
Chapter 3
Igusa’s Conjecture on Exponential Sums
Modulo pm and the Local-Global
Principle

Kien Huu Nguyen

Abstract In this survey we discuss the conjecture of Igusa on exponential sums
modulo pm and some progress of this conjecture. We also present a connection
between this conjecture and the local-global principle for forms of higher degree.

3.1 Introduction

Exponential sums play an important role in number theory with many deep applica-
tions. One of which is the use of the quadratic Gauss sums in Gauss’s proof of the
law of quadratic reciprocity that is the first example of reciprocity laws (see [Ire90,
Chapters 5 and 6]). Exponential sums modulo p have a deep connection with the
Riemann hypothesis over finite fields by the works of Weil, Deligne, Katz, Laumon
among others (see for example [Del77, Del74, Del80, Kat85, Kat99, Kat89, Wei48]).

This survey aims to introduce Igusa’s conjecture on exponential sums modulo
pm. We report the progress made towards its resolution and its connection with the
local-global principle for forms which was indeed one of the initial goals of Igusa.

We begin with one important class of exponential sums depending on a non-
constant polynomial f in n variables with integer coefficients. Let N be a positive
integer. We define the exponential sum modulo N associated to f by

EN(f ) := 1

Nn

∑

x∈(Z/NZ)n

exp(
2πif (x)

N
). (3.1)
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Our goal is to look for good upper bounds of these sums. The Chinese remainder
theorem allows us to simplify slightly the previous problem. In fact, we can express

1

N
=

k∑

i=1

ai

p
mi

i

where p1, . . . , pk are distinct primes, a1, . . . , ak and m1, . . . ,mk are integers such
that (ai, pi) = 1 and mi ≥ 1 for all 1 ≤ i ≤ k. It follows that

EN(f ) =
k∏

i=1

E
p

mi
i

(aif ). (3.2)

Thus it is sufficient to find good estimates of the exponential sums

Ep,m(f ) := Epm(f ) = 1

pmn

∑

x∈(Z/pmZ)n

exp(
2πif (x)

pm
)

for all primes p and all m ≥ 1.

Example 3.1.1 We consider the simplest example where f (x) = x. We see easily
that for N > 1, we have

EN(f ) = 0.

Example 3.1.2 We now consider a more complicated polynomial by taking f (x) =
x2. Let p be a prime and m be a positive integer. We write m = 2k + r where k ≥ 1
and r ∈ {0, 1}. We calculate directly Epm(f ) by distinguishing two cases.
Case 1: p is an odd prime. We see that if (a, p) = 1 and 0 ≤ α ≤ k − 1, then

pα+1∑

b=1

exp(
2πi(pαa + pm−1−αb)2

pm
) = 0.

Thus we get

Ep2k (f ) = 1

p2k

pk∑

a=1

exp(
2πi(pka)2

p2k
) = 1

pk
.

We also have

Ep2k+1(f ) = 1

p2k+1

pk+1∑

a=1

exp(
2πi(pka)2

p2k+1 ) = 1

pk+1

p∑

a=1

exp(
2πia2

p
).
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Thus

|Ep2k+1(f )| = 1

pk+ 1
2

.

Here the above equality is a consequence of the following fact about quadratic Gauss
sums (see for example [Ire90, Chapter 6])

(

p∑

a=1

exp(
2πia2

p
))2 = p.

Case 2: p = 2. It is still true that if (a, 2) = 1 and 0 ≤ α ≤ k − 2, then

2α+2∑

b=1

exp(
2πi(2αa + 2m−2−αb)2

2m
) = 0.

Thus

E22k (f ) = 1

22k

2k+1∑

a=1

exp(
2πi(2k−1a)2

22k
) = 1

2k+1

4∑

a=1

exp(
2πia2

4
) = 1 + i

2k
.

Further, we have

E22k+1(f ) = 1

22k+1

2k+2∑

a=1

exp(
2πi(2k−1a)2

22k+1 ) = 1

2k+2

8∑

a=1

exp(
2πia2

8
) = 1 + i

2
2k+1

2

.

By the same calculation, for all primes p, all positive integers m and all non-zero
integers A such that (A, p) = 1, we have

|Epm(Ax2)| ≤ cp p− m
2 ,

where

cp =
{

1 if p �= 2,√
2 otherwise.

(3.3)

Hence by (3.2) we conclude that for all non-zero integers N ,

|EN(f )| ≤ √
2N− 1

2 .

The equality holds if N > 1 is a square number.
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In the case where f is a polynomial in one variable, exponential sums modulo
pm have been studied by many mathematicians and we refer the reader to [Coc99]
for more details.

For polynomials f in n variables, Igusa showed that for each prime p, there exist
a constant σp ≤ +∞ and a positive constant cp such that for all σ < σp and all
m ≥ 1, we have

|Epm(f )| ≤ cp p−mσ . (3.4)

Furthermore, either σp = +∞ or −σp is the real part of a pole of the Igusa local
zeta function associated to f . Thus we would like to know how to obtain a global
information from the local information for each prime p, i.e. the dependence of cp

and σp in p.

Example 3.1.3 In Example 3.1.1, for each prime p we can take σp = +∞ and an
arbitrary positive constant cp > 0.

In Example 3.1.2 we can take σp = 1
2 for all primes p and

cp =
{

1 if p �= 2,√
2 otherwise.

(3.5)

In order to prove (3.4), Igusa found a way to understand exponential sums
via singularity theory. In fact, exponential sums Epm(f ) modulo pm can be
computed by certain Igusa local zeta functions (see Sect. 3.2 for more details). As
a consequence, the asymptotic expansion of Epm(f ) for m > 1 could be given in
terms of poles of these Igusa local zeta functions.

We now give more details about the above discussion. First we recall some basic
facts about p-adic fields and then express exponential sums modulo pm as p-adic
integrals. Letting p be a prime, we define the p-adic norm |.|p on the field of rational
numbers Q as follows. We set |0|p := 0 and for all integers a, b, k with (a, p) =
(b, p) = 1,

|a
b
pk|p := p−k

We denote by Qp the completion of Q with respect to this norm and by Zp the
closure of Z in Qp. Then Qp is a locally compact field equipped with the norm |.|p
which extends |.|p over Q. Further, Zp is a closed and open subring of Qp and

Zp = {x ∈ Qp | |x|p ≤ 1}.

It is a discrete valuation ring with the unique maximal ideal

Mp = pZp = {x ∈ Qp||x|p < 1}.
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Let x be an element of Qp. We can write

x =
∑

i≥k

aip
i

for some integers k and ai with 0 ≤ ai ≤ p − 1. If x = 0, then we set ordp(x) :=
+∞. Otherwise, we can suppose that ak �= 0 and set ordp(x) := k. Then it is clear
that

|x|p = p− ordp(x).

Here we take the convention that p−∞ = 0. We note that x ∈ Zp if and only if
ordp(x) ≥ 0 and x ∈ Mp if and only if ordp(x) > 0.

The standard additive character of Qp is the homomorphism of abelian groups

ψ1 := exp : (Qp,+) → (C∗,×)

which sends x to exp(2πix ′) with x ′ ∈ Z[ 1
p
] ∩ (x + Zp). It is well-defined since

the value exp(2πix ′) does not depend on the choice of x ′ ∈ Z[ 1
p
] ∩ (x + Zp).

An additive character ψ of Qp is defined to be a continuous homomorphism from
(Qp,+) to (C∗,×) with compact image. For such an additive character ψ there
exists a unique z ∈ Qp such that

ψz(x) := ψ1(xz) = ψ(x).

