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Preface

Arithmetic geometry is a very active branch of mathematics, with important and
deep connections to various areas such as algebraic geometry, number theory, and
Lie theory.

The goal of this volume is to introduce graduate students and young researchers
to some recent research topics in arithmetic geometry over local fields. The lectures
are centered around two common themes: the study of Drinfeld modules and non-
Archimedean analytic geometry.

The notes of this volume grew out from the lectures given during the research
program “Arithmetic and geometry of local and global fields,” which took place at
the Vietnam Institute of Advanced Study in Mathematics (VIASM) from June to
August 2018. Two of them were given at the VIASM School on Number Theory
(see https://hanoi-nt18.sciencesconf.org/). The others were presented as advanced
courses during the research seminar.

The authors, all leading experts in the subject, have made a great effort to make
the notes as self-contained as possible. In addition to introducing the basic tools, the
lectures aim to present an overview of recent developments in the arithmetic and
geometry of local fields and related topics. The included examples and suggested
concrete research problems will enable young researchers to quickly reach the
frontiers of this fascinating branch of mathematics.

Contents of This Volume

The volume consists of seven lectures:

1. Some Elements on Berthelot’s Arithmetic D-Modules by Daniel Caro (Univer-
sity of Caen Normandy, France),

2. Difference Galois Theory for the “Applied” Mathematician by Lucia Di Vizio
(CNRS and University of Versailles Saint Quentin, France),

v

https://hanoi-nt18.sciencesconf.org/
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3. Igusa’s Conjecture on Exponential Sums Modulopm and Local-Global Principle
by Nguyen Huu Kien (KU Leuven, Belgium),

4. From the Carlitz Exponential to Drinfeld Modular Forms by Federico Pellarin
(Institute Camille Jordan and University of Saint-Etienne, France),

5. Berkovich Curves and Schottky Uniformization I: The Berkovich Affine Line by
Jérôme Poineau (University of Caen Normandy, France) and Daniele Turchetti
(Dalhousie University, Canada),

6. Berkovich Curves and Schottky Uniformization II: Analytic Uniformization of
Mumford Curves by Jérôme Poineau (University of Caen Normandy, France)
and Daniele Turchetti (Dalhousie University, Canada),

7. On the Stark Units of Drinfeld Modules by Floric Tavares Ribeiro (University
of Caen Normandy, France).

The first lecture by D. Caro offers an introduction to p-differential methods
in arithmetic geometry. First, he reviews Berthelot’s ring of p-adic differential
operators, which plays an important role in the theory of arithmetic D-modules.
Next, he extends it to some finite level on p-adic formal affine smooth schemes.
Finally, concrete examples and a guide to further reading are also provided. The
material assumes a basic knowledge of ring theory and algebraic geometry.

The second lecture by L. Di Vizio gives an overview of the Galois theory of
difference equations. The first part presents a guide to the key definitions and
results of difference Galois theory. In the second part, interesting applications to
transcendence and differential transcendence are treated in detail. Note that the
framework is the same as that of Papanikolas’ theory in the setting of Drinfeld
modules. The curious reader may wish to refer to the lectures of F. Pellarin and
F. Tavares Ribeiro for more details.

The third lecture by K. Nguyen is a survey on Igusa’s conjecture around
exponential sums motivated by the study of local-global principles for forms of
higher degree. After introducing the notion of exponential sums and those modulo
pm with some examples, he formulates a coarse form of Igusa’s conjecture on a
uniform bound of those exponential sums and explains its relations with Igusa’s
local zeta functions, the monodromy conjecture, and fiber integrals. He then states
Igusa’s conjecture on exponential sums and gives an overview of recent progress
on this conjecture, in particular the most recent breakthrough of Cluckers, Mustaţă,
and the author. The lecture ends with a general picture of the local-global principle
for forms and the contribution of the aforementioned conjecture in this direction.

The fourth lecture by F. Pellarin presents a friendly introduction to the theory
of Drinfeld modular forms attached to the affine line over a finite field. Drinfeld
modular forms in positive characteristic are defined as analogues of classical
modular forms by the pioneering works of Goss and Gekeler. The notes gradually
introduce the very first basic elements of the arithmetic theory of Drinfeld modules,
then the Drinfeld upper-half plane and its topology, and end with Drinfeld modular
forms. The key notions are illustrated with many examples. The lecture also contains
several advanced parts such as Drinfeld modular forms with values in Banach
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algebras. These course notes will enable the reader to gently enter into this rich
and still developing theory.

The self-contained survey by J. Poineau and D. Turchetti consists of two lectures
on non-Archimedean curves and Schottky uniformization from the point of view of
Berkovich geometry. The first part, the fifth lecture, could be read as an elementary
course on the theory of Berkovich spaces with emphasis on the affine line. The
authors introduce basic definitions and properties with full details and proofs. The
second part, the sixth lecture, is more advanced and deals with the theory of
uniformization of curves under Berkovich’s theory. After introducing the notion
of Mumford curves and Schottky groups, the authors present an analytic proof of
Schottky uniformization. Many examples, explicit research problems, and a guide
for further reading are also provided. The reader who is interested in Schottky
groups in the language of rigid analytic spaces is invited to read the relevant parts
of the lecture of F. Pellarin.

The last lecture by F. Tavares Ribeiro presents some recent developments in
the arithmetic theory of the special values of Goss zeta functions. This lecture
is an exposition on Stark units of Drinfeld modules over the ring of polynomials
over a finite field. The notes are also the occasion to introduce basic definitions of
Drinfeld modules and more recent fundamental objects linked to an analytic class
number formula obtained by L. Taelman:L-values, unit modules, and class modules
attached to a Drinfeld module. The author then presents the notion of Stark units and
gives their basic properties. Finally, he gives several applications of Stark units, in
particular, to the study of congruence properties of Bernoulli–Carlitz numbers. He
also gives hints for a general base ring.

Caen, France Bruno Anglès
Lyon, France Tuan Ngo Dac
October 2020
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Chapter 1
Some Elements on Berthelot’s Arithmetic
D-Modules

Daniel Caro

Abstract This text is an introduction to Berthelot’s theory of arithmetic D-
modules. We first review Berthelot’s ring of differential operators of finite level
on affine smooth p-adic formal schemes over a complete discrete valuation ring
of mixed characteristic (0, p) with perfect residue field. Berthelot’s ring is a kind
of weak p-adic completion of the usual ring of differential operators as defined by
Grothendieck. We finish with the description and some finiteness properties of the
constant coefficient which is constructed by adding overconvergent singularities.
This lecture is suitable for graduate students and requires only basic knowledge of
ring theory and algebraic geometry.

1.1 Introduction

These notes correspond to a course given at Vietnam Institute for Advanced Study
in Mathematics (VIASM) in July 2018. The purpose was mainly to present an
introduction on Berthelot’s theory of arithmetic D-modules for Ph.D. students.
Except at the last page, we only work with affine (formal) schemes, i.e. with (p-
adically complete) rings. The course until the very end does not require some
background on Grothendieck’s algebraic geometry. Beyond this paper, let us explain
a bit the interest of such recent research topic. First, we have to underline that
Berthelot’s theory of arithmeticD-modules gives a p-adic cohomology closed under
Grothendieck six operations (see for instance, [CT12] with Frobenius structures or
much more recently [Car20] for a context without Frobenius structures). Moreover,
the theory of arithmetic D-modules contain in some sense that of overconvergent
F -isocrystals (more precisely, we can construct a canonical fully faithful functor).
These latter coefficients lives over Tate rigid analytic spaces or more recently can be
viewed as objects over Berkovich spaces. Berkovich spaces are very useful, as the
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2 D. Caro

reader can see below via the lecture of Jérôme Poineau and Daniele Turchetti (see
[PT20a, PT20b])

In the second chapter, we review some elements on the standard theory of the ring
of differential operators. In the third chapter, we explain how to extend it to some
finite level m in the sense of Berthelot. We also introduce the constant coefficient
denoted by OP(

†T )Q and explain why we have to work with such a weak p-adic
completion and not with the naive coefficient.

1.2 Ring of Differential Operators

1.2.1 Kähler Differential

Definition 1.2.1 Let R be a commutative ring, A be a commutative R-algebra, M
be an A-module. An R-derivation of A intoM is an R-linear map d : A→ M such
that

1. d(a1a2) = a1d(a2)+ a2d(a1), for any a1, a2 ∈ A;

The set of R-derivation of A into M is denoted by DerR(A,M). We check that
DerR(A,M) is an A-submodule of HomSet(A,M), where the A-module structure
is given by that ofM .

Definition 1.2.2 A module of relative differential forms of A over R is an A-
module �1

A/R endowed with an R-derivation d : A → �1
A/R having the following

universal property: for any A-module M , for any D ∈ DerR(A,M), there exists a
unique φ ∈ HomA(�1

A/R,M) such that D = φ ◦ d .

Proposition 1.2.3 A module of relative differential forms of A over R exists and is
unique up to unique isomorphism. It will be denoted (�1

A/R, d).

Proof The uniqueness is standard. Let us check the existence. Let F be the free
A-module generated by the symbols da, a ∈ A. Let E be the A-submodule of F
generated by

(i) dr, r ∈ R;
(ii) d(a1 + a2)− da1 − da2, for any a1, a2 ∈ A.

(iii) d(a1a2)− a1da2 − a2da1, for any a1, a2 ∈ A.

We put �1
A/R := F/E and d : A → �1

A/R sends an element a ∈ A to the class of

da. We check that such (�1
A/R, d) satisfies the universal property. ��

Remark 1.2.4 In other words, the proposition 1.2.3 means that the functor M �→
DerR(A,M) from the category of A-modules to itself is representable. Moreover,
following the proof of 1.2.3, the A-module�1

A/R is generated by {da, a ∈ A}.
1.2.5 Let μ : A ⊗R A → A be the morphism of R-algebras given by a ⊗ a′ �→
aa′. Let I := kerμ. Since μ is surjective, we get the factorisation of R-algebras
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A⊗RA/I ∼−→ A. TheR-algebraA⊗RA is endowed with twoA-algebra structures,
the left one and the right one. We remark that for both structures, the isomorphism
A ⊗R A/I ∼−→ A is A-linear. Hence, if M is an A ⊗R A-module, then the three
way to endow M/IM with an A-module structure coincide. For instance, I/I 2 is
endowed with a canonical structure of A-module.

For both A-algebra structure on A ⊗R A, I is generated as A-submodule by
the elements of the form 1 ⊗ a − a ⊗ 1, with a ∈ A. Indeed, for the left case, if∑
al ⊗ a′l ∈ I , then

∑
l al ⊗ a′l =

∑
l al(1⊗ a′l − a′l ⊗ 1).

Proposition 1.2.6 Let d : A→ I/I 2 given by a �→ 1⊗ a − a ⊗ 1 mod I 2. Then
(I/I 2, d) is a module of relative differential forms of A over R is an A-module, i.e.
in particular I/I 2 ∼−→ �1

A/R.

Proof The R-linearity of d and the property d(r) = 0, for any r ∈ R are obvious.
Let a, a′ ∈ A. To fix ideas, we use by default the leftA-algebra structure theA⊗RA.
Then In can be viewed as an A-submodule of A⊗R A. We remark that the induced
A-module structure on I/I 2 is the same than that given by its canonicalA⊗R A/I -
module structure. We get inA⊗RA the equality a(1⊗a′−a′⊗1)+a′(1⊗a−a⊗1) =
a⊗a′−2aa′⊗1+a′⊗a. Since 1⊗aa′−a⊗a′−a′⊗a+aa′⊗1 = (1⊗a−a⊗1)(1⊗
a′−a′⊗1) ∈ I 2, this yields a(1⊗a′−a′⊗1)+a′(1⊗a−a⊗1) ≡ 1⊗aa′−aa′⊗1
mod I 2. Hence, ada′ + a′da = d(aa′).

It remains to check that d satisfies the universal property. LetM be an A-module
and D ∈ DerR(A,M). Let A ∗ M be the trivial extension ring, i.e. this is an A-
algebra such that A ∗ M = A ⊕ M as A-module, and the multiplication is given
by (a,m)(a′,m′) = (aa′, am′ + a′m). We remark that M is an ideal of A ∗ M
such that M2 = 0. Let θ : A ⊗R A → A ∗ M be the A-linear map (for the left
structure of A ⊗R A) such that a1 ⊗ a2 �→ (a1a2, a1Da2). We check that θ is in
fact a homomorphism of A-algebras. Indeed, we compute θ((a1 ⊗ a2)(a

′
1 ⊗ a′2)) =

(a1a2a
′
1a
′
2, a1a

′
1Da2a

′
2) = θ(a1 ⊗ a2)θ(a

′
1 ⊗ a′2). Let i = ∑

l al ⊗ a′l ∈ I . Since
∑
ala

′
l = 0, we get θ(i) ∈ M . Hence θ(I 2) ⊂ M2 = 0. Hence, θ induces

φ : I/I 2 → M given by
∑
l al ⊗ a′l mod I 2 �→ ∑

l alDa
′
l . Since D = φ ◦ d ,

we are done. ��
Examples 1.2.7 SupposeA = R[T1, . . . , Td ]. ThenA⊗R A = R[T1⊗1, . . . , Td ⊗
1, 1 ⊗ T1, . . . , 1 ⊗ Td ]. The diagonal morphism μ : A ⊗R A → A is given by
Ti ⊗ 1 �→ Ti and 1 ⊗ Ti �→ Ti . Let τi := 1 ⊗ Ti − Ti ⊗ 1. Let P ∈ I . By
doing successive Euclidian divisions, we get P = τ1Q1 + · · · + τdQd + S, where
S ∈ R[1⊗ T1, . . . , 1⊗ Td ] andQi ∈ A⊗R A. Since μ(P) = 0, this yields S = 0.
Hence, I is generated by τ1, . . . , τd . For any α ∈ N, we set τα := τ

α1
1 · · · ταdd ,

and |α| := α1 + · · · + αd . For any n ∈ N, this implies that In is generated by
{τα, ∑i αi = n}.

The A-module In/In+1 is generated by {τα mod In+1,
∑
i αi = n}. Indeed,

let P = ∑
|α|=n Pατα ∈ In, with Pα ∈ A. If P ∈ In+1, then either the total degree

in 1⊗ T1, . . . , 1⊗ Td of P is ≥ n+ 1 or P = 0. Hence, we are done.
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1.2.2 Ring of Differential Operators

Let A be a commutative R-algebra.

Definition 1.2.8 For any n ∈ N, we set PnA/R := (A ⊗R A)/In+1. The ring PnA/R
has two A-algebra structures: the left one induced by the left structure of A ⊗R A,
and the right one. We denote by dn0 : A→ PnA/R (or simply d0) the homomorphism
given by the left structure, and dn1 : A→ PnA/R (or simply d1) that given by the right
one.

Definition 1.2.9 An R-linear map h : A→ A is a “differential operator of A/R of
order ≤ n” if and only if there exists an A-linear map h̃ : d0∗(P nA/R) → A making
commutative the diagram

d0∗(P n
A/R)

h
A

A

d1
h

We denote by DiffnA/R the set of differential operators of A/R of order ≤ n. Since
d0∗(P nA/R) is generated as A-module by the image of d1, then we get the uniqueness

of such h̃ if it exists. Hence we get the bijection DiffnA/R
∼−→ HomA(d0∗(P nA/R),A)

given by h �→ h̃. We set DA/R,n := HomA(d0∗(P nA/R),A).
Since PnA/R has two structures of A-algebra inducing a structure of A-bimodules,

then DA/R,n is endowed with a structure of A-bimodule. The left (resp. right)
structure of A-module of DA/R,n is by definition that coming from the left (resp.
right) structure of A-algebra of PnA/R .

Notation 1.2.10 Let n, n′ ∈ N. When we write PnA/R ⊗A Pn
′
A/R , we use the right

A-algebra structure of PnA/R and the left A-algebra structure of Pn
′
A/R to define the

tensor product. Hence, we get a structure of the left (resp. right) A-algebra structure
on PnA/R ⊗A Pn

′
A/R coming from that of PnA/R (resp. Pn

′
A/R).

Lemma 1.2.11 For any integers n, n′ ∈ N, there exists a unique homomorphism
δn,n

′ : Pn+n′A/R → PnA/R ⊗A Pn
′
A/R of A-algebras for both left and right structures of

A-algebras making commutative the following diagram

A
d1

d1

Pn+n
A/R

δn,n

P n
A/R

d1
Pn

A/R ⊗A Pn
A/R. (1.1)
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Proof Let us check the unicity. Computing the image of 1 in the diagram 1.1, we get
δn,n

′
(1⊗ 1) = 1⊗ 1⊗ 1⊗ 1. Using the fact that δn,n

′
is an homomorphism of A-

algebras for both left and right structures of A-algebras, this yields δn,n
′
(a ⊗ a′) =

a ⊗ 1⊗ 1⊗ a′. It remains to prove the existence. Let δ : A⊗R A→ (A⊗R A)⊗A
(A⊗R A) defined by a ⊗ a′ �→ (a ⊗ 1) ⊗ (1 ⊗ a′). Set � := 1⊗ 1. We compute
δ(1 ⊗ a − a ⊗ 1) = � ⊗ (1 ⊗ a − a ⊗ 1) + (1 ⊗ a − a ⊗ 1) ⊗ �. Since I is
generated as A-module (for both structures) by 1 ⊗ a − a ⊗ 1 with a ∈ A, then
δ(I) ⊂ I ⊗A (A ⊗R A)+ (A ⊗R A)⊗A I . Hence δ(In+n′+1) ⊂ In+1 ⊗A (A⊗R
A)+ (A⊗R A)⊗A In′+1, i.e. δ induces the morphism of A-algebras δn,n

′
. ��

Proposition 1.2.12 Let h ∈ DiffnA/R, h
′ ∈ Diffn

′
A/R . Then h ◦ h′ ∈ Diffn+n′A/R .

Proof We check by definition, functoriality or by using 1.1 the commutativity of
the following diagram:

A

d1

h

d1

A
h

d1

A

Pn
A/R

h

d1

Pn
A/R

h

Pn+n
A/R

δn,n

P n
A/R ⊗A Pn

A/R.

id⊗h

(1.2)

��
Definition 1.2.13 By convention, R-algebras are always unital and associative.
Following 1.2.12, DiffA/R := ∪n∈N DiffnA/R is an R-subalgebra of HomR(A,A).
We get a natural action of DiffA/R on A as follows: ∀P ∈ DiffA/R, ∀f ∈
A, P · f := P(f ).
Definition 1.2.14 Via the bijection DiffnA/R

∼−→ DA/R,n, we get an R-algebra

structure on DA/R := ∪n∈NDA/R,n making the bijection DiffA/R
∼−→ DA/R an

isomorphism of R-algebras and of A-bimodules. The R-algebra DA/R is called
the ring of differential operators on A/R. The multiplication can be described via
the diagram 1.2. We also get a natural action of DA/R on A. Finally, the mapping
A → DA/R given by a �→ a · 1 is the same for the left or right structure of A-
module. Moreover, the mapping A → DA/R is an homomorphism of R-algebras,
and we can view A as an R-subalgebra of DA/R .

Notation 1.2.15

1. If P ∈ DA/R and f ∈ A, we set P(f ) := P(d1(f )), which is consistant with
the identification of P with an element of DiffA/R .

2. For any P ∈ DA/R , we set ord(P ) := min{n ; P ∈ DA/R,n}.
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1.2.3 Smooth Differential Case

From now, we suppose R Noetherian, A/R of finite type. Let t1, . . . , td ∈ A, and
τi := 1 ⊗ ti − ti ⊗ 1 ∈ A ⊗R A. We suppose that τ1, . . . , τd ∈ I is quasi-regular,
i.e.

(a) τ 1, . . . , τ d is an A-basis of I/I 2 = �1
A/R.

(b) the morphism S•A(I/I 2) → gr•I (A ⊗R A) induced by τ 1, . . . , τ d (see nota-
tion 1.2.17 below) is an isomorphism of graded A-algebras.

This also means that A/R is differentially smooth in the sense of Grothendieck.

Examples 1.2.16

1. Suppose A is equal to the polynomial algebra R[T1, . . . , Td ]. Set τi := 1⊗ Ti −
Ti ⊗ 1 ∈ A⊗R A for any i = 1, . . . , d Then τ1, . . . , τd ∈ I is quasi-regular.

2. We have the following example which is fundamental but can be skipped
if the reader is not familiar with Grothendieck’s notion of étaleness. Let
f : R[T1, . . . , Td ] → A be an étale morphism. Let t1, . . . , td ∈ A be the image
of T1, . . . , Td via f . Set τi := 1 ⊗ ti − ti ⊗ 1 ∈ A ⊗R A for any i = 1, . . . , d .
Then τ1, . . . , τd ∈ I is quasi-regular (see [EGA IV, 0.15.1.7]).

Notation 1.2.17 IfM is anA-module, we denote by S•A(M), or simply SA(M) if we
forget the filtration, the symmetric algebra ofM over A endowed with its canonical
filtration. Recall M �→ SA(M) is the left adjoint functor of the inclusion from the
category of commutative A-algebras to that of A-modules.

If B is an algebra and J is an ideal of B, we denote by gr•J (B) the graded ring
gr•J (B) := ⊕d≥0J

d/J d+1.

Notation 1.2.18 For any α ∈ Nd , we set T α := T α1
1 · · · T αdd and τα := τα1

1 · · · ταdd .
By hypothesis, we have the isomorphism of graded A-algebras of the form

A[T1, . . . , Td ] ∼−→ gr•I (A)

given by T α �→ τα mod In+1, for any α ∈ N
d such that |α| = n. Moreover, we

can check τα mod In+1 is an A-basis of PnA/R for both A-algebra structures. We

denote by {∂ [k], |k| ≤ n} be the dual basis of DA/R,n = HomA(d0∗(P nA/R),A)
of {τ k, |k| ≤ n}. Since the morphism Pn+1

A/R � PnA/R sends τα mod In+2 to τα

mod In+1, then the monomorphism DA/R,n ↪→ DA/R,n+1 sends ∂ [k] to ∂[k] for
|k| ≤ n. Hence, we get on DA/R the basis {∂ [k], k ∈ Nd} as A-module.

Let εi = (0, . . . , 0, 1, 0, . . . , 0) where 1 is at the ith place. Set ∂i := ∂[εi ].
Proposition 1.2.19 We have the following relations:

1. ∀f ∈ A, ∀n ≥ 0, we have in PnA/R the formula d1(f ) =∑
|k|≤n ∂ [k](f )τ k .

2. ∀k ≤ i, ∂[k](t i) =
(
i
k

)
t i−k .
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3. ∀k′, k′′ ∈ Nd , ∂[k′]∂ [k′′] =
(
k′+k′′
k′

)
∂ [k′+k′′].

4. ∀k ∈ N
d, ∀f ∈ A, ∂ [k]f =∑

k′+k′′=k ∂[k
′](f )∂ [k′′].

Proof With notation 1.2.15, the part 1) is obvious from the fact that {∂ [k], |k| ≤ n}
is the dual basis of {τ k, |k| ≤ n}. Using d1(t

i) = (1 ⊗ t)i = (τ + t ⊗ 1)i =
∑
k≤i

(
i
k

)
t i−kτ k , this yields the second formula. From δn,n

′
(τi) = �⊗τi+τi⊗�,

we get δn,n
′
(τ l) =∑

l′+l′′=l τ l
′ ⊗τ l′′ . Hence, (id ◦∂[k′′])◦δn,n′ (τ l) =

(
l

l−k′′
)
τ l−k′′ .

This yields ∂ [k′]∂ [k′′](τ l) = ∂ [k′] ◦ (id ◦ ∂[k′′]) ◦ δn,n′ (τ l) = δl,k′+k′′
(
k′+k′′
k′

)
, where

δl,k′+k′′ is the Kronecker symbol. Hence, we get the third formula. By using 1.2, we
get the commutative diagram

A

d1

f

d1

∼

A

d1

A

P 0

A/R

f

d1

Pn
A/R

∂ [k]

Pn
A/R

δn,0

Pn
A/R ⊗A P 0

A/R.

id⊗f

(1.3)

Hence, by identifyingA with a R-subalgebra ofDA/R and A with P 0
A/R , this yields

by definition of the product in DA/R the formula ∂[k]f (τ i) = ∂ [k]((1 ⊗ f )τ i).
Hence, using the formula 1), we get ∂[k]f (τ i) = ∂ [k]

(∑
|k′|≤n ∂ [k

′](f )τ k′+i
)
=

∂[k−i](f ). ��
1.2.20

1. If R is an Fp-algebra, then using 1.2.19. 3, we get ∂k = ∂ [k]k!. Hence, ∂pi =
p∂ [pεi ] = 0.

2. Suppose R is a Q-algebra. Then ∂ [k] = ∂k/k!. Hence DA/R is generated by
∂1, . . . , ∂d and A as R-algebra.

Remark 1.2.21

1. Using 1.2.19.4, we can check grDA/R := ⊕n≥0DA/R,n/DA/R,n+1 is a commu-
tative A-algebra.

2. Suppose R is a Q-algebra and A = R[T1, . . . , Td ]. Then DA/R is the non com-
mutative R-algebra generated by T1, . . . , Td, ∂1, . . . , ∂d subject to the relations
[Ti, Tj ] = 0, [∂i, ∂j ] = 0, [∂i , Tj ] = ∂iTj − Tj∂i = δij , ∀i, j .
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1.2.4 Left DA/R-Modules

We keep notation and hypotheses of the Sect. 1.2.3.

Definition 1.2.22 Let E be an A-module. A stratification on E is a collection of
PnA/R-linear isomorphisms

εn : PnA/R ⊗A E ∼−→ E ⊗A PnA/R
such that

1. ε0 = id and the family (εn)n is compatible with the restrictions PnA/R → Pn
′
A/R ,

for any n ≤ n′;
2. for any integers n, n′, the diagram

Pn
A/R ⊗A Pn

A/R ⊗A E
∼

δn,n
n+n )

∼
q

n,n
1 n+n )

E ⊗A Pn
A/R ⊗A Pn

A/R

Pn
A/R ⊗A E ⊗A Pn

A/R

∼
q

n,n
0 n+n )

(1.4)

where qn,n
′

0 : Pn+n′A/R � PnA/R
id⊗d0−→ PnA/R ⊗A Pn

′
A/R, and qn,n

′
1 : Pn+n′A/R �

Pn
′
A/R

d1⊗id−→ PnA/R ⊗A Pn
′
A/R , is commutative.

Remark 1.2.23 Let πij : A⊗R A→ A⊗R A⊗R A be the morphism corresponding
to the projection at the i and j places. Let ri : A→ A⊗R A⊗R A be the morphism
corresponding to the projection at the ith place. Let μ(2) : A⊗R A⊗R A→ A be
the morphism corresponding to the diagonal morphism, and et I (2) := kerμ(2).
We denote by PnA/R(2) := A⊗R A⊗R A/I (2)n+1 for any n ∈ N and by rni : A→
PnA/R(2) the homomorphism induced by ri .

Modulo the canonical isomorphismA⊗RA⊗RA ∼−→ (A⊗RA)⊗A(A⊗RA), we
have I (2) = I⊗A (A⊗RA)+(A⊗RA)⊗AI . Indeed, let x =∑

i,j,k ai⊗a′j⊗a′′k ∈
A⊗RA⊗RA. Then,

∑
i,j,k ai⊗a′j⊗a′′k =

∑
i,j,k(ai⊗a′j )⊗(1⊗a′′k ) ≡

∑
i,j,k(1⊗

aia
′
j )⊗(1⊗a′′k ) mod I⊗A (A⊗RA) =∑

i,j,k(�⊗(aia′j⊗a′′k ) ≡
∑
i,j,k(�⊗(1⊗

aia
′
ja
′′
k ) mod (A⊗R A)⊗A I . Hence, I (2) ⊂ I ⊗A (A⊗R A)+ (A⊗R A)⊗A I .

The converse inclusion is obvious.
Hence I (2)n+n′+1 ⊂ In+1⊗A (A⊗R A)+(A⊗RA)⊗A In′+1 ⊂ I (2)min{n,n′ }+1.

This yields the commutative diagram
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A ⊗R A

π01

π12

π02
A ⊗R A ⊗R A

∼
(A ⊗R A) ⊗A (A ⊗R A)

Pn+n
A/R

πn+n
01

πn+n
12

πn+n
02

Pn+n
A/R (2) P n

A/R ⊗A Pn
A/R

Pn+n
A/R

q
n,n
0

q
n,n
1

δn,n
P n

A/R ⊗A Pn
A/R,

(1.5)

where πn+n
′

ij : Pn+n′A/R → Pn+n
′

A/R (2) denotes the unique homomorphism making
commutative the left top square. Hence, the cocycle condition is equivalent to the
following condition:

� for any n ∈ N, we have the equality πn∗02 (εn) = πn∗01 (εn) ◦ πn∗12 (εn), i.e. the
following diagram commutes

πn∗
12

dn∗
1

(E)
∼

πn∗
12 n)

πn∗
12

dn∗
0

(E)

rn∗
2

(E) πn∗
02

dn∗
1

(E)

πn∗
02 n) ∼

πn∗
01

dn∗
1

(E)

πn∗
01 n)∼

rn∗
1

(E)

rn∗
0

(E) πn∗
02

dn∗
0

(E) πn∗
01

dn∗
0

(E) rn∗
0

(E). (1.6)

Proposition 1.2.24 Let E be an A-module.

1. The following datum are equivalent:

(a) A structure of left DA/R-module on E extending its structure of A-module
via the homomorphism of R-algebras A→ DA/R .

(b) A compatible family ofA-linear map θn : E→ E⊗APnA/R such that θ0 = id
and such that for any n, n′ ∈ N the diagram

E ⊗A Pn+n
A/R

id⊗δn,n

E ⊗A Pn
A/R ⊗A Pn

A/R

E

θn+n

θn
E ⊗A Pn

A/R

θn⊗id

(1.7)

is commutative.
(c) A stratification (εn)n∈N on E.
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2. AnA-linear homomorphismφ : E→ F between two leftDA/R-module isDA/R-
linear if and only if φ is horizontal, i.e., the following diagram is commutative
for any n ∈ N

Pn
A/R ⊗A E

id⊗φ

n

∼ E ⊗A Pn
A/R

φ⊗id

P n
A/R ⊗A F

n

∼ F ⊗A Pn
A/R.

(1.8)

Proof A structure of left DA/R-module on E extending its A-module structure is
equivalent to a family of A-linear maps μn : DA/R,n ⊗A E→ E such that μ0 = id
and such that, ∀n, n′, the following diagrams

DA/R,n ⊗A E
μn

E,

DA/R,n ⊗A E

μn

DA/R,n ⊗A DA/R,n ⊗A E
μn

DA/R,n ⊗A E

μn

DA/R,n+n ⊗A E
μn+n

E

(1.9)

are commutative. By adjunction, the morphism μn is equivalent to a morphism
of the form θn : E → HomA(DA/R,n, E)

∼−→ E ⊗A PnA/R . Since DA/R,n′ ⊗A
DA/R,n → DA/R,n+n′ is given by P ′ ⊗P �→ P ′ ◦(id⊗P)◦δn,n′ , we can check that
the commutativity of the diagram 1.7 is equivalent to the right one of 1.9. Hence, we
get the equivalence between (a) and (b). We get the equivalence between the datum
θn and εn via the commutative diagram

E
θn

d1⊗id

E ⊗A Pn
A/R

Pn
A/R ⊗A E.

n

(1.10)

Finally, the fact that εn is necessarily an isomorphism comes from Lemma 1.2.25
below which gives an explicit formula of the inverse function. ��
Lemma 1.2.25 Let E be a left DA/R-module. Let x ∈ E. We have the formulas

θn(x) = εn(1⊗ x) =
∑

|k|≤n
∂ [k](x)⊗ τ k, (1.11)

ε−1
n (x ⊗ 1) =

∑

|k|≤n
(−1)|k|τ k ⊗ ∂ [k](x). (1.12)
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Proof Let us check the formula 1.11. Since PnA/R is a free A-module (for its
left structure of A-module, by default), the canonical morphism ev : PnA/R →
HomA(DA/R,n,A) is an isomorphism. Let {∂[k]∗, |k| ≤ n} be the dual basis of
{∂[k], |k| ≤ n}. Via this isomorphism, τ k is sent to ∂ [k]∗. Hence, the composition

E⊗APnA/R
∼−→ E⊗AHomA(DA/R,n,A)

∼−→ HomA(DA/R,n, E) sends
∑
xk⊗τ k

to (∂ [k] �→ xk). Since μn : DA/R,n⊗A E→ E, is given by ∂ [k] ⊗x �→ ∂[k](x), then
E→ HomA(DA/R,n, E) is given by x �→ (∂[k] �→ ∂[k](x)), and we are done.

By using 1.2.19, we can check that the PnA/R-linear morphism defined via the
right term of 1.12 is the inverse function of εn. ��
Corollary 1.2.26 Let E,F be two left DA/R-modules.

1. There exists a unique structure of DA/R-module on E ⊗A F extending its
canonical structure of A-module such that, for any k ∈ N

d, x ∈ E, y ∈ F ,

∂ [k](x ⊗ y) =
∑

i≤k
∂ [i](x)⊗ ∂[k−i](y). (1.13)

2. There exists a unique structure of DA/R-module on HomA(E,F ) extending its
canonical structure of A-module such that, ∀k ∈ Nd , for any φ ∈ HomA(E,F )

(∂ [k]φ)(x) =
∑

i≤k
(−1)|i|∂ [k−i]

(
φ(∂ [i]x)

)
. (1.14)

Proof The unicity is obvious. Let us check the existence. The stratification of E⊗A
F is given by the composition

εE⊗Fn : PnA/R ⊗A E ⊗A F ∼−→
εEn ⊗id

E ⊗A PnA/R ⊗A F ∼−→
id⊗εFn

E ⊗A F ⊗A PnA/R.

We compute 1⊗ x⊗ y �→∑
i ∂
[i](x)⊗ τ i ⊗ y �→∑

i

∑
j ∂

[i](x)⊗ ∂[j ](y)⊗ τj τ i .
We proceed similarly for the second part. ��
Definition 1.2.27 Let E be an A-module. A connection on E is an additive map
∇ : E→ E ⊗A �1

A/R such that ∇(ax) = a∇(x)+ x ⊗ da, for any a ∈ A, x ∈ E.

We denote by �iA/R := ∧i�1
A/R. We get the map ∇ : E ⊗A �iA/R → E ⊗A �i+1

A/R,

given by x ⊗ ω �→ ∇(x)∧ω+ (−1)ix ∧ dω for any x ∈ E and ω ∈ �iA/R. We say

that the connection is integral if ∇2 = 0.

Theorem 1.2.28 Suppose R is a Q-algebra. There is a bijection between the data
of an integrable connection on E and that of DA/R-module extending its structure
of A-module.

Proof Left to the reader. ��
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1.3 Berthelot’s Ring of Differential Operators of Finite Level
and Infinite Order

Let R be a complete discrete valuation ring of mixed characteristic (0, p) with
perfect residue field k, uniformizer π , ramification index e. Let K be the fraction
field of R. For example, R might be the Witt vectors of a perfect field of
characteristic p.

We focus in the affine case as follows (except for the last subsection). Let A
be a commutative flat R-algebra separated and complete for the p-adic topology.
For any n ∈ N, we set An := A/πn+1A, Rn := R/πn+1R. We denote by I the
kernel of the canonical morphism μ : A⊗̂RA → A, where A⊗̂RA is the p-adic
completion of A⊗R A. Let t1, . . . , td ∈ A, τi := 1⊗ ti − ti ⊗ 1 ∈ A⊗̂RA for any
i = 1, . . . , d . For any n ∈ N, for any i = 1, . . . , d , let τin be the image of τi in
A⊗̂RA/πn+1(A⊗̂RA) ∼−→ An ⊗Rn An.
(*) We suppose in this chapter that for any n ∈ N the sequence τ1n, . . . , τdn is a

quasi-regular sequence of An ⊗Rn An.
Examples Let R{T1, . . . , Td} be the p-adic completion of the polynomial algebra
R[T1, . . . , Td ]. Then τi := 1⊗Ti−Ti⊗1 for any i = 1, . . . , d satisfy the condition
(∗).

More generally, let f : R{T1, . . . , Td} → A be an étale morphism. Let
t1, . . . , td ∈ A be the image of T1, . . . , Td via f . Then τi := 1⊗ ti− ti⊗1 ∈ A⊗̂RA
for any i = 1, . . . , d satisfy the condition (∗).

1.3.1 Formal Affine Case, Standard Ring of Differential
Operators

Definition 1.3.1 For any n ∈ N, we set PnA/R := (A⊗̂RA)/In+1. The ring PnA/R
has two A-algebra structures: the left one induced by the left structure of A⊗̂RA,
and the right one. We denote by d0 : A → PnA/R the homomorphism given by the
left structure, and d1 : A→ PnA/R that given by the right one.

Definition 1.3.2 An R-linear map h : A→ A is a “differential operator of A/R of
order ≤ n” if and only if there exists an A-linear map h̃ : d0∗(P nA/R) → A making
commutative the diagram

d0∗(P n
A/R)

h
A

A

d1
h
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We denote by DiffnA/R the set of differential operators of A/R of order ≤ n. Since
d0∗(P nA/R) is generated as A-module by the image of d1, then we get the uniqueness

of such h̃ if it exists. Hence we get the bijection DiffnA/R → HomA(d0∗(P nA/R),A)
given by h �→ h̃. We set DA/R,n := HomA(d0∗(P nA/R),A).

Since PnA/R has two structures of A-algebra inducing a structure of A-bimodules,
then DA/R,n is endowed with a structure of A-bimodule. The left (resp. right)
structure of A-module of DA/R,n is by definition that coming from the left (resp.
right) structure of A-algebra of PnA/R .

Lemma 1.3.3 There exists a unique homomorphism δn,n
′ : Pn+n′A/R → PnA/R ⊗A

Pn
′
A/R of A-algebras for both left and right structures of A-algebras making

commutative the following diagram

A
d1

d1

Pn+n
A/R

δn,n

P n
A/R

d1
Pn

A/R ⊗A Pn
A/R. (1.15)

Proposition 1.3.4 Let h ∈ DiffnA/R, h
′ ∈ Diffn

′
A/R. Then h ◦ h′ ∈ Diffn+n

′
A/R .

Proof We copy the proof of 1.2.12. ��
Definition 1.3.5 Via the bijection, DiffnA/R

∼−→ DA/R,n, we get an R-algebra

structure on DA/R := ∪n∈NDA/R,n making the bijection DiffA/R
∼−→ DA/R an

isomorphism ofR-algebras and ofA-bimodule. The multiplication can be described
via the diagram 1.2. We also get a natural action of DA/R on A. This is the ring of
differential operators on A/R. Finally, the mappingA→ DA/R given by a �→ a · 1
is the same for the left or right structure of A-module. Moreover, the mapping
A → DA/R is an homomorphism of R-algebras, and we can view A as an R-
subalgebra of DA/R .

Notation 1.3.6 We check that τα mod In+1 is a basis of PnA/R for both A-

algebra structures. We denote by {∂[k], |k| ≤ n} be the dual basis of DA/R,n =
HomA(d0∗(P nA/R),A) of {τ k, |k| ≤ n}. Since the morphism Pn+1

A/R � PnA/R sends

τα mod In+2 to τα mod In+1, then the monomorphism DA/R,n ↪→ DA/R,n+1
send ∂[k] to ∂[k] for |k| ≤ n. Hence, we get on DA/R the basis {∂[k], k ∈ Nd} as A-
module. Let εi = (0, . . . , 0, 1, 0, . . . , 0) where 1 is at the ith place. Set ∂i := ∂ [εi ].
Proposition 1.3.7 We have the following relations:

1. ∀f ∈ A, ∀n ≥ 0, we have in PnA/R the formula d1(f ) =∑
|k|≤n ∂ [k](f )τ k .

2. ∀k ≤ i, ∂[k](t i) =
(
i
k

)
t i−k .
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3. ∀k′, k′′ ∈ Nd , ∂[k′]∂ [k′′] =
(
k′+k′′
k′

)
∂ [k′+k′′].

4. ∀k ∈ N
d, ∀f ∈ A, ∂ [k]f =∑

k′+k′′=k ∂[k
′](f )∂ [k′′].

Proof We copy the proof of 1.2.19. ��

1.3.2 Formal Affine Case, Berthelot’s Ring of Differential
Operators of Level m

Fix a level m ∈ N.

1.3.8 For any k ∈ N, we set k = q(m)k pm + r(m)k , where q(m)k ∈ N and 0 ≤ r(m)k <

pm. For any k, k′ ∈ N, k′ ≤ k, set

{
k
k′
}
(m)

:= q
(m)
k !

q
(m)

k′ !q(m)k−k′ !
,
{
k
k′
}
(∞) := 1.

For any m ∈ N ∪ {∞}, we set
〈
k
k′
〉
(m)

:=
(
k
k′

)

{
k
k′

}

(m)

.

Notation 1.3.9 Let k ∈ N. We write uniquely k = ∑
i aip

i , such that ai ∈
{0, . . . , p − 1}. We set σ(k) :=∑

i ai . Then we compute that vp(k!) = k−σ(k)
p−1 .

Lemma 1.3.10 Let k′, k′′ ∈ N, k := k′ + k′′. We write k = ∑
i aip

i , k′ =∑
i a
′
ip
i , k′′ =∑

i a
′′
i p
i , with ai, a′i , a′′i ∈ {0, . . . , p − 1}.

1. σ(k′ + k′′) ≤ σ(k′)+ σ(k′′).
2. We have σ(k′ + k′′) = σ(k′)+ σ(k′′) if and only if ai = a′i + a′′i for any i ∈ N.

Proof Since

0 ≤ vp
((
k
k′
)) = σ(k

′)+ σ(k′′)− σ(k)
p − 1

,

then we get the first statement.
If {i | a′i+a′′i ≥ p} is empty then we get σ(k′+k′′) = σ(k′)+σ(k′′). Conversely,

suppose {i | a′i + a′′i ≥ p} is not empty. Let i0 be its smallest element. Then, for
any i < i0, we get ai = a′i + a′′i . Hence, we can suppose, for any i < i0, 0 =
ai = a′i = a′′i . Let i1 = min{i > i0; a′i + a′′i < p − 1}. Since a′i1 + a′′i1 < p − 1,

then
∑
i≤i1 a

′
ip
i +∑

i≤i1 a
′′
i p
i =∑

i≤i1 aip
i . Hence,

∑
i>i1

a′ipi +
∑
i>i1

a′′i pi =∑
i>i1

aip
i . Following the first part, this yields the formula

∑
i>i1

a′i +
∑
i>i1

a′′i ≥∑
i>i1

ai .
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On the other hand, we compute more precisely
∑
i≤i1 a

′
ip
i + ∑

i≤i1 a
′′
i p
i =

(a′i0 + a′′i0 − p)pi0 +
∑
i0<i<i1

(a′i + a′′i + 1− p)pi + (a′i1 + a′′i1 + 1)pi1 , and then
ai0 = a′i0 + a′′i0 − p, ai = a′i + a′′i + 1− p for i0 < i < i1, and ai1 = a′i1 + a′′i1 + 1.
Hence,

∑
i≤i1 ai = (1−p)(i1 − i0)+

∑
i≤i1 a

′
i + a′′i <

∑
i≤i1 a

′
i + a′′i . This yields,

σ(k′ + k′′) < σ(k′)+ σ(k′′). ��
Lemma 1.3.11

(a) For any k, k′ ∈ N,
{
k
k′
}
(m)

∈ Z, and
〈
k
k′
〉
(m)

∈ Z(p).

(b) For any j ∈ N, for any q ′ ≤ q , suppose either j ≥ m or q < p. Then〈
pjq

pj q ′
〉

(m)
∈ Z

∗
(p).

(c) For any j, r, q ∈ N, such that r < pj , we have
〈
pj q+r
pjq

〉

(m)
∈ Z

∗
(p).

Proof

(1) Since k = (q
(m)

k′ + q(m)
k−k′)p

m + (r(m)
k′ + r(m)

k−k′), then q(m)
k′ + q(m)

k−k′ ≤ q
(m)
k .

Hence,
{
k
k′
}
(m)

∈ Z. Set k′′ := k − k′. We compute vp(
〈
k
k′
〉
(m)
) =

(k−σ(k))−(k′−σ(k′))−(k′′−σ(k′′))−(q(m)k −σ(q(m)k ))+(q(m)
k′ −σ(q

(m)

k′ )+(q
(m)

k′′ −σ(q
(m)

k′′ )
p−1 . Since

σ(k) = σ(q(m)k )+ σ(r(m)k ) (and with some primes), we get

(p − 1)vp(
〈
k
k′
〉
(m)
) = q(m)

k′ + q(m)
k′′ − q(m)k + σ(r(m)

k′ )+ σ(r(m)k′′ )− σ(r(m)k ).

(1.16)

We have two case: either q(m)k = q
(m)

k′ + q(m)
k′′ and r(m)k = r

(m)

k′ + r(m)
k′′ or

q
(m)
k = q(m)

k′ + q(m)
k′′ + 1 and pm + r(m)k = r(m)

k′ + r(m)
k′′ . Using the first part of

Lemma 1.3.10, in the first case we get σ(r(m)
k′ )+ σ(r(m)k′′ )− σ(r(m)k ) ≥ 0. Using

again Lemma 1.3.10, in the second case we get 1+σ(r(m)k ) = σ(r(m)
k′ +r(m)k′′ ) ≤

σ(r
(m)

k′ )+ σ(r(m)k′′ ), and we are done.
(2) Set k := pjq, k′ := pjq ′, k′′ := k − k′. a) If j ≥ m, then k =

pm(pj−mq), k′ = pm(pj−mq ′), k′′ := k − k′ = pm(pj−mq − pj−mq ′).
Hence, 0 = r

(m)
k = r

(m)

k′ = r
(m)

k′′ , and q(m)k = q
(m)

k′ + q(m)
k′′ . By using the

formula 1.16, this yields vp(
〈
pj q

pj q ′
〉

(m)
) = 0.

(b) Now suppose q < p and j < m. In that case pjq < pm, hence q(m)k = 0

and r(m)k = k; and similarly with some primes. Hence, we are done.

(3) Since r < pj , there exists ai ∈ {0, . . . , p − 1} such that we can write
k′ := pjq = ∑

i≥j aipi and k′′ := r = ∑
i<j aip

i . Hence, k := pjq + r =
∑
i≥0 aip

i . This yields q(m)k = q(m)
k′ + q(m)

k′′ and σ(r(m)k ) = σ(r(m)
k′ )+ σ(r(m)k′′ ).

We conclude by using the formula 1.16.
��
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Lemma 1.3.12 For any k′, k′′ ∈ N, we set

C
(m)

k′′,k′ :=
q
(m)

k′k′′ !
(
q
(m)

k′ !
)k′′
q
(m)

k′′ !
.

Then C(m)
k′′,k′ ∈ N.

Proof We have C(0)
k′′,k′ = (k′k′′)!

(k′!)k′′ k′′! =
∏k′′−1
i=1

(
(i+1)k′−1
k′−1

)
∈ N.

Set q = q(m)
k′k′′ , q

′ = q(m)
k′ , q

′′ = q(m)
k′′ , r = r(m)k′k′′ , r

′ = r(m)
k′ , r

′′ = r(m)
k′′ , s =

q
(m)

rr ′ , t = r(m)rr ′ . We get q = pmq ′q ′′ + q ′r ′′ + q ′′r ′ + s. We compute

C
(m)

k′′,k′ = r ′′!(q ′′r ′+s)!(pm!)q
′′
C
(0)
r ′′,q ′C

(0)
q ′′,pmq ′ (C

(0)
pm,q ′ )

q ′′ q!
(pmq ′q ′′)!(q ′r ′′)!(q ′′r ′ + s)! ∈ N.

��
1.3.13 Let B be a flat commutative R-algebra and J be an ideal of B. For any
x ∈ J , any k ∈ N, we set

x{k}(m) := xk

q
(m)
k !

∈ B ⊗R K.

The operations x �→ x{k}(m) satisfy the following properties:

(i) ∀x ∈ J, x{0}(m) = 1, x{1}(m) = x, ∀k ≥ 1, x{k}(m) ∈ J ⊗R K;
(ii) ∀x ∈ J, ∀b ∈ B, ∀k ∈ N, (bx){k}(m) = bkx{k}(m) .

