pass by the more general Anderson modules. We introduce Anderson’s modules
in an intuitive way, privileging one of the most important and useful properties,
namely that they are equipped with an exponential function at a very general level.
Just like abelian varieties, Anderson modules can be of any dimension. When the
dimension is one, one speaks about Drinfeld modules.

In Sect. 4.4 we focus on a particular case of Drinfeld module: the Carlitz module.
This is the analogue of the multiplicative group in this theory. We give a detailed
account of the main properties of its exponential function denoted by expC . We point
out that its (multiplicative, rescaled) inverse u is used as uniformiser at infinity to
define the analogue of the classical complex ‘q-expansions’ for our modular forms.
In this section we prove, for example, that any generator of the lattice of periods of
expC can be expressed by means of a certain convergent product expansion (known
to Anderson). To do this, we use the so-called omega function of Anderson and
Thakur.
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In Sect. 4.5 we first study the Drinfeld ‘half-plane’� = C∞ \K∞ topologically.
We use, to do this, a fundamental notion of distance from the analogue of the
real line K∞. The group GL2(A) acts on � by homographies and we construct a
fundamental domain for this action. After a short invitation to the basic notions of
rigid analytic geometry, we describe the Bruhat-Tits tree of �, the natural action of
GL2(K∞) on it, and, after a glimpse on Schottky groups (see [Poi20a, Poi20b] for a
more in-depth development), we construct a reasonable analogue of a fundamental
domain for the homographic action of GL2(Fq [θ ]) on �.

In Sect. 4.6 we discuss the following question: find an analogue for the Carlitz
module of the following statement: Every holomorphic function which is invariant
for the translation by one has a Fourier series. The answer is: every Fq [θ ]-
translation invariant function has a ‘u-expansion’. We show why in this section.
To do this we introduce the problem of rigid analytic structures on quotient spaces.
We mainly focus on the example of the quotient of the rigid affine line A1,an

C∞ by the
group of translations by the elements of A. The reader will notice how hard things
can become without the use of the tool of the analytification functor, also discussed
in this section.

In Sect. 4.7 we give a quick account of (scalar) Drinfeld modular forms for the
group GL2(A) (characterised by the u-expansion in C∞[[u]]). This appears already
in many other references: the main feature is that C∞-vector spaces of Drinfeld
modular forms are finitely dimensional spaces. Also, non-zero Eisenstein series can
be constructed; this was first observed by D. Goss in [Gos80b]. The coefficients of
the u-expansions of Eisenstein series are, after normalisation, in A = Fq[θ ].

The paper also has advanced, non-foundational parts. In Sect. 4.4.3 we apply
the developed knowledge of the Carlitz exponential function to give an explicit
description of local class field theory for the field K∞; this subsection is also
independent from the rest of the paper. In Sects. 4.8 and 4.9 we revisit Drinfeld
modular forms. We introduce vector Drinfeld modular forms with values in other
fields and algebras, following [Pel12]; the case we are interested in is that of
functions which take values in finite dimensional K-vector spaces where K is the
completion for the Gauss norm of the field of rational functions in a finite set of
variables with coefficients in C∞. With the use of certain Jacobi-like functions, we
deduce an identity relating a matrix-valued Eisenstein series of weight one with
certain weak modular forms of weight −1 from which one easily deduces [Pel12,
Theorem 8] in a different, more straightforward way.

4.2 Rings and Fields

Before entering the essence of the topic, we first propose the reader to familiarise
with certain rings and fields, notably local fields and non-archimedean valued fields.
For more about these topics read, for example, the books [Cas86, Ser80b]. The
reader must notice that the basic notations of the three other chapters of this volume
[Poi20a, Poi20b, Tav20] differ from ours.
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Let R be a ring.

Definition 4.2.1 A real valuation | · | (or simply a valuation) overR is a map R
|·|−→

R≥0 with the following properties.

(1) For x ∈ R, |x| = 0 if and only if x = 0.
(2) For x, y ∈ R, |xy| = |x||y|.
(3) For x, y ∈ R we have |x + y| ≤ max{|x|, |y|} and if |x| �= |y|, then |x + y| =

max{|x|, |y|}.
The inequality |x + y| ≤ max{|x|, |y|} is usually called the ultrametric inequality
(the term ‘ultrametric’ indicates a reinforced triangular inequality). A ring with
valuation is called a valued ring. A valuation is non-trivial if its image is infinite.
If the image of a valuation is finite, then it is equal to the set of two elements
{0, 1} ⊂ R≥0 and all the non-zero elements of R are sent to 1 while 0 is sent to
0. This is the trivial valuation of R. A map as above satisfying (2), (3) but not (1) is
called a semi-valuation.

A valuation over a ring R induces a metric in an obvious way and one easily sees
that R, together with this metric, is totally disconnected (the only connected subsets
are ∅ and the points). To any valued ring (R, | · |) we can associate the subset OR =
{x ∈ R : |x| ≤ 1} which is a subring of R, called the valuation ring of | · |. This ring
has the prime ideal MR = {x ∈ R : |x| < 1}. The quotient ring kR := OR/MR is
called the residue ring. The ring homomorphism f ∈ OR 
→ f +MR ∈ OR/MR

is called the reduction map. With R a ring, we denote by R× the multiplicative
group of invertible elements. The image |R×| = {|x| : x ∈ R×} is a subgroup of
R
× called the valuation group.
If R is a field, MR is a maximal ideal. Two valuations | · | and | · |′ over a ring

R are equivalent if for all x ∈ R, c1|x| ≤ |x|′ ≤ c2|x| for some c1, c2 > 0. Two
equivalent valuations induce the same topology. If (R, | · |) is a valued ring, we
denote by ̂R (or ̂R|·|) the topological space completion of R for | · |. It is a ring and
if additionally R is a field, ̂R is also a field.

While working over complete valued fields, many properties which are usually
quite delicate to check for real numbers, have simple analogues in this context. For
instance, the reader can check that in a valued field (L, | · |), a sequence (xn)n≥0 is
Cauchy if and only if (xn+1 − xn)n≥0 tends to zero. A series

∑

n≥0 xn converges if
and only if xn → 0 and an infinite product

∏

n≥0(1 + xn) converges if and only if
xn→ 0. Another immediate property is that if (xn)n≥0 is convergent, then (|xn|)n≥0
is ultimately constant.

4.2.1 Local Compactness, Local Fields

Let (L, | · |) be a valued field. Choose r ∈ |L×| and x ∈ L. We set

DL(x, r) = {y ∈ L : |x − y| ≤ r}.



4 From the Carlitz Exponential to Drinfeld Modular Forms 97

This is the disk of center x and radius r . Some authors like to call r the diameter to
stress the fact that the metric induced by the valuation makes every point ofDL(x, r)
into a center so that it does not really distinguishes between ‘radius’ and ‘diameter’.

Observe that OL = DL(0, 1). Also,

ML =
⋃

r∈|L×|
r<1

DL(0, r) =: D◦L(0, 1).

More generally we writeD◦L(0, r) = {x ∈ L : |x| < r}. We use the simpler notation
D(x, r) or D◦(0, r) when L is understood from the context. Note that D(x, r) =
x +D(0, r) and D(0, r) is an additive group. If |x| ≤ r (that is, x ∈ D(0, r)), then
D(x, r) = D(0, r). If |x| > r (that is, x �∈ D(0, r)), thenD(x, r)∩D(0, r) = ∅. In
other words, if two disks with same radii have a common point, then they are equal.
If the radii are not equal, non-empty intersection implies that one is contained in the
other.

Now pick r ∈ |L×| and x0 ∈ L× with |x0| = r . Then, D(0, r) = x0D(0, 1) =
x0OL. This means that all disks are homeomorphic to OL = D(0, 1). This is due to
the fact that we are choosing r ∈ |L×|.

A complete valued field L is locally compact if every disk is compact. We have
the following:

Lemma 4.2.2 A valued field which is complete is locally compact if and only if the
valuation group is discrete and the residue field is finite.

Proof LetL be a field with valuation |·|, complete. We first show that OL = D(0, 1)
is compact if the valuation group is discrete (in this case there exists r ∈]0, 1[∩|L×|
such that ML = D(0, r)) and the residue field is finite. Let B be any infinite subset
of OL. We choose a complete set of representatives R of OL modulo ML. Note the
disjoint union

OL =
⊔

ν∈R
(ν +ML).

Multiplying all elements of B by an element of L× (rescaling), we can suppose that
there exists b1 ∈ B with |b1| = 1. Then, the above decomposition induces a partition
of B and by the fact that kL is finite and the box principle there is an infinite subset
B1 ⊂ B ∩ (b1+Mn1

L ) for some integer n1 > 0. We continue in this way and we are

led to a sequence b1, b2, . . . in B with bi+1 ∈ Mni
L \Mni−1

L with the sequence of
the integers ni which is strictly increasing (set n0 = 0). Hence, bm+1 − bm ∈Mnm

L

is a Cauchy sequence, thus converging in L because it is complete.
Let us suppose that kL is infinite. Then any set of representativesR ofOL modulo

ML is infinite. For all b, b′ ∈ R distinct, we have |b − b′| = 1 and R has no
converging infinite sub-sequence. Let us suppose that the valuation groupG = |L×|
is dense in R>0. There is a strictly decreasing sequence (ri)i ⊂ Gwith ri → 1. This
means that for all i, there exists ai ∈ OL such that |ai | = ri and for all i �= j we
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have that |ai − aj | = max{ri, rj } so that we cannot extract from (ai)i a convergent
sequence and OL is not compact. ��
Definition 4.2.3 A valued field which is locally compact is called a local field.

Note that R and C, with their euclidean topology, are locally compact, but not
valued. Some authors define local fields as locally compact topological field for
a non-discrete topology. Then, they distinguish between the non-Archimedean (or
ultrametric) local fields, which are the valued ones, and the Archimedean local
fields: R and C.

An important property is the following. Any valued local field L of characteristic
0 is isomorphic to a finite extension of the field of p-adic numbers Qp for some p,
while any local field L of characteristic p > 0 is isomorphic to a local field Fq((π)),
and with q = pe for some integer e > 0. We say that π is a uniformiser. Note that
|L×| = |π |Z and |π | < 1. The proof of this result is a not too difficult deduction
from the following well known fact: a locally compact topological vector space over
a non-trivial locally compact field has finite dimension.

4.2.2 Valued Rings and Fields for Modular Forms

Let C be a smooth, projective, geometrically irreducible curve overFq , together with
a closed point∞ ∈ C. We set

R = A := H 0(C \ {∞},OC).

This is the Fq -algebra of the rational functions over C which are regular everywhere
except, perhaps, at ∞. The choice of ∞ determines an equivalence class of
valuations | · |∞ on A in the following way. Let d∞ be the degree of ∞, that is,
the degree of the extension F of Fq generated by∞ (which is also equal to the least
integer d > 0 such that τd(∞) = ∞, where τ is a power of the geometric Frobenius
endomorphism). Then, for any a ∈ A, the degree

deg(a) := dimFq (A/aA)

is a multiple−v∞(a)d∞ of d∞ and we set |a|∞ = c−v∞(a) for c > 1, which is easily
seen to be a valuation. It is well known thatA is an arithmetic Dedekind domain with
A× = F

×. In addition v∞(a) ≤ 0 for all a ∈ A \ {0} and v∞(a) = 0 if and only
if a ∈ F

× (as a consequence of the proof of the subsequent Lemma 4.2.4). A good
choice to normalise | · |∞ is c = q . We can thus consider the field K∞ := ̂K|·|∞
completion of K for | · |∞ which can be written as the Laurent series field F((π))

where π is a uniformiser element ofK∞ (such that v∞(π) = 1).K∞ is a local field
with valuation ring OK∞ = F[[π]], maximal ideal MK∞ = πF[[π]], residue field
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F and valuation group |π |Z∞. Note that we have the direct sum of Fq -vector spaces:

K∞ = F[π−1] ⊕MK∞ .

The case of C = P
1
Fq

with its point at infinity ∞ (defined over Fq ) is the simplest
one. Let θ be any rational function having a simple pole at infinity, regular away
from it. Then, A = Fq [θ ], K = Fq(θ) and we can take π = θ−1 so that K∞ =
Fq((

1
θ
)) the completion of K for the valuation | · |∞ = qdegθ (·). Note that for all

π = λθ−1 + ∑i>1 λiθ
−i ∈ K∞ with λ ∈ F

×
q and λi ∈ Fq , we have K∞ =

Fq((π)). The field K∞ has an advantage over the field R: it has uniformisers. But
there also is a disadvantage: there is no canonical choice in the uncountable subset
of uniformisers.

We come back to the case of A general. Let U be a subset ofK∞. We say that U
is strongly discrete if any disk

DK∞(x, r) = {y ∈ K∞ : |x − y|∞ ≤ r} ⊂ K∞
only contains finitely many y ∈ U for every r ≥ 0. Note that, transposing the
definition to the case of R, the ring Z is discrete and co-compact in R (this is well
known).

Analogously:

Lemma 4.2.4 The Fq -algebra A is strongly discrete and co-compact in K∞.

Proof of the First Part of Lemma 4.2.4 That A is strongly discrete in K∞ can be
seen by using the Liouville inequality, asserting that for any x ∈ A \ {0}, |x|∞ ≥ 1.
The fraction field K of A is an extension of F of transcendence degree one, and F

is algebraically closed in K . The closed points P of C correspond to the classes of
equivalence of multiplicative valuations over K which have discrete image in R>0
(discrete valuations), and which are trivial over F. There is a set of valuations | · |P
(associated to the closed points of C different from∞) such that for all a ∈ A \ {0},
|a|P ≤ 1 and |a|P = 1 for all but finitely many P , and such that

|a|∞
∏

P

|a|P = 1,

see the axiomatic theory of Artin and Whaples and [Art45, Theorem 2]. This is
the product formula for A. Let us consider x ∈ A \ {0}. We cannot have |x|∞ <

1 because this would violate the product formula. Therefore, |x|∞ ≥ 1 and this
suffices to show strong discreteness. ��

We deduce that A ∩MK∞ = {0}. The next Lemma tells us that, as a ‘valued
vector space over F’, A is not too different from F[π−1]. This can be used to show
co-compactness.
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Lemma 4.2.5 There exists a finite dimensional vector space V ⊂ F[π−1] over F
such that, isometrically, K∞ ∼= FA⊕ V ⊕MK∞ .

Proof We can invoke Weierstrass’ gap Theorem. It can be seen as one of the
consequences of the Theorem of Riemann-Roch and it is nicely presented in
Stichtenoth’s book in the case of d∞ = 1, [Sti08, Theorem 1.6.8]. If d∞ > 1 we can
use [Mat05, Proposition 2.1]. Let H(∞) be the subset of N whose elements are the
nonnegative integers k such that there exists an element f in A with polar divisor
k[∞]. The Weierstrass gap Theorem asserts that N \ H(∞) = {n1, . . . , nh} ⊂
[1, 2g−1

d∞ ] (so that if the genus g of C is zero, this set is empty). Moreover, if
d∞ = 1 this set contains exactly g elements, where g is the genus of C. We set
V := ⊕hi=1Fπ

−ni and if g = 0 we set V = {0}. Note that A ∩ V = V ∩MK∞ =
A ∩MK∞ = {0}. Then, every element f of K∞ can be decomposed in a unique
way as f = a ⊕ v ⊕m with a ∈ FA, v ∈ V and m ∈MK∞ . ��
Proof of the Second Part of Lemma 4.2.4 Co-compactness is equivalent to the
property that, for the metric induced on the quotientK∞/A, every sequence contains
a convergent sequence. We have an isometric isomorphism

K∞
FA

∼= V ⊕MK∞

where V is a vector space as in Lemma 4.2.5 and we deduce that K∞/A, with the
induced metric, is compact. ��

Up to a certain extent, the tower of rings A ⊂ K ⊂ K∞ associated to the datum
(C,∞) can be viewed in analogy with the tower of rings Z ⊂ Q ⊂ R.

Here is a fact which encourages to ‘think ultrametrically’. We cannot cover a disk
of radius q (e.g.DL(0, q)) of a non locally compact field L, with finitely many disks
of radius 1. Of course, this is possible, by local compactness, for the diskDK∞(0, q)
in K∞. Explicitly, in the case C = P

1
Fq

:

DK∞(0, q) = DK∞(0, 1)⊕ Fqθ = �λ∈F×q DK∞(λθ, 1) �DK∞(0, 1).

4.2.3 Algebraic Extensions

We start with an example in the local field L = Fq((π)) (with |π | < 1). Let M be
an element of L such that |M| < 1. We want to solve the equation

Xq −X = M. (4.1)
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Assuming that there exists a solution x ∈ Lwe have x = xq−M so that inductively
for all n:

x = xqn+1 −
n
∑

i=0

Mqi .

The series
∑n
i=0M

qi converges to H in ML by the hypothesis on M and |H | =
|M|. But Hq − H = M and x = H is a solution of (4.1) and the polynomial
Xq − X − M totally splits in L[X] as all the roots are in {H + λ : λ ∈ Fq}. If
|M| = 1 we could think of writing M = M0 +M ′ with M0 ∈ F

×
q and |M ′| < 1

but Eq. (4.1) with M = M0 has no roots in Fq . One easily sees that the Eq. (4.1)
has no roots in L if |M| ≥ 1. What makes the above algorithm of approximating
a solution in the case |M| < 1 is that the equation Xq − X = 0 has solutions in
Fq . These arguments can be generalised and formalised in what is called Hensel’s
lemma. It can be used to show the following property, which is basic and will be
used everywhere. Let L be a valued field with valuation | · | = c−v(·) (with a map
v : L→ R∪{∞}), complete, and let us considerF/L a finite extension (necessarily
complete). Then, setting

NF/L(x) =
(

∏

σ∈S
σ (x)

)[F :L]i
, x ∈ F,

where S is the set of embeddings of F in an algebraic closure of L and [F : L]i is
the inseparable degree of the extension F/L, the mapw : F → R∪{∞} determined
by w(0) =∞ and

w(x) = v(NF/L(x))[F : L] , x ∈ F×

defines a valuation | · |w := c−w(·) extending | · | over F in the only possible way.
Coming back to the local field L = Fq((π)), denoting by Lac an algebraic closure
of L, there is a unique valuation over Lac extending the one of L; we will denote it
by | · | by abuse of notation. The valuation group is |π |Q = {|π |ρ : ρ ∈ Q} therefore
dense in R>0 and the residue field is the algebraic closure Fac

q of Fq . It is easy to see
that Lac is not complete, although each intermediate finite extension is so.

Lemma 4.2.6 The completion̂Lac of Lac is algebraically closed.

Proof We follow [Gos96, Proposition 2.1]. Let F/̂Lac be a finite extension. Then,
as seen previously, F carries a unique extension of the valuation | · | of̂Lac. Let x be
an element of F . We want to show that x ∈̂Lac. For a polynomial P =∑i PiXi ∈
̂Lac[X] we set ‖P‖ := sup{|Pi |}. It is easy to see that ‖·‖ is a valuation over̂Lac[X],
called the Gauss valuation (to see the multiplicativity it suffices to study the image
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of a polynomial in O
̂Lac[X] by the residue map

O
̂Lac[X] → k

̂Lac[X]
which is a ring homomorphism). Let P ∈ ̂Lac[X] be the minimal polynomial of
x over̂Lac. For ‖ · ‖, P is a limit of polynomials of the same degree, which split
completely. It is easy to show that for all ε > 0, there existsN ≥ 0 with the property
that for all i ≥ N , a root xi ∈ Kac∞ of Pi satisfies |x − xi|∞ < ε. This shows that x
is a limit of a sequence of̂Lac and therefore, x ∈̂Lac. ��

4.2.4 Analytic Functions on Disks

To introduce the next discussions we recall here some basic facts about ultrametric
analytic functions in disks, following [Gos96, Chapter 3]. In this subsection, L
denotes a valued field which is algebraic closed and complete for a valuation | · | .
We consider a map v : L× → R such that | · | = c−v(·) for some c > 1. We consider
a formal power series

f =
∑

i≥0

fiX
i ∈ L[[X]]. (4.2)

The Newton polygon N of f is the lower convex hull in R
2 of the set S =

{(i, v(fi)) : i ≥ 0}. It is equal to
⋂

HH where H runs over all the closed half-
planes of R2 which contain at once S and a half-line {(x, y) : y � 0} for some
x ∈ R, where y � 0 (‘large enough’) means that y ≥ y0 for some y0 ∈ R.

Here is a practical method of constructing the Newton polygon N of a formal
series f ∈ L[[X]], if you have on-hand a wooden board, a pencil, nails, a hammer,
string and a compass. Draw the axes coordinates i and v on the board, with the
positive direction of the latter pointed toward the north, as indicated by the compass.
Mark the coordinate points (i, v(i)) with the pencil, then hammer nails into the
points. Place yourself in front of the wooden board pointing north. Take the string
and pull it tautly between your hands, then begin winding it from south to north
(being careful to not choose f = 0, meaning you must have hammered in at least
one nail!). A polygon figure will appear, which, transferred on the board, represents
the Newton polygon of f .

Note that if f �= 0, there is always a vertical side on the left of N . If f is a non-
zero polynomial, there is also a vertical side on the right. If x ∈ L and |fixi | → 0
then the series

∑

i fix
i converges in L to an element that we denote by f (x). There

exists r ∈ |L| such that f (x) is defined for all x ∈ D(0, r) := DL(0, r) and we
have thus defined a function

D(0, r)
f−→ L

that we call analytic function on the disk D(0, r) (note the abuse of language).
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Proposition 4.2.7 The following properties hold.

(1) The sequence of slopes of N is strictly increasing and its limit is −ρ(f ) =
lim supi→∞ v(fi ). The real number ρ(f ) is unique with the property that the
series f (x) converges for x ∈ L such that v(x) > ρ(f ), and f (x) diverges if
v(x) < ρ(f ).

(2) If there is a side of the Newton polygon of f which has slope−m and such that
it does not contain any point of the Newton polygon in its interior, then f has
exactly r(m) zeroes x counted with multiplicity, with v(x) = m, where r(m) is
the length of the projection of this side of slope −m onto the horizontal line.
There are no other zeroes of f with this property.

(3) If ρ(f ) = −∞, assuming that f is not identically zero, we can expand, in a
unique way (Weierstrass product expansion):

f (X) = cXn
∏

i

(

1− X
αi

)βi

with c ∈ L×, where αi → ∞ is the sequence of zeroes such that v(αi) >
v(αi+1) (with multiplicities βi ∈ N

∗).

By (2) of the proposition, if we set r = c−ρ(f ) ∈ R≥0, f is analytic on D(0, r ′)
for all r ′ ∈ |L| such that r ′ < r and r is maximal with this property. If ρ(f ) = −∞
then we say that f is entire. We can show easily that if f is entire and non-constant,
then it is surjective, and furthermore, an entire function without zeroes is constant.
Also, if f as above is non-entire and non-constant, in general it is not surjective,
but we have a reasonable description of the image of disks by it, given by the next
corollary, the proof of which is left to the reader.

Corollary 4.2.8 Let f be as in (4.2) with f0 = 0 and let us suppose that it
converges on DL(0, r) with r ∈ |L×|. Then, f

(

DL(0, r)
) = DL(0, s) for some

s ∈ |L|.
To be brief: an analytic function sends disks to disks.