Since Qp is locally compact, we can endow Qn
p with the Haar measure |dx|

normalized such that Zn
p has volume 1. It follows immediately that

Epm(f ) =
∫

Zn
p

ψp−m(f (x))|dx|.

This suggests that to any additive character ψ of Qp we can associate an exponential
sum by

Eψ(f ) :=
∫

Zn
p

ψ(f (x))|dx|.

This integral is an example of Igusa local zeta functions.
More generally, letting L be a non-Archimedean local field which is a finite

extension of either the p-adic field Qp or the field of Laurent series Fq((t)) with
coefficients in a finite field Fq , we can associate an exponential sum Eψ(f ) to any
polynomial f ∈ L[x1, . . . , xn] and any additive character ψ of L.

As mentioned earlier, the asymptotic expansion of Epm(f ) for m > 1 could be
given in terms of poles of the associated Igusa local zeta function. To determine
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the poles of Igusa local zeta functions, Igusa formulated the so-called strong
monodromy conjecture which relates these poles to eigenvalues of monodromy
and roots of Bernstein-Sato polynomials (see Sect. 3.2.3). As a consequence, if the
strong monodromy conjecture holds for f , then the size of Epm(f ) can be bounded
in terms of the biggest non-trivial root of the Bernstein-Sato polynomial bf of f .

We now state a coarse form of Igusa’s conjecture for a uniform bound of
exponential sums modulo pm when p and m go to infinity.

Conjecture 3.1.4 Let f be a non-constant polynomial in n variables with coeffi-
cients in Z and σ be a positive real number. Suppose that for all primes p large
enough, there exists a constant cp > 0 such that we have

|Epm(f )| ≤ cp p−mσ

for all m ≥ 2. Then there exists a constant C > 0 such that

|Epm(f )| ≤ C p−mσ

for all primes p large enough and all m ≥ 2.

Remark 3.1.5 We rediscover the original conjecture of Igusa for homogeneous
polynomials f . We refer the reader to Sect. 3.4.2 for a discussion about this
conjecture as well as a variant of this conjecture due to Cluckers [Clu08a] and
Cluckers and Veys [Clu16].

Remark 3.1.6 The condition m ≥ 2 in Conjecture 3.1.4 can be replaced by a weaker
condition m ≥ 1 in many cases (see Example 3.1.2). However, in general, we have
to treat separately the case m = 1 as explained below.

Let us consider the polynomial f = x1 − x2
1x2. We show that Epm(f ) = 0 for

all primes p and all m > 1 (see Remark 3.3.3 for more details). But for all primes
p we have

Ep(f ) = 1

p2 (
∑

x1 �=0 mod p

∑

x2∈Z/pZ

exp(
2πi(x1 − x2

1x2)

p
) +

∑

x2∈Z/pZ

1) = 1

p
.

Let σ > 1 then

|Epm(f )| ≤ pσ−1p−mσ

for all primes p and all m ≥ 1 but we cannot find a constant C such that

|Epm(f )| ≤ C p−mσ

for all primes p large enough and all m ≥ 1.
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Remark 3.1.7 We keep the notation of Conjecture 3.1.4. Suppose that there exist a
positive integer M and a constant C ≤ 1 such that

|Epm(af )| ≤ C p−mσ

for all primes p > M , all integers a with (a, p) = 1 and all m ≥ 1. Moreover, for
each prime p ≤ M there exists a constant cp such that

|Epm(af )| ≤ cp p−mσ

for all integers a with (a, p) = 1 and all m ≥ 1. Thus (3.2) implies immediately

|EN(f )| ≤ C′N−σ

for some constant C′ > 0 and all N ≥ 1.

Remark 3.1.8 The statement of Conjecture 3.1.4 extends without difficulty to an
arbitrary global field K (i.e a finite extension of Q or a function field of an algebraic
curve over a finite field) and a non-constant polynomial f ∈ OK [x1, . . . , xn] where
OK is the ring of integers of K .

In fact, for any finite place v of K , we denote by Kv the completion of K at
v equipped with the norm |.| : Kv → R and by Ov the ring of integers of Kv .
Let πv be a uniformizer of Ov . We fix an additive character ψ1 of Kv such that
ψ1|Ov

= 1 but ψ1|π−1
v Ov �= 1 (see Sects. 3.2 and 3.3 for more details). Let σ be a

positive real number such that for all but finitely many finite places v of K and all
z ∈ Kv \ π−1

v Ov , we have

|Eψz(f )| = |
∫

On
v

ψ1(zf (x))|dx|| ≤ cv|z|−σ .

Then we can ask whether there exists a constant C such that cv ≤ C for all but
finitely many finite places v.

In Sect. 3.4 we give an overview of progress on this conjecture due to many
mathematicians. We begin with the work of Igusa in the non-degenerate case and
end with the most recent result of Cluckers, Mustaţă and the author in case of non-
rational singularities.

We should mention that Igusa’s work [Igu78] around exponential sums modulo
pm was motivated by his ultimate hope to extend the local-global principle to forms
of higher degree (i.e. homogeneous polynomials of degree at least 3). Recall that
for a form f ∈ Z[x1, . . . , xn] of degree d , we say that the local-global principle
holds for f if the following assertion is true: f represents zero in Q if and only
if it represents zero in R and in all fields Qp. The Hasse-Minkowski theorem
states that the local-global principle holds for quadratic forms. The idea of Igusa
to generalize the Hasse-Minkowski theorem to forms of higher degree is divided
into two steps. First, a good uniform bound of exponential sums modulo pm in p
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and m together with some extra conditions would imply the existence of a certain
Poisson formula (see Sect. 3.3.2 and Proposition 3.3.7). Second, one derives the
local-global principle from this Poisson formula (see Sect. 3.5).

The above discussion illustrates one of the common approaches of this volume
which is to apply analytic techniques in the study of arithmetic geometry. The reader
is strongly encouraged to read other chapters for “further examples” in different
settings, in particular, the lecture of Poineau and Turchetti [Poi20a, Poi20b] and to
discover possible connections among them.

We close this section by saying some words about function fields. In this lecture
we only consider Conjecture 3.1.4 for number fields K but it is natural to ask
whether one could extend the results in Sects. 3.2, 3.3 and 3.4 to the case where
K is a function field which means the function field of an algebraic curve over a
finite field Fq . The answer is yes for non-constant polynomials f ∈ K[x1, . . . , xn]
such that for all critical values a of f , f −1(a) admits an embedded resolution with
good reduction at all but finitely many places v of K (see Sect. 3.2 for the definition
of such a resolution). For number fields the existence of an embedded resolution
for all polynomials f is guaranteed by Hironaka’s theorem in [Hir64]. However,
the resolution of singularities in positive characteristic is more complicated and the
existence of such a resolution for general f is still unknown. Hence we hope that
some young mathematicians could attack this challenging question in the future.

3.2 Igusa Local Zeta Functions and Exponential Sums
Modulo pm

In this section we review the notion of Igusa local zeta functions and exponential
sums modulo pm over an arbitrary non-Archimedean local field of characteristic 0.
We refer the reader to the excellent survey of Denef [Den91] and the work of Igusa
[Igu78] for more details.

3.2.1 Local Fields

For the rest of this paper we fix a positive integer n ≥ 1.
In what follows, we consider a non-Archimedean local field L of characteristic

0. It means that L is a finite extension of Qp defined as in Sect. 3.1 for some prime
p. To simplify, we will say that L is a p-adic field and we set pL := p.

We remark that the norm |.|p on Qp extends uniquely to a norm |.|L in L. We
will write |.| instead of |.|L if no confusion results. Let OL be the ring of integers in
L. Then

OL = {x ∈ L | |x| ≤ 1}.
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It is a discrete valuation ring with the maximal ideal ML given by

ML = {x ∈ L | |x| < 1}.