(iii) ∀x, y ∈ J, ∀k ∈ N, (x + y){k}(m) =∑
k′+k′′=k

〈
k
k′
〉
(m)
x{k′}(m)y{k′′}(m) ;

(iv) ∀x ∈ J, ∀k′, k′′ ∈ N, x{k′}(m)x{k′′}(m) = {
k
k′
}
(m)
x{k′+k′′}(m) ;

(v) ∀x ∈ J, ∀k′, k′′ ∈ N,
(
x{k′}(m)

)
{k′′}(m) = C(m)

k′′,k′x
{k′k′′}(m)

Them-PD envelop P(m)(B, J ) of J as an ideal of B is the B-subalgebra of B⊗R
K generated by the elements x{k}(m) for any x ∈ J and any k ∈ N. We denote by J
the ideal of P(m)(B, J ) generated by x{k}(m) for any x ∈ J and any integer k ≥ 1.
Using the above properties of the operations x �→ x{k}(m) , we can check that J is
stable under these operations and that (P(m)(B, J ), J ) satisfies the corresponding
universal property. Berthelot defined in a more general context the notion of m-PD
envelop but our particular case is sufficient for our purpose. Using Lemma 1.3.12
and the above properties of the operations x �→ x{k}(m) , we also check that if J
is generated by (xα)α∈L, then P(m)(B, J ) generated as B-algebra by the elements

x
{k}(m)
α for any α ∈ L and any k ∈ N, and the ideal J of P(m)(B, J ) is generated by

x
{k}(m)
α for any α ∈ L and any integer k ≥ 1.
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Notation 1.3.14 We denote by PnA/R,(m) the m-PD envelop of (P nA/R, I/I
n+1). In

other words, PnA/R,(m) is the subring of PnA/R ⊗R K generated by {x{k}(m),∀k ∈
N, ∀x ∈ I/In+1}.

For any k ∈ N
d , we set τ {k}(m) := τ

{k1}(m)
1 · · · τ {kd }(m)d , where τ1, . . . , τd are by

abuse of notation the image of τ1, . . . , τd in PnA/R ⊂ PnA/R ⊗R K . We check that
PnA/R,(m) is an A-subalgebra for both structures of PnA/R ⊗R K and that PnA/R,(m) is

a free A-module for both structure with the basis {τ {k}(m),∀k ∈ Nd, |k| ≤ n}.
Notation 1.3.15 Let k = (k1, . . . , kd) ∈ Nd . We set q(m)k ! := q

(m)
k1
! · · · q(m)kd

!.
For any k, k′ ∈ Nd , we set

{
k

k′
}

(m)
:=

{
k1
k′1

}

(m)
· · ·

{
kd
k′d

}

(m)
and

〈
k

k′
〉

(m)
:=

〈
k1
k′1

〉

(m)
· · ·

〈
kd
k′d

〉

(m)
.

Since q(m+1)
k ! divides q(m)k ! for any k ∈ Nd , then we have the inclusions

Pn
A/R,(m+1) ⊂ Pn

A/R,(m)
and ∩m∈NPnA/R,(m) = PnA/R . We denote by D(m)A/R,n the

dual of PnA/R,(m) for the left A-algebra structure. We denote by {∂<k>(m) , k ∈
Nd such that |k| ≤ n} the dual basis of {τ {k}(m) , k ∈ Nd such that |k| ≤ n}.
The inclusions PnA/R ⊂ PnA/R,(m+1) ⊂ PnA/R,(m) induce by duality D(m)A/R,n →
D
(m+1)
A/R,n → DA/R,n. We compute that ∂<k>(m) is sent to

q
(m)
k !

q
(m+1)
k !∂

<k>(m+1) in D(m+1)
A/R,n

and is sent to q(m)k !∂[k] in DA/R,n. In particular, they are injective. By identifying

D
(m)
A/R,n as an A-subalgebra of DA/R,n, we get the equality ∂<k>(m) = q(m)k !∂ [k].
We set D(m)A/R := ∪n∈ND(m)A/R,n ⊂ ∪n∈NDA/R,n = DA/R . Then D(m)A/R is equal to

the free A-submodule of DA/R (for the right or left structure) whose basis consists

in {∂<k>(m), k ∈ Nd }. This yields the equalityD(m)A/R,n = D(m)A/R ∩DA/R,n.

Remark 1.3.16 We have the inclusions D(0)A/R ⊂ D(1)A/R ⊂ · · · ⊂ D(m)A/R ⊂ DA/R .

Moreover, since q(m)k = 0 for m large enough, we get ∪m∈ND(m)A/R = DA/R . Hence,

we might write D(∞)A/R := DA/R .

Proposition 1.3.17

1. Then D(0)A/R is equal to the R-subalgebra of DA/R generated by ∂1, . . . , ∂d . This
is the ring of differential operators of level 0 of A/R.

2. The ring D(0)A/R is left and right Noetherian.

Proof

(1) We have to check that ⊕k∈NdA∂k is an R-subalgebra of DA/R . Using 1.3.7. 4,

we compute ∀k ∈ Nd, ∀f ∈ A, ∂kf = ∑
k′+k′′=k ∂[k

′](f ) k!
k′′!∂

k′′ , which
proves the first part.
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(2) Let ξi be the image of ∂i in grD(0)A/R = ⊕n∈ND(0)A/R,n/D(0)A/R,n−1. Using 1.3.7. 4,

we can check that R[T1, . . . , Td ] → grD(0)A/R given by Ti �→ ξi is an

isomorphism of graded rings. This yields that grD(0)A/R is Noetherian and then

so is D(0)A/R .
��

To extend the above proposition to the level m, we will need the following
propositions.

Proposition 1.3.18

1. For any k′, k′′ ∈ N
d , we have ∂<k

′>(m)∂<k
′′>(m) =

〈
k+k′
k′

〉

(m)
∂<k+k′>(m) .

2. For any k ∈ Nd, f ∈ A,

∂<k>(m)f =
∑

k′+k′′=k

{
k

k′
}

(m)
∂<k

′>(m)(f )∂<k
′′>(m) .

Proof This is straightforward from 1.3.7. ��
Proposition 1.3.19 Let k =∑m

j=0 ajp
j , such that aj ∈ N for any j and 0 ≤ aj ≤

p − 1 for any 0 ≤ j ≤ m− 1. There exists u ∈ Z
∗
(p) such that

∂
<k>(m)
i = u

m∏

j=0

(
∂
[pj ]
i

)aj
.

Proof For any j ∈ N, by induction in n we compute

(

∂
<pj>(m)
i

)n
=

∂
<npj>(m)
i

∏n
l=2

〈
lpj

pj

〉

(m)
. Moreover,

m∏

j=0

∂
<ajp

j>(m)
i = ∂<k>(m)i

m−1∏

j=0

〈∑j+1
l=0 alp

l

aj p
j

〉

(m)

.

Hence,
∏m
j=0

(

∂
<pj>(m)
i

)aj
= ∏m

j=0 ∂
<ajp

j>(m)
i

∏aj
l=2

〈
lpj

pj

〉

(m)
= ∂

<k>(m)
i

∏m−1
j=0

∏aj
l=2

〈
lpj

pj

〉

(m)

〈∑j+1
l=0 alp

l

aj p
j

〉

(m)

. Using 1.3.11, we can check
∏m−1
j=0

∏aj
l=2

〈
lpj

pj

〉

(m)
〈∑j+1

l=0 alp
l

aj p
j

〉

(m)

∈ Z∗(p). Since for any j ≤ m, we have ∂
<pj>(m)
i = ∂ [pj ]i , then we are

done.
��
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Corollary 1.3.20 The module D(m)A/R is the R-subalgebra of DA/R generated by
DA/R,pm . This is the ring of differential operators of level m of A/R.

Proof This is a straightforward consequence of Propositions 1.3.11, 1.3.18
and 1.3.19. ��
Corollary 1.3.21 The R-algebraD(m)A/R is twosided Noetherian.

Proof We have D(m)A/R,n = ⊕|k|≤nA∂<k>(m) . Using 1.3.18, we can check that

grD(m)A/R is a commutative A-algebra. We get from 1.3.19, that grD(m)A/R is a

commutative A-algebra generated by the image of ∂
<pj>(m)
i , for j = 0, . . . ,m and

i = 1, . . . , d via the map D(m)A/R → grD(m)A/R . Hence, grD(m)A/R is Noetherian, and we
are done.

��
Remark 1.3.22 This is false that DA/R is twosided Noetherian.

1.3.3 Left D
(m)

A/R
-modules

Let m ∈ N. We have seen in 1.3.20 that D(m)A/R is the R-subalgebra of DA/R

generated by DA/R,pm . In fact we can endow canonically D(m)A/R with an R-algebra

structure such that D(m)A/R → DA/R is an homomorphism of R-algebras as follows.

Lemma 1.3.23 There exists a unique homomorphism δ
n,n′
(m) : Pn+n

′
A/R,(m) →

PnA/R,(m)⊗A Pn
′
A/R,(m) ofA-algebras for both left and right structures ofA-algebras

making commutative the following diagrams

A
d1

d1

P n+n
A/R,(m)

δ
n,n
(m)

P n
A/R,(m)

d1
P n

A/R,(m)
⊗A P n

A/R,(m)
,

P n+n
A/R ⊗R K

δn,n

P n+n
A/R,(m)

P n+n
A/R

δ
n,n
(m) δ

n,n

P n
A/R ⊗A P n

A/R P n
A/R,(m)

⊗A P n
A/R,(m) A P n

A/R
P n

A/R ⊗ R K.⊗

R K⊗

⊗id

(1.17)

Proof We check by a straightforward computation that the homomorphism δn,n
′ ⊗

id : Pn+n′A/R ⊗R K → PnA/R ⊗A Pn
′
A/R ⊗R K of 1.3.3 sends Pn+n′A/R,(m) to PnA/R,(m) ⊗A

Pn
′
A/R,(m). This yields the homomorphism δn,n

′
(m) : Pn+n

′
A/R,(m)→ PnA/R,(m)⊗APn

′
A/R,(m).

We conclude using 1.15. ��
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1.3.24 Let P ∈ D
(m)
A/R,n, P

′ ∈ D
(m)

A/R,n′ . We define PP ′ to be the composite
morphism

Pn+n
A/R,(m)

δ
n,n
(m)

P n
A/R,(m) ⊗A Pn

A/R,(m)

id⊗P
Pn

A/R,(m)

P
A.

We check that this is well defined, i.e. this is independent on the choice of such n and
n′. Moreover, we compute this yields an R-algebra structure on D(m)A/R . Following

the formal analogue of 1.2, we can check thatD(m)A/R → DA/R is an homomorphism
of R-algebras.

Definition 1.3.25 Let E be an A-module. An m-PD stratification on E is a
collection of PnA/R,(m)-linear isomorphisms

εn : PnA/R,(m) ⊗A E
∼−→ E ⊗A PnA/R,(m)

such that

1. ε0 = id and the family (εn)n is compatible with the restrictions PnA/R,(m) →
Pn

′
A/R,(m), for any n ≤ n′;

2. for any integers n, n′, the diagram

P n
A/R,(m) ⊗A P n

A/R,(m) ⊗A E
∼

δ
n,n
(m) n+n )

∼
q

n,n
1 n+n )

E ⊗A P n
A/R,(m) ⊗A P n

A/R,(m)

P n
A/R,(m)

⊗A E ⊗A P n
A/R,(m)

∼
q

n,n
0 n+n )

(1.18)

where q
n,n′
0 : Pn+n′A/R,(m) � PnA/R,(m)

id⊗d0−→ PnA/R,(m) ⊗A Pn
′
A/R,(m), and

q
n,n′
1 : Pn+n′A/R,(m) � Pn

′
A/R,(m)

d1⊗id−→ PnA/R,(m) ⊗A Pn
′
A/R,(m), is commutative.

Remark 1.3.26 Let πij : A⊗̂RA → A⊗̂RA⊗̂RA be the morphism corresponding
to the projection at the i and j places. Let ri : A → A⊗̂RA⊗̂RA be the morphism
corresponding to the projection at the ith place. Let μ(2) : A⊗̂RA⊗̂RA → A be
the morphism corresponding to the diagonal morphism, and et I (2) := kerμ(2).
We denote by PnA/R(2) := A⊗̂RA⊗̂RA/I (2)n+1 for any n ∈ N. For any n ∈ N,

let PnA/R,(m)(2) be the m-PD envelop of (P nA/R(2), I (2)/I (2)
n+1), and rni : A →

PnA/R(2) be the homomorphism induced by ri .
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Using the universal property of the m-PD envelop (or by an easy computation),
we get the homomorphism πnij : PnA/R,(m) → PnA/R,(m)(2) induced by πij (see
also 1.2.23). We get the commutative diagram

Pn+n
A/R,(m)

πn+n
01

πn+n
12

πn+n
02

Pn+n
A/R,(m)(2) P n

A/R,(m) ⊗A Pn
A/R,(m)

P n+n
A/R,(m)

q
n,n
0

q
n,n
1

δ
n,n
(m)

P n
A/R,(m) ⊗A Pn

A/R,(m).

(1.19)

Hence, the cocycle condition is equivalent to the following condition:

� for any n ∈ N, we have the equality πn∗02 (εn) = πn∗01 (εn) ◦ πn∗12 (εn), i.e. the
following diagram commutes

πn∗
12

dn∗
1

(E)
∼

πn∗
12 n)

πn∗
12

dn∗
0

(E)

rn∗
2

(E) πn∗
02

dn∗
1

(E)

πn∗
02 n) ∼

πn∗
01

dn∗
1

(E)

πn∗
01 n)∼

rn∗
1

(E)

rn∗
0

(E) πn∗
02

dn∗
0

(E) πn∗
01

dn∗
0

(E) rn∗
0

(E).
(1.20)

Proposition 1.3.27 Let E be an A-module.

1. The following datum are equivalent:

(a) A structure of left D(m)A/R-module on E extending its structure of A-module

via the homomorphism of R-algebras A→ D
(m)
A/R .

(b) A compatible family of A-linear map θn : E → E ⊗A PnA/R,(m) such that
θ0 = id and such that for any n, n′ ∈ N the diagram

E ⊗A Pn+n
A/R,(m)

id⊗δ
n,n
(m)

E ⊗A Pn
A/R,(m) ⊗A Pn

A/R,(m)

E

θn+n

θn
E ⊗A Pn

A/R,(m)

θn⊗id

(1.21)

is commutative.
(c) An m-PD stratification (εn)n∈N on E.
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2. AnA-linear homomorphismφ : E→ F between two leftD(m)A/R-module isD(m)A/R-
linear if and only if φ is horizontal, i.e., the following diagram is commutative
for any n ∈ N

Pn
A/R,(m) ⊗A E

id⊗φ

n

∼ E ⊗A Pn
A/R,(m)

φ⊗id

P n
A/R,(m) ⊗A F

n

∼ F ⊗A Pn
A/R,(m). (1.22)

Proof By adding some (m) at the write place, we can copy word by word the proof
of 1.2.24.

��
Lemma 1.3.28 We have the formula ∀x ∈ E, θn(x) = εn(1 ⊗ x) =∑
|k|≤n ∂<k>(m)(x)⊗ τ {k}(m) .

Proof Since PnA/R,(m) is a freeA-module, the canonical morphism ev : PnA/R,(m)→
HomA(D

(m)
A/R,n,A) is an isomorphism. Let {∂<k>(m)∗, |k| ≤ n} be the dual basis

of {∂<k>(m) , |k| ≤ n}. Via this isomorphism, τ {k}(m) is sent to ∂<k>(m)∗. Hence, the
compositionE⊗APnA/R,(m)

∼−→ E⊗AHomA(D
(m)
A/R,n,A)

∼−→ HomA(D
(m)
A/R,n, E)

sends
∑
xk ⊗ τ {k}(m) to (∂<k>(m) �→ xk). Since μn : D(m)A/R,n ⊗A E → E, is given

by ∂<k>(m) ⊗ x �→ ∂<k>(m)(x), then E → HomA(D
(m)
A/R,n, E) is given by x �→

(∂<k>(m) �→ ∂<k>(m)(x)), and we are done. ��
Corollary 1.3.29 Let E,F be two left D(m)A/R-modules.

1. There exists a unique structure of D(m)A/R-module on E ⊗A F extending its

canonical structure of A-module such that, for any k ∈ Nd, x ∈ E, y ∈ F ,

∂<k>(m)(x ⊗ y) =
∑

i≤k

{
k

i

}

(m)
∂<i>(m)(x)⊗ ∂<k−i>(m)(y). (1.23)

2. There exists a unique structure of D(m)A/R-module on HomA(E,F ) extending its

canonical structure of A-module such that, ∀k ∈ Nd , for any φ ∈ HomA(E,F )

(∂<k>(m)φ)(x) =
∑

i≤k
(−1)|i|

{
k
i

}

(m)
∂<k−i>(m)

(
φ(∂<i>(m)x)

)
. (1.24)

Proof The m-PD stratification of E ⊗A F is the composition εE⊗Fn : PnA/R,(m) ⊗A
E⊗AF ∼−→

εEn ⊗id
E⊗APnA/R,(m)⊗AF

∼−→
id⊗εFn

E⊗AF⊗APnA/R,(m). We get 1⊗x⊗y �→
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∑
i ∂
<i>(m)(x)⊗ τ {i}(m) ⊗ y �→∑

i

∑
j ∂
<i>(m)(x)⊗ ∂<j>(m)(y)⊗ τ {j }(m)τ {i}(m) =

∑
i

∑
j

{
i+j
i

}

(m)
∂<i>(m)(x)⊗∂<j>(m)(y)⊗τ {i+j}(m) . We proceed similarly for the

second part. ��

1.3.4 Weak p-Adic Completion

1.3.30 Let m ∈ N. Let D̂(m)A/R := lim←−nD
(m)
A/R/p

nD
(m)
A/R be the p-adic completion

of D(m)A/R . Let P ∈ D̂
(m)
A/R . Then there exists a unique sequence (ak)k∈Nd (resp.

(bk)k∈Nd ) of elements of A such that ak → 0 when |k| → ∞ (resp. bk → 0

when |k| → ∞) and P =∑
k∈Nd ak∂<k>(m) (resp. P =∑

k∈Nd ∂<k>(m)bk).
Berthelot has proved that the homomorphisms D̂(m)A/R ⊗R K → D̂

(m+1)
A/R ⊗R K

are flat (see [Ber96, 3.5.4]). We sketch the proof as follows. Let D′ be the subset
of D̂(m+1)

A/R of elements which can be written in the form P + Q with P ∈ D̂(m)A/R
and Q ∈ D(m+1)

A/R . Using the fact that D(m+1)
A/R and D̂(m)A/R are Noetherian, with some

technical computations we can proveD′ is a Noetherian ring. Hence, the extension
D′ → D̂′ is flat. Since D(m+1)

A/R ⊗R K = D
(m)
A/R ⊗R K = DA/R ⊗R K , we get

D′ ⊗R K = D̂
(m)
A/R. Moreover, we compute D̂′ = D̂

(m+1)
A/R ⊗R K . Hence, we are

done.

Notation 1.3.31 D
†
A/R := ∪m∈ND̂(m)A/R . This is Berthelot’s ring of differential

operators of finite level and infinite order. Following proposition 1.3.35 below, we
can viewD†

A/R as the p-adic weak completion ofDA/R , where the weakness means
that the majoration appearing in 1.3.35 is satisfied.

The ring D̂(m)A/R is Noetherian, but this is not the case of D†
A/R or D†

A/R ⊗R K .

Fortunately, since the homomorphisms D̂(m)A/R ⊗R K → D̂
(m+1)
A/R ⊗R K are flat, then

D
†
A/R ⊗R K is coherent. Hence, the notions of (left or right)D†

A/R ⊗R K-coherent

module and of (left or right) D†
A/R ⊗R K-module of finite presentation are then

identical. It is likely thatD†
A/R is not coherent but it is an open question.

Lemma 1.3.32 We denote by |.| the norm on Z defined by |n| = p−vp(n) for any
n ∈ Z.

1. ∀m ∈ N, ∃η < 1, ∃c ∈ R such that |q(m)k !| ≤ cηk for any k ∈ N.

2. ∀η < 1, ∃m ∈ N, such that ηk ≤ |q(m)k !| for any k ∈ N.

Proof

(1) Put q := q(m)k . If q =∑r
i=0 aip

i with ai ∈ {0, . . . , p− 1} for i = 0, . . . , r − 1
and ar ∈ {1, . . . , p − 1}, then 0 ≤ σ(q) ≤ (p − 1)(r + 1) < (p −
1)

(
logp(q + 1)+ 1

) ≤ (p − 1)
(
logp(k + 1)+ 1

)
. Moreover k/pm − 1 <
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q ≤ k/pm. Since vp(q!) = (q − σ(q)) /(p − 1), we get

k/pm(p−1)−1/(p−1)−logp(k+1)−1 < vp(q!) ≤ k/pm(p−1). (1.25)

Set f (k) := 1/(p−1)+logp(k+1)+1 = p/(p−1)+logp(k+1). There exists
k0 large enough such that for any k ≥ k0, we get 0 ≤ k/2pm(p − 1) − f (k).
This yields, for any k ∈ N, the inequality

k/2pm(p − 1)− f (k0) < vp(q!). (1.26)

Indeed, on one hand, if k ≤ k0, then f (k) ≤ k0 and then k/2pm(p − 1) −
f (k0) ≤ k/pm(p − 1) − f (k) < vp(q!). On the other hand, if k ≥ k0, then
−f (k0) ≤ 0 ≤ k/2pm(p − 1) − f (k). Hence, k/2pm(p − 1) − f (k0) ≤
k/pm(p − 1)− f (k) < vp(q!).

From the inequality 1.26, we get |q!| < pf (k0)(1/p1/2pm(p−1))k . We can
take η = 1/p1/2pm(p−1) < 1, c = pf (k0).

(2) Fix η < 1. Using 1.25, we get |q(m)k !| ≥ (1/p)k/pm(p−1) = (1/p1/pm(p−1))k .
For m large enough, 1/p1/pm(p−1) ≥ η. Hence, we are done.

��
1.3.33 For any i ∈ N, the canonical morphism DA/R/πi+1DA/R → DAi/Ri is an

isomorphism. This yields the isomorphism D̂A/R/πi+1D̂A/R
∼−→ DAi/Ri .

Remark 1.3.34 The ring A ⊗R K is a Tate K-algebra. For any isomorphism of
K-algebras of the form K{T1, . . . , Tr }/I ∼−→ A ⊗R K , we get a quotient norm
which endows A ⊗R K with a structure of Banach K-algebra. Such norms are all
equivalents (see [BGR84, 3.7.3, prop. 3]).

Proposition 1.3.35 Choose ‖ · ‖ a Banach norm on A ⊗R K . Let P =∑
k∈Nd ak∂ [k] ∈ D̂A/R . For any i ∈ N, let Pi ∈ DAi/Ri be the image of P . The

following conditions are equivalent:

1. P ∈ D†
A/R;

2. ∃α, β ∈ R such that ord(Pi) ≤ αi + β for any i ∈ N;
3. ∃c, η ∈ R+ such that η < 1 and ‖ ak ‖≤ cη|k|, for any k ∈ Nd .

Proof 1 ⇒ 2. Suppose P ∈ D
†
A/R . Then there exists m ∈ N large enough

such that P ∈ D̂(m)A/R . Let us fix such m. Following 1.3.30, there exists a unique
sequence (bk)k∈Nd of elements of A such that bk → 0 when |k| → ∞ and

P =∑
k∈Nd bk∂<k>(m) . Since ∂<k>(m) = q(m)k !∂[k], we get P =∑

k∈Nd bkq
(m)
k !∂ [k],

i.e. ak = bkq
(m)
k !. Using 1.3.32. 1, ∃η < 1, ∃c ∈ R such that |q(m)k !| ≤ cη|k|

for any k ∈ Nd . Setting α := e logp(1/c) and β := e logp(1/η), this yields

vπ (ak) ≥ vπ (q(m)k !) = evp(q
(m)
k !) ≥ α|k| + β, where vp is the p-adic valuation

of A (i.e. for any a ∈ A, vp(a) := sup{n ∈ N ; a ∈ pnA}) and vπ is the π-adic
valuation of A. This is equivalent to saying that ord(Pi) ≤ αi + β for any i ∈ N.
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2 ⇒ 3. Since Banach norms on A ⊗R K are equivalent, we can choose ‖ · ‖
defined by ‖ c ‖:= p−vp(c)/e where the vp is defined by the p-adic topology
(pnA)n∈N on A⊗R K (i.e for any b ∈ A⊗R K, vp(b) := sup{n ∈ Z ; b ∈ pnA}).
Suppose ∃α, β ∈ R such that ord(Pi) ≤ αi + β for any i ∈ N. Let k ∈ Nd .
Set ik := vπ (ak). Since the image of ak in Aik is not null, then |k| ≤ αik + β.

Hence, ‖ ak ‖= p−ik/e ≤ p−(|k|−β)/αe = pβ/αe
(
p−1/αe

)|k|
. Hence, we can choose

c = pβ/αe and η = p−1/αe.
3 ⇒ 1. Suppose ∃c, η ∈ R>0 such that η < 1 and ‖ ak ‖≤ cη|k|, for any

k ∈ Nd . We have to prove that for m large enough, ak/q
(m)
k ! ∈ A. The inequality

‖ ak ‖≤ cη|k| is equivalent to vp(ak) ≥ λ|k| + μ, with μ = − logp(c) and λ =
− logp(η) > 0. Using 1.25, this yields

vp(ak/q
(m)
k !) ≥ λ|k|+μ−|k|/pm(p−1) = (

λ− 1/pm(p − 1)
) |k|+μ. (1.27)

Suppose m large enough such that λ− 1/pm(p − 1) > 0. Hence, if μ ≥ 0, then
vp(ak/q

(m)
k !) ≥ 0, i.e. ak/q

(m)
k ! ∈ A and we are done. Suppose now μ < 0 and m

large enough such that the inequalities hold

pm > −μ/ (λ− 1/pm(p − 1)
)⇔ pmλ− 1/(p − 1) ≥ −μ⇔ pm ≥ (−μ+ 1/(p − 1)) /λ.

(1.28)

Let k ∈ Nd . If |k| ≥ −μ/ (λ− 1/pm(p − 1)), then (λ− 1/pm(p − 1)) |k| +
μ ≥ 0 and we are done thanks to 1.27. On the other hand, if |k| ≤
−μ/ (λ− 1/pm(p − 1)), then from 1.28 we get |k| ≤ pm. Hence, q(m)k ! = 0

and then ak/q
(m)
k ! ∈ A. ��

Examples 1.3.36 We give here a fundamental example of a left D†
A/R-module. Let

f ∈ A. We denote byA{f } the p-adic completion ofAf . We denote byA†
f the weak

p-adic completion of Af as A-algebra. More precisely, the element x of A†
f are the

subset of A{f } whose elements can be written in the form x = ∑
n≥0

an
f n

such that
∃c, η ∈ R+ such that η < 1 and ‖ an ‖≤ cηn, for any n ∈ N.

The ring A{f } has a canonical structure of left D̂A/R-module. With the descrip-
tion of 1.3.35, we compute that A†

f is a D†
A/R-submodule of A{f }.

1.3.5 Sheafification, Coherence

We denote by S := SpfR the formal scheme associated to R endowed with the
p-adic topology. Let P be a smooth formal scheme over S, and f : P→ S be the
structural morphism. We will keep the following notation.
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– We denote by R{T1, . . . , Td} the p-adic completion of R[T1, . . . , Td ] and Â
d
R :=

SpfR{T1, . . . , Td} is the p-adic completion of AdR . For any point x ∈ P, there
exists an open affine formal subscheme Ux of P containing x together with
an étale morphism Ux → Â

d
R. We denote by B the set of open affine formal

subschemesU ofP such that there exists an étale morphism of the formU→ Â
d
R .

We get presheaf D(m)P/S on B defined by U ∈ B �→ D
(m)
�(U,P)/R. If V is a standard

open subset of U, then the canonical morphismD(m)
�(U,P)/R⊗�(U,P) �(V,P)→

D
(m)
�(V,P)/R is an isomorphism. Hence, D(m)P/S is a sheaf on B. We still denote by

D
(m)
P/S the corresponding sheaf on P.

– Let D̂
(m)

P/S := lim←−nD
(m)
P/S/p

nD
(m)
P/S be the p-adic completion of D

(m)
P/S. We

put D†
P/S := ∪m∈ND̂(m)P/S, and D

†
P/S,Q := D

†
P/S ⊗Z Q = D

†
P/S ⊗R K .

Using 1.3.31, we can check that D†
P/S,Q is coherent.

– Let k be the residue field of R. We denote by P the special fiber of P, i.e. P is
the k-scheme equal to the reduction modulo π of P. Let T be a divisor of P . Let
U be an open affine formal subscheme of P such that there exists a section f ∈
�(U,OP) whose reduction modulo π is an equation of T in P . Then A†

f ⊗R K
does not depend on the choice of the lifting f of an equation of T . We denote it
by OU(

†T )Q. We get a presheaf of K-algebras OP(
†T )Q on such open formal

subschemes of P defined by U �→ OU(
†T )Q. Similarly to D

†
P/S, we can check

that OP(
†T )Q is in fact a sheaf. Using 1.3.36, the sheaf OP(

†T )Q is endowed
with a canonical structure of left D†

P/S,Q-module.

Proposition 1.3.37 (Berthelot) Suppose T is a strict normal crossing divisor of
P . Let x ∈ P . Choose an open affine formal subscheme U of P such that there
exist local coordinates t1, . . . , td satisfying t1, . . . , tr ∈ �(U,OU) with r ≤ d , and
T ∩U = V (t1 · · · t r ) where U is the special fiber of U and t1, . . . , t r are the images
of respectively t1, . . . , tr in �(U,OU). We have the exact sequence

(D
†
U/S,Q)

d ψ−→ D
†
U/S,Q

φ−→ OU(
†T ∩ U)Q → 0, (1.29)

where φ(P ) = P · (1/t1 · · · tr ), and ψ is defined by

ψ(P1, . . . , Pd) =
r∑

i=1

Pi∂i ti +
d∑

i=r+1

Pi∂i . (1.30)

Proof By devissage, we reduce to the case where r = 1. Then, this is a (technical)
computation. The reader can find a proof at [Ber90, 4.3.2]. ��
Theorem 1.3.38 (Berthelot) The left D†

P/S,Q-module OP(
†T )Q is coherent.
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Proof Sketch of the proof: using de Jong’s desingularisation theorem, we reduce to
the case where T is a strict normal crossing divisor of P , which has already been
checked. ��
Corollary 1.3.39 Suppose P proper. The de Rham cohomological spaces

Hn
(
P,�•P/S ⊗OP

OP(
†T )Q

)
of OP(

†T )Q are K-vector spaces of finite type.

Remark 1.3.40 Suppose P is the p-adic completion of P
1
R, U is the p-adic

completion ofA1
R , and T = P \U is the divisor corresponding to the point at infinity.

Then H 1
(
U,�•U/S ⊗Z Q

)
is an infinite K-vector space. Indeed, this corresponds

to the cokernel of the compositeR{t}⊗R K → �(U,�1
U/S)⊗ZQ

∼−→ R{t}⊗R K
which is given by the derivation with respect to t . On the other hand, the cokernel
of the map R[t]† ⊗R K → R[t]† ⊗R K given by the derivation with respect to t

is zero as desired, i.e. H 1
(
P,�•P/S ⊗OP

OP(
†T )Q

)
= 0. This is the reason why

we should replace the naive constant coefficient OU,Q by OP(
†T )Q. In other words,

the analogue of OA1
C

is OP(
†T )Q, where C is the field of complex numbers, i.e.

we can view OP(
†T )Q as the right object corresponding to the constant coefficient

OA1
k
.
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Appendix: Further Reading

The context of 1.3.2 has allowed us to strongly simplify the notion of m-PD-
envelopes. Indeed, in this context we almost work with Q-rings which give us an
obvious definition of partial of level m divided powers (see 1.3.13). In a wider
context, e.g. for Fp-rings, Berthelot has introduced a notion of m-envelope which
behaves in the same way (see [Ber96, 1]). This makes it possible for any smooth
morphism X → S of schemes to define the ring of operators D(m)X/S of level m of
X/S. The reader can find a detailed construction in [Ber96, 2].

One key fundamental property in Berthelot’s arithmetic D-modules is his
Frobenius descent theorem. Let us describe this theorem in the simpler context
where S is a scheme over SpecFp. LetX′ be the base change ofX under the absolute
Frobenius of S. We get the relative Frobenius F : X→ X′ which is an S-morphism.
Then the inverse image functor F ∗ under F induces an equivalence of categories
between the category of left D(m)

X′/S-modules and that of left D(m+1)
X/S -modules. The

proof is highly technical and uses fundamental properties of m-PD-envelops (see
[Ber00, 2] for a wider context and more details). One important consequence is the
following. Suppose S regular. Then using standard techniques we can check that
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D
(0)
X/S is of finite cohomological dimension. Using Frobenius descent theorem, this

yields that D(m)X/S is of finite cohomological dimension for any non negative integer
m.

We denote by S := SpfR the formal scheme associated to R endowed with the
p-adic topology. Let P be a smooth formal scheme over S, and f : P→ S be the
structural morphism. We have already explained why D

†
P/S,Q is coherent. Using

Frobenius descent as described previously, since D
(0)
P/S is of finite cohomological

dimension, then so is D
†
P/S,Q. This is a key property which implies that the

category of perfect complexes of D
†
P/S,Q-modules is the category of coherent

complexes of D
†
P/S,Q-modules (with bounded cohomology). This yields that

coherent complexes are stable under duality. The reader might find an introduction
to the construction of the duality and other cohomological operations in [Ber02].
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Chapter 2
Difference Galois Theory
for the “Applied” Mathematician

Lucia Di Vizio

Abstract The lecture notes below correspond to the course given by the author
in occasion of the VIASM school on Number Theory (18–24 June 2018, Hanoi).
We have chosen to omit the proofs that are already presented in details in many
references in the literature, although they were explained during the lectures,
and we have devoted more space to statements useful in the applications. The
applications concern many different mathematical settings, where linear difference
equations naturally arise. We cite in particular the case of Drinfeld modules, which
is considered in [Pel] and [TR].

2.1 Introduction

The initial data of classical Galois theory are a field K , let’s say of characteristic 0,
and an irreducible polynomial P ∈ K[x], with coefficients in K . Then the minimal
field extension L of K containing a full set of roots of P is constructed and one
defines the Galois group G of L/K , namely the group of the field automorphisms
of L that fix the elements of K . The group G is finite and acts on L by shuffling
the roots of P . The idea behind this construction is that the structure of the groupG
should reveal hidden algebraic relations among the roots of P , other than the evident
relations given by P itself.

The same kind of philosophy applied to functional equations has been the starting
point of differential Galois theory, first, and difference Galois theory, later. The
references are numerous and it is almost impossible to list them all. We refer to
[vdPS03], for the differential case, and to [vdPS97] and [HSS16], for the difference
case.
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Let K be a base field and τ be an endomorphism of K . We consider a linear
difference equation τ (Y ) = AY , where A is an invertible square matrix with
coefficients in K and Y is a square matrix of unknowns. The usual approach in
Galois theory of difference equations is to construct an abstract K-algebra L/K
containing the entries of a fundamental (i.e., invertible) matrix of solutions, under
the assumption that the characteristic of K is zero, that the field of constants k is
algebraically closed and that τ is surjective. The idea is that, in order to study the
properties of the solutions a difference equation, it is not “important” to solve it,
but only to understand the structure of its Galois group. However, in applications, it
usually happens that a set of solutions is given in some specific K-algebra: When
that’s the case, it is not always easy to understand which properties transfer from the
abstract solutions to the ones that we have found.

In this paper we suppose that we have a fundamental solution is some field L/K ,
equipped with an extension of τ . The divergence between the classical approach
and the apparently more pedestrian approach that we are considering here, starts
immediately: Indeed in general we cannot assume that the field L exists and only
the existence of a pseudo field is ensured (see Remark 2.3.6 below). In [CHS08],
the authors reconcile these two points of view and the point of view of model
theory, in the special case of q-difference equations: They construct a group using
given solutions in a specific algebra and compare it with the group constructed in
[vdPS97], but they assume that τ is an automorphism and the statements on the
comparison of the Galois groups are not easy to apply in other settings.

More recently, a very general abstract approach has been considered by A.
Ovchinnikov and M. Wibmer in [OW15, §2.2], where, in contrast with the more
classical references, the authors do not make any assumption on the characteristic
of the field, they do not require that the endomorphism is surjective, and they do not
assume that the constants are algebraically closed. They do not even assume that K
is a field, but only that K is a pseudo field.

M. Papanikolas in [Pap08, §4] chooses a framework which is in between the
two examples above: He works on a field K equipped with an automorphisms τ ,
but the characteristic can be positive and the field of constants is not necessarily
algebraically closed. Moreover he supposes that he already has a fundamental
solution in a field extension ofK . We will consider the same setting as Papanikolas,
apart from the fact that we only ask that τ is an endomorphism. This seems to
be a reasonable framework for many applications. For the proofs, we usually refer
to [OW15], which is the reference with more general assumptions. Notice that
Papanikolas has a more geometric approach while Ovchinnikov and Wibmer prefer
algebraic arguments.

Finally we point out that we assume that the characteristic is zero in Sects. 2.6.2
and 2.7 and that τ is an automorphism in Sect. 2.8.

Remarks on the Content and the Organization of the Text Below The text
below is meant to be a guide to the existing literature. From this perspective, I
will give references for the proofs, rather than writing a self-contained exposition.
I’m addressing with particular attention readers that need to apply Galois theory of
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difference equations, therefore a large space is devoted to statements that may be
useful in applications.

The exposition is divided in three parts. The first part quickly explains the
fundamentals results and ideas of difference Galois theory. In order to be precise
and correct I have been obliged to use some more sophisticated tools. The second
part, devoted to applications, is more accessible and applies the statements of the
first part as black boxes. We conclude with a last paragraph on the role of normal
subgroups in the Galois correspondence.

2.2 Glossary of Difference Algebra

We give here a short glossary of terminology in difference algebra. Classical
references are [Coh65] and [Lev08].

We consider a field F equipped with an endomorphism τ . We will call the pair
(F, τ ) a τ -field or a difference field, when the reference to τ is clear from the
context. The set k = {f ∈ F : τ (f ) = f }, also denoted Fτ , is naturally a field and
is called the field of constants of F . All along this exposition, we will assume that
τ is non-periodic on F (i.e. there exists f ∈ F such that for any n ∈ Z we have
τnf �= f ) and we won’t assume that k is algebraically closed. The example below
will be our playground until the end of the paper.

Example 2.2.1 We consider k = C, F = k(x) and τ a non-periodic homography
acting on x, so that τ (f (x)) = f (τ(x)). Supposing that τ has one or two fixed
points, we can assume without loss of generality that τ (x) = x + 1 or that τ (x) =
qx, for some q ∈ C � {0, 1}, not a root of unity.

We will add the prefix τ to the usual terminology in commutative algebra, to
signify the invariance with respect to τ . For instance:

• A τ -subfield K of a τ -field F is a subfield of F such that τ induces an
endomorphism of K , i.e., such that τ (K) ⊂ K .

• A τ -K-algebra is a K-algebra equipped with an endomorphism extending τ
(which we still call τ for simplicity).

• An ideal I of a τ -K-algebra R is a τ -ideal if τ (I) ⊂ I .
• A τ -K-algebra R is τ -simple if its only τ -ideals are R and 0.

Example 2.2.2 For any x ∈ F transcendental over k, such that τ (x) ∈ k(x) and that
for any n ∈ Z we have τn(x) �= x, we can consider the field K := k(x), on which
τ induces a non-periodic endomorphism. Since we don’t ask τ to be surjective, the
situation is a little bit more general than Example 2.2.1. For instance τ can be the
Mahler operator τ (x) = xκ , where κ ≥ 2 is an integer.

For any positive integer n, we can consider kn = Fτn and the difference fields
(Kn := kn(x), τ ) and (Kn := kn(x), τn).
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Sometimes it is useful to consider (k, id), where id stands for the identity map,
as a difference field, therefore we will call it a trivial τ -field. In general we will
say that a k-algebra is equipped with a trivial action of τ , when τ acts on it as the
identity. For further reference we state the following lemma:

Lemma 2.2.3 Let B be a k-algebra endowed with a trivial action of τ , K a τ -
subfield of F such thatKτ = k and let R ⊂ F be a τ -K-algebra. Then R⊗k B has
a natural structure of τ -K-algebra defined by

τ (r ⊗ b) = τ (r)⊗ b, for any r ∈ R and b ∈ B. (2.1)

Moreover R ⊗k B ↪→ F ⊗k B and (R ⊗k B)τ = k ⊗k B ∼= B.

Remark 2.2.4 We have chosen to detail the proof, even if the lemma above is
included in many references and could partially be proved invoking the flatness
of F over k. The argument is indeed an instance of a classical way of reasoning in
difference algebra and is useful in many situations.

Proof Clearly Eq. (2.1) defines a ring endomorphism, that is the tensor product of
τ and the identity in the category of rings. Since R ⊂ F , we have a natural map
of τ -K-algebras R ⊗k B → F ⊗k B. We want to prove that this map is injective.
By absurdum, we suppose that the kernel is non-trivial and therefore we choose a
non-zero element

∑n
i=1 ri ⊗ bi ∈ R ⊗k B in the kernel such that n is minimal,

i.e., we suppose that there exists no element of R ⊗k B in the kernel, that can be
written as a sum of less than n elements of the form r ⊗ b ∈ R ⊗k B. This implies
in particular that the ri’s are linearly independent over k and that all the ri ’s and bi’s
are non-zero. Since F is a field, in F ⊗k B we can multiply by r−1

n ⊗ 1, hence we
have: 1⊗ bn +∑n−1

i=1 rir
−1
n ⊗ bi = 0 in F ⊗k B. We conclude that the image of

n−1∑

i=1

(
τ (rir

−1
n )− rir−1

n

)
⊗ bi ∈ R ⊗k B

in F ⊗k B is zero. The minimality of n, together with the fact that bi �= 0, implies
that τ (rir−1

n )− rir−1
n = 0 and hence that rir−1

n ∈ k for any i = 1, . . . , n − 1. The
linear independence of the ri ’s over k implies that n = 1 and hence that r1⊗ b1 = 0
in F ⊗k B, with r1 �= 0. Since F is a field, r−1

1 ⊗ 1 ∈ F ⊗k B and hence:

1⊗ b1 = (r−1
1 ⊗ 1) · (r1 ⊗ b1) = 0

in F ⊗k B, and we obtain the contradiction b1 = 0. This proves the injectivity.
To conclude it is enough to prove that (R ⊗k B)τ = k ⊗k B. First of all, notice

that if r⊗ b ∈ (R⊗k B)τ , with r �= 0 �= b, then r ∈ k. By absurdum, let us suppose
that there exists

∑n
i=1 ri ⊗ bi ∈ (R ⊗k B)τ � k ⊗k B, such that no ri belongs to

k and n is minimal. Once again, the minimality of n implies that the ri ’s and the
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bi’s are linearly independent over k. Moreover we know that necessarily n ≥ 2. We
conclude that

n∑

i=1

(τ (ri)− ri )⊗ bi = τ
(
n∑

i=1

ri ⊗ bi
)

−
(
n∑

i=1

ri ⊗ bi
)

= 0.

There are two possibility: either the (τ (ri) − ri )’s are linearly dependent over k or
they are not. If they are linearly dependent over k, we can find λ1, . . . , λn ∈ k,
not all zero, such that

∑n
i=1 λi(τ (ri) − ri) = 0. We can suppose without loss of

generality that λn �= 0. It implies that

n∑

i=1

λiri =
n∑

i=1

λiτ (ri) = τ
(
n∑

i=1

λiri

)

,

and hence that c :=∑n
i=1 λiri ∈ k. Since the ri’s are linearly independent over k, c

is not zero. The k-linearity of the tensor product implies:

∑n
i=1 ri ⊗ bi =

∑n−1
i=1 ri ⊗ bi + λ−1

n

(
c −∑n−1

i=1 λiri

)
⊗ bn

= ∑n−1
i=1 ri ⊗ (bi − λ−1

n λibn)+ λ−1
n c ⊗ bn ∈ (R ⊗k B)τ .

Because λ−1
n c ⊗ bn ∈ k ⊗k B ⊂ (R ⊗k B)τ , we conclude that

∑n−1
i=1 ri ⊗ (bi −

λ−1
n λibn) ∈ (R ⊗k B)τ . The minimality of n implies that bi = λ−1

n λibn, for any
i = 1, . . . , n− 1. Finally we obtain:

n∑

i=1

ri ⊗ bi =
(
n∑

i=1

λ−1
n λiri

)

⊗ bn ∈ (R ⊗k B)τ ,

and therefore that
∑n
i=1 ri ⊗ bi ∈ k ⊗k B, in contradiction with our choice of∑n

i=1 ri ⊗ bi . We still have to consider the case in which (τ (ri )− ri )’s are linearly
independent over k, with

∑n
i=1 (τ (ri )− ri )⊗bi = 0 in F ⊗k B, but we have seen in

the first part of the proof that this cannot happen, unless τ (ri) = ri , which is against
our assumptions. This ends the proof of the whole lemma. ��

2.3 Picard-Vessiot Rings

We now consider a field F with an endomorphism τ : F → F . Our base field will
be a τ -subfield K of F , containing k := Fτ , which implies that Kτ = k. We do
assume neither that k is algebraically closed, nor that τ induces an automorphism of
K , but we assume that τ is non-periodic over K . Moreover we assume that F/k is
a separable extension.
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Remark 2.3.1 In the classical theory, one usually assumes that k is algebraically
closed, which simplifies a little the theory, although not in a fundamental way. The
main difference comes from the fact that the Galois group, that we will define
in the following section, is an algebraic group over the field k. Therefore if k is
algebraically closed one can avoid a more sophisticated geometric point of view and
simply identify the Galois group to a group of invertible matrices with coefficients
in k. This remark will become clearer in what follows. We will comment again on
the consequences of the fact that k is not algebraically closed.

We also point out that the assumption Fτ = Kτ = k is crucial, otherwise we
may end up introducing new meaningless solutions in the theory. For more details,
see Example 2.3.7 and the proof of Proposition 2.6.1 below.

We consider a linear difference system

τ (Y ) = AY, where A ∈ GLd (K), (2.2)

and we suppose that there exists a fundamental solution matrix U ∈ GLd (F ) of
(2.2). Then the field L := K(U) ⊂ F is obviously stable by τ . We have made
an abuse of notation that we will repeat frequently: By K(U) we mean the field
generated overK by the entries of U .

There are two main situations that the readers, according to their background,
could keep in mind as a guideline through the text below:

Example 2.3.2 One can consider the following two classical situations:

1. F is the field of meromorphic functions over C in the variable x and τ : f (x) �→
f (x + 1). Then k is the field of meromorphic 1-periodic functions over C.

2. F is the field of meromorphic functions overC∗ in the variable x and τ : f (x) �→
f (qx), for a fixed complex number q ∈ C� {0, 1, roots of unity}. Here k is the
field of meromorphic q-elliptic functions over C∗.

In both cases, we can chose K to be any τ -subfield of F , containing k. A typical
choice for K is k(x), which is the point of view taken in [CHS08], as far as q-
difference equations is concerned.

Let as consider a linear system τ (�y) = A�y with coefficients in K , of the form
(2.2). In the settings above, plus the assumption |q| �= 1 in the q-difference case,
Praagman proves that τ (�y) = A�y has a fundamental matrix of solutions with
coefficients in F . See [Pra86, Theorem 1 and Theorem 3]. This does not mean that
all possible solutions are meromorphic. Indeed it is enough to multiply a solution
matrix by a matrix whose entries are functions with some essential singularities and
that are constant with respect to τ .

Example 2.3.3 In [Pap08, §4.1] the triple (k,K,F ) is called a τ -admissible triple.
He is specifically interested in the study of t-motifs and, hence, of the associated
triple (Fq(t),K,L), defined as follows [Pap08, §2.1]:

• Fq(t) is the field of rational functions in the variable t and with coefficients in
the field Fq with q elements, where q is an integer power of a prime p;
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• K is the smallest algebraically closed and complete extension of a field of rational
functions Fq(θ), with respect to the θ−1-adic valuation.

• L is the field of fractions of the ring of all power series in K[[t]] convergent on
the closed unit disk for the θ−1-adic valuation.

The automorphism τ is the inverse of the Frobenius morphism on the algebraic
closure of Fq , sends θ to θ1/q , and is defined on K[[t]] as

τ

⎛

⎝
∑

n≥0

ant
n

⎞

⎠ =
∑

n≥0

a
1/q
n tn.

Finally, it extends to L by multiplicativity. Then Lτ = Kτ = Fq(t), as proved in
Lemma 3.3.2 in loc.cit..