4.2.5 Further Properties of the Field C∞

We consider as in Sect. 4.2.2 the local field K∞. Then, K∞ = F((π)) for some
uniformiser π and by Lemma 4.2.6, the field

C∞ :=̂Kac∞
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is algebraically closed and complete. It will be used in the sequel as an alternative
to C ‘for silicon-based mathematicians’,1 but there are many important differences.
For instance, note that C/R has degree 2, while C∞/K∞ is infinite dimensional, as
the reader can easily see by observing that F-linear elements of Fac

q are also K∞-
linearly independent (in fact, thisK∞-vector space is uncountably-dimensional and
the group of automorphisms is an infinite, profinite group).

Complex analysis makes heavy use of local compactness so that we can cover
a compact analytic space with finitely many disks. For example, we can cover an
annulus with finitely many disks so that the union does not contain the center, which
is very useful in path integration of analytic functions over C \ {0}. The ultrametric
counterparts of this and other familiar and intuitive statements are false in C∞ as
well as in other non-locally compact fields. We cannot use ‘partially overlapping
disks’ to ‘move’ in C∞, or, more generally, in a non-Archimedean space. The
intuitive idea of ‘moving’ itself is different even thought it is not too different, as
two annuli, or a disk and an annulus, may overlap somewhere without being one
included in the other.

On another hand, the field C∞ also has ‘nice’ properties. Let us review some of
them; we denote by Lsep the separable closure of a field L.

Lemma 4.2.9 We have C∞ = ̂Ksep
∞ .

Proof This is consequence of simple metric properties of Artin-Schreier extensions.
We follow [Ax70]. First look at the equation

Xq
′ −X = M

with M ∈ K∞ and where q ′ = pe
′

for some e′ > 0. Then, if |M|∞ > 1, all

the solutions γ ∈ C∞ of the equation are such that |γ |q ′∞ = |M|∞ and |γ q ′ −
M|∞ < |M|∞. This also is a very simple consequence of Proposition 4.2.7: the
reader can study the Newton polygon of f (X) = Xq ′ −X−M inspecting the three
different cases |M|∞ < 1, |M|∞ = 1 and |M|∞ > 1. Here, with |M∞| > 1, the
extensionK∞(γ )/K∞ is clearly separable but ramified as by Proposition 4.2.7, the

polynomialXq
′ −X−M has q ′ distinct roots x inKac∞ with valuation |x|∞ = |M|

1
q′∞.

It is in fact a wildly ramified extension: this means that the characteristic p of Fq
divides the index of ramification.

We now consider α ∈ Kac∞. We want to show that α is a limit ofKsep∞ . There exists
q ′ = pe′ with a := αq ′ ∈ Ksep

∞ . For instance, we can take q ′ = [K∞(α) : K∞]i
(inseparable degree). Consider b ∈ K×∞ and a root β ∈ Kac∞ of the polynomial
equationXq

′ −bX−a = 0. Clearly, β ∈ Ksep∞ . Let λ ∈ Ksep∞ be such that λq
′−1 = b.

1Opposed to ‘carbon-based mathematicians’, following David Goss.
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Then, setting γ = β
λ

, we have γ q
′ = βq

′

λq
′ = βq

′
bλ

so that

γ q
′ − γ = a

bλ
=: M.

We can choose b ∈ K×∞ such that |b|∞ is small enough so that |M|∞ > 1. If this is

the case, then |γ |q ′∞ = | abλ |∞ so that

|β|q ′∞ = |a|∞.

Since (β − α)q ′ = βq ′ − a = bβ,

v∞(β−α) = 1

q ′
v∞(βq

′ −a) = 1

q ′ (
v∞(b)+ v∞(β)) = 1

q ′

(

v∞(b)+ 1

q ′
v∞(a)
)

.

We choose a sequence (bi)i ⊂ K×∞ with bi → 0. For all i, let βi ∈ Ksep
∞ be such

that βq
′
i = βibi + a and βi → α. Then, v∞(βi − α)→∞ as v∞(bi)→∞ so that

βi → α. ��
We deduce that |C×∞|∞ = |π |Q∞ with π a uniformiser of K∞, and the residue

field of C∞ is Facq the algebraic closure of Fq in C∞.
The next results are not used in the rest of the text but mentioning them is helpful

in understanding important subtleties lying in the bases of the theory of Drinfeld
modular forms.

Lemma 4.2.10 The group C
×∞ contains a subgroup πQ ∼= (Q,+) which is totally

ordered for | · |∞. There are group epimorphisms

C
×∞

�−→ πQ, C
×∞

sgn−→ (Facq )
×

such that� induces the identity on πZ, sgn induces the identity on (Facq )
×, and for

all x ∈ C
×∞,

|x −�(x) sgn(x)|∞ < |x|∞.

One can see that a choice of πQ, � etc. corresponds to an embedding of C∞
in a maximal immediate extension of it (that is to say, a field extension which is
maximal with same valuation group and same residue field) or, equivalently, in a
certain type of field of Hahn generalised series, spherically complete. Read Poineau
and Turchetti’s contribution [Poi20a, Definition I.2.17, Theorem I.2.18, Example
I.2.20]. Read also Kedlaya’s [Ked01].
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The group G := Gal(Ksep∞ /K∞) acts on C∞ by continuous K∞-linear auto-
morphisms. Then the following important result holds, where the completion on the
right is that of the perfect closure of K∞ in C∞ (see for example [Ax70]):

Theorem 4.2.11 (Ax-Sen-Tate) C
G∞ := {x ∈ C∞ : g(x) = x,∀g ∈ G} = ̂

K
perf∞ .

4.3 Drinfeld Modules and Uniformisation

Drinfeld modules are also at the hearth of Tavares Ribeiro contribution to this
volume, read [Tav20, §1.4]. Let R be an Fq -algebra and τ : R→ R be an Fq -linear
endomorphism. We denote by R[τ ] the left R-module of the finite sums

∑

i fiτ
i

(fi ∈ R) equipped with the R-algebra structure given by τb = τ (b)τ for b ∈ R.2

Let f =∑ni=0 fiτ
i be in R[τ ]. For any b ∈ R we can evaluate f in b by setting

f (b) =
n
∑

i=0

fiτ
i(b) ∈ R.

This gives rise to an Fq -linear map R → R. Note that the element f = ∑i fiτ i
and the associated evaluation map f : R→ R are two completely different objects.
However, in this text, we will denote them with the same symbols.

We chooseR by returning to the notations of Sect. 4.2.2. In particular considering
the Fq -algebra A = H 0(C \ {∞},OC) we construct the tower of rings

A ⊂ K ⊂ K∞ ⊂ C∞

arising from Sect. 4.2.3 which is analogous of Z ⊂ Q ⊂ R ⊂ C.

4.3.1 Drinfeld A-Modules and A-Lattices

We show here the crucial correspondence between Drinfeld A-modules and A-
lattices, due to Drinfeld [Dri74]. The definition of Drinfeld module that we give
here is not the most general one but it will nevertheless be enough for our purposes.
Remember that, in the construction of the tower of rings A ⊂ K ⊂ K∞ ⊂ Kac∞ ⊂
C∞ we have in fact chosen an embedding A ⊂ C∞.

2It would be more appropriate, to define this R-algebra, to choose an indeterminateX and consider
as the underlying R-module the polynomial ring R[X] setting the product to be Xb = τ(b)X. This
is an Ore algebra and the standard notation for it is R[X; τ ]. For the purposes we have in mind, the
abuse of notation R[τ ] is harmless.
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Definition 4.3.1 An injective Fq -algebra morphism φ : A → EndFq (Ga(C∞)) ∼=
C∞[τ ] is a Drinfeld A-module of rank r > 0 if for all a ∈ A

φa := φ(a) = a + (a)1τ + · · · + (a)rd∞ deg(a)τ
r deg(a) ∈ C∞[τ ],

where the coefficients (a)i are in C∞ and depend on a, and where deg(a) =
dimFq (A/(a)). If R is an Fq-subalgebra of C∞ containing A and the coefficients
(a)i with 1 ≤ i ≤ r deg(a) and a ∈ A, we say that the Drinfeld A-module φ is
defined over R and we write φ/R.

Note that geometrically, a Drinfeld module defined over C∞ is just Ga over C∞.
What makes the theory interesting is the fact that there are many embeddings of A
in EndFq (Ga(C∞)). The case of the Carlitz module, which can be viewed as the
‘simplest’ Drinfeld module of rank one, is analysed in Sect. 4.4.

The set of Drinfeld A-modules of rank r is equipped with a natural structure
of small category. If ϕ and ψ are two Drinfeld A-modules, we say that they are
isogenous if there exists ν ∈ C∞[τ ] such that ϕaν = νψa for all a ∈ A. If ν,
seen as a non-commutative polynomial in τ , is constant, then we say that ϕ and ψ
are isomorphic. Being isogenous induces an equivalence relation on Drinfeld A-
modules and isogenies are the morphisms connecting Drinfeld A-modules of same
rank in our category.

We prove that the category of Drinfeld A-modules of rank r is equivalent to
another category, that of A-lattices.

Definition 4.3.2 An A-lattice in C∞ is a finitely generated strongly discrete A-
submodule � ⊂ C∞ and two A-lattices � and �′ are isogenous if there exists
c ∈ C

×∞ such that c� ⊂ �′ with c� of finite index in �′.

Isogenies are the morphisms connecting lattices. Clearly, this also defines an
equivalence relation. If two A-lattices � and �′ are such that there exists c ∈ C∞
with c� = �′, then we say that � and �′ are isomorphic.

Since A is a Dedekind ring, any A-lattice � is projective and has a rank r =
rankA(�). We have the following lemma, the proof of which is left to the reader.

Lemma 4.3.3 Let � be a projective A-module of rank r . Then � is an A-lattice if
and only if the K∞-vector space generated by � has dimension r .

Observe that, in contrast with the complex case, for all r > 1 there exist infinitely
many non-isomorphic A-lattices (this can be deduced from the fact that C∞ is not
locally compact). We choose an A-lattice � of rank r as above.

By Proposition 4.2.7 the following product (where the dash (·)′ indicates that the
factor corresponding to λ = 0 is omitted)

exp�(Z) := Z
∏′

λ∈�

(

1− Z
λ

)
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converges to an entire function C∞ → C∞ (hence surjective) called the exponential
function associated to �. Note that this is an Fq -linear entire function with kernel
�, and we can write

exp�(Z) =
∑

i≥0

αiτ
i(Z), αi ∈ C∞, α0 = 1, ∀Z ∈ C∞.

In particular, d
dZ

exp�(Z) = 1, and the ’logarithmic derivative’ (defined in the
formal way) of exp� coincides with its multiplicative inverse and is equal to the
series

∑

λ∈�

1

Z − λ, Z ∈ C∞ \�.

We refer to [Gek88, §2] for an account on the properties of this fundamental class
of analytic functions.

It is not always an easy task to construct explicitly Drinfeld A-modules for a
given A = H 0(C \ {∞},OC), if C �= P

1
Fq

. The following result is due to Drinfeld
[Dri74] and shows the depth of the problem.

Theorem 4.3.4 There is an equivalence of small categories

{A− lattices of rank r} → {Drinfeld A-modules of rank r defined over C∞}.

Proof The proof that we propose is essentially self-contained except for the use of
Theorem 4.3.7 which is the crucial tool, showing how to associate to any DrinfeldA-
module an exponential function. We postpone this result and its proof to Sect. 4.3.2.

Let � be a lattice of rank r (so that it is a projective A-module). The Fq -linear
entire map exp� gives rise to the exact sequence of Fq-vector spaces

0 → �→ C∞
exp�−−→ C∞ → 0.

For any a ∈ A there is a unique Fq -linear map C∞
φa−→ C∞ such that

exp�(aZ) = φa(exp�(Z))

for all Z ∈ C∞ and we want to show that the family (φa)a∈A gives rise to a Drinfeld
A-module of rank r . By the snake lemma we get ker(φa) ∼= �/a� ∼= (A/(a))r .
Note also that ker(φa) = exp�(a

−1�). We set

Pa(Z) := aZ
∏′

α∈ker(φa)

(

1− Z
α

)

= aZ + (a)1Zq + · · · + (a)r deg(a)Z
qr deg(a)

.
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Note that the functions Pa(exp�(Z)) and exp�(aZ) are both entire with divisor
a−1� and the coefficient of Z in their entire series expansions are equal. Hence
these functions are equal and we can write

φa(Z) = aZ + (a)1Zq + · · · + (a)r deg(a)Z
qr deg(a)

, ∀a ∈ A, Z ∈ C∞.

This defines a Drinfeld A-module φ of rank r such that exp�(aZ) = φa(exp�(Z))
for all a ∈ A so we have defined a map associating to � an A-lattice of rank r a
Drinfeld module φ� of rank r .

The next step is to show that the map � 
→ φ� that we have just constructed,
from the set of A-lattices of rank r to the set of Drinfeld A-modules of rank r ,
is surjective. From the proof it will be possible to derive that it is also injective.
Let φ be a Drinfeld A-module of rank r . We want to construct � an A-lattice
of rank r such that φ = φ�. By the subsequent Theorem 4.3.7, there exists a
unique entire Fq -linear function expφ : C∞ → C∞ such that for all a ∈ A,
expφ(aZ) = φa(expφ(Z)), and this, for all Z ∈ C∞. We set � = Ker(expφ).
Then � is a strongly discrete A-module in C∞. The snake lemma implies that
�/a� ∼= Ker(φa), which is an Fq -vector space of dimension r deg(a). Let ε > 0
be a real number and let Vε be the K∞-subvector space of C∞ generated by
� ∩ D(0, ε). We also set �ε := Vε ∩ �. Observe that �ε is an A-lattice (it is a
finitely generatedA-module because of the finiteness of the dimension of Vε) which
is saturated by construction. Hence �ε/a�ε injects in �/a� and this for all ε > 0
which means rankA(�ε) = dimK∞(Vε) ≤ r for all ε > 0. Setting V = ∪εVε we
see that dimK∞(V ) ≤ r . From this we easily deduce that� is finitely generated and
since �/a� ∼= (A/(a))r we derive that � is an A-lattice of rank r .

Hence the map � 
→ φ� is surjective and one sees easily that it is also injective
by looking at exp�. Finally, the map is in fact an equivalence of small categories
with the natural notions of morphisms between A-lattices and Drinfeld A-modules
that we have introduced. We leave the details of these verifications to the reader. ��

4.3.2 From Drinfeld Modules to Exponential Functions

In order to complete the proof of Theorem 4.3.4 it remains to show how to associate
to a Drinfeld A-module an exponential function. This is the object of the present
subsection and we will take the opportunity to present things in a rather more general
setting, by introducing Anderson’sA-modules. We recall here the definition of Hartl
and Juschka in [Har20].

Definition 4.3.5 An Anderson A-module of dimension d (over C∞) is a pair E =
(E, ϕ) where E is an Fq -module scheme isomorphic to Ga(C∞)d , together with a
ring homomorphism ϕ : A → EndFq (E), such that for all a ∈ A, (Lie(ϕ(a)) −
a)d = 0.
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If R is a ring, we denote byRm×n the set of matrices with m rows and n columns
with entries in R. Note that there is an Fq-isomorphism EndFq (E) ∼= C∞[τ ]d×d . If
d = 1 we are brought to Definition 4.3.1 of Drinfeld A-modules.

Anderson modules fit in a category which can be compared to that of commu-
tative algebraic groups; this category is of great importance for the study of global
function field arithmetic. A remarkable feature which allows to track similarities
with commutative algebraic groups is the fact that we can associate, to every such
module, an exponential function. In [Boc07, Proposition 8.7] (see also Anderson in
[And86, Theorem 3]) Böckle and Hartl proved that every Anderson’s A-module E
possesses a unique exponential function

expE : Lie(E)→ E(C∞)

in the following way (compare also with [Tav20, Proposition 1.11]). Identifying
Lie(E) (defined factorially) with C

d×1∞ , expE is an entire function of d variables

z = t (z1, . . . , zd ) ∈ C
d×1∞ (t (· · · ) denotes the transposition)

z 
→ expE(z) =
∑

i≥0

Eiz
qi

with E0 = Id and Ei ∈ C
d×d∞ such that, for all a ∈ A and z ∈ C

d∞,

expE(Lie(ϕa)z) = ϕa(expE(z)).

We show how to construct expE in a slightly more general setting. Let B be any
commutative integral countably dimensionalFq -algebra. We follow [Gaz19] and we
define ‖ · ‖∞ on A⊗Fq B by setting, for x ∈ A⊗Fq B, ‖x‖∞ to be the infimum of
the values maxi |ai |∞, running over any finite sum decomposition

x =
∑

i

ai ⊗ bi

with ai ∈ A and bi ∈ B \ {0}. Then, ‖ · ‖∞ is a valuation of A ⊗Fq B extending
the valuation of A via a 
→ a ⊗ 1. The Fq -algebra A ⊗Fq B is equipped with the
B-linear endomorphism τ defined by a ⊗ b 
→ aq ⊗ b (thus extending the q-th
power map a 
→ aq which is an Fq -linear endomorphism of A). Similarly, we can
consider the C∞-algebra

T = C∞̂⊗FqB,

the completion of C∞ ⊗Fq B for ‖ · ‖∞ defined accordingly, and we also have a B-
linear extension of τ . Let d > 0 be an integer. We allow τ to act on d × d matrices
of Td×d with entries in T on each coefficient. Then, T[τ ] acts on T by evaluation
and T[τ ]d×d ⊂ EndB(Td×1). If f ∈ T[τ ]d×d we can write f = ∑ni=0 fiτ

i with
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fi ∈ T
d×d and we set Lie(f ) := f0 which provides a T-algebra morphism

Lie(f ) : T[τ ]d×d → T
d×d .

Definition 4.3.6 An Anderson A ⊗Fq B-module ϕ of dimension d is an injective
B-algebra homomorphism

A⊗Fq B
ϕ−→ T[τ ]d×d

such that for all a ∈ A, (Lie(ϕ(a))− a)d = 0.

We prefer to write ϕa in place of ϕ(a).
We now revisit the proof of Proposition 8.7 of [Boc07] and the method is flexible

enough to adapt to the setting of Definition 4.3.6. Note also that later in this text,
we will be interested in the case B = Fq only, case in which we essentially recover
[And86, Theorem 3]. In the following, the non-commutative ring T[[τ ]] is defined
in the obvious way with T[τ ] as a subring. In the following, we denote by ‖M‖∞
the supremum of ‖x‖∞ where x varies in the entries of a matrix M ∈ T

m×n. We
show:

Theorem 4.3.7 Given an AndersonA⊗Fq B-module ϕ, there exists a unique series

expϕ =
∑

i≥0

Eiτ
i ∈ T[[τ ]]d×d

with the coefficients Ei ∈ T
d×d and with E0 = Id , such that the evaluation series

expϕ(z) is convergent for all z ∈ T
d×1, and such that

ϕa(expϕ(z)) = expϕ(Lie(ϕa)z),

for all z ∈ T
d×1 and a ∈ A⊗Fq B. For all a ∈ A \ F we have that expϕ is the limit

for n → ∞ of the sequence of entire functions ϕana−n ∈ C∞[[τ ]]d×d , uniformly
convergent on every subset of T[[τ ]]d×1, bounded for the norm ‖ · ‖∞.

Before proving this result, we need two lemmas.

Lemma 4.3.8 Let us considerL,M ∈ T[τ ]d×d withL = α+N , with α ∈ GLd(T)
such that ‖α‖∞ > 1 > ‖α−1‖∞ and M,N ∈ (T[τ ]τ )d×d . Then, for all
R ∈ ‖T×‖∞, the sequence of functions given by the evaluation of (LNMα−N)N≥0
converges uniformly onDT(0, R)d×1 to the zero function.

Proof The multiplication defining LNMα−N is that of T[[τ ]]d×d . Locally near the
origin, α−1L is an isometric isomorphism and there exists R0 ∈ ‖T×‖∞ with 0 <
R0 < 1 such that for all x ∈ DT(0, R0)

d×1, ‖L(x)‖∞ = ‖αx‖∞ ≤ ‖α‖∞‖x‖∞.
Hence, for N ≥ 0, if ‖x‖∞ ≤ ‖α‖−N∞ R0 (< R0 because of the hypothesis on α),
we have ‖LN(x)‖∞ ≤ ‖α‖N∞‖x‖∞.
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We can choose R0 small enough so that ‖M(x)‖∞ ≤ β‖x‖ql∞ for some β ∈
‖T×‖∞ and l > 0. Let R be in ‖T×‖∞ fixed, and let us suppose that N is large
enough so that ‖α‖−N∞ R ≤ R0. Then, for all x ∈ DT(0, R)d , ‖M(α−Nx)‖∞ ≤
β(‖α‖−N∞ R)q

l
. If N is large enough, we can also suppose that

β(‖α‖−N∞ R)q
l

< ‖α‖−N∞ R0

(because l > 0). Therefore, ‖(LNM)(α−Nx)‖∞ ≤ ‖α‖N∞β(‖α‖−N∞ R)q
l → 0 as

N →∞, for all x ∈ DT(0, R)d×1. ��
We consider an Anderson A ⊗ B-module ϕ and we recall that Lie(ϕa) is the

coefficient in T
d×d of τ 0Id in the expansion of ϕa ∈ T[τ ]d×d along powers of

Idτ . If a ∈ A ⊗ B \ Fq × B, Lie(ϕa) = aId + Na with Na nilpotent. Then,
α = Lie(ϕa) ∈ GLd(T) is such that ‖α‖∞ > 1. Indeed otherwise Na − α − aId
would be invertible.

Let us consider a, b ∈ A⊗B, ‖a‖∞ > 1. We construct the sequence of B-linear

functions Td×1
FaN−−→ T

d×1 defined by

FaN = ϕaNb Lie(ϕaNb)
−1, N ≥ 0.

Lemma 4.3.9 The sequence (FaN) converges uniformly on every polydisk
DT(0, R)d×1 and the limit function T

d×1 → T
d×1 is independent of the choice

of b.

Proof We set GaN = FaN+1 − FaN . Then,

GaN = ϕaN
︸︷︷︸

=:LN
ϕb(ϕa Lie(ϕa)−1 − Id)Lie(ϕb)−1
︸ ︷︷ ︸

=:M
Lie (ϕa)−N
︸ ︷︷ ︸

=:α−N

and by Lemma 4.3.8, the sequence converges uniformly to the zero function
on every polydisk DT(0, R)d×1 which ensures the uniform convergence of the
sequence FaN). Observe now that, writing momentarily Fa,bN to designate the above
function associated to the choice of a, b,

Fa,b
aN
− Fa,1

aN
= ϕaN
︸︷︷︸

=:LN
(ϕb Lie(ϕb)−1 − Id)
︸ ︷︷ ︸

=:M
Lie(ϕaN )

−1

︸ ︷︷ ︸

=:α−N
,

so that, again by Lemma 4.3.8 this sequence tends to zero uniformly on every
polydisk, and the limit Fa of the sequence FaN is uniquely determined, independent
of b. ��
Proof of Theorem 4.3.7 Let us denote by Fa the continuous B-linear map which,
by Lemma 4.3.9 is the common limit of all the sequences (Fa,bN )N (that can be
identified with a formal series x 
→ ∑i≥0 Eiτ

i(x) ∈ T
d×d [[τ ]]). First of all, note
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that E0 = Id so that this map is not identically zero. Moreover, observe that, for all
b ∈ A⊗ B:

ϕbFa = ϕb lim
N→∞Fa,1N

= ϕb lim
N→∞ ϕaN Lie(ϕaN )

−1

= lim
N→∞ ϕbaN Lie(ϕbaN )

−1 Lie(ϕb)

= lim
N→∞Fa,bN Lie(ϕb)

= Fa Lie(ϕb).