We denote by kL = OL/ML the residue field of L. This field is a finite extension of
Fp and we denote by qL the cardinality of kL. Let � be a uniformizer of L, i.e. �

is a generator of ML. For each non-zero element x ∈ L, we can write in a unique
way x = λ�α where λ ∈ O∗

L and α ∈ Z. We set

ac(x) := λ, ord(x) := α,

and

ac(x) := ac(x) mod ML.

We can extend the maps ac and ord to L by setting ac(0) = 0 and ord(0) = +∞.
We introduce the following three functions which will play an important role

in the sequel. First, the standard additive character of L is the homomorphism
ψ1 : L → C∗ given by

ψ1 := exp(TrL/Qp (x))

where exp(.) is the map given in Sect. 3.1. Any additive character ψ of L can be
written in the form ψ(x) := ψz(x) = ψ(zx) for some element z ∈ L. We put

m(ψ) := − ord(z).

Second, a multiplicative character χ of O∗
L is defined to be a continuous

homomorphism from (O∗
L,×) to (C∗,×) with finite image. For a multiplicative

character χ , let c(χ) be the smallest integer such that χ |
1+Mc(χ)

L

is trivial. It is

called the conductor of χ . We set χ(0) := 0. It is clear that χ induces a character of
O∗

L/(1 +Mc(χ)
L ). In particular, if c(χ) = 1, then χ induces a character of k∗

L which
is still denoted by χ and we extend χ to kL by setting χ(0) = 0.

Third, a Schwartz-Bruhat function 	 : Ln → C is a locally constant function
with compact support, denoted by Supp(	). We say that 	 is residual if Supp(	) ⊂
On

L and if 	(x) only depends on x mod ML. If 	 is residual, then 	 induces a
function 	 : kn

L → C.
As in case of Qn

p, we will endow Ln with a Haar measure |dx| such that the
volume of On

L is 1.
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3.2.2 Embedded Resolutions

Let K be a field of characteristic 0. Let f ∈ K[x1, . . . , xn] be a non-constant
polynomial in n variables. We set

X = An
K = Spec K[x1, . . . , xn],

and

D = f −1(0) = Spec K[x1, . . . , xn]/(f ).

An embedded resolution (Y, h) of D in X is a closed smooth subscheme Y of the
projective space Pm

X over X for some m such that the restriction h to Y of the
projection Pm

X → X has the following properties:

(i) h : Y\h−1(D) → X\D is an isomorphism,
(ii) the reduced scheme (h−1(D))red associated to h−1(D) has simple normal

crossings as a subscheme of Y (i.e. its irreducible components are smooth and
intersect transversally).

Let Ei, i ∈ T , be the irreducible components of (h−1(D))red. For each i ∈ T ,
let Ni be the multiplicity of Ei in the divisor of f ◦ h on Y and let νi − 1 be the
multiplicity of Ei in the divisor of h∗(dx1 ∧ . . . ∧ dxn). The set {(Ni, νi)i∈T } are
called the numerical data of the resolution.

Further, for each subset I ⊂ T , we define

EI := ∩i∈IEi and
◦

EI := EI\ ∪j∈T \I Ej .

In particular, when I = ∅ we have E∅ = Y .
We also denote by Cf ⊂ X be the critical locus of f : X → A1

K .
We remark that such a resolution exists by the seminal work of Hironaka [Hir64,

Main Theorem II]. It can be obtained from a series of blow-ups with smooth centers.

Remark 3.2.1 Let K ′ be a field extension of K . By the functoriality of embedded
resolutions, h induces an embedded resolution h : YK ′ → An

K ′ = XK ′ of
DK ′ in XK ′ . We remark that each blow-up center C of h may be written as a
union of finitely many irreducible components Ci over K ′ and we can replace
the blow-up with center C by the composition of blow-ups with center Ci . If
K ′ is an algebraically closed field, then h induces an embedded resolution which
can be obtained by successive blow-ups at irreducible smooth varieties. Similarly,
each irreducible component Ei can be split into a disjoint union of finitely many
irreducible components Eij over K ′. But we always have Ni = Nij , νi = νij .

In what follows, let K be a number field, OK be its ring of integers and
f ∈ OK [x1, . . . , xn] be a non-constant polynomial in n variables. Let (Y, h) be
an embedded resolution of D in X. If Z is a closed subscheme of Y and p is a prime
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ideal of OK , we denote by Z the reduction modulo p of Z (see [Shi55]). We say
that the embedded resolution (Y, h) of D in X has good reduction modulo p if the
following conditions are satisfied:

(i) Y and Ei are smooth for all i ∈ T ,
(ii) ∪i∈T Ei has simple normal crossings,

(iii) the schemes Ei and Ej have no common components for all i, j ∈ T with
i �= j .

One can show that there exists a finite subset S of SpecOK , such that for all
p /∈ S, we have f ∈ Op[x], f �≡ 0 mod p and that the resolution (Y, h) for f has
good reduction mod p (see [Den87, Theorem 2.4]). Then for p /∈ S and I ⊂ T , one
can show that EI = ∩i∈IEi . We set

◦
EI := EI\ ∪j /∈I Ej .

Letting a be a closed point of Y , we put Ta := {i ∈ T |a ∈ Ei}. In the local ring of
Y at a, we can write

f ◦ h = u
∏

i∈Ta

g
Ni

i ,

where u is a unit, (gi)i∈Ta
is a part of a regular system of parameters and Ni is the

corresponding multiplicity defined as above.

3.2.3 Igusa Local Zeta Functions and the Monodromy
Conjecture

Recall that L is a p-adic field. Let f ∈ L[x1, . . . , xn] be a non-constant polynomial
in n variables with coefficients in L. Let χ be a multiplicative character of O∗

L and
	 be a Schwartz-Bruhat function on Ln. Following Weil we associate to the data
(L, f, χ,	) an Igusa local zeta function

ZL,	,f (s, χ) :=
∫

Ln

	(x) χ(ac(f (x)) |f (x)|s |dx|,

for s ∈ C with �(s) > 0. One can see that ZL,	,f (s, χ) is holomorphic in this
region and extends to a meromorphic function on C. The following theorem gives
basic properties of these zeta functions ZL,	,f (s, χ).

Theorem 3.2.2 (Igusa [Igu74] and [Igu78]) We keep the previous notation. Then
we have

(i) ZL,	,f (s, χ) is a rational function of q−s
L .
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(ii) If (Y, h) is an embedded resolution of f −1(0) in An
L with the numerical data

{(Ni, νi)i∈T }, then the poles of ZL,	,f (s, χ) are among the values

s = − νi

Ni

+ 2πik

loge qL

with k ∈ Z and i ∈ T such that χNi = 1.
(iii) If Supp(	)∩Cf ⊂ f −1(0), then ZL,	,f (s, χ) = 0 for all but finitely many χ .

Here recall that Cf ⊂ X denotes the singular locus of f : X → A1
L.

In the case where we have an embedded resolution having good reduction
modulo ML, the above results could be improved as follows.