We start mentioning a technical but fundamental property of the τ -K-algebra
generated by the entries of the solution matrices of (2.2), which allows to reconnect
our point of view with the more classical approach of the Picard-Vessiot theory.

Proposition 2.3.4 In the notation above, letU ∈ GLd(F ) verify τ (U) = AU . Then
R = K [

U, detU−1
] ⊂ F is τ -simple.

Proof The statement is a special case of [OW15, Proposition 2.14], as one can see
from Definitions 2.2 and 2.4 in loc.cit. ��

At this point, the reader should pay attention to the terminology in the literature.
The ring R in the proposition above and its field of fractions L are a weak Picard-
Vessiot ring and a weak Picard-Vessiot field, respectively, according to [CHS08,
Definition 2.1]. Indeed it follows immediately from their definition that Rτ = Lτ =
k. Proposition 2.3.4 shows that R and L are respectively a Picard-Vessiot ring and
a Picard-Vessiot field, following also the definition [OW15, Defintion 2.12]. For the
purpose of this paper, we will use a terminology in between [CHS08] and [OW15],
knowing that R and L satisfy the definitions in both the cited references, and that,
therefore, the results in both references apply here.

Definition 2.3.5 A τ -simple τ -K-algebra R is called a Picard-Vessiot ring (for
(2.2)) if there exists V ∈ GLd(R) such that τ (V ) = AV and R = K [

V, detV −1
]
.

A difference field L is called a Picard-Vessiot field over K (for (2.2)) if Lτ = k
and L = K(V ) for a V ∈ GLd(L) such that τ (V ) = AV . We will call L/K a
Picard-Vessiot extension.

Remark 2.3.6 If we do not have a field where to find enough solutions of our
equation, we have to construct an abstract Picard-Vessiot extension. To do so, one
considers the ring of polynomials in the d2 variablesX = (xi,j ) with coefficients in
K . Inverting detX and setting τ (X) = AX, we obtain a ring K[X, detX−1] with
an endomorphism τ . Any of its quotients by a maximal τ -invariant ideal is a Picard-
Vessiot ring of τ (�y) = A�y over K . It is important to notice that the ring R does
not need to be a domain. It can be written has a direct sum R1 ⊕ · · · ⊕ Rr , such
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that: Ri = eiR, for some ei ∈ R such that e2
i = ei ; Ri is a domain; there exists

a permutation σ of {1, . . . , r} such that τ (Ri) ⊂ Rσ(i). See [vdPS97, Cor. 1.16].
Its total field of fractions is a pseudo field, that is the tensor product of the fraction
field of each Ri . For a precise definition of pseudo field, see for instance [OW15,
Definition 2.2].

The following example shows the importance of the assumption Lτ = k in the
definition of Picard-Vessiot field.

Example 2.3.7 Let us consider the equation τ (y) = −y, with k, K and F as
above. We suppose that there exists a two-dimensional k-vector space of solutions
of τ (y) = −y in F , which coincides with k2 := Fτ

2
. The Picard-Vessiot field

(contained in F ) of τ (y) = −y overK is L := K(k2).
We could also have considered a field of rational function F(T ) with coefficients

in F and in the variable T . Since T is transcendental, we can set τ (T ) = −T and
obtain an endomorphism of F(T ). If we do not assume that the Picard-Vessiot field
has the same field of constants than the base field K , we see that K(k2)(T ) is a
Picard-Vessiot field for τ (y) = −y, whose field of constants is k2(T

2). Of course,
the solution T is somehow artificial and the extensionK(k2)(T )/K is much bigger
(i.e. has many more automorphisms, see next section) than K(k2)/K .

The expected relations between Picard-Vessiot rings and Picard-Vessiot fields are
verified. If R,L ⊂ F , the proof is actually straightforward.

Corollary 2.3.8 ([OW15, Proposition 2.15])

1. Let R be domain which is a Picard-Vessiot ring. Then its field of fractions is a
Picard-Vessiot field.

2. Let L be a Picard-Vessiot field for (2.2) and let U ∈ GLd(L) be a solution of
(2.2). Then K[U, detU−1] is a Picard-Vessiot ring.

Notice that one can always compare two different Picard-Vessiot rings, up to an
algebraic extension of the field of constants:

Proposition 2.3.9 Picard-Vessiot rings have the following uniqueness proper-
ties:

1. Let R1 and R2 be two Picard-Vessiot rings for (2.2), both contained in F . Then
R1 = R2.

2. Let R ⊂ F and R′ be two Picard-Vessiot rings for (2.2). (Notice that we do
not suppose that R′ ⊂ F !) Then there exists an algebraic field extension k̃ of k,
containing a copy of k′ := (R′)τ , such that R ⊗k k̃ is isomorphic to R′ ⊗k′ k̃ as
a K ⊗k k̃-τ -algebra.

Proof The first assertion follows from the fact that any pair of fundamental
solutions U,V ∈ GLd (F ) verifies τ (U−1V ) = U−1V , i.e., U−1V ∈ GLd(k).
In fact, this implies that K[U, detU−1] = K[V, detV −1] ⊂ F . For the second
assertion, see [OW15, Theorem 2.16]. Notice that the key-point of its proof is
Lemma 2.13 in loc.cit., which ensure that k′/k must be an algebraic extension. ��
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We give an explicit example to explain the necessity of extending the constants
to k̃ in the statement above.

Example 2.3.10 Let k be the field of 1-periodic meromorphic functions over C and
letK = k(x). The Picard-Vessiot ring of the equation τ (y) = xy overK , contained
in F , is R := K[�(x), �(x)−1], where �(x) is the Euler Gamma function.

Now let f (x) be a 2-periodic function, algebraic over k, but not meromorphic
over C. It means that f (x) lives on an analytic two-fold covering of C and has
some branching points. The function c(x) := f (2x) is 1-periodic but does not
belong to F , and hence not to k. The K-algebra R′ := K[�̃(x), �̃(x)−1], where
�̃(x) := c(x)�(x), is a Picard-Vessiot ring for τ (y) = xy. In the notation of the
proposition above, we have k′ = k and k̃ := k(c(x)). Indeed, �(x) �→ c(x)�(x)

defines an automorphism from R ⊗k k̃ to R′ ⊗k k̃ as K ⊗k k̃-algebras.

We close the section with a couple of easy, yet crucial, examples:

Example 2.3.11 Let a be a non-zero element of K and let us consider the rank-one
equation τ (y) = ay. By assumption there exists a solution z ∈ F verifying τ (z) =
az. Hence K[z, z−1] is a Picard-Vessiot ring for τ (y) = ay and K(z) is a Picard-
Vessiot field. Generically, z is transcendental over K , but not always. For instance,
if F is the field of meromorphic functions over C in the variable x, τ (f (x)) =
f (x + 1) for any f ∈ F, K = k(x) and a = −1, we can take z = exp(πix) ∈ F .
In this case K(z) is a finite extension of degree 2, since exp(πix)2 = exp(2πix) is
a 1-periodic function, belonging to k.

Example 2.3.12 Let f ∈ K and let us consider the inhomogeneous equation τ (y) =
y + f . Such an equation is equivalent to the matrix system

τ (Y ) =
(

1 f
0 1

)

Y,

whose fundamental solution is given by Y =
(

1 z
0 1

)

, where z ∈ F verifies τ (z) =

z+ f . Since Y−1 =
(

1 −z
0 1

)

, the Picard-Vessiot ring of τ (y) = y + f is K[z] and

the Picard-Vessiot field is K(z).

2.4 The Galois Group

The Galois group of a difference system of the form (2.2) is a linear algebraic
group defined over the field of constants k. As we have already pointed out, since
we have chosen not to assume that k is algebraically closed, we cannot stick to
a naive approach to linear algebraic groups as sets of matrices with entries in the
base field, but we have to use the point of view of group schemes. For the reader’s
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convenience we recall informally a minimal amount of definitions that are necessary
in what follows. They are contained in any classical reference on group schemes, for
instance [Wat79].

2.4.1 A Short Digression on Group Schemes

A group scheme G over the field k is a covariant functor from the category of k-
algebras to the category of groups:

G : k-algebras → Groups
B �→ G(B)

.

An affine group scheme is a group scheme which is representable, i.e., there exists a
k-algebra k [G] such that the functor G and Homk(k [G] ,−) are naturally isomor-
phic. This implies, in particular, that G(B) and Homk(k [G] , B) are isomorphic as
groups, for any k-algebra B.

Example 2.4.1 For k = Q, we can look at GLn as an affine group scheme over Q
in the following way:

GLn,Q : Q-algebras → Groups
B �→ GLn(B)

.

We recall that, for a general Q-algebra B, GLn(B) is the group of square matrices
with coefficients in B, whose determinant is an invertible element of B. We have:

Q
[
GLn,Q

] = Q[t, xi,j , i, j = 1, . . . , n]
(t det(xi,j )− 1)

.

Of course an analogue definition holds for the affine group scheme GLn,k , define
over a generic field k. For n = 1, we obtain the multiplicative affine group scheme,
for whom we will use the notation Gm,k rather then GL1,k. The additive affine group
scheme Ga,k is defined as follows:

Ga,k : k-algebras → Groups

B �→
{(

1 b
0 1

)

| b ∈ B
}

.
.

We have:

k
[
Ga,k

] = k
[
GL2,k

]

(x1,1 − 1, x2,2 − 1, x2,1)
.
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It follows that k
[
Ga,k

]
can be naturally identified with the algebra k[x] of polyno-

mial in the variable x and coefficients in k. One can define in an analogous way the

affine group scheme SLn,k over k, whose algebra is k
[
SLn,k

] = k[xi,j , i,j=1,...,n]
(det(xi,j )−1) .

The Yoneda Lemma ensures that k [G] is unique up to isomorphism. An
important property (that we won’t use, because we are not getting into the details of
the proofs) of k [G] is that it has a natural structure of Hopf algebra.

The affine group scheme G is said to be an algebraic group if k [G] is a
finitely generated k-algebra. This means that k [G] can be identified with a quotient
k[x1, . . . , xn]/I of a ring of polynomials by a convenient (Hopf) ideal I . It allows
to identify G(B) with the set of zeros of I in Bn, for any k-algebra B. In other
words,G can be identified with an affine variety defined over k. All the affine group
schemes in Example 2.4.1, as well as all the affine group schemes appearing in this
paper, are algebraic groups.

If G is an algebraic group and G′ is another affine group scheme defined over
k, we say that G′ is an affine subgroup scheme of G if there exists a surjective
morphism of Hopf algebras k [G] → k

[
G′

]
. This implies that G′(B) can be

identified naturally to a subgroup of G(B), for any k-algebra B. We say that G′
is a normal algebraic subgroup of G, if G′(B) is a normal subgroup of G(B), for
any k-algebra B.

Example 2.4.2 In the notation of Example 2.4.1, we have:

1. The additive affine group scheme Ga,k is an algebraic subgroup of GL2,k .
2. We have a surjective morphism from k

[
GLn,k

]
to k

[
SLn,k

]
defined by t �→ 1,

therefore SLn,k is naturally an algebraic subgroup of GLn,k .

For further reference, we describe the algebraic subgroups of Gm,k. As we have
already pointed out, we have k[Gm,k] = k[x,t ]

(xt−1) , therefore we can write for short

k[Gm,k] = k
[
x, 1
x

]
. The algebraic subgroups of Gm,k are the defined by equations

of the form xn − 1, for any non-negative integer n. They are represented by the

quotients
k
[
x, 1
x

]

(xn−1) . If G is one of those subgroups, with n ≥ 1, and B is a k-algebra,
then G(B) is nothing more that the group of n-th roots of unity contained in B. For
n = 1, we obtain the trivial algebraic subgroup {1} of Gm,k, while for n = 0 we
obtain the whole Gm,k .

Let us consider the algebraic group Gnm,k , for some positive integer n. We have

k[Gnm,k] = k
[
x1,

1
x1
, . . . , xn,

1
xn

]
. The algebraic subgroups of Gnm,k are defined by

polynomials of the form xα1
1 . . . x

αn
n − 1, where α1, . . . , αn ∈ Z.

We will also need the description of the algebraic subgroups of Gna,k, where n is
a positive integer. For any k-algebra B, Gna,k(B) can be naturally identified to Bn.
Therefore, an algebraic subgroup G of Gna,k is defined by an ideal generated by at
most n independent linear equations with coefficients in k. In particular, we will use
the fact that a proper algebraic subgroup of Gna,k is always an algebraic subgroup of

the group represented by the algebra k[x1,...,xn]
(α1x1+···+αnxn) , for some α1, . . . , αn ∈ k, not
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all zero. Notice that, for n = 1, the algebraic group Ga,k does not have any proper
algebraic subgroup.

2.4.2 The Galois Group of a Linear Difference System

Let K ⊂ F be our base field, with k = Kτ = Fτ , and let us consider a system of
the form (2.2). From now on we will assume implicitly that all Picard-Vessiot rings
and all Picard-Vessiot fields are contained in F . So let R (⊂ F ) be a Picard-Vessiot
ring for (2.2) and let L be its field of fractions.

For more details on what follows, see [OW15, §2.7].1

Definition 2.4.3 ([OW15, 2.50]) We call the (difference) Galois group of (2.2) the
following group scheme:

Gal(L/K) : k-Algebras → Groups
B �→ Autτ (R ⊗k B/K ⊗k B),

where:

1. the k-algebra B is endowed with a structure of trivial τ -k-algebra, so that τ (f ⊗
b) = τ (f )⊗ b, for any f ∈ R and any b ∈ B;

2. Autτ (R ⊗k B/K ⊗k B) is the group of the ring automorphisms of R ⊗k B, that
fix K ⊗k B and commute with τ .

The functor Gal(L/K) acts on morphisms by extension of constants, namely, each
morphism of k-algebras α : B1 → B2 defines a structure of B1-algebra over B2 and
the definition of Gal(L/K)(α) : Autτ (R⊗k B1/K ⊗k B1)→ Autτ (R⊗k B2/K⊗k
B2) relies on the fact that R ⊗k B2 ∼= R ⊗k B1 ⊗B1,α B2.

For any choice of a fundamental solution matrix U ∈ GLd (R) of (2.2), for any
k-algebra B and any ϕ ∈ Gal(L/K)(B) we have that

τ (U−1ϕ(U)) = U−1A−1ϕ(A)ϕ(U) = U−1ϕ(U) ∈ GLd (B),

where we have identified U and U ⊗ 1 in R⊗k B, making an abuse of notation that
we will repeat frequently. (Notice that we have used the fact that (R ⊗k B)τ = B.
See Lemma 2.2.3.) The maps ϕ �→ U−1ϕ(U) represents Gal(L/K)(B) as a
subgroup of GLd (B). The linearity of the difference system (2.2) immediately
implies that another choice of the fundamental solution matrix leads to a conjugated
representation, so that most of the times we can identify Gal(L/K)(B) with a
subgroup scheme of GLd,k(B), forgetting to mention the matrix U . The following

1 In the notation of [OW15], one has to take � = τ and σ to be the identity.
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proposition says that such a representation is functorial in B, in the sense that
Gal(L/K) is an algebraic subgroup of GLd,k, as in the next example.

Example 2.4.4 Let us consider the rank-one difference equation τ (y) = ay, where
a ∈ K , as in Example 2.3.11. By assumption, there exists z ∈ F such that τ (z) =
az and R = K[z, z−1] is its Picard-Vessiot ring. For any k-algebra B and any
ϕ ∈ Gal(L/K)(B), the element ϕ(z⊗ 1) of R ⊗k B must be a solution of τ (y) =
ay, and hence there exists cϕ ∈ B∗ such that ϕ(z ⊗ 1) = cϕ(z ⊗ 1). This means
that Gal(L/K) can be identified with a subgroup of the multiplicative group Gm,k

defined over k, therefore it coincides either with Gm,k or with a cyclic group. If for
instance a = −1, then we must have z2 ∈ k, and therefore c2

ϕ = 1.

Proposition 2.4.5 ([OW15, Lemma 2.51]) The Galois group Gal(L/K) is an
algebraic group defined over k, represented by the k-algebra (R ⊗K R)τ .

Remark 2.4.6 We remind that the statement above means that (R ⊗K
R)τ is a finitely generated k-algebra and that the functors Gal(L/K) and
Homk-Algebra((R ⊗K R)τ ,−) are naturally isomorphic. In particular for any k-
algebraB, we have can identify Gal(L/K)(B)with Homk-Algebra((R⊗K R)τ , B).

The proposition above says that there exists an ideal I of the ring of polynomials
k[X, detX−1], with X = (xi,j )i,j=1,...,d , such that for any k-algebra B the image of
the group morphism defined above

Gal(L/K)(B)→ GLd (B)
ϕ �→ [ϕ]U := U−1τ (U)

is exactly the set of zeros of I in GLd (B). The idea of the proof is to consider the
k-algebra k[Z, detZ−1] ↪→ (R ⊗k R)τ , where Z := (U−1 ⊗ 1)(1⊗ U). Then one
can prove that we have the series of isomorphisms:

R ⊗K R ∼= R.k[Z, detZ−1] ∼= R ⊗k (R ⊗K R)τ .

This allows to prove a series of group isomorphisms showing that for any k-algebra
B we have:

Homτ-(K⊗kB)-alg(R ⊗k B,R ⊗k B) ∼= Homk-alg((R ⊗K R)τ , B).

See [OW15] for details.

Example 2.4.7 Let F be the field of meromorphic functions over C∗ and let τ be
defined by τ : f (x) �→ f (qx), for q ∈ C, such that |q| > 1. The field of constants
k is the field of meromorphic functions over the torus C∗/qZ and we set K = k(x).
The Jacobi Theta function

�(x) =
∑

x∈Z
q−n(n+1)/2xn ∈ F
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is solution of the difference equation τ (y) = xy. Its differential Galois group G
is the multiplicative group. Indeed for any k-algebra B and for any ϕ ∈ G(B), ϕ
multiplies �(x) by an invertible element of B. On the other hand, since �(x) is a
transcendental function, any invertible constant of B defines an automorphism of
K[�(x),�(x)−1] ⊗k B.

Now let us consider an integer r ≥ 2 and choose a r-th root q1/r of q . The
meromorphic function z(x) := �(q1/rx)/�(x) ∈ F is a solution of the finite
difference equation τ (y) = q1/ry and its difference Galois group is the cyclic
subgroup of Gm,k of order r . To prove the last claim it is enough to notice that
z(qx)r = qz(x)r , hence z(x)r is a meromorphic function of the form xg(x), with
g(x) ∈ k ⊂ K .

Example 2.4.8 Let us consider an element f ∈ K and the inhomogeneous
difference equation τ (y) = y + f . By assumption, there exists a solution z ∈ F
and we have already noticed that R = k[z]. See Example 2.3.12. For any k-algebra
B and any ϕ ∈ Gal(L/K), the element ϕ(z) of R ⊗k B must be another solution
of τ (y) = y + f , hence there exists cϕ ∈ B such that ϕ(z) = z + cϕ (here we
have identified z and z⊗ 1). It follows that Gal(L/K) is a algebraic subgroup of the
additive group Ga,k. This means that either Gal(L/K) = {1} or Gal(L/K) = Ga,k.

2.4.3 Transcendence Degree of the Picard-Vessiot Extension

We can now state the first important result from the point of view of applications to
number theory and more specifically to transcendence. It compares the dimension
of G over k as an algebraic variety and the transcendence degree of R over K and
its proof is based on Proposition 2.4.5.

Theorem 2.4.9 ([OW15, Lemma 2.53]) Let R, L and G be as above. Then the
dimension of G as an algebraic variety over k is equal to the transcendence degree
of R (or of L) over K:

dimk G = trdegKR = trdegKL.

Example 2.4.10 Let us consider the case of finite difference equations, i.e, let F be
the field of meromorphic functions over C equipped with the operator τ : f (x) �→
f (x + 1). Then k is the field of 1-periodic functions and we set K = k(x).
We consider the difference equations τ (y) = xy, which is satisfied by the Euler
Gamma function �(x). Its Picard-Vessiot ring is K[�(x), �(x)−1], as discussed in
Example 2.3.11. As in Example 2.4.4, its Galois groupG is a subgroup of Gm,k . For
any k-algebra B and any ϕ ∈ G(B), there exists an invertible element cϕ of B such
that ϕ(�) = cϕ�. As already explained, the proper subgroups of Gm,k are the finite
cyclic groups. If G was a the cyclic group, �(x) would be an algebraic function, by
the previous theorem. Proving that the functional equations of the Gamma function
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implies that it is not algebraic over k(x) is an exercise that we leave to the reader.
Therefore the difference Galois groupG is the whole Gm,k .

Example 2.4.11 Let us consider the system

τ (Y ) =
⎛

⎝
x 1 0
0 x 1
0 0 x

⎞

⎠Y.

We denote by (·)′ the derivation d
dx

, with respect to x. Since τ and d
dx

commute, we
have:

τ

(

�′(x)
)

= d

dx

(

x�(x)

)

= x�′(x)+ �(x)

and

τ

(
�′′(x)

2

)

= 1

2

d

dx

(

x�′(x)+ �(x)
)

= x �
′′(x)
2

+ �′(x).

Therefore a solution matrix is given by

Y =
⎛

⎝
�(x) �′(x) �′′(x)/2

0 �(x) �′(x)
0 0 �(x)

⎞

⎠ ,

so that the associated Picard-Vessiot ring is R = K[
�(x), �′(x), �′′(x), �(x)−1

]
.

LetG be its difference Galois group and let B be a k-algebra. For any ϕ ∈ G(B), ϕ
commutes to the action of τ over R ⊗k B, therefore it must send any element
of R, which is solution of a τ -difference equation, into a solution of the same
equation. We know that � is solution of a homogenous order 1 equation, while
�′(x)
�(x)

and d
dx

(
�′(x)
�(x)

)
are solutions inhomogeneous order 1 equations. Therefore, as

in Examples 2.4.4 and 2.4.8, there must exist cϕ ∈ Gm,k(B) and (d1,ϕ, d2,ϕ) ∈
Ga,k(B)

2 such that

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕ
(
�(x)

) = cϕ�(x),

ϕ

(
�′(x)
�(x)

)

= �
′(x)
�(x)

+ d1,ϕ,

ϕ

(
d

dx

(
�′(x)
�(x)

))

= d

dx

(
�′(x)
�(x)

)

+ d2,ϕ = �
′′(x)
�(x)

− �′(x)
�2(x)

+ d2,ϕ.
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So we have representedG as a subgroup of Gm,k ×G
2
a,k. Since �(x), �′(x), �′′(x)

are algebraically independent by Hölder theorem [Höl87] (see Proposition 2.7.3
below for a proof), it is actually an isomorphism, thanks to Theorem 2.4.9. The
construction above can be easily generalized to system associated to a Jordan block
of eigenvalue x and order higher than 3, using higher order derivatives of �.

Now let us consider the finite difference equation (τ − x)n(y) = 0, for some
positive integer n. Such an equation occurs in generalized Carlitz modules studied
in [HR97] and more extensively in [Pel13]. We have seen that � is a solution for
n = 1. One can verify recursively that, for n > 1, a basis of solution over k
is given by the higher order derivatives of � with respect to x, namely the set
�(x), �′(x), . . . , �(n−1)(x). It follows that the Picard-Vessiot ring is the same as
the one of the system above, namely R = [

�(x), �′(x), . . . , �(n−1)(x), �(x)−1
]
.

We conclude that the Galois group is Gm,k ×G
n−1
a,k .

Before being able to prove the most common results used in the applications, we
need to state the Galois correspondence and its properties.

2.5 The Galois Correspondence (First Part)

We consider R,L ⊂ F and G := Gal(L/K) as above.

Definition 2.5.1 Let r
s
∈ L, with r, s ∈ R and s �= 0, and let ϕ ∈ G(B), for a

k-algebra B. We say that r
s

is invariant under the action of ϕ if in R ⊗k B we have:

ϕ(r ⊗ 1)(s ⊗ 1) = (r ⊗ 1)ϕ(s ⊗ 1).

If H is an algebraic subgroup of G defined over k, then r
s

is invariant under the
action of H if r

s
is invariant under the action of ϕ, for all k-algebras B and all

ϕ ∈ H(B).
We denote by LH the set of elements of L invariant under the action of H .

Remark 2.5.2 Notice that if ϕ ∈ G(k), then the condition above simply means that
ϕ(r)
ϕ(s)

= r
s

in L.

If M is an intermediate field of L/K , stable by τ , then we can consider (2.2) as
a system defined overM . Indeed if L is a Picard-Vessiot field over K , it must be a
Picard-Vessiot field overM and we can define Gal(L/M).

Theorem 2.5.3 ([OW15, 2.52]) There exists a one-to-one correspondence between
the algebraic subgroup ofG defined over k and the intermediate fields ofL/K stable
by τ . In the notation above we have two maps that are one the inverse of the other
and are defined by:

H �→ LH, M �→ Gal(L/M).

Moreover if H is an algebraic subgroup of G, then H = G if and only if LH = K .
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As usual in Galois theories, the last statement is the key-point of the Galois
correspondence.

2.6 Application to Transcendence and Differential
Transcendence

2.6.1 General Statements

From the theorems above we deduce a first result on transcendency that is very
useful in many settings. The criteria of transcendence below are contained in [HS08,
§3], up to some reformulations. They are the key-point of several applications, for
instance in [DHR18, DHR16, DHRS18, DHRS20, DH19].

In the proposition below the assumption k = Fτ = Kτ is crucial as well as in all
the subsequent results in this section.

Proposition 2.6.1 Let f1, . . . , fd ∈ K∗ and let z1, . . . , zd ∈ F be a solution of the
following inhomogeneous difference system:

{
τ (zi) = zi + fi, for i = 1, . . . , d. (2.3)

The following assertions are equivalent:

1. There exist λ1, . . . , λd ∈ k, not all zero, and g ∈ K such that λ1f1+· · ·+λdfd =
τ (g)− g.

2. There exist λ1, . . . , λd ∈ k, not all zero, such that λ1z1 + · · · + λdzd ∈ K .
3. There exist λ1, . . . , λd ∈ K , not all zero, such that λ1z1 + · · · + λdzd ∈ K .
4. z1, . . . , zd are algebraically dependent over K .

Remark 2.6.2 Notice that the first statement above is about the fi ’s, while the others
are about the zi ’s.

Proof Let us assume that we are in the situation of the first assertion. We have:

τ

(
d∑

i=1

λizi − g
)

=
d∑

i=1

λizi − τ (g)+
d∑

i=1

λifi =
d∑

i=1

λizi − g,

hence
∑d
i=1 λizi − g ∈ k, which proves 2. Moreover, the implications 2 ⇒ 3 ⇒ 4

are tautological.
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We conclude by proving that 4 ⇒ 1. As in Example 2.4.8, the system (2.3) is
equivalent to the following linear system of order 2d:

τ (Y ) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 f1

0 1
0 · · · 0

0
1 f2

0 1
. . .

...

...
. . .

. . . 0

0 · · · 0
1 fd
0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

Y,

so that its Picard-Vessiot ring is R = k[z1, . . . , zd ]. It follows that Gal(L/K) is an
algebraic subgroup of Gda,k, defined over k, and that for any k-algebra B and any
ϕ ∈ Gal(L/K)(B) there exists cϕ,1, . . . , cϕ,d ∈ B such that ϕ(zi) = zi + cϕ,i .

Since z1, . . . , zd are algebraically dependent over K , Theorem 2.4.9 implies
that the dimension of Gal(L/K) is strictly smaller than d and hence Gal(L/K)
is a proper subgroup scheme of Gda,k. All the proper algebraic subgroup of Gda,k
are contained in a hyperplane and Gal(L/K) is defined over k, therefore there
exist λ1, . . . , λd ∈ k, not all zero, such that for any k-algebra B and any ϕ ∈
Gal(L/K)(B), we have

∑d
i=1 λicϕ,i = 0. We conclude that g :=∑d

i=1 λizi verifies

ϕ(g) =
d∑

i=1

λizi +
d∑

i=1

λicϕ,i =
d∑

i=1

λizi = g,

and hence that g ∈ K , by the Galois correspondence. Finally we have:

τ (g)− g = τ
(
d∑

i=1

λizi

)

−
d∑

i=1

λizi =
d∑

i=1

λifi .

This ends the proof. ��
In an analogous way, taking into account that the algebraic subgroup of Gdm,k are

defined by equations of the form x
α1
1 · · · xαdd = 1, for some α1, . . . αd ∈ Z, it is

possible to prove the following proposition:

Proposition 2.6.3 Let a1, . . . ad ∈ K∗ and let z1, . . . , zd ∈ F ∗ be a solution of the
following difference system:

{
τ (zi) = aizi , for i = 1, . . . , d. (2.4)
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The following assertions are equivalent:

1. There exist λ1, . . . , λd ∈ Z, not all zero, and g ∈ K such that aλ1
1 · · · aλdd =

τ (g)/g.
2. There exist λ1, . . . , λd ∈ Z, not all zero, such that zλ1

1 · · · zλdd ∈ K .
3. z1, . . . , zd are algebraically dependent over K .

Remark 2.6.4 Notice that Proposition 2.6.3 has one more characterization of the
algebraic dependency of the solutions. Here we only have 3 assertions because of
the multiplicative form of the algebraic subgroups of Gdm,k .

2.6.2 Differential Algebraicity and D-Finiteness

We now switch our attention to the characterization of differential algebraicity,
hence in this subsection we assume that we are in characteristic zero. We assume
that the field F comes equipped with a derivation ∂ that commutes with the
endomorphism τ . This implies in particular that ∂ induces a derivation on both k
andK .

Example 2.6.5 In the notation of Example 2.2.1, we can take ∂ = d
dx

for τ :
f (x) �→ f (x + 1) and and ∂ = x d

dx
for τ : f (x) �→ f (qx).

We recall the following definition:

Definition 2.6.6 We say that f ∈ F is differentially algebraic (with respect to
∂) over K , if there exists an integer n ≥ 0 such that f, ∂(f ), . . . , ∂n(f ) are
algebraically dependent over K , or, equivalently, if f is solution of an algebraic
differential equation over K . We say that f is differentially transcendental over
K if it is not differentially algebraic over K and that it is D-finite over K if it
is differentially algebraic and, moreover, it is the solution of a linear differential
equation with coefficients in K .

We say that F is differentially algebraic over K is all elements of F are
differentially algebraic over k.

Once again, the assumption Fτ = Kτ is crucial in the following corollaries:

Corollary 2.6.7 Let f ∈ K∗ and z ∈ F be a solution of τ (y) = y + f . The
following statements are equivalent:

1. There exist n ≥ 0, λ0, . . . , λn ∈ k, not all zero, and g ∈ K such that λ0f +
λ1∂(f )+ · · · + λn∂n(f ) = τ (g)− g.

2. There exist n ≥ 0, λ0, . . . , λn ∈ k, not all zero, such that λ0z + λ1∂(z)+ · · · +
λn∂

n(z) ∈ K .
3. z is D-finite over K .
4. z is differentially algebraic over K .
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In particular, the corollary above says that:

Corollary 2.6.8 In the notation of Corollary 2.6.7, if z is not D-finite over K then
z is differentially transcendental overK .

Proof of Corollary 2.6.7 The assumption on the commutativity of ∂ and τ implies
that z satisfies all the following difference equations:

τ
(
∂i(z)

)
= ∂i(z)+ ∂i(f ), for all i = 0, 1, 2, . . . .

The statement follows from Proposition 2.6.1. ��
Corollary 2.6.9 Let a ∈ K∗ and z ∈ F ∗ be a solution of τ (y) = ay. The following
statement are equivalent:

1. There exist n ≥ 0, λ0, . . . , λn ∈ k, not all zero, and g ∈ K such that λ0
∂(a)
a
+

λ1∂
(
∂(a)
a

)
+ · · · + λn∂n

(
∂(a)
a

)
= τ (g)− g.

2. There exist n ≥ 0, λ0, . . . , λn ∈ k, not all zero, such that λ0
∂(z)
z
+ λ1∂

(
∂(z)
z

)
+

· · · + λn∂n
(
∂(z)
z

)
∈ K .

3. ∂(z)
z

is D-finite over K .
4. z is differentially algebraic over K .

Proof Notice that z is differentially algebraic over K if and only if ∂(z)/z is

differentially algebraic over K . In fact, ∂n
(
∂(z)
z

)
∈ 1

zn
K[z, ∂(z), . . . , ∂n(x)],

therefore an elementary algebraic manipulation allows to transform an algebraic
differential equation satisfied by z into an algebraic differential equation satisfied by
∂(z)/z and vice versa. Taking the logarithmic derivative of τ (z) = az, we obtain:

τ

(
∂(z)

z

)

= ∂(z)
z
+ ∂(a)

a
.

The statement follows from the Corollary 2.6.7. ��
Remark 2.6.10 The generalization of the last two corollaries to systems of order 1
equations and to an arbitrary set of commuting derivations is straightforward. For
the generalization to the case of equation of the form τ (y) = ay + f , we refer to
[HS08, Propositions 3.8, 3.9, and 3.10].

2.7 Applications to Special Cases

In this section we suppose that F has characteristic zero. The results in Sects. 2.7.1
and 2.7.3 have been originally proven in [HS08, §3].
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2.7.1 Finite Difference Equations and Hölder Theorem

We are in the situation of Example 2.4.10, i.e., let F be the field of meromorphic
functions over C equipped with the operator τ : f (x) �→ f (x + 1). Then k is the
field of meromorphic 1-periodic functions and we set K = k(x). We set ∂ = d

dx
,

which commutes with τ .

Corollary 2.7.1 In the notation above, let f ∈ K∗ and z ∈ F be such that τ (z) =
z+ f . The following assertions are equivalent:

1. z is differentially algebraic over K .
2. z is D-finite over K .
3. There exist a positive integer n, λ0, . . . , λn ∈ k and g ∈ K such that

λ0f + λ1∂ (f )+ · · · + λn∂n (f ) = g(x + 1)− g(x).

If f ∈ C(x) (resp. f ∈ Q(x)), then they are also equivalent to:

4. There exist a positive integer n, λ0, . . . , λn ∈ C (resp. ∈ Q) and g ∈ C(x) (resp.
∈ Q(x)) such that

λ0f + λ1∂ (f )+ · · · + λn∂n (f ) = g(x + 1)− g(x).

Proof Notice that 1 ⇔ 2 ⇔ 3 follow from Corollary 2.6.7. Moreover 4 ⇒ 3
is trivial. Let us prove that 3 ⇒ 4, by a classical descent argument. Let C = C

or Q, so that f ∈ C(x). Let N be the degree of the denominator of g and M
the degree of its denominator. We consider a ring of polynomials of the form
C[�0, . . . ,�n,A0, . . . , AN,B0 . . . , BM ], so that we can write the equality

�0f +�1∂ (f )+ · · · +�n∂n (f ) = A0 + A1(x + 1)+ · · · + AN(x + 1)N

B0 + B1(x + 1)+ · · · + BM(x + 1)M

−A0 + A1x + · · · + ANxN
B0 + B1x + · · · + BMxM . (2.5)

Equalizing the coefficients of each integer powers of x in (2.5), we obtain a
system of polynomial equations with coefficients in C, that has a solution in k,
by assumption. Since C is an algebraically closed field contained in k, it must also
have a solution in C. This proves the corollary. ��

Although the last assertion of Corollary 2.7.1 is stated over C (or over Q), we
cannot conclude the differential algebraicity of z over C(x). See Example 2.7.4
that it is based on the fact that there are meromorphic 1-periodic functions that are
differentially transcendental over C(x). For now, notice that the statement above
only implies the following:
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Corollary 2.7.2 We consider the same notation as in the previous corollary, with
C = Q or C and f ∈ C(x). Suppose that for any n ≥ 0, any λ0, . . . , λn ∈ C and
any g ∈ C(x), we have: λ0f + λ1∂ (f )+ · · · + λn∂n (f ) �= g(x + 1)− g(x). Then
z is differentially transcendent over K and hence over C(x).

The Euler Gamma function, that we have already mentioned in some examples,
is a meromorphic function over C satisfying the functional equation �(x + 1) =
x�(x). Hölder theorem [Höl87] says that the Gamma function is differentially
transcendental over C(x) and we are now able to prove it, using a Galoisian
argument that has first appeared in [Har08] and [HS08]. Notice that in [BK78] there
is a similar proof of the differential transcendency of the Gamma function, which
relies on a statement similar to Corollary 2.7.2 in the specific case of the Gamma
function, proven by an elementary argument of complex analysis.

Proposition 2.7.3 The Gamma function � is differentially transcendental over
C(x).

Proof As in the proof of Proposition 2.6.9, the Gamma function � is differentially
transcendental over C(x) if and only if the function ψ(x) := ∂(�)(x)/�(x), that
verifies the functional equation

τ (ψ(x)) = ψ(x)+ 1

x
,

is differentially transcendental over C(x). Suppose that there exist a positive integer
n, λ0, . . . , λn ∈ C and g ∈ C(x) such that

λ0
1

x
+ λ1∂

(
1

x

)

+ · · · + λn∂n
(

1

x

)

= g(x + 1)− g(x).

Since the left-hand side has all its poles at 0, while the right-hand side must have at
least a non-zero pole, we find a contradiction, by Corollary 2.7.2. ��

The following is a counterexample, based on Hölder theorem, for the fact that
we cannot conclude the differential algebraicity over C(x) in Corollary 2.7.1.

Example 2.7.4 The meromorphic function �(exp(2iπx)) is 1-periodic, hence
belongs to k ⊂ K , but is not differentially algebraic over C(x), since it is the
composition of a differentially algebraic function and a differentially transcendental
function. In other words, K itself is differentially transcendental over C(x).

Corollary 2.7.5 ([HS08, Corollary 3.4]) Let a(x) ∈ C(x)∗ and let z be a
meromorphic function over C solution of z(x + 1) = a(x)z(x). Then z(x) is
differentially algebraic over k(x) if and only if a(x) = c

g(x+1)
g(x)

, for some g(x) ∈
C(x) and c ∈ C.



2 Difference Galois Theory for the “Applied” Mathematician 51

Proof First of all, replacing z(x) with z(x)g(x)−1, for a convenient g(x) ∈ C(x),
and a(x) with a(x) g(x)

g(x+1) , we can suppose that two distinguished poles of a(x) do
not differ by an integer.

It follows from Corollary 2.7.1, that z(x) is differentially algebraic over k(x) if
and only if there exist a positive integer n, λ0, . . . , λn ∈ C and g ∈ C(x) such that

λ0
∂(a)

a
+ λ1∂

(
∂(a)

a

)

+ · · · + λn∂n
(
∂(a)

a

)

= g(x + 1)− g(x).

In the differential relation above, the right hand side must have at least two pole in
any τ -orbit where it has a pole. while the left hand side has at worst one pole per
τ -orbit. We conclude that a(x) is constant.

On the other hand, if a(x) = c
g(x+1)
g(x)

and we choose a logarithm log c of c, a
general solution of y(x + 1) = a(x)y(x) has the form z(x) = p(x) exp(x log c),
with p(x) ∈ k. The latter is differentially algebraic over k(x). ��

2.7.2 Linear Inhomogeneous q-Difference Equations
of the First Order

We consider the setting of q-difference equations, i.e., F is the field of meromorphic
functions over C∗, q is a fixed complex number such that |q| > 1, τ : f (x) �→
f (qx), K = k(x), with k = Fτ . We consider the derivation ∂ = x d

dx
, that

commutes with τ .
With respect to differential algebraicity, the case of q-difference equations deeply

differs from the case of finite difference equation because of the following property
(see Example 2.7.4):

Lemma 2.7.6 The field of elliptic functions k is differentially algebraic over C.

To prove Lemma 2.7.6, it suffices to write the torus C∗/qZ in the form C/Z +
iτZ, where q = exp(2iπτ), using the exponential function, and remember that
the Weierstrass function ℘ is differentially algebraic over C(x), which is itself
differentially algebraic over C.

For further reference, we state the following corollary which is a consequence of
the fact that, if we have a tower of differentially algebraic extensions k̃/k′ and k′/k,
then k̃/k is also differentially algebraic:

Corollary 2.7.7 For a meromorphic function f ∈ F , it is equivalent to be
differentially algebraic over the following fields: k(x), k, C(x), C.

Taking into account the previous lemma, the proof of the corollary below follows
word by word the proof of Corollary 2.7.1:
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Corollary 2.7.8 In the notation above, let f ∈ K∗ and z ∈ F be such that τ (z) =
z+ f . The following assertions are equivalent:

1. f is differentially algebraic over K .
2. f is differentially algebraic over C(x).
3. f is D-finite over K .
4. There exist a positive integer n, λ0, . . . , λn ∈ k and g ∈ K such that

λ0f + λ1∂ (f )+ · · · + λn∂n (f ) = g(qx)− g(x).

Moreover, if f ∈ Q(x) (resp. C(x)), they are also equivalent to:

1. There exist a positive integer n, λ0, . . . , λn ∈ Q (resp. C) and g ∈ Q(x) (resp.
C(x)) such that

λ0f + λ1∂ (f )+ · · · + λn∂n (f ) = g(qx)− g(x).

We finally conclude by proving a result for homogenous order 1 q-difference
equations:

Corollary 2.7.9 ([HS08, Corollary 3.4]) Let a(x) ∈ C(x)∗ and let z be a
meromorphic function over C∗ (resp. C) be a solution of z(qx) = a(x)z(x). The
z(x) is differentially algebraic over C(x) (or equivalently over k(x)) if and only if
a(x) = cxn

g(qx)
g(x)

, for some g(x) ∈ C(x), n ∈ Z and c ∈ C (resp. n = 0 and

c ∈ qZ).

Proof If a(x) = cxn g(qx)
g(x)

, then a meromorphic solution in F is given by z(x) =
p(x)

�(cx)
�(x)

�(x)ng(x), where p(x) ∈ k and �(x) = ∑
n∈Z q−n(n+1)/2xn ∈ F is

the Jacobi Theta function, which verifies the functional equation �(qx) = x�(x).
Notice that ∂

(
∂(�(x))
�(x)

)
∈ k, therefore z is differentially algebraic over C(x). In

particular, if n = 0, and c is an integer power of q , the solution is also meromorphic
at zero.

Let us prove the inverse. We assume that z is meromorphic over C∗. First of
all, replacing z(x) with z(x)g(x)−1, for a convenient g(x) ∈ C(x), and a(x) with
a(x)

g(x)
g(qx)

, we can suppose that two distinguished poles of a(x) do not differ by an
integer power of q .

It follows from Corollary 2.7.8, that z(x) is differentially algebraic over C(x) if
and only if there exist a positive integer n, λ0, . . . , λn ∈ C and g ∈ C(x) such that

λ0
∂(a)

a
+ λ1∂

(
∂(a)

a

)

+ · · · + λn∂n
(
∂(a)

a

)

= g(qx)− g(x).

The differential relation above shows that a(x) must have at least two poles in
any non-zero τ -orbit, which is in contradiction with our assumptions, therefore we
conclude that a(x) = cxn, for some c ∈ C and n ∈ Z.
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If moreover z is has a pole at zero, rather than an essential singularity, we can
take the expansion of z in C((x)). Plugging it into the equation z(qx) = cxnz(x),
we see that n = 0 and hence that c must be an integer power of q . ��

2.7.3 A Particular Case of the Ishizaki-Ogawara’s Theorem

In the case of q-difference equations we give a Galoisian proof of the following
statement, which is a particular case of Ogawara’s theorem [Oga14, Theorem 2]. As
already noted by Ogawara, Ishizaki’s theorem [Ish98, Theorem 1.2] can be deduced
from his formal result. The latter is proved using elementary complex analysis and
it is a crucial ingredient of [DHRS20]. Both Ishizaki’s and Ogawara’s results are
based on the idea that q-difference equations “do not have many solutions which are
meromorphic in a neighborhood of 0”. In this subsection we only need to assume
that q �= 0 is not a root of unity, hence we allow q to have norm equal to 1.

Proposition 2.7.10 ([Oga14, Theorem 2]) Let q ∈ C � {0, roots of unity}, f ∈
C(x), f �= 0 and let z ∈ C((x)) be a formal power series solution of τ (z) = z+f .
The following assertions are equivalent:

1. z ∈ C(x).
2. z is algebraic over C(x).
3. z is D-finite over C(x).
4. z is differentially algebraic over C(x).

Proof The implications 1 ⇒ 2 ⇒ 3 ⇒ 4 are trivial. We prove that 4 ⇒ 1. We
decompose f (x) into elementary fractions and we take care of each part of the
decomposition separately. We consider a pole α ∈ C∗ of f (x) such that all the other
poles of f (x) in αqZ are of the form q−nα, with n ≥ 0. Let Nα the largest integer
such that q−Nαα is a pole of f (x) and

∑
i

ai
(x−q−Nαα)i be the polar part of f (x) at

q−Nαα. We set h1(x) =∑
i

qiai
(x−q−Nαα)i . Replacing z(x) with z1(x) = z(x)+h1(x),

we are reduced to consider a new functional equation y(qx) = y(x)+ f1(x), with
f1(x) = f (x)−h1(qx)+h1(x), which has a smallerNα . Iterating the argument we
obtain a q-difference equation with an inhomogeneous term f (x) having at most a
single pole in each q-orbit αqZ. Corollary 2.6.7 (for F = C((x)) and K = C(x))
implies that there exist n ≥ 0, λ0, . . . , λn ∈ C, not all zero, and g ∈ C(x) such that
λ0f + λ1∂(f ) + · · · + λn∂n(f ) = τ (g) − g. Since τ (g) − g cannot have a single
pole in qZα, for α �= 0, we conclude that the rational function f (x) must have no
pole at all in qZα. We are reduced to prove the claim in the case f ∈ C[x, x−1], but
this assumption obliges z(x) ∈ C((x)) to be an element of C[x, x−1], as one can
see directly from the equation f (x) = z(qx)− z(x), identifying the coefficients of
xn, for every integer n. This ends the proof. ��
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The expansion at zero defines an injective morphism from the field of meromor-
phic functions over C to C((x)), which commutes to the action of ∂ , therefore we
obtain:

Corollary 2.7.11 ([Ish98, Theorem 1.2]) Let f ∈ C(x), f �= 0 and let z ∈ F be
a meromorphic function over C, solution of τ (z) = z + f . Then the assertions of
Proposition 2.7.10 are equivalent for z.

Remark 2.7.12 The reader can find a Galoisian proof of the Ishizaki theorem in
whole generality in [HS08, Proposition 3.5], i.e., for equations of the form τ (y) =
ay+f . The general statement can be proven using the parameterized Galois theory
of difference equations.

Remark 2.7.13 We make some comments on the relation between convergent and
meromorphic solutions, under the assumption that |q| �= 1:

1. An important property of q-difference equations is the following:

For a solution of a linear q-difference equation with meromorphic coefficients over C∗,
it is equivalent to be meromorphic in a neighborhood of zero and to be meromorphic
over C.

The proof is quite easy and relies on the fact that we have supposed that
|q| �= 1. In fact, this allows to consider a meromorphic continuation of the
solution thanks to the fact that any point can be “brought next to zero” with a
repeated application of τ or of τ−1. It seems that this remark is originally due to
H. Poincaré [Poi90, page 318].

2. Let us suppose that z is a meromorphic function over C and algebraic over C(x).
Then z is a meromorphic function over C, which has at worst a pole at ∞,
hence it is rational. This proves that 2 ⇒ 1 in Proposition 2.7.10 is true for all
linear q-difference equations with rational coefficients, as soon as the solution is
meromorphic at 0.

2.8 The Galois Correspondence (Second Part)

In this section we are going to focus on the role of normal subgroups in the Galois
correspondence, under the following assumption.

Assumption 2.8.1 We suppose that τ is an automorphism of F and induces an
automorphism of K . In difference algebra, when τ is an automorphism, i.e. admits
an inverse, is usually called inversive.

The assumption above immediately implies that τ is also an automorphism of
any Picard-Vessiot ring and any Picard-Vessiot field contained in F . In fact, if U is
a fundamental solution of a system τ (Y ) = AY as in (2.2), we also have τ−1(U) =
τ−1(A−1)U . Notice that we continue to work under the assumption of Sect. 2.3 and
in particular that F contains a fundamental solution of the linear system τ (Y ) = AY
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with coefficients inK , and hence, that all our Picard-Vessiot ring and extensions are
contained in F .

The main result of this section is the following:

Theorem 2.8.2 In the notation of Theorem 2.5.3 above, let H be an algebraic
subgroup of G defined over k and let M = LH . The following assertions are
equivalent:

1. H is a normal subgroup of G;
2. M is a Picard-Vessiot field over K (for a convenient linear difference equation).

Assuming the equivalent conditions above, the algebraic group Gal(M/K) is
naturally isomorphic to G/H .