Hence we see that for all a, Fa satisfies the property of the theorem. Now, let F1 and
F2 be two elements of Td×d [[τ ]] such that ϕb(Fi (z)) = Fi (bz) for all b ∈ A⊗ B
and i = 1, 2, and with the property that F3 = F1 − F2 ∈ T

d×d [[τ ]]τ . Suppose
by contradiction that F3 is non-zero. Then we can write F3 = ∑i≥i0 Fiτ i with

Fi ∈ T
d×d and Fi0 non-zero. Since F3 also satisfies the same functional identities

of both F1,F2 (for b ∈ A⊗ B), we get Lie(ϕb)Fi0 = Fi0τ i0(Lie(ϕb)) for all b. Let
w be an eigenvector of Fi0 with non-zero eigenvalue, defined over some algebraic
closure of the fraction field of T. We consider b ∈ A⊗ B with ‖b‖∞ > 1. Writing
Lie(ϕb) = b+Nb with Nb nilpotent, we see that Lie(ϕb)w = τ i0(Lie(ϕb))w which
implies (b − τ i0(b))w = (τ i0(Nb) − Nb)w = Mw and M is nilpotent. Hence,
there is a power c of b − τ i0(b) such that cw = 0 which means that b = τ i0(b);
a contradiction because the valuations do not agree. This means that F1 = F2. In
particular, F = Fa does not depend on the choice of a and the theorem is proved.

��

4.4 The Carlitz Module and Its Exponential

In this section we set

A = H 0(P1
Fq
\ {∞},O

P
1
Fq

) = Fq [θ ],

θ being a rational function over P
1
Fq

having a simple pole at ∞ and no other
singularity. The simplest example of Anderson’s A-module is the Carlitz module
which is discussed here; it has rank one and it is perhaps the only one with which
we can make very simple computations so it is legitimate to spend some time on it.
In order to simplify our notations, we write

| · | = | · |∞ = q−v∞(·), ‖ · ‖ = ‖ · ‖∞
from now on; this will not lead to confusion.
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Definition 4.4.1 (Cf. Example 1.9 of [Tav20]) The Carlitz A-module is the Drin-

feld A-moduleA
C−→ C∞[τ ] uniquely defined by Cθ = C(θ) = θ + τ .

Let a be in A. Then, Ca ∈ A[τ ] has degree degθ (a) in τ and the rank is 1. Note
also that C is defined over the Fq -algebra A.

We give an example of computation where we can see how this A-module
structure over an A-algebra R works. We suppose q = 2. Let 1 be the identity
of R×. We have Cθ (1) = θ + 1. Hence,

Cθ2+θ (1) = Cθ+1(Cθ (1)) = (θ + 1)2 + θ2 + 1 = 0.

This means that 1 is a (θ2 + θ)-torsion point for this A-module structure given by
the Carlitz module.

By Theorem 4.3.7, the limit series

expC := lim
N→∞CθN θ

−N ∈ C∞[[τ ]],

not identically zero and which can be identified with an entire Fq -linear endomor-
phism of C∞, satisfies

expC a = Ca expC (4.3)

for all a ∈ A and has constant term (with respect to the expansion in powers of τ )
equal to one. By Theorem 4.3.4, the Carlitz module C corresponds to a rank one
lattice νA ⊂ C∞, with generator ν ∈ C∞, and we have

expC(Z) = expνA(Z) = Z
∏′

λ∈νA

(

1− Z
λ

)

, Z ∈ C∞.

Our next purpose is to compute ν explicitly. To do this, we are going to use
properties of the Newton polygon of expC . Indeed, staring at (4.3) it is a simple
exercise to show that there is a unique solution Y ∈ C∞[[τ ]] of CθY = Yθ with the
coefficient of τ 0 equal to one, and by uniqueness, we find

expC =
∑

i≥0

d−1
i τ

i,

where

di = (θqi − θqi−1
) · · · (θqi − θq)(θqi − θ) = (θqi − θ)dqi−1

(if i > 0 and with d0 = 1). From v∞(di) = −iqi we observe again that expC
defines an Fq -linear entire function which is therefore also surjective over C∞ (use
Proposition 4.2.7). We have the normalisation of | · | by |θ | = q .



4 From the Carlitz Exponential to Drinfeld Modular Forms 115

Proposition 4.4.2 There exists an element ν ∈ C∞ with v∞(ν) = − q
q−1 , such that

the kernel of expC is equal to the Fq -vector space νA. The element ν is defined up
to multiplication by an element of F×q .

Proof We know already from Theorem 4.3.4 that the kernel of expC has rank one
over A. The novelty here is that we can compute the valuation of its generators, a
property which is not available from the theorem. The Newton polygon of expC is
the lower convex hull in R

2 of the set whose elements are the points (qi, iqi). Since

(qi+1, (i + 1)qi+1)− (qi, iqi) = (qi(q − 1), iqi(q − 1)+ qi+1)

for i ≥ 0, the sequence (mi) of the slopes of the Newton polygon is

iqi(q − 1)+ qi+1

qi(q − 1)
= i + q

q − 1
.

Projecting this polygon on the horizontal axis we deduce that for all i ≥ 0, expC has
exactly qi(q−1) zeroes x such that v∞(x) = −i− q

q−1 (counted with multiplicity)
and no other zeroes. In particular, we have q − 1 distinct zeroes such that v∞(x) =
− q
q−1 . The multiplicity of any such zero is one (note that d

dX
expC(X) = 1) so they

are all distinct. Now, since expC is Fq -linear, we have that all the roots x such that
v∞(x) = −1 − 1

q−1 are multiple, with a factor in F
×
q , of a single element ν (there

are q − 1 choices). We denote by A[d] the set of polynomials of A of exact degree
d . For all a ∈ A[d], 0 = Ca(expC(ν)) = expC(aν) and v∞(aν) = −d − q

q−1 .
This defines an injective map from A[d] to the set of zeroes of expC of valuation
−d − q

q−1 . But this set has cardinality qd(q − 1) which also is the cardinality of
A[d]. This means that expC(x) = 0 if and only if x ∈ νA. ��
Corollary 4.4.3 We have expC(X) = X

∏

a∈A\{0}
(

1− X
aν

)

and expC induces an
exact sequence of A-modules

0 → νA→ C∞
expC−−→ C(C∞)→ 0.

4.4.1 A Formula for ν

We have seen that if � ⊂ C∞ is the kernel of expC , then � is a free A-module of
rank one generated by ν ∈ C∞ with v∞(ν) = − q

q−1 , defined up to multiplication

by an element of F×q . Let us choose a (q − 1)-th root (−θ) 1
q−1 of −θ ; this is also

defined up to multiplication by an element of F×q , and the valuation is − 1
q−1 . We

want to prove the following formula:

ν = θ(−θ) 1
q−1
∏

i>0

(

1− θ

θq
i

)−1

.
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To do this, we will use Theorem 4.3.7. We recall that this result implies that the
sequence

fn(z) = expC(z)− Cθn(zθ−n)

converges uniformly on every bounded disk of C∞ to the zero function. To continue
further, we need to introduce the function ω of Anderson and Thakur. This function
is defined by the following product expansion:

ω(t) = (−θ) 1
q−1
∏

i≥0

(

1− t

θq
i

)−1

.

The convergence of this product is easily seen to hold for any t ∈ C∞ \
{θ, θq, θq2

, . . .}. Also, for all n �= 1, the function

(t − θ)(t − θq) · · · (t − θqn−1
)ω(t)

extends to an analytic function over DC∞(0, q
n−1) (we can also say that ω defines

a meromorphic function over C∞ having simple poles at the singularities defined
above). To study the arithmetic properties of ω, it is useful to work in Tate algebras.
However, at this level of generality, this is not necessary, strictly speaking. For the
purposes we have in mind now, it will suffice to work with formal Newton-Puiseux
series. Let y, t be two variables, choose a (q − 1)-th root of y and define:

F(y, t) = (−y) 1
q−1
∏

i≥0

(

1− t

yq
i

)−1

∈ Fq((y
− 1
q−1 ))((t)).

Then,

F(yq, t) = (t − y)F (y, t).

Writing the series expansion

ω(t) =
∑

i≥0

λi+1t
i ∈ C∞[[t]],

we deduce, from the uniqueness of the series expansion of an analytic function in
DC∞(0, 1), that the sequence (λi)i≥0 can be defined by setting λ0 = 0 and the
algebraic relations

Cθ (λi+1) = λqi+1 + θλi+1 = λi

which include λ1 = (−θ)
1
q−1 . Now set μi = θ iλi , i ≥ 0.
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Lemma 4.4.4 For all i ≥ 1, |μi | = q
q
q−1 and (μi)i≥0 is a Cauchy sequence.

Proof Developing the product defining ω we see that |λi | = q
q
q−1−i . To see that

(μi) is a Cauchy sequence, it suffices to show that μi+1 − μi → 0. But

μi+1 − μi = θ i+1λi+1 − θ iλi = θ i(λi − λqi+1)− θ iλi = −θ iλqi+1 → 0.

��
Let μ ∈ C∞ be the limit of (μi).

Lemma 4.4.5 We haveμ = − limt→θ (t−θ)ω(t) = θ(−θ)
1
q−1
∏

i>0(1−θ1−qi )−1.

Proof From the functional equation of F(y, t) we see that limt→θ (t − θ)ω(t) =
(−θ) q

q−1
∏

i>0(1 − θ1−qi )−1 = ∑i≥0 θ
iλ
q

i+1, the latter series being convergent.
Using that Cθ (λi+1) = λi we see that the last sum is:

∑

i≥0

θ i(λi − θλi+1) =
N−1
∑

i=0

θ i(λi − θλi+1)+
∑

i≥N
θiλ

q
i+1, ∀N.

The first sum telescopes to −θNλN while the second being a tail series of a
convergent series, it converges and the sum depending on N tends to 0 as N →∞.

��
Hence μ is the residue of −ω at t = θ . We can write

μ = −Rest=θ (ω).

This is the analogue of a well known lemma sometimes called Appell’s Lemma: if
(an) is a converging sequence of complex numbers, then limn an = limx→1−(1 −
x)
∑

n anx
n.

We are now ready to prove the following well known and classical result:

Theorem 4.4.6 The kernel � of expC is generated, as an A-module, by

μ = ν = θ(−θ) 1
q−1
∏

i>0

(

1− θ1−qi)−1
.

Proof Since� = νA for some ν ∈ C∞ such that |ν| = q q
q−1 and since |μ| = q q

q−1 ,
it suffices to show that expC(μ) = 0. Now, we can write μ = μn+εn where εn → 0

and |εn| < q
q
q−1 . Also, we have expC(z) = fn(z)+Cθn(θ−nz) and we have that the

sequence of entire functions (fn) converges uniformly to the zero function on any
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bounded subset of C∞. We have:

expC(μ) = (Cθnθ−n + fn)(μn + εn)
= Cθn(λn)
︸ ︷︷ ︸

=0

+ fn(μn)
︸ ︷︷ ︸

→0

+ expC(εn)
︸ ︷︷ ︸

→0

.

Hence, μ = ν. ��
Remark 4.4.7 The formula of Theorem 4.4.6 can be easily derived from the
following result of Carlitz in [Car35] that also appears in [Gos96, Theorem 3.2.8].
Let η be a (q − 1)-th root of θ − θq in the algebraic closure Kac of K in C∞. We
set:

ξ = η
∏

j≥1

(

1− θq
j − θ

θq
j+1 − θ

)

∈ Kac∞.

Then μ ∈ F
×
q ξ . To see this, observe the identity:

d−1
∏

j=1

(

1− θq
j − θ

θq
j+1 − θ

)

=
d−1
∏

j=0

(1− θqj (1−q))
d
∏

i=1

(1− θ1−qi )−1, d ≥ 1.

Both products on d converge in K∞ for d → ∞. If we set H = η
∏

j≥0(1 −
θq

j (1−q)) ∈ Kac∞ we see that H is algebraic over K by the relations Hq = (θ −
θq)η(1 − θ1−q)−1∏

j≥0(1 − θq
j (1−q)) = −θqH . Since −θq = θq−1(−θ), we

deduce that H ∈ F
×
q θ(−θ)

1
q−1 . The formulation that we adopt in our text is that

of Anderson, Brownawell and Papanikolas in [And04, §5.1]. In fact, the proof of
Theorem 4.4.6 that we gave above is inspired by that of these authors.

One of the most used notations for our μ is π̃ . This is suggestive due to the
resemblance between the exact sequence of Corollary 4.4.3 and 0 → 2πiZ →
C

exp−−→ C→ 1; there is an analogy between π̃ ∈ C∞ and 2πi ∈ C. It can be proved,
by the product expansion we just found, that π̃ in transcendental over K = Fq(θ).
The first transcendence proof of it is that of Wade in [Wad41] but there are several
others, very different from each other. See for example [And04, §3.1.2]. There are
proofs which make use of computations of dimensions of ‘motivic Galois groups’
which connect to the topics of Di Vizio’s contribution to this volume [DiV20] and
which are the roots of a vast program in transcendence and algebraic independence
inaugurated by Anderson, Brownawell and Papanikolas in [And04], and later by
Papanikolas in [Pap08].
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4.4.2 A Factorization Property for the Carlitz Exponential

In Corollary 4.4.3, we described the Weierstrass product expansion of the entire
function expC : C∞ → C∞. We now look again at expC as a formal series
and we provide it with another product expansion, this time in C∞[[τ ]]; see
Proposition 4.4.9. This result is implicit in Carlitz’s [Car35, (1.03), (1.04) and
(5.01)]. The function we factorise is not expC but a related one:

expA(z) = z
∏

a∈A\{0}

(

1− z
a

)

= π̃−1 expC(π̃z),

so that

expA =
∑

i≥0

d−1
i π̃

qi−1τ i ∈ K∞[[τ ]].

Before going on we must discuss the Carlitz logarithm. It is easy to see that in
C∞[[τ ]], there exists a unique formal series logC with the following properties: (1)
logC = 1+· · · (the constant term in the power series in τ is the identity 1 = τ 0) and
(2) for all a ∈ A, a logC = logC Ca , a condition which is equivalent to θ logC =
logC Cθ by the fact that A = Fq [θ ]. Writing logC =

∑

i≥0 l
−1
i τ

i and using this
remark one easily shows that

li = (θ − θq)(θ − θq2
) · · · (θ − θqi ),

i ≥ 0. We note that v∞(li) = −q qi−1
q−1 . This means that the series logC does not

converge to an entire function but for all R ∈ |C×∞| such that R < |π̃ |, logC defines
an Fq -linear function on DC∞(0, R). We also note, reasoning with the Newton
polygons of expC and logC , that

| expC(z)| = |z| = | logC(z)|, ∀z ∈ D◦
C∞(0, |π̃ |), (4.4)

which implies that the Carlitz’s exponential induces an isometric automorphism
of D◦

C∞(0, |π̃ |). More generally, the exponential function of a Drinfeld module
induces, locally, an isometric automorphism, see [Tav20, Corollary 1.12]. We
observe that the series U = expC logC and V = logC expC in K∞[[τ ]] satisfy
Ua = aU and V a = aV for all a ∈ A. Since they further satisfy U = 1 + · · · and
V = 1+ · · · , we deduce that logC is the inverse of expC in K∞[[τ ]]. In particular,

Ca = expC a logC ∈ K∞[τ ], ∀a ∈ A.

We define:

Cz = expC z logC ∈ C∞[[τ ]], z ∈ C∞.
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Then,

Cz =
∑

i≥0

d−1
i τ

iz
∑

j≥0

l−1
j τ

j

=
∑

i≥0

d−1
i z

qi τ i
∑

j≥0

l−1
j τ

j

=
∑

k≥0

⎛

⎜

⎜

⎜

⎜

⎝

k
∑

i=0

d−1
i l

−qi
k−i z

qi

︸ ︷︷ ︸

=:Ek(z).

⎞

⎟

⎟

⎟

⎟

⎠

τ k

We can thus expand, for all z ∈ C∞:

Cz =
∑

k≥0

Ek(z)τ
k ∈ C∞[[τ ]]

with the coefficients

Ek(z) =
k
∑

i=0

d−1
i l

−qi
k−i z

qi = z

lk
+ · · · + z

qk

dk
∈ K[z]

which are Fq -linear polynomials of degree qk in z for k ≥ 0. They are called the
Carlitz’ polynomials. In the next proposition we collect some useful properties of
these polynomials.

Proposition 4.4.8 The following properties hold:

(1) For all k ≥ 0 we have

Ek(z) = d−1
k

∏

a∈A
|a|<qk

(z− a).

(2) For all k ≥ 0 and z ∈ C∞ we have

Ek(z)
q = Ek(z)+ (θqk+1 − θ)Ek+1(z).

(3) We have lkEk(z)→ expA(z) uniformly on every bounded subset of C∞.

Proof

(1) Since Ca ∈ A[τ ] has degree in τ which is equal to degθ (a), Ek vanishes on
A(< k) the Fq -vector space of the polynomials of A which have degree < k.
Since the cardinality of this set is equal to the degree of Ek , this vector space
exhausts the zeroes of Ek, and the leading coefficient is clearly d−1

k .



4 From the Carlitz Exponential to Drinfeld Modular Forms 121

(2) This is a simple consequence of the relation CaCz = CzCa .
(3) We note that

lk

dk

∏

|a|<qk
(z− a) = lk

dk
z
∏

a �=0
|a|<qk

(−a)
(

1− z
a

)

.

Now, it is easy to see that

∏

0 �=|a|<qk
(−a) =

∏

0 �=|a|<qk
a = dk

lk
. (4.5)

(see [Gos96, §3.2]). The uniform convergence is clear.
��

We come back to the series expA =
∑

i≥0 d
−1
i π̃

qi−1τ i ∈ K∞[[τ ]]. We now
show that

expA = · · ·
(

1− τ

l
q−1
n

)(

1− τ

l
q−1
n−1

)

· · ·
(

1− τ

l
q−1
1

)

(1− τ ) =

= · · · ln(1− τ ) 1

θq
n − θ (1− τ ) · · ·

1

θq
2 − θ (1− τ )

1

θq − θ (1− τ ). (4.6)

in K∞[[τ ]] with its (τ )-topology. We have in fact more:

Proposition 4.4.9 On every bounded subset of C∞, the entire function expA(z) is
the uniform limit of the sequence of Fq -linear polynomials

(

z − zq

l
q−1
n

)

◦
(

z − zq

l
q−1
n−1

)

◦ · · · ◦
(

z− zq

l
q−1
1

)

◦ (z − zq) ,

where ◦ is the composition.
Proof We write:

˜En =
(

1− τ

l
q−1
n−1

)

· · ·
(

1− τ

l
q−1
1

)

(1− τ ) ∈ K[τ ].

We also denote by En ∈ K[τ ] the unique element such that for all z ∈ C∞,
En(z) = En(z) (evaluation). Part (3) of Proposition 4.4.8 implies that lkEk
converges uniformly to expA(z) on every bounded subset of C∞. Hence, we are
done if we show that the evaluations agree: ˜En = lnEn for all n ≥ 0. This is certainly
true if n = 0. We continue by induction. From part (2) of Proposition 4.4.8 we see
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that τEn = En + (θqn+1 − θ)En+1 for all n ≥ 0. Therefore:

˜En+1 =
(

1− τ

l
q−1
n

)

˜En

=
(

1− τ

l
q−1
n

)

lnEn

= lnEn − lqn l−q+1
n τEn

= lnEn − ln(En + (θqn+1 − θ)En+1)

= ln(θ − θqn+1
)

︸ ︷︷ ︸

=ln+1

En+1,

and we are done. ��
Proposition 4.4.9 was essentially known by Carlitz; it can be derived easily with

elementary manipulations on the left-hand side of [Car35, (5.01)]. It is interesting
to note the two rationality properties for expC = expπ̃A and expA which follow
from the above result: the terms of the series defining expC are defined overK (the
coefficients d−1

i ) and the factors of the infinite product of expA we just considered

are also defined overK (the coefficients are l1−qi ).

Problem 4.4.10 Generalise Lemma 4.4.14 and Proposition 4.4.9 to the framework
of Drinfeld-Hayes A-modules of rank one considered in [Hay74] for a general Fq -
algebra of regular functions A and highlight a connection to the shtuka functions in
the sense of [Gos96, §7.11] in this context, see also [Tav20, §4.2].

Remark 4.4.11 This can be viewed as a digression. There is a simple connection
with Thakur’s multiple zeta values, defined by:

ζA(n1, n2, . . . , nr ) :=
∑

a1,...,an∈A+|a1|>···>|ar |

a
−n1
1 · · · a−nrr ∈ K∞, n1, . . . , nr ∈ N

∗, r ≥ 1,

where A+ denotes the subset of monic polynomials of A. Indeed, one sees directly
that the coefficient of τ r in (4.6) is equal to

(−1)r
∑

i1>···>ir≥0

l
1−q
i1
l
q−q2

i2
· · · lqr−1−qr

ir
.

One proves easily
∑

a∈A+
|a|=qi

a−l = l−li for 1 ≤ l ≤ q and we deduce that

expA =
∑

r≥0

(−1)rζA(q − 1, q(q − 1), . . . , qr−1(q − 1))τ r .
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Therefore, equating the corresponding coefficients of the powers of τ we reach the
formula:

ζA(q − 1, q(q − 1), . . . , qr−1(q − 1)) = (−1)r
π̃q

r−1

dr
, r ≥ 0,

with the convention ζA(∅) = 1. Note that the identity derived by the specialisation
t = θ in [Pel16a, (22)] rather involves the ‘reversed’ multiple zeta values
ζ ∗A(qr−1(q − 1), . . . , q(q − 1), q − 1), the ∗ denoting the variant of multiple zeta
value involving sums with non-strict inequalities |a1| ≥ · · · ≥ |ar |.

4.4.3 The Function expA and Local Class Field Theory

This subsection is not logically related to the other topics of the text. Just as the
Euler exponential function, the Carlitz exponential function has an important role in
explicit class field theory for the fieldK (see Hayes [Hay74] for the rational function
field K = Fq(θ), [Hay79] and the more recent work of Zywina [Zyw13], for the
general case). Note that even more recently, a direct link between the explicit class
field theory of K = Fq(θ) and the function ω of Anderson and Thakur has been
found in [Ang15]. It does not belong to our purposes to describe these results here.
In this subsection we are going to achieve a more modest objective which is to apply,
in the case A = Fq [θ ], the properties of the function expA we have reviewed so far,
in relation with the local class field theory for K∞ = Fq((

1
θ
)). Interestingly, these

properties do not seem to have simple analogues in the theory of Euler’s exponential
function.

Let L ⊂ C∞ be an algebraic extension of K∞. Then, expA defines an Fq -
linear map L → L. Indeed, for all x ∈ L, K∞(x)/K∞ is a finite extension, hence
complete, and expA(K∞(x)) ⊂ K∞(x).
Definition 4.4.12 We say that L is uniformised by expA if the map expA : L→ L

is surjective.