Theorem 3.2.3 (Denef [Den91] and [Den87]) Suppose that there exists an embed-
ded resolution (Y, h) of f −1(0) having good reduction modulo ML and f �=
0 modML. We suppose further that 	 is a residual Schwartz-Bruhat function on
Ln. Then we have

(i) If the conductor c(χ) of χ is at least 2 and that the numerical data {(Ni, νi)i∈T }
of (Y, h) satisfying Ni /∈ ML for all i ∈ T , then ZL,	,f (s, χ) is constant as a

function of s. Moreover, if Cf ∩ Supp(	) ⊂ f
−1

(0), then ZL,	,f (s, χ) = 0.
(ii) If c(χ) = 1 and χ is of order d , let Td = {I ⊂ T | ∀i ∈ I : d | Ni}. Then

ZL,	,f (s, χ) = q−n
L

∑

I∈Td

cI,	,χ

∏

i∈I

(qL − 1)q
−Nis−νi

L

1 − q
−Nis−νi

L

,

where

cI,	,χ =
∑

a∈
◦
EI (kL)

	(h(a))�χ(a),

and

�χ(a) = χ(u(a))

for any choice of u in the local ring of Y at a as in Sect. 3.2.1.
��

In many known examples, many of the possible poles are false poles of the
zeta function (even if we take the intersection of the sets of possible poles over
all embedded resolutions). The monodromy conjecture suggests an explanation for
this phenomenon.

Now let us recall some notions about monodromy and Bernstein-Sato polynomi-
als.
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Let f ∈ C[x1, . . . , xn] be a non-constant polynomial with coefficients in C and
P be a point in Cn such that f (P ) = a. Let B be a sufficiently small ball with
center P . In [Mil68] Milnor proved that f |B is a locally trivial C∞ fibration over
a small enough punctured disc A ⊂ C \ {a}. Thus the diffeomorphism type of
FP = f −1(t) ∩ B of f around P does not depend on t ∈ A. The counter clockwise
generator of the fundamental group of A induces an automorphism T of H ∗(FP ,C).
We call FP and T the Milnor fiber and the local monodromy of f at P , respectively.

Let K be a field of characteristic 0 and f ∈ K[x1, . . . , xn] be a polynomial.

Bernstein [Ber72] proved that there exist P ∈ K[x,
∂

∂x
, s] and a polynomial b(s) ∈

K[s] \ {0} such that Pf s+1 = b(s)f s . The monic polynomial of smallest degree
satisfying this functional equation is called the Bernstein-Sato polynomial of f ,
denoted by bf . One can show that (s +1) | bf (s) if f is non-constant. Furthermore,
Kashiwara claimed in [Kas76] that all roots of bf are negative rational numbers.
Moreover, Malgrange [Mal83] proved that if α is a root of bf , then exp(2πiα) is an
eigenvalue of the local monodromy of f at some point of f −1(0) and all eigenvalues
are obtained in this way.

Igusa suggested that the poles of the Igusa local zeta function associated to f

should be described by the roots of the associated Bernstern-Sato polynomial or the
eigenvalues of the local monodromy of f .

Conjecture 3.2.4 (Igusa, Monodromy Conjecture) Let K be a number field and
f be a non-constant polynomial in K[x1, . . . , xn]. For all but finitely many primes
p, if s is a pole of ZL,	,f (s, χ) where L is a p-adic field containing K , then
exp(2πi�(s)) is an eigenvalue of the local monodromy of f at some complex point
of f −1(0).

Conjecture 3.2.5 (Strong Monodromy Conjecture) Let K be a number field and
f be a non-constant polynomial in K[x1, . . . , xn]. For all but finitely many primes
p, if s is a pole of ZL,	,f (s, χ) where L is a p-adic field containing K , then �(s)

is a root of bf .

By the above discussion, if α is a root of bf , then exp(2πiα) is an eigenvalue
of the local monodromy of f at some point. Thus Conjecture 3.2.5 implies
Conjecture 3.2.4. Note that Conjecture 3.2.4 only implies that if s is pole of
ZL,	,f (s, χ), then �(s) + a is a root of bf for some integer a.

Both conjectures might be true for all p-adic fields. But it seems very hard for
primes for which we cannot find an embedded resolution with good reduction.
Although both conjectures have been checked in many cases (see for example
[Loe88] for polynomials in two variables), to our knowledge, they are widely open
in general.
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3.2.4 Exponential Sums and Fiber Integration

In this section we introduce a general form of exponential sums modulo pm and its
relation with Igusa local zeta functions.

Recall that L is a p-adic field. Let f be a non-constant polynomial in
L[x1, . . . , xn], 	 be a Schwartz-Bruhat function on Ln and z be an element of
L. To this data we associate the exponential sum EL,	,z(f ) by

EL,	,z(f ) :=
∫

Ln

	(x) ψ1(zf (x)) |dx|.

It is clear that if L = Qp, z = p−m, 	 = 1Zp , then EL,	,z(f ) is equal to Epm(f )

introduced in Sect. 3.1.
To describe the relation between exponential sums modulo pm and Igusa local

zeta functions, we need to recall the notion of fiber integration. For each y ∈ L, we
set Uy := f −1(y) \ Cf . Since f (x) = y on Uy , we get

∂f

∂x1
dx1 + · · · + ∂f

∂xn

dxn = 0 (3.6)

on Uy . Let a ∈ Uy . Since a /∈ Cf , there exists 1 ≤  ≤ n such that
∂f

∂x

(a) �= 0.

If j �=  and 1 ≤ j ≤ n such that
∂f

∂xj

(a) �= 0, taking the exterior product on both

sides of (3.6) with
∧

i �=j,i �= dxi yields

(−1)j−1 ∂f

∂xj

(a)
∧

i �=

dxi = (−1)−1 ∂f

∂x

(a)
∧

i �=j

dxi.

Thus df,y := (−1)−1(
∂f

∂x
)−1 ∧

i �= dxi |Uy is a well-defined non-vanishing regular

(n − 1)-form around a ∈ Uy . For each Schwartz-Bruhat function 	 on Ln, we set

Ff,y(	) :=
∫

f −1(y)

	 |df,y |.

We can show that

EL,	,z(f ) =
∫

L

Ff,y(	) ψ1(zy) |dy|

is the Fourier transform of Ff,y(	) and

ZL,	,f (s, χ) =
∫

L

Ff,y(	) ωχ,s(y) |dy|
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is the Mellin transform of (1−q−1
L )q

− ord(y)

L Ff,y(	) where the quasi-character ωχ,s

is given by ωχ,s(y) = χ(ac(y))q
− ord(y)s
L .

On the other hand, using Fourier transform we can compute EL,	,z(f ) by Igusa
local zeta functions.

Proposition 3.2.6 ([Den91], Proposition 1.4.4) Let u ∈ O×
L , � be a uniformiser

of L and m ∈ Z. Then EL,	,u�−m(f ) is equal to

ZL,	,f (0, χtriv) + Coefftm−1

( (t − qL)ZL,	,f (s, χtriv)

(qL − 1)(1 − t)

)

+
∑

χ �=χtriv

gχ−1χ(u)Coefftm−c(χ)

(
ZL,	,f (s, χ)

)
,

where gχ is the Gauss sum given by

gχ = q
1−c(χ)
L

qL − 1

∑

v∈(OL/Mc(χ)
L )∗

χ(v)ψ1(v/�c(χ)).

As a consequence, we obtain the following asymptotic expansion of exponential
sums.

Corollary 3.2.7 Suppose that Cf ∩ Supp(	) ⊂ f −1(0). Then EL,	,z(f ) is a finite
C-linear combination of functions of the form

χ(ac(z))|z|λ(logqL
|z|)β

with coefficients independent of z, and with λ ∈ C a pole of

H(L, χ, s)ZL,	,f (s, χ)

where

H(L, χ, s) =
{

qs+1
L − 1 if χ = χtriv,

1 otherwise.

and with β ∈ N, β ≤ (multiplicity of pole λ) − 1, provided that |z| is large enough.
Moreover, all poles λ appear effectively in this linear combination.