In order to complete the proof of the Galois correspondence, we need to prove a
quite classical proposition on the action of the Galois group on the elements of the
Picard-Vessiot extension. The proof is not difficult and indeed it is quite similar to
the differential case [vdPS03, Corollary 1.38], but, to the best of my knowledge, it is
not detailed anywhere in the literature. Notice that the hypothesis that τ is inversive
is a central ingredient.

Proposition 2.8.3 Let R ⊂ F be the Picard-Vessiot ring for a linear difference
system of the form (2.2) over K and f an element of the field of fractions of R. The
following statements are equivalent:

1. f ∈ R;
2. the K-vector space spanned by {τn(f ), n ≥ 0} has finite dimension.

Proof Let us prove that (1) ⇒ (2). We remind that there exists a fundamental
solution matrix U of a difference system of the form (2.2), such that R =
K[U, detU−1]. Let us denote by t1, . . . , td2+1 the elements of the matrix U , plus
detU−1. Since τ (U) = AU and τ (detU−1) = detA−1 · detU−1, for any integer
r ≥ 1, the K-vector space generated by the monomials of degree r in the ti’s and
their τ -iterated has finite dimension overK . This proves the statement, because any
f ∈ R can be written as a polynomial in the ti ’s and hence the K-vector space
spanned by {τn(f ), n ≥ 0} is contained in a finite dimensionalK-vector space.

We now show that (2) ⇒ (1). Let W be the K-vector space generated by
{τn(f ), n ≥ 0}. We consider the ideal of R defined by I := {a ∈ R|aW ⊂ R}.
Since f ∈ L and L is the field of fractions of R, the ideal I is non-zero. Moreover τ
is inversive, henceW ⊂ τ−1W . SinceW and τ−1(W) are vector spaces of the same
dimension, this implies that τ−1(W) = W . We conclude that τ (a)W ⊂ τ (aW) ⊂ R
for any a ∈ I and therefore that I is τ -invariant. Finally, 1 ∈ I , because R is τ -
simple, and f ∈ W ⊂ R. ��
Corollary 2.8.4 Let L/K be a Picard-Vessiot extension and R be the Picard-
Vessiot ring of L.

1. Let M be an intermediate field which is itself a Picard-Vessiot field over K .
Moreover let RM be its Picard-Vessiot ring. Then RM = M ∩ R.
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2. We fix f ∈ R and a linear difference equation L(y) = 0 with coefficients in K
such that L(f ) = 0. Furthermore, we suppose that the operator associated with
the equation L(y) = 0 has minimal orderm in τ . Then the solutions of L(y) = 0
in R form a k-vector space of solutions of maximal dimensionm.

Proof

1. The statement follows from the previous proposition, since f ∈ M ∩ R if and
only if f ∈ M and f is a solution of a linear difference equation with coefficients
in K .

2. Let W be the space of solution of L(y) = 0 in R. Since f ∈ W , we know that
W �= 0 and we can consider a k-basis w1, . . . , wr ofW . The following formula

det

⎛

⎜
⎜
⎜
⎝

w1 w2 · · · wr y

τ(w1) τ (w2) · · · τ (wr) τ (y)
...

...
. . .

...
...

τ r (w1) τ
r (w2) · · · τ r (wr) τ r(y)

⎞

⎟
⎟
⎟
⎠
= 0

gives a τ -difference equation L̃(y) = 0 with coefficients in L havingW as space
of solutions. By definition of the Galois group, ϕ(W ⊗k B) = W ⊗k B, for any
ϕ ∈ G(B) and any k-algebra B. The Galois correspondence and the invariance
by the action of the Galois group show that the coefficients of L̃(y) = 0 are
actually in K . Because of the minimality of the order of the operator associated
with L(y) = 0, we conclude that L and L̃ coincide up to the multiplication of
a non-zero element of K . This implies that W ⊂ R has maximal dimension m
over k.

This proves the claims. ��
Remark 2.8.5 Notice that in the proof of the second statement above, we could
replace R by any τ -K-algebra R̃ ⊂ R, such that for any k-algebra B and any ψ ∈
G(B), we have ψ(R̃ ⊗ B) ⊂ (R̃ ⊗ B).
Proof of Theorem 2.8.2 Let M be a Picard-Vessiot field. Then RM := R ∩ M is
a Picard-Vessiot ring, which is generated by the entries of a matrix U solution of
a difference linear system with coefficients in K , and its inverse. By definition
of the difference Galois group, for any k-algebra B and any ψ ∈ G(B) we have
ψ(RM ⊗ B) ⊂ RM ⊗ B. It implies that we have a natural group morphism
G(B) → Gal(M/K)(B), given by the restriction of the morphisms. The kernel
coincides with H(B), henceH is a normal subgroup of G.

Let us suppose that H is a normal subgroup of G. We set M = LH and RM =
R ∩M , so that any ϕ ∈ H(B) induces the identity over RM ⊗ B. Because of the
normality ofH(B) inG(B), anyψ ∈ G(B) verifiesψ(RM⊗B) ⊂ RM⊗B. Finally
Remark 2.8.5 shows that RM is generated by the solution of a linear difference
equations, and hence that it is a Picard-Vessiot ring. We deduce that M is the field
of fraction of RM because they both coincide with LH . ��
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Remark 2.8.6 In the notation of the proof, for any k-algebraB, we have a functorial
isomorphism

(G/H)(B) ∼= Autτ (RM ⊗k B/K ⊗k B),

which is actually an isomorphism of algebraic group.

We remind that kn = Kτn . See Example 2.2.2.

Corollary 2.8.7 Let L and G be as above and let G◦ be the connected component
of the identity of G. Then, LG

◦
is the relative algebraic closure of K in L (and,

hence in our framework coincides with K(kn), for a convenient positive integer n).

Proof Since G◦ is a normal subgroup ofG, the finite quotientG/G◦ is isomorphic
to Gal(LG

◦
/K). Theorem 2.4.9 implies that LG

◦
/K is an algebraic extensions,

which is also finitely generated.
Let L̃ be the relative algebraic closure of K in L. Then LG

◦ ⊂ L̃. Since any
algebraic element ofL overK is solution of a differential equation overK, L̃ is also
a Picard-Vessiot field, that therefore correspond to an algebraic subgroup H of G,
in the sense that L̃ = LH . The inclusion LG

◦ ⊂ L̃ implies that H ⊂ G◦. Moreover
G/H is a finite group, because it must have dimension 0, after Theorem 2.4.9. Since
G◦ is the smallest group such that the quotientG/G◦ is finite, we deduce that H =
G◦ and therefore, from the Galois correspondence, that L̃ = LG◦ . ��

Appendix: Behavior of the Galois Group with Respect
to the Iteration of τ

Let us consider the system (2.2) and its n-th iteration:

τny = Any, where An := τn−1(A) · · · τ (A)A. (A.1)

We want to compare the Galois group of (2.2) with the Galois group of (A.1).
It follows from the Definition 2.3.5 of Picard-Vessiot ring and field that, if

R (resp. L) is a Picard-Vessiot ring (resp. field) for (2.2) over K, R(kn) (resp.
L(kn)) is also a Picard-Vessiot ring (resp. field) for (A.1) over K(kn). Let Gn :=
Galτ

n
(L(kn)/K(kn)), where we have add the superscript τn to the notation with the

obvious meaning, to avoid any confusion.
Let G◦1 be the identity component ofG1. By Corollary 2.8.7, there exists r , such

that kr ⊂ L and that Galτ (L/K(kr)) = G◦1.

Lemma A.1 In the notation above, we have Galτ
r
(L/K(kr)) = G◦1 ⊗k kr .



58 L. Di Vizio

Proof By definition, for any kr—algebra B, we have an injective morphisms
from G◦1(B) → Galτ

r
(L/K(kr))(B), indeed if a morphisms commutes with τ ,

it commutes also with τn. The equality follows from the fact that the groups are
connected and that they have the same dimension, by Theorem 2.4.9. ��
Proposition A.2 In the notation introduced above, for any n ≥ r , the Galois group
of (2.2) over K(kn) is isomorphic to the Galois group of (A.1) over K(kn).

Proof The Galois group of (2.2) overK(kn) is Galτ (L(kn)/K(kn)) ∼= G◦1 ⊗k kn. It
can be naturally seen as a subgroup of Galτ

n
(L(kn)/K(kn)). Equality follows from

Theorem 2.4.9 and the connectedness of the groups, as in the proof of the previous
lemma. ��
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Chapter 3
Igusa’s Conjecture on Exponential Sums
Modulo pm and the Local-Global
Principle

Kien Huu Nguyen

Abstract In this survey we discuss the conjecture of Igusa on exponential sums
modulo pm and some progress of this conjecture. We also present a connection
between this conjecture and the local-global principle for forms of higher degree.

3.1 Introduction

Exponential sums play an important role in number theory with many deep applica-
tions. One of which is the use of the quadratic Gauss sums in Gauss’s proof of the
law of quadratic reciprocity that is the first example of reciprocity laws (see [Ire90,
Chapters 5 and 6]). Exponential sums modulo p have a deep connection with the
Riemann hypothesis over finite fields by the works of Weil, Deligne, Katz, Laumon
among others (see for example [Del77, Del74, Del80, Kat85, Kat99, Kat89, Wei48]).

This survey aims to introduce Igusa’s conjecture on exponential sums modulo
pm. We report the progress made towards its resolution and its connection with the
local-global principle for forms which was indeed one of the initial goals of Igusa.

We begin with one important class of exponential sums depending on a non-
constant polynomial f in n variables with integer coefficients. Let N be a positive
integer. We define the exponential sum modulo N associated to f by

EN(f ) := 1

Nn

∑

x∈(Z/NZ)n

exp(
2πif (x)

N
). (3.1)
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Our goal is to look for good upper bounds of these sums. The Chinese remainder
theorem allows us to simplify slightly the previous problem. In fact, we can express

1

N
=

k∑

i=1

ai

p
mi
i

where p1, . . . , pk are distinct primes, a1, . . . , ak and m1, . . . ,mk are integers such
that (ai, pi) = 1 and mi ≥ 1 for all 1 ≤ i ≤ k. It follows that

EN(f ) =
k∏

i=1

E
p
mi
i
(aif ). (3.2)

Thus it is sufficient to find good estimates of the exponential sums

Ep,m(f ) := Epm(f ) = 1

pmn

∑

x∈(Z/pmZ)n
exp(

2πif (x)

pm
)

for all primes p and all m ≥ 1.

Example 3.1.1 We consider the simplest example where f (x) = x. We see easily
that for N > 1, we have

EN(f ) = 0.

Example 3.1.2 We now consider a more complicated polynomial by taking f (x) =
x2. Let p be a prime andm be a positive integer. We writem = 2k+ r where k ≥ 1
and r ∈ {0, 1}. We calculate directly Epm(f ) by distinguishing two cases.
Case 1: p is an odd prime. We see that if (a, p) = 1 and 0 ≤ α ≤ k − 1, then

pα+1
∑

b=1

exp(
2πi(pαa + pm−1−αb)2

pm
) = 0.

Thus we get

Ep2k (f ) = 1

p2k

pk∑

a=1

exp(
2πi(pka)2

p2k ) = 1

pk
.

We also have

Ep2k+1(f ) = 1

p2k+1

pk+1
∑

a=1

exp(
2πi(pka)2

p2k+1 ) = 1

pk+1

p∑

a=1

exp(
2πia2

p
).
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Thus

|Ep2k+1(f )| = 1

pk+ 1
2

.

Here the above equality is a consequence of the following fact about quadratic Gauss
sums (see for example [Ire90, Chapter 6])

(

p∑

a=1

exp(
2πia2

p
))2 = p.

Case 2: p = 2. It is still true that if (a, 2) = 1 and 0 ≤ α ≤ k − 2, then

2α+2
∑

b=1

exp(
2πi(2αa + 2m−2−αb)2

2m
) = 0.

Thus

E22k (f ) = 1

22k

2k+1
∑

a=1

exp(
2πi(2k−1a)2

22k ) = 1

2k+1

4∑

a=1

exp(
2πia2

4
) = 1+ i

2k
.

Further, we have

E22k+1(f ) = 1

22k+1

2k+2
∑

a=1

exp(
2πi(2k−1a)2

22k+1 ) = 1

2k+2

8∑

a=1

exp(
2πia2

8
) = 1+ i

2
2k+1

2

.

By the same calculation, for all primes p, all positive integersm and all non-zero
integers A such that (A, p) = 1, we have

|Epm(Ax2)| ≤ cp p−m2 ,

where

cp =
{

1 if p �= 2,√
2 otherwise.

(3.3)

Hence by (3.2) we conclude that for all non-zero integers N ,

|EN(f )| ≤
√

2N−
1
2 .

The equality holds if N > 1 is a square number.
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In the case where f is a polynomial in one variable, exponential sums modulo
pm have been studied by many mathematicians and we refer the reader to [Coc99]
for more details.

For polynomials f in n variables, Igusa showed that for each prime p, there exist
a constant σp ≤ +∞ and a positive constant cp such that for all σ < σp and all
m ≥ 1, we have

|Epm(f )| ≤ cp p−mσ . (3.4)

Furthermore, either σp = +∞ or −σp is the real part of a pole of the Igusa local
zeta function associated to f . Thus we would like to know how to obtain a global
information from the local information for each prime p, i.e. the dependence of cp
and σp in p.

Example 3.1.3 In Example 3.1.1, for each prime p we can take σp = +∞ and an
arbitrary positive constant cp > 0.

In Example 3.1.2 we can take σp = 1
2 for all primes p and

cp =
{

1 if p �= 2,√
2 otherwise.

(3.5)

In order to prove (3.4), Igusa found a way to understand exponential sums
via singularity theory. In fact, exponential sums Epm(f ) modulo pm can be
computed by certain Igusa local zeta functions (see Sect. 3.2 for more details). As
a consequence, the asymptotic expansion of Epm(f ) for m > 1 could be given in
terms of poles of these Igusa local zeta functions.

We now give more details about the above discussion. First we recall some basic
facts about p-adic fields and then express exponential sums modulo pm as p-adic
integrals. Letting p be a prime, we define the p-adic norm |.|p on the field of rational
numbers Q as follows. We set |0|p := 0 and for all integers a, b, k with (a, p) =
(b, p) = 1,

|a
b
pk|p := p−k

We denote by Qp the completion of Q with respect to this norm and by Zp the
closure of Z in Qp. Then Qp is a locally compact field equipped with the norm |.|p
which extends |.|p over Q. Further, Zp is a closed and open subring of Qp and

Zp = {x ∈ Qp | |x|p ≤ 1}.

It is a discrete valuation ring with the unique maximal ideal

Mp = pZp = {x ∈ Qp||x|p < 1}.
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Let x be an element of Qp. We can write

x =
∑

i≥k
aip

i

for some integers k and ai with 0 ≤ ai ≤ p − 1. If x = 0, then we set ordp(x) :=
+∞. Otherwise, we can suppose that ak �= 0 and set ordp(x) := k. Then it is clear
that

|x|p = p− ordp(x).

Here we take the convention that p−∞ = 0. We note that x ∈ Zp if and only if
ordp(x) ≥ 0 and x ∈Mp if and only if ordp(x) > 0.

The standard additive character of Qp is the homomorphism of abelian groups

ψ1 := exp : (Qp,+)→ (C∗,×)

which sends x to exp(2πix ′) with x ′ ∈ Z[ 1
p
] ∩ (x + Zp). It is well-defined since

the value exp(2πix ′) does not depend on the choice of x ′ ∈ Z[ 1
p
] ∩ (x + Zp).

An additive character ψ of Qp is defined to be a continuous homomorphism from
(Qp,+) to (C∗,×) with compact image. For such an additive character ψ there
exists a unique z ∈ Qp such that

ψz(x) := ψ1(xz) = ψ(x).

Since Qp is locally compact, we can endow Qnp with the Haar measure |dx|
normalized such that Znp has volume 1. It follows immediately that

Epm(f ) =
∫

Znp

ψp−m(f (x))|dx|.

This suggests that to any additive characterψ of Qp we can associate an exponential
sum by

Eψ(f ) :=
∫

Znp

ψ(f (x))|dx|.

This integral is an example of Igusa local zeta functions.
More generally, letting L be a non-Archimedean local field which is a finite

extension of either the p-adic field Qp or the field of Laurent series Fq((t)) with
coefficients in a finite field Fq , we can associate an exponential sum Eψ(f ) to any
polynomial f ∈ L[x1, . . . , xn] and any additive character ψ of L.

As mentioned earlier, the asymptotic expansion of Epm(f ) for m > 1 could be
given in terms of poles of the associated Igusa local zeta function. To determine
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the poles of Igusa local zeta functions, Igusa formulated the so-called strong
monodromy conjecture which relates these poles to eigenvalues of monodromy
and roots of Bernstein-Sato polynomials (see Sect. 3.2.3). As a consequence, if the
strong monodromy conjecture holds for f , then the size of Epm(f ) can be bounded
in terms of the biggest non-trivial root of the Bernstein-Sato polynomial bf of f .

We now state a coarse form of Igusa’s conjecture for a uniform bound of
exponential sums modulo pm when p and m go to infinity.

Conjecture 3.1.4 Let f be a non-constant polynomial in n variables with coeffi-
cients in Z and σ be a positive real number. Suppose that for all primes p large
enough, there exists a constant cp > 0 such that we have

|Epm(f )| ≤ cp p−mσ

for all m ≥ 2. Then there exists a constant C > 0 such that

|Epm(f )| ≤ C p−mσ

for all primes p large enough and all m ≥ 2.

Remark 3.1.5 We rediscover the original conjecture of Igusa for homogeneous
polynomials f . We refer the reader to Sect. 3.4.2 for a discussion about this
conjecture as well as a variant of this conjecture due to Cluckers [Clu08a] and
Cluckers and Veys [Clu16].

Remark 3.1.6 The conditionm ≥ 2 in Conjecture 3.1.4 can be replaced by a weaker
condition m ≥ 1 in many cases (see Example 3.1.2). However, in general, we have
to treat separately the case m = 1 as explained below.

Let us consider the polynomial f = x1 − x2
1x2. We show that Epm(f ) = 0 for

all primes p and all m > 1 (see Remark 3.3.3 for more details). But for all primes
p we have

Ep(f ) = 1

p2 (
∑

x1 �=0 mod p

∑

x2∈Z/pZ
exp(

2πi(x1 − x2
1x2)

p
)+

∑

x2∈Z/pZ
1) = 1

p
.

Let σ > 1 then

|Epm(f )| ≤ pσ−1p−mσ

for all primes p and all m ≥ 1 but we cannot find a constant C such that

|Epm(f )| ≤ C p−mσ

for all primes p large enough and all m ≥ 1.
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Remark 3.1.7 We keep the notation of Conjecture 3.1.4. Suppose that there exist a
positive integerM and a constant C ≤ 1 such that

|Epm(af )| ≤ C p−mσ

for all primes p > M , all integers a with (a, p) = 1 and all m ≥ 1. Moreover, for
each prime p ≤M there exists a constant cp such that

|Epm(af )| ≤ cp p−mσ

for all integers a with (a, p) = 1 and all m ≥ 1. Thus (3.2) implies immediately

|EN(f )| ≤ C′N−σ

for some constant C′ > 0 and all N ≥ 1.

Remark 3.1.8 The statement of Conjecture 3.1.4 extends without difficulty to an
arbitrary global fieldK (i.e a finite extension of Q or a function field of an algebraic
curve over a finite field) and a non-constant polynomial f ∈ OK [x1, . . . , xn] where
OK is the ring of integers ofK .

In fact, for any finite place v of K , we denote by Kv the completion of K at
v equipped with the norm |.| : Kv → R and by Ov the ring of integers of Kv .
Let πv be a uniformizer of Ov . We fix an additive character ψ1 of Kv such that
ψ1|Ov = 1 but ψ1|π−1

v Ov �= 1 (see Sects. 3.2 and 3.3 for more details). Let σ be a
positive real number such that for all but finitely many finite places v of K and all
z ∈ Kv \ π−1

v Ov , we have

|Eψz(f )| = |
∫

Onv
ψ1(zf (x))|dx|| ≤ cv|z|−σ .

Then we can ask whether there exists a constant C such that cv ≤ C for all but
finitely many finite places v.

In Sect. 3.4 we give an overview of progress on this conjecture due to many
mathematicians. We begin with the work of Igusa in the non-degenerate case and
end with the most recent result of Cluckers, Mustaţă and the author in case of non-
rational singularities.

We should mention that Igusa’s work [Igu78] around exponential sums modulo
pm was motivated by his ultimate hope to extend the local-global principle to forms
of higher degree (i.e. homogeneous polynomials of degree at least 3). Recall that
for a form f ∈ Z[x1, . . . , xn] of degree d , we say that the local-global principle
holds for f if the following assertion is true: f represents zero in Q if and only
if it represents zero in R and in all fields Qp. The Hasse-Minkowski theorem
states that the local-global principle holds for quadratic forms. The idea of Igusa
to generalize the Hasse-Minkowski theorem to forms of higher degree is divided
into two steps. First, a good uniform bound of exponential sums modulo pm in p



68 K. H. Nguyen

and m together with some extra conditions would imply the existence of a certain
Poisson formula (see Sect. 3.3.2 and Proposition 3.3.7). Second, one derives the
local-global principle from this Poisson formula (see Sect. 3.5).

The above discussion illustrates one of the common approaches of this volume
which is to apply analytic techniques in the study of arithmetic geometry. The reader
is strongly encouraged to read other chapters for “further examples” in different
settings, in particular, the lecture of Poineau and Turchetti [Poi20a, Poi20b] and to
discover possible connections among them.

We close this section by saying some words about function fields. In this lecture
we only consider Conjecture 3.1.4 for number fields K but it is natural to ask
whether one could extend the results in Sects. 3.2, 3.3 and 3.4 to the case where
K is a function field which means the function field of an algebraic curve over a
finite field Fq . The answer is yes for non-constant polynomials f ∈ K[x1, . . . , xn]
such that for all critical values a of f , f−1(a) admits an embedded resolution with
good reduction at all but finitely many places v ofK (see Sect. 3.2 for the definition
of such a resolution). For number fields the existence of an embedded resolution
for all polynomials f is guaranteed by Hironaka’s theorem in [Hir64]. However,
the resolution of singularities in positive characteristic is more complicated and the
existence of such a resolution for general f is still unknown. Hence we hope that
some young mathematicians could attack this challenging question in the future.

3.2 Igusa Local Zeta Functions and Exponential Sums
Modulo pm

In this section we review the notion of Igusa local zeta functions and exponential
sums modulo pm over an arbitrary non-Archimedean local field of characteristic 0.
We refer the reader to the excellent survey of Denef [Den91] and the work of Igusa
[Igu78] for more details.

3.2.1 Local Fields

For the rest of this paper we fix a positive integer n ≥ 1.
In what follows, we consider a non-Archimedean local field L of characteristic

0. It means that L is a finite extension of Qp defined as in Sect. 3.1 for some prime
p. To simplify, we will say that L is a p-adic field and we set pL := p.

We remark that the norm |.|p on Qp extends uniquely to a norm |.|L in L. We
will write |.| instead of |.|L if no confusion results. Let OL be the ring of integers in
L. Then

OL = {x ∈ L | |x| ≤ 1}.
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It is a discrete valuation ring with the maximal ideal ML given by

ML = {x ∈ L | |x| < 1}.

We denote by kL = OL/ML the residue field of L. This field is a finite extension of
Fp and we denote by qL the cardinality of kL. Let � be a uniformizer of L, i.e. �
is a generator of ML. For each non-zero element x ∈ L, we can write in a unique
way x = λ�α where λ ∈ O∗L and α ∈ Z. We set

ac(x) := λ, ord(x) := α,

and

ac(x) := ac(x) mod ML.

We can extend the maps ac and ord to L by setting ac(0) = 0 and ord(0) = +∞.
We introduce the following three functions which will play an important role

in the sequel. First, the standard additive character of L is the homomorphism
ψ1 : L→ C∗ given by

ψ1 := exp(TrL/Qp (x))

where exp(.) is the map given in Sect. 3.1. Any additive character ψ of L can be
written in the form ψ(x) := ψz(x) = ψ(zx) for some element z ∈ L. We put

m(ψ) := − ord(z).

Second, a multiplicative character χ of O∗L is defined to be a continuous
homomorphism from (O∗L,×) to (C∗,×) with finite image. For a multiplicative
character χ , let c(χ) be the smallest integer such that χ |

1+Mc(χ)
L

is trivial. It is

called the conductor of χ . We set χ(0) := 0. It is clear that χ induces a character of
O∗L/(1+Mc(χ)

L ). In particular, if c(χ) = 1, then χ induces a character of k∗L which
is still denoted by χ and we extend χ to kL by setting χ(0) = 0.

Third, a Schwartz-Bruhat function � : Ln → C is a locally constant function
with compact support, denoted by Supp(�). We say that� is residual if Supp(�) ⊂
OnL and if �(x) only depends on x mod ML. If � is residual, then � induces a
function� : knL→ C.

As in case of Qnp, we will endow Ln with a Haar measure |dx| such that the
volume of OnL is 1.



70 K. H. Nguyen

3.2.2 Embedded Resolutions

Let K be a field of characteristic 0. Let f ∈ K[x1, . . . , xn] be a non-constant
polynomial in n variables. We set

X = A
n
K = SpecK[x1, . . . , xn],

and

D = f−1(0) = SpecK[x1, . . . , xn]/(f ).

An embedded resolution (Y, h) of D in X is a closed smooth subscheme Y of the
projective space P

m
X over X for some m such that the restriction h to Y of the

projection P
m
X → X has the following properties:

(i) h : Y\h−1(D)→ X\D is an isomorphism,
(ii) the reduced scheme (h−1(D))red associated to h−1(D) has simple normal

crossings as a subscheme of Y (i.e. its irreducible components are smooth and
intersect transversally).

Let Ei, i ∈ T , be the irreducible components of (h−1(D))red. For each i ∈ T ,
let Ni be the multiplicity of Ei in the divisor of f ◦ h on Y and let νi − 1 be the
multiplicity of Ei in the divisor of h∗(dx1 ∧ . . . ∧ dxn). The set {(Ni, νi)i∈T } are
called the numerical data of the resolution.

Further, for each subset I ⊂ T , we define

EI := ∩i∈IEi and
◦
EI := EI\ ∪j∈T \I Ej .

In particular, when I = ∅ we have E∅ = Y .
We also denote by Cf ⊂ X be the critical locus of f : X→ A

1
K .

We remark that such a resolution exists by the seminal work of Hironaka [Hir64,
Main Theorem II]. It can be obtained from a series of blow-ups with smooth centers.

Remark 3.2.1 Let K ′ be a field extension of K . By the functoriality of embedded
resolutions, h induces an embedded resolution h : YK ′ → A

n
K ′ = XK ′ of

DK ′ in XK ′ . We remark that each blow-up center C of h may be written as a
union of finitely many irreducible components Ci over K ′ and we can replace
the blow-up with center C by the composition of blow-ups with center Ci . If
K ′ is an algebraically closed field, then h induces an embedded resolution which
can be obtained by successive blow-ups at irreducible smooth varieties. Similarly,
each irreducible component Ei can be split into a disjoint union of finitely many
irreducible componentsEij overK ′. But we always have Ni = Nij , νi = νij .

In what follows, let K be a number field, OK be its ring of integers and
f ∈ OK [x1, . . . , xn] be a non-constant polynomial in n variables. Let (Y, h) be
an embedded resolution ofD in X. If Z is a closed subscheme of Y and p is a prime
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ideal of OK , we denote by Z the reduction modulo p of Z (see [Shi55]). We say
that the embedded resolution (Y, h) of D in X has good reduction modulo p if the
following conditions are satisfied:

(i) Y and Ei are smooth for all i ∈ T ,
(ii) ∪i∈T Ei has simple normal crossings,

(iii) the schemes Ei and Ej have no common components for all i, j ∈ T with
i �= j .

One can show that there exists a finite subset S of SpecOK , such that for all
p /∈ S, we have f ∈ Op[x], f �≡ 0 mod p and that the resolution (Y, h) for f has
good reduction mod p (see [Den87, Theorem 2.4]). Then for p /∈ S and I ⊂ T , one
can show that EI = ∩i∈IEi . We set

◦
EI := EI\ ∪j /∈I Ej .

Letting a be a closed point of Y , we put Ta := {i ∈ T |a ∈ Ei}. In the local ring of
Y at a, we can write

f ◦ h = u
∏

i∈Ta
g
Ni
i ,

where u is a unit, (gi)i∈Ta is a part of a regular system of parameters and Ni is the
corresponding multiplicity defined as above.

3.2.3 Igusa Local Zeta Functions and the Monodromy
Conjecture

Recall that L is a p-adic field. Let f ∈ L[x1, . . . , xn] be a non-constant polynomial
in n variables with coefficients in L. Let χ be a multiplicative character of O∗L and
� be a Schwartz-Bruhat function on Ln. Following Weil we associate to the data
(L, f, χ,�) an Igusa local zeta function

ZL,�,f (s, χ) :=
∫

Ln
�(x) χ(ac(f (x)) |f (x)|s |dx|,

for s ∈ C with  (s) > 0. One can see that ZL,�,f (s, χ) is holomorphic in this
region and extends to a meromorphic function on C. The following theorem gives
basic properties of these zeta functions ZL,�,f (s, χ).

Theorem 3.2.2 (Igusa [Igu74] and [Igu78]) We keep the previous notation. Then
we have

(i) ZL,�,f (s, χ) is a rational function of q−sL .
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(ii) If (Y, h) is an embedded resolution of f−1(0) in A
n
L with the numerical data

{(Ni, νi)i∈T }, then the poles of ZL,�,f (s, χ) are among the values

s = − νi
Ni
+ 2πik

loge qL

with k ∈ Z and i ∈ T such that χNi = 1.
(iii) If Supp(�)∩Cf ⊂ f−1(0), then ZL,�,f (s, χ) = 0 for all but finitely many χ .

Here recall that Cf ⊂ X denotes the singular locus of f : X→ A1
L.

In the case where we have an embedded resolution having good reduction
modulo ML, the above results could be improved as follows.

Theorem 3.2.3 (Denef [Den91] and [Den87]) Suppose that there exists an embed-
ded resolution (Y, h) of f−1(0) having good reduction modulo ML and f �=
0 mod ML. We suppose further that � is a residual Schwartz-Bruhat function on
Ln. Then we have

(i) If the conductor c(χ) of χ is at least 2 and that the numerical data {(Ni, νi)i∈T }
of (Y, h) satisfying Ni /∈ML for all i ∈ T , then ZL,�,f (s, χ) is constant as a

function of s. Moreover, if Cf ∩ Supp(�) ⊂ f−1
(0), then ZL,�,f (s, χ) = 0.

(ii) If c(χ) = 1 and χ is of order d , let Td = {I ⊂ T | ∀i ∈ I : d | Ni}. Then

ZL,�,f (s, χ) = q−nL
∑

I∈Td
cI,�,χ

∏

i∈I

(qL − 1)q−Nis−νiL

1− q−Nis−νiL

,

where

cI,�,χ =
∑

a∈
◦
EI (kL)

�(h(a))�χ(a),

and

�χ(a) = χ(u(a))

for any choice of u in the local ring of Y at a as in Sect. 3.2.1.
��

In many known examples, many of the possible poles are false poles of the
zeta function (even if we take the intersection of the sets of possible poles over
all embedded resolutions). The monodromy conjecture suggests an explanation for
this phenomenon.

Now let us recall some notions about monodromy and Bernstein-Sato polynomi-
als.
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Let f ∈ C[x1, . . . , xn] be a non-constant polynomial with coefficients in C and
P be a point in Cn such that f (P ) = a. Let B be a sufficiently small ball with
center P . In [Mil68] Milnor proved that f |B is a locally trivial C∞ fibration over
a small enough punctured disc A ⊂ C \ {a}. Thus the diffeomorphism type of
FP = f−1(t)∩B of f around P does not depend on t ∈ A. The counter clockwise
generator of the fundamental group ofA induces an automorphism T ofH ∗(FP ,C).
We call FP and T the Milnor fiber and the local monodromy of f at P , respectively.

Let K be a field of characteristic 0 and f ∈ K[x1, . . . , xn] be a polynomial.

Bernstein [Ber72] proved that there exist P ∈ K[x, ∂
∂x
, s] and a polynomial b(s) ∈

K[s] \ {0} such that Pf s+1 = b(s)f s . The monic polynomial of smallest degree
satisfying this functional equation is called the Bernstein-Sato polynomial of f ,
denoted by bf . One can show that (s+1) | bf (s) if f is non-constant. Furthermore,
Kashiwara claimed in [Kas76] that all roots of bf are negative rational numbers.
Moreover, Malgrange [Mal83] proved that if α is a root of bf , then exp(2πiα) is an
eigenvalue of the local monodromy of f at some point of f−1(0) and all eigenvalues
are obtained in this way.

Igusa suggested that the poles of the Igusa local zeta function associated to f
should be described by the roots of the associated Bernstern-Sato polynomial or the
eigenvalues of the local monodromy of f .

Conjecture 3.2.4 (Igusa, Monodromy Conjecture) Let K be a number field and
f be a non-constant polynomial in K[x1, . . . , xn]. For all but finitely many primes
p, if s is a pole of ZL,�,f (s, χ) where L is a p-adic field containing K , then
exp(2πi (s)) is an eigenvalue of the local monodromy of f at some complex point
of f−1(0).

Conjecture 3.2.5 (Strong Monodromy Conjecture) Let K be a number field and
f be a non-constant polynomial in K[x1, . . . , xn]. For all but finitely many primes
p, if s is a pole of ZL,�,f (s, χ) where L is a p-adic field containing K , then  (s)
is a root of bf .

By the above discussion, if α is a root of bf , then exp(2πiα) is an eigenvalue
of the local monodromy of f at some point. Thus Conjecture 3.2.5 implies
Conjecture 3.2.4. Note that Conjecture 3.2.4 only implies that if s is pole of
ZL,�,f (s, χ), then  (s)+ a is a root of bf for some integer a.

Both conjectures might be true for all p-adic fields. But it seems very hard for
primes for which we cannot find an embedded resolution with good reduction.
Although both conjectures have been checked in many cases (see for example
[Loe88] for polynomials in two variables), to our knowledge, they are widely open
in general.
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3.2.4 Exponential Sums and Fiber Integration

In this section we introduce a general form of exponential sums modulo pm and its
relation with Igusa local zeta functions.

Recall that L is a p-adic field. Let f be a non-constant polynomial in
L[x1, . . . , xn], � be a Schwartz-Bruhat function on Ln and z be an element of
L. To this data we associate the exponential sum EL,�,z(f ) by

EL,�,z(f ) :=
∫

Ln
�(x)ψ1(zf (x)) |dx|.

It is clear that if L = Qp, z = p−m, � = 1Zp , then EL,�,z(f ) is equal to Epm(f )
introduced in Sect. 3.1.

To describe the relation between exponential sums modulo pm and Igusa local
zeta functions, we need to recall the notion of fiber integration. For each y ∈ L, we
set Uy := f−1(y) \ Cf . Since f (x) = y on Uy , we get

∂f

∂x1
dx1 + · · · + ∂f

∂xn
dxn = 0 (3.6)

on Uy . Let a ∈ Uy . Since a /∈ Cf , there exists 1 ≤ � ≤ n such that
∂f

∂x�
(a) �= 0.

If j �= � and 1 ≤ j ≤ n such that
∂f

∂xj
(a) �= 0, taking the exterior product on both

sides of (3.6) with
∧
i �=j,i �=� dxi yields

(−1)j−1 ∂f

∂xj
(a)

∧

i �=�
dxi = (−1)�−1 ∂f

∂x�
(a)

∧

i �=j
dxi.

Thus df,y := (−1)�−1(
∂f

∂x�
)−1 ∧

i �=� dxi |Uy is a well-defined non-vanishing regular

(n− 1)-form around a ∈ Uy . For each Schwartz-Bruhat function� on Ln, we set

Ff,y(�) :=
∫

f−1(y)

� |df,y |.

We can show that

EL,�,z(f ) =
∫

L

Ff,y(�)ψ1(zy) |dy|

is the Fourier transform of Ff,y(�) and

ZL,�,f (s, χ) =
∫

L

Ff,y(�)ωχ,s(y) |dy|
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is the Mellin transform of (1−q−1
L )q

− ord(y)
L Ff,y(�)where the quasi-characterωχ,s

is given by ωχ,s(y) = χ(ac(y))q− ord(y)s
L .

On the other hand, using Fourier transform we can compute EL,�,z(f ) by Igusa
local zeta functions.

Proposition 3.2.6 ([Den91], Proposition 1.4.4) Let u ∈ O×L , � be a uniformiser
of L and m ∈ Z. Then EL,�,u�−m(f ) is equal to

ZL,�,f (0, χtriv)+ Coefftm−1

( (t − qL)ZL,�,f (s, χtriv)

(qL − 1)(1− t)
)

+
∑

χ �=χtriv

gχ−1χ(u)Coefftm−c(χ)
(
ZL,�,f (s, χ)

)
,

where gχ is the Gauss sum given by

gχ = q
1−c(χ)
L

qL − 1

∑

v∈(OL/Mc(χ)
L )∗

χ(v)ψ1(v/�
c(χ)).

As a consequence, we obtain the following asymptotic expansion of exponential
sums.

Corollary 3.2.7 Suppose that Cf ∩Supp(�) ⊂ f−1(0). Then EL,�,z(f ) is a finite
C-linear combination of functions of the form

χ(ac(z))|z|λ(logqL |z|)β

with coefficients independent of z, and with λ ∈ C a pole of

H(L, χ, s)ZL,�,f (s, χ)

where

H(L, χ, s) =
{
qs+1
L − 1 if χ = χtriv,

1 otherwise.

and with β ∈ N, β ≤ (multiplicity of pole λ)− 1, provided that |z| is large enough.
Moreover, all poles λ appear effectively in this linear combination.

A pole λ appearing in Corollary 3.2.7 will be called a non-trivial pole of the Igusa
local zeta function associated to f and �. We will denote the set of such poles by
Pol(f,�). For λ ∈ Pol(f,�) we set

mf,�(λ) := max{mf,�,χ (λ) | λ is a pole of H(L, χ, s)ZL,�,f (s, χ)}
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where mf,�,χ (λ) is the multiplicity of the pole λ of H(L, χ, s)ZL,�,f (s, χ).
Moreover, we set

σf,� := min{− (λ) | λ ∈ Pol(f,�)}

and

βf,� := max{mf,�(λ) | λ ∈ Pol(f,�),  (λ) = −σf,�}.

It is very useful that the previous asymptotic expansion of exponential sums gives
us all the important information about the poles of the Igusa local zeta function
associated to f and�. If the strong monodromy conjecture (Conjecture 3.2.5) holds,
then we would obtain a very deep and mysterious connection between the arithmetic
side, the geometric side and the topological side of f .

3.3 Igusa’s Conjecture on Exponential Sums Modulo pm

This section aims to state a general conjecture on exponential sums modulo pm in
spirit of Igusa as we mentioned in Sect. 3.1. To do so we review the notion of a
certain Poisson formula (see [Igu78, Igu76] for more details).

3.3.1 Adèles

In what follows,K denotes a number field. Let OK be its ring of integers. For each
place v of K , we denote by |.|v the associated absolute value of K and Kv be the
completion of K by |.|v. By Ostrowski’s theorem, Kv is either R, C or a p-adic
field. We normalize the norms |.|v where v runs through the set of places ofK such
that the product formula holds. This formula says that for all x ∈ K∗, |x|v = 1 for
all but finitely many places v and we have

∏

v

|x|v = 1

where v runs through the set of places of K .
We say that v is an Archimedean place of K if Kv = R or Kv = C. Otherwise,

we say that v is a non-Archimedean place of K . We denote by S∞ the set of all
Archimedean places of K

S∞ := {v | v is Archimedean}. (3.7)
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With the notation as in Sect. 3.2, for each non-Archimedean place v, we denote
by Ov the ring of integers of the local field Kv , Mv the maximal ideal of Ov , kv
the residue field ofKv and pv the characteristic ofKv . Finally, we fix a uniformizer
�v of Kv and denote by ordv and acv the associated valuation map and the angular
component map of Kv , respectively.

Let X = A
n
K the affine space of dimension n. A subvariety U of X is locally

K-closed if we can write U = V \W where V and W are closed subvarieties of X
defined overK .

Let U be such a subvariety of X. If we write I (V ) = (f1, . . . , f�) and I (W) =
(g1, . . . , gr ) with polynomials fi, gj ∈ K[x1, . . . , xn], then a ∈ U if and only if
fi(a) = 0 for all 1 ≤ i ≤ � and gj (a) �= 0 for some 1 ≤ j ≤ r . For each place v of
K , we put

Uv := {x ∈ Knv | (∀i, fi(x) = 0) ∧ (∃j, gj (x) �= 0)}.

It is clear that Uv is locally compact. Moreover, if v is non-Archimedean, we set

U0
v := {x ∈ Onv | (∀i, fi(x) = 0) ∧ (∃g ∈ I (W) ∩OK [x1, . . . , xn], g(x) ∈ O∗v)},

then U0
v is compact. Let S be a finite set of places of K such that S contains S∞

defined as in (3.7). Then
∏
v∈S Uv is locally compact and

∏
v /∈S U0

v is compact. It
implies that

US =
∏

v∈S
Uv ×

∏

v /∈S
U0
v

is also locally compact. It is clear that if S ⊂ S′, then US ⊂ US ′ . Thus we can

take the inductive limit UA = lim−→
S
US which is called the adelization of U . The set

U(K) of K-points of U can be viewed as a discrete subset of UA by the diagonal
embedding. Note that this construction is functorial.

We suppose further that U is smooth and that there exists an everywhere regular
differential form ω of the highest degree on U vanishing nowhere and defined over
K . Let � be a non-trivial character of KA/K , i.e. a homomorphism from KA to
the unit circle which is trivial on K . For each place v of K , there exists a natural
embedding Kv ↪→ KA which sends x to the adèle whose v-th coordinate is x
and others coordinates are 0. Via this embedding � induces a character ψv on
Kv . We can associate a measure |dx|v on Knv which is the n-fold product of the
self-dual measure relative toψv onKv . We observe that for all but finitely many non-
Archimedean places v, the characterψv is trivial on Ov but non-trivial on M−1

v , and
the measure of Onv is equal to 1. Next, we endow the set Uv with the Borel measure
|ω|v associated with ω and the measure |dx|v. For each finite set S of places of K
such that S contains S∞ defined as in (3.7), we define the measure |ω|A on US to be
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the product of measures

|ω|A :=
⊗

v∈S
|ω|v ⊗

⊗

v /∈S
|ω|v

under the assumption that the product measure
⊗
v /∈S |ω|v exists on

∏
v /∈S U0

v . We
will call |ω|A the Tamagawa measure on UA. In particular, the Tamagawa measure
exists on XA by taking U = X.

Recall that S∞ is the set of all Archimedean places of K as in (3.7). We set

X∞ :=
∏

v∈S∞
Xv,

and

X0 := lim→S
∏

v∈S\S∞
X0
v.

Viewing X∞ as a finite product of copies of R, we consider the space S(X∞) of
Schwartz-Bruhat functions on X∞. Since X0 is a locally compact abelian group
with arbitrary large and small compact open subgroups, we can define the space
S(X0) of Schwartz-Bruhat functions on X0. The Schwartz-Bruhat functions on XA
is defined to be the tensor product

S(XA) := S(X∞)⊗C S(X0).

Each element of S(XA) is a C-linear combination of elements of the form�∞⊗�0
with�∞ ∈ S(X∞) and�0 ∈ S(X0). A tempered distribution T onXA is a C-linear
form on S(XA) such that for all fixed functions�0 ∈ S(X0), T (�∞⊗�0) depends
continuously on �∞ in S(X∞). We denote by S(XA)′ the C-vector space of all
tempered distributions on XA.

3.3.2 Poisson Formulas and Formulas of Siegel Type

We continue with the notation of the previous section. Recall that K is a number
field and X = A

n
K is the affine space of dimension n. Let f ∈ OK [x1, . . . , xn] be a

non-constant polynomial. We fix a non-trivial character� ofKA/K . For any z ∈ K
we define a tempered distribution �(zf (x)) on XA given by

�(zf (x))(�) :=
∫

XA

�(x)�(zf (x)) |dx|A.

Note that this integral is absolutely convergent.
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We say that the Poisson formula holds for f if the following conditions hold:

(i) The infinite sum

∑

z∈K
�(zf (x))

belongs to S(XA)′. It is equivalent to the fact that the Eisenstein-Siegel series

∑

z∈K

∫

XA

�(x)�(zf (x)) |dx|A

converges absolutely for every� ∈ S(XA).
(ii) For all y ∈ K , the measure |df,y |A exists on Uy,A.

(iii) If j : Uy,A → XA is the induced map by Uy → X, then the global singular
series j∗(|df,y |A) (or simply |df,y |A) exists in S(XA)′ or equivalently, the
integral

∫

Uy,A

� |df,y |A

is absolutely convergent for every� ∈ S(XA).
(iv) The infinite sum

∑

y∈K
|df,y |A

belongs to S(XA)′.
(v) We have the following equality

∑

z∈K
�(zf (x)) =

∑

y∈K
|df,y |A

in S(XA)′.

Igusa gave a criterion for the existence of Poisson formulas based on his
conjecture on exponential sums modulo pm.

Proposition 3.3.1 (See [Igu78]) Let f be a form of degree d in OK [x1, . . . , xn]
(i.e f ∈ OK [x1, . . . , xn] is a homogeneous polynomial of degree d).

Then the Poisson formula holds for f if the following conditions hold:

(i) codim(Cf ) ≥ 3, i.e. the affine hypersurface defined by f is irreducible and
normal.
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(ii) There exist a constant σ > 2 and a positive constant c such that for all but
finitely many non-Archimedean places v and all z ∈ Kv \Ov , we have

|EKv,1Onv ,z(f )| ≤ c |z|
−σ
v . (3.8)

There is no reason to restrict (3.8) to homogeneous polynomials and to the
condition σ > 2. Thus we could relax these restrictions to obtain a more general
statement. For the constant σ , by Corollary 3.2.7, we should choose

σ < lim inf
pv→+∞

σf,1Onv
.

We should mention that it may be interesting to investigate (3.8) for families of
Schwartz-Bruhat functions (�v)v/∈S∞ in the case where there exists a closed subset
W defined overOK of the affine space AnK such that�v = �W,v is the characteristic
function of the set {x ∈ Onv | x mod Mv ∈ W(kv)} for each place v /∈ S∞.

We are ready to state a general form of Igusa’s conjecture on exponential sums.

Conjecture 3.3.2 Let K be a number field and f be a non-constant polynomial
in OK [x1, . . . , xn]. Let W be a closed subset defined over OK of the affine space
An such that f (W(C)) contains at most one critical value of f . Let �W,v be the
characteristic function of the set {x ∈ Onv | x mod Mv ∈ W(kv)} for each place
v /∈ S∞. We set

σ := lim inf
pv→+∞

σf,�W,v

and

β := lim sup
pv→+∞

βf,�W,v

as in Sect. 3.2.
Then there exists a positive constant c such that for all but finitely many places

v, all z ∈ Kv with ordv(z) ≤ −2, we have

|EKv,�W,v,z(f )| ≤ c | ordv(z)|β−1 |z|−σv . (3.9)

Remark 3.3.3 If f (W(C)) contains no critical values of f , then

EKv,�W,v,z(f ) = 0

provided that kv has large enough characteristic and ordv(z) ≤ −2 (see [Den91,
Remark 4.5.3]). Hence Conjecture 3.3.2 holds in this case.

Remark 3.3.4 We note that in the original statement of Igusa in [Igu78], he only
considered the case where f is homogeneous, W = A

n
K (i.e. �W,v = 1Onv for all



3 Igusa’s Conjecture on Exponential Sums Modulo pm and the Local-Global Principle 81

finite places v). Further, there are some extra conditions. The first one is that f has
an embedded resolution such that νi > Ni for all exceptional divisors Ei . In this
case Igusa chose β = 1 and an arbitrary real number σ such that

σ < min{ νi
Ni

| Ei is an exceptional divisor}.

The second one is that ordv(z) ≤ −1. When ordv(z) = −1, the corresponding
exponential sums become exponential sums over finite fields and we can apply the
method of Deligne and Katz (see for example [Del77, Del74, Del80, Kat89]).

By Remark 3.1.6, the condition ordv(z) ≤ −2 in Conjecture 3.3.2 is necessary.