For example, L = C∞ is uniformised by expA, thanks to Proposition 4.2.7.
Observe that if L,L′ ⊂ C∞ are two algebraic extensions of K∞ which are
uniformised by expA, then also L ∩ L′ is uniformised by expA. Indeed, let x be
an element of L ∩ L′ and let y ∈ L, y ′ ∈ L′ be such that expA(y) = expA(y

′) = x.
Then y − y ′ ∈ A = Ker(expA) ⊂ K∞ so that y, y ′ ∈ L ∩ L′. Hence, there is a
minimal algebraic extension L/K∞ in C∞ that is uniformised by expA; this is what
we want to study here.

We denote by Kab∞ the maximal abelian extension of K∞ in Ksep
∞ ⊂ C∞, that is,

the maximal extension of K∞ which is Galois, with abelian Galois group. We also
choose λθ a (q − 1)-th root of−θ ∈ Ksep

∞ and we note that if L/K∞ is an algebraic
extension, then L[λθ ] is an algebraic extension of K∞. The aim of this subsection
is to prove:
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Theorem 4.4.13 Let L be the minimal algebraic extension of K∞ in C∞ which is
uniformised by expA. Then, L[λθ ] = Kab∞ .

In the complex setting, and for the Eulerian exponential, we would have the
analogue but deceiving result: the minimal algebraic extension of R which is
uniformised by z 
→ ez is C. Theorem 4.4.13 confirms that in some sense,
function field arithmetic is more transparent and allows to see more structure in
the watermark. We need the next:

Lemma 4.4.14 Let n be a non-negative integer. For every r ∈ |C×∞| with r < |ln|
the product

Fn := · · ·
(

1− τ

l
q−1
n+1

)(

1− τ

l
q−1
n

)

∈ K[[τ ]]

defines an entire function C∞ → C∞ and induces an isometric bi-analytic
isomorphism of the disk DC∞(0, r).

Proof This is easy to verify by using Proposition 4.2.7 and Corollary 4.2.8. Indeed,
if we set

ψm := 1− τ

l
q−1
m

, m ≥ 0

we see that for all z ∈ C∞ such that |z| < |ln|, ψm(z) = z + z′ with z′ ∈ C∞
depending on m and |z′| < |z|, for all m ≥ n. ��
Proof of Theorem 4.4.13 We have a well defined Fq -linear map expA : Kab∞ →
Kab∞. We first show that this map is surjective so that if L is the minimal algebraic
extension of K∞ which is uniformised by expA, then L ⊂ Kab∞ . To do this, we note
that we have, for all n ≥ 0, a well defined Fq -linear algebraic map En : A1

Kab∞
→

A
1
Kab∞

given by the Carlitz polynomials (AnL denotes the affine space of dimension

n over a field L). By the proof of Proposition 4.4.9, En is surjective. Indeed, for
all y ′ ∈ Kab∞, the splitting field of the polynomial En(X) − y ′ ∈ K∞(y ′)[X] is an
abelian extension of K∞(y ′) which can be constructed by iterating Artin-Schreier
extensions. Let x be an element of Kab∞ . There exists n ≥ 0 such that |x| < |ln|. By
Lemma 4.4.14, F−1

n (x) ∈ Kab∞ is well defined. Let x ′ ∈ Kab∞ be such that

lnEn(x
′) = F−1

n (x).

Then we have, by Proposition 4.4.9, expA(x
′) = Fn(lnEn(x ′)) = Fn(F−1

n (x)) = x
and we have proved that Kab∞ is uniformised by expA. Now let L ⊂ C∞ be an
algebraic extension ofK∞ that is uniformised by expA. To show thatL[λθ ] contains
Kab∞ we proceed in two steps.

In the first step, we show that Kun∞ , the maximal abelian extension of K∞ which
is unramified at the ∞-place, is contained in L. To do this it suffices to show that
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the algebraic closure Fac
q of Fq in C∞ is contained in L. Indeed, it is easy to see that

Kun∞ = F
ac
q ((

1
θ
)).

By using Proposition 4.2.7 we see that for every y ∈ C∞ such that |y| = 1 there
exists a unique x ∈ C∞ with |x| = 1, such that expA(x) = y, and of course if
y ∈ L, then x ∈ L because we have supposed that L is uniformised by expA. Since
Fq ⊂ K∞ ⊂ L, if y ∈ F

×
q , there exists x ∈ L, |x| = 1, such that expA(x) = y.

Now observe with Proposition 4.4.9 that expA(x) = (F1 ◦ E1)(x) = y and applying
Lemma 4.4.14

x − xq = E1(x) = F−1(y) = y + y ′

where y ′ ∈ 1
θ
Fq [[ 1

θ
]]. Setting x ′ =∑i≥0(y

′)qi ∈ 1
θ
Fq [[ 1

θ
]]we deduce that x−x ′ ∈

Fq2 \ Fq ⊂ C∞ is an element of L, and Fq2 ⊂ L. This shows that Fq2(( 1
θ
)) ⊂ L

because Fq2(( 1
θ
)) = Fq((

1
θ
))[Fq2]. We can of course repeat this argument with y ∈

Fq2 ⊂ L etc. to show that, inductively, Fqd ⊂ L for all d ≥ 1 so that Fqd ((
1
θ
)) =

K∞[Fqd ] ⊂ L for all d ≥ 1 and with a little additional work we conclude that
Kun∞ ⊂ L.

Before passing to the second step we need a little bit of terminology. We say that
a sequence (xi)i≥0 in Kab∞ is a Lubin-Tate sequence if 1

θ
x0 + xq0 = 0 and

1

θ
xi + xqi = xi−1, i > 0.

We note that x0λθ ∈ F
×
q . Similarly, we say that a sequence (yi)i≥0 of Kab∞ is an

Artin-Schreier sequence if y0 = 1 and

E1(yi) = yi − yqi = θyi−1, i > 0.

By a simple application of Proposition 4.2.7 we see that |yi | = |θ |
1
q+···+ 1

qi for all
i > 0. Moreover,

1

θ
x0yi + (x0yi)

q = x0yi−1, i > 0

so that if (yi)i≥0 is an Artin-Schreier sequence and x0 satisfies the previous equation,
then (x0yi)i≥0 is a Lubin-Tate sequence and if (xi)i≥0 is a Lubin-Tate sequence with
x0λθ = 1, then ( xi

x0
)i≥0 is an Artin-Schreier sequence.

The second step of the proof of our theorem is to show that L contains an Artin-
Schreier sequence. First of all, we note that for any Artin-Schreier sequence (yi)i≥0,

θyi ∈ DKab∞(0, r) for all r ∈ |C×∞| such that r < |θ | qq−1 so that |θyi | < |l1| for all

i ≥ 0. We fix i ≥ 0. Let ai+1 ∈ Kab∞ be such that

ai+1 − aqi+1 = F−1
1 (θyi).
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We have that

expA(ai+1) = F1(F−1(θyi)) = θyi.

Since by hypothesis, L is uniformised by expA, we have that ai+1 ∈ L if yi ∈ L.
It is easy to see that F−1

1 (θyi) = θyi + y ′i where |y ′i | < 1. In particular, a′i+1 =
∑

j≥0(y
′
i )
qj converges to an element of L such that a′i+1 − (a′i+1)

q = y ′i . If we
set bi+1 = ai+1 − a′i+1 we can conclude, under the hypothesis that yi ∈ L, that
bi+1 ∈ L is such that

bi+1 − bqi+1 = θyi.

By induction over i ≥ 0 we obtain that L contains an Artin-Schreier sequence
(yi)i≥0.

We can now conclude the proof of the theorem. By what written earlier, L[λθ ]
contains a Lubin-Tate sequence (xi)i≥0. We set ˜K := K∞[xi : i ≥ 0]. By Lubin-
Tate theory (see [Lub65])Kab∞ is the compositum inC∞ of ˜K andKun∞ and therefore,
L[λθ ] containsKab∞ . ��

We are not going to deepen the facts outlined below, but the main theorem of
local class field theory asserts, in the special case of our local field K∞ (it holds for
any local field with appropriate modifications) the existence of an isomorphism of
profinite groups

̂θK∞ : ̂K×∞ → Gal(Kab∞/K∞),

the local Artin homomorphism, where ̂K×∞ is the profinite group completion of
K×∞ ∼= Fq [[ 1

θ
]]××Z, non-canonically isomorphic to the profinite group Fq [[ 1

θ
]]××

̂Z. The non-canonical isomorphism depends on the choice of a uniformiserπ ofK∞.
If we set Kπ to be the subfield of Kab∞ which is fixed bŷθK∞(π) ∈ Gal(Kab∞/K∞),
then Kab∞ is the compositum KπKun∞ , and we have isomorphisms Gal(Kun∞/K∞) ∼=
̂Z and Gal(Kπ/K∞) ∼= Fq [[ 1

θ
]]×. Choosing a Lubin-Tate sequence in Kab∞/K∞

is therefore equivalent to the choice of a uniformiser π of K∞. One can see, along
these remarks (but we will not give full details), that the minimal algebraic extension
L ⊂ Kab∞ of K∞ that is uniformised by expA is determined by Gal(Kab∞/L) ∼= F

×
q .

Problem 4.4.15 The notion of minimal field extension ofK∞ which is uniformised
by the exponential expA can be generalised to e.g. Drinfeld A-modules via
Theorem 4.3.4 in a natural way, but it is unclear how this field can be characterised in
the light of local class field theory so that the role of a statement like Theorem 4.4.13
must be clarified in this more general setting.
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4.5 Topology of the Drinfeld Upper-Half Plane

We go back to the settings and notations of Sect. 4.2.2, considering the Fq -algebra
A = H 0(C \ {∞},OC) with C a smooth projective curve over Fq and ∞ a closed
point. We therefore have the tower of inclusions of Fq-algebras A ⊂ K ⊂ K∞ ⊂
C∞. In this section we give an explicit topological description of what is called the
Drinfeld upper-half plane �. It goes back to Drinfeld, in [Dri74]. D. Goss called it
the ‘algebraist’s upper-half plane’ in [Gos80a]. It can be viewed as an analogue of
the complex upper-half plane that can be constructed by cutting C in two along the
real line and taking one piece only. As a set, � is very simple:

� = C∞ \K∞,

but subtracting K∞ results in a different operation than cutting; this is what we are
going to show here. We begin by presenting some elementary properties following
[Ger80]. We recall that C∞ = ̂Kac∞, where K∞ = F((π)) for some uniformiser π .
First of all, there is an action of GL2(K∞) on � by homographies. If γ = ( a bc d ) ∈
GL2(K∞), then we have the automorphism of P1

Fq
(C∞) uniquely defined by

z 
→ γ (z) := az+ b
cz+ d

if z �∈ {∞,− d
c
}. Observe that if F/L is a field extension, then GL2(L) acts by

homographies on the set F \ L. For instance, GL2(R) acts on C \ R = H+ �H−
(disjoint union of the complex upper- and lower-half planes).

It is well known that the imaginary part �(z) of a complex number z, the distance
of z from the real axis, is submitted to the following transformation rule under the
action by homographies. If γ = ( a bc d ) ∈ GL2(R):

�(γ (z)) = �(z) det(γ )

|cz+ d|2 , z ∈ C \R. (4.7)

There is an analogous notion of distance from K∞ in C∞. We set:

|z|� := inf{|z− x| : x ∈ K∞}, z ∈ C∞.

We have the following result.

Proposition 4.5.1

(1) For all z ∈ C∞, |z|� is a minimum, and |z|� = 0 if and only if z ∈ K∞.
(2) Let z be an element of �. Then, there exist z0 = πm(α0 + · · · + αnπ−n) ∈

Fq [π, π−1] and z1 ∈ � with |z1| = |z1|� < |π |m, uniquely determined, with
n ∈ N ∪ {−∞} and α0 �= 0 if z0 �= 0, such that z = z0 + z1.
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Proof

(1) If z ∈ K∞, there is nothing to prove. Assume thus that z ∈ � ⊂ C∞ is fixed.

Define the map K∞
f−→ |C×∞|, f (x) = |z − x|. Then, f is locally constant,

hence continuous. But K∞ is locally compact so there is x0 ∈ DK∞(0, |z|) (not
uniquely determined) such that f (x0) is a minimum and |z|� = |z− x0|.

(2) For all x ∈ K∞, |x| > |z|, we have |z− x| = |x|. Then, we have two cases.
(a) For all x ∈ DK∞(0, |z|), |z− x| = |z|. In this case, |z|� = |z| and |z|� is

a minimum. We thus get n = −∞, z0 = 0 and z = z1.
(b) There exists x ∈ DK∞(0, |z|) \ {0} such that |z| = |x| and |z− x| < |z|.

This implies that the image of z/x in the residue field of C∞ is 1. We can
therefore write z = λ1π

−n1 + η1 with λ1 ∈ F and η1 ∈ �, |η1| < |z| = |θ |n1 .
We can iterate by studying now η1 at the place of z. Either the procedure

stops and we get a decomposition z = λ1π
−n1 + · · · + λkπ−nk + ηk with

n1 > · · · > nk , |z|� = |ηk| = |ηk|� and there exists z0 ∈ K∞ such that
|z− z0| = |z|� > 0 as claimed in the statement, or the procedure does not stop
but in this case we have z ∈ K∞ which is excluded.

��
In particular, either |z1| �∈ |K×∞|, or |z1| = |πm| but the image of z1π

−m in the
residue field of C∞ is not one of the elements of F×. Part (2) of Proposition 4.5.1
implies that for all x = z0+y with y ∈ DK∞(0, |z1|), |z−x| = |z|� = |z1| = |z1|�.

We also have the following elementary consequences of the above proposition.
First of all, if c ∈ K∞, then |cz|� = |c||z|� for all z ∈ �. Moreover, if v∞(z) �∈ Z,
then |z|� = |z|. Also, if |z| = 1, we have |z|� = 1 if and only if the image of z in
the residue field of C∞ is not in F.

The next property is the analogous of (4.7):

Lemma 4.5.2 For all z ∈ � and γ = ( ∗ ∗c d ) ∈ GL2(K∞),

|γ (z)|� = | det(γ )||z|�
|cz+ d|2 .

Proof First of all, suppose that we have proved that

|γ (z)|� ≤ | det(γ )||z|�
|cz+ d|2 , ∀γ = ( ∗ ∗c d ) ∈ GL2(K∞), ∀z ∈ �. (4.8)

In particular, for all z̃ ∈ �, and with γ replaced by γ−1 = δ−1( ∗ ∗−c a ) (where
δ = det(γ )), we get

|γ−1(̃z)|� ≤ |δ||̃z|�
| − c̃z+ a|2 .
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We set z̃ = γ (z). Then,−c̃z+ a = δ
cz+d and therefore,

|z|� = |γ−1(̃z)|� ≤ |̃z|�|δ|
∣

∣

∣

∣

cz+ d
δ

∣

∣

∣

∣

2

= |δ|−1|cz+d|2|̃z|� = |δ|−1|cz+d|2|γ (z)|�,

so that

|δ||z|�
|cz+ d|2 ≤ |γ (z)|�,

and we get the identity we are looking for. All we need is therefore to show that
(4.8) holds.

Now, let x ∈ C∞ be such that x is not a pole of γ . An easy calculation shows
that

γ (z)− γ (x) = det(γ )(z− x)
(cz+ d)(cx + d) .

Hence, if x ∈ K∞ is not a pole of γ , we have

|γ (z)− γ (x)| = | det(γ )||z− x|
|cz+ d|2

|cz+ d|
|cx + d| . (4.9)

We can find x ∈ K∞ such that |z − x| = |z|� and with the property that x is not a
pole of γ (we have noticed that there are infinitely many such elements). We claim
that |cx+d| ≤ |cz+d|. If c = 0 this is clear. Otherwise, if this were false we would
have |cx + d| > |cz+ d| and

|c||z|� = |c||z− x| = |cz+ d − (cx + d)| = |cx + d| > |cz+ d|� = |c||z|�
which would be impossible. Hence, with the claim in mind, we deduce from (4.9):

|γ (z)|� ≤ |γ (z)− γ (x)| ≤ | det(γ )||z− x|
|cz+ d|2 = | det(γ )||z|�

|cz+ d|2

by our choice of x and we are done. ��

4.5.1 Rigid Analytic Spaces

The notion of rigid analytic space originates in ideas of Tate in the years 1960’.
We do not want to go in very precise details because there is already a plethora
of important references, among which [Bos84, Fre04]. A more recent introduction
to rigid analytic spaces is the chapter ‘Several approaches to non-archimedean
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geometry’ by Conrad, see [Bak08, Chapter 2] (the whole volume is close, in many
aspects, to the topics of the present text). Important is also Berkovich’s viewpoint
which is outlined in this volume, [Poi20a, Poi20b]. We discuss, in a rather informal
way, the nature of these structures before making use of some very particular special
cases. Let L be a field with valuation | · |, complete, algebraically closed.

We are going to describe a rigid analytic space over L (or analytic space over L)
as a triple

(X,G,OX)

where X is a non-empty set, G a Grothendieck topology on X, OX a sheaf,
satisfying several natural conditions. A Grothendieck topology G on X can be
outlined as a set S of subsets U of X and, for all U ∈ G, a ‘covering’ Cov(U)
of U again by elements of G. If C is the family of all such coverings,3 then G
is the datum (S, C) and the quality of being a Grothendieck topology results in
a collection of properties we shall not give here, refining the simpler notion of
topology (see [Fre04] for the precise collection of conditions). If a Grothendieck
topologyG = (S, C) onX is given, then the elements of S are called the admissible
subsets ofX and the elements of C are called the admissible coverings. This refines
the notion of topology because if we forget the coverings, the conditions we are
left on S are precisely those of a topology on X so that right at the beginning we
could have said that X is a topological space, and the admissible sets are just the
open sets for this topology. We have of course a corresponding notion of morphism
of Grothendieck’s topological spaces which strengthens that of continuous maps
of topological spaces: pre-images of admissible sets (resp. coverings) are again
admissible.

What is a sheaf on a Grothendieck topological space? If we choose a ring R,
a sheaf F of R-algebras (R-modules. . . ) is a contravariant functor from S (with
inclusion) to the category of R-algebras (or R-modules. . . this is called a pre-sheaf )
which satisfy certain compatibility conditions. For instance, if f, g ∈ F(U), U ∈ S
and f |V = g|V for all V ∈ Cov(U) ∈ C, then f = g. Furthermore, if we choose
Cov(U) = (Ui)i∈I ∈ C and for all i, fi ∈ F(Ui) are such that fi |Ui∩Uj = fj |Ui∩Uj ,
then there exists a ‘continuation’ f ∈ F(U) with f |Ui = fi for all i (this is an
abstract formalisation of ‘analytic continuation’). Every pre-sheaf can be embedded
in a sheaf canonically, but checking that a given pre-sheaf is itself a sheaf might
result in subtle problems. The datum of (X,G,F) with G a Grothendieck topology
and F a sheaf of R-algebras on (X,G) is called a Grothendieck ringed space of R-
algebras and there is a natural notion of morphism of such structures which mimics
the more familiar notion of morphism of ringed spaces of algebraic geometry. Say

3Do not mix up with the curve C of the previous sections.
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for commodity that X,Y are two Grothendieck topological spaces with respective
sheaves F and G, then a morphism of Grothendieck ringed spaces of R-algebras

(X,F) (f,f
�)−−−→ (Y,G)

is the datum of a morphism of Grothendieck topological spaces f and for all
U ⊂ Y admissible, an R-algebra morphism f � : G(U) → F(f−1(U)). So far,
we discussed Grothendieck topological spaces, sheaves etc. But now, what is a
rigid analytic variety? A rigid analytic variety over L, our valued field, complete,
algebraically closed (say, L = C∞, the most relevant in our notes), is a particular
kind of Grothendieck ringed space; let us see how. We still need a few more tools.
We have the unit disk

DL(0, 1) = {z ∈ L : |z| ≤ 1}

playing the role of a basic brick for constructing rigid analytic spaces, just as the
affine line does for algebraic varieties. For this reason, we focus on affinoid algebras.
An affinoid algebra over L is any quotient of a Tate algebra

Tn(L) = ̂L[t]‖·‖
by an ideal, where the Tate algebra Tn(L) of dimension n is the completion ·̂
of the polynomial ring L[t] in n indeterminates t = (ti)1≤i≤n for the Gauss
valuation ‖ · ‖ that we recall it is defined, for elements ai1,...,in ∈ L, by
‖∑i1,...,in ai1,...,in t i11 · · · t inn ‖ = sup |ai1,...,in |. It is known that it is noetherian, with
unique factorization, of Krull dimension the number of variables n. The resulting
quotient A of Tn(L) (by an ideal) is endowed with a structure of L-Banach algebra.
In other words, the Gauss norm of ̂L[t] induces a (sub-multiplicative) norm on A,
and it is complete. In fact, any L-Banach algebra A together with a continuous
epimorphism Tn(L) → A for some n, making A into a finitely generated Tn(L)-
algebra, is an affinoid algebra. Affinoid algebras over L are the basic bricks to
construct a rigid analytic variety.

The maximal spectrum Spm(R) of an affinoid L-algebra R can be made into
a Grothendieck ringed space (X,G,F); this is called an affinoid variety over L.
If X = Spm(R) and Y = Spm(R′), an L-algebra morphism R → R′ defines
a morphism of ringed spaces Y → X which is called a morphism of affinoid
algebras. This serves to describe the other pieces of (X,G,F). The admissible sets
in S (recall that G = (S, C)) are exactly the images in X of open immersions of
affinoid varieties and similarly, we define the coverings in C. This gives rise to a
Grothendieck topology G on X = Spm(A). Furthermore, we have the pre-sheaf
OX defined by associating to U ⊂ X an admissible set the L-algebra OX(U) = R′
where U = Spm(R′). Thanks to Tate’s acyclicity theorem one shows that this
is in fact a sheaf (see [Tat71], see also [Fre04, Theorem 4.2.2]). This result was
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generalised by Grauert and Gerritzen [Bos84, 7.3.5 and 8.2]). Dulcis in fundo, we
have:

Definition 4.5.3 A Grothendieck ringed space X = (X,G,F) is a rigid analytic
variety over L if X has an admissible covering of admissible subsets U which have
the property that (U,F |U) is an affinoid variety over L for all U .

4.5.1.1 Analytification

An important process to construct rigid analytic spaces is the analytification of
an algebraic variety. Let X/L be a scheme of finite type. The analytification Xan

of X is a rigid analytic space over L that can be defined by an affinoid covering
starting from the geometric data as follows. We consider affine Zariski open subsets
U = Spec(A) ↪→ X and embeddingsU ↪→ A

N
L which correspond, on the algebraic

side, to surjectiveL-algebra mapsL[t] → A (where t denotes the set of independent
variables t1, . . . , tN ) endowing A with a structure of L[t]-algebra, for some N .
Taking the completion for the Gauss valuation yields a surjective morphism:

̂L[t] → A⊗L[t] ̂L[t]

which gives rise to a map V := Spm(A ⊗L[t] ̂L[t]) ↪→ DL(0, 1)N = Spm(̂L[t]).
We can proceed similarly for polydisks of different radii in |L×| and this is used
to construct a rigid analytic space Uan such that V = Uan ∩ DL(0, 1)N . Glueing,
we construct the rigid analytic space Xan. For example, the rigid affine line over
L, A1,an

L is obtained by glueing together the rigid analytic spaces DL(0, r) along

the inclusions with r ∈ |L×|. Similarly, the rigid projective line over L, P1,an
L , can

be constructed by glueing two copies of DL(0, 1) along the set {z ∈ L : |z| = 1},
or also glueing two copies of A1,an

L , see also Berkovich’s construction in [Poi20b,
Definition II.1.5]. The Berkovich’s affine line is described in detail in ibid. See
[Poi20a, Definition I.1.1].