A pole λ appearing in Corollary 3.2.7 will be called a non-trivial pole of the Igusa
local zeta function associated to f and 	. We will denote the set of such poles by
Pol(f,	). For λ ∈ Pol(f,	) we set

mf,	(λ) := max{mf,	,χ (λ) | λ is a pole of H(L, χ, s)ZL,	,f (s, χ)}
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where mf,	,χ (λ) is the multiplicity of the pole λ of H(L, χ, s)ZL,	,f (s, χ).
Moreover, we set

σf,	 := min{−�(λ) | λ ∈ Pol(f,	)}

and

βf,	 := max{mf,	(λ) | λ ∈ Pol(f,	), �(λ) = −σf,	}.

It is very useful that the previous asymptotic expansion of exponential sums gives
us all the important information about the poles of the Igusa local zeta function
associated to f and 	. If the strong monodromy conjecture (Conjecture 3.2.5) holds,
then we would obtain a very deep and mysterious connection between the arithmetic
side, the geometric side and the topological side of f .

3.3 Igusa’s Conjecture on Exponential Sums Modulo pm

This section aims to state a general conjecture on exponential sums modulo pm in
spirit of Igusa as we mentioned in Sect. 3.1. To do so we review the notion of a
certain Poisson formula (see [Igu78, Igu76] for more details).

3.3.1 Adèles

In what follows, K denotes a number field. Let OK be its ring of integers. For each
place v of K , we denote by |.|v the associated absolute value of K and Kv be the
completion of K by |.|v. By Ostrowski’s theorem, Kv is either R, C or a p-adic
field. We normalize the norms |.|v where v runs through the set of places of K such
that the product formula holds. This formula says that for all x ∈ K∗, |x|v = 1 for
all but finitely many places v and we have

∏

v

|x|v = 1

where v runs through the set of places of K .
We say that v is an Archimedean place of K if Kv = R or Kv = C. Otherwise,

we say that v is a non-Archimedean place of K . We denote by S∞ the set of all
Archimedean places of K

S∞ := {v | v is Archimedean}. (3.7)
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With the notation as in Sect. 3.2, for each non-Archimedean place v, we denote
by Ov the ring of integers of the local field Kv , Mv the maximal ideal of Ov , kv

the residue field of Kv and pv the characteristic of Kv . Finally, we fix a uniformizer
�v of Kv and denote by ordv and acv the associated valuation map and the angular
component map of Kv , respectively.

Let X = An
K the affine space of dimension n. A subvariety U of X is locally

K-closed if we can write U = V \ W where V and W are closed subvarieties of X

defined over K .
Let U be such a subvariety of X. If we write I (V ) = (f1, . . . , f) and I (W) =

(g1, . . . , gr ) with polynomials fi, gj ∈ K[x1, . . . , xn], then a ∈ U if and only if
fi(a) = 0 for all 1 ≤ i ≤  and gj (a) �= 0 for some 1 ≤ j ≤ r . For each place v of
K , we put

Uv := {x ∈ Kn
v | (∀i, fi(x) = 0) ∧ (∃j, gj (x) �= 0)}.

It is clear that Uv is locally compact. Moreover, if v is non-Archimedean, we set

U0
v := {x ∈ On

v | (∀i, fi(x) = 0) ∧ (∃g ∈ I (W) ∩ OK [x1, . . . , xn], g(x) ∈ O∗
v)},

then U0
v is compact. Let S be a finite set of places of K such that S contains S∞

defined as in (3.7). Then
∏

v∈S Uv is locally compact and
∏

v /∈S U0
v is compact. It

implies that

US =
∏

v∈S

Uv ×
∏

v /∈S

U0
v

is also locally compact. It is clear that if S ⊂ S′, then US ⊂ US ′ . Thus we can

take the inductive limit UA = lim−→
S

US which is called the adelization of U . The set

U(K) of K-points of U can be viewed as a discrete subset of UA by the diagonal
embedding. Note that this construction is functorial.

We suppose further that U is smooth and that there exists an everywhere regular
differential form ω of the highest degree on U vanishing nowhere and defined over
K . Let � be a non-trivial character of KA/K , i.e. a homomorphism from KA to
the unit circle which is trivial on K . For each place v of K , there exists a natural
embedding Kv ↪→ KA which sends x to the adèle whose v-th coordinate is x

and others coordinates are 0. Via this embedding � induces a character ψv on
Kv . We can associate a measure |dx|v on Kn

v which is the n-fold product of the
self-dual measure relative to ψv on Kv . We observe that for all but finitely many non-
Archimedean places v, the character ψv is trivial on Ov but non-trivial on M−1

v , and
the measure of On

v is equal to 1. Next, we endow the set Uv with the Borel measure
|ω|v associated with ω and the measure |dx|v. For each finite set S of places of K

such that S contains S∞ defined as in (3.7), we define the measure |ω|A on US to be
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the product of measures

|ω|A :=
⊗

v∈S

|ω|v ⊗
⊗

v /∈S

|ω|v

under the assumption that the product measure
⊗

v /∈S |ω|v exists on
∏

v /∈S U0
v . We

will call |ω|A the Tamagawa measure on UA. In particular, the Tamagawa measure
exists on XA by taking U = X.

Recall that S∞ is the set of all Archimedean places of K as in (3.7). We set

X∞ :=
∏

v∈S∞
Xv,

and

X0 := lim→S

∏

v∈S\S∞
X0

v.

Viewing X∞ as a finite product of copies of R, we consider the space S(X∞) of
Schwartz-Bruhat functions on X∞. Since X0 is a locally compact abelian group
with arbitrary large and small compact open subgroups, we can define the space
S(X0) of Schwartz-Bruhat functions on X0. The Schwartz-Bruhat functions on XA

is defined to be the tensor product

S(XA) := S(X∞) ⊗C S(X0).

Each element of S(XA) is a C-linear combination of elements of the form 	∞ ⊗	0
with 	∞ ∈ S(X∞) and 	0 ∈ S(X0). A tempered distribution T on XA is a C-linear
form on S(XA) such that for all fixed functions 	0 ∈ S(X0), T (	∞ ⊗	0) depends
continuously on 	∞ in S(X∞). We denote by S(XA)′ the C-vector space of all
tempered distributions on XA.

3.3.2 Poisson Formulas and Formulas of Siegel Type

We continue with the notation of the previous section. Recall that K is a number
field and X = An

K is the affine space of dimension n. Let f ∈ OK [x1, . . . , xn] be a
non-constant polynomial. We fix a non-trivial character � of KA/K . For any z ∈ K

we define a tempered distribution �(zf (x)) on XA given by

�(zf (x))(	) :=
∫

XA

	(x) �(zf (x)) |dx|A.

Note that this integral is absolutely convergent.
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We say that the Poisson formula holds for f if the following conditions hold:

(i) The infinite sum

∑

z∈K

�(zf (x))

belongs to S(XA)′. It is equivalent to the fact that the Eisenstein-Siegel series

∑

z∈K

∫

XA

	(x) �(zf (x)) |dx|A

converges absolutely for every 	 ∈ S(XA).
(ii) For all y ∈ K , the measure |df,y |A exists on Uy,A.

(iii) If j : Uy,A → XA is the induced map by Uy → X, then the global singular
series j∗(|df,y |A) (or simply |df,y |A) exists in S(XA)′ or equivalently, the
integral

∫

Uy,A

	 |df,y |A

is absolutely convergent for every 	 ∈ S(XA).
(iv) The infinite sum

∑

y∈K

|df,y |A

belongs to S(XA)′.
(v) We have the following equality

∑

z∈K

�(zf (x)) =
∑

y∈K

|df,y |A

in S(XA)′.