3.3.3 Some Expected Results

Let f ∈ OK [x1, . . . , xn] be a homogeneous polynomial of degree d ≥ 2. Suppose
that Conjecture 3.3.2 holds for f andW = A

n
K . Further, we suppose that

lim inf
pv→+∞

σf,1Onv
> 1.

It follows that f has only rational singularities (see [Clu19, Proposition 3.10]). As a
consequence, if we denote by−αf the biggest root of (s+1)−1bf (s), then αf > 1.

If the strong monodromy conjecture (Conjecture 3.2.5) also holds for f , then we
obtain an upper bound for αf

αf ≤ lim inf
pv→+∞

( inf
�v∈S(Knv )

σf,�v ). (3.10)

A lower bound for this quantity was due to Mustaţă and Popa. In fact, their result
holds for any field K of characteristic 0.

Proposition 3.3.5 (Mustaţă and Popa [Mus20]) With the above notation, we have

αf ≥ codim(Cf )

d
.

On the other hand, we have to deal with the case where ord(z) = −1. One of the
key ingredients is to have good estimates of exponential sums over finite fields. In
this case we have the following result due to Cluckers.

Proposition 3.3.6 (Cluckers [Clu08a]) Recall that K is a number field and f is a
homogeneous polynomial in OK [x1, . . . , xn] of degree d ≥ 2. Then there exists a
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constant c > 0 such that for all places v of K and all z ∈ Kv with ordv(z) = −1,
we have

|EKv,1Onv ,z(f )| ≤ c |z|
−σf

where

σf = lim inf
pv→+∞

( inf
�v∈S(Knv )

σf,�v ).

As a consequence, we deduce the Poisson formula for f under some conditions.

Proposition 3.3.7 Let K be a number field and f be a homogeneous polynomial in
OK [x1, . . . , xn] of degree d ≥ 2. Suppose that Conjectures 3.2.5 and 3.3.2 hold for
f . If codim(Cf ) ≥ 3 and αf > 2, then the Poisson formula holds for f .

In particular, if codim(Cf ) ≥ 2d + 1, then the Poisson formula holds for f .

Proof The proof follows immediately from (3.10) and Propositions 3.3.1, 3.3.5,
3.3.6. ��
Remark 3.3.8 It is quite tempting to study Conjecture 3.3.2 for σ = αf .

3.4 Progress on Igusa’s Conjecture

In what follows, let K be a number field with the ring of integers OK and let f ∈
OK [x1, . . . , xn] be a non-constant polynomial in n variables. Recall that f is said
to be a form of degree d if f is a homogeneous polynomial of degree d .

3.4.1 The Non-degenerate Case

Igusa proved his conjecture for strong non-degenerate forms, i.e. homogeneous
polynomials with a unique critical point {0}.
Theorem 3.4.1 (Igusa [Igu78]) Suppose that f is a form of degree d with Cf =
{0}. Then there exists a positive constant c such that for all non-Archimedean places
v of K and all z ∈ Kv \Ov ,

|EKv,1Onv ,z| ≤ c |z|
− nd .

In particular, if n ≥ 2d + 1, then the Poisson formula holds for f .

Denef and Sperber investigated Conjecture 3.3.2 for non-degenerate polynomials
(not necessarily homogeneous). We recall first the notion of non-degenerate poly-
nomials.
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Let k be a field and k̄ be an algebraic closure of k. Let

f = f (0)+
∑

i∈Zn≥0

cix
i ∈ k[x1, . . . , xn]

where we set x := (x1, . . . , xn) and xi := x
i1
1 · · · xinn with i = (i1, . . . , in). The

Newton polyhedron of f at the origin is defined by

 0(f ) = Conv Supp f + R
n
≥0,

where Suppf =
{
i ∈ Z

n≥0

∣
∣
∣ ci �= 0

}
denotes the support of f . For all non-empty

faces τ ⊆  0(f ) of any dimension, ranging from vertices to  0(f ) itself, we write

fτ =
∑

i∈τ∩Zn≥0

cix
i .

We say that f is non-degenerate with respect to τ if the system of equations

∂fτ

∂x1
= . . . = ∂fτ

∂xn
= 0

has no solutions in k
∗n

. It is equivalent to require that the map k
∗n → k given by

α �→ fτ (α) has no critical values. We say that f is non-degenerate with respect to
the faces of  0(f ) if it is non-degenerate with respect to all possible choices of τ .

Let σ0,f be the biggest real number t such that ( 1
t
, . . . , 1

t
) ∈  0(f ) and β0,f be

the codimension of the smallest face τ0(f ) of  0(f ) containing ( 1
σ0,f
, . . . , 1

σ0,f
).

Denef and Sperber suggested that certain estimates of exponential sums modulo
pm of a non-degenerate polynomial can follow from those of exponential sums
over finite fields. More precisely, they used the work of Adolphson-Sperber (see
[Ado89]) on exponential sums over finite fields to obtain the first remarkable result
after Igusa’s work.

Theorem 3.4.2 (See [Den01]) Suppose that f is non-degenerate with respect to the
faces of its Newton polyhedron  0(f ) at the origin and that {0, 1}n ∩ τ0(f ) = ∅.
Then there exists a positive constant c which depends only on  0 such that for all
but finitely many non-Archimedean places v of K and all z ∈ Kv \Ov , we have

|EKv,1Mn
v
,z| ≤ c | ordv(z)|β0,f−1 |z|−σ0,f . (3.11)

Moreover, if f is homogeneous, then

|EKv,1Onv ,z| ≤ c | ordv(z)|β0,f−1 |z|−σ0,f . (3.12)
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Using the approach of Denef-Sperber, Cluckers replaced the work of Adonphson-
Sperber by that of Katz (see [Kat99]) to obtain the same bound as in (3.12) (resp.
(3.11)) but for non-degenerate quasi-homogeneous polynomials (resp. all non-
degenerate polynomials) without the technical condition {0, 1}n ∩ τ0(f ) = ∅ (see
[Clu08b] and [Clu10]). Recently, Castryck and the author extended Cluckers’ results
to all non-degenerate polynomials under the condition ordv(z) ≤ −2 (see [Cas19]).

3.4.2 Beyond the Non-degenerate Case

Conjecture 3.3.2 becomes more difficult if we remove non-degenerate conditions for
f . Let us mention some results in this direction. On the one hand, Wright proved
some results for quasi-homogeneous polynomials in two variables (see [Wri20]).
Lichtin rediscovered the results of Wright by another method and extended them
to homogeneous polynomials in three variables (see [Lic13], [Lic16]). On the other
hand, Cluckers proved some results in the case where ordv(z) = −1 or ordv(z) =
−2 (see [Clu08a]).

In [Clu16] Cluckers and Veys stated Conjecture 3.3.2 for polynomials f and the
function 1Onv (resp. 1Mn

v
), σ̃f (resp. σ = lct0(f )) and β = n. Here lct0(f ) denotes

the log-canonical threshold of f at 0 and σ̃f = min{lctb(f−f (b)) | b ∈ C
n}. Recall

that the log-canonical threshold lct0(f ) of f at 0 is defined to be the minimum over

all the values
νi

Ni
as in Sect. 3.2.1 with 0 ∈ h(Ei). We refer the reader to [Mus12]

for an introduction to log canonical thresholds. Theorem 3.2.2 and the definition of
σ̃f imply

σ̃f ≤ lim inf
pv→+∞

σf−a,�W,v (3.13)

for all a ∈ C and all choices of W as in the statement of Conjecture 3.3.2 with
f (W(C)) = a . The above inequality (3.13) becomes an equality for a certain set
W if f has non-rational singularities (see [Clu19, Proposition 3.10]). Hence the
conjecture of Cluckers and Veys is sharp in case of non-rational singularities.

We mention some results toward the conjecture of Cluckers and Veys. Cluckers
and Veys proved their conjecture for some small values of | ordv(z)|. In [Cha20]
Chambille and the author proved this conjecture in the case where lct(f ) (resp.
lct0(f )) is at most 1/2. Their proof suggested that Conjecture 3.3.2 may hold if we
can prove it for each given value of ordv(z).

Recently, Cluckers, Mustaţă and the author [Clu19] used a geometric method
and proved that the conjecture of Cluckers and Veys holds for all non-constant
polynomials f . Moreover, Conjecture 3.3.2 holds fully in the non-rational singu-
larities case. Here are some ideas of the proof. They first gave a so-called power
condition for resolutions of singularities to characterize the possible obstruction
for Cluckers-Veys’ conjecture. If the power condition holds, then they deduce an
inequality associated to the numerical data of this resolution which allows to remove
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the above obstruction. One key ingredient is the existence of some models in the
Minimal Model Program. We strongly believe that further developments of the
Minimal Model Program could lead to the full resolution of Conjecture 3.3.2 in
case of rational singularities. Finally, we mention that Veys obtained a proof of
Conjecture 3.3.2 in case of polynomials in two variables in the same line with that
of [Clu19]. But he did not use the technique from the Minimal Model Program (see
[Vey20]).

To end this section, we state the main result of Cluckers-Mustaţă-Nguyen
[Clu19].

Theorem 3.4.3 Let K be a number field and f ∈ OK [x1, . . . , xn] be a non-
constant polynomial, andW be any closed subscheme of AnOK , then there exist c > 0
andM > 0 such that

|EKv,�W,v,z| < c | ordv(z)|n−1 |z|−σ̃W,f (3.14)

for all finite places v of K with pv > M and all z with ordv(z) ≤ −2, where
σ̃W,f = min{lctb(f −f (b)) | b ∈ W }. Moreover, c can be chosen to be independent
of the number fieldK containing the coefficients of f .

3.5 A Long History of the Local-Global Principle

3.5.1 The Local-Global Principle

One of the most important techniques in arithmetic geometry is the local-global
principle (also known as the Hasse principle). This principle asserts that a certain
property is true globally if and only if it is true everywhere locally. This principle
reduces certain difficult problems in global fields to those in local fields in which
we have more tools. The most famous example of the local-global principle is
the Hasse-Minkowski theorem. Minkowski proved that a quadratic form over
Q represents 0 if and only if it represents 0 in any local field containing Q.
Hasse generalized Minkowski’s theorem to number fields. In fact, the local-global
principle for quadratic forms holds for all global fields.

For forms of higher degree (i.e homogeneous polynomials of degree at least 3),
the local-global principle does not hold in general and many counterexamples were
already constructed (see for example [Mor37, Sel51]). So the question for forms of
higher degree is:

How can one characterize forms for which the local-global principle holds?
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3.5.2 Progress on the Local-Global Principle

In the case where f is a cubic form in n variables over Q, it is conjectured that
f has a non-trivial rational zero as soon as n ≥ 10. Using the Hardy-Littlewood
circle method, Davenport showed in [Dav63] that a cubic form over Q in at
least 16 variables represents 0, so the local-global principle holds trivially in this
case. Heath-Brown improved the result of Davenport to cubic forms in at least 14
variables (see [Hea07]) and non-singular cubic forms in at least 10 variables (see
[Hea84]). Davenport also proved that cubic forms in at least 10 variables over Q
represent 0 in all p-adic fields (see [Dav05]). Moreover, it is clear that a cubic form
over Q has a non-trivial solution in R. Hence we may ask whether it is possible to
remove the non-singular condition in Heath-Brown’s work.

There are also results for cubic forms in fewer variables. Hooley proved in
[Hoo88] that the local-global principle holds for non-singular cubic forms in at
least 9 variables. Recently, Hooley showed that under the validity of the Riemann
hypothesis for certain Hasse-Weil L-functions, the local-global principle holds for
all non-singular forms in 8 variables (see [Hoo14]). In another approach, Manin
suggested that the obstruction of the local-global principle for cubic forms may be
explained by the theory of Brauer groups (the so-called Brauer-Manin obstruction)
but Skorobogatov showed that the Brauer-Manin obstruction cannot fully explain
the failure of the local-global principle in the general case (see [Sko99]). Further,
such an obstruction is known to be empty for non-singular cubic forms in at least 5
variables.

For forms of arbitrary degree, by generalizing the method of Davenport, Birch
showed in [Bir61] that a form f of degree d > 2 in n variables over Q represents
0 if f−1(0) has a non-singular point over all local fields containing Q and n −
dim(Cf ) ≥ (d − 1)2d . Recently, Browning and Prendiville improved the second
condition of Birch to n−dim(Cf ) ≥ (d− 1

2

√
d)2d (see [Bro17b]). In the case where

Cf = {0}, Browning and Heath-Brown conjectured that the local-global principle
holds for a form f of degree d in n variables if n ≥ 2d + 1 (see [Bro17a]). We
will see below that this conjecture agrees with the prediction of Igusa. On the other
hand, a remarkable result of Birch in [Bir57] stated that for each odd integer d ≥ 1,
there exists a positive integer N(d) such that all forms of degree d in n variables
with n > N(d) represent 0. It follows that the local-global principle holds trivially
if n > N(d). However, to our knowledge, we do not know any quantitative results
in this direction.

We now review basic ideas of the Hardy-Littlewood circle method. Let f be a
homogeneous polynomial of degree d > 1 inZ[x1, . . . , xn]. Letω : Rn→ [0,+∞)
be a suitable weight function. Our goal is to obtain an asymptotic formula of the
function

Nω(f,B) =
∑

x∈Zn,f (x)=0

ω(x/B)
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when B →+∞. Let us use the identity

Nω(f,B) =
∫

T

S(α,B)dα (3.15)

where T = R/Z and

S(α,B) =
∑

x∈Zn
ω(x/B)e2πiαf (x)

if ω has certain good analytic properties. The Hardy-Littlewood circle method
consists of dividing the torus T into major arcs M and minor arcs m where for
each δ > 0, we set

M(δ) := ∪q≤Bδ ∪0≤a≤q,(a,q)=1 {α ∈ T | |α − a
q
| ≤ Bδ−d}

and

m(δ) := T \M(δ).

Note that if 3δ < d , then M(δ) is in fact a disjoint union of the above arcs provided
B is sufficiently large.

To investigate the local-global principle for f , we would like to obtain the
following asymptotic formulas

∫

M
S(α,B)dα ∼ cf Bn−d (3.16)

and
∫

m
S(α,B)dα = o(Bn−d ) (3.17)

where the constant cf is positive under some good conditions on f and such that
f has a smooth solution over every completion of Q (i.e. f admits a non-singular
point of f−1(0) over every completion of Q).

A common way to work with Eq. (3.17) is to use Weyl’s bound for S(α,B) and
Dirichlet’s approximation theorem to control minor arcs (see [Bir61, Bro17b] for
more details). Equation (3.17) is in fact very hard to achieve. But the conjecture on
exponential sums modulo pm could improve Eq. (3.16). More precisely, Eq. (3.16)
is related to the convergence of certain singular series given by (see [Bir61, Bro17b])

S =
∑

1≤N
N−n

∑

a∈(Z/NZ)∗
SN(a)
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where

SN(a) =
∑

y∈(Z/NZ)n

e
2πiaf (y)
N .

With the assumption of Remark 3.1.7 we would have

|SN(a)| ≤ CN−σ

for a positive constant C and all N ≥ 1. A direct calculation implies that S
converges absolutely for σ > 2.

3.5.3 Igusa’s Approach

Now we sketch another approach given by Igusa to attack the above problem (see
[Igu78] and [Har80]). We first recall the idea of Weil on quadratic forms. From
the work of Siegel on quadratic forms, Weil gave a general formula called Siegel’s
formula (see [Wei65]) which relates a theta series to an Eisenstein series. As a
consequence, the Hasse-Minkowski theorem follows from Siegel’s formula. For
forms of higher degree, Igusa expected that we could derive a similar formula and
use it to prove the local-global principle for these forms. Inspired by the work of
Weil such a formula of Siegel type would follow from a Poisson formula. In fact,
Igusa succeeded in proving the following assertion:

For forms of higher degree, if we have a good uniform bound in p and m of
exponential sums modulo pm, then we have a Poisson formula.

Hence the strategy of Igusa breaks into two parts. The first part is to find a good
uniform bound in p andm of exponential sums modulo pm so that we could deduce
a Poisson formula. This is exactly the material presented in Sects. 3.2, 3.3 and 3.4.
The second part is to use the Poisson formula to derive formulas of Siegel type and
then the desired local-global principle.

Let us explain a little bit more about formulas of Siegel type. A formula of
Siegel type is an equality between Eisenstein-Siegel series and the integral of a
theta series in the space of tempered distributions. In the case of quadratic forms,
Weil introduced the notion of metaplectic groups and used their action on the space
of Schwartz-Bruhat functions S(XA) to construct a theta series and compared its
integral with Eisenstein-Siegel series. For forms of higher degree, Igusa pointed
out that a good theory of metaplectic groups associated with these forms would be
very useful although such a theory is not yet known. But he also remarked that we
could use a certain smaller group to obtain similar results. More precisely, let K
be a number field and let f be a non-singular form of degree d in n variables with
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coefficients in OK . Igusa introduced the group P = Ga × Gm equipped with the
law

(u, t)(u′, t ′) = (u+ tdu′, tt ′)

The action of PA on S(XA) is given by

((u, t)(�))(x) = |t|
n
2
A�(uf (x))�(tx)

where |t|A =∏
v |tv|v is the usual norm of t . We consider the tempered distributions

E and I0 given by

E(�) = �(0)+
∑

z∈K
�(zf (x))(�)

and

I0(�) =
∑

ξ∈XK
�(ξ).

If n ≥ 2d + 1, then Igusa showed that the Poisson formula holds for f (see
Theorem 3.4.1). In particular, if |t|A > 1, he proved in [Igu76] that

(I0 − E)((u, t)(�)) = O(|t|1−
n

2d
A ) (3.18)

as |t|A → +∞ and furthermore, if |t|A < 1 but (u + z)t−d remains in a compact
subset of KA for some z ∈ K , then

(I0 − E)((u, t)(�)) = O(|t|
n

2d−1
A ) (3.19)

as |t|A → 0. Igusa conjectured that (3.19) is still true without the compactness
assumption (or at least we could find some conditions of n and d such that (3.19)
holds without compactness). In particular, this conjecture would imply the local-
global principle for f (see [Igu76, Har80]). To summarize, under the validity of
Igusa’s approach, we could prove that the local-global principle holds for any non-
singular form of degree d in at least 2d+1 variables. This agrees with the conjecture
of Browning and Heath-Brown that we mentioned earlier.

Unfortunately, we are in a similar situation as that of (3.17). To our knowledge,
(3.19) is out of reach. Even it is not clear that there is a connection between them
by looking at the adelic circle method (see [Lac82, Mar73]). Both of them would
require a lot of efforts and many new ideas but we can always hope that Igusa’s
ideas could be realized in the future.

We end this survey with the case of singular forms. If f is a singular form of
degree d ≥ 3, from an observation of Igusa on the work of Birch, the Poisson
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formula also holds for f if codim(Cf ) ≥ (d − 1)2d . Moreover, Birch showed that
this condition is sufficient to prove the local-global principle for f as we mentioned
above. In Proposition 3.3.7, we predicted that the Poisson formula holds for f if
codim(Cf ) ≥ 2d + 1. Hence it is tempting to ask whether we could replace the
sufficient condition codim(Cf ) ≥ (d − 1)2d in the result of Birch by codim(Cf ) ≥
2d + 1.
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Chapter 4
From the Carlitz Exponential to Drinfeld
Modular Forms

Federico Pellarin

Abstract This paper contains the written notes of a course the author gave at the
VIASM of Hanoi in the Summer 2018. It provides an elementary introduction to the
analytic naive theory of Drinfeld modular forms for the simplest ‘Drinfeld modular
group’ GL2(Fq [θ ]) also providing some perspectives of development, notably in the
direction of the theory of vector modular forms with values in certain ultrametric
Banach algebras.

4.1 Introduction

The present paper contains the written notes of a course the author gave at the
VIASM of Hanoi in the Summer 2018. It provides an elementary introduction to the
analytic naive theory of Drinfeld modular forms essentially for the simplest ‘Drin-
feld modular group’ GL2(Fq [θ ]) also providing some perspectives of development,
notably in the direction of the theory of vector modular forms with values in certain
ultrametric Banach algebras initiated in [Pel12].

The course was also the occasion to introduce the very first basic elements of the
arithmetic theory of Drinfeld modules in a way suitable to sensitize the attendance
also to more familiar processes of the classical theory of modular forms and elliptic
curves. Most parts of this work are not new and are therefore essentially covered by
many other texts and treatises such as the seminal works of Goss [Gos80a, Gos80b,
Gos80c] and Gekeler [Gek88]. The present text also has interaction and potential
developments along with the contributions to this volume by Poineau-Turchetti and
Tavares Ribeiro [Poi20a, Poi20b, Tav20]. It also contains suggestions for further
developments, see Problems 4.4.10, 4.4.15, 4.6.5, 4.8.4 and 4.8.9.

This paper will not cover several advanced recent works such that the higher
rank theory, including the delicate compactification questions in the path of Basson,
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Breuer, Pink [Bas18a, Bas18b, Bas18c], Gekeler [Gek17, Gek19a, Gek18, Gek19b]
and it does not even go in the direction of the important arithmetic explorations
notably involving the cohomological theory of crystals by Böckle [Boc02, Boc15] or
toward several other crucial recent works by several other authors we do not mention
here, at once inviting the reader to realise a personal bibliographical research to
determine the most recent active areas.

Perhaps, one of the original points of our contribution is instead to consider
exponential functions from various viewpoints, all along the text, stressing how
they interlace with modular forms. The paper describes, for example, a product
expansion of the exponential function associated to the latticeA := Fq [θ ] in the Ore
algebra of non-commutative formal series in the Frobenius automorphism which is
implicit in Carlitz’s work [Car35]. It will be used to give a rather precise description
of the analytic structure of the cusp of � = GL2(A) acting on the Drinfeld upper-
half plane by homographies. We will also use it in connection with local class field
theory for the local fieldK∞ = Fq((

1
θ
)). Another new feature is that, in the last two

sections, we explore structures which at the moment have no known analogue in the
classical complex setting. Namely, Drinfeld modular forms with values in modules
over Tate algebras, following the ideas of [Pel12].

Here is, more specifically, the plan of the paper. In the very elementary Sect. 4.2
the reader familiarises with the rings and the fields which carry the values of
the special functions we are going to study in this paper. Instead of the field of
complex numbers C, our ‘target’ field is a complete, algebraically closed field of
characteristic p > 0. There is an interesting parallel with the classical complex
theory where we have the quadratic extension C/R and the quotient group R/Z

is compact, but there are also interesting differences to take into account as the
analogue C∞/K∞ of the extension C/R is infinite dimensional, C∞ is not locally
compact, although the analogue A := Fq [θ ] of Z is discrete and co-compact in the
analogueK∞ = Fq((

1
θ
)) of R.

We dedicate the whole Sect. 4.3 to exponential functions. More precisely, we give
a proof of the correspondence by Drinfeld between A-lattices of C∞ and Drinfeld
A-modules. To show that to any Drinfeld module we can naturally associate a lattice
we pass by the more general Anderson modules. We introduce Anderson’s modules
in an intuitive way, privileging one of the most important and useful properties,
namely that they are equipped with an exponential function at a very general level.
Just like abelian varieties, Anderson modules can be of any dimension. When the
dimension is one, one speaks about Drinfeld modules.

In Sect. 4.4 we focus on a particular case of Drinfeld module: the Carlitz module.
This is the analogue of the multiplicative group in this theory. We give a detailed
account of the main properties of its exponential function denoted by expC . We point
out that its (multiplicative, rescaled) inverse u is used as uniformiser at infinity to
define the analogue of the classical complex ‘q-expansions’ for our modular forms.
In this section we prove, for example, that any generator of the lattice of periods of
expC can be expressed by means of a certain convergent product expansion (known
to Anderson). To do this, we use the so-called omega function of Anderson and
Thakur.
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In Sect. 4.5 we first study the Drinfeld ‘half-plane’� = C∞ \K∞ topologically.
We use, to do this, a fundamental notion of distance from the analogue of the
real line K∞. The group GL2(A) acts on � by homographies and we construct a
fundamental domain for this action. After a short invitation to the basic notions of
rigid analytic geometry, we describe the Bruhat-Tits tree of �, the natural action of
GL2(K∞) on it, and, after a glimpse on Schottky groups (see [Poi20a, Poi20b] for a
more in-depth development), we construct a reasonable analogue of a fundamental
domain for the homographic action of GL2(Fq [θ ]) on �.

In Sect. 4.6 we discuss the following question: find an analogue for the Carlitz
module of the following statement: Every holomorphic function which is invariant
for the translation by one has a Fourier series. The answer is: every Fq [θ ]-
translation invariant function has a ‘u-expansion’. We show why in this section.
To do this we introduce the problem of rigid analytic structures on quotient spaces.
We mainly focus on the example of the quotient of the rigid affine line A1,an

C∞ by the
group of translations by the elements of A. The reader will notice how hard things
can become without the use of the tool of the analytification functor, also discussed
in this section.

In Sect. 4.7 we give a quick account of (scalar) Drinfeld modular forms for the
group GL2(A) (characterised by the u-expansion in C∞[[u]]). This appears already
in many other references: the main feature is that C∞-vector spaces of Drinfeld
modular forms are finitely dimensional spaces. Also, non-zero Eisenstein series can
be constructed; this was first observed by D. Goss in [Gos80b]. The coefficients of
the u-expansions of Eisenstein series are, after normalisation, in A = Fq[θ ].

The paper also has advanced, non-foundational parts. In Sect. 4.4.3 we apply
the developed knowledge of the Carlitz exponential function to give an explicit
description of local class field theory for the field K∞; this subsection is also
independent from the rest of the paper. In Sects. 4.8 and 4.9 we revisit Drinfeld
modular forms. We introduce vector Drinfeld modular forms with values in other
fields and algebras, following [Pel12]; the case we are interested in is that of
functions which take values in finite dimensional K-vector spaces where K is the
completion for the Gauss norm of the field of rational functions in a finite set of
variables with coefficients in C∞. With the use of certain Jacobi-like functions, we
deduce an identity relating a matrix-valued Eisenstein series of weight one with
certain weak modular forms of weight −1 from which one easily deduces [Pel12,
Theorem 8] in a different, more straightforward way.

4.2 Rings and Fields

Before entering the essence of the topic, we first propose the reader to familiarise
with certain rings and fields, notably local fields and non-archimedean valued fields.
For more about these topics read, for example, the books [Cas86, Ser80b]. The
reader must notice that the basic notations of the three other chapters of this volume
[Poi20a, Poi20b, Tav20] differ from ours.
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Let R be a ring.

Definition 4.2.1 A real valuation | · | (or simply a valuation) overR is a map R
|·|−→

R≥0 with the following properties.

(1) For x ∈ R, |x| = 0 if and only if x = 0.
(2) For x, y ∈ R, |xy| = |x||y|.
(3) For x, y ∈ R we have |x + y| ≤ max{|x|, |y|} and if |x| �= |y|, then |x + y| =

max{|x|, |y|}.
The inequality |x + y| ≤ max{|x|, |y|} is usually called the ultrametric inequality
(the term ‘ultrametric’ indicates a reinforced triangular inequality). A ring with
valuation is called a valued ring. A valuation is non-trivial if its image is infinite.
If the image of a valuation is finite, then it is equal to the set of two elements
{0, 1} ⊂ R≥0 and all the non-zero elements of R are sent to 1 while 0 is sent to
0. This is the trivial valuation of R. A map as above satisfying (2), (3) but not (1) is
called a semi-valuation.

A valuation over a ring R induces a metric in an obvious way and one easily sees
that R, together with this metric, is totally disconnected (the only connected subsets
are ∅ and the points). To any valued ring (R, | · |) we can associate the subset OR =
{x ∈ R : |x| ≤ 1} which is a subring of R, called the valuation ring of | · |. This ring
has the prime ideal MR = {x ∈ R : |x| < 1}. The quotient ring kR := OR/MR is
called the residue ring. The ring homomorphism f ∈ OR �→ f +MR ∈ OR/MR

is called the reduction map. With R a ring, we denote by R× the multiplicative
group of invertible elements. The image |R×| = {|x| : x ∈ R×} is a subgroup of
R× called the valuation group.

If R is a field, MR is a maximal ideal. Two valuations | · | and | · |′ over a ring
R are equivalent if for all x ∈ R, c1|x| ≤ |x|′ ≤ c2|x| for some c1, c2 > 0. Two
equivalent valuations induce the same topology. If (R, | · |) is a valued ring, we
denote by R̂ (or R̂|·|) the topological space completion of R for | · |. It is a ring and
if additionally R is a field, R̂ is also a field.

While working over complete valued fields, many properties which are usually
quite delicate to check for real numbers, have simple analogues in this context. For
instance, the reader can check that in a valued field (L, | · |), a sequence (xn)n≥0 is
Cauchy if and only if (xn+1 − xn)n≥0 tends to zero. A series

∑
n≥0 xn converges if

and only if xn → 0 and an infinite product
∏
n≥0(1 + xn) converges if and only if

xn→ 0. Another immediate property is that if (xn)n≥0 is convergent, then (|xn|)n≥0
is ultimately constant.

4.2.1 Local Compactness, Local Fields

Let (L, | · |) be a valued field. Choose r ∈ |L×| and x ∈ L. We set

DL(x, r) = {y ∈ L : |x − y| ≤ r}.
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This is the disk of center x and radius r . Some authors like to call r the diameter to
stress the fact that the metric induced by the valuation makes every point ofDL(x, r)
into a center so that it does not really distinguishes between ‘radius’ and ‘diameter’.

Observe that OL = DL(0, 1). Also,

ML =
⋃

r∈|L×|
r<1

DL(0, r) =: D◦L(0, 1).

More generally we writeD◦L(0, r) = {x ∈ L : |x| < r}. We use the simpler notation
D(x, r) or D◦(0, r) when L is understood from the context. Note that D(x, r) =
x +D(0, r) and D(0, r) is an additive group. If |x| ≤ r (that is, x ∈ D(0, r)), then
D(x, r) = D(0, r). If |x| > r (that is, x �∈ D(0, r)), thenD(x, r)∩D(0, r) = ∅. In
other words, if two disks with same radii have a common point, then they are equal.
If the radii are not equal, non-empty intersection implies that one is contained in the
other.

Now pick r ∈ |L×| and x0 ∈ L× with |x0| = r . Then, D(0, r) = x0D(0, 1) =
x0OL. This means that all disks are homeomorphic to OL = D(0, 1). This is due to
the fact that we are choosing r ∈ |L×|.

A complete valued field L is locally compact if every disk is compact. We have
the following:

Lemma 4.2.2 A valued field which is complete is locally compact if and only if the
valuation group is discrete and the residue field is finite.

Proof LetL be a field with valuation |·|, complete. We first show that OL = D(0, 1)
is compact if the valuation group is discrete (in this case there exists r ∈]0, 1[∩|L×|
such that ML = D(0, r)) and the residue field is finite. Let B be any infinite subset
of OL. We choose a complete set of representatives R of OL modulo ML. Note the
disjoint union

OL =
⊔

ν∈R
(ν +ML).

Multiplying all elements of B by an element of L× (rescaling), we can suppose that
there exists b1 ∈ B with |b1| = 1. Then, the above decomposition induces a partition
of B and by the fact that kL is finite and the box principle there is an infinite subset
B1 ⊂ B ∩ (b1+Mn1

L ) for some integer n1 > 0. We continue in this way and we are

led to a sequence b1, b2, . . . in B with bi+1 ∈ Mni
L \Mni−1

L with the sequence of
the integers ni which is strictly increasing (set n0 = 0). Hence, bm+1 − bm ∈Mnm

L

is a Cauchy sequence, thus converging in L because it is complete.
Let us suppose that kL is infinite. Then any set of representativesR ofOL modulo

ML is infinite. For all b, b′ ∈ R distinct, we have |b − b′| = 1 and R has no
converging infinite sub-sequence. Let us suppose that the valuation groupG = |L×|
is dense in R>0. There is a strictly decreasing sequence (ri)i ⊂ Gwith ri → 1. This
means that for all i, there exists ai ∈ OL such that |ai | = ri and for all i �= j we
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have that |ai − aj | = max{ri, rj } so that we cannot extract from (ai)i a convergent
sequence and OL is not compact. ��
Definition 4.2.3 A valued field which is locally compact is called a local field.

Note that R and C, with their euclidean topology, are locally compact, but not
valued. Some authors define local fields as locally compact topological field for
a non-discrete topology. Then, they distinguish between the non-Archimedean (or
ultrametric) local fields, which are the valued ones, and the Archimedean local
fields: R and C.

An important property is the following. Any valued local field L of characteristic
0 is isomorphic to a finite extension of the field of p-adic numbers Qp for some p,
while any local field L of characteristic p > 0 is isomorphic to a local field Fq((π)),
and with q = pe for some integer e > 0. We say that π is a uniformiser. Note that
|L×| = |π |Z and |π | < 1. The proof of this result is a not too difficult deduction
from the following well known fact: a locally compact topological vector space over
a non-trivial locally compact field has finite dimension.

4.2.2 Valued Rings and Fields for Modular Forms

Let C be a smooth, projective, geometrically irreducible curve overFq , together with
a closed point∞ ∈ C. We set

R = A := H 0(C \ {∞},OC).

This is the Fq -algebra of the rational functions over C which are regular everywhere
except, perhaps, at ∞. The choice of ∞ determines an equivalence class of
valuations | · |∞ on A in the following way. Let d∞ be the degree of ∞, that is,
the degree of the extension F of Fq generated by∞ (which is also equal to the least
integer d > 0 such that τd(∞) = ∞, where τ is a power of the geometric Frobenius
endomorphism). Then, for any a ∈ A, the degree

deg(a) := dimFq (A/aA)

is a multiple−v∞(a)d∞ of d∞ and we set |a|∞ = c−v∞(a) for c > 1, which is easily
seen to be a valuation. It is well known thatA is an arithmetic Dedekind domain with
A× = F×. In addition v∞(a) ≤ 0 for all a ∈ A \ {0} and v∞(a) = 0 if and only
if a ∈ F× (as a consequence of the proof of the subsequent Lemma 4.2.4). A good
choice to normalise | · |∞ is c = q . We can thus consider the field K∞ := K̂|·|∞
completion of K for | · |∞ which can be written as the Laurent series field F((π))

where π is a uniformiser element ofK∞ (such that v∞(π) = 1).K∞ is a local field
with valuation ring OK∞ = F[[π]], maximal ideal MK∞ = πF[[π]], residue field
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F and valuation group |π |Z∞. Note that we have the direct sum of Fq -vector spaces:

K∞ = F[π−1] ⊕MK∞ .

The case of C = P1
Fq

with its point at infinity ∞ (defined over Fq ) is the simplest
one. Let θ be any rational function having a simple pole at infinity, regular away
from it. Then, A = Fq [θ ], K = Fq(θ) and we can take π = θ−1 so that K∞ =
Fq((

1
θ
)) the completion of K for the valuation | · |∞ = qdegθ (·). Note that for all

π = λθ−1 + ∑
i>1 λiθ

−i ∈ K∞ with λ ∈ F×q and λi ∈ Fq , we have K∞ =
Fq((π)). The field K∞ has an advantage over the field R: it has uniformisers. But
there also is a disadvantage: there is no canonical choice in the uncountable subset
of uniformisers.

We come back to the case of A general. Let U be a subset ofK∞. We say that U
is strongly discrete if any disk

DK∞(x, r) = {y ∈ K∞ : |x − y|∞ ≤ r} ⊂ K∞
only contains finitely many y ∈ U for every r ≥ 0. Note that, transposing the
definition to the case of R, the ring Z is discrete and co-compact in R (this is well
known).

Analogously:

Lemma 4.2.4 The Fq -algebra A is strongly discrete and co-compact in K∞.

Proof of the First Part of Lemma 4.2.4 That A is strongly discrete in K∞ can be
seen by using the Liouville inequality, asserting that for any x ∈ A \ {0}, |x|∞ ≥ 1.
The fraction field K of A is an extension of F of transcendence degree one, and F

is algebraically closed in K . The closed points P of C correspond to the classes of
equivalence of multiplicative valuations over K which have discrete image in R>0
(discrete valuations), and which are trivial over F. There is a set of valuations | · |P
(associated to the closed points of C different from∞) such that for all a ∈ A \ {0},
|a|P ≤ 1 and |a|P = 1 for all but finitely many P , and such that

|a|∞
∏

P

|a|P = 1,

see the axiomatic theory of Artin and Whaples and [Art45, Theorem 2]. This is
the product formula for A. Let us consider x ∈ A \ {0}. We cannot have |x|∞ <

1 because this would violate the product formula. Therefore, |x|∞ ≥ 1 and this
suffices to show strong discreteness. ��

We deduce that A ∩MK∞ = {0}. The next Lemma tells us that, as a ‘valued
vector space over F’, A is not too different from F[π−1]. This can be used to show
co-compactness.
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Lemma 4.2.5 There exists a finite dimensional vector space V ⊂ F[π−1] over F
such that, isometrically, K∞ ∼= FA⊕ V ⊕MK∞ .

Proof We can invoke Weierstrass’ gap Theorem. It can be seen as one of the
consequences of the Theorem of Riemann-Roch and it is nicely presented in
Stichtenoth’s book in the case of d∞ = 1, [Sti08, Theorem 1.6.8]. If d∞ > 1 we can
use [Mat05, Proposition 2.1]. Let H(∞) be the subset of N whose elements are the
nonnegative integers k such that there exists an element f in A with polar divisor
k[∞]. The Weierstrass gap Theorem asserts that N \ H(∞) = {n1, . . . , nh} ⊂
[1, 2g−1

d∞ ] (so that if the genus g of C is zero, this set is empty). Moreover, if
d∞ = 1 this set contains exactly g elements, where g is the genus of C. We set
V := ⊕hi=1Fπ

−ni and if g = 0 we set V = {0}. Note that A ∩ V = V ∩MK∞ =
A ∩MK∞ = {0}. Then, every element f of K∞ can be decomposed in a unique
way as f = a ⊕ v ⊕m with a ∈ FA, v ∈ V and m ∈MK∞ . ��
Proof of the Second Part of Lemma 4.2.4 Co-compactness is equivalent to the
property that, for the metric induced on the quotientK∞/A, every sequence contains
a convergent sequence. We have an isometric isomorphism

K∞
FA

∼= V ⊕MK∞

where V is a vector space as in Lemma 4.2.5 and we deduce that K∞/A, with the
induced metric, is compact. ��

Up to a certain extent, the tower of rings A ⊂ K ⊂ K∞ associated to the datum
(C,∞) can be viewed in analogy with the tower of rings Z ⊂ Q ⊂ R.

Here is a fact which encourages to ‘think ultrametrically’. We cannot cover a disk
of radius q (e.g.DL(0, q)) of a non locally compact field L, with finitely many disks
of radius 1. Of course, this is possible, by local compactness, for the diskDK∞(0, q)
in K∞. Explicitly, in the case C = P

1
Fq

:

DK∞(0, q) = DK∞(0, 1)⊕ Fqθ = �λ∈F×q DK∞(λθ, 1) �DK∞(0, 1).

4.2.3 Algebraic Extensions

We start with an example in the local field L = Fq((π)) (with |π | < 1). Let M be
an element of L such that |M| < 1. We want to solve the equation

Xq −X = M. (4.1)
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Assuming that there exists a solution x ∈ Lwe have x = xq−M so that inductively
for all n:

x = xqn+1 −
n∑

i=0

Mqi .

The series
∑n
i=0M

qi converges to H in ML by the hypothesis on M and |H | =
|M|. But Hq − H = M and x = H is a solution of (4.1) and the polynomial
Xq − X − M totally splits in L[X] as all the roots are in {H + λ : λ ∈ Fq}. If
|M| = 1 we could think of writing M = M0 +M ′ with M0 ∈ F×q and |M ′| < 1
but Eq. (4.1) with M = M0 has no roots in Fq . One easily sees that the Eq. (4.1)
has no roots in L if |M| ≥ 1. What makes the above algorithm of approximating
a solution in the case |M| < 1 is that the equation Xq − X = 0 has solutions in
Fq . These arguments can be generalised and formalised in what is called Hensel’s
lemma. It can be used to show the following property, which is basic and will be
used everywhere. Let L be a valued field with valuation | · | = c−v(·) (with a map
v : L→ R∪{∞}), complete, and let us considerF/L a finite extension (necessarily
complete). Then, setting

NF/L(x) =
(
∏

σ∈S
σ (x)

)[F :L]i
, x ∈ F,

where S is the set of embeddings of F in an algebraic closure of L and [F : L]i is
the inseparable degree of the extension F/L, the mapw : F → R∪{∞} determined
by w(0) =∞ and

w(x) = v(NF/L(x))[F : L] , x ∈ F×

defines a valuation | · |w := c−w(·) extending | · | over F in the only possible way.
Coming back to the local field L = Fq((π)), denoting by Lac an algebraic closure
of L, there is a unique valuation over Lac extending the one of L; we will denote it
by | · | by abuse of notation. The valuation group is |π |Q = {|π |ρ : ρ ∈ Q} therefore
dense in R>0 and the residue field is the algebraic closure Fac

q of Fq . It is easy to see
that Lac is not complete, although each intermediate finite extension is so.

Lemma 4.2.6 The completion L̂ac of Lac is algebraically closed.

Proof We follow [Gos96, Proposition 2.1]. Let F/L̂ac be a finite extension. Then,
as seen previously, F carries a unique extension of the valuation | · | of L̂ac. Let x be
an element of F . We want to show that x ∈ L̂ac. For a polynomial P =∑

i PiX
i ∈

L̂ac[X] we set ‖P‖ := sup{|Pi |}. It is easy to see that ‖·‖ is a valuation over L̂ac[X],
called the Gauss valuation (to see the multiplicativity it suffices to study the image
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of a polynomial in OL̂ac[X] by the residue map

OL̂ac[X] → kL̂ac[X]
which is a ring homomorphism). Let P ∈ L̂ac[X] be the minimal polynomial of
x over L̂ac. For ‖ · ‖, P is a limit of polynomials of the same degree, which split
completely. It is easy to show that for all ε > 0, there existsN ≥ 0 with the property
that for all i ≥ N , a root xi ∈ Kac∞ of Pi satisfies |x − xi|∞ < ε. This shows that x
is a limit of a sequence of L̂ac and therefore, x ∈ L̂ac. ��

4.2.4 Analytic Functions on Disks

To introduce the next discussions we recall here some basic facts about ultrametric
analytic functions in disks, following [Gos96, Chapter 3]. In this subsection, L
denotes a valued field which is algebraic closed and complete for a valuation | · | .
We consider a map v : L× → R such that | · | = c−v(·) for some c > 1. We consider
a formal power series

f =
∑

i≥0

fiX
i ∈ L[[X]]. (4.2)

The Newton polygon N of f is the lower convex hull in R2 of the set S =
{(i, v(fi)) : i ≥ 0}. It is equal to

⋂
HH where H runs over all the closed half-

planes of R2 which contain at once S and a half-line {(x, y) : y $ 0} for some
x ∈ R, where y $ 0 (‘large enough’) means that y ≥ y0 for some y0 ∈ R.

Here is a practical method of constructing the Newton polygon N of a formal
series f ∈ L[[X]], if you have on-hand a wooden board, a pencil, nails, a hammer,
string and a compass. Draw the axes coordinates i and v on the board, with the
positive direction of the latter pointed toward the north, as indicated by the compass.
Mark the coordinate points (i, v(i)) with the pencil, then hammer nails into the
points. Place yourself in front of the wooden board pointing north. Take the string
and pull it tautly between your hands, then begin winding it from south to north
(being careful to not choose f = 0, meaning you must have hammered in at least
one nail!). A polygon figure will appear, which, transferred on the board, represents
the Newton polygon of f .

Note that if f �= 0, there is always a vertical side on the left of N . If f is a non-
zero polynomial, there is also a vertical side on the right. If x ∈ L and |fixi | → 0
then the series

∑
i fix

i converges in L to an element that we denote by f (x). There
exists r ∈ |L| such that f (x) is defined for all x ∈ D(0, r) := DL(0, r) and we
have thus defined a function

D(0, r)
f−→ L

that we call analytic function on the disk D(0, r) (note the abuse of language).
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Proposition 4.2.7 The following properties hold.

(1) The sequence of slopes of N is strictly increasing and its limit is −ρ(f ) =
lim supi→∞ v(fi ). The real number ρ(f ) is unique with the property that the
series f (x) converges for x ∈ L such that v(x) > ρ(f ), and f (x) diverges if
v(x) < ρ(f ).

(2) If there is a side of the Newton polygon of f which has slope−m and such that
it does not contain any point of the Newton polygon in its interior, then f has
exactly r(m) zeroes x counted with multiplicity, with v(x) = m, where r(m) is
the length of the projection of this side of slope −m onto the horizontal line.
There are no other zeroes of f with this property.

(3) If ρ(f ) = −∞, assuming that f is not identically zero, we can expand, in a
unique way (Weierstrass product expansion):

f (X) = cXn
∏

i

(

1− X
αi

)βi

with c ∈ L×, where αi → ∞ is the sequence of zeroes such that v(αi) >
v(αi+1) (with multiplicities βi ∈ N∗).

By (2) of the proposition, if we set r = c−ρ(f ) ∈ R≥0, f is analytic on D(0, r ′)
for all r ′ ∈ |L| such that r ′ < r and r is maximal with this property. If ρ(f ) = −∞
then we say that f is entire. We can show easily that if f is entire and non-constant,
then it is surjective, and furthermore, an entire function without zeroes is constant.
Also, if f as above is non-entire and non-constant, in general it is not surjective,
but we have a reasonable description of the image of disks by it, given by the next
corollary, the proof of which is left to the reader.

Corollary 4.2.8 Let f be as in (4.2) with f0 = 0 and let us suppose that it
converges on DL(0, r) with r ∈ |L×|. Then, f

(
DL(0, r)

) = DL(0, s) for some
s ∈ |L|.

To be brief: an analytic function sends disks to disks.

4.2.5 Further Properties of the Field C∞

We consider as in Sect. 4.2.2 the local field K∞. Then, K∞ = F((π)) for some
uniformiser π and by Lemma 4.2.6, the field

C∞ := K̂ac∞
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is algebraically closed and complete. It will be used in the sequel as an alternative
to C ‘for silicon-based mathematicians’,1 but there are many important differences.
For instance, note that C/R has degree 2, while C∞/K∞ is infinite dimensional, as
the reader can easily see by observing that F-linear elements of Fac

q are also K∞-
linearly independent (in fact, thisK∞-vector space is uncountably-dimensional and
the group of automorphisms is an infinite, profinite group).

Complex analysis makes heavy use of local compactness so that we can cover
a compact analytic space with finitely many disks. For example, we can cover an
annulus with finitely many disks so that the union does not contain the center, which
is very useful in path integration of analytic functions over C \ {0}. The ultrametric
counterparts of this and other familiar and intuitive statements are false in C∞ as
well as in other non-locally compact fields. We cannot use ‘partially overlapping
disks’ to ‘move’ in C∞, or, more generally, in a non-Archimedean space. The
intuitive idea of ‘moving’ itself is different even thought it is not too different, as
two annuli, or a disk and an annulus, may overlap somewhere without being one
included in the other.

On another hand, the field C∞ also has ‘nice’ properties. Let us review some of
them; we denote by Lsep the separable closure of a field L.

Lemma 4.2.9 We have C∞ = K̂sep
∞ .

Proof This is consequence of simple metric properties of Artin-Schreier extensions.
We follow [Ax70]. First look at the equation

Xq
′ −X = M

with M ∈ K∞ and where q ′ = pe
′

for some e′ > 0. Then, if |M|∞ > 1, all

the solutions γ ∈ C∞ of the equation are such that |γ |q ′∞ = |M|∞ and |γ q ′ −
M|∞ < |M|∞. This also is a very simple consequence of Proposition 4.2.7: the
reader can study the Newton polygon of f (X) = Xq ′ −X−M inspecting the three
different cases |M|∞ < 1, |M|∞ = 1 and |M|∞ > 1. Here, with |M∞| > 1, the
extensionK∞(γ )/K∞ is clearly separable but ramified as by Proposition 4.2.7, the

polynomialXq
′ −X−M has q ′ distinct roots x inKac∞ with valuation |x|∞ = |M|

1
q′∞.

It is in fact a wildly ramified extension: this means that the characteristic p of Fq
divides the index of ramification.

We now consider α ∈ Kac∞. We want to show that α is a limit ofKsep∞ . There exists
q ′ = pe′ with a := αq ′ ∈ Ksep

∞ . For instance, we can take q ′ = [K∞(α) : K∞]i
(inseparable degree). Consider b ∈ K×∞ and a root β ∈ Kac∞ of the polynomial
equationXq

′ −bX−a = 0. Clearly, β ∈ Ksep∞ . Let λ ∈ Ksep∞ be such that λq
′−1 = b.