Rigid analytification defines a functor, called the ‘GAGA functor’ from the
category of L-schemes of finite type to the category of rigid analytic spaces over L.
Note that we can also consider analytifications of morphisms, coherent sheaves etc.
Finally, there is an alternative way to define the analytification functor over an affine
varietyX overL, introduced by Berkovich, which makes the underlying topological
space particularly easy to compute as it is defined over the set of multiplicative
seminorms over the coordinate ring of X satisfying certain compatibility conditions
with the valuation of L. See [Poi20b, Definition II.1.1] for the construction of the
Berkovich spectrum of an algebra of finite type over L. See also Temkin’s [Tem15,
Chapter 1] for a nice survey in the area.
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4.5.1.2 The Rigid Analytic Variety �

We now focus on L = C∞ with A = H 0(C \ {∞},OC) in our usual notation. We
discuss a structure of rigid analytic space over C∞ on � = C∞ \K∞. Note that

� =
⋃

M>1

UM,

where UM = {z ∈ � : M−1 ≤ |z|� ≤ |z| ≤ M}, the filtered union being over the
elementsM ∈ |C∞| \ |K∞| withM > 1. Observe now:

Lemma 4.5.4 WithM ∈ |C∞| \ |K∞| we have

UM = DC∞(0,M) \
⊔

λ∈F[π,π−1]
λ=λ−βπβ+···+λβπ−β

1≤|π |−β≤M

D◦
C∞(λ,M

−1).

Proof This easily follows from the fact that K∞ is locally compact in combination
with the ultrametric inequality. ��

Hence, UM is admissible and carries a structure of affinoid variety UM =
Spm(AM) where AM is an integral affinoid algebra. We say that UM is a connected
affinoid of P

1,an
C∞ (as in the language introduced in [Fre04], motivated by the

integrality of AM ). In particular � can be covered (in fact filled) with connected
affinoids and the analytic structure of� arises from viewing it as the complementary
in C∞ of smaller and smaller disks located over certain elements of K∞ which
is close to the familiar view that we have also for the set C \ R. This gives the
Grothendieck topology on �, and the sheaf O� is that of rigid analytic functions
over�. Practically, a rigid analytic function f : �→ C∞ is a function such that the
restriction on every set UM is the uniform limit of a sequence of rational functions
on UM without poles in UM .

4.5.2 Fundamental Domains for �\�

This subsection is motivated by an essential construction in the theory of Schottky
groups, that of fundamental domains. Schottky groups have been first introduced by
Schottky in 1877 in the complex setting; they are useful to analytically uniformise
compact Riemann surfaces. In the years 1970, after the work of Tate on p-
adic uniformisation of elliptic curves with split multiplicative reduction, Mumford
discovered how to p-adically uniformise smooth projective curves of genus g ≥ 2
with ‘split degenerate stable reduction’ by using p-adic Schottky groups� acting on
non-archimedean variants�� of the classical complex upper-half plane. The reader
is encouraged to read the modern contribution of Poineau-Turchetti to this volume
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[Poi20a, Poi20b]. An older reference is [Ger80]; it also contains determinant tools
to explore this profound theory. Consequently, we will not give all the details, this
would bring us too far away from our path.

Let us recall that, given a local field L with valuation | · |, the group PGL2(L)
4

acts on the rigid analytic projective line P
1,an
F where F is the completion of an

algebraic closure of L (see [Ger80, Fre04]). A Schottky group over L is a finitely
generated subgroup � of PGL2(L) which is discrete and such that no element but
the identity has finite order. Schottky groups are free (see [Ger80, Theorem (3.1)])
this being an important consequence of the fact that they act freely on certain rigid
analytic spaces. Every Schottky group � over L has a compact limit set L� ⊂ P

1,an
F

so that � acts freely over �� := P
1,an
F \ L� . The quotient space �\�� naturally

carries a structure of rigid analytic space over L which is associated with a smooth,
geometrically connected, projective curve X� over L, of genus g the rank of �. We
learn from [Ger80, Theorem (4.3)] that every Schottky group � in PGL2(L) admits
a good fundamental domain F� . Without entering the details, for every element
z ∈ �� the set of γ ∈ � such that γ (z) ∈ F� is non-empty and finite. In fact, if
γ ∈ �, then F�∩γ (F�) �= ∅ if and only if γ ∈ {1, γ±1

1 , . . . , γ±1
g }, where γ1, . . . , γg

freely generate �. Moreover, F� can be written as

F� := P
1,an
F \

2g
⊔

i=1

Di

where the Di ’s are the rigid analytic spaces associated to disks D◦F (ai, ri ) = {z ∈
F : |z− ai | < ri} with ri ∈ |L×| for all i, such that the disksDF (ai, ri ) = {z ∈ F :
|z − ai | ≤ ri} are pairwise disjoint. One can therefore see easily that F� carries a
structure of rigid analytic variety over F (read also [Poi20b, §II.3.1] along with its
more general settings and the theory of uniformisation of Mumford curves).

The interesting point in this discussion is that if we set L = K∞ = F((π)), A =
H 0(C\{∞},OC) ⊂ K∞, F = C∞ etc. the group PGL2(A) acts on� = P

1,an
F \P1,an

K∞
but the action is in general not free; there usually are elliptic points (this happens,
for instance, when [F : Fq ] is odd, see [Mas15]). Even more seriously, the group
itself is not finitely generated (see Serre’s book [Ser80a] for more details), so that
PGL2(A) is not a Schottky group.

4.5.2.1 Some Structural Properties of � = GL2(A)

For the purposes of the present paper, we will be content to study the case in which
C has genus 0, so that in Lemma 4.2.5 we have V = {0} and therefore, K∞ ∼=
A ⊕ MK∞ . It is easy to see that there exists a uniformiser π of K∞ such that

4Projective linear group over L, defined as the quotient of GL2(L) by its center.
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FA = F[π−1]. We can indeed choose π = θ−1 where θ is any element of A with a
simple pole at∞. In particular, FA = F[θ ].

It is not difficult to show that the group GL2(F[θ ]) is generated by its subgroups
GL2(F) (finite) and the Borel subgroupB(∗) = {( ∗ ∗0 ∗ )}. In fact, a Theorem of Nagao
in [Nag59] asserts that, given a field k and an indeterminate t ,

GL2(k[t]) = GL2(k) ∗B(k) B(k[t]), (4.10)

where ∗B(k) denotes the amalgamated product alongB(k), which is by definition the
quotient of the free product GL2(k) ∗B(k[t]) by the normal subgroup generated by
those elements arising from the natural identifications existing between the elements
of B(k) ∗ 1 and 1 ∗ B(k) coming from the maps

GL2(k)→ GL2(k) ∗ B(k[t])← B(k[t])

(a gluing along compatibility conditions). Note thatB(k[t]) is not finitely generated,
so that GL2(k[t]) is not finitely generated (this is trivial if k is infinite) in contrast
with a theorem of Livingston, asserting that GLn(k[t]) is finitely generated if n ≥ 3,
and also with the more familiar result that SL2(Z) ∼= Z/2Z ∗ Z/3Z so that it is, in
particular, finitely presented.

Corollary 4.5.5 PGL2(F[θ ]) is not a Schottky group.

4.5.2.2 Bruhat-Tits Trees and ‘Good Fundamental Domains’

We recall that K∞ = F((π)) for a uniformiser π , with F a finite extension of
Fq . Our first task is to describe a combinatorial structure which allows to ‘move
inside’�, the Bruhat-Tits tree; in practice, we can ‘move along annuli’. The second
task, in the case A = F[θ ], is to construct a subset of � that we can qualify as a
‘good fundamental domain’ for the homography action of GL2(A) over �, being
understood that GL2(A) is not a Schottky group.

We recall that if x ∈ C∞, D◦
C∞(x, r) = {z ∈ C∞ : |z − x| < r}. Let S be a

subset of C×∞ such that if x, x ′ ∈ S are distinct, |x − x ′| = max{|x|, |x ′|}. Then,
with x ∈ S, the sets

Dx := D◦C∞(x, |x|) = x +D◦C∞(0, |x|)

are pairwise distinct subsets ofC×∞. Indeed, clearly, they do not contain 0. Moreover,
if x �= x ′ we have y ∈ D◦

C∞(x, |x|) ∩ D◦C∞(x ′, |x ′|) if and only if we can find
z ∈ D◦

C∞(x, |x|), z′ ∈ D◦C∞(x ′, |x ′|), such that y = x + z = x ′ + z′ with |z| < |x|
and |z′| < |x ′|, so that |z − z′| < max{|x|, |x ′|}. This means that max{|x|, |x ′|} >
|z− z′| = |x ′ − x| = max{|x|, |x ′|} which is impossible.



136 F. Pellarin

We choose, for any element r ∈ Z>1, an element, denoted by π
1
r ∈ C∞, with

the property that (π
1
r )r = π , which exists because C∞ is algebraically closed. The

set � := {(π 1
r )s} inherits the total order of R by s

r
∈ Q ⊂ R.5 We have observed

(after Lemma 4.2.9) that the valuation group of | · | is |π |Q. Hence if z ∈ C
×∞, we

can find r, s relatively prime, unique, such that |z(π 1
r )s | = 1. Since the residue field

of C∞ is Fac, we obtain that there exists a unique ζ ∈ (Fac)× such that

|z− ζ(π 1
r )s | < |z|.

If we set S = {ζ(π 1
r )s : ζ ∈ (Fac)×, r > 1, s ∈ Z such that r, s are relatively

prime}, then for all x, x ′ ∈ S distinct we have |x − x ′| = max{|x|, |x ′|} and we
obtain a partition of C×∞:

C
×∞ =
⊔

x∈S
Dx. (4.11)

Let us now consider the subset

˜S := {x ∈ S : |x| �∈ |π |Z} � {ζπn : ζ ∈ F
ac \ F, n ∈ Z} ⊂ S.

With it, we can still somehow reconstruct C∞. Indeed, the reader can easily see that
if x ∈ ˜S, Dx ∩K∞ = ∅ and

C∞ =
⎛

⎝K∞ +
⊔

x∈˜S
Dx

⎞

⎠ �K∞.

As a consequence we have

� = K∞ +
⊔

x∈˜S
Dx

and

⊔

x∈˜S
Dx = {z ∈ � : |z| = |z|�}.

5Thanks to Lemma 4.2.10 we can even additionally suppose that the elements π
1
r are chosen in

such a way that � = πQ is a subgroup of C×∞.
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We observe that if λ ∈ Q \ Z, then

⊔

x∈S
|x|=|π |λ

Dx =
⊔

x∈˜S
|x|=|π |λ

Dx = {z ∈ C∞ : |z| = |π |λ} =: Cλ.

We also set, for λ ∈ Z,

Cλ :=
⊔

ζ∈Fac\F
D◦

C∞(ζπ
λ, |π |λ).

Note that Cλ = {z ∈ � : |z| = |z|� = |π |λ} for all λ ∈ Q. For all λ, the set
Cλ is invariant by translation of elements in DK∞(0, |π |�λ�), where �·� denotes the
smallest of the integers which are larger than (·). If α ∈ K∞ \ DK∞(0, |π |�λ�) =
⊕i≤�λ�Fπi (with �·� the largest integer which is smaller than (·)) then Cλ ∩ (α +
Cλ) = ∅. We have obtained the next result.

Lemma 4.5.6 The following partition of � holds:

� =
⊔

λ∈Q
α∈K∞\DK∞ (0,|π |�λ�)

α + Cλ.

Note that this can be very easily used to construct admissible coverings of �.
The above is the crucial statement which allows to construct the Bruhat-Tits tree
associated to �. It relies on the existence of a natural partial ordering on the set
T := {α+Cλ : α ∈ K∞\DK∞(0, |π |�λ�), λ ∈ Q}. We declare that α+Cλ � α′+Cλ′
if Cλ � α′ − α+Cλ′ and Cλ � α′ +Cλ′ if λ < λ′ and α′ +Cλ = Cλ. For example,
for λ �∈ Z, α + Cλ � Cλ if and only if α +Cλ = Cλ if and only if |α| ≤ |π |λ. Then
T can be enriched with the structure of a tree, the Bruhat-Tits tree. We recall that
a tree T is a metric space such that, on one side, for any distinct points P,P ′ of T
there exists one and only one topological arc in T of extremities P,P ′ and, on the
other side, this arc is isometric to an interval of R (this definition is due to Tits). A
tree has edges and vertices. The vertices of our Bruhat-Tits tree T are represented
by the subsets α + Cλ of C∞ with λ ∈ Z and the edges are represented by real
intervals ]n − 1, n[ with n ∈ Z, with the extremities given by a couple of vertices
(α+Cn−1, α

′ +Cn) such that α′ +Cn−1 = Cn−1. The intervals are oriented and our
tree itself acquires an orientation. The upper direction is that of the negative λ’s or,
alternatively, of the larger |z|�’s. The edges are therefore organised so that at every
lower (for the ordering) extremity the vertex is a qd∞ + 1 branching point with qd∞

edges below and one above (with respect to the orientation).
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The next picture represents a small piece of T for qd∞ = 2.
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α + Cλ, λ = 0

Also note that the euclidean closure of the image in T of any set α+�λ∈QCλ for
α ∈ K∞ fixed is isometric to R and any two such sets, if distinct, have a upper half-
line in common. Any element of � is K∞-translation equivalent to finitely many
elements in �λ∈QCλ and finally, the homography action of GL2(K∞) over � is
compatible with a continuous action over T in a way that can be made completely
explicit.

The structure of the spaces C∞ and � may look topologically very complicate
but the Bruhat-Tits tree is some kind of ‘central nervous system’ which allows to
obtain a combinatorial picture of these spaces (or rather, their admissible coverings)
and to move in their interior, by means of the reduction map, which is GL2(K∞)-
equivariant

red : �→ T ,

defined by z 
→ α + Cλ ∈ T where α + Cλ is the unique element of the partition
of Lemma 4.5.6 such that z ∈ α + Cλ. This presentation may look different, it is in
fact essentially equivalent to that of Teitelbaum in [Tei91, Preliminaries] (see also
Teitelbaum’s chapter in [Bak08]). To help the reader to connect with the formalism
of Teitelbaum, which also is that of [Ger80], note that the set U(1) of [Tei91, p.
492] plays the role of our disjoint union �λ∈]−1,1[Cλ and that the set V introduced
one page later is equal to our �λ∈]−1,0[Cλ. The sets γ (U(1)) for γ ∈ GL2(K∞)
define an admissible covering of � and T can be alternatively constructed defining
edges and vertices by a criterion of overlapping for the various γ (U(1))’s and
an identification between the set {γ (U(1)) : γ ∈ GL2(K∞)} and the quotient
GL2(OK∞)\GL2(K∞), corresponding to the vertices.
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We set F := {z ∈ � : |z| = |z|� ≥ 1}. By Lemma 4.5.6, we have F = �λ≤0Cλ
and red(F) is an upper half-line in T . We deduce that

F = C∞ \
⎛

⎝

⊔

ζ∈F
D◦

C∞(ζ, 1) �
⊔

n≥1

⊔

ζ∈F×
D◦

C∞(ζπ
−n, |π |−n)

⎞

⎠ .

We now focus on the case A = F[θ ]. For z ∈ � we denote by Fz the set {z′ ∈ F :
there exists γ ∈ GL2(A) such that γ (z) = z′} ⊂ F. We show:

Proposition 4.5.7 For all z, the set Fz is non-empty and finite.

Proof If z ∈ F then there exists x ∈ ˜S such that |x| ≥ 1 and z ∈ Dx and we see that
the set of a ∈ A such that z − a ∈ F is finite. Note that 1/z ∈ D1/x so that 1/z �∈ F
(in fact, if γ = ( 0 1

1 0 ), γ (Dx) = Dγ(x)). From Nagao’s Theorem we deduce that the
set {γ ∈ GL2(A) : γ (z) ∈ F} is finite so that, for all z ∈ �, Fz is finite (but note that
the cardinality is not uniformly bounded in terms of z). Let z be in �. If |z|� ≥ 1
there exists a ∈ A such that |z − a| = |z|� and Fz is non-empty. All we need to
show is that if z ∈ � is such that |z|� < 1, then there exists γ ∈ GL2(A) such
that γ (z) ∈ F. To see this, there is no loss of generality in supposing that |z| < 1.
Indeed, we can replace z with z− a for a ∈ A. We can therefore write:

z = w + x + y

where w ∈ ⊕�λ�i=1Fπ
i ∈ MK∞ , x ∈ ˜S with |x| = |π |λ and y ∈ Dx . Applying

γ = ( 0 1
1 0 ) we see that z is GL2(A)-equivalent to an element z′ ∈ α′ + Cλ′ with λ′

such that λ − λ′ ∈ Z>1 and α′ ∈ ⊕i≤�λ′�Fπi , so that, in particular, |z′|� > |z|�.
We can iterate this process with z′ playing the role of z. The fact that λ − λ′ ∈ Z≥1
implies that z is GL2(A)-equivalent to an element of F and Fz is non-empty. ��

This seems enough to allow us calling F a ‘good fundamental domain’ for �\�
with A = F[θ ], even though it is undoubtedly not as well behaved as the good
fundamental domains in the framework of Schottky groups. Note that �\T contains
an ‘end’: this metric space is not compact, but can be made compact with the
addition of one point represented by one of the upper half-lines contained by T
which, at the level of �\�, corresponds to a ‘cusp’.

Similar constructions are possible for � = GL2(A) with a more general
projective curve C but we do not describe them here. In this broader case it is
possible to show that �\T has the structure of a finite graph with finitely many ends
attached to it. More general ’fundamental domains’ can be constructed from the
Bruhat-Tits tree of � and constructed by Serre (see [Ser80a, Theorem 10]) thanks
to a more refined interpretation of the elements of �\� as classes of rank two vector
bundles over C. We refer to ibid. for the details.
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4.5.3 An Elementary Result on Translation-Invariant
Functions Over �

We recall that H denotes the complex upper-half plane. Let f : H → C be a
holomorphic function such that for all n ∈ Z and for all z ∈ H, f (z + n) = f (z).
Then, we can expand

f (z) =
∑

n∈Z
fne

2πinz, fn ∈ C,

a series which is convergent for q(z) = e2πiz in

Ḋ◦
C
(0, 1) = {z ∈ C : 0 < |z| < 1}

the punctured open unit disk centered at 0 of C or equivalently, for z in every
horizontal strip of finite height in H (note that they are invariant by horizontal
translation).

4.5.3.1 A Digression

The proof of the above statement for f is simple and we can afford a short
digression. The function z 
→ q(z) does not allow a global holomorphic section
H← Ḋ◦

C
(0, 1). But we can cover C× with say, three open half-planes U1, U2, U3,

and there are sections s1, s2, s3 defined and holomorphic over U1, U2, U3 such that
si − sj ∈ Z over Ui ∩ Uj for all i, j . Let f be holomorphic on H such that
f (z + 1) = f (z) for all z ∈ H. Define gi(q) = f (si(q)) for all i = 1, 2, 3. Then,
the compatibility conditions and the fact that the pre-sheaf of holomorphic functions
over any open set is a sheaf (the well known principle of analytic continuation)
ensure that this defines a holomorphic function g(q) over Ḋ◦

C
(0, 1). But the ring

of holomorphic functions over Ḋ◦
C
(0, 1) is precisely that of the convergent double

series
∑

n∈Z fnqn, as one can easily see, and our claim follows. One also deduces
that there is an isomorphism of Riemann’s surfaces

H/Z ∼= Ḋ◦C(0, 1)

induced by e2πiz, concluding the digression.
We now come back to our characteristic p > 0 setting and we suppose, from

now on, that

A = H 0(P1
Fq
\ {∞},O

P
1
Fq

).
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We note that � is invariant by translations of a ∈ A and the function

expA(z) = z
∏

a∈A\{0}

(

1− z
a

)

= π̃−1 expC(π̃z)

is an entire function C∞ → C∞, Fq -linear, surjective, of kernel A = Fq [θ ], hence
also invariant by translations by elements of A. It is thus natural to ask for an
analogue statement of the above, complex one. Consider R ∈ |C×∞|. Now, note
that A acts on �R = {z ∈ � : |z|� ≥ R} by translations. Giving A\�R the quotient
topology we have:

Lemma 4.5.8 There is S ∈ |C×∞| such that the function expA induces a homeomor-
phism of topological spaces

A\�R → {z ∈ C∞ : |z| ≥ S}.

Proof From the Weierstrass product expansion we see that, setting

S := max
z∈DC∞ (0,R)

| expA(z)| =: ‖ expA ‖R = ‖z‖R
∏

a∈A
a �=0

∥

∥

∥1− z
a

∥

∥

∥

R
= R
∏

a∈A
a �=0
|a|<R

R

|a| ,

expA(D(0, R)) = D(0, S) by Corollary 4.2.8. Hence, D◦(0, S) = D◦
C∞(0, S) =

expA(D
◦(0, R)) from which we deduce that

{z ∈ C∞ : | expA(z)| < S} = A+D◦(0, R).

Recall that K∞ = A⊕MK∞ . If R ≥ 1, we have D◦(0, R) ⊃MK∞ . Now observe
that

{z ∈ C∞ : |z|� < R} = ∪a∈K∞D◦(a, R) = ∪a∈AD◦(a, R).

Therefore we have the chain of identities

A+D◦(0, R) = K∞+D◦(0, R) = ∪a∈K∞D◦(a, R) = {z ∈ C∞ : |z|� < R} = �\�R,

and taking complementaries, we see that

�R = {z ∈ C∞ : | expA(z)| ≥ S}, R ≥ 1.

��
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4.6 Some Quotient Spaces

Our topologies are totally disconnected and Lemma 4.5.8 is weaker if compared
with analogous statements in the complex setting. Fortunately there is a structure of
quotient analytic space over�R/A, and it is isomorphic to the analytic structure of
the complementary of the disk D◦(0, S).

4.6.1 A-Periodic Functions Over �

We suppose that A = Fq [θ ] all along this subsection. The analogue for � = C∞ \
K∞ of the simple claim over C of the beginning of Sect. 4.5.3 and the proof in
Sect. 4.5.3.1 is not as easy to prove but it is true, and not too difficult. In fact, the
following result holds:

Proposition 4.6.1 Let f : �→ C∞ be an analytic function such that f (z+ a) =
f (z) for all a ∈ A. Then, there exists S ∈ |C×∞|, S < 1, such that

f (z) =
∑

n∈Z
fn expA(z)

n, fn ∈ C∞,

the series being uniformly convergent for expA(z)
−1 in every annulus of

Ḋ◦
C∞(0, S) = {x ∈ C∞ : 0 < |x| < S}, S ∈ |C×∞|, small enough.
To prove this result and to motivate the proof we are giving, we need some

preparation.

4.6.1.1 Analytification and quotients

Let X be a rigid analytic variety over a valued field L, complete and algebraically
closed. Let us consider a group � acting on X with ‘admissible action’. ‘Admissible
action’ means that X can be covered by �-stable admissible subsets and that �
acts through an embedding ι of � in Aut(X ), topological group, and the image is
discrete. We are interested in such triples

(X , �, ι).