Igusa gave a criterion for the existence of Poisson formulas based on his
conjecture on exponential sums modulo pm.

Proposition 3.3.1 (See [Igu78]) Let f be a form of degree d in OK [x1, . . . , xn]
(i.e f ∈ OK [x1, . . . , xn] is a homogeneous polynomial of degree d).

Then the Poisson formula holds for f if the following conditions hold:

(i) codim(Cf ) ≥ 3, i.e. the affine hypersurface defined by f is irreducible and
normal.
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(ii) There exist a constant σ > 2 and a positive constant c such that for all but
finitely many non-Archimedean places v and all z ∈ Kv \ Ov , we have

|EKv,1On
v
,z(f )| ≤ c |z|−σ

v . (3.8)

There is no reason to restrict (3.8) to homogeneous polynomials and to the
condition σ > 2. Thus we could relax these restrictions to obtain a more general
statement. For the constant σ , by Corollary 3.2.7, we should choose

σ < lim inf
pv→+∞ σf,1On

v
.

We should mention that it may be interesting to investigate (3.8) for families of
Schwartz-Bruhat functions (	v)v/∈S∞ in the case where there exists a closed subset
W defined overOK of the affine space An

K such that 	v = 	W,v is the characteristic
function of the set {x ∈ On

v | x mod Mv ∈ W(kv)} for each place v /∈ S∞.
We are ready to state a general form of Igusa’s conjecture on exponential sums.

Conjecture 3.3.2 Let K be a number field and f be a non-constant polynomial
in OK [x1, . . . , xn]. Let W be a closed subset defined over OK of the affine space
An such that f (W(C)) contains at most one critical value of f . Let 	W,v be the
characteristic function of the set {x ∈ On

v | x mod Mv ∈ W(kv)} for each place
v /∈ S∞. We set

σ := lim inf
pv→+∞ σf,	W,v

and

β := lim sup
pv→+∞

βf,	W,v

as in Sect. 3.2.
Then there exists a positive constant c such that for all but finitely many places

v, all z ∈ Kv with ordv(z) ≤ −2, we have

|EKv,	W,v,z(f )| ≤ c | ordv(z)|β−1 |z|−σ
v . (3.9)

Remark 3.3.3 If f (W(C)) contains no critical values of f , then

EKv,	W,v,z(f ) = 0

provided that kv has large enough characteristic and ordv(z) ≤ −2 (see [Den91,
Remark 4.5.3]). Hence Conjecture 3.3.2 holds in this case.

Remark 3.3.4 We note that in the original statement of Igusa in [Igu78], he only
considered the case where f is homogeneous, W = An

K (i.e. 	W,v = 1On
v

for all
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finite places v). Further, there are some extra conditions. The first one is that f has
an embedded resolution such that νi > Ni for all exceptional divisors Ei . In this
case Igusa chose β = 1 and an arbitrary real number σ such that

σ < min{ νi

Ni

| Ei is an exceptional divisor}.

The second one is that ordv(z) ≤ −1. When ordv(z) = −1, the corresponding
exponential sums become exponential sums over finite fields and we can apply the
method of Deligne and Katz (see for example [Del77, Del74, Del80, Kat89]).

By Remark 3.1.6, the condition ordv(z) ≤ −2 in Conjecture 3.3.2 is necessary.

3.3.3 Some Expected Results

Let f ∈ OK [x1, . . . , xn] be a homogeneous polynomial of degree d ≥ 2. Suppose
that Conjecture 3.3.2 holds for f and W = An

K . Further, we suppose that

lim inf
pv→+∞ σf,1On

v
> 1.

It follows that f has only rational singularities (see [Clu19, Proposition 3.10]). As a
consequence, if we denote by −αf the biggest root of (s +1)−1bf (s), then αf > 1.

If the strong monodromy conjecture (Conjecture 3.2.5) also holds for f , then we
obtain an upper bound for αf

αf ≤ lim inf
pv→+∞( inf

	v∈S(Kn
v )

σf,	v ). (3.10)

A lower bound for this quantity was due to Mustaţă and Popa. In fact, their result
holds for any field K of characteristic 0.

Proposition 3.3.5 (Mustaţă and Popa [Mus20]) With the above notation, we have

αf ≥ codim(Cf )

d
.

On the other hand, we have to deal with the case where ord(z) = −1. One of the
key ingredients is to have good estimates of exponential sums over finite fields. In
this case we have the following result due to Cluckers.

Proposition 3.3.6 (Cluckers [Clu08a]) Recall that K is a number field and f is a
homogeneous polynomial in OK [x1, . . . , xn] of degree d ≥ 2. Then there exists a
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constant c > 0 such that for all places v of K and all z ∈ Kv with ordv(z) = −1,
we have

|EKv,1On
v
,z(f )| ≤ c |z|−σf

where

σf = lim inf
pv→+∞( inf

	v∈S(Kn
v )

σf,	v ).

As a consequence, we deduce the Poisson formula for f under some conditions.

Proposition 3.3.7 Let K be a number field and f be a homogeneous polynomial in
OK [x1, . . . , xn] of degree d ≥ 2. Suppose that Conjectures 3.2.5 and 3.3.2 hold for
f . If codim(Cf ) ≥ 3 and αf > 2, then the Poisson formula holds for f .

In particular, if codim(Cf ) ≥ 2d + 1, then the Poisson formula holds for f .

Proof The proof follows immediately from (3.10) and Propositions 3.3.1, 3.3.5,
3.3.6. ��
Remark 3.3.8 It is quite tempting to study Conjecture 3.3.2 for σ = αf .

3.4 Progress on Igusa’s Conjecture

In what follows, let K be a number field with the ring of integers OK and let f ∈
OK [x1, . . . , xn] be a non-constant polynomial in n variables. Recall that f is said
to be a form of degree d if f is a homogeneous polynomial of degree d .

3.4.1 The Non-degenerate Case

Igusa proved his conjecture for strong non-degenerate forms, i.e. homogeneous
polynomials with a unique critical point {0}.
Theorem 3.4.1 (Igusa [Igu78]) Suppose that f is a form of degree d with Cf =
{0}. Then there exists a positive constant c such that for all non-Archimedean places
v of K and all z ∈ Kv \ Ov ,

|EKv,1On
v
,z| ≤ c |z|− n

d .

In particular, if n ≥ 2d + 1, then the Poisson formula holds for f .

Denef and Sperber investigated Conjecture 3.3.2 for non-degenerate polynomials
(not necessarily homogeneous). We recall first the notion of non-degenerate poly-
nomials.
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Let k be a field and k̄ be an algebraic closure of k. Let

f = f (0) +
∑

i∈Zn≥0

cix
i ∈ k[x1, . . . , xn]

where we set x := (x1, . . . , xn) and xi := x
i1
1 · · · xin

n with i = (i1, . . . , in). The
Newton polyhedron of f at the origin is defined by

�0(f ) = Conv Supp f + Rn
≥0,

where Supp f =
{
i ∈ Zn≥0

∣∣∣ ci �= 0
}

denotes the support of f . For all non-empty

faces τ ⊆ �0(f ) of any dimension, ranging from vertices to �0(f ) itself, we write

fτ =
∑

i∈τ∩Zn≥0

cix
i .

We say that f is non-degenerate with respect to τ if the system of equations

∂fτ

∂x1
= . . . = ∂fτ

∂xn

= 0

has no solutions in k
∗n

. It is equivalent to require that the map k
∗n → k given by

α �→ fτ (α) has no critical values. We say that f is non-degenerate with respect to
the faces of �0(f ) if it is non-degenerate with respect to all possible choices of τ .