1Opposed to ‘carbon-based mathematicians’, following David Goss.
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Then, setting γ = β
λ

, we have γ q
′ = βq

′

λq
′ = βq

′
bλ

so that

γ q
′ − γ = a

bλ
=: M.

We can choose b ∈ K×∞ such that |b|∞ is small enough so that |M|∞ > 1. If this is

the case, then |γ |q ′∞ = | a
bλ
|∞ so that

|β|q ′∞ = |a|∞.

Since (β − α)q ′ = βq ′ − a = bβ,

v∞(β−α) = 1

q ′
v∞(βq

′ −a) = 1

q ′ (
v∞(b)+ v∞(β)) = 1

q ′

(

v∞(b)+ 1

q ′
v∞(a)

)

.

We choose a sequence (bi)i ⊂ K×∞ with bi → 0. For all i, let βi ∈ Ksep
∞ be such

that βq
′
i = βibi + a and βi → α. Then, v∞(βi − α)→∞ as v∞(bi)→∞ so that

βi → α. ��
We deduce that |C×∞|∞ = |π |Q∞ with π a uniformiser of K∞, and the residue

field of C∞ is Facq the algebraic closure of Fq in C∞.
The next results are not used in the rest of the text but mentioning them is helpful

in understanding important subtleties lying in the bases of the theory of Drinfeld
modular forms.

Lemma 4.2.10 The group C×∞ contains a subgroup πQ ∼= (Q,+) which is totally
ordered for | · |∞. There are group epimorphisms

C
×∞

�−→ πQ, C
×∞

sgn−→ (Facq )
×

such that� induces the identity on πZ, sgn induces the identity on (Facq )
×, and for

all x ∈ C×∞,

|x −�(x) sgn(x)|∞ < |x|∞.

One can see that a choice of πQ, � etc. corresponds to an embedding of C∞
in a maximal immediate extension of it (that is to say, a field extension which is
maximal with same valuation group and same residue field) or, equivalently, in a
certain type of field of Hahn generalised series, spherically complete. Read Poineau
and Turchetti’s contribution [Poi20a, Definition I.2.17, Theorem I.2.18, Example
I.2.20]. Read also Kedlaya’s [Ked01].
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The group G := Gal(Ksep∞ /K∞) acts on C∞ by continuous K∞-linear auto-
morphisms. Then the following important result holds, where the completion on the
right is that of the perfect closure of K∞ in C∞ (see for example [Ax70]):

Theorem 4.2.11 (Ax-Sen-Tate) CG∞ := {x ∈ C∞ : g(x) = x,∀g ∈ G} = ̂
K

perf∞ .

4.3 Drinfeld Modules and Uniformisation

Drinfeld modules are also at the hearth of Tavares Ribeiro contribution to this
volume, read [Tav20, §1.4]. Let R be an Fq -algebra and τ : R→ R be an Fq -linear
endomorphism. We denote by R[τ ] the left R-module of the finite sums

∑
i fiτ

i

(fi ∈ R) equipped with the R-algebra structure given by τb = τ (b)τ for b ∈ R.2

Let f =∑n
i=0 fiτ

i be in R[τ ]. For any b ∈ R we can evaluate f in b by setting

f (b) =
n∑

i=0

fiτ
i(b) ∈ R.

This gives rise to an Fq -linear map R → R. Note that the element f = ∑
i fiτ

i

and the associated evaluation map f : R→ R are two completely different objects.
However, in this text, we will denote them with the same symbols.

We chooseR by returning to the notations of Sect. 4.2.2. In particular considering
the Fq -algebra A = H 0(C \ {∞},OC) we construct the tower of rings

A ⊂ K ⊂ K∞ ⊂ C∞

arising from Sect. 4.2.3 which is analogous of Z ⊂ Q ⊂ R ⊂ C.

4.3.1 Drinfeld A-Modules and A-Lattices

We show here the crucial correspondence between Drinfeld A-modules and A-
lattices, due to Drinfeld [Dri74]. The definition of Drinfeld module that we give
here is not the most general one but it will nevertheless be enough for our purposes.
Remember that, in the construction of the tower of rings A ⊂ K ⊂ K∞ ⊂ Kac∞ ⊂
C∞ we have in fact chosen an embedding A ⊂ C∞.

2It would be more appropriate, to define this R-algebra, to choose an indeterminateX and consider
as the underlying R-module the polynomial ring R[X] setting the product to be Xb = τ(b)X. This
is an Ore algebra and the standard notation for it is R[X; τ ]. For the purposes we have in mind, the
abuse of notation R[τ ] is harmless.
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Definition 4.3.1 An injective Fq -algebra morphism φ : A → EndFq (Ga(C∞)) ∼=
C∞[τ ] is a Drinfeld A-module of rank r > 0 if for all a ∈ A

φa := φ(a) = a + (a)1τ + · · · + (a)rd∞ deg(a)τ
r deg(a) ∈ C∞[τ ],

where the coefficients (a)i are in C∞ and depend on a, and where deg(a) =
dimFq (A/(a)). If R is an Fq-subalgebra of C∞ containing A and the coefficients
(a)i with 1 ≤ i ≤ r deg(a) and a ∈ A, we say that the Drinfeld A-module φ is
defined over R and we write φ/R.

Note that geometrically, a Drinfeld module defined over C∞ is just Ga over C∞.
What makes the theory interesting is the fact that there are many embeddings of A
in EndFq (Ga(C∞)). The case of the Carlitz module, which can be viewed as the
‘simplest’ Drinfeld module of rank one, is analysed in Sect. 4.4.

The set of Drinfeld A-modules of rank r is equipped with a natural structure
of small category. If ϕ and ψ are two Drinfeld A-modules, we say that they are
isogenous if there exists ν ∈ C∞[τ ] such that ϕaν = νψa for all a ∈ A. If ν,
seen as a non-commutative polynomial in τ , is constant, then we say that ϕ and ψ
are isomorphic. Being isogenous induces an equivalence relation on Drinfeld A-
modules and isogenies are the morphisms connecting Drinfeld A-modules of same
rank in our category.

We prove that the category of Drinfeld A-modules of rank r is equivalent to
another category, that of A-lattices.

Definition 4.3.2 An A-lattice in C∞ is a finitely generated strongly discrete A-
submodule � ⊂ C∞ and two A-lattices � and �′ are isogenous if there exists
c ∈ C×∞ such that c� ⊂ �′ with c� of finite index in �′.

Isogenies are the morphisms connecting lattices. Clearly, this also defines an
equivalence relation. If two A-lattices � and �′ are such that there exists c ∈ C∞
with c� = �′, then we say that � and �′ are isomorphic.

Since A is a Dedekind ring, any A-lattice � is projective and has a rank r =
rankA(�). We have the following lemma, the proof of which is left to the reader.

Lemma 4.3.3 Let � be a projective A-module of rank r . Then � is an A-lattice if
and only if the K∞-vector space generated by � has dimension r .

Observe that, in contrast with the complex case, for all r > 1 there exist infinitely
many non-isomorphic A-lattices (this can be deduced from the fact that C∞ is not
locally compact). We choose an A-lattice � of rank r as above.

By Proposition 4.2.7 the following product (where the dash (·)′ indicates that the
factor corresponding to λ = 0 is omitted)

exp�(Z) := Z
∏′

λ∈�

(

1− Z
λ

)
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converges to an entire function C∞ → C∞ (hence surjective) called the exponential
function associated to �. Note that this is an Fq -linear entire function with kernel
�, and we can write

exp�(Z) =
∑

i≥0

αiτ
i(Z), αi ∈ C∞, α0 = 1, ∀Z ∈ C∞.

In particular, d
dZ

exp�(Z) = 1, and the ’logarithmic derivative’ (defined in the
formal way) of exp� coincides with its multiplicative inverse and is equal to the
series

∑

λ∈�

1

Z − λ, Z ∈ C∞ \�.

We refer to [Gek88, §2] for an account on the properties of this fundamental class
of analytic functions.

It is not always an easy task to construct explicitly Drinfeld A-modules for a
given A = H 0(C \ {∞},OC), if C �= P

1
Fq

. The following result is due to Drinfeld
[Dri74] and shows the depth of the problem.

Theorem 4.3.4 There is an equivalence of small categories

{A− lattices of rank r} → {Drinfeld A-modules of rank r defined over C∞}.

Proof The proof that we propose is essentially self-contained except for the use of
Theorem 4.3.7 which is the crucial tool, showing how to associate to any DrinfeldA-
module an exponential function. We postpone this result and its proof to Sect. 4.3.2.

Let � be a lattice of rank r (so that it is a projective A-module). The Fq -linear
entire map exp� gives rise to the exact sequence of Fq-vector spaces

0 → �→ C∞
exp�−−→ C∞ → 0.

For any a ∈ A there is a unique Fq -linear map C∞
φa−→ C∞ such that

exp�(aZ) = φa(exp�(Z))

for all Z ∈ C∞ and we want to show that the family (φa)a∈A gives rise to a Drinfeld
A-module of rank r . By the snake lemma we get ker(φa) ∼= �/a� ∼= (A/(a))r .
Note also that ker(φa) = exp�(a

−1�). We set

Pa(Z) := aZ
∏′

α∈ker(φa)

(

1− Z
α

)

= aZ + (a)1Zq + · · · + (a)r deg(a)Z
qr deg(a)

.
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Note that the functions Pa(exp�(Z)) and exp�(aZ) are both entire with divisor
a−1� and the coefficient of Z in their entire series expansions are equal. Hence
these functions are equal and we can write

φa(Z) = aZ + (a)1Zq + · · · + (a)r deg(a)Z
qr deg(a)

, ∀a ∈ A, Z ∈ C∞.

This defines a Drinfeld A-module φ of rank r such that exp�(aZ) = φa(exp�(Z))
for all a ∈ A so we have defined a map associating to � an A-lattice of rank r a
Drinfeld module φ� of rank r .

The next step is to show that the map � �→ φ� that we have just constructed,
from the set of A-lattices of rank r to the set of Drinfeld A-modules of rank r ,
is surjective. From the proof it will be possible to derive that it is also injective.
Let φ be a Drinfeld A-module of rank r . We want to construct � an A-lattice
of rank r such that φ = φ�. By the subsequent Theorem 4.3.7, there exists a
unique entire Fq -linear function expφ : C∞ → C∞ such that for all a ∈ A,
expφ(aZ) = φa(expφ(Z)), and this, for all Z ∈ C∞. We set � = Ker(expφ).
Then � is a strongly discrete A-module in C∞. The snake lemma implies that
�/a� ∼= Ker(φa), which is an Fq -vector space of dimension r deg(a). Let ε > 0
be a real number and let Vε be the K∞-subvector space of C∞ generated by
� ∩ D(0, ε). We also set �ε := Vε ∩ �. Observe that �ε is an A-lattice (it is a
finitely generatedA-module because of the finiteness of the dimension of Vε) which
is saturated by construction. Hence �ε/a�ε injects in �/a� and this for all ε > 0
which means rankA(�ε) = dimK∞(Vε) ≤ r for all ε > 0. Setting V = ∪εVε we
see that dimK∞(V ) ≤ r . From this we easily deduce that� is finitely generated and
since �/a� ∼= (A/(a))r we derive that � is an A-lattice of rank r .

Hence the map � �→ φ� is surjective and one sees easily that it is also injective
by looking at exp�. Finally, the map is in fact an equivalence of small categories
with the natural notions of morphisms between A-lattices and Drinfeld A-modules
that we have introduced. We leave the details of these verifications to the reader. ��

4.3.2 From Drinfeld Modules to Exponential Functions

In order to complete the proof of Theorem 4.3.4 it remains to show how to associate
to a Drinfeld A-module an exponential function. This is the object of the present
subsection and we will take the opportunity to present things in a rather more general
setting, by introducing Anderson’sA-modules. We recall here the definition of Hartl
and Juschka in [Har20].

Definition 4.3.5 An Anderson A-module of dimension d (over C∞) is a pair E =
(E, ϕ) where E is an Fq -module scheme isomorphic to Ga(C∞)d , together with a
ring homomorphism ϕ : A → EndFq (E), such that for all a ∈ A, (Lie(ϕ(a)) −
a)d = 0.
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If R is a ring, we denote byRm×n the set of matrices with m rows and n columns
with entries in R. Note that there is an Fq-isomorphism EndFq (E) ∼= C∞[τ ]d×d . If
d = 1 we are brought to Definition 4.3.1 of Drinfeld A-modules.

Anderson modules fit in a category which can be compared to that of commu-
tative algebraic groups; this category is of great importance for the study of global
function field arithmetic. A remarkable feature which allows to track similarities
with commutative algebraic groups is the fact that we can associate, to every such
module, an exponential function. In [Boc07, Proposition 8.7] (see also Anderson in
[And86, Theorem 3]) Böckle and Hartl proved that every Anderson’s A-module E
possesses a unique exponential function

expE : Lie(E)→ E(C∞)

in the following way (compare also with [Tav20, Proposition 1.11]). Identifying
Lie(E) (defined factorially) with Cd×1∞ , expE is an entire function of d variables

z = t (z1, . . . , zd ) ∈ Cd×1∞ (t (· · · ) denotes the transposition)

z �→ expE(z) =
∑

i≥0

Eiz
qi

with E0 = Id and Ei ∈ Cd×d∞ such that, for all a ∈ A and z ∈ Cd∞,

expE(Lie(ϕa)z) = ϕa(expE(z)).

We show how to construct expE in a slightly more general setting. Let B be any
commutative integral countably dimensionalFq -algebra. We follow [Gaz19] and we
define ‖ · ‖∞ on A⊗Fq B by setting, for x ∈ A⊗Fq B, ‖x‖∞ to be the infimum of
the values maxi |ai |∞, running over any finite sum decomposition

x =
∑

i

ai ⊗ bi

with ai ∈ A and bi ∈ B \ {0}. Then, ‖ · ‖∞ is a valuation of A ⊗Fq B extending
the valuation of A via a �→ a ⊗ 1. The Fq -algebra A ⊗Fq B is equipped with the
B-linear endomorphism τ defined by a ⊗ b �→ aq ⊗ b (thus extending the q-th
power map a �→ aq which is an Fq -linear endomorphism of A). Similarly, we can
consider the C∞-algebra

T = C∞⊗̂FqB,

the completion of C∞ ⊗Fq B for ‖ · ‖∞ defined accordingly, and we also have a B-
linear extension of τ . Let d > 0 be an integer. We allow τ to act on d × d matrices
of Td×d with entries in T on each coefficient. Then, T[τ ] acts on T by evaluation
and T[τ ]d×d ⊂ EndB(Td×1). If f ∈ T[τ ]d×d we can write f = ∑n

i=0 fiτ
i with
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fi ∈ Td×d and we set Lie(f ) := f0 which provides a T-algebra morphism

Lie(f ) : T[τ ]d×d → T
d×d .

Definition 4.3.6 An Anderson A ⊗Fq B-module ϕ of dimension d is an injective
B-algebra homomorphism

A⊗Fq B
ϕ−→ T[τ ]d×d

such that for all a ∈ A, (Lie(ϕ(a))− a)d = 0.

We prefer to write ϕa in place of ϕ(a).
We now revisit the proof of Proposition 8.7 of [Boc07] and the method is flexible

enough to adapt to the setting of Definition 4.3.6. Note also that later in this text,
we will be interested in the case B = Fq only, case in which we essentially recover
[And86, Theorem 3]. In the following, the non-commutative ring T[[τ ]] is defined
in the obvious way with T[τ ] as a subring. In the following, we denote by ‖M‖∞
the supremum of ‖x‖∞ where x varies in the entries of a matrix M ∈ Tm×n. We
show:

Theorem 4.3.7 Given an AndersonA⊗Fq B-module ϕ, there exists a unique series

expϕ =
∑

i≥0

Eiτ
i ∈ T[[τ ]]d×d

with the coefficients Ei ∈ T
d×d and with E0 = Id , such that the evaluation series

expϕ(z) is convergent for all z ∈ T
d×1, and such that

ϕa(expϕ(z)) = expϕ(Lie(ϕa)z),

for all z ∈ Td×1 and a ∈ A⊗Fq B. For all a ∈ A \ F we have that expϕ is the limit
for n → ∞ of the sequence of entire functions ϕana−n ∈ C∞[[τ ]]d×d , uniformly
convergent on every subset of T[[τ ]]d×1, bounded for the norm ‖ · ‖∞.

Before proving this result, we need two lemmas.

Lemma 4.3.8 Let us considerL,M ∈ T[τ ]d×d with L = α+N , with α ∈ GLd(T)
such that ‖α‖∞ > 1 > ‖α−1‖∞ and M,N ∈ (T[τ ]τ )d×d . Then, for all
R ∈ ‖T×‖∞, the sequence of functions given by the evaluation of (LNMα−N)N≥0
converges uniformly onDT(0, R)d×1 to the zero function.

Proof The multiplication defining LNMα−N is that of T[[τ ]]d×d . Locally near the
origin, α−1L is an isometric isomorphism and there exists R0 ∈ ‖T×‖∞ with 0 <
R0 < 1 such that for all x ∈ DT(0, R0)

d×1, ‖L(x)‖∞ = ‖αx‖∞ ≤ ‖α‖∞‖x‖∞.
Hence, for N ≥ 0, if ‖x‖∞ ≤ ‖α‖−N∞ R0 (< R0 because of the hypothesis on α),
we have ‖LN(x)‖∞ ≤ ‖α‖N∞‖x‖∞.
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We can choose R0 small enough so that ‖M(x)‖∞ ≤ β‖x‖ql∞ for some β ∈
‖T×‖∞ and l > 0. Let R be in ‖T×‖∞ fixed, and let us suppose that N is large
enough so that ‖α‖−N∞ R ≤ R0. Then, for all x ∈ DT(0, R)d , ‖M(α−Nx)‖∞ ≤
β(‖α‖−N∞ R)q

l
. If N is large enough, we can also suppose that

β(‖α‖−N∞ R)q
l

< ‖α‖−N∞ R0

(because l > 0). Therefore, ‖(LNM)(α−Nx)‖∞ ≤ ‖α‖N∞β(‖α‖−N∞ R)q
l → 0 as

N →∞, for all x ∈ DT(0, R)d×1. ��
We consider an Anderson A ⊗ B-module ϕ and we recall that Lie(ϕa) is the

coefficient in Td×d of τ 0Id in the expansion of ϕa ∈ T[τ ]d×d along powers of
Idτ . If a ∈ A ⊗ B \ Fq × B, Lie(ϕa) = aId + Na with Na nilpotent. Then,
α = Lie(ϕa) ∈ GLd(T) is such that ‖α‖∞ > 1. Indeed otherwise Na − α − aId
would be invertible.

Let us consider a, b ∈ A⊗B, ‖a‖∞ > 1. We construct the sequence of B-linear

functions Td×1
FaN−−→ T

d×1 defined by

FaN = ϕaNb Lie(ϕaNb)
−1, N ≥ 0.

Lemma 4.3.9 The sequence (FaN) converges uniformly on every polydisk
DT(0, R)d×1 and the limit function Td×1 → Td×1 is independent of the choice
of b.

Proof We set GaN = FaN+1 − FaN . Then,

GaN = ϕaN︸︷︷︸
=:LN

ϕb(ϕa Lie(ϕa)−1 − Id)Lie(ϕb)−1
︸ ︷︷ ︸

=:M
Lie (ϕa)−N︸ ︷︷ ︸

=:α−N

and by Lemma 4.3.8, the sequence converges uniformly to the zero function
on every polydisk DT(0, R)d×1 which ensures the uniform convergence of the
sequence FaN). Observe now that, writing momentarily Fa,bN to designate the above
function associated to the choice of a, b,

Fa,b
aN
− Fa,1

aN
= ϕaN︸︷︷︸
=:LN

(ϕb Lie(ϕb)−1 − Id)︸ ︷︷ ︸
=:M

Lie(ϕaN )
−1

︸ ︷︷ ︸
=:α−N

,

so that, again by Lemma 4.3.8 this sequence tends to zero uniformly on every
polydisk, and the limit Fa of the sequence FaN is uniquely determined, independent
of b. ��
Proof of Theorem 4.3.7 Let us denote by Fa the continuous B-linear map which,
by Lemma 4.3.9 is the common limit of all the sequences (Fa,bN )N (that can be
identified with a formal series x �→ ∑

i≥0 Eiτ
i(x) ∈ Td×d [[τ ]]). First of all, note
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that E0 = Id so that this map is not identically zero. Moreover, observe that, for all
b ∈ A⊗ B:

ϕbFa = ϕb lim
N→∞Fa,1N

= ϕb lim
N→∞ ϕaN Lie(ϕaN )

−1

= lim
N→∞ ϕbaN Lie(ϕbaN )

−1 Lie(ϕb)

= lim
N→∞Fa,bN Lie(ϕb)

= Fa Lie(ϕb).

Hence we see that for all a, Fa satisfies the property of the theorem. Now, let F1 and
F2 be two elements of Td×d [[τ ]] such that ϕb(Fi (z)) = Fi (bz) for all b ∈ A⊗ B
and i = 1, 2, and with the property that F3 = F1 − F2 ∈ Td×d [[τ ]]τ . Suppose
by contradiction that F3 is non-zero. Then we can write F3 = ∑

i≥i0 Fiτ
i with

Fi ∈ T
d×d and Fi0 non-zero. Since F3 also satisfies the same functional identities

of both F1,F2 (for b ∈ A⊗ B), we get Lie(ϕb)Fi0 = Fi0τ i0(Lie(ϕb)) for all b. Let
w be an eigenvector of Fi0 with non-zero eigenvalue, defined over some algebraic
closure of the fraction field of T. We consider b ∈ A⊗ B with ‖b‖∞ > 1. Writing
Lie(ϕb) = b+Nb with Nb nilpotent, we see that Lie(ϕb)w = τ i0(Lie(ϕb))w which
implies (b − τ i0(b))w = (τ i0(Nb) − Nb)w = Mw and M is nilpotent. Hence,
there is a power c of b − τ i0(b) such that cw = 0 which means that b = τ i0(b);
a contradiction because the valuations do not agree. This means that F1 = F2. In
particular, F = Fa does not depend on the choice of a and the theorem is proved.

��

4.4 The Carlitz Module and Its Exponential

In this section we set

A = H 0(P1
Fq
\ {∞},OP1

Fq

) = Fq [θ ],

θ being a rational function over P1
Fq

having a simple pole at ∞ and no other
singularity. The simplest example of Anderson’s A-module is the Carlitz module
which is discussed here; it has rank one and it is perhaps the only one with which
we can make very simple computations so it is legitimate to spend some time on it.
In order to simplify our notations, we write

| · | = | · |∞ = q−v∞(·), ‖ · ‖ = ‖ · ‖∞
from now on; this will not lead to confusion.
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Definition 4.4.1 (Cf. Example 1.9 of [Tav20]) The Carlitz A-module is the Drin-

feld A-moduleA
C−→ C∞[τ ] uniquely defined by Cθ = C(θ) = θ + τ .

Let a be in A. Then, Ca ∈ A[τ ] has degree degθ (a) in τ and the rank is 1. Note
also that C is defined over the Fq -algebra A.

We give an example of computation where we can see how this A-module
structure over an A-algebra R works. We suppose q = 2. Let 1 be the identity
of R×. We have Cθ (1) = θ + 1. Hence,

Cθ2+θ (1) = Cθ+1(Cθ (1)) = (θ + 1)2 + θ2 + 1 = 0.

This means that 1 is a (θ2 + θ)-torsion point for this A-module structure given by
the Carlitz module.

By Theorem 4.3.7, the limit series

expC := lim
N→∞CθN θ

−N ∈ C∞[[τ ]],

not identically zero and which can be identified with an entire Fq -linear endomor-
phism of C∞, satisfies

expC a = Ca expC (4.3)

for all a ∈ A and has constant term (with respect to the expansion in powers of τ )
equal to one. By Theorem 4.3.4, the Carlitz module C corresponds to a rank one
lattice νA ⊂ C∞, with generator ν ∈ C∞, and we have

expC(Z) = expνA(Z) = Z
∏′

λ∈νA

(

1− Z
λ

)

, Z ∈ C∞.

Our next purpose is to compute ν explicitly. To do this, we are going to use
properties of the Newton polygon of expC . Indeed, staring at (4.3) it is a simple
exercise to show that there is a unique solution Y ∈ C∞[[τ ]] of CθY = Yθ with the
coefficient of τ 0 equal to one, and by uniqueness, we find

expC =
∑

i≥0

d−1
i τ

i,

where

di = (θqi − θqi−1
) · · · (θqi − θq)(θqi − θ) = (θqi − θ)dqi−1

(if i > 0 and with d0 = 1). From v∞(di) = −iqi we observe again that expC
defines an Fq -linear entire function which is therefore also surjective over C∞ (use
Proposition 4.2.7). We have the normalisation of | · | by |θ | = q .
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Proposition 4.4.2 There exists an element ν ∈ C∞ with v∞(ν) = − q
q−1 , such that

the kernel of expC is equal to the Fq -vector space νA. The element ν is defined up
to multiplication by an element of F×q .

Proof We know already from Theorem 4.3.4 that the kernel of expC has rank one
over A. The novelty here is that we can compute the valuation of its generators, a
property which is not available from the theorem. The Newton polygon of expC is
the lower convex hull in R2 of the set whose elements are the points (qi, iqi). Since

(qi+1, (i + 1)qi+1)− (qi, iqi) = (qi(q − 1), iqi(q − 1)+ qi+1)

for i ≥ 0, the sequence (mi) of the slopes of the Newton polygon is

iqi(q − 1)+ qi+1

qi(q − 1)
= i + q

q − 1
.

Projecting this polygon on the horizontal axis we deduce that for all i ≥ 0, expC has
exactly qi(q−1) zeroes x such that v∞(x) = −i− q

q−1 (counted with multiplicity)
and no other zeroes. In particular, we have q − 1 distinct zeroes such that v∞(x) =
− q
q−1 . The multiplicity of any such zero is one (note that d

dX
expC(X) = 1) so they

are all distinct. Now, since expC is Fq -linear, we have that all the roots x such that
v∞(x) = −1 − 1

q−1 are multiple, with a factor in F×q , of a single element ν (there
are q − 1 choices). We denote by A[d] the set of polynomials of A of exact degree
d . For all a ∈ A[d], 0 = Ca(expC(ν)) = expC(aν) and v∞(aν) = −d − q

q−1 .
This defines an injective map from A[d] to the set of zeroes of expC of valuation
−d − q

q−1 . But this set has cardinality qd(q − 1) which also is the cardinality of
A[d]. This means that expC(x) = 0 if and only if x ∈ νA. ��
Corollary 4.4.3 We have expC(X) = X

∏
a∈A\{0}

(
1− X

aν

)
and expC induces an

exact sequence of A-modules

0 → νA→ C∞
expC−−→ C(C∞)→ 0.

4.4.1 A Formula for ν

We have seen that if � ⊂ C∞ is the kernel of expC , then � is a free A-module of
rank one generated by ν ∈ C∞ with v∞(ν) = − q

q−1 , defined up to multiplication

by an element of F×q . Let us choose a (q − 1)-th root (−θ) 1
q−1 of −θ ; this is also

defined up to multiplication by an element of F×q , and the valuation is − 1
q−1 . We

want to prove the following formula:

ν = θ(−θ) 1
q−1

∏

i>0

(

1− θ

θq
i

)−1

.
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To do this, we will use Theorem 4.3.7. We recall that this result implies that the
sequence

fn(z) = expC(z)− Cθn(zθ−n)

converges uniformly on every bounded disk of C∞ to the zero function. To continue
further, we need to introduce the function ω of Anderson and Thakur. This function
is defined by the following product expansion:

ω(t) = (−θ) 1
q−1

∏

i≥0

(

1− t

θq
i

)−1

.

The convergence of this product is easily seen to hold for any t ∈ C∞ \
{θ, θq, θq2

, . . .}. Also, for all n �= 1, the function

(t − θ)(t − θq) · · · (t − θqn−1
)ω(t)

extends to an analytic function over DC∞(0, q
n−1) (we can also say that ω defines

a meromorphic function over C∞ having simple poles at the singularities defined
above). To study the arithmetic properties of ω, it is useful to work in Tate algebras.
However, at this level of generality, this is not necessary, strictly speaking. For the
purposes we have in mind now, it will suffice to work with formal Newton-Puiseux
series. Let y, t be two variables, choose a (q − 1)-th root of y and define:

F(y, t) = (−y) 1
q−1

∏

i≥0

(

1− t

yq
i

)−1

∈ Fq((y
− 1
q−1 ))((t)).

Then,

F(yq, t) = (t − y)F (y, t).

Writing the series expansion

ω(t) =
∑

i≥0

λi+1t
i ∈ C∞[[t]],

we deduce, from the uniqueness of the series expansion of an analytic function in
DC∞(0, 1), that the sequence (λi)i≥0 can be defined by setting λ0 = 0 and the
algebraic relations

Cθ (λi+1) = λqi+1 + θλi+1 = λi

which include λ1 = (−θ)
1
q−1 . Now set μi = θ iλi , i ≥ 0.
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Lemma 4.4.4 For all i ≥ 1, |μi | = q
q
q−1 and (μi)i≥0 is a Cauchy sequence.

Proof Developing the product defining ω we see that |λi | = q
q
q−1−i . To see that

(μi) is a Cauchy sequence, it suffices to show that μi+1 − μi → 0. But

μi+1 − μi = θ i+1λi+1 − θ iλi = θ i(λi − λqi+1)− θ iλi = −θ iλqi+1 → 0.

��
Let μ ∈ C∞ be the limit of (μi).

Lemma 4.4.5 We haveμ = − limt→θ (t−θ)ω(t) = θ(−θ)
1
q−1

∏
i>0(1−θ1−qi )−1.

Proof From the functional equation of F(y, t) we see that limt→θ (t − θ)ω(t) =
(−θ) q

q−1
∏
i>0(1 − θ1−qi )−1 = ∑

i≥0 θ
iλ
q

i+1, the latter series being convergent.
Using that Cθ (λi+1) = λi we see that the last sum is:

∑

i≥0

θ i(λi − θλi+1) =
N−1∑

i=0

θ i(λi − θλi+1)+
∑

i≥N
θiλ

q
i+1, ∀N.

The first sum telescopes to −θNλN while the second being a tail series of a
convergent series, it converges and the sum depending on N tends to 0 as N →∞.

��
Hence μ is the residue of −ω at t = θ . We can write

μ = −Rest=θ (ω).

This is the analogue of a well known lemma sometimes called Appell’s Lemma: if
(an) is a converging sequence of complex numbers, then limn an = limx→1−(1 −
x)

∑
n anx

n.
We are now ready to prove the following well known and classical result:

Theorem 4.4.6 The kernel � of expC is generated, as an A-module, by

μ = ν = θ(−θ) 1
q−1

∏

i>0

(
1− θ1−qi)−1

.

Proof Since� = νA for some ν ∈ C∞ such that |ν| = q q
q−1 and since |μ| = q q

q−1 ,
it suffices to show that expC(μ) = 0. Now, we can write μ = μn+εn where εn → 0

and |εn| < q
q
q−1 . Also, we have expC(z) = fn(z)+Cθn(θ−nz) and we have that the

sequence of entire functions (fn) converges uniformly to the zero function on any
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bounded subset of C∞. We have:

expC(μ) = (Cθnθ−n + fn)(μn + εn)
= Cθn(λn)︸ ︷︷ ︸

=0

+ fn(μn)︸ ︷︷ ︸
→0

+ expC(εn)︸ ︷︷ ︸
→0

.

Hence, μ = ν. ��
Remark 4.4.7 The formula of Theorem 4.4.6 can be easily derived from the
following result of Carlitz in [Car35] that also appears in [Gos96, Theorem 3.2.8].
Let η be a (q − 1)-th root of θ − θq in the algebraic closure Kac of K in C∞. We
set:

ξ = η
∏

j≥1

(

1− θq
j − θ

θq
j+1 − θ

)

∈ Kac∞.

Then μ ∈ F
×
q ξ . To see this, observe the identity:

d−1∏

j=1

(

1− θq
j − θ

θq
j+1 − θ

)

=
d−1∏

j=0

(1− θqj (1−q))
d∏

i=1

(1− θ1−qi )−1, d ≥ 1.

Both products on d converge in K∞ for d → ∞. If we set H = η
∏
j≥0(1 −

θq
j (1−q)) ∈ Kac∞ we see that H is algebraic over K by the relations Hq = (θ −

θq)η(1 − θ1−q)−1 ∏
j≥0(1 − θq

j (1−q)) = −θqH . Since −θq = θq−1(−θ), we

deduce that H ∈ F×q θ(−θ)
1
q−1 . The formulation that we adopt in our text is that

of Anderson, Brownawell and Papanikolas in [And04, §5.1]. In fact, the proof of
Theorem 4.4.6 that we gave above is inspired by that of these authors.

One of the most used notations for our μ is π̃ . This is suggestive due to the
resemblance between the exact sequence of Corollary 4.4.3 and 0 → 2πiZ →
C

exp−−→ C→ 1; there is an analogy between π̃ ∈ C∞ and 2πi ∈ C. It can be proved,
by the product expansion we just found, that π̃ in transcendental over K = Fq(θ).
The first transcendence proof of it is that of Wade in [Wad41] but there are several
others, very different from each other. See for example [And04, §3.1.2]. There are
proofs which make use of computations of dimensions of ‘motivic Galois groups’
which connect to the topics of Di Vizio’s contribution to this volume [DiV20] and
which are the roots of a vast program in transcendence and algebraic independence
inaugurated by Anderson, Brownawell and Papanikolas in [And04], and later by
Papanikolas in [Pap08].
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4.4.2 A Factorization Property for the Carlitz Exponential

In Corollary 4.4.3, we described the Weierstrass product expansion of the entire
function expC : C∞ → C∞. We now look again at expC as a formal series
and we provide it with another product expansion, this time in C∞[[τ ]]; see
Proposition 4.4.9. This result is implicit in Carlitz’s [Car35, (1.03), (1.04) and
(5.01)]. The function we factorise is not expC but a related one:

expA(z) = z
∏

a∈A\{0}

(
1− z

a

)
= π̃−1 expC(π̃z),

so that

expA =
∑

i≥0

d−1
i π̃

qi−1τ i ∈ K∞[[τ ]].

Before going on we must discuss the Carlitz logarithm. It is easy to see that in
C∞[[τ ]], there exists a unique formal series logC with the following properties: (1)
logC = 1+· · · (the constant term in the power series in τ is the identity 1 = τ 0) and
(2) for all a ∈ A, a logC = logC Ca , a condition which is equivalent to θ logC =
logC Cθ by the fact that A = Fq [θ ]. Writing logC = ∑

i≥0 l
−1
i τ

i and using this
remark one easily shows that

li = (θ − θq)(θ − θq2
) · · · (θ − θqi ),

i ≥ 0. We note that v∞(li) = −q qi−1
q−1 . This means that the series logC does not

converge to an entire function but for all R ∈ |C×∞| such that R < |π̃ |, logC defines
an Fq -linear function on DC∞(0, R). We also note, reasoning with the Newton
polygons of expC and logC , that

| expC(z)| = |z| = | logC(z)|, ∀z ∈ D◦C∞(0, |π̃ |), (4.4)

which implies that the Carlitz’s exponential induces an isometric automorphism
of D◦

C∞(0, |π̃ |). More generally, the exponential function of a Drinfeld module
induces, locally, an isometric automorphism, see [Tav20, Corollary 1.12]. We
observe that the series U = expC logC and V = logC expC in K∞[[τ ]] satisfy
Ua = aU and V a = aV for all a ∈ A. Since they further satisfy U = 1 + · · · and
V = 1+ · · · , we deduce that logC is the inverse of expC in K∞[[τ ]]. In particular,

Ca = expC a logC ∈ K∞[τ ], ∀a ∈ A.

We define:

Cz = expC z logC ∈ C∞[[τ ]], z ∈ C∞.



120 F. Pellarin

Then,

Cz =
∑

i≥0

d−1
i τ

iz
∑

j≥0

l−1
j τ

j

=
∑

i≥0

d−1
i z

qi τ i
∑

j≥0

l−1
j τ

j

=
∑

k≥0

⎛

⎜
⎜
⎜
⎜
⎝

k∑

i=0

d−1
i l

−qi
k−i z

qi

︸ ︷︷ ︸
=:Ek(z).

⎞

⎟
⎟
⎟
⎟
⎠
τ k

We can thus expand, for all z ∈ C∞:

Cz =
∑

k≥0

Ek(z)τ
k ∈ C∞[[τ ]]

with the coefficients

Ek(z) =
k∑

i=0

d−1
i l

−qi
k−i z

qi = z

lk
+ · · · + z

qk

dk
∈ K[z]

which are Fq -linear polynomials of degree qk in z for k ≥ 0. They are called the
Carlitz’ polynomials. In the next proposition we collect some useful properties of
these polynomials.

Proposition 4.4.8 The following properties hold:

(1) For all k ≥ 0 we have

Ek(z) = d−1
k

∏

a∈A
|a|<qk

(z− a).

(2) For all k ≥ 0 and z ∈ C∞ we have

Ek(z)
q = Ek(z)+ (θqk+1 − θ)Ek+1(z).

(3) We have lkEk(z)→ expA(z) uniformly on every bounded subset of C∞.

Proof

(1) Since Ca ∈ A[τ ] has degree in τ which is equal to degθ (a), Ek vanishes on
A(< k) the Fq -vector space of the polynomials of A which have degree < k.
Since the cardinality of this set is equal to the degree of Ek , this vector space
exhausts the zeroes of Ek, and the leading coefficient is clearly d−1

k .
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(2) This is a simple consequence of the relation CaCz = CzCa .
(3) We note that

lk

dk

∏

|a|<qk
(z− a) = lk

dk
z

∏

a �=0
|a|<qk

(−a)
(

1− z
a

)
.

Now, it is easy to see that

∏

0 �=|a|<qk
(−a) =

∏

0 �=|a|<qk
a = dk

lk
. (4.5)

(see [Gos96, §3.2]). The uniform convergence is clear.
��

We come back to the series expA = ∑
i≥0 d

−1
i π̃

qi−1τ i ∈ K∞[[τ ]]. We now
show that

expA = · · ·
(

1− τ

l
q−1
n

)(

1− τ

l
q−1
n−1

)

· · ·
(

1− τ

l
q−1
1

)

(1− τ ) =

= · · · ln(1− τ ) 1

θq
n − θ (1− τ ) · · ·

1

θq
2 − θ (1− τ )

1

θq − θ (1− τ ). (4.6)

in K∞[[τ ]] with its (τ )-topology. We have in fact more:

Proposition 4.4.9 On every bounded subset of C∞, the entire function expA(z) is
the uniform limit of the sequence of Fq -linear polynomials

(

z − zq

l
q−1
n

)

◦
(

z − zq

l
q−1
n−1

)

◦ · · · ◦
(

z− zq

l
q−1
1

)

◦ (
z − zq) ,

where ◦ is the composition.

Proof We write:

Ẽn =
(

1− τ

l
q−1
n−1

)

· · ·
(

1− τ

l
q−1
1

)

(1− τ ) ∈ K[τ ].

We also denote by En ∈ K[τ ] the unique element such that for all z ∈ C∞,
En(z) = En(z) (evaluation). Part (3) of Proposition 4.4.8 implies that lkEk
converges uniformly to expA(z) on every bounded subset of C∞. Hence, we are
done if we show that the evaluations agree: Ẽn = lnEn for all n ≥ 0. This is certainly
true if n = 0. We continue by induction. From part (2) of Proposition 4.4.8 we see
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that τEn = En + (θqn+1 − θ)En+1 for all n ≥ 0. Therefore:

Ẽn+1 =
(

1− τ

l
q−1
n

)

Ẽn

=
(

1− τ

l
q−1
n

)

lnEn

= lnEn − lqn l−q+1
n τEn

= lnEn − ln(En + (θqn+1 − θ)En+1)

= ln(θ − θqn+1
)

︸ ︷︷ ︸
=ln+1

En+1,

and we are done. ��
Proposition 4.4.9 was essentially known by Carlitz; it can be derived easily with

elementary manipulations on the left-hand side of [Car35, (5.01)]. It is interesting
to note the two rationality properties for expC = expπ̃A and expA which follow
from the above result: the terms of the series defining expC are defined overK (the
coefficients d−1

i ) and the factors of the infinite product of expA we just considered

are also defined overK (the coefficients are l1−qi ).

Problem 4.4.10 Generalise Lemma 4.4.14 and Proposition 4.4.9 to the framework
of Drinfeld-Hayes A-modules of rank one considered in [Hay74] for a general Fq -
algebra of regular functions A and highlight a connection to the shtuka functions in
the sense of [Gos96, §7.11] in this context, see also [Tav20, §4.2].

Remark 4.4.11 This can be viewed as a digression. There is a simple connection
with Thakur’s multiple zeta values, defined by:

ζA(n1, n2, . . . , nr ) :=
∑

a1,...,an∈A+|a1|>···>|ar |

a
−n1
1 · · · a−nrr ∈ K∞, n1, . . . , nr ∈ N

∗, r ≥ 1,

where A+ denotes the subset of monic polynomials of A. Indeed, one sees directly
that the coefficient of τ r in (4.6) is equal to

(−1)r
∑

i1>···>ir≥0

l
1−q
i1
l
q−q2

i2
· · · lqr−1−qr

ir
.

One proves easily
∑

a∈A+
|a|=qi

a−l = l−li for 1 ≤ l ≤ q and we deduce that

expA =
∑

r≥0

(−1)rζA(q − 1, q(q − 1), . . . , qr−1(q − 1))τ r .
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Therefore, equating the corresponding coefficients of the powers of τ we reach the
formula:

ζA(q − 1, q(q − 1), . . . , qr−1(q − 1)) = (−1)r
π̃q

r−1

dr
, r ≥ 0,

with the convention ζA(∅) = 1. Note that the identity derived by the specialisation
t = θ in [Pel16a, (22)] rather involves the ‘reversed’ multiple zeta values
ζ ∗A(qr−1(q − 1), . . . , q(q − 1), q − 1), the ∗ denoting the variant of multiple zeta
value involving sums with non-strict inequalities |a1| ≥ · · · ≥ |ar |.

4.4.3 The Function expA and Local Class Field Theory

This subsection is not logically related to the other topics of the text. Just as the
Euler exponential function, the Carlitz exponential function has an important role in
explicit class field theory for the fieldK (see Hayes [Hay74] for the rational function
field K = Fq(θ), [Hay79] and the more recent work of Zywina [Zyw13], for the
general case). Note that even more recently, a direct link between the explicit class
field theory of K = Fq(θ) and the function ω of Anderson and Thakur has been
found in [Ang15]. It does not belong to our purposes to describe these results here.
In this subsection we are going to achieve a more modest objective which is to apply,
in the case A = Fq [θ ], the properties of the function expA we have reviewed so far,
in relation with the local class field theory for K∞ = Fq((

1
θ
)). Interestingly, these

properties do not seem to have simple analogues in the theory of Euler’s exponential
function.

Let L ⊂ C∞ be an algebraic extension of K∞. Then, expA defines an Fq -
linear map L → L. Indeed, for all x ∈ L, K∞(x)/K∞ is a finite extension, hence
complete, and expA(K∞(x)) ⊂ K∞(x).
Definition 4.4.12 We say that L is uniformised by expA if the map expA : L→ L

is surjective.

For example, L = C∞ is uniformised by expA, thanks to Proposition 4.2.7.
Observe that if L,L′ ⊂ C∞ are two algebraic extensions of K∞ which are
uniformised by expA, then also L ∩ L′ is uniformised by expA. Indeed, let x be
an element of L ∩ L′ and let y ∈ L, y ′ ∈ L′ be such that expA(y) = expA(y

′) = x.
Then y − y ′ ∈ A = Ker(expA) ⊂ K∞ so that y, y ′ ∈ L ∩ L′. Hence, there is a
minimal algebraic extension L/K∞ in C∞ that is uniformised by expA; this is what
we want to study here.

We denote by Kab∞ the maximal abelian extension of K∞ in Ksep
∞ ⊂ C∞, that is,

the maximal extension of K∞ which is Galois, with abelian Galois group. We also
choose λθ a (q − 1)-th root of−θ ∈ Ksep

∞ and we note that if L/K∞ is an algebraic
extension, then L[λθ ] is an algebraic extension of K∞. The aim of this subsection
is to prove:
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Theorem 4.4.13 Let L be the minimal algebraic extension of K∞ in C∞ which is
uniformised by expA. Then, L[λθ ] = Kab∞ .

In the complex setting, and for the Eulerian exponential, we would have the
analogue but deceiving result: the minimal algebraic extension of R which is
uniformised by z �→ ez is C. Theorem 4.4.13 confirms that in some sense,
function field arithmetic is more transparent and allows to see more structure in
the watermark. We need the next:

Lemma 4.4.14 Let n be a non-negative integer. For every r ∈ |C×∞| with r < |ln|
the product

Fn := · · ·
(

1− τ

l
q−1
n+1

)(

1− τ

l
q−1
n

)

∈ K[[τ ]]

defines an entire function C∞ → C∞ and induces an isometric bi-analytic
isomorphism of the disk DC∞(0, r).

Proof This is easy to verify by using Proposition 4.2.7 and Corollary 4.2.8. Indeed,
if we set

ψm := 1− τ

l
q−1
m

, m ≥ 0

we see that for all z ∈ C∞ such that |z| < |ln|, ψm(z) = z + z′ with z′ ∈ C∞
depending on m and |z′| < |z|, for all m ≥ n. ��
Proof of Theorem 4.4.13 We have a well defined Fq -linear map expA : Kab∞ →
Kab∞. We first show that this map is surjective so that if L is the minimal algebraic
extension of K∞ which is uniformised by expA, then L ⊂ Kab∞ . To do this, we note
that we have, for all n ≥ 0, a well defined Fq -linear algebraic map En : A1

Kab∞
→

A
1
Kab∞

given by the Carlitz polynomials (AnL denotes the affine space of dimension

n over a field L). By the proof of Proposition 4.4.9, En is surjective. Indeed, for
all y ′ ∈ Kab∞, the splitting field of the polynomial En(X) − y ′ ∈ K∞(y ′)[X] is an
abelian extension of K∞(y ′) which can be constructed by iterating Artin-Schreier
extensions. Let x be an element of Kab∞ . There exists n ≥ 0 such that |x| < |ln|. By
Lemma 4.4.14, F−1

n (x) ∈ Kab∞ is well defined. Let x ′ ∈ Kab∞ be such that

lnEn(x
′) = F−1

n (x).

Then we have, by Proposition 4.4.9, expA(x
′) = Fn(lnEn(x ′)) = Fn(F−1

n (x)) = x
and we have proved that Kab∞ is uniformised by expA. Now let L ⊂ C∞ be an
algebraic extension ofK∞ that is uniformised by expA. To show thatL[λθ ] contains
Kab∞ we proceed in two steps.

In the first step, we show that Kun∞ , the maximal abelian extension of K∞ which
is unramified at the ∞-place, is contained in L. To do this it suffices to show that



4 From the Carlitz Exponential to Drinfeld Modular Forms 125

the algebraic closure Fac
q of Fq in C∞ is contained in L. Indeed, it is easy to see that

Kun∞ = Fac
q ((

1
θ
)).

By using Proposition 4.2.7 we see that for every y ∈ C∞ such that |y| = 1 there
exists a unique x ∈ C∞ with |x| = 1, such that expA(x) = y, and of course if
y ∈ L, then x ∈ L because we have supposed that L is uniformised by expA. Since
Fq ⊂ K∞ ⊂ L, if y ∈ F×q , there exists x ∈ L, |x| = 1, such that expA(x) = y.
Now observe with Proposition 4.4.9 that expA(x) = (F1 ◦ E1)(x) = y and applying
Lemma 4.4.14

x − xq = E1(x) = F−1(y) = y + y ′

where y ′ ∈ 1
θ
Fq [[ 1

θ
]]. Setting x ′ =∑

i≥0(y
′)qi ∈ 1

θ
Fq [[ 1

θ
]]we deduce that x−x ′ ∈

Fq2 \ Fq ⊂ C∞ is an element of L, and Fq2 ⊂ L. This shows that Fq2(( 1
θ
)) ⊂ L

because Fq2(( 1
θ
)) = Fq((

1
θ
))[Fq2]. We can of course repeat this argument with y ∈

Fq2 ⊂ L etc. to show that, inductively, Fqd ⊂ L for all d ≥ 1 so that Fqd ((
1
θ
)) =

K∞[Fqd ] ⊂ L for all d ≥ 1 and with a little additional work we conclude that
Kun∞ ⊂ L.