For example, we can take � = A acting on � or A1
C∞ by translations (the theme of

Proposition 4.6.1) or � = GL2(A) acting on � by homographies (the theme of the
text).

The quotient map

X → �\X
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can be used to define a structure of Grothendieck ringed space on the quotient �\X .
A subset of �\X is admissible if its pre-image is admissible, and the sections are �-
invariant C∞-valued functions over pre-images of �-invariant subsets. One needs
conditions under which the quotient acquires a structure of rigid analytic space.
For example, a finite group � acting on X = Spm(A) affinoid variety which
allows a covering by invariant admissible subsets gives rise to an isomorphism
of affinoid varieties �\Spm(A) → Spm(A�), where A� is the sub-algebra of
�-invariant elements of A; see [Bos84, §6.3.3]. See also Hansen’s more general
[Han20, Theorem 1.3].

We invoke the analytification functor in Sect. 4.5.1.1 by choosing X = Xan. If
X is a scheme of finite type over L with an ‘admissible action’ of a finite group
� ‘admissible’, now in the algebraic sense that there is a covering with �-invariant
affine sub-schemes, it can be proved that there exists a unique scheme structure (of
finite type over L) on the ringed quotient space

p : X→ �\X.

The following proposition is due to Amaury Thuillier: we warmly thank him for
having brought our attention to it.

Proposition 4.6.2 The canonical map �\Xan → (�\X)an is an isomorphism of
rigid analytic varieties.

Proof We can suppose, without loss of generality, X = Spec(A) affine, so that
�\X = Spec(A�). In terms of algebras, we have (horizontal arrows are surjective
and vertical arrows injective, and̂L[t] is the standard Tate L-algebra in the variables
t = (t1, . . . , tN ) for some N):

L[t] A

L[t]] L[t]
ker(π)

.

π

Then we have:

AV :=
̂L[t]

ker(π)
= A⊗L[t] ̂L[t] = H 0(V ,OXan)

where V := Spm(A⊗L[t] ̂L[t]) ⊂ (�\X)an.
The L-algebra B = A ⊗A� AV is finite over AV , hence it inherits a structure

of affinoid L-algebra. We deduce, with pan : Xan → (�\X)an the analytification
of p, that W = (pan)−1(V ) is a �-invariant affinoid domain of Xan and AW =
H 0(W,OXan) = B. The quotient space �\W is also affinoid, of algebra B� (see
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[Bos84, §6.3.3]). Therefore, all we need to show is that the canonical morphism

AV → B = A⊗A� AV

induces an isomorphism AV → B� = (A⊗A� AV )� .
The morphism A→ AV is flat [Ber90, Theorem 3.4.1, (ii)]. Therefore the exact

sequence

0 → A� → A ⊕(g−IdA)−−−−−−→
⊕

g∈�
A

yields an exact sequence

0 → AV = A� ⊗A� AV → A⊗A� AV
⊕(g−IdA)−−−−−−→

⊕

g∈�
A⊗A� AV .

We have thus that AV is equal to the kernel of the last arrow, which is just B� . ��
We consider L = C∞ and we denote by A(n) the Fq -vector space {a ∈ A :

|a| < |θ |n} (dimension n and cardinality qn). IfX = A
1
C∞ and we look at � = A(n)

acting on X by translations, we have the quotient scheme �\X = Spec(C∞[x]�).
Note that C∞[x]� = C∞[En(x)] with En characterised by Proposition 4.4.8, by
Euclidean division. Proposition 4.6.2 applies.

We introduce the sets for n ≥ 1

Bn = D◦C∞(0, |θ |n) \
⋃

a∈A(n)
D◦

C∞(a, 1).

We define, in parallel, with ln = (θ − θq) · · · (θ − θqn):

Cn = D◦C∞(0, |ln|) \D◦C∞(0, 1).

Each of these sets has an admissible covering by affinoid subsets so that it is a rigid
analytic sub-variety of A1,an

C∞ . A function f : Bn → C∞ is analytic if its restriction
to every affinoid subset is analytic. Note that Bn ⊂ Bn+1 and Cn ⊂ Cn+1 for all
n ≥ 1. We set

ψm := 1− τ

l
q−1
m

, m ≥ 0
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(recall that τ (x) = xq for x ∈ C∞). It is easy to see that ψn induces an isometric
biholomorphic isomorphism of Cm for all n ≥ m. In particular the non-commutative
infinite product

Fn := · · ·
(

1− τ

l
q−1
n+1

)(

1− τ

l
q−1
n

)

∈ K[[τ ]]

induces an isometric biholomorphic isomorphism of Cn (for every n).
In a similar vein, Proposition 4.6.2 implies:

Corollary 4.6.3 The function En = lnEn is a degree qn étale covering Bn → Cn
which induces an isomorphism of rigid analytic spaces

A(n)\Bn→ Cn,

where the analytic structure on the pre-image is induced by the analytification of
Spec(C∞[x]A(n)).

4.6.1.2 Proof of Proposition 4.6.1

A global section gn of OCn can be identified, in a unique way, with a convergent
series

∑

k∈Z
g
(n)
k x

k, g
(n)
k ∈ C∞.

Let f : � → C∞ be a rigid analytic function with the property that for all a ∈ A,
f (z + a) = f (z). We fix m > 0, let n be such that n ≥ m. Then, f : Bn → C∞ is
holomorphic such that f (z + a) = f (z) for all a ∈ A(n) and therefore there exists
a unique gn ∈ OCn such that f (z) = gn(En(z)) over Cn and we can write:

f (z) =
∑

k∈Z
g
(n)
k (En(z))

k.

We observe that Bm ⊂ Bn. Thus, we have the following commutative diagram for
n > m, where the left vertical arrows are the identity, and the bottom right vertical
arrow is ψm, while the top one is ψm+1,n, where ψm,n is the composition ψm,n :=
ψn−1 ◦ · · · ◦ ψm:

Bm
En−→ Cm

↑ ↑
Bm

Em+1−−−→ Cm
↑ ↑
Bm

Em−→ Cm,
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and there also exists a unique gm ∈ OCm such that f (z) = gm(Em(z)), this time
over Cm ⊂ Cn so that, noticing that ψm,n induces an isometric biholomorphic
isomorphism of Cm, we must have:

gn(ψm,n(x)) = gm(x), x ∈ Cm.

In particular, we have the equality

gn+1(ψn(x)) = gn(x), x ∈ Cm.

Since ψn(x) = x(1 − ( x
ln
)q−1) and ψn(x)k = xk(1 + σn,k(x)) with |σn,k(x)| ≤

| x
ln
|q−1 < 1 for all n ≥ m, k ∈ Z, we deduce that the function gn+1 − gn tends

to zero uniformly on every admissible subset of Cm, for n ≥ m. This means that
the sequence of functions (gn)n≥m converges to an element g ∈ OCm uniformly on
every admissible subset of Cm.

With this new function g the existence of which is given by Cauchy convergence
criterion, we can write:

gm(x) = g(Fm(x)), x ∈ Cm.

We use the results of Sect. 4.4.2 and more precisely Proposition 4.4.9, or with a
more manageable notation, (4.6). We thus recall the identity of entire functions:

expA = Fn

(

1− τ

l
q−1
n−1

)

· · ·
(

1− τ

l
q−1
1

)

(1− τ )
︸ ︷︷ ︸

En

.

In particular, by uniqueness:

f (z) = g(expA(z)), z ∈ Bm, ∀m.

Since the sets Bn cover the set �1 := {z ∈ C∞ : |z|� ≥ 1}, the result follows.
Restated in more geometric, but essentially equivalent language, the arguments

of the proof of Proposition 4.6.1 lead to:

Proposition 4.6.4 For all M ∈ [1,∞[∩|C×∞|, the function z 
→ 1
expA

yields an

isomorphism of rigid analytic spaces A\�M ∼= ḊC∞(0, S) = DC∞(0, S) \ {0} for
some S ≥ 1 depending onM .

Problem 4.6.5 The above proof, although simple, is longer than the one we gave in
the digression 4.5.3.1, in the complex case. This leads to the following question:
is it possible to construct explicitly an admissible covering (Ui)i of an annulus
DC∞(0, R) \ D◦C∞(0, r) and local inverses gi ∈ OUi of the function expA or even

better, the function 1
expA

, delivering a simpler proof of Proposition 4.6.1 and making
no use of the process of analytification?



4 From the Carlitz Exponential to Drinfeld Modular Forms 147

Also, note that the fact that the Grothendieck ringed space A\A1,an carries a
structure of rigid analytic variety and much more general results in this vein can be
also deduced from Simon Häberli’s thesis [Hab18, Proposition 2.34].

4.6.1.3 The Bruhat-Tits Tree and expA

As a complement for the previous discussions, in this subsection we describe how
the Bruhat-Tits tree of Sect. 4.5.2.2 can be used to study the function expA. We are
going to see that somewhat, expA defines a covering A

1,an
C∞ → A

1,an
C∞ ‘ramified of

degree q∞’; the reader is invited to compare with the results of Sect. 4.4.3. To give
more strength to this, we use again Proposition 4.4.9. We are therefore led to analyse
the image of En = lnEn on D◦

C∞(0, |θ |n) and then, take the limit for n → ∞. We
note that

D◦
C∞(0, |θ |n) \K∞ =

⊔

λ∈Q∩]−n,∞[
α∈⊕−λ≤i<nFqθi

α + Cλ.

Since

En(z) = ln

dn

∏

a∈A(n)
(z− a)

is Fq -linear of kernel A(n), it suffices to study how En behaves over

Tn =
⊔

λ∈Q∩]−n,∞[
α∈⊕−λ≤i<0Fqθ

i

α + Cλ.

Note that if λ ≤ 0, the direct sum over i is empty. This means that in the Bruhat-
Tits tree T , Tn entails a very simple subtree which can be obtained by glueing in
0 a segment ] − n, 0] (the subtree T −n ) with the union of q disjoint copies of a
complete q-ary tree equating T +0 = red(D◦

C∞(0, 1) \ K∞) (independent of n), so

that Tn = T −n � T +0 and T0 = T +0 . Since En induces an isometric isomorphism of
D◦

C∞(0, 1) such that for all z ∈ D◦
C∞(0, 1), En(z) = z+ z′ with |z′| < |z|, it induces

the identity on T +0 , and this, for all n ≥ 0. The action of the maps En are all equal to
the action of E0(z) = z on T +0 . We now choose n > 0 and we look at the behaviour
of En on T −n , which is the most interesting part of the story.
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Consider x such that red(x) ∈ T −n . Then, there exists i > 0 maximal with the
property that x ∈ T −i \ T −i−1 (T −0 is empty by definition) and there exists a unique

λ ∈ Q with −λ ∈ [i − 1, i[ such that x ∈ Cλ. We recall that
∏

0 �=a∈A(n) a = dn
ln

, see
(4.5). We have:

En(x) = ln

dn

∏

a∈A(i)
(x − a)

∏

a∈A(n)\A(i)
(x − a)

= Ei (x)
ln

dn

di

li

∏

a∈A(n)\A(i)
(−a)
∏

a∈A(n)

(

1− x
a

)

= (1+ ξ)Ei (x),

where ξ ∈ D◦
C∞(0, 1) (because |x||a| < 1 for all a ∈ A(n) \A(i)). If y ∈ D◦

C∞(0, |x|)
we get

En(x + y) = Ei (x)+ ξEi (x)+ (1+ ξ)Ei (y)
︸ ︷︷ ︸

element of C◦
C∞ (0,|Ei (x)|)

.

We deduce that the map

D◦
C∞(x, |x|)

En−→ D◦
C∞(Ei (x), |Ei(x)|)

is an étale covering of degree qi . Hence, the image by En of res−1(T −i \ T −i−1)

(annulus) is an étale covering of degree qi of the annulus

li

di

[

D◦
C∞(0, |θ |iq

i

) \D◦
C∞(0, |θ |(i−1)qi )

]

= D◦
C∞(0, |li |) \D◦C∞(0, |li−1|).

From this it is not difficult to deduce that En defines a covering D◦
C∞(0, |θ |n) →

D◦
C∞(0, |ln|) ramified of degree qn at the points of A(n) and étale on the com-

plementary of these points but we get even more. Namely, that for any z ∈ �,
res(expA(z)) can be very easily computed. If |z|� < 1 then | expA(z)| < 1 and if
z �∈ K∞, res(expA(z)) is equal to res(z − a) where a ∈ A is the unique element
such that res(z − a) ∈ T +0 . If |z|� ≥ 1 then res(expA(z)) = res(En(z)) for all but
finitely many n (depending on how large is |z|�).

We consider T −∞ = ∪n≥1T −n (homeomorphic to R≤0) and T∞ = T −∞ �T +0 . Note
that res(F) = T −∞ and res(F � {z ∈ � : |z|, |z|� < 1}) = T∞. In the terminology of
§4.5.2.2, F� {z ∈ � : |z|, |z|� < 1} can be viewed as a ‘good fundamental domain’
for the action ofA over� by translations. We ultimately get, with a few more details
to develop which are left to the reader:
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Proposition 4.6.6 The map expA induces a surjective, A-periodic map F →
A

1,an
C∞ \ D◦

C∞(0, 1) and rigid analytic isomorphisms A\F → A
1,an
C∞ \ D◦

C∞(0, 1)

and A\A1,an
C∞ → A

1,an
C∞ .

Note that F is not, properly speaking, invariant by A-translations, but A-
translations define an equivalence relation on F. The above statement needs to be
interpret in the light of the richer combinatorial structure described earlier. In the
classical setting we have, of course, the classical well known properties that the
Eulerian exponential z 
→ ez induces analytic isomorphisms Z\H→ D◦

C
(0, 1) and

Z\C→ C
×. Interestingly too, we note that, just as C = H � R �H− (the latter is

the lower complex half-plane), here we have an analogous decomposition

C∞ = � �K∞ = �1 ��− �K∞
with �1 = {z ∈ � : |z|� ≥ 1}, �− = {z ∈ � : |z|� < 1}.

We hope that, with this description, we have convinced the reader that the
functions expA and the Carlitz’s exponential carry an extraordinary structural
richness. We now complete our discussion with the quick exposition of some
properties of the quotient GL2(A)\� and then we move our attention to Drinfeld
modular forms.

4.6.2 The Quotient GL2(A)\�

In the previous subsection we gave, in the most explicit way, but also in compat-
ibility with the purposes of this text, a description of the analytic structure of the
quotient space (A = Fq [θ ] acting by translations)A\�1. Following [Ger80, Chapter
10]), we now describe the action of GL2(Fq) on certain admissible subsets of�. We
considerM ∈ |C×∞| and we set

�M := {z ∈ � : |z|� ≥ M}.

Note that this set, which is called horocycle neighbourhood of ∞, is non-empty and
is invariant by translations by elements of K∞. The multiplication by elements of
F
×
q induce bijections of �M . Here is a lemma that will be useful later.

Lemma 4.6.7 IfM > 1 and if γ ∈ GL2(A) is such that γ (�M)∩�M �= ∅, then γ
belongs to the Borel subgroup ( ∗ ∗0 ∗ ) of GL2(A).

Proof Let γ = ( a bc d ) ∈ GL2(A). By Lemma 4.5.2, |γ (z)|� = |z|�
|cz+d |2 . Let us

suppose that z, γ (z) ∈ �M , and that c �= 0. Then, since |c| ≥ 1 if c ∈ A \ {0},

|cz+ d| ≥ |cz+ d|� = |c||z|� ≥ |z|�.
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Then, γ (z) ∈ �M implies that |z|� ≥ M|cz + d|2 ≥ M|z|2� so that M−1 ≥ |z|�.
Now, ifM > 1, from |z|� ≥ M we get a contradiction. ��

We set, withM ∈ |C×∞|∩]1,∞[:

DM := DC∞(0,M) \ (Fq +D◦C∞(0,M−1)) ⊂ �.

This is the complementary in P
1,an
Fq
(C∞) of the union of q + 1 disjoint disks and

is an affinoid subset of �. In the following, we can choose M = |θ | 1
2 . It is easy to

see that the group GL2(Fq) acts by homographies on DM (note that more generally,
the subsets {z ∈ C∞ : |z| ≤ qn, |z|� ≥ q−n}, which also are affinoid subsets,
are invariant under the action by homographies of the subgroups of GL2(A) finitely
generated by GL2(Fq) and {( λ θi0 μ ) : λ,μ ∈ F

×
q , i ≤ n}, the union of which is

GL2(A)). Further, if γ ∈ GL2(A), one easily sees that if γ (DM) ∩ DM �= ∅, then
γ ∈ GL2(Fq). It is also easily seen that

� =
⋃

γ∈GL2(A)

γ (DM).

We can apply Proposition 4.6.2 to the isomorphism of affine varieties

GL2(Fq)\A1
C∞

j0−→ A
1
C∞,

where

j0(z) = − (1+ z
q−1)q+1

zq−1

(this is the finite j -invariant of Gekeler in [Gek01]) to obtain an isomorphism of
analytic spaces

GL2(Fq)\DM ∼= DC∞(0, 1).

In parallel, we have the Borel subgroup B = B(A) = {( ∗ ∗0 ∗ )} which acts on �M
and the isomorphism of analytic spaces B\�M ∼= ḊC∞(0, S) induced by the map
expA(z)

−1 (Proposition 4.6.4). We recall from Lemma 4.6.7 that γ ∈ GL2(Fq) is
such that γ (�M) ∩�M �= ∅ if and only if γ is in B.

There is a procedure of gluing two quotient rigid analytic spaces with such
compatibility boundary conditions, into a new rigid analytic space, along with (4.10)
for k = Fq and t = θ . Note that DM ∩ �M = {z ∈ C∞ : |z|� = |z| = M}
and the two actions of B over �M and of GL2(Fq) on DM agree with the action
of B ∩ GL2(Fq) on DM ∩ �M and the gluing of these two quotient spaces is a
well defined analytic space whose underlying topological space is homeomorphic
to the quotient topological space GL2(A)\� which also carries a natural structure
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of analytic space. Additionally, this quotient space is isomorphic to the gluing of
DC∞(0, 1) and C∞ \ D◦

C∞(0, 1) along {z ∈ C∞ : |z| = 1}, which is in turn
isomorphic to C∞. This construction finally yields:

Theorem 4.6.8 There is an isomorphism between the quotient rigid analytic space
GL2(A)\� and the rigid analytic affine line A1,an

C∞ .

4.7 Drinfeld Modular Forms

We give a short synthesis on Drinfeld modular forms for the group � = GL2(A)

in the simplest case where A = Fq [θ ], so that we can prepare the next part of
this paper, where we construct modular forms for � with (vector) values in certain
C∞-Banach algebras.

The map

GL2(K∞)×�→ C
×∞

defined by (γ, z) 
→ Jγ (z) = cz + d if γ = ( ∗ ∗c d ) behaves like the classical factor
of automorphy for GL2(R). Indeed we have the cocycle condition:

Jγ δ(z) = Jγ (δ(z))Jδ(z), γ, δ ∈ GL2(K∞).

Note that the image is indeed in C
×∞, as z, 1 are K∞-linearly independent if z ∈ �.

Definition 4.7.1 Let f : � → C∞ be an analytic function. We say that f is
modular-like of weight w ∈ Z if for all z ∈ �,

f (γ (z)) = Jγ (z)wf (z), ∀γ ∈ GL2(A).

It is a simple exercise to verify that w is uniquely determined.
We say that a modular-like function of weight w is:

(1) weakly modular (of weight w) if there exists N ∈ Z such that the map z 
→
| expA(z)

Nf (z)| is bounded over�M for someM > 1,
(2) a modular form if the map z 
→ |f (z)| is bounded over�M for someM > 1.
(3) a cusp form if it is a modular form and maxz∈�M |f (z)| → 0 asM →∞.

Let f be modular like (of weight w ∈ Z). Taking γ = ( 1 a
0 1 ) we see that f (z +

a) = f (z) for all a ∈ A. Therefore, by Proposition 4.6.1, there is a convergent
series expansion of the type

f (z) =
∑

i∈Z
fi expA(z)

i, fi ∈ C∞.
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There is a rigid analytic analogue of Riemann’s principle of removable singularities
due to Bartenwerfer (see [Bar76]) in virtue of which we see that the C∞-vector
spaceM !

w of weak modular forms of weight w embeds in the field of Laurent series
C∞((u)) with the discrete valuation given by the order in u, where u = u(z) is the
uniformiser at infinity

u(z) = 1

π̃ expA(z)
= 1

π̃

∑

a∈A

1

z − a ,

which is an analytic function � → C∞. Since M !
w ∩ M !

w′ = {0} if w �= w′ we
have a C∞-algebraM ! = ⊕wM !

w which also embeds in the field of Laurent series
C∞((u)). Denoting byMw the C∞-vector space of modular forms of weight w and
by M = ⊕wMw the C∞-algebra of modular forms, we also have an embedding
M → C∞[[u]] and cusp forms generate an ideal whose image in C∞[[u]] is
contained in the ideal generated by u.

It is easy to deduce, from the modularity property, that M !
w �= {0} implies q −

1 | w. Furthermore, for all w such that Mw �= {0}, Mw can be embedded via u-
expansions in C∞[[uq−1]] and therefore the C∞-vector space of cusp forms Sw can
be embedded in uq−1

C∞[[uq−1]].

4.7.1 u-Expansions

We have seen that we can associate in a unique way to any Drinfeld modular form
f a formal series

∑

i≥0 fiu
i ∈ C∞[[u]] which is analytic in some disk D(0, R),

R ∈ |C×∞|∩]0, 1[. This is the analogue of the ‘Fourier series’ of a complex-valued
modular form for SL2(Z); for such a function f : H→ C we deduce, from f (z +
1) = f (z), a Fourier series expansion

f =
∑

i≥0

fiq
i, fi ∈ C,

converging for q = q(z) = e2πiz ∈ D◦
C
(0, 1). We want to introduce some useful

tools for the study of u-expansions of Drinfeld modular forms.

For n ≥ 0 we introduce the C∞-linear map C∞[z] Dn−→ C∞[z] uniquely
determined by

Dn(zm) =
(

m

n

)

zm−n.

Note that we have Leibniz’s formula Dn(fg) = ∑i+j=n Di (f )Dj (g). The linear
operators Dn extend in a unique way to C∞(z) and further, on the C∞-algebra
of analytic functions over any rational subset of � therefore inducing linear
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endomorphisms of the C∞-algebra of analytic functions � → C∞. Additionally,
if f : � → C∞ is analytic and A-periodic, Dn(f ) has this same property, and for
all n, Dn induces C∞-linear endomorphisms of C∞[[u]] (this last property follows
from the fact that Dn(u) is bounded on �M as one case easily see distributing Dn
on u = 1

π̃

∑

a∈A 1
z−a , which gives (−1)n 1

π̃

∑

a∈A 1
(z−a)n+1 ). We normalise Dn by

setting:

Dn = (−π̃)−nDn.

Lemma 4.7.2 For all n ≥ 0, Dn(K[u]) ⊂ u2K[u].
Proof It suffices to show that for all n ≥ 0, Dn(u) ∈ u2K[u]. We proceed by
induction on n ≥ 0; there is nothing to prove for n = 0. Recall that u(z) = 1

expC(π̃z)
.