Let σ0,f be the biggest real number t such that ( 1
t
, . . . , 1

t
) ∈ �0(f ) and β0,f be

the codimension of the smallest face τ0(f ) of �0(f ) containing ( 1
σ0,f

, . . . , 1
σ0,f

).
Denef and Sperber suggested that certain estimates of exponential sums modulo
pm of a non-degenerate polynomial can follow from those of exponential sums
over finite fields. More precisely, they used the work of Adolphson-Sperber (see
[Ado89]) on exponential sums over finite fields to obtain the first remarkable result
after Igusa’s work.

Theorem 3.4.2 (See [Den01]) Suppose that f is non-degeneratewith respect to the
faces of its Newton polyhedron �0(f ) at the origin and that {0, 1}n ∩ τ0(f ) = ∅.
Then there exists a positive constant c which depends only on �0 such that for all
but finitely many non-Archimedean places v of K and all z ∈ Kv \ Ov , we have

|EKv,1Mn
v
,z| ≤ c | ordv(z)|β0,f −1 |z|−σ0,f . (3.11)

Moreover, if f is homogeneous, then

|EKv,1On
v
,z| ≤ c | ordv(z)|β0,f −1 |z|−σ0,f . (3.12)
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Using the approach of Denef-Sperber, Cluckers replaced the work of Adonphson-
Sperber by that of Katz (see [Kat99]) to obtain the same bound as in (3.12) (resp.
(3.11)) but for non-degenerate quasi-homogeneous polynomials (resp. all non-
degenerate polynomials) without the technical condition {0, 1}n ∩ τ0(f ) = ∅ (see
[Clu08b] and [Clu10]). Recently, Castryck and the author extended Cluckers’ results
to all non-degenerate polynomials under the condition ordv(z) ≤ −2 (see [Cas19]).

3.4.2 Beyond the Non-degenerate Case

Conjecture 3.3.2 becomes more difficult if we remove non-degenerate conditions for
f . Let us mention some results in this direction. On the one hand, Wright proved
some results for quasi-homogeneous polynomials in two variables (see [Wri20]).
Lichtin rediscovered the results of Wright by another method and extended them
to homogeneous polynomials in three variables (see [Lic13], [Lic16]). On the other
hand, Cluckers proved some results in the case where ordv(z) = −1 or ordv(z) =
−2 (see [Clu08a]).

In [Clu16] Cluckers and Veys stated Conjecture 3.3.2 for polynomials f and the
function 1On

v
(resp. 1Mn

v
), σ̃f (resp. σ = lct0(f )) and β = n. Here lct0(f ) denotes

the log-canonical threshold of f at 0 and σ̃f = min{lctb(f −f (b)) | b ∈ Cn}. Recall
that the log-canonical threshold lct0(f ) of f at 0 is defined to be the minimum over

all the values
νi

Ni

as in Sect. 3.2.1 with 0 ∈ h(Ei). We refer the reader to [Mus12]

for an introduction to log canonical thresholds. Theorem 3.2.2 and the definition of
σ̃f imply

σ̃f ≤ lim inf
pv→+∞ σf −a,	W,v (3.13)

for all a ∈ C and all choices of W as in the statement of Conjecture 3.3.2 with
f (W(C)) = a . The above inequality (3.13) becomes an equality for a certain set
W if f has non-rational singularities (see [Clu19, Proposition 3.10]). Hence the
conjecture of Cluckers and Veys is sharp in case of non-rational singularities.

We mention some results toward the conjecture of Cluckers and Veys. Cluckers
and Veys proved their conjecture for some small values of | ordv(z)|. In [Cha20]
Chambille and the author proved this conjecture in the case where lct(f ) (resp.
lct0(f )) is at most 1/2. Their proof suggested that Conjecture 3.3.2 may hold if we
can prove it for each given value of ordv(z).

Recently, Cluckers, Mustaţă and the author [Clu19] used a geometric method
and proved that the conjecture of Cluckers and Veys holds for all non-constant
polynomials f . Moreover, Conjecture 3.3.2 holds fully in the non-rational singu-
larities case. Here are some ideas of the proof. They first gave a so-called power
condition for resolutions of singularities to characterize the possible obstruction
for Cluckers-Veys’ conjecture. If the power condition holds, then they deduce an
inequality associated to the numerical data of this resolution which allows to remove
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the above obstruction. One key ingredient is the existence of some models in the
Minimal Model Program. We strongly believe that further developments of the
Minimal Model Program could lead to the full resolution of Conjecture 3.3.2 in
case of rational singularities. Finally, we mention that Veys obtained a proof of
Conjecture 3.3.2 in case of polynomials in two variables in the same line with that
of [Clu19]. But he did not use the technique from the Minimal Model Program (see
[Vey20]).

To end this section, we state the main result of Cluckers-Mustaţă-Nguyen
[Clu19].

Theorem 3.4.3 Let K be a number field and f ∈ OK [x1, . . . , xn] be a non-
constant polynomial, andW be any closed subscheme ofAn

OK
, then there exist c > 0

and M > 0 such that

|EKv,	W,v,z| < c | ordv(z)|n−1 |z|−σ̃W,f (3.14)

for all finite places v of K with pv > M and all z with ordv(z) ≤ −2, where
σ̃W,f = min{lctb(f −f (b)) | b ∈ W }. Moreover, c can be chosen to be independent
of the number field K containing the coefficients of f .

3.5 A Long History of the Local-Global Principle

3.5.1 The Local-Global Principle

One of the most important techniques in arithmetic geometry is the local-global
principle (also known as the Hasse principle). This principle asserts that a certain
property is true globally if and only if it is true everywhere locally. This principle
reduces certain difficult problems in global fields to those in local fields in which
we have more tools. The most famous example of the local-global principle is
the Hasse-Minkowski theorem. Minkowski proved that a quadratic form over
Q represents 0 if and only if it represents 0 in any local field containing Q.
Hasse generalized Minkowski’s theorem to number fields. In fact, the local-global
principle for quadratic forms holds for all global fields.

For forms of higher degree (i.e homogeneous polynomials of degree at least 3),
the local-global principle does not hold in general and many counterexamples were
already constructed (see for example [Mor37, Sel51]). So the question for forms of
higher degree is:

How can one characterize forms for which the local-global principle holds?
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3.5.2 Progress on the Local-Global Principle

In the case where f is a cubic form in n variables over Q, it is conjectured that
f has a non-trivial rational zero as soon as n ≥ 10. Using the Hardy-Littlewood
circle method, Davenport showed in [Dav63] that a cubic form over Q in at
least 16 variables represents 0, so the local-global principle holds trivially in this
case. Heath-Brown improved the result of Davenport to cubic forms in at least 14
variables (see [Hea07]) and non-singular cubic forms in at least 10 variables (see
[Hea84]). Davenport also proved that cubic forms in at least 10 variables over Q
represent 0 in all p-adic fields (see [Dav05]). Moreover, it is clear that a cubic form
over Q has a non-trivial solution in R. Hence we may ask whether it is possible to
remove the non-singular condition in Heath-Brown’s work.

There are also results for cubic forms in fewer variables. Hooley proved in
[Hoo88] that the local-global principle holds for non-singular cubic forms in at
least 9 variables. Recently, Hooley showed that under the validity of the Riemann
hypothesis for certain Hasse-Weil L-functions, the local-global principle holds for
all non-singular forms in 8 variables (see [Hoo14]). In another approach, Manin
suggested that the obstruction of the local-global principle for cubic forms may be
explained by the theory of Brauer groups (the so-called Brauer-Manin obstruction)
but Skorobogatov showed that the Brauer-Manin obstruction cannot fully explain
the failure of the local-global principle in the general case (see [Sko99]). Further,
such an obstruction is known to be empty for non-singular cubic forms in at least 5
variables.