Before passing to the second step we need a little bit of terminology. We say that
a sequence (xi)i≥0 in Kab∞ is a Lubin-Tate sequence if 1

θ
x0 + xq0 = 0 and

1

θ
xi + xqi = xi−1, i > 0.

We note that x0λθ ∈ F×q . Similarly, we say that a sequence (yi)i≥0 of Kab∞ is an
Artin-Schreier sequence if y0 = 1 and

E1(yi) = yi − yqi = θyi−1, i > 0.

By a simple application of Proposition 4.2.7 we see that |yi | = |θ |
1
q+···+ 1

qi for all
i > 0. Moreover,

1

θ
x0yi + (x0yi)

q = x0yi−1, i > 0

so that if (yi)i≥0 is an Artin-Schreier sequence and x0 satisfies the previous equation,
then (x0yi)i≥0 is a Lubin-Tate sequence and if (xi)i≥0 is a Lubin-Tate sequence with
x0λθ = 1, then ( xi

x0
)i≥0 is an Artin-Schreier sequence.

The second step of the proof of our theorem is to show that L contains an Artin-
Schreier sequence. First of all, we note that for any Artin-Schreier sequence (yi)i≥0,

θyi ∈ DKab∞(0, r) for all r ∈ |C×∞| such that r < |θ | qq−1 so that |θyi | < |l1| for all

i ≥ 0. We fix i ≥ 0. Let ai+1 ∈ Kab∞ be such that

ai+1 − aqi+1 = F−1
1 (θyi).
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We have that

expA(ai+1) = F1(F−1(θyi)) = θyi.

Since by hypothesis, L is uniformised by expA, we have that ai+1 ∈ L if yi ∈ L.
It is easy to see that F−1

1 (θyi) = θyi + y ′i where |y ′i | < 1. In particular, a′i+1 =∑
j≥0(y

′
i )
qj converges to an element of L such that a′i+1 − (a′i+1)

q = y ′i . If we
set bi+1 = ai+1 − a′i+1 we can conclude, under the hypothesis that yi ∈ L, that
bi+1 ∈ L is such that

bi+1 − bqi+1 = θyi.

By induction over i ≥ 0 we obtain that L contains an Artin-Schreier sequence
(yi)i≥0.

We can now conclude the proof of the theorem. By what written earlier, L[λθ ]
contains a Lubin-Tate sequence (xi)i≥0. We set K̃ := K∞[xi : i ≥ 0]. By Lubin-
Tate theory (see [Lub65])Kab∞ is the compositum inC∞ of K̃ andKun∞ and therefore,
L[λθ ] containsKab∞ . ��

We are not going to deepen the facts outlined below, but the main theorem of
local class field theory asserts, in the special case of our local field K∞ (it holds for
any local field with appropriate modifications) the existence of an isomorphism of
profinite groups

θ̂K∞ : K̂×∞ → Gal(Kab∞/K∞),

the local Artin homomorphism, where K̂×∞ is the profinite group completion of
K×∞ ∼= Fq [[ 1

θ
]]××Z, non-canonically isomorphic to the profinite group Fq [[ 1

θ
]]××

Ẑ. The non-canonical isomorphism depends on the choice of a uniformiserπ ofK∞.
If we set Kπ to be the subfield of Kab∞ which is fixed by θ̂K∞(π) ∈ Gal(Kab∞/K∞),
then Kab∞ is the compositum KπKun∞ , and we have isomorphisms Gal(Kun∞/K∞) ∼=
Ẑ and Gal(Kπ/K∞) ∼= Fq [[ 1

θ
]]×. Choosing a Lubin-Tate sequence in Kab∞/K∞

is therefore equivalent to the choice of a uniformiser π of K∞. One can see, along
these remarks (but we will not give full details), that the minimal algebraic extension
L ⊂ Kab∞ of K∞ that is uniformised by expA is determined by Gal(Kab∞/L) ∼= F×q .

Problem 4.4.15 The notion of minimal field extension ofK∞ which is uniformised
by the exponential expA can be generalised to e.g. Drinfeld A-modules via
Theorem 4.3.4 in a natural way, but it is unclear how this field can be characterised in
the light of local class field theory so that the role of a statement like Theorem 4.4.13
must be clarified in this more general setting.
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4.5 Topology of the Drinfeld Upper-Half Plane

We go back to the settings and notations of Sect. 4.2.2, considering the Fq -algebra
A = H 0(C \ {∞},OC) with C a smooth projective curve over Fq and ∞ a closed
point. We therefore have the tower of inclusions of Fq-algebras A ⊂ K ⊂ K∞ ⊂
C∞. In this section we give an explicit topological description of what is called the
Drinfeld upper-half plane �. It goes back to Drinfeld, in [Dri74]. D. Goss called it
the ‘algebraist’s upper-half plane’ in [Gos80a]. It can be viewed as an analogue of
the complex upper-half plane that can be constructed by cutting C in two along the
real line and taking one piece only. As a set, � is very simple:

� = C∞ \K∞,

but subtracting K∞ results in a different operation than cutting; this is what we are
going to show here. We begin by presenting some elementary properties following
[Ger80]. We recall that C∞ = K̂ac∞, where K∞ = F((π)) for some uniformiser π .
First of all, there is an action of GL2(K∞) on � by homographies. If γ = ( a bc d ) ∈
GL2(K∞), then we have the automorphism of P1

Fq
(C∞) uniquely defined by

z �→ γ (z) := az+ b
cz+ d

if z �∈ {∞,− d
c
}. Observe that if F/L is a field extension, then GL2(L) acts by

homographies on the set F \ L. For instance, GL2(R) acts on C \ R = H+ �H−
(disjoint union of the complex upper- and lower-half planes).

It is well known that the imaginary part %(z) of a complex number z, the distance
of z from the real axis, is submitted to the following transformation rule under the
action by homographies. If γ = ( a bc d ) ∈ GL2(R):

%(γ (z)) = %(z) det(γ )

|cz+ d|2 , z ∈ C \R. (4.7)

There is an analogous notion of distance from K∞ in C∞. We set:

|z|% := inf{|z− x| : x ∈ K∞}, z ∈ C∞.

We have the following result.

Proposition 4.5.1

(1) For all z ∈ C∞, |z|% is a minimum, and |z|% = 0 if and only if z ∈ K∞.
(2) Let z be an element of �. Then, there exist z0 = πm(α0 + · · · + αnπ−n) ∈

Fq [π, π−1] and z1 ∈ � with |z1| = |z1|% < |π |m, uniquely determined, with
n ∈ N ∪ {−∞} and α0 �= 0 if z0 �= 0, such that z = z0 + z1.
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Proof

(1) If z ∈ K∞, there is nothing to prove. Assume thus that z ∈ � ⊂ C∞ is fixed.

Define the map K∞
f−→ |C×∞|, f (x) = |z − x|. Then, f is locally constant,

hence continuous. But K∞ is locally compact so there is x0 ∈ DK∞(0, |z|) (not
uniquely determined) such that f (x0) is a minimum and |z|% = |z− x0|.

(2) For all x ∈ K∞, |x| > |z|, we have |z− x| = |x|. Then, we have two cases.
(a) For all x ∈ DK∞(0, |z|), |z− x| = |z|. In this case, |z|% = |z| and |z|% is

a minimum. We thus get n = −∞, z0 = 0 and z = z1.
(b) There exists x ∈ DK∞(0, |z|) \ {0} such that |z| = |x| and |z− x| < |z|.

This implies that the image of z/x in the residue field of C∞ is 1. We can
therefore write z = λ1π

−n1 + η1 with λ1 ∈ F and η1 ∈ �, |η1| < |z| = |θ |n1 .
We can iterate by studying now η1 at the place of z. Either the procedure

stops and we get a decomposition z = λ1π
−n1 + · · · + λkπ−nk + ηk with

n1 > · · · > nk , |z|% = |ηk| = |ηk|% and there exists z0 ∈ K∞ such that
|z− z0| = |z|% > 0 as claimed in the statement, or the procedure does not stop
but in this case we have z ∈ K∞ which is excluded.

��
In particular, either |z1| �∈ |K×∞|, or |z1| = |πm| but the image of z1π

−m in the
residue field of C∞ is not one of the elements of F×. Part (2) of Proposition 4.5.1
implies that for all x = z0+y with y ∈ DK∞(0, |z1|), |z−x| = |z|% = |z1| = |z1|%.

We also have the following elementary consequences of the above proposition.
First of all, if c ∈ K∞, then |cz|% = |c||z|% for all z ∈ �. Moreover, if v∞(z) �∈ Z,
then |z|% = |z|. Also, if |z| = 1, we have |z|% = 1 if and only if the image of z in
the residue field of C∞ is not in F.

The next property is the analogous of (4.7):

Lemma 4.5.2 For all z ∈ � and γ = ( ∗ ∗c d ) ∈ GL2(K∞),

|γ (z)|% = | det(γ )||z|%
|cz+ d|2 .

Proof First of all, suppose that we have proved that

|γ (z)|% ≤ | det(γ )||z|%
|cz+ d|2 , ∀γ = ( ∗ ∗c d ) ∈ GL2(K∞), ∀z ∈ �. (4.8)

In particular, for all z̃ ∈ �, and with γ replaced by γ−1 = δ−1( ∗ ∗−c a ) (where
δ = det(γ )), we get

|γ−1(̃z)|% ≤ |δ||̃z|%
| − c̃z+ a|2 .
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We set z̃ = γ (z). Then,−c̃z+ a = δ
cz+d and therefore,

|z|% = |γ−1(̃z)|% ≤ |̃z|%|δ|
∣
∣
∣
∣
cz+ d
δ

∣
∣
∣
∣

2

= |δ|−1|cz+d|2|̃z|% = |δ|−1|cz+d|2|γ (z)|%,

so that

|δ||z|%
|cz+ d|2 ≤ |γ (z)|%,

and we get the identity we are looking for. All we need is therefore to show that
(4.8) holds.

Now, let x ∈ C∞ be such that x is not a pole of γ . An easy calculation shows
that

γ (z)− γ (x) = det(γ )(z− x)
(cz+ d)(cx + d) .

Hence, if x ∈ K∞ is not a pole of γ , we have

|γ (z)− γ (x)| = | det(γ )||z− x|
|cz+ d|2

|cz+ d|
|cx + d| . (4.9)

We can find x ∈ K∞ such that |z − x| = |z|% and with the property that x is not a
pole of γ (we have noticed that there are infinitely many such elements). We claim
that |cx+d| ≤ |cz+d|. If c = 0 this is clear. Otherwise, if this were false we would
have |cx + d| > |cz+ d| and

|c||z|% = |c||z− x| = |cz+ d − (cx + d)| = |cx + d| > |cz+ d|% = |c||z|%
which would be impossible. Hence, with the claim in mind, we deduce from (4.9):

|γ (z)|% ≤ |γ (z)− γ (x)| ≤ | det(γ )||z− x|
|cz+ d|2 = | det(γ )||z|%

|cz+ d|2

by our choice of x and we are done. ��

4.5.1 Rigid Analytic Spaces

The notion of rigid analytic space originates in ideas of Tate in the years 1960’.
We do not want to go in very precise details because there is already a plethora
of important references, among which [Bos84, Fre04]. A more recent introduction
to rigid analytic spaces is the chapter ‘Several approaches to non-archimedean
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geometry’ by Conrad, see [Bak08, Chapter 2] (the whole volume is close, in many
aspects, to the topics of the present text). Important is also Berkovich’s viewpoint
which is outlined in this volume, [Poi20a, Poi20b]. We discuss, in a rather informal
way, the nature of these structures before making use of some very particular special
cases. Let L be a field with valuation | · |, complete, algebraically closed.

We are going to describe a rigid analytic space over L (or analytic space over L)
as a triple

(X,G,OX)

where X is a non-empty set, G a Grothendieck topology on X, OX a sheaf,
satisfying several natural conditions. A Grothendieck topology G on X can be
outlined as a set S of subsets U of X and, for all U ∈ G, a ‘covering’ Cov(U)
of U again by elements of G. If C is the family of all such coverings,3 then G
is the datum (S, C) and the quality of being a Grothendieck topology results in
a collection of properties we shall not give here, refining the simpler notion of
topology (see [Fre04] for the precise collection of conditions). If a Grothendieck
topologyG = (S, C) onX is given, then the elements of S are called the admissible
subsets ofX and the elements of C are called the admissible coverings. This refines
the notion of topology because if we forget the coverings, the conditions we are
left on S are precisely those of a topology on X so that right at the beginning we
could have said that X is a topological space, and the admissible sets are just the
open sets for this topology. We have of course a corresponding notion of morphism
of Grothendieck’s topological spaces which strengthens that of continuous maps
of topological spaces: pre-images of admissible sets (resp. coverings) are again
admissible.

What is a sheaf on a Grothendieck topological space? If we choose a ring R,
a sheaf F of R-algebras (R-modules. . . ) is a contravariant functor from S (with
inclusion) to the category of R-algebras (or R-modules. . . this is called a pre-sheaf )
which satisfy certain compatibility conditions. For instance, if f, g ∈ F(U), U ∈ S
and f |V = g|V for all V ∈ Cov(U) ∈ C, then f = g. Furthermore, if we choose
Cov(U) = (Ui)i∈I ∈ C and for all i, fi ∈ F(Ui) are such that fi |Ui∩Uj = fj |Ui∩Uj ,
then there exists a ‘continuation’ f ∈ F(U) with f |Ui = fi for all i (this is an
abstract formalisation of ‘analytic continuation’). Every pre-sheaf can be embedded
in a sheaf canonically, but checking that a given pre-sheaf is itself a sheaf might
result in subtle problems. The datum of (X,G,F) with G a Grothendieck topology
and F a sheaf of R-algebras on (X,G) is called a Grothendieck ringed space of R-
algebras and there is a natural notion of morphism of such structures which mimics
the more familiar notion of morphism of ringed spaces of algebraic geometry. Say

3Do not mix up with the curve C of the previous sections.
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for commodity that X,Y are two Grothendieck topological spaces with respective
sheaves F and G, then a morphism of Grothendieck ringed spaces of R-algebras

(X,F) (f,f
$)−−−→ (Y,G)

is the datum of a morphism of Grothendieck topological spaces f and for all
U ⊂ Y admissible, an R-algebra morphism f $ : G(U) → F(f−1(U)). So far,
we discussed Grothendieck topological spaces, sheaves etc. But now, what is a
rigid analytic variety? A rigid analytic variety over L, our valued field, complete,
algebraically closed (say, L = C∞, the most relevant in our notes), is a particular
kind of Grothendieck ringed space; let us see how. We still need a few more tools.
We have the unit disk

DL(0, 1) = {z ∈ L : |z| ≤ 1}

playing the role of a basic brick for constructing rigid analytic spaces, just as the
affine line does for algebraic varieties. For this reason, we focus on affinoid algebras.
An affinoid algebra over L is any quotient of a Tate algebra

Tn(L) = L̂[t]‖·‖
by an ideal, where the Tate algebra Tn(L) of dimension n is the completion ·̂
of the polynomial ring L[t] in n indeterminates t = (ti)1≤i≤n for the Gauss
valuation ‖ · ‖ that we recall it is defined, for elements ai1,...,in ∈ L, by
‖∑i1,...,in

ai1,...,in t
i1
1 · · · t inn ‖ = sup |ai1,...,in |. It is known that it is noetherian, with

unique factorization, of Krull dimension the number of variables n. The resulting
quotient A of Tn(L) (by an ideal) is endowed with a structure of L-Banach algebra.
In other words, the Gauss norm of L̂[t] induces a (sub-multiplicative) norm on A,
and it is complete. In fact, any L-Banach algebra A together with a continuous
epimorphism Tn(L) → A for some n, making A into a finitely generated Tn(L)-
algebra, is an affinoid algebra. Affinoid algebras over L are the basic bricks to
construct a rigid analytic variety.

The maximal spectrum Spm(R) of an affinoid L-algebra R can be made into
a Grothendieck ringed space (X,G,F); this is called an affinoid variety over L.
If X = Spm(R) and Y = Spm(R′), an L-algebra morphism R → R′ defines
a morphism of ringed spaces Y → X which is called a morphism of affinoid
algebras. This serves to describe the other pieces of (X,G,F). The admissible sets
in S (recall that G = (S, C)) are exactly the images in X of open immersions of
affinoid varieties and similarly, we define the coverings in C. This gives rise to a
Grothendieck topology G on X = Spm(A). Furthermore, we have the pre-sheaf
OX defined by associating to U ⊂ X an admissible set the L-algebra OX(U) = R′
where U = Spm(R′). Thanks to Tate’s acyclicity theorem one shows that this
is in fact a sheaf (see [Tat71], see also [Fre04, Theorem 4.2.2]). This result was
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generalised by Grauert and Gerritzen [Bos84, 7.3.5 and 8.2]). Dulcis in fundo, we
have:

Definition 4.5.3 A Grothendieck ringed space X = (X,G,F) is a rigid analytic
variety over L if X has an admissible covering of admissible subsets U which have
the property that (U,F |U) is an affinoid variety over L for all U .

4.5.1.1 Analytification

An important process to construct rigid analytic spaces is the analytification of
an algebraic variety. Let X/L be a scheme of finite type. The analytification Xan

of X is a rigid analytic space over L that can be defined by an affinoid covering
starting from the geometric data as follows. We consider affine Zariski open subsets
U = Spec(A) ↪→ X and embeddingsU ↪→ A

N
L which correspond, on the algebraic

side, to surjectiveL-algebra mapsL[t] → A (where t denotes the set of independent
variables t1, . . . , tN ) endowing A with a structure of L[t]-algebra, for some N .
Taking the completion for the Gauss valuation yields a surjective morphism:

L̂[t] → A⊗L[t] L̂[t]

which gives rise to a map V := Spm(A ⊗L[t] L̂[t]) ↪→ DL(0, 1)N = Spm(L̂[t]).
We can proceed similarly for polydisks of different radii in |L×| and this is used
to construct a rigid analytic space Uan such that V = Uan ∩ DL(0, 1)N . Glueing,
we construct the rigid analytic space Xan. For example, the rigid affine line over
L, A1,an

L is obtained by glueing together the rigid analytic spaces DL(0, r) along

the inclusions with r ∈ |L×|. Similarly, the rigid projective line over L, P1,an
L , can

be constructed by glueing two copies of DL(0, 1) along the set {z ∈ L : |z| = 1},
or also glueing two copies of A1,an

L , see also Berkovich’s construction in [Poi20b,
Definition II.1.5]. The Berkovich’s affine line is described in detail in ibid. See
[Poi20a, Definition I.1.1].

Rigid analytification defines a functor, called the ‘GAGA functor’ from the
category of L-schemes of finite type to the category of rigid analytic spaces over L.
Note that we can also consider analytifications of morphisms, coherent sheaves etc.
Finally, there is an alternative way to define the analytification functor over an affine
varietyX overL, introduced by Berkovich, which makes the underlying topological
space particularly easy to compute as it is defined over the set of multiplicative
seminorms over the coordinate ring of X satisfying certain compatibility conditions
with the valuation of L. See [Poi20b, Definition II.1.1] for the construction of the
Berkovich spectrum of an algebra of finite type over L. See also Temkin’s [Tem15,
Chapter 1] for a nice survey in the area.
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4.5.1.2 The Rigid Analytic Variety �

We now focus on L = C∞ with A = H 0(C \ {∞},OC) in our usual notation. We
discuss a structure of rigid analytic space over C∞ on � = C∞ \K∞. Note that

� =
⋃

M>1

UM,

where UM = {z ∈ � : M−1 ≤ |z|% ≤ |z| ≤ M}, the filtered union being over the
elementsM ∈ |C∞| \ |K∞| withM > 1. Observe now:

Lemma 4.5.4 With M ∈ |C∞| \ |K∞| we have

UM = DC∞(0,M) \
⊔

λ∈F[π,π−1]
λ=λ−βπβ+···+λβπ−β

1≤|π |−β≤M

D◦C∞(λ,M
−1).

Proof This easily follows from the fact that K∞ is locally compact in combination
with the ultrametric inequality. ��

Hence, UM is admissible and carries a structure of affinoid variety UM =
Spm(AM) where AM is an integral affinoid algebra. We say that UM is a connected
affinoid of P

1,an
C∞ (as in the language introduced in [Fre04], motivated by the

integrality of AM ). In particular � can be covered (in fact filled) with connected
affinoids and the analytic structure of� arises from viewing it as the complementary
in C∞ of smaller and smaller disks located over certain elements of K∞ which
is close to the familiar view that we have also for the set C \ R. This gives the
Grothendieck topology on �, and the sheaf O� is that of rigid analytic functions
over�. Practically, a rigid analytic function f : �→ C∞ is a function such that the
restriction on every set UM is the uniform limit of a sequence of rational functions
on UM without poles in UM .

4.5.2 Fundamental Domains for �\�

This subsection is motivated by an essential construction in the theory of Schottky
groups, that of fundamental domains. Schottky groups have been first introduced by
Schottky in 1877 in the complex setting; they are useful to analytically uniformise
compact Riemann surfaces. In the years 1970, after the work of Tate on p-
adic uniformisation of elliptic curves with split multiplicative reduction, Mumford
discovered how to p-adically uniformise smooth projective curves of genus g ≥ 2
with ‘split degenerate stable reduction’ by using p-adic Schottky groups� acting on
non-archimedean variants�� of the classical complex upper-half plane. The reader
is encouraged to read the modern contribution of Poineau-Turchetti to this volume
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[Poi20a, Poi20b]. An older reference is [Ger80]; it also contains determinant tools
to explore this profound theory. Consequently, we will not give all the details, this
would bring us too far away from our path.

Let us recall that, given a local field L with valuation | · |, the group PGL2(L)
4

acts on the rigid analytic projective line P
1,an
F where F is the completion of an

algebraic closure of L (see [Ger80, Fre04]). A Schottky group over L is a finitely
generated subgroup � of PGL2(L) which is discrete and such that no element but
the identity has finite order. Schottky groups are free (see [Ger80, Theorem (3.1)])
this being an important consequence of the fact that they act freely on certain rigid
analytic spaces. Every Schottky group � over L has a compact limit set L� ⊂ P

1,an
F

so that � acts freely over �� := P
1,an
F \ L� . The quotient space �\�� naturally

carries a structure of rigid analytic space over L which is associated with a smooth,
geometrically connected, projective curve X� over L, of genus g the rank of �. We
learn from [Ger80, Theorem (4.3)] that every Schottky group � in PGL2(L) admits
a good fundamental domain F� . Without entering the details, for every element
z ∈ �� the set of γ ∈ � such that γ (z) ∈ F� is non-empty and finite. In fact, if
γ ∈ �, then F�∩γ (F�) �= ∅ if and only if γ ∈ {1, γ±1

1 , . . . , γ±1
g }, where γ1, . . . , γg

freely generate �. Moreover, F� can be written as

F� := P
1,an
F \

2g⊔

i=1

Di

where the Di ’s are the rigid analytic spaces associated to disks D◦F (ai, ri ) = {z ∈
F : |z− ai | < ri} with ri ∈ |L×| for all i, such that the disksDF (ai, ri ) = {z ∈ F :
|z − ai | ≤ ri} are pairwise disjoint. One can therefore see easily that F� carries a
structure of rigid analytic variety over F (read also [Poi20b, §II.3.1] along with its
more general settings and the theory of uniformisation of Mumford curves).

The interesting point in this discussion is that if we set L = K∞ = F((π)), A =
H 0(C\{∞},OC) ⊂ K∞, F = C∞ etc. the group PGL2(A) acts on� = P

1,an
F \P1,an

K∞
but the action is in general not free; there usually are elliptic points (this happens,
for instance, when [F : Fq ] is odd, see [Mas15]). Even more seriously, the group
itself is not finitely generated (see Serre’s book [Ser80a] for more details), so that
PGL2(A) is not a Schottky group.

4.5.2.1 Some Structural Properties of � = GL2(A)

For the purposes of the present paper, we will be content to study the case in which
C has genus 0, so that in Lemma 4.2.5 we have V = {0} and therefore, K∞ ∼=
A ⊕ MK∞ . It is easy to see that there exists a uniformiser π of K∞ such that

4Projective linear group over L, defined as the quotient of GL2(L) by its center.
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FA = F[π−1]. We can indeed choose π = θ−1 where θ is any element of A with a
simple pole at∞. In particular, FA = F[θ ].

It is not difficult to show that the group GL2(F[θ ]) is generated by its subgroups
GL2(F) (finite) and the Borel subgroupB(∗) = {( ∗ ∗0 ∗ )}. In fact, a Theorem of Nagao
in [Nag59] asserts that, given a field k and an indeterminate t ,

GL2(k[t]) = GL2(k) ∗B(k) B(k[t]), (4.10)

where ∗B(k) denotes the amalgamated product alongB(k), which is by definition the
quotient of the free product GL2(k) ∗B(k[t]) by the normal subgroup generated by
those elements arising from the natural identifications existing between the elements
of B(k) ∗ 1 and 1 ∗ B(k) coming from the maps

GL2(k)→ GL2(k) ∗ B(k[t])← B(k[t])

(a gluing along compatibility conditions). Note thatB(k[t]) is not finitely generated,
so that GL2(k[t]) is not finitely generated (this is trivial if k is infinite) in contrast
with a theorem of Livingston, asserting that GLn(k[t]) is finitely generated if n ≥ 3,
and also with the more familiar result that SL2(Z) ∼= Z/2Z ∗ Z/3Z so that it is, in
particular, finitely presented.

Corollary 4.5.5 PGL2(F[θ ]) is not a Schottky group.

4.5.2.2 Bruhat-Tits Trees and ‘Good Fundamental Domains’

We recall that K∞ = F((π)) for a uniformiser π , with F a finite extension of
Fq . Our first task is to describe a combinatorial structure which allows to ‘move
inside’�, the Bruhat-Tits tree; in practice, we can ‘move along annuli’. The second
task, in the case A = F[θ ], is to construct a subset of � that we can qualify as a
‘good fundamental domain’ for the homography action of GL2(A) over �, being
understood that GL2(A) is not a Schottky group.

We recall that if x ∈ C∞, D◦
C∞(x, r) = {z ∈ C∞ : |z − x| < r}. Let S be a

subset of C×∞ such that if x, x ′ ∈ S are distinct, |x − x ′| = max{|x|, |x ′|}. Then,
with x ∈ S, the sets

Dx := D◦C∞(x, |x|) = x +D◦C∞(0, |x|)

are pairwise distinct subsets ofC×∞. Indeed, clearly, they do not contain 0. Moreover,
if x �= x ′ we have y ∈ D◦

C∞(x, |x|) ∩ D◦C∞(x ′, |x ′|) if and only if we can find
z ∈ D◦

C∞(x, |x|), z′ ∈ D◦C∞(x ′, |x ′|), such that y = x + z = x ′ + z′ with |z| < |x|
and |z′| < |x ′|, so that |z − z′| < max{|x|, |x ′|}. This means that max{|x|, |x ′|} >
|z− z′| = |x ′ − x| = max{|x|, |x ′|} which is impossible.
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We choose, for any element r ∈ Z>1, an element, denoted by π
1
r ∈ C∞, with

the property that (π
1
r )r = π , which exists because C∞ is algebraically closed. The

set % := {(π 1
r )s} inherits the total order of R by s

r
∈ Q ⊂ R.5 We have observed

(after Lemma 4.2.9) that the valuation group of | · | is |π |Q. Hence if z ∈ C×∞, we

can find r, s relatively prime, unique, such that |z(π 1
r )s | = 1. Since the residue field

of C∞ is Fac, we obtain that there exists a unique ζ ∈ (Fac)× such that

|z− ζ(π 1
r )s | < |z|.

If we set S = {ζ(π 1
r )s : ζ ∈ (Fac)×, r > 1, s ∈ Z such that r, s are relatively

prime}, then for all x, x ′ ∈ S distinct we have |x − x ′| = max{|x|, |x ′|} and we
obtain a partition of C×∞:

C
×∞ =

⊔

x∈S
Dx. (4.11)

Let us now consider the subset

S̃ := {x ∈ S : |x| �∈ |π |Z} � {ζπn : ζ ∈ F
ac \ F, n ∈ Z} ⊂ S.

With it, we can still somehow reconstruct C∞. Indeed, the reader can easily see that
if x ∈ S̃, Dx ∩K∞ = ∅ and

C∞ =
⎛

⎝K∞ +
⊔

x∈S̃
Dx

⎞

⎠ �K∞.

As a consequence we have

� = K∞ +
⊔

x∈S̃
Dx

and

⊔

x∈S̃
Dx = {z ∈ � : |z| = |z|%}.

5Thanks to Lemma 4.2.10 we can even additionally suppose that the elements π
1
r are chosen in

such a way that % = πQ is a subgroup of C×∞.
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We observe that if λ ∈ Q \ Z, then

⊔

x∈S
|x|=|π |λ

Dx =
⊔

x∈S̃
|x|=|π |λ

Dx = {z ∈ C∞ : |z| = |π |λ} =: Cλ.

We also set, for λ ∈ Z,

Cλ :=
⊔

ζ∈Fac\F
D◦C∞(ζπ

λ, |π |λ).

Note that Cλ = {z ∈ � : |z| = |z|% = |π |λ} for all λ ∈ Q. For all λ, the set
Cλ is invariant by translation of elements in DK∞(0, |π |&λ'), where &·' denotes the
smallest of the integers which are larger than (·). If α ∈ K∞ \ DK∞(0, |π |&λ') =
⊕i≤(λ)Fπi (with (·) the largest integer which is smaller than (·)) then Cλ ∩ (α +
Cλ) = ∅. We have obtained the next result.

Lemma 4.5.6 The following partition of � holds:

� =
⊔

λ∈Q
α∈K∞\DK∞ (0,|π |&λ')

α + Cλ.

Note that this can be very easily used to construct admissible coverings of �.
The above is the crucial statement which allows to construct the Bruhat-Tits tree
associated to �. It relies on the existence of a natural partial ordering on the set
T := {α+Cλ : α ∈ K∞\DK∞(0, |π |&λ'), λ ∈ Q}. We declare that α+Cλ * α′+Cλ′
if Cλ * α′ − α+Cλ′ and Cλ * α′ +Cλ′ if λ < λ′ and α′ +Cλ = Cλ. For example,
for λ �∈ Z, α + Cλ * Cλ if and only if α +Cλ = Cλ if and only if |α| ≤ |π |λ. Then
T can be enriched with the structure of a tree, the Bruhat-Tits tree. We recall that
a tree T is a metric space such that, on one side, for any distinct points P,P ′ of T
there exists one and only one topological arc in T of extremities P,P ′ and, on the
other side, this arc is isometric to an interval of R (this definition is due to Tits). A
tree has edges and vertices. The vertices of our Bruhat-Tits tree T are represented
by the subsets α + Cλ of C∞ with λ ∈ Z and the edges are represented by real
intervals ]n − 1, n[ with n ∈ Z, with the extremities given by a couple of vertices
(α+Cn−1, α

′ +Cn) such that α′ +Cn−1 = Cn−1. The intervals are oriented and our
tree itself acquires an orientation. The upper direction is that of the negative λ’s or,
alternatively, of the larger |z|%’s. The edges are therefore organised so that at every
lower (for the ordering) extremity the vertex is a qd∞ + 1 branching point with qd∞

edges below and one above (with respect to the orientation).
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The next picture represents a small piece of T for qd∞ = 2.
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α + Cλ, λ = 0

Also note that the euclidean closure of the image in T of any set α+�λ∈QCλ for
α ∈ K∞ fixed is isometric to R and any two such sets, if distinct, have a upper half-
line in common. Any element of � is K∞-translation equivalent to finitely many
elements in �λ∈QCλ and finally, the homography action of GL2(K∞) over � is
compatible with a continuous action over T in a way that can be made completely
explicit.

The structure of the spaces C∞ and � may look topologically very complicate
but the Bruhat-Tits tree is some kind of ‘central nervous system’ which allows to
obtain a combinatorial picture of these spaces (or rather, their admissible coverings)
and to move in their interior, by means of the reduction map, which is GL2(K∞)-
equivariant

red : �→ T ,

defined by z �→ α + Cλ ∈ T where α + Cλ is the unique element of the partition
of Lemma 4.5.6 such that z ∈ α + Cλ. This presentation may look different, it is in
fact essentially equivalent to that of Teitelbaum in [Tei91, Preliminaries] (see also
Teitelbaum’s chapter in [Bak08]). To help the reader to connect with the formalism
of Teitelbaum, which also is that of [Ger80], note that the set U(1) of [Tei91, p.
492] plays the role of our disjoint union �λ∈]−1,1[Cλ and that the set V introduced
one page later is equal to our �λ∈]−1,0[Cλ. The sets γ (U(1)) for γ ∈ GL2(K∞)
define an admissible covering of � and T can be alternatively constructed defining
edges and vertices by a criterion of overlapping for the various γ (U(1))’s and
an identification between the set {γ (U(1)) : γ ∈ GL2(K∞)} and the quotient
GL2(OK∞)\GL2(K∞), corresponding to the vertices.
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We set F := {z ∈ � : |z| = |z|% ≥ 1}. By Lemma 4.5.6, we have F = �λ≤0Cλ
and red(F) is an upper half-line in T . We deduce that

F = C∞ \
⎛

⎝
⊔

ζ∈F
D◦C∞(ζ, 1) �

⊔

n≥1

⊔

ζ∈F×
D◦C∞(ζπ

−n, |π |−n)
⎞

⎠ .

We now focus on the case A = F[θ ]. For z ∈ � we denote by Fz the set {z′ ∈ F :
there exists γ ∈ GL2(A) such that γ (z) = z′} ⊂ F. We show:

Proposition 4.5.7 For all z, the set Fz is non-empty and finite.

Proof If z ∈ F then there exists x ∈ S̃ such that |x| ≥ 1 and z ∈ Dx and we see that
the set of a ∈ A such that z − a ∈ F is finite. Note that 1/z ∈ D1/x so that 1/z �∈ F
(in fact, if γ = ( 0 1

1 0 ), γ (Dx) = Dγ(x)). From Nagao’s Theorem we deduce that the
set {γ ∈ GL2(A) : γ (z) ∈ F} is finite so that, for all z ∈ �, Fz is finite (but note that
the cardinality is not uniformly bounded in terms of z). Let z be in �. If |z|% ≥ 1
there exists a ∈ A such that |z − a| = |z|% and Fz is non-empty. All we need to
show is that if z ∈ � is such that |z|% < 1, then there exists γ ∈ GL2(A) such
that γ (z) ∈ F. To see this, there is no loss of generality in supposing that |z| < 1.
Indeed, we can replace z with z− a for a ∈ A. We can therefore write:

z = w + x + y

where w ∈ ⊕(λ)i=1Fπ
i ∈ MK∞ , x ∈ S̃ with |x| = |π |λ and y ∈ Dx . Applying

γ = ( 0 1
1 0 ) we see that z is GL2(A)-equivalent to an element z′ ∈ α′ + Cλ′ with λ′

such that λ − λ′ ∈ Z>1 and α′ ∈ ⊕i≤(λ′)Fπi , so that, in particular, |z′|% > |z|%.
We can iterate this process with z′ playing the role of z. The fact that λ − λ′ ∈ Z≥1
implies that z is GL2(A)-equivalent to an element of F and Fz is non-empty. ��

This seems enough to allow us calling F a ‘good fundamental domain’ for �\�
with A = F[θ ], even though it is undoubtedly not as well behaved as the good
fundamental domains in the framework of Schottky groups. Note that �\T contains
an ‘end’: this metric space is not compact, but can be made compact with the
addition of one point represented by one of the upper half-lines contained by T
which, at the level of �\�, corresponds to a ‘cusp’.

Similar constructions are possible for � = GL2(A) with a more general
projective curve C but we do not describe them here. In this broader case it is
possible to show that �\T has the structure of a finite graph with finitely many ends
attached to it. More general ’fundamental domains’ can be constructed from the
Bruhat-Tits tree of � and constructed by Serre (see [Ser80a, Theorem 10]) thanks
to a more refined interpretation of the elements of �\� as classes of rank two vector
bundles over C. We refer to ibid. for the details.
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4.5.3 An Elementary Result on Translation-Invariant
Functions Over �

We recall that H denotes the complex upper-half plane. Let f : H → C be a
holomorphic function such that for all n ∈ Z and for all z ∈ H, f (z + n) = f (z).
Then, we can expand

f (z) =
∑

n∈Z
fne

2πinz, fn ∈ C,

a series which is convergent for q(z) = e2πiz in

Ḋ◦C(0, 1) = {z ∈ C : 0 < |z| < 1}

the punctured open unit disk centered at 0 of C or equivalently, for z in every
horizontal strip of finite height in H (note that they are invariant by horizontal
translation).

4.5.3.1 A Digression

The proof of the above statement for f is simple and we can afford a short
digression. The function z �→ q(z) does not allow a global holomorphic section
H ← Ḋ◦

C
(0, 1). But we can cover C× with say, three open half-planes U1, U2, U3,

and there are sections s1, s2, s3 defined and holomorphic over U1, U2, U3 such that
si − sj ∈ Z over Ui ∩ Uj for all i, j . Let f be holomorphic on H such that
f (z + 1) = f (z) for all z ∈ H. Define gi(q) = f (si(q)) for all i = 1, 2, 3. Then,
the compatibility conditions and the fact that the pre-sheaf of holomorphic functions
over any open set is a sheaf (the well known principle of analytic continuation)
ensure that this defines a holomorphic function g(q) over Ḋ◦

C
(0, 1). But the ring

of holomorphic functions over Ḋ◦
C
(0, 1) is precisely that of the convergent double

series
∑
n∈Z fnqn, as one can easily see, and our claim follows. One also deduces

that there is an isomorphism of Riemann’s surfaces

H/Z ∼= Ḋ◦C(0, 1)

induced by e2πiz, concluding the digression.
We now come back to our characteristic p > 0 setting and we suppose, from

now on, that

A = H 0(P1
Fq
\ {∞},OP1

Fq

).
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We note that � is invariant by translations of a ∈ A and the function

expA(z) = z
∏

a∈A\{0}

(
1− z

a

)
= π̃−1 expC(π̃z)

is an entire function C∞ → C∞, Fq -linear, surjective, of kernel A = Fq [θ ], hence
also invariant by translations by elements of A. It is thus natural to ask for an
analogue statement of the above, complex one. Consider R ∈ |C×∞|. Now, note
that A acts on �R = {z ∈ � : |z|% ≥ R} by translations. Giving A\�R the quotient
topology we have:

Lemma 4.5.8 There is S ∈ |C×∞| such that the function expA induces a homeomor-
phism of topological spaces

A\�R → {z ∈ C∞ : |z| ≥ S}.

Proof From the Weierstrass product expansion we see that, setting

S := max
z∈DC∞ (0,R)

| expA(z)| =: ‖ expA ‖R = ‖z‖R
∏

a∈A
a �=0

∥
∥
∥1− z

a

∥
∥
∥
R
= R

∏

a∈A
a �=0
|a|<R

R

|a| ,

expA(D(0, R)) = D(0, S) by Corollary 4.2.8. Hence, D◦(0, S) = D◦
C∞(0, S) =

expA(D
◦(0, R)) from which we deduce that

{z ∈ C∞ : | expA(z)| < S} = A+D◦(0, R).

Recall that K∞ = A⊕MK∞ . If R ≥ 1, we have D◦(0, R) ⊃MK∞ . Now observe
that

{z ∈ C∞ : |z|% < R} = ∪a∈K∞D◦(a, R) = ∪a∈AD◦(a, R).

Therefore we have the chain of identities

A+D◦(0, R) = K∞+D◦(0, R) = ∪a∈K∞D◦(a, R) = {z ∈ C∞ : |z|% < R} = �\�R,

and taking complementaries, we see that

�R = {z ∈ C∞ : | expA(z)| ≥ S}, R ≥ 1.

��
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4.6 Some Quotient Spaces

Our topologies are totally disconnected and Lemma 4.5.8 is weaker if compared
with analogous statements in the complex setting. Fortunately there is a structure of
quotient analytic space over�R/A, and it is isomorphic to the analytic structure of
the complementary of the disk D◦(0, S).

4.6.1 A-Periodic Functions Over �

We suppose that A = Fq [θ ] all along this subsection. The analogue for � = C∞ \
K∞ of the simple claim over C of the beginning of Sect. 4.5.3 and the proof in
Sect. 4.5.3.1 is not as easy to prove but it is true, and not too difficult. In fact, the
following result holds:

Proposition 4.6.1 Let f : �→ C∞ be an analytic function such that f (z+ a) =
f (z) for all a ∈ A. Then, there exists S ∈ |C×∞|, S < 1, such that

f (z) =
∑

n∈Z
fn expA(z)

n, fn ∈ C∞,

the series being uniformly convergent for expA(z)
−1 in every annulus of

Ḋ◦
C∞(0, S) = {x ∈ C∞ : 0 < |x| < S}, S ∈ |C×∞|, small enough.

To prove this result and to motivate the proof we are giving, we need some
preparation.

4.6.1.1 Analytification and quotients

Let X be a rigid analytic variety over a valued field L, complete and algebraically
closed. Let us consider a group � acting on X with ‘admissible action’. ‘Admissible
action’ means that X can be covered by �-stable admissible subsets and that �
acts through an embedding ι of � in Aut(X ), topological group, and the image is
discrete. We are interested in such triples

(X , �, ι).

For example, we can take � = A acting on � or A1
C∞ by translations (the theme of

Proposition 4.6.1) or � = GL2(A) acting on � by homographies (the theme of the
text).

The quotient map

X → �\X
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can be used to define a structure of Grothendieck ringed space on the quotient �\X .
A subset of �\X is admissible if its pre-image is admissible, and the sections are �-
invariant C∞-valued functions over pre-images of �-invariant subsets. One needs
conditions under which the quotient acquires a structure of rigid analytic space.
For example, a finite group � acting on X = Spm(A) affinoid variety which
allows a covering by invariant admissible subsets gives rise to an isomorphism
of affinoid varieties �\Spm(A) → Spm(A�), where A� is the sub-algebra of
�-invariant elements of A; see [Bos84, §6.3.3]. See also Hansen’s more general
[Han20, Theorem 1.3].

We invoke the analytification functor in Sect. 4.5.1.1 by choosing X = Xan. If
X is a scheme of finite type over L with an ‘admissible action’ of a finite group
� ‘admissible’, now in the algebraic sense that there is a covering with �-invariant
affine sub-schemes, it can be proved that there exists a unique scheme structure (of
finite type over L) on the ringed quotient space

p : X→ �\X.

The following proposition is due to Amaury Thuillier: we warmly thank him for
having brought our attention to it.

Proposition 4.6.2 The canonical map �\Xan → (�\X)an is an isomorphism of
rigid analytic varieties.

Proof We can suppose, without loss of generality, X = Spec(A) affine, so that
�\X = Spec(A�). In terms of algebras, we have (horizontal arrows are surjective
and vertical arrows injective, and L̂[t] is the standard Tate L-algebra in the variables
t = (t1, . . . , tN ) for some N):

L[t] A

L[t]] L[t]
ker(π)

.

π

Then we have:

AV := L̂[t]
ker(π)

= A⊗L[t] L̂[t] = H 0(V ,OXan)

where V := Spm(A⊗L[t] L̂[t]) ⊂ (�\X)an.
The L-algebra B = A ⊗A� AV is finite over AV , hence it inherits a structure

of affinoid L-algebra. We deduce, with pan : Xan → (�\X)an the analytification
of p, that W = (pan)−1(V ) is a �-invariant affinoid domain of Xan and AW =
H 0(W,OXan) = B. The quotient space �\W is also affinoid, of algebra B� (see
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[Bos84, §6.3.3]). Therefore, all we need to show is that the canonical morphism

AV → B = A⊗A� AV

induces an isomorphism AV → B� = (A⊗A� AV )� .
The morphism A→ AV is flat [Ber90, Theorem 3.4.1, (ii)]. Therefore the exact

sequence

0 → A� → A ⊕(g−IdA)−−−−−−→
⊕

g∈�
A

yields an exact sequence

0 → AV = A� ⊗A� AV → A⊗A� AV
⊕(g−IdA)−−−−−−→

⊕

g∈�
A⊗A� AV .

We have thus that AV is equal to the kernel of the last arrow, which is just B� . ��
We consider L = C∞ and we denote by A(n) the Fq -vector space {a ∈ A :

|a| < |θ |n} (dimension n and cardinality qn). IfX = A1
C∞ and we look at � = A(n)

acting on X by translations, we have the quotient scheme �\X = Spec(C∞[x]�).
Note that C∞[x]� = C∞[En(x)] with En characterised by Proposition 4.4.8, by
Euclidean division. Proposition 4.6.2 applies.

We introduce the sets for n ≥ 1

Bn = D◦C∞(0, |θ |n) \
⋃

a∈A(n)
D◦C∞(a, 1).

We define, in parallel, with ln = (θ − θq) · · · (θ − θqn):

Cn = D◦C∞(0, |ln|) \D◦C∞(0, 1).

Each of these sets has an admissible covering by affinoid subsets so that it is a rigid
analytic sub-variety of A1,an

C∞ . A function f : Bn → C∞ is analytic if its restriction
to every affinoid subset is analytic. Note that Bn ⊂ Bn+1 and Cn ⊂ Cn+1 for all
n ≥ 1. We set

ψm := 1− τ

l
q−1
m

, m ≥ 0
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(recall that τ (x) = xq for x ∈ C∞). It is easy to see that ψn induces an isometric
biholomorphic isomorphism of Cm for all n ≥ m. In particular the non-commutative
infinite product

Fn := · · ·
(

1− τ

l
q−1
n+1

)(

1− τ

l
q−1
n

)

∈ K[[τ ]]

induces an isometric biholomorphic isomorphism of Cn (for every n).
In a similar vein, Proposition 4.6.2 implies:

Corollary 4.6.3 The function En = lnEn is a degree qn étale covering Bn → Cn
which induces an isomorphism of rigid analytic spaces

A(n)\Bn→ Cn,

where the analytic structure on the pre-image is induced by the analytification of
Spec(C∞[x]A(n)).

4.6.1.2 Proof of Proposition 4.6.1

A global section gn of OCn can be identified, in a unique way, with a convergent
series

∑

k∈Z
g
(n)
k x

k, g
(n)
k ∈ C∞.

Let f : � → C∞ be a rigid analytic function with the property that for all a ∈ A,
f (z + a) = f (z). We fix m > 0, let n be such that n ≥ m. Then, f : Bn → C∞ is
holomorphic such that f (z + a) = f (z) for all a ∈ A(n) and therefore there exists
a unique gn ∈ OCn such that f (z) = gn(En(z)) over Cn and we can write:

f (z) =
∑

k∈Z
g
(n)
k (En(z))

k.

We observe that Bm ⊂ Bn. Thus, we have the following commutative diagram for
n > m, where the left vertical arrows are the identity, and the bottom right vertical
arrow is ψm, while the top one is ψm+1,n, where ψm,n is the composition ψm,n :=
ψn−1 ◦ · · · ◦ ψm:

Bm
En−→ Cm

↑ ↑
Bm

Em+1−−−→ Cm
↑ ↑
Bm

Em−→ Cm,
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and there also exists a unique gm ∈ OCm such that f (z) = gm(Em(z)), this time
over Cm ⊂ Cn so that, noticing that ψm,n induces an isometric biholomorphic
isomorphism of Cm, we must have:

gn(ψm,n(x)) = gm(x), x ∈ Cm.

In particular, we have the equality

gn+1(ψn(x)) = gn(x), x ∈ Cm.

Since ψn(x) = x(1 − ( x
ln
)q−1) and ψn(x)k = xk(1 + σn,k(x)) with |σn,k(x)| ≤

| x
ln
|q−1 < 1 for all n ≥ m, k ∈ Z, we deduce that the function gn+1 − gn tends

to zero uniformly on every admissible subset of Cm, for n ≥ m. This means that
the sequence of functions (gn)n≥m converges to an element g ∈ OCm uniformly on
every admissible subset of Cm.

With this new function g the existence of which is given by Cauchy convergence
criterion, we can write:

gm(x) = g(Fm(x)), x ∈ Cm.

We use the results of Sect. 4.4.2 and more precisely Proposition 4.4.9, or with a
more manageable notation, (4.6). We thus recall the identity of entire functions:

expA = Fn

(

1− τ

l
q−1
n−1

)

· · ·
(

1− τ

l
q−1
1

)

(1− τ )
︸ ︷︷ ︸

En

.

In particular, by uniqueness:

f (z) = g(expA(z)), z ∈ Bm, ∀m.