Then, by Leibniz’s formula:

0 = Dn(1) = Dn(u expC(π̃z))

= Dn(u) expC(π̃z)+
∑

i+qk=n
k≥0

Di(u)Dqk (expC(π̃z)),

because expC is Fq -linear. In fact, Dqk (expC(π̃z)) is constant and equals the

coefficient of zq
k

in the z-expansion of expC , which is 1
dk

. We can therefore use
induction to conclude that

Dn(u) = −u

⎛

⎜

⎜

⎜

⎝

−
∑

i+qk=n
k≥0

Di(u)d
−1
k

⎞

⎟

⎟

⎟

⎠

∈ u2K[u].

��
The polynomials Gn+1(u) := Dn(u) ∈ K[u] (n ≥ 1) are called the Goss

polynomials (see [Gek88, §3]). It is easy to deduce from the above proof that
Dj(u) = uj+1 as j = 1, . . . , q − 1. There is no general formula currently available
to computeDj(u) for higher values of j .

4.7.1.1 Constructing Drinfeld Modular Forms

The first non-trivial examples of Drinfeld modular forms have been described by
Goss in his Ph. D. Thesis. To begin this subsection, we follow Goss [Gos80b] and
we show how to construct non-zero Eisenstein series by using thatAz+A is strongly
discrete in C∞ if z ∈ �. We set:

Ew(z) =
∑′

a,b∈A

1

(az+ b)w .
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There are many sources where the reader can find a proof of the following lemma
(see for instance [Gek88, (6.3)]), but we prefer to give full details.

Lemma 4.7.3 The series Ew defines a non-zero element ofMw if and only if w > 0
and q − 1 | w.
Proof The above series converges uniformly on every set�M and this already gives
that Ew is analytic over�. The first property, that Ew is modular-like of weight w,
follows from a simple rearrangement of the sum defining Ew(γ (z)) for γ ∈ �
and its (unconditional) convergence, which leaves it invariant by permutation of its
terms. Additionally, it is very easy to see that all terms involved in the sum are
bounded on �M for everyM which, by the ultrametric inequality, implies that Ew
itself is bounded on�M for everyM . It remains to describe when the series are zero
identically, or non-zero.

For the non-vanishing property, we give an explicit evidence why Ew has a
u-expansion in C∞[[u]], and we derive from partial knowledge of its shape the
required property (but we are not able to compute in limpid way the coefficients of
the u-expansion!). First note that

Dn(u) = 1

π̃n+1

∑

b∈A

1

(z− b)n+1 ,

so that we can use the Goss’ polynomials Gn+1(u) = Dn(u) as a ‘model’ to
construct the u-expansion of Ew. Now, observe, for w > 0:

Ew(z) =
∑

b∈A

1

bw
+
∑′

a∈A

∑

b∈A

1

(az+ b)w .

If (q − 1) | w, we note that

∑

b∈A

1

bw
= −
∏

P

(

1− P−w)−1 =: −ζA(w),

where the product runs over the monic irreducible polynomialsP ∈ A and therefore
is non-zero. Then, if (q−1) | w and if A+ denotes the subset of monic polynomials
in A:

Ew(z) = −ζA(w)−
∑

a∈A+

∑

b∈A

1

(az+ b)w

= −ζA(w)− π̃w
∑

a∈A+
Gw(u(az)),

a series which converges uniformly on every affinoid subset of �. Note that for
a ∈ A \ {0}, the function u(az) can be expanded as a formal series ua of u|a|K[[u]]
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(normalise | · | by |θ | = q) locally converging at u = 0 (in a disk of positive radius
r independent of a). This yields the explicit series expansion (convergent for the
u-valuation, or for the sup-norm over the disk D(0, r) in the variable u):

Ew(z) = −ζA(w)− π̃w
∑

a∈A+
Gw(ua). (4.12)

This also shows that Ew is, in this case, not identically zero. Indeed ζA(w) is non-
zero, while the part depending on u in the above expression tends to zero as |z|�
tends to ∞. On the other hand, if (q − 1) � w, the factor of automorphy Jwγ does
not induce a factor of automorphy for the group PGL2(A) defined as the quotient of
GL2(A) by scalar matrices and this implies that any modular form of such weight
w vanishes identically, and so it happens that Ew vanishes in this case. ��
Remark 4.7.4 It is instructive at this point to compare our observations with the
settings of the original, complex-valued Eisenstein series. Indeed, it is well known,
classically, that if w > 2, 2 | w and q = e2πiz:

Ew(z) =
∑′

a,b∈Z

1

(az+ b)w = 2ζ(w)+ 2
(2πi)

w
2

(w2 − 1)!
∑

n≥1

n
w
2 −1qn

1− qn , �(z) > 0.

The analogy is therefore between the series

∑

a∈A+
Gw(ua)

and

∑

n≥1

n
w
2 −1qn

1− qn .

However, it is well known that the latter series can be further expanded as follows,
with σk(n) =∑d |n dk:

∑

n≥1

σw
2 −1(n)q

n.

For the series
∑

a∈A+ Gw(ua), this aspect is missing, and there is no available
intelligible recipe to compute the coefficients of the u-expansion of Ew directly,
at the moment.
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4.7.2 Construction of Non-trivial Cusp Forms

We have constructed non-trivial modular forms, but they are not cusp forms. We
construct non-zero cusp forms in this section. Let z be an element of �. Then,
� = �z = Az+A is an A-lattice of rank 2 of C∞. By Theorem 4.3.4, we have the
Drinfeld A-module φ := φ� which is of rank 2. Hence, we can write

φθ(Z) = θZ + g̃(z)Zq + ˜�(z)Zq2
, ∀(z, Z) ∈ �× C∞

for functions g̃,˜� : �→ C∞.

We consider the function �× C∞
(z,Z) 
→E(z,Z)−−−−−−−−→ C∞ which associates to (z, Z)

the value

E(z, Z) := exp�(Z) =
∑

i≥0

αi(z)Z
qi = Z
∏′

λ∈�

(

1− Z
λ

)

(4.13)

at Z of the exponential series exp� associated to the A-lattice � = �z of C∞. It is
an analytic function and we have φa(exp�(Z)) = exp�(aZ) for all a ∈ A.

The following result collects the various functional properties of E(z, Z); proofs
rely on simple computations that we leave to the reader.

Lemma 4.7.5 For all z ∈ �, Z ∈ C∞, γ ∈ � and a ∈ A:
(1) φ�(a)(E(z, Z)) = E(z, aZ),
(2) E(γ (z), Z) = Jγ (z)−1

E(z, Jγ (z)Z).
(3) E(z, Z + az+ b) = E(z, Z), for all a, b ∈ A.
Remark 4.7.6 Loosely, we can say that E is a ‘non-commutative modular form of
weight (−1, 1)’. The second formula can be also rewritten as:

E

(

γ (z),
Z

Jγ (z)

)

= Jγ (z)−1
E(z, Z), γ ∈ GL2(A),

so that E functionally plays the role of a Jacobi form of level 1, weight−1 and index
0 (this is in close analogy with the Weierstrass ℘-functions).

By taking the formal logarithmic derivative in the variable Z of the Weierstrass
product expansion of exp�(Z) (for z fixed) we note that

Z

E(z, Z)
= 1−

∑

k≥0
(q−1)|k

Ek(z)Z
k

so that the coefficients in this expansion in powers of Z are analytic functions on�,
from which we deduce, by inversion, that the coefficient functions αi : �→ C∞ of
E are analytic. By Lemma 4.7.3 and the homogeneity of the algebraic expressions
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expressing the functions αi in terms of the Eisenstein series Ek we see that αi ∈
Mqi−1 for all i ≥ 0. As |z|� → ∞ we have Ek(z) → −ζA(k), after a simple
computation we see that

E(z, Z)→ expA(Z)

uniformly for Z ∈ D for every disk D ⊂ C∞. This means that the functions αi are
not cusp forms (the coefficients of expA ∈ K∞[[τ ]] are all non-zero). To construct
cusp forms, we now look at the coefficients g̃,˜� of φθ which are functions of the
variable z ∈ �. By (1) and (2) of Lemma 4.7.5, for γ ∈ �, writing now φ�z(θ) in
place of φθ :

φ�γ(z) (θ)(Jγ (z)
−1

E(z, Jγ (z)Z)) = φ�γ(z) (θ)(E(γ (z), Z))
= E(γ (z), θZ)

= Jγ (z)−1
E(z, θJγ (z)Z).

Hence, φ�γ(z) (θ)(Jγ (z)
−1

E(z,W)) = Jγ (z)−1
E(z, θW) = Jγ (z)−1φ�z(E(z,W))

forW ∈ C∞. Since it is obvious that the coefficient functions g̃,˜� are analytic on
�, they are in this way respectively modular-like functions of respective weights
q − 1 and q2 − 1. Furthermore:

Lemma 4.7.7 g̃ ∈ Mq−1 \ Sq−1 and ˜� ∈ Sq2−1 \ {0}. Additionally, ˜�(z) �= 0 for
all z ∈ �.
Proof The modularity of g̃ and ˜� follows from the previously noticed fact that
exp�z(Z)→ expA(Z) uniformly with Z in disks as |z|� → ∞. Indeed, this implies

that φθ(Z) → θZ + π̃q−1Zq (uniformly on every disk) so that g̃ → π̃q−1 and
˜�→ 0 as |z|� → ∞ and we see that g̃ is a modular form of weight q − 1 which is
not a cusp form, and ˜� is a cusp form.

We still need to prove that ˜� is not identically zero; to do this, we prove now the
last property of the lemma, which is even stronger. Assume by contradiction that
there exists z ∈ � such that ˜�(z) = 0. Then

φ�z(θ) = θ + g̃(z)τ

which implies that the exponential exp�z induces an isomorphism of A-modules
exp�z : C∞/�z → C(C∞) (the Carlitz module). But this disagrees with
Theorem 4.3.4 which would deliver an isomorphism �z ∼= A between lattices of
different ranks. This proves that ˜� does not vanish on�. ��

Following Gekeler in [Gek88], we define the modular forms g,� of respective
weights q−1 and q2−1 by g̃ = π̃q−1g and ˜� = π̃q2−1�. The reason for choosing
these normalisations is that it can be proved that the u-expansions of g,� have
coefficients inA. We are not far from a complete proof of the following (see [Gek88,
(5.12)] for full details):
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Theorem 4.7.8 M = ⊕w∈ZMw = C∞[g,�]
The proof rests on three crucial properties (1) existence of Eisenstein series (2)

existence of the cusp form � which additionally is nowhere vanishing on �, and
(3) modular forms of weight 0 for � are constant, which follows from the fact that
a modular form of weight 0 can be identified with a holomorphic function over
P

1
Fq
(C∞) by Theorem 4.6.8, which is constant. We omit the details.

4.7.2.1 Drinfeld Modular Forms and the Bruhat-Tits Tree

We briefly sketch the interaction between Drinfeld modular forms and the Bruhat-
Tits tree, mainly inviting the reader, yet in quite an informal way, to read the
important work of Teitelbaum in [Tei91]. A simple computation indicates that if
f is a rigid analytic function over the annulus V = �−1<λ<0Cλ (or on a more
general annulus in�) so that f is defined by a convergent series

∑

i∈Z fizi with the
coefficients fi in C∞, then the residue

ResV (f (z)dz) := f−1

does not depend on the local coordinate chosen to express the differential form
ω = f (z)dz. Namely, if t is another local coordinate and z = z(t) =∑i>0 zit

i with
zi ∈ C∞ and z1 ∈ C

×∞ (with suitable convergence conditions), then the coefficient
of t−1dt in ω(z(t)) = f (z(t))dz(t) = f (z(t)) dz

dt
dt is also equal to f−1, and in

particular, ResV (f dz) does not depend on the choice of the ‘center’ of the annulus.
We consider T e the set of the oriented edges of the Bruhat-Tits tree. The elements

are in one-to-one correspondence with the disjoint subsets of�:

Vn,α := α +
⊔

λ∈]n−1,n[
Cλ, n ∈ Z, α ∈ ⊕i≤n−1Fπ

i.

Note that Vn,α = {z ∈ C∞ : |π |n < |z−α| < |π |n−1}, which is an annulus centered
at elements of K∞ with inner radius |π |n and outer radius |π |n−1, n varying in Z.
Moreover, V = V0,0. If f : � → C∞ is a rigid analytic function, then f is rigid
analytic on every Vn,α and we have a well defined residue map

T e res(f )−−−→ C∞

which is a ‘harmonic function’ in virtue of the ultrametric residue theorem (see
[Ger80, §3]; we do not give full details and definitions of ‘harmonic functions’ etc.,
this would bring us too far away from the objectives of this paper). Of course, we do
not expect the map res(f ) to reproduce faithfully the behaviour of f . For example,
if f is entire over C∞ then all the residues of the differential form f dz are clearly
zero and res(f ) vanishes identically, which might not be the case for f .
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Where the map res(f ) becomes really useful is with rigid analytic functions
f which are determined by more elaborate patching of local data than just entire
functions. Typically, functions defined by globally non uniform convergent series
over�. If f is a Drinfeld modular form, Teitelbaum proved, in a much more general
setting (� arithmetic subgroup of GL2(A)), that a suitable variant of the residue map
provides us with an isomorphism of C∞-vector spaces

Sw(�)→ Char(�,w),

where Sw(�) is the space of Drinfeld cusp forms of weight w for � as defined in
ibid. and generalising our space Sw for � = GL2(A), and where Char(�,w) is the
space of ‘weight w harmonic cocycles’ for �. This map can be defined also over
Mw(�), the space of Drinfeld modular forms of weight w for �. Then, the kernel
is spanned by the Eisenstein series of weight w. For this and other deep properties
such as a homological interpretation of the residue map and an interesting and yet
mysterious analysis of the Fourier series of cusp forms, see the paper [Tei91].

4.8 Eisenstein Series with Values in Banach Algebras

The final purpose of this and the next more advanced sections of the present paper
is to show certain identities for a variant-generalisation of Eisenstein series (see
Theorem 4.9.9). We recall that A = Fq [θ ]. Let B be a C∞-Banach algebra with
sub-multiplicative norm ‖ · ‖6 norm ‖ · ‖ (extending the norm | · | of C∞) with the
property that ‖B‖ = |C∞|. Let X be a rigid analytic variety. We set

OX/B = OX̂⊗C∞B,

with OX the structural sheaf of X, of C∞-algebras. In other words, if U ⊂ X is
an affinoid subset of X, then OX(U) carries the supremum norm ‖ · ‖U and we
define OX/B(U) to be the completion of OX ⊗C∞ B for the norm induced by ‖f ⊗
b‖ = |f |U , for f ∈ OX(U) and b ∈ B. If B has a countable orthonormal basis
B = (bi)i∈I , an element f ∈ OX/B(U) has a convergent series expansion

f =
∑

i∈I
fibi,

where fi ∈ OX(U), with |fi |U → 0 for the Fréchet filter on I.

6That is, ‖ab‖ ≤ ‖a‖‖b‖ for all a, b ∈ B. We adopt the simpler notations ‖ · ‖ and | · | at the place
of | · |∞ etc. that we have used in the first few sections of our text.
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One sees that that Tate’s acyclicity Theorem extends to this setting, namely, if
X is an affinoid variety, OX/B is a sheaf of B-algebras. The global sections are the
analytic functionsX→ B.

We will mainly use the cases X = � and X = A
s,an
C∞ . If X = A

s,an
C∞ , an element

of OX/B is a B-valued entire function of s variables. We can identify it with a map
C
s∞ → B allowing a series expansion in B[[t]] with t = (t1, . . . , ts) converging on
D(0, R)s for all R > 0. A bounded entire function C∞ → B is constant (this is a
generalisation of Liouville’s theorem which uses the hypothesis that ‖B‖ = |C∞|
is not discrete, see [Pel16b]).

We work with B-valued analytic functions where B = K is the completion of
C∞(t) for the Gauss norm ‖ · ‖ = ‖ · ‖∞, where t = (t1, . . . , ts ). We have ‖K‖ =
|C∞| and the residue field is Fac

q (t). In all the following, we consider matrix-valued
analytic functions and we extend norms to matrices in the usual way by taking the
supremum of norms of the entries of a matrix.

We extend the Fq -automorphism τ : C∞ → C∞, x 
→ xq , Fq(t)-linearly and
continuously on K. The subfield of the fixed elements Kτ=1 = {x ∈ K : τ (x) = x}
is easily seen to be equal to Fq(t) by a simple variant of Mittag-Leffler theorem. Let
λ1, . . . , λr ∈ C∞ be K∞-linearly independent. This is equivalent to saying that the
A-module

� = Aλ1 + · · · + Aλr ⊂ C∞

is anA-lattice. In this way, the exponential function exp� induces a continuous open
Fq(t)-linear endomorphism of K, the kernel of which contains �⊗Fq Fq(t) (it can
be proved that exp� is surjective over K and the kernel is exactly �⊗Fq Fq(t) but
we do not need this in the present paper). The DrinfeldA-module φ = φ� gives rise
to a structure of Fq(t)nr×n[θ ]-module

φ(Knr×n)

by simply using the Fq(t)-vector space structure of K and defining the multiplica-
tion φθ by θ with the above extension of τ .

We consider an injective Fq -algebra morphism

A
χ−→ Fq(t)

n×n

and we set, with (λ1, . . . , λr ) an A-basis of � (the exponential now applied
coefficientwise):

ω� = exp�

⎛

⎜

⎝(θIn − χ(θ))−1

⎛

⎜

⎝

λ1In
...

λrIn

⎞

⎟

⎠

⎞

⎟

⎠ ∈ K
rn×n.
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Lemma 4.8.1 For all a ∈ Fq(t)[θ ] we have the identity φa(ω�) = χ(a)ω� in
K
rn×n.

Proof Since the variables ti are central for τ and Fq(t)[θ ] is euclidean, it suffices to
show that φθ(ω�) = χ(t)ω�. Now observe, for a ∈ A:

φ�(a)(ω�) = exp�((θIn − χ(θ))−1

⎛

⎜

⎝

(aIn − χ(a)+ χ(a))λ1
...

(aIn − χ(a)+ χ(a))λr

⎞

⎟

⎠

= χ(a)ω�,

because (θIn − χ(θ))−1(aIn − χ(a)) ∈ Fq(t)[θ ]n×n so that (θIn − χ(θ))−1(aIn −
χ(a))λi lies in the kernel of exp� (applied coefficientwise). ��

Hence, ω� is a particular instance of special function as defined and studied in
[Ang17, Gaz19]. Note also that the map

 � : Z 
→ exp�((θIn − χ(θ))−1Z)

defines an entire function C∞ → K
n×n. An easy variant of the proof of

Lemma 4.8.1 delivers:

Lemma 4.8.2 We have the functional equation τ ( �(Z)) = (χ(θ)−θIn) �(Z)+
exp�(Z)In in K

n×n.

We now introduce a ‘twist’ of the logarithmic derivative of exp�. We recall that

A
χ−→ Fq(t)

n×n is an injective Fq -algebra morphism. We introduce the Perkins’
series (introduced in a slightly narrower setting by Perkins in his Ph. D. thesis
[Per13]):

ψ�(Z) :=
∑

a1,...,ar∈A

1

Z − a1λ1 − · · · − arλr (χ(a1), . . . , χ(ar)), Z ∈ C∞

(depending on the choice of the basis of � as well as on the choice of the algebra
morphism χ). The series converges forZ ∈ C∞\� to a functionC∞\�→ K

n×rn.
We have (after elementary rearrangement of the terms):

ψ�(Z − b1λ1 − · · · − brλr ) = ψ�(Z)− (χ(b1), . . . , χ(br )) exp�(Z)
−1, b1, . . . , br ∈ A.

(4.14)

The next proposition explains why we are interested in the Perkins’ series: they can
be viewed as generating series of certain K-vector-valued Eisenstein series that we
introduce below. Determining identities for the Perkins’ series results in determining
identities for such Eisenstein series.



162 F. Pellarin

Proposition 4.8.3 There exists r ∈ |C×∞| such that the following series expansion,
convergent for Z in D(0, r), holds:

ψ�(Z) = −
∑

j≥1
j≡1(q−1)

Zj−1E�(j ;χ),

where for j ≥ 1,

E�(j ;χ) :=
∑′

a1,...,ar∈A

1

(a1λ1 + · · · + arλr )j (χ(a1), . . . , χ(ar)) ∈ K
n×rn.

The series E�(j ;χ) is the Eisenstein series of weight j associated to � and χ .
Note that this is in deep correspondence with the canonical deformations of the
Carlitz module in Tavares Ribeiro’s contribution to this volume, [Tav20, §4.2]. The
reader can make these connections deeper with an accurate analysis on which we
skip here.

Problem 4.8.4 Develop the appropriate generalisation of the theory of harmonic
cocycles of Teitelbaum [Tei91] and construct the residue map along the notion of
K-vector-valued modular form which naturally includes the above Eisenstein series
as in [Pel18].

Proof of Proposition 4.8.3 Since � is strongly discrete, D(0, r) ∩ (� \ {0}) = ∅
for some r �= 0. Then, we can expand, for the coefficients ai not all zero,

1

Z − a1λ1 − · · · − arλr =
−1

a1λ1 + · · · + arλr
∑

i≥0

(

Z

a1λ1 + · · · + arλr
)i

.

The result follows from the fact that E�(j ;χ), which is always convergent for j >
0, vanishes identically for j �≡ 1 (mod q−1) which is easy to check observing that
� = λ� for all λ ∈ F

×
q , and reindexing the sum defining E�(j ;χ). ��

Lemma 4.8.5 The function F�(Z) := exp�(Z)ψ�(Z) defines an entire function
C∞ → K

n×rn such that, for all λ = a1λ1 + · · · + arλr ∈ �, F�(λ) =
(χ(a1), . . . , χ(ar )) ∈ Fq(t)

n×nr .

Proof This easily follows from the fact thatψ� converges at Z = 0, and (4.14). ��
The function ψ� is intimately related to the exponential exp� by means of the

following result, where exp� on the right is the unique continuous map K
n×n →

K
n×n which induces a Fq(t)

n×n[θ ]-module morphism K
n×n → φ�(K

n×n).

Lemma 4.8.6 We have the identity of entire functions C∞ → K
n×n of the

variable Z:

exp�(Z)ψ�(Z)ω� = exp�((θIn − χ(θ))−1Z).
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Proof By Lemma 4.8.5, the function

F(Z) := F�(Z) · ω� : C∞ → K
n×n

is an entire function such that

F(λ) = (χ(a1), . . . , χ(ar ))ω� ∈ K
n×n, ∀λ = a1λ1 + · · · + arλr ∈ �.

We set

G(Z) = exp�((θIn − χ(θ))−1Z).

Let λ = a1λ1 + · · · + arλr ∈ �. We have, by Lemma 4.8.1,

G(λ) = exp�((θIn − χ(θ))−1((a1In − χ(a1)+ χ(a1))λ1 + · · · + (ar In − χ(ar )+ χ(ar ))λr)
= (χ(a1), . . . , χ(ar ))ω�.

Hence, the entire functions F,G agree on �. The function F − G is an entire
function C∞ → K

n×n which vanishes over�. Hence,

H(Z) = F(Z)−G(Z)
exp�(Z)

defines an entire function over C∞. Now, it is easy to see that

lim|Z|→∞‖H(Z)‖ = 0.