For forms of arbitrary degree, by generalizing the method of Davenport, Birch
showed in [Bir61] that a form f of degree d > 2 in n variables over Q represents
0 if f −1(0) has a non-singular point over all local fields containing Q and n −
dim(Cf ) ≥ (d − 1)2d . Recently, Browning and Prendiville improved the second
condition of Birch to n−dim(Cf ) ≥ (d− 1

2

√
d)2d (see [Bro17b]). In the case where

Cf = {0}, Browning and Heath-Brown conjectured that the local-global principle
holds for a form f of degree d in n variables if n ≥ 2d + 1 (see [Bro17a]). We
will see below that this conjecture agrees with the prediction of Igusa. On the other
hand, a remarkable result of Birch in [Bir57] stated that for each odd integer d ≥ 1,
there exists a positive integer N(d) such that all forms of degree d in n variables
with n > N(d) represent 0. It follows that the local-global principle holds trivially
if n > N(d). However, to our knowledge, we do not know any quantitative results
in this direction.

We now review basic ideas of the Hardy-Littlewood circle method. Let f be a
homogeneous polynomial of degree d > 1 inZ[x1, . . . , xn]. Let ω : Rn → [0,+∞)

be a suitable weight function. Our goal is to obtain an asymptotic formula of the
function

Nω(f,B) =
∑

x∈Zn,f (x)=0

ω(x/B)
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when B → +∞. Let us use the identity

Nω(f,B) =
∫

T

S(α,B)dα (3.15)

where T = R/Z and

S(α,B) =
∑

x∈Zn

ω(x/B)e2πiαf (x)

if ω has certain good analytic properties. The Hardy-Littlewood circle method
consists of dividing the torus T into major arcs M and minor arcs m where for
each δ > 0, we set

M(δ) := ∪q≤Bδ ∪0≤a≤q,(a,q)=1 {α ∈ T | |α − a

q
| ≤ Bδ−d}

and

m(δ) := T \ M(δ).

Note that if 3δ < d , then M(δ) is in fact a disjoint union of the above arcs provided
B is sufficiently large.

To investigate the local-global principle for f , we would like to obtain the
following asymptotic formulas

∫

M
S(α,B)dα ∼ cf Bn−d (3.16)

and
∫

m
S(α,B)dα = o(Bn−d ) (3.17)

where the constant cf is positive under some good conditions on f and such that
f has a smooth solution over every completion of Q (i.e. f admits a non-singular
point of f −1(0) over every completion of Q).

A common way to work with Eq. (3.17) is to use Weyl’s bound for S(α,B) and
Dirichlet’s approximation theorem to control minor arcs (see [Bir61, Bro17b] for
more details). Equation (3.17) is in fact very hard to achieve. But the conjecture on
exponential sums modulo pm could improve Eq. (3.16). More precisely, Eq. (3.16)
is related to the convergence of certain singular series given by (see [Bir61, Bro17b])

S =
∑

1≤N

N−n
∑

a∈(Z/NZ)∗
SN(a)
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where

SN(a) =
∑

y∈(Z/NZ)n

e
2πiaf (y)

N .

With the assumption of Remark 3.1.7 we would have

|SN(a)| ≤ CN−σ

for a positive constant C and all N ≥ 1. A direct calculation implies that S
converges absolutely for σ > 2.

3.5.3 Igusa’s Approach

Now we sketch another approach given by Igusa to attack the above problem (see
[Igu78] and [Har80]). We first recall the idea of Weil on quadratic forms. From
the work of Siegel on quadratic forms, Weil gave a general formula called Siegel’s
formula (see [Wei65]) which relates a theta series to an Eisenstein series. As a
consequence, the Hasse-Minkowski theorem follows from Siegel’s formula. For
forms of higher degree, Igusa expected that we could derive a similar formula and
use it to prove the local-global principle for these forms. Inspired by the work of
Weil such a formula of Siegel type would follow from a Poisson formula. In fact,
Igusa succeeded in proving the following assertion:

For forms of higher degree, if we have a good uniform bound in p and m of
exponential sums modulo pm, then we have a Poisson formula.

Hence the strategy of Igusa breaks into two parts. The first part is to find a good
uniform bound in p and m of exponential sums modulo pm so that we could deduce
a Poisson formula. This is exactly the material presented in Sects. 3.2, 3.3 and 3.4.
The second part is to use the Poisson formula to derive formulas of Siegel type and
then the desired local-global principle.

Let us explain a little bit more about formulas of Siegel type. A formula of
Siegel type is an equality between Eisenstein-Siegel series and the integral of a
theta series in the space of tempered distributions. In the case of quadratic forms,
Weil introduced the notion of metaplectic groups and used their action on the space
of Schwartz-Bruhat functions S(XA) to construct a theta series and compared its
integral with Eisenstein-Siegel series. For forms of higher degree, Igusa pointed
out that a good theory of metaplectic groups associated with these forms would be
very useful although such a theory is not yet known. But he also remarked that we
could use a certain smaller group to obtain similar results. More precisely, let K

be a number field and let f be a non-singular form of degree d in n variables with
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coefficients in OK . Igusa introduced the group P = Ga × Gm equipped with the
law

(u, t)(u′, t ′) = (u + tdu′, tt ′)

The action of PA on S(XA) is given by

((u, t)(	))(x) = |t|
n
2
A�(uf (x))	(tx)

where |t|A = ∏
v |tv|v is the usual norm of t . We consider the tempered distributions

E and I0 given by

E(	) = 	(0) +
∑

z∈K

�(zf (x))(	)

and

I0(	) =
∑

ξ∈XK

	(ξ).

If n ≥ 2d + 1, then Igusa showed that the Poisson formula holds for f (see
Theorem 3.4.1). In particular, if |t|A > 1, he proved in [Igu76] that

(I0 − E)((u, t)(	)) = O(|t|1− n
2d

A ) (3.18)

as |t|A → +∞ and furthermore, if |t|A < 1 but (u + z)t−d remains in a compact
subset of KA for some z ∈ K , then

(I0 − E)((u, t)(	)) = O(|t|
n

2d
−1

A ) (3.19)

as |t|A → 0. Igusa conjectured that (3.19) is still true without the compactness
assumption (or at least we could find some conditions of n and d such that (3.19)
holds without compactness). In particular, this conjecture would imply the local-
global principle for f (see [Igu76, Har80]). To summarize, under the validity of
Igusa’s approach, we could prove that the local-global principle holds for any non-
singular form of degree d in at least 2d+1 variables. This agrees with the conjecture
of Browning and Heath-Brown that we mentioned earlier.

Unfortunately, we are in a similar situation as that of (3.17). To our knowledge,
(3.19) is out of reach. Even it is not clear that there is a connection between them
by looking at the adelic circle method (see [Lac82, Mar73]). Both of them would
require a lot of efforts and many new ideas but we can always hope that Igusa’s
ideas could be realized in the future.

We end this survey with the case of singular forms. If f is a singular form of
degree d ≥ 3, from an observation of Igusa on the work of Birch, the Poisson
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formula also holds for f if codim(Cf ) ≥ (d − 1)2d . Moreover, Birch showed that
this condition is sufficient to prove the local-global principle for f as we mentioned
above. In Proposition 3.3.7, we predicted that the Poisson formula holds for f if
codim(Cf ) ≥ 2d + 1. Hence it is tempting to ask whether we could replace the
sufficient condition codim(Cf ) ≥ (d − 1)2d in the result of Birch by codim(Cf ) ≥
2d + 1.
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