Since the valuation group of K is dense in R
×, the appropriate generalisation of

Liouville’s theorem [Pel16b, Proposition 8] for entire functions holds in our settings
and H = 0 identically. ��
Remark 4.8.7 More generally, we can study A-module maps

�
χ−→ K

n×n

with bounded image (theA-module structure on K
n×n being induced by an injective

algebra homomorphismA ↪→ Fq(t) ↪→ K
n×n) and Perkins’ series

ψ�(n;χ) :=
∑

λ∈�

χ(λ)

(Z − λ)n .

Lemma 4.8.6 delivers an identity for ψ� in terms of certain analytic functions
of the variable Z which are explicitly computable in terms of exp�. To see this,
observe that the K-algebra of analytic functions D(0, r) → K is stable by the
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K-linear divided higher derivatives DZ,n defined by DZ,n(Zm) =
(

m
n

)

Zm−n. In
particular, DZ,n(ψ�) is well defined for any n > 0. We write f (k) for τ k(f ),
f ∈ K or for f more generally a K

r×s-valued map for arbitrary integers r, s. If
f = ∑i≥0 fiZ

i is an analytic function over a disk D(0, r) in the variable Z, then

f (k) =∑i≥0 τ (fi)Z
qki is again analytic if k ≥ 0. Observe that in particular,

ψ�(Z)
(k) = Dqk−1(ψ�(Z)), k ≥ 0.

Lemma 4.8.6 implies

ψ�(Z)ω� = H(Z) := exp�(Z)
−1 exp�((θIn − χ(θ))−1Z),

and we note that on the right we have an analytic function D(0, r) → K
n×n for

some r ∈ |C×∞|. Applying Dqk−1 on both sides of this identity and observing that
ω� does not depend on Z, we deduce:

ψ�(Z)
(k)ω� = Dqk−1(H)(Z), k ≥ 0.

Now, since the functionψ�(Z)(k) is in fact an analytic function of the variable Zq
k
,

this is also true for the function Dqk−1(H)(Z) so that

Hk(Z) = (Dqk−1(H)(Z))(−k), k ≥ 0

are all analytic functions D(0, r) → K
n×n (note that H0 = H). We introduce the

matrices

�� = (ω�,ω(−1)
� , . . . , ω

(1−r)
� ) ∈ K

rn×rn, H�(Z) = (H0, . . . ,Hr−1),

where the latter is an n× rn-matrix of analytic functionsD(0, r)→ K. Then,

ψ�(Z)�� =H�(Z).

But a simple variant of the Wronskian lemma (see [Pel08, §4.2.3]) implies that ��
is invertible. We have reached:

Theorem 4.8.8 The identity ψ�(Z) = H�(Z)�
−1
� holds, for functions locally

analytic at Z = 0.

The identity of the previous theorem connects the ‘twisted logarithmic derivative’
ψ�(Z) to the inverse Frobenius twists of the divided higher derivatives of the
mysterious function H, which are certainly not always easy to compute, unless
r = 1, where there is no higher derivative to compute at all. If we set, additionally,
χ = χt where χt(a) = a(t) so that n = 1, then we reach a known identity, which
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was first discovered by R. Perkins in [54] (that we copy below adapting it to our
notations):

expA(Z)ω(t)
∑

a∈A

a(t)

Z − a = expA

(

Z

θ − t
)

,

with ω Anderson-Thakur’s function and expA(Z) = Z
∏′

a∈A(1 −
Z
a
). This

formula is expressed in [Pel16b, Theorem 1] in a slightly different manner by
using Papanikolas’ deformation of the Carlitz logarithm. Note that these references
also contain other types of generalisation. The above formula can be viewed as an
analogue of [Kat91, Lemma 1.3.21] (the analogy can be pursued further). We owe
this remark to Lance Gurney that we thankfully acknowledge.

Problem 4.8.9 This should be considered as a starting point for an extension of
Kato’s arguments related to the connection between the zeta-values phenomenology
and Iwasawa’s theory appearing in [Kat91]. One may ask how far a parallel with
Kato’s viewpoint can go.

4.9 Modular Forms with Values in Banach Algebras

In this section, more technical than the previous ones, we suppose thatB is a Banach
C∞-algebra with norm ‖·‖ such that ‖B‖ = |C∞| and we suppose that it is endowed
with a countable orthonormal basis B = (bi)i∈I . The example on which we are
focusing here is that of B = K, the completion of the field Ĉ∞(t) for the Gauss
valuation ‖ · ‖. Any basis of Fac

q (t) as a vector space over Fac
q is easily seen to be

an orthonormal basis of K. We recall that we have considered, in Sect. 4.8, a notion
of B-valued analytic function. The main purpose of this section is to show, through
some examples, that if N > 1, there is a generalisation

�→ K
N×1

of Drinfeld modular form which cannot by studied by using just ’scalar’ Drinfeld
modular forms.

We consider a representation

ρ : �→ GLN(Fq(t)) ⊂ GLN(K).

Definition 4.9.1 Let f : � → K
N×1 be an analytic function. We say that f is

modular-like (for ρ) of weight w ∈ Z if for all γ ∈ GL2(A),

f (γ (z)) = Jγ (z)wρ(γ )f (z), γ ∈ GL2(A).
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We say that a modular-like function of weight w is:

(1) weakly modular (of weight w) if there exists L ∈ Z such that the map z 
→
‖ expA(z)

Lf (z)‖ is bounded over�M for someM > 1,
(2) a modular form if the map z 
→ ‖f (z)‖ is bounded over�M for someM > 1.
(3) a cusp form if it is a modular form and maxz∈�M ‖f (z)‖ → 0 asM →∞.

We denote by M !
w(ρ),Mw(ρ), Sw(ρ) the K-vector spaces of weak modular,

modular, and cusp forms of weight w for ρ. Note that these notations are loose, in
the sense that these vector spaces strongly depend of the choice of K (in particular,
of the variables t = (ti)).

We now describe a very classical example withN = 1 andB = C∞ (no variables
t at all). If ρ : � → C

×∞ is a representation, there exists m ∈ Z/(q − 1)Z unique,
such that ρ(γ ) = det(γ )−m for all γ . We write

ρ = det−m

(note that this is well defined). Gekeler constructed a cusp form h ∈ Sq+1(det−1) \
{0}; see [Gek88, (5.9)]. The first few terms of its u-expansion in C∞ can be
computed explicitly by various methods (including the explicit formulas (4.16) and
(4.17) below):

h(z) = −u(1+ u(q−1)2 + · · · ). (4.15)

We deduce that hq−1�−1 is a Drinfeld modular form of weight zero which is
constant by Theorem 4.7.8. The factor of proportionality is easily seen to be −1:
� = −hq−1.

The computation in (4.15) can be pushed to coefficients of higher powers of the
uniformiser u by using two formulas that we describe here. The first formula is due
to López [Lop10]. We have the convergent series expansion (in both K[[u]] for the
u-adic metric and in D(0, r) for some r ∈ |C∞|∩]0, 1[ for the norm of the uniform
convergence)

h = −
∑

a∈A
monic

aqua ∈ A[[u]]. (4.16)

The second formula is due to Gekeler [Gek85] and is an analogue of Jacobi’s
product formula

� = q
∏

n≥0

(1− qn)24 ∈ qZ[[q]]
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for the classical complex-valued normalised discriminant cusp form � (we have
an unfortunate and unavoidable conflict of notation here!). Gekeler’s formula is the
following u-convergent product expansion:

h = −u
∏

a∈A
monic

(

u|a|Ca
(

1

u

))q2−1

∈ A[[u]], (4.17)

with Ca the multiplication by a for the Carlitz module structure. Note that
(u|a|Ca( 1

u
))q

2−1 ∈ 1+K[[u]] and the u-valuation of

(

u|a|Ca(u−1)
)q2−1 − 1

goes to infinity as a runs in A \ {0}. One deduces, from Gekeler’s result [Gek88,
Theorem (5.13)], that Mw(det−m) = hmMw−m0(q+1) if m0 = m ∩ {0, . . . , q − 2}
(m is a class modulo q − 1).

4.9.1 Weak Modular Forms of Weight −1

We analyse another class of representations, this time in higher dimension and we
construct a new kind of modular form associated to it. Let

A
χ−→ Fq(t)

n×n

be an injective Fq -algebra morphism. Then, the map

ρχ : �→ GL2n(Fq(t)) ⊂ GL2n(K)

defined by

ρχ

(

a b

c d

)

=
(

χ(a) χ(b)

χ(c) χ(d)

)

is a representation of �. We denote by ρ∗χ the contragredient representation

ρ∗χ = t ρ−1
χ .

We shall study the case ρ = ρχ or ρ∗χ . We also set N = 2n.
We construct weak modular forms of weight−1 associated to the representations

ρχ ; the main result is Theorem 4.9.3 where we show that a certain matrix function
defined in (4.19) has its columns which are weak modular forms of weight −1. We
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think that this construction is interesting because there seems to be no analogue of
it in the settings of complex-vector-valued modular forms for SL2(Z).

Before going on, we need the next lemma, where we give a uniform bound for
the valuations of the coefficients of the u-expansions

∑

m≥0 ci,mu
m of the modular

forms αi appearing in (4.13).

Lemma 4.9.2 There exists a constant C > 0 such that for all i,m ≥ 0,

|ci,m| ≤ q−iqi |π̃ |qi−1Cm.

Proof This is [Pel14, Lemma 2.1]. Although the statement presented in this
reference is correct, there is a typographical problem in (2.17) so that, to avoid
confusion, we give full details here. We set without loss of generality |θ | = q . We
recall ([Pel14, (2.14)]) that

αi = 1

θq
i − θ (g̃α

q
i−1 + ˜�αq

2

i−2), i > 0,

with the initial values α0 = 1 and α−1 = 0. Now, writing additionally the u-
expansions:

g̃ =
∑

i≥0

γ̃iu
i , ˜� =

∑

i≥0

˜δiu
i,

we find (as in ibid.)

ci,m = 1

θq
i − θ

⎛

⎝

∑

j+qk=m
γ̃j c

q
i−1,k +

∑

j ′+q2k′=m
˜δj ′c

q2

i−2,k′

⎞

⎠ , i > 0, m ≥ 0

with the initial values ci,0 = π̃q
i−1

di
and c−1,m = 0. Clearly, we can choose C > 0

such that |˜δj | ≤ Cj and |γ̃j | ≤ Cj |π̃q−1| for all j ≥ 0, and additionally, we
can suppose that the inequality of the Lemma is true for |ci,m| with i = 0, 1. We
now prove the inequality by induction over i. Indeed, note that if j + qk = m,
then, by induction hypothesis, |γ̃j cqi−1,k| ≤ Cjq−(i−1)qi−1qCkq |π̃ |qi−q |π̃ |q−1 ≤
Cmq−(i−1)qi |π̃ |qi−1 and similarly, if j + q2k = m, then we have |˜δj cq

2

i−2,k| ≤
Cmq−(i−2)qi |π̃ |qi−2−1, and the inequality follows. ��

We write ϑ = χ(θ). If we set

W = (θIn − ϑ)−1 ∈ GLn(K),
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we have that for all a ∈ A:

(χ(a)− aIn)W ∈ Fq(t�)[θ ]n×n. (4.18)

Now, we consider, for χ and W as in (4.18), the matrix function Q(z) = (zW
W

)

,
which is a holomorphic function � → K

N×n. We observe that if γ = ( a bc d ) ∈ �,
then

Q(γ (z)) = Jγ (z)−1
(

(az+ b)W
(cz+ d)W

)

≡ Jγ (z)−1ρχ (γ )Q(z) (mod �N×nz ).

Hence, if we set

F(z) := E(z,Q(z)), (4.19)

then, by the fact that �z ⊗ Fq(t) is contained in the kernel of exp�z ,

F(γ (z)) = Jγ (z)−1
E(z, Jγ (z)Jγ (z)

−1ρχ (γ )Q(z)) = Jγ (z)−1ρχ (γ )F(z), ∀γ ∈ �.

This means that the function F : �→ K
N×n is modular-like of weight −1 for ρχ .

We are going to describe this function F in more detail.

Theorem 4.9.3 We have F ∈ M !−1(ρχ )
1×n.

Proof We set eC(z) = expC(π̃z) so that u(z) = 1
eC(z)

. Lemma 4.8.2 implies:

τ (eC(W)) = (ϑ − θIn)eC(W), τ (eC(zW)) = (ϑ − θIn)eC(zW)+ eC(z).

The subset W ⊂ R>0 of the r ∈ |C∞| such that the elements |d−1
i r

qi | are all
distinct for i ≥ 0 is dense in R>0. Let z ∈ C∞ be such that r = |π̃z| ∈W . Then:

|eC(z)| = max
i
{q−iqi |π̃ |qi |z|qi }.

We write F = (F1F2

)

with Fi : �→ K
n×n. We first look at the matrix function

F1 = exp�(zW) =
∑

i≥0

αi(z)z
qi τ i(W).

We suppose that |u(z)| < 1
B

with B as in Lemma 4.9.2. Then

F1 =
∑

i≥0

zq
i

τ i(W)
∑

j≥0

ci,j u
j
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so that if ‖zWπ̃‖ = r ∈W with |u| < 1
B

, then

‖F1‖ = max
i,j
{|z|qi q−iqi |π̃ |qi−1(C|u|

︸︷︷︸

<1

)j }

= ‖ expC(π̃zW)‖
= ‖eC(z/θ)‖,

and F1
eC(z/θ)

− π̃−1In is bounded as |z|� is bounded from below.
We now look at the matrix function F2 = e�(W). Since F2 =
∑

i≥0 αi(z)τ
i(W), for |u| < 1

B
we get in a similar way that F2 − π̃−1eC(W)

goes to zero as |z|� → ∞. Hence, the n columns of the matrix function F, which
are modular-like of weight −1 are weak modular forms ofM !

−1(ρχ). ��
We set

F = (F, τ (F)) =
(

F1 τ (F1)

F2 τ (F2)

)

.

Then, F is an analytic function � → K
N×N and the first n columns are weak

modular forms of weight −1, while the last n columns are weak modular forms of
weight −q (for the representation ρχ ).

Lemma 4.9.4 We have the difference equation τ (F) = F where

 =
(

0 ˜�−1(χ(θ)− θIn)
1 −˜�−1g̃In

)

.

Proof For any choice of n,m > 0, we extend the function E(z, Z) of Lemma 4.7.5
to

�×K
n×m E−→ K

n×m

by setting E(z, Z) = ∑i≥0 αi(z)τ
i(Z) (so τ acts diagonally). Lemma 4.7.5 holds

in this generalised setting, where the Drinfeld modules φ� now acts on K
n×m (case

of � = �z). The present statement follows from (1) of Lemma 4.7.5 with a = θ
in a manner which is sensibly similar to that of [Pel14, Theorem 1.3]. Indeed, note
that, with φ�(θ) = θ + g̃τ + ˜�τ 2, we have φ�(θ)(F)− χ(θ)F = 0. ��
Lemma 4.9.5 We have that supz∈�M ‖F− XYZ‖ → 0 asM →∞, where

X =
(

In 0
0 eC(W)

)

, Y =
(

eC(zW) τ(eC(zW))

In ϑ − θIn
)

, Z =
(

π̃−1In 0
0 π̃−qIn

)

.
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Proof We observe (recall that ϑ = χ(θ)):

XYZ =
(

π̃−1eC(zW) π̃
−q((ϑ − θIn)eC(zW)+ e0In)

π̃−1eC(W) π̃−q (ϑ − θIn)eC(W)
)

.

Since the second block column of F is the image by τ of the first block column, all

we need to show is that supz∈�M ‖F−
(π̃−1eC(zW)

π̃−1eC(W)

)‖ → 0 asM →∞. We note that

F1 = e�(zW) = π̃−1eC(zW)+
∑

i≥0

zq
i

τ i (W)
∑

j>0

ci,j u
j

︸ ︷︷ ︸

=:ϒ

.

We show that ‖ϒ‖ tends to zero when |z|� → ∞. We suppose that |z|� is large so
that |u|C < 1. then, the double series defining ϒ is convergent and we can write

ϒ =
∑

j>0

∑

i≥0

ujci,j z
qi τ i(W).

The general term of this series, ϒi,j := uj ci,j zqi τ i(W), has absolute value which
satisfies:

‖ϒi,j ‖ ≤ q−iqi |π̃ |qi−1(|u|C)j |z|qi‖W‖qi

≤ |u|Cmax
i
{|z|qi‖W‖qi |π̃ |qi−1}

≤ |π̃ |−1C

∣

∣

∣

∣

eC(z/θ)

eC(z)

∣

∣

∣

∣

and tends to zero as |z|� → ∞. In a similar way, one proves that ‖F2− π̃−1eC(W)‖
tends to zero in the same way, we leave the details to the reader. ��
Lemma 4.9.6 We have ‖ det(F) − (−1)neC(z)nπ̃−n(q+1) det(eC(W))‖ → 0 as
|z|� → ∞, and det(eC(W)) is non-zero.

Proof The formula follows directly from the expression for XYZ . The non-
vanishing of det(eC(W)) is easy to show. ��

This result implies that the columns of F are linearly independent. More-
over, it is plain that supz∈�M ‖ det(F−1) − (−1)nunπ̃ (q+1)n det(eC(W))−1‖ →
0 as M → ∞. Since at once the scalar function F = det(F−1) satisfies
F(γ (z)) = Jγ (z)

n(q+1) det(γ )−nF (z) for all z ∈ � and γ ∈ �, we get F ∈
Mn(q+1)(det−n)⊗C∞ K. Now, Fh−n is a modular form of weight 0, therefore equal
to an element of K×. We obtain:
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Corollary 4.9.7 We have det(F−1) = (−1)nπ̃−(q+1)nhn det(eC(W))−1 and, writ-
ing H := tF−1 = (H1,H2) with Hi : � → K

n×n, we have that the n columns of
H1 are linearly independent modular forms of weight 1 and the n columns of H2 are
linearly independent modular forms of weight q for the representation ρ∗χ .

What can be further proved is, by setting

M(ρ∗χ ) =
⊕

w

Mw(ρ
∗
χ )

the weight-graded (M ⊗C∞ K)-module of modular forms for ρ∗χ , where M =
⊕

w Mw(1) is the C∞-algebra of scalar modular forms (1 is the trivial represen-
tation):

Theorem 4.9.8 M(ρ∗χ) = (M ⊗C∞ K)1×NH.

We will not give the details of the deduction of the proof of this theorem from
Corollary 4.9.7, since it rests on an easy generalisation and modification of [Pel18,
Theorem 3.9]. Instead of this, we insist on the result of Gekeler [Gek88, Theorem
(5.13)], which implies that

Mw(det−m) = Mw−m(q+1)h
m, m ≤ q − 1

with h the Poincaré series of weight q + 1 and ’type 1’ defined in ibid. (5.11) (with
u-expansion (4.15)) so that, withM(det−m) = ⊕wMw(det−m),

M(det−m) = Mhm.

In view of this, we can think about H (up to normalisation) as to a matrix-valued
generalisation of the Poincaré series h.

4.9.2 Jacobi-Like Forms

We consider the series

#(z,Z) := ψ�z(Z) =
∑

a,b∈A

1

Z − az− b (χ(a), χ(b)),

converging for Z ∈ C∞ \ � where � = �z = Az + A, z ∈ �. We have the
following functional identities

#

(

γ (z),
Z

Jγ (z)

)

= Jγ (z)#(z,Z)ρ(γ )−1, γ ∈ �,
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together with the identities arising from (4.14). Proposition 4.8.3 implies that, for
Z ∈ D(0, r) for some r ∈ |C∞|∩]0, 1[,

t#(z, Z) = −
∑

j>0
j≡1(q−1)

Zj−1E(j ;χ)

where E(j ;χ) is the Eisenstein series (non-vanishing if j ≡ 1 (mod q − 1))

E(j ;χ) :=
∑′

a,b∈A

1

(az+ b)j
(

χ(a)

χ(b)

)

,

which satisfies

E(j ;χ)(γ (z)) = Jγ (z)jρ∗χ (γ )E(j ;χ), γ ∈ �, z ∈ �.

Since it is also apparent that ‖E(j ;χ)(z)‖ is bounded on�M forM > 1 and j > 0,
we deduce that the n columns of E(j ;χ) are modular forms of weight j for ρ∗χ in the
sense of Definition 4.9.1 (see [Pel18, §3.2.1] for a special case). By Theorem 4.8.8
we obtain

#(z,Z) = [H(Z),Dq−1(H)(Z)(−1)]��(z)−1 (4.20)

which allows to explicitly compute the Eisenstein series E(j ;χ) in terms of the
function H(Z). To make this interesting relation a little bit more transparent, we
give below an explicit expression of the matrix ��(z)

−1. We have:

��(z)
−1 =
(

0 1
1 0

)

τ−1( )F−1 =
⎛

⎝

1 −
(

g̃
˜�

) 1
q

0 (χ(θ)− θ 1
q )˜�

− 1
q

⎞

⎠F−1, (4.21)

with  the matrix defined in Lemma 4.9.4. To see this, observe that in the notation
of Theorem 4.8.8,

��(z) = (F, τ−1(F)) = τ−1(F)

(

0 1
1 0

)

,

with � = �z as above. By Lemma 4.9.4, τ (F) = F , so that τ−1(F) =
F(τ−1( ))−1 which yields

�� = τ−1(F)

(

0 1
1 0

)

= F

(

0 1
1 0

)(

0 1
1 0

)

(τ−1( ))−1
(

0 1
1 0

)

,

which implies (4.21) by the (licit) inversion of the two sides.
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Substituting in (4.20) and transposing, we get:

−
∑

j≥1
j≡1(q−1)

E(j;χ)Zj−1 = H

⎛

⎝

1 0

−
(

g̃
˜�

) 1
q
˜�
− 1
q (tχ(θ)− θ 1

q )

⎞

⎠

(

tH(Z)
Dq−1(

tH)(Z)(−1)

)

.

For example, the Eisenstein series of weight one E(1;χ) arises as the coefficient of
Z0 in the left-hand side and the above yields an explicit formula for it. Note that the
constant term of the Z-expansion of t [H(Z),Dq−1(H)(Z)(−1)] is

t [(θIn − χ(θ))−1, α1(z)
1
q ((θIn − χ(θ))−1 − (θ 1

q In − χ(θ))−1)].

The formula that we get is this one:

−E1(1;χ) = H

⎛

⎝

1 0

−
(

g̃
˜�

) 1
q
˜�
− 1
q (t χ(θ)− θ 1

q )

⎞

⎠

(

t (θIn − χ(θ))−1

α1(z)
1
q t ((θIn − χ(θ))−1 − (θ 1

q In − χ(θ))−1)

)

,

and what looks as a miracle at first sight is that it greatly simplifies, by using the
explicit computation of α1 which arises from [Pel14, (2.14)], and which is α1 =
g̃

θq−θ , we reach the following:

Theorem 4.9.9 The following identity holds

E1(1;χ) = −H
(t (θIn − χ(θ))−1

0n

)

,

involvingN × n matrices whose columns are modular forms of weight 1.

In fact, this is not a miracle; it is just due to the fact that the left-hand side must be
bounded at the infinity; this is only possible if the second matrix entry of the column
above is identically zero, because it is anyway a multiple by a constant matrix of the
weak modular form g̃/˜� (this somewhat forces α1 to be equal to the above multiple
of g̃, giving this artificial impression of miraculous simplification). It is easy from
here to deduce [Pel12, Theorem 8] in the special case of N = 2, n = 1 and χ = χt .
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