Since the sets Bn cover the set �1 := {z ∈ C∞ : |z|% ≥ 1}, the result follows.
Restated in more geometric, but essentially equivalent language, the arguments

of the proof of Proposition 4.6.1 lead to:

Proposition 4.6.4 For all M ∈ [1,∞[∩|C×∞|, the function z �→ 1
expA

yields an

isomorphism of rigid analytic spaces A\�M ∼= ḊC∞(0, S) = DC∞(0, S) \ {0} for
some S ≥ 1 depending onM .

Problem 4.6.5 The above proof, although simple, is longer than the one we gave in
the digression 4.5.3.1, in the complex case. This leads to the following question:
is it possible to construct explicitly an admissible covering (Ui)i of an annulus
DC∞(0, R) \ D◦C∞(0, r) and local inverses gi ∈ OUi of the function expA or even

better, the function 1
expA

, delivering a simpler proof of Proposition 4.6.1 and making
no use of the process of analytification?
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Also, note that the fact that the Grothendieck ringed space A\A1,an carries a
structure of rigid analytic variety and much more general results in this vein can be
also deduced from Simon Häberli’s thesis [Hab18, Proposition 2.34].

4.6.1.3 The Bruhat-Tits Tree and expA

As a complement for the previous discussions, in this subsection we describe how
the Bruhat-Tits tree of Sect. 4.5.2.2 can be used to study the function expA. We are
going to see that somewhat, expA defines a covering A

1,an
C∞ → A

1,an
C∞ ‘ramified of

degree q∞’; the reader is invited to compare with the results of Sect. 4.4.3. To give
more strength to this, we use again Proposition 4.4.9. We are therefore led to analyse
the image of En = lnEn on D◦

C∞(0, |θ |n) and then, take the limit for n → ∞. We
note that

D◦C∞(0, |θ |n) \K∞ =
⊔

λ∈Q∩]−n,∞[
α∈⊕−λ≤i<nFqθi

α + Cλ.

Since

En(z) = ln

dn

∏

a∈A(n)
(z− a)

is Fq -linear of kernel A(n), it suffices to study how En behaves over

Tn =
⊔

λ∈Q∩]−n,∞[
α∈⊕−λ≤i<0Fqθ

i

α + Cλ.

Note that if λ ≤ 0, the direct sum over i is empty. This means that in the Bruhat-
Tits tree T , Tn entails a very simple subtree which can be obtained by glueing in
0 a segment ] − n, 0] (the subtree T −n ) with the union of q disjoint copies of a
complete q-ary tree equating T +0 = red(D◦

C∞(0, 1) \ K∞) (independent of n), so

that Tn = T −n � T +0 and T0 = T +0 . Since En induces an isometric isomorphism of
D◦

C∞(0, 1) such that for all z ∈ D◦
C∞(0, 1), En(z) = z+ z′ with |z′| < |z|, it induces

the identity on T +0 , and this, for all n ≥ 0. The action of the maps En are all equal to
the action of E0(z) = z on T +0 . We now choose n > 0 and we look at the behaviour
of En on T −n , which is the most interesting part of the story.
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Consider x such that red(x) ∈ T −n . Then, there exists i > 0 maximal with the
property that x ∈ T −i \ T −i−1 (T −0 is empty by definition) and there exists a unique

λ ∈ Q with −λ ∈ [i − 1, i[ such that x ∈ Cλ. We recall that
∏

0 �=a∈A(n) a = dn
ln

, see
(4.5). We have:

En(x) = ln

dn

∏

a∈A(i)
(x − a)

∏

a∈A(n)\A(i)
(x − a)

= Ei (x)
ln

dn

di

li

∏

a∈A(n)\A(i)
(−a)

∏

a∈A(n)

(
1− x

a

)

= (1+ ξ)Ei (x),

where ξ ∈ D◦
C∞(0, 1) (because |x|

|a| < 1 for all a ∈ A(n) \A(i)). If y ∈ D◦
C∞(0, |x|)

we get

En(x + y) = Ei (x)+ ξEi (x)+ (1+ ξ)Ei (y)︸ ︷︷ ︸
element of C◦

C∞ (0,|Ei (x)|)
.

We deduce that the map

D◦C∞(x, |x|)
En−→ D◦C∞(Ei (x), |Ei(x)|)

is an étale covering of degree qi . Hence, the image by En of res−1(T −i \ T −i−1)

(annulus) is an étale covering of degree qi of the annulus

li

di

[
D◦C∞(0, |θ |iq

i

) \D◦C∞(0, |θ |(i−1)qi )
]
= D◦C∞(0, |li |) \D◦C∞(0, |li−1|).

From this it is not difficult to deduce that En defines a covering D◦
C∞(0, |θ |n) →

D◦
C∞(0, |ln|) ramified of degree qn at the points of A(n) and étale on the com-

plementary of these points but we get even more. Namely, that for any z ∈ �,
res(expA(z)) can be very easily computed. If |z|% < 1 then | expA(z)| < 1 and if
z �∈ K∞, res(expA(z)) is equal to res(z − a) where a ∈ A is the unique element
such that res(z − a) ∈ T +0 . If |z|% ≥ 1 then res(expA(z)) = res(En(z)) for all but
finitely many n (depending on how large is |z|%).

We consider T −∞ = ∪n≥1T −n (homeomorphic to R≤0) and T∞ = T −∞ �T +0 . Note
that res(F) = T −∞ and res(F � {z ∈ � : |z|, |z|% < 1}) = T∞. In the terminology of
§4.5.2.2, F� {z ∈ � : |z|, |z|% < 1} can be viewed as a ‘good fundamental domain’
for the action ofA over� by translations. We ultimately get, with a few more details
to develop which are left to the reader:
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Proposition 4.6.6 The map expA induces a surjective, A-periodic map F →
A

1,an
C∞ \ D◦

C∞(0, 1) and rigid analytic isomorphisms A\F → A
1,an
C∞ \ D◦

C∞(0, 1)

and A\A1,an
C∞ → A

1,an
C∞ .

Note that F is not, properly speaking, invariant by A-translations, but A-
translations define an equivalence relation on F. The above statement needs to be
interpret in the light of the richer combinatorial structure described earlier. In the
classical setting we have, of course, the classical well known properties that the
Eulerian exponential z �→ ez induces analytic isomorphisms Z\H→ D◦

C
(0, 1) and

Z\C → C×. Interestingly too, we note that, just as C = H � R �H− (the latter is
the lower complex half-plane), here we have an analogous decomposition

C∞ = � �K∞ = �1 ��− �K∞
with �1 = {z ∈ � : |z|% ≥ 1}, �− = {z ∈ � : |z|% < 1}.

We hope that, with this description, we have convinced the reader that the
functions expA and the Carlitz’s exponential carry an extraordinary structural
richness. We now complete our discussion with the quick exposition of some
properties of the quotient GL2(A)\� and then we move our attention to Drinfeld
modular forms.

4.6.2 The Quotient GL2(A)\�

In the previous subsection we gave, in the most explicit way, but also in compat-
ibility with the purposes of this text, a description of the analytic structure of the
quotient space (A = Fq [θ ] acting by translations)A\�1. Following [Ger80, Chapter
10]), we now describe the action of GL2(Fq) on certain admissible subsets of�. We
considerM ∈ |C×∞| and we set

�M := {z ∈ � : |z|% ≥ M}.

Note that this set, which is called horocycle neighbourhood of ∞, is non-empty and
is invariant by translations by elements of K∞. The multiplication by elements of
F×q induce bijections of �M . Here is a lemma that will be useful later.

Lemma 4.6.7 IfM > 1 and if γ ∈ GL2(A) is such that γ (�M)∩�M �= ∅, then γ
belongs to the Borel subgroup ( ∗ ∗0 ∗ ) of GL2(A).

Proof Let γ = ( a bc d ) ∈ GL2(A). By Lemma 4.5.2, |γ (z)|% = |z|%
|cz+d |2 . Let us

suppose that z, γ (z) ∈ �M , and that c �= 0. Then, since |c| ≥ 1 if c ∈ A \ {0},

|cz+ d| ≥ |cz+ d|% = |c||z|% ≥ |z|%.
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Then, γ (z) ∈ �M implies that |z|% ≥ M|cz + d|2 ≥ M|z|2% so that M−1 ≥ |z|%.
Now, ifM > 1, from |z|% ≥ M we get a contradiction. ��

We set, withM ∈ |C×∞|∩]1,∞[:

DM := DC∞(0,M) \ (Fq +D◦C∞(0,M−1)) ⊂ �.

This is the complementary in P
1,an
Fq
(C∞) of the union of q + 1 disjoint disks and

is an affinoid subset of �. In the following, we can choose M = |θ | 1
2 . It is easy to

see that the group GL2(Fq) acts by homographies on DM (note that more generally,
the subsets {z ∈ C∞ : |z| ≤ qn, |z|% ≥ q−n}, which also are affinoid subsets,
are invariant under the action by homographies of the subgroups of GL2(A) finitely
generated by GL2(Fq) and {( λ θi0 μ ) : λ,μ ∈ F

×
q , i ≤ n}, the union of which is

GL2(A)). Further, if γ ∈ GL2(A), one easily sees that if γ (DM) ∩ DM �= ∅, then
γ ∈ GL2(Fq). It is also easily seen that

� =
⋃

γ∈GL2(A)

γ (DM).

We can apply Proposition 4.6.2 to the isomorphism of affine varieties

GL2(Fq)\A1
C∞

j0−→ A
1
C∞,

where

j0(z) = − (1+ z
q−1)q+1

zq−1

(this is the finite j -invariant of Gekeler in [Gek01]) to obtain an isomorphism of
analytic spaces

GL2(Fq)\DM ∼= DC∞(0, 1).

In parallel, we have the Borel subgroup B = B(A) = {( ∗ ∗0 ∗ )} which acts on �M
and the isomorphism of analytic spaces B\�M ∼= ḊC∞(0, S) induced by the map
expA(z)

−1 (Proposition 4.6.4). We recall from Lemma 4.6.7 that γ ∈ GL2(Fq) is
such that γ (�M) ∩�M �= ∅ if and only if γ is in B.

There is a procedure of gluing two quotient rigid analytic spaces with such
compatibility boundary conditions, into a new rigid analytic space, along with (4.10)
for k = Fq and t = θ . Note that DM ∩ �M = {z ∈ C∞ : |z|% = |z| = M}
and the two actions of B over �M and of GL2(Fq) on DM agree with the action
of B ∩ GL2(Fq) on DM ∩ �M and the gluing of these two quotient spaces is a
well defined analytic space whose underlying topological space is homeomorphic
to the quotient topological space GL2(A)\� which also carries a natural structure
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of analytic space. Additionally, this quotient space is isomorphic to the gluing of
DC∞(0, 1) and C∞ \ D◦

C∞(0, 1) along {z ∈ C∞ : |z| = 1}, which is in turn
isomorphic to C∞. This construction finally yields:

Theorem 4.6.8 There is an isomorphism between the quotient rigid analytic space
GL2(A)\� and the rigid analytic affine line A1,an

C∞ .

4.7 Drinfeld Modular Forms

We give a short synthesis on Drinfeld modular forms for the group � = GL2(A)

in the simplest case where A = Fq [θ ], so that we can prepare the next part of
this paper, where we construct modular forms for � with (vector) values in certain
C∞-Banach algebras.

The map

GL2(K∞)×�→ C
×∞

defined by (γ, z) �→ Jγ (z) = cz + d if γ = ( ∗ ∗c d ) behaves like the classical factor
of automorphy for GL2(R). Indeed we have the cocycle condition:

Jγ δ(z) = Jγ (δ(z))Jδ(z), γ, δ ∈ GL2(K∞).

Note that the image is indeed in C×∞, as z, 1 are K∞-linearly independent if z ∈ �.

Definition 4.7.1 Let f : � → C∞ be an analytic function. We say that f is
modular-like of weight w ∈ Z if for all z ∈ �,

f (γ (z)) = Jγ (z)wf (z), ∀γ ∈ GL2(A).

It is a simple exercise to verify that w is uniquely determined.
We say that a modular-like function of weight w is:

(1) weakly modular (of weight w) if there exists N ∈ Z such that the map z �→
| expA(z)

Nf (z)| is bounded over�M for someM > 1,
(2) a modular form if the map z �→ |f (z)| is bounded over�M for someM > 1.
(3) a cusp form if it is a modular form and maxz∈�M |f (z)| → 0 asM →∞.

Let f be modular like (of weight w ∈ Z). Taking γ = ( 1 a
0 1 ) we see that f (z +

a) = f (z) for all a ∈ A. Therefore, by Proposition 4.6.1, there is a convergent
series expansion of the type

f (z) =
∑

i∈Z
fi expA(z)

i, fi ∈ C∞.
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There is a rigid analytic analogue of Riemann’s principle of removable singularities
due to Bartenwerfer (see [Bar76]) in virtue of which we see that the C∞-vector
spaceM !

w of weak modular forms of weight w embeds in the field of Laurent series
C∞((u)) with the discrete valuation given by the order in u, where u = u(z) is the
uniformiser at infinity

u(z) = 1

π̃ expA(z)
= 1

π̃

∑

a∈A

1

z − a ,

which is an analytic function � → C∞. Since M !
w ∩ M !

w′ = {0} if w �= w′ we
have a C∞-algebraM ! = ⊕wM !

w which also embeds in the field of Laurent series
C∞((u)). Denoting byMw the C∞-vector space of modular forms of weight w and
by M = ⊕wMw the C∞-algebra of modular forms, we also have an embedding
M → C∞[[u]] and cusp forms generate an ideal whose image in C∞[[u]] is
contained in the ideal generated by u.

It is easy to deduce, from the modularity property, that M !
w �= {0} implies q −

1 | w. Furthermore, for all w such that Mw �= {0}, Mw can be embedded via u-
expansions in C∞[[uq−1]] and therefore the C∞-vector space of cusp forms Sw can
be embedded in uq−1C∞[[uq−1]].

4.7.1 u-Expansions

We have seen that we can associate in a unique way to any Drinfeld modular form
f a formal series

∑
i≥0 fiu

i ∈ C∞[[u]] which is analytic in some disk D(0, R),
R ∈ |C×∞|∩]0, 1[. This is the analogue of the ‘Fourier series’ of a complex-valued
modular form for SL2(Z); for such a function f : H → C we deduce, from f (z +
1) = f (z), a Fourier series expansion

f =
∑

i≥0

fiq
i, fi ∈ C,

converging for q = q(z) = e2πiz ∈ D◦
C
(0, 1). We want to introduce some useful

tools for the study of u-expansions of Drinfeld modular forms.

For n ≥ 0 we introduce the C∞-linear map C∞[z] Dn−→ C∞[z] uniquely
determined by

Dn(zm) =
(
m

n

)

zm−n.

Note that we have Leibniz’s formula Dn(fg) = ∑
i+j=n Di (f )Dj (g). The linear

operators Dn extend in a unique way to C∞(z) and further, on the C∞-algebra
of analytic functions over any rational subset of � therefore inducing linear
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endomorphisms of the C∞-algebra of analytic functions � → C∞. Additionally,
if f : � → C∞ is analytic and A-periodic, Dn(f ) has this same property, and for
all n, Dn induces C∞-linear endomorphisms of C∞[[u]] (this last property follows
from the fact that Dn(u) is bounded on �M as one case easily see distributing Dn
on u = 1

π̃

∑
a∈A 1

z−a , which gives (−1)n 1
π̃

∑
a∈A 1

(z−a)n+1 ). We normalise Dn by
setting:

Dn = (−π̃)−nDn.

Lemma 4.7.2 For all n ≥ 0, Dn(K[u]) ⊂ u2K[u].
Proof It suffices to show that for all n ≥ 0, Dn(u) ∈ u2K[u]. We proceed by
induction on n ≥ 0; there is nothing to prove for n = 0. Recall that u(z) = 1

expC(π̃z)
.

Then, by Leibniz’s formula:

0 = Dn(1) = Dn(u expC(π̃z))

= Dn(u) expC(π̃z)+
∑

i+qk=n
k≥0

Di(u)Dqk (expC(π̃z)),

because expC is Fq -linear. In fact, Dqk (expC(π̃z)) is constant and equals the

coefficient of zq
k

in the z-expansion of expC , which is 1
dk

. We can therefore use
induction to conclude that

Dn(u) = −u

⎛

⎜
⎜
⎜
⎝
−

∑

i+qk=n
k≥0

Di(u)d
−1
k

⎞

⎟
⎟
⎟
⎠
∈ u2K[u].

��
The polynomials Gn+1(u) := Dn(u) ∈ K[u] (n ≥ 1) are called the Goss

polynomials (see [Gek88, §3]). It is easy to deduce from the above proof that
Dj(u) = uj+1 as j = 1, . . . , q − 1. There is no general formula currently available
to computeDj(u) for higher values of j .

4.7.1.1 Constructing Drinfeld Modular Forms

The first non-trivial examples of Drinfeld modular forms have been described by
Goss in his Ph. D. Thesis. To begin this subsection, we follow Goss [Gos80b] and
we show how to construct non-zero Eisenstein series by using thatAz+A is strongly
discrete in C∞ if z ∈ �. We set:

Ew(z) =
∑′

a,b∈A

1

(az+ b)w .
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There are many sources where the reader can find a proof of the following lemma
(see for instance [Gek88, (6.3)]), but we prefer to give full details.

Lemma 4.7.3 The series Ew defines a non-zero element ofMw if and only if w > 0
and q − 1 | w.

Proof The above series converges uniformly on every set�M and this already gives
that Ew is analytic over�. The first property, that Ew is modular-like of weight w,
follows from a simple rearrangement of the sum defining Ew(γ (z)) for γ ∈ �
and its (unconditional) convergence, which leaves it invariant by permutation of its
terms. Additionally, it is very easy to see that all terms involved in the sum are
bounded on �M for everyM which, by the ultrametric inequality, implies that Ew
itself is bounded on�M for everyM . It remains to describe when the series are zero
identically, or non-zero.

For the non-vanishing property, we give an explicit evidence why Ew has a
u-expansion in C∞[[u]], and we derive from partial knowledge of its shape the
required property (but we are not able to compute in limpid way the coefficients of
the u-expansion!). First note that

Dn(u) = 1

π̃n+1

∑

b∈A

1

(z− b)n+1 ,

so that we can use the Goss’ polynomials Gn+1(u) = Dn(u) as a ‘model’ to
construct the u-expansion of Ew. Now, observe, for w > 0:

Ew(z) =
∑

b∈A

1

bw
+

∑′

a∈A

∑

b∈A

1

(az+ b)w .

If (q − 1) | w, we note that

∑

b∈A

1

bw
= −

∏

P

(
1− P−w)−1 =: −ζA(w),

where the product runs over the monic irreducible polynomialsP ∈ A and therefore
is non-zero. Then, if (q−1) | w and if A+ denotes the subset of monic polynomials
in A:

Ew(z) = −ζA(w)−
∑

a∈A+

∑

b∈A

1

(az+ b)w

= −ζA(w)− π̃w
∑

a∈A+
Gw(u(az)),

a series which converges uniformly on every affinoid subset of �. Note that for
a ∈ A \ {0}, the function u(az) can be expanded as a formal series ua of u|a|K[[u]]
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(normalise | · | by |θ | = q) locally converging at u = 0 (in a disk of positive radius
r independent of a). This yields the explicit series expansion (convergent for the
u-valuation, or for the sup-norm over the disk D(0, r) in the variable u):

Ew(z) = −ζA(w)− π̃w
∑

a∈A+
Gw(ua). (4.12)

This also shows that Ew is, in this case, not identically zero. Indeed ζA(w) is non-
zero, while the part depending on u in the above expression tends to zero as |z|%
tends to ∞. On the other hand, if (q − 1) � w, the factor of automorphy Jwγ does
not induce a factor of automorphy for the group PGL2(A) defined as the quotient of
GL2(A) by scalar matrices and this implies that any modular form of such weight
w vanishes identically, and so it happens that Ew vanishes in this case. ��
Remark 4.7.4 It is instructive at this point to compare our observations with the
settings of the original, complex-valued Eisenstein series. Indeed, it is well known,
classically, that if w > 2, 2 | w and q = e2πiz:

Ew(z) =
∑′

a,b∈Z

1

(az+ b)w = 2ζ(w)+ 2
(2πi)

w
2

(w2 − 1)!
∑

n≥1

n
w
2 −1qn

1− qn , %(z) > 0.

The analogy is therefore between the series

∑

a∈A+
Gw(ua)

and

∑

n≥1

n
w
2 −1qn

1− qn .

However, it is well known that the latter series can be further expanded as follows,
with σk(n) =∑

d |n dk:

∑

n≥1

σw
2 −1(n)q

n.

For the series
∑
a∈A+ Gw(ua), this aspect is missing, and there is no available

intelligible recipe to compute the coefficients of the u-expansion of Ew directly,
at the moment.
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4.7.2 Construction of Non-trivial Cusp Forms

We have constructed non-trivial modular forms, but they are not cusp forms. We
construct non-zero cusp forms in this section. Let z be an element of �. Then,
� = �z = Az+A is an A-lattice of rank 2 of C∞. By Theorem 4.3.4, we have the
Drinfeld A-module φ := φ� which is of rank 2. Hence, we can write

φθ(Z) = θZ + g̃(z)Zq +  ̃(z)Zq2
, ∀(z, Z) ∈ �× C∞

for functions g̃,  ̃ : �→ C∞.

We consider the function �× C∞
(z,Z) �→E(z,Z)−−−−−−−−→ C∞ which associates to (z, Z)

the value

E(z, Z) := exp�(Z) =
∑

i≥0

αi(z)Z
qi = Z

∏′

λ∈�

(

1− Z
λ

)

(4.13)

at Z of the exponential series exp� associated to the A-lattice � = �z of C∞. It is
an analytic function and we have φa(exp�(Z)) = exp�(aZ) for all a ∈ A.

The following result collects the various functional properties of E(z, Z); proofs
rely on simple computations that we leave to the reader.

Lemma 4.7.5 For all z ∈ �, Z ∈ C∞, γ ∈ � and a ∈ A:

(1) φ�(a)(E(z, Z)) = E(z, aZ),
(2) E(γ (z), Z) = Jγ (z)−1E(z, Jγ (z)Z).
(3) E(z, Z + az+ b) = E(z, Z), for all a, b ∈ A.

Remark 4.7.6 Loosely, we can say that E is a ‘non-commutative modular form of
weight (−1, 1)’. The second formula can be also rewritten as:

E

(

γ (z),
Z

Jγ (z)

)

= Jγ (z)−1
E(z, Z), γ ∈ GL2(A),

so that E functionally plays the role of a Jacobi form of level 1, weight−1 and index
0 (this is in close analogy with the Weierstrass ℘-functions).

By taking the formal logarithmic derivative in the variable Z of the Weierstrass
product expansion of exp�(Z) (for z fixed) we note that

Z

E(z, Z)
= 1−

∑

k≥0
(q−1)|k

Ek(z)Z
k

so that the coefficients in this expansion in powers of Z are analytic functions on�,
from which we deduce, by inversion, that the coefficient functions αi : �→ C∞ of
E are analytic. By Lemma 4.7.3 and the homogeneity of the algebraic expressions
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expressing the functions αi in terms of the Eisenstein series Ek we see that αi ∈
Mqi−1 for all i ≥ 0. As |z|% → ∞ we have Ek(z) → −ζA(k), after a simple
computation we see that

E(z, Z)→ expA(Z)

uniformly for Z ∈ D for every disk D ⊂ C∞. This means that the functions αi are
not cusp forms (the coefficients of expA ∈ K∞[[τ ]] are all non-zero). To construct
cusp forms, we now look at the coefficients g̃,  ̃ of φθ which are functions of the
variable z ∈ �. By (1) and (2) of Lemma 4.7.5, for γ ∈ �, writing now φ�z(θ) in
place of φθ :

φ�γ(z) (θ)(Jγ (z)
−1

E(z, Jγ (z)Z)) = φ�γ(z) (θ)(E(γ (z), Z))
= E(γ (z), θZ)

= Jγ (z)−1
E(z, θJγ (z)Z).

Hence, φ�γ(z) (θ)(Jγ (z)
−1E(z,W)) = Jγ (z)−1E(z, θW) = Jγ (z)−1φ�z(E(z,W))

forW ∈ C∞. Since it is obvious that the coefficient functions g̃,  ̃ are analytic on
�, they are in this way respectively modular-like functions of respective weights
q − 1 and q2 − 1. Furthermore:

Lemma 4.7.7 g̃ ∈ Mq−1 \ Sq−1 and  ̃ ∈ Sq2−1 \ {0}. Additionally,  ̃(z) �= 0 for
all z ∈ �.

Proof The modularity of g̃ and  ̃ follows from the previously noticed fact that
exp�z(Z)→ expA(Z) uniformly with Z in disks as |z|% → ∞. Indeed, this implies

that φθ(Z) → θZ + π̃q−1Zq (uniformly on every disk) so that g̃ → π̃q−1 and
 ̃→ 0 as |z|% → ∞ and we see that g̃ is a modular form of weight q − 1 which is
not a cusp form, and  ̃ is a cusp form.

We still need to prove that  ̃ is not identically zero; to do this, we prove now the
last property of the lemma, which is even stronger. Assume by contradiction that
there exists z ∈ � such that  ̃(z) = 0. Then

φ�z(θ) = θ + g̃(z)τ

which implies that the exponential exp�z induces an isomorphism of A-modules
exp�z : C∞/�z → C(C∞) (the Carlitz module). But this disagrees with
Theorem 4.3.4 which would deliver an isomorphism �z ∼= A between lattices of
different ranks. This proves that  ̃ does not vanish on�. ��

Following Gekeler in [Gek88], we define the modular forms g, of respective
weights q−1 and q2−1 by g̃ = π̃q−1g and  ̃ = π̃q2−1 . The reason for choosing
these normalisations is that it can be proved that the u-expansions of g, have
coefficients inA. We are not far from a complete proof of the following (see [Gek88,
(5.12)] for full details):
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Theorem 4.7.8 M = ⊕w∈ZMw = C∞[g, ]
The proof rests on three crucial properties (1) existence of Eisenstein series (2)

existence of the cusp form  which additionally is nowhere vanishing on �, and
(3) modular forms of weight 0 for � are constant, which follows from the fact that
a modular form of weight 0 can be identified with a holomorphic function over
P

1
Fq
(C∞) by Theorem 4.6.8, which is constant. We omit the details.

4.7.2.1 Drinfeld Modular Forms and the Bruhat-Tits Tree

We briefly sketch the interaction between Drinfeld modular forms and the Bruhat-
Tits tree, mainly inviting the reader, yet in quite an informal way, to read the
important work of Teitelbaum in [Tei91]. A simple computation indicates that if
f is a rigid analytic function over the annulus V = �−1<λ<0Cλ (or on a more
general annulus in�) so that f is defined by a convergent series

∑
i∈Z fizi with the

coefficients fi in C∞, then the residue

ResV (f (z)dz) := f−1

does not depend on the local coordinate chosen to express the differential form
ω = f (z)dz. Namely, if t is another local coordinate and z = z(t) =∑

i>0 zit
i with

zi ∈ C∞ and z1 ∈ C×∞ (with suitable convergence conditions), then the coefficient
of t−1dt in ω(z(t)) = f (z(t))dz(t) = f (z(t)) dz

dt
dt is also equal to f−1, and in

particular, ResV (f dz) does not depend on the choice of the ‘center’ of the annulus.
We consider T e the set of the oriented edges of the Bruhat-Tits tree. The elements

are in one-to-one correspondence with the disjoint subsets of�:

Vn,α := α +
⊔

λ∈]n−1,n[
Cλ, n ∈ Z, α ∈ ⊕i≤n−1Fπ

i.

Note that Vn,α = {z ∈ C∞ : |π |n < |z−α| < |π |n−1}, which is an annulus centered
at elements of K∞ with inner radius |π |n and outer radius |π |n−1, n varying in Z.
Moreover, V = V0,0. If f : � → C∞ is a rigid analytic function, then f is rigid
analytic on every Vn,α and we have a well defined residue map

T e res(f )−−−→ C∞

which is a ‘harmonic function’ in virtue of the ultrametric residue theorem (see
[Ger80, §3]; we do not give full details and definitions of ‘harmonic functions’ etc.,
this would bring us too far away from the objectives of this paper). Of course, we do
not expect the map res(f ) to reproduce faithfully the behaviour of f . For example,
if f is entire over C∞ then all the residues of the differential form f dz are clearly
zero and res(f ) vanishes identically, which might not be the case for f .
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Where the map res(f ) becomes really useful is with rigid analytic functions
f which are determined by more elaborate patching of local data than just entire
functions. Typically, functions defined by globally non uniform convergent series
over�. If f is a Drinfeld modular form, Teitelbaum proved, in a much more general
setting (� arithmetic subgroup of GL2(A)), that a suitable variant of the residue map
provides us with an isomorphism of C∞-vector spaces

Sw(�)→ Char(�,w),

where Sw(�) is the space of Drinfeld cusp forms of weight w for � as defined in
ibid. and generalising our space Sw for � = GL2(A), and where Char(�,w) is the
space of ‘weight w harmonic cocycles’ for �. This map can be defined also over
Mw(�), the space of Drinfeld modular forms of weight w for �. Then, the kernel
is spanned by the Eisenstein series of weight w. For this and other deep properties
such as a homological interpretation of the residue map and an interesting and yet
mysterious analysis of the Fourier series of cusp forms, see the paper [Tei91].

4.8 Eisenstein Series with Values in Banach Algebras

The final purpose of this and the next more advanced sections of the present paper
is to show certain identities for a variant-generalisation of Eisenstein series (see
Theorem 4.9.9). We recall that A = Fq [θ ]. Let B be a C∞-Banach algebra with
sub-multiplicative norm ‖ · ‖6 norm ‖ · ‖ (extending the norm | · | of C∞) with the
property that ‖B‖ = |C∞|. Let X be a rigid analytic variety. We set

OX/B = OX⊗̂C∞B,

with OX the structural sheaf of X, of C∞-algebras. In other words, if U ⊂ X is
an affinoid subset of X, then OX(U) carries the supremum norm ‖ · ‖U and we
define OX/B(U) to be the completion of OX ⊗C∞ B for the norm induced by ‖f ⊗
b‖ = |f |U , for f ∈ OX(U) and b ∈ B. If B has a countable orthonormal basis
B = (bi)i∈I , an element f ∈ OX/B(U) has a convergent series expansion

f =
∑

i∈I
fibi,

where fi ∈ OX(U), with |fi |U → 0 for the Fréchet filter on I.

6That is, ‖ab‖ ≤ ‖a‖‖b‖ for all a, b ∈ B. We adopt the simpler notations ‖ · ‖ and | · | at the place
of | · |∞ etc. that we have used in the first few sections of our text.
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One sees that that Tate’s acyclicity Theorem extends to this setting, namely, if
X is an affinoid variety, OX/B is a sheaf of B-algebras. The global sections are the
analytic functionsX→ B.

We will mainly use the cases X = � and X = A
s,an
C∞ . If X = A

s,an
C∞ , an element

of OX/B is a B-valued entire function of s variables. We can identify it with a map
Cs∞ → B allowing a series expansion in B[[t]] with t = (t1, . . . , ts) converging on
D(0, R)s for all R > 0. A bounded entire function C∞ → B is constant (this is a
generalisation of Liouville’s theorem which uses the hypothesis that ‖B‖ = |C∞|
is not discrete, see [Pel16b]).

We work with B-valued analytic functions where B = K is the completion of
C∞(t) for the Gauss norm ‖ · ‖ = ‖ · ‖∞, where t = (t1, . . . , ts ). We have ‖K‖ =
|C∞| and the residue field is Fac

q (t). In all the following, we consider matrix-valued
analytic functions and we extend norms to matrices in the usual way by taking the
supremum of norms of the entries of a matrix.

We extend the Fq -automorphism τ : C∞ → C∞, x �→ xq , Fq(t)-linearly and
continuously on K. The subfield of the fixed elements Kτ=1 = {x ∈ K : τ (x) = x}
is easily seen to be equal to Fq(t) by a simple variant of Mittag-Leffler theorem. Let
λ1, . . . , λr ∈ C∞ be K∞-linearly independent. This is equivalent to saying that the
A-module

� = Aλ1 + · · · + Aλr ⊂ C∞

is anA-lattice. In this way, the exponential function exp� induces a continuous open
Fq(t)-linear endomorphism of K, the kernel of which contains �⊗Fq Fq(t) (it can
be proved that exp� is surjective over K and the kernel is exactly �⊗Fq Fq(t) but
we do not need this in the present paper). The DrinfeldA-module φ = φ� gives rise
to a structure of Fq(t)nr×n[θ ]-module

φ(Knr×n)

by simply using the Fq(t)-vector space structure of K and defining the multiplica-
tion φθ by θ with the above extension of τ .

We consider an injective Fq -algebra morphism

A
χ−→ Fq(t)

n×n

and we set, with (λ1, . . . , λr ) an A-basis of � (the exponential now applied
coefficientwise):

ω� = exp�

⎛

⎜
⎝(θIn − χ(θ))−1

⎛

⎜
⎝

λ1In
...

λrIn

⎞

⎟
⎠

⎞

⎟
⎠ ∈ K

rn×n.
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Lemma 4.8.1 For all a ∈ Fq(t)[θ ] we have the identity φa(ω�) = χ(a)ω� in
Krn×n.

Proof Since the variables ti are central for τ and Fq(t)[θ ] is euclidean, it suffices to
show that φθ(ω�) = χ(t)ω�. Now observe, for a ∈ A:

φ�(a)(ω�) = exp�((θIn − χ(θ))−1

⎛

⎜
⎝

(aIn − χ(a)+ χ(a))λ1
...

(aIn − χ(a)+ χ(a))λr

⎞

⎟
⎠

= χ(a)ω�,

because (θIn − χ(θ))−1(aIn − χ(a)) ∈ Fq(t)[θ ]n×n so that (θIn − χ(θ))−1(aIn −
χ(a))λi lies in the kernel of exp� (applied coefficientwise). ��

Hence, ω� is a particular instance of special function as defined and studied in
[Ang17, Gaz19]. Note also that the map

�� : Z �→ exp�((θIn − χ(θ))−1Z)

defines an entire function C∞ → Kn×n. An easy variant of the proof of
Lemma 4.8.1 delivers:

Lemma 4.8.2 We have the functional equation τ (��(Z)) = (χ(θ)−θIn)��(Z)+
exp�(Z)In in Kn×n.

We now introduce a ‘twist’ of the logarithmic derivative of exp�. We recall that

A
χ−→ Fq(t)

n×n is an injective Fq -algebra morphism. We introduce the Perkins’
series (introduced in a slightly narrower setting by Perkins in his Ph. D. thesis
[Per13]):

ψ�(Z) :=
∑

a1,...,ar∈A

1

Z − a1λ1 − · · · − arλr (χ(a1), . . . , χ(ar)), Z ∈ C∞

(depending on the choice of the basis of � as well as on the choice of the algebra
morphism χ). The series converges forZ ∈ C∞\� to a functionC∞\�→ Kn×rn.
We have (after elementary rearrangement of the terms):

ψ�(Z − b1λ1 − · · · − brλr ) = ψ�(Z)− (χ(b1), . . . , χ(br )) exp�(Z)
−1, b1, . . . , br ∈ A.

(4.14)

The next proposition explains why we are interested in the Perkins’ series: they can
be viewed as generating series of certain K-vector-valued Eisenstein series that we
introduce below. Determining identities for the Perkins’ series results in determining
identities for such Eisenstein series.
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Proposition 4.8.3 There exists r ∈ |C×∞| such that the following series expansion,
convergent for Z in D(0, r), holds:

ψ�(Z) = −
∑

j≥1
j≡1(q−1)

Zj−1E�(j ;χ),

where for j ≥ 1,

E�(j ;χ) :=
∑′

a1,...,ar∈A

1

(a1λ1 + · · · + arλr )j (χ(a1), . . . , χ(ar)) ∈ K
n×rn.

The series E�(j ;χ) is the Eisenstein series of weight j associated to � and χ .
Note that this is in deep correspondence with the canonical deformations of the
Carlitz module in Tavares Ribeiro’s contribution to this volume, [Tav20, §4.2]. The
reader can make these connections deeper with an accurate analysis on which we
skip here.

Problem 4.8.4 Develop the appropriate generalisation of the theory of harmonic
cocycles of Teitelbaum [Tei91] and construct the residue map along the notion of
K-vector-valued modular form which naturally includes the above Eisenstein series
as in [Pel18].

Proof of Proposition 4.8.3 Since � is strongly discrete, D(0, r) ∩ (� \ {0}) = ∅
for some r �= 0. Then, we can expand, for the coefficients ai not all zero,

1

Z − a1λ1 − · · · − arλr =
−1

a1λ1 + · · · + arλr
∑

i≥0

(
Z

a1λ1 + · · · + arλr
)i
.

The result follows from the fact that E�(j ;χ), which is always convergent for j >
0, vanishes identically for j �≡ 1 (mod q−1) which is easy to check observing that
� = λ� for all λ ∈ F×q , and reindexing the sum defining E�(j ;χ). ��
Lemma 4.8.5 The function F$(Z) := exp�(Z)ψ�(Z) defines an entire function
C∞ → Kn×rn such that, for all λ = a1λ1 + · · · + arλr ∈ �, F$(λ) =
(χ(a1), . . . , χ(ar )) ∈ Fq(t)

n×nr .

Proof This easily follows from the fact thatψ� converges at Z = 0, and (4.14). ��
The function ψ� is intimately related to the exponential exp� by means of the

following result, where exp� on the right is the unique continuous map Kn×n →
Kn×n which induces a Fq(t)

n×n[θ ]-module morphism Kn×n → φ�(K
n×n).

Lemma 4.8.6 We have the identity of entire functions C∞ → Kn×n of the
variable Z:

exp�(Z)ψ�(Z)ω� = exp�((θIn − χ(θ))−1Z).
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Proof By Lemma 4.8.5, the function

F(Z) := F$(Z) · ω� : C∞ → K
n×n

is an entire function such that

F(λ) = (χ(a1), . . . , χ(ar ))ω� ∈ K
n×n, ∀λ = a1λ1 + · · · + arλr ∈ �.

We set

G(Z) = exp�((θIn − χ(θ))−1Z).

Let λ = a1λ1 + · · · + arλr ∈ �. We have, by Lemma 4.8.1,

G(λ) = exp�((θIn − χ(θ))−1((a1In − χ(a1)+ χ(a1))λ1 + · · · + (ar In − χ(ar )+ χ(ar ))λr)
= (χ(a1), . . . , χ(ar ))ω�.

Hence, the entire functions F,G agree on �. The function F − G is an entire
function C∞ → Kn×n which vanishes over�. Hence,

H(Z) = F(Z)−G(Z)
exp�(Z)

defines an entire function over C∞. Now, it is easy to see that

lim|Z|→∞‖H(Z)‖ = 0.

Since the valuation group of K is dense in R×, the appropriate generalisation of
Liouville’s theorem [Pel16b, Proposition 8] for entire functions holds in our settings
and H = 0 identically. ��
Remark 4.8.7 More generally, we can study A-module maps

�
χ−→ K

n×n

with bounded image (theA-module structure on Kn×n being induced by an injective
algebra homomorphismA ↪→ Fq(t) ↪→ Kn×n) and Perkins’ series

ψ�(n;χ) :=
∑

λ∈�

χ(λ)

(Z − λ)n .

Lemma 4.8.6 delivers an identity for ψ� in terms of certain analytic functions
of the variable Z which are explicitly computable in terms of exp�. To see this,
observe that the K-algebra of analytic functions D(0, r) → K is stable by the
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K-linear divided higher derivatives DZ,n defined by DZ,n(Zm) =
(
m
n

)
Zm−n. In

particular, DZ,n(ψ�) is well defined for any n > 0. We write f (k) for τ k(f ),
f ∈ K or for f more generally a Kr×s-valued map for arbitrary integers r, s. If
f = ∑

i≥0 fiZ
i is an analytic function over a disk D(0, r) in the variable Z, then

f (k) =∑
i≥0 τ (fi)Z

qki is again analytic if k ≥ 0. Observe that in particular,

ψ�(Z)
(k) = Dqk−1(ψ�(Z)), k ≥ 0.

Lemma 4.8.6 implies

ψ�(Z)ω� = H(Z) := exp�(Z)
−1 exp�((θIn − χ(θ))−1Z),

and we note that on the right we have an analytic function D(0, r) → Kn×n for
some r ∈ |C×∞|. Applying Dqk−1 on both sides of this identity and observing that
ω� does not depend on Z, we deduce:

ψ�(Z)
(k)ω� = Dqk−1(H)(Z), k ≥ 0.

Now, since the functionψ�(Z)(k) is in fact an analytic function of the variable Zq
k
,

this is also true for the function Dqk−1(H)(Z) so that

Hk(Z) = (Dqk−1(H)(Z))(−k), k ≥ 0

are all analytic functions D(0, r) → K
n×n (note that H0 = H). We introduce the

matrices

�� = (ω�,ω(−1)
� , . . . , ω

(1−r)
� ) ∈ K

rn×rn, H�(Z) = (H0, . . . ,Hr−1),

where the latter is an n× rn-matrix of analytic functionsD(0, r)→ K. Then,

ψ�(Z)�� =H�(Z).

But a simple variant of the Wronskian lemma (see [Pel08, §4.2.3]) implies that ��
is invertible. We have reached:

Theorem 4.8.8 The identity ψ�(Z) = H�(Z)�
−1
� holds, for functions locally

analytic at Z = 0.

The identity of the previous theorem connects the ‘twisted logarithmic derivative’
ψ�(Z) to the inverse Frobenius twists of the divided higher derivatives of the
mysterious function H, which are certainly not always easy to compute, unless
r = 1, where there is no higher derivative to compute at all. If we set, additionally,
χ = χt where χt(a) = a(t) so that n = 1, then we reach a known identity, which
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was first discovered by R. Perkins in [54] (that we copy below adapting it to our
notations):

expA(Z)ω(t)
∑

a∈A

a(t)

Z − a = expA

(
Z

θ − t
)

,

with ω Anderson-Thakur’s function and expA(Z) = Z
∏′

a∈A(1 −
Z
a
). This

formula is expressed in [Pel16b, Theorem 1] in a slightly different manner by
using Papanikolas’ deformation of the Carlitz logarithm. Note that these references
also contain other types of generalisation. The above formula can be viewed as an
analogue of [Kat91, Lemma 1.3.21] (the analogy can be pursued further). We owe
this remark to Lance Gurney that we thankfully acknowledge.

Problem 4.8.9 This should be considered as a starting point for an extension of
Kato’s arguments related to the connection between the zeta-values phenomenology
and Iwasawa’s theory appearing in [Kat91]. One may ask how far a parallel with
Kato’s viewpoint can go.

4.9 Modular Forms with Values in Banach Algebras

In this section, more technical than the previous ones, we suppose thatB is a Banach
C∞-algebra with norm ‖·‖ such that ‖B‖ = |C∞| and we suppose that it is endowed
with a countable orthonormal basis B = (bi)i∈I . The example on which we are
focusing here is that of B = K, the completion of the field Ĉ∞(t) for the Gauss
valuation ‖ · ‖. Any basis of Fac

q (t) as a vector space over Fac
q is easily seen to be

an orthonormal basis of K. We recall that we have considered, in Sect. 4.8, a notion
of B-valued analytic function. The main purpose of this section is to show, through
some examples, that if N > 1, there is a generalisation

�→ K
N×1

of Drinfeld modular form which cannot by studied by using just ’scalar’ Drinfeld
modular forms.

We consider a representation

ρ : �→ GLN(Fq(t)) ⊂ GLN(K).

Definition 4.9.1 Let f : � → KN×1 be an analytic function. We say that f is
modular-like (for ρ) of weight w ∈ Z if for all γ ∈ GL2(A),

f (γ (z)) = Jγ (z)wρ(γ )f (z), γ ∈ GL2(A).
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We say that a modular-like function of weight w is:

(1) weakly modular (of weight w) if there exists L ∈ Z such that the map z �→
‖ expA(z)

Lf (z)‖ is bounded over�M for someM > 1,
(2) a modular form if the map z �→ ‖f (z)‖ is bounded over�M for someM > 1.
(3) a cusp form if it is a modular form and maxz∈�M ‖f (z)‖ → 0 asM →∞.

We denote by M !
w(ρ),Mw(ρ), Sw(ρ) the K-vector spaces of weak modular,

modular, and cusp forms of weight w for ρ. Note that these notations are loose, in
the sense that these vector spaces strongly depend of the choice of K (in particular,
of the variables t = (ti)).

We now describe a very classical example withN = 1 andB = C∞ (no variables
t at all). If ρ : � → C

×∞ is a representation, there exists m ∈ Z/(q − 1)Z unique,
such that ρ(γ ) = det(γ )−m for all γ . We write

ρ = det−m

(note that this is well defined). Gekeler constructed a cusp form h ∈ Sq+1(det−1) \
{0}; see [Gek88, (5.9)]. The first few terms of its u-expansion in C∞ can be
computed explicitly by various methods (including the explicit formulas (4.16) and
(4.17) below):

h(z) = −u(1+ u(q−1)2 + · · · ). (4.15)

We deduce that hq−1 −1 is a Drinfeld modular form of weight zero which is
constant by Theorem 4.7.8. The factor of proportionality is easily seen to be −1:
 = −hq−1.

The computation in (4.15) can be pushed to coefficients of higher powers of the
uniformiser u by using two formulas that we describe here. The first formula is due
to López [Lop10]. We have the convergent series expansion (in both K[[u]] for the
u-adic metric and in D(0, r) for some r ∈ |C∞|∩]0, 1[ for the norm of the uniform
convergence)

h = −
∑

a∈A
monic

aqua ∈ A[[u]]. (4.16)

The second formula is due to Gekeler [Gek85] and is an analogue of Jacobi’s
product formula

 = q
∏

n≥0

(1− qn)24 ∈ qZ[[q]]
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for the classical complex-valued normalised discriminant cusp form  (we have
an unfortunate and unavoidable conflict of notation here!). Gekeler’s formula is the
following u-convergent product expansion:

h = −u
∏

a∈A
monic

(

u|a|Ca
(

1

u

))q2−1

∈ A[[u]], (4.17)

with Ca the multiplication by a for the Carlitz module structure. Note that
(u|a|Ca( 1

u
))q

2−1 ∈ 1+K[[u]] and the u-valuation of

(
u|a|Ca(u−1)

)q2−1 − 1

goes to infinity as a runs in A \ {0}. One deduces, from Gekeler’s result [Gek88,
Theorem (5.13)], that Mw(det−m) = hmMw−m0(q+1) if m0 = m ∩ {0, . . . , q − 2}
(m is a class modulo q − 1).

4.9.1 Weak Modular Forms of Weight −1

We analyse another class of representations, this time in higher dimension and we
construct a new kind of modular form associated to it. Let

A
χ−→ Fq(t)

n×n

be an injective Fq -algebra morphism. Then, the map

ρχ : �→ GL2n(Fq(t)) ⊂ GL2n(K)

defined by

ρχ

(
a b

c d

)

=
(
χ(a) χ(b)

χ(c) χ(d)

)

is a representation of �. We denote by ρ∗χ the contragredient representation

ρ∗χ = t ρ−1
χ .

We shall study the case ρ = ρχ or ρ∗χ . We also set N = 2n.
We construct weak modular forms of weight−1 associated to the representations

ρχ ; the main result is Theorem 4.9.3 where we show that a certain matrix function
defined in (4.19) has its columns which are weak modular forms of weight −1. We
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think that this construction is interesting because there seems to be no analogue of
it in the settings of complex-vector-valued modular forms for SL2(Z).

Before going on, we need the next lemma, where we give a uniform bound for
the valuations of the coefficients of the u-expansions

∑
m≥0 ci,mu

m of the modular
forms αi appearing in (4.13).

Lemma 4.9.2 There exists a constant C > 0 such that for all i,m ≥ 0,

|ci,m| ≤ q−iqi |π̃ |qi−1Cm.

Proof This is [Pel14, Lemma 2.1]. Although the statement presented in this
reference is correct, there is a typographical problem in (2.17) so that, to avoid
confusion, we give full details here. We set without loss of generality |θ | = q . We
recall ([Pel14, (2.14)]) that

αi = 1

θq
i − θ (g̃α

q
i−1 +  ̃αq

2

i−2), i > 0,

with the initial values α0 = 1 and α−1 = 0. Now, writing additionally the u-
expansions:

g̃ =
∑

i≥0

γ̃iu
i ,  ̃ =

∑

i≥0

δ̃iu
i,

we find (as in ibid.)

ci,m = 1

θq
i − θ

⎛

⎝
∑

j+qk=m
γ̃j c

q
i−1,k +

∑

j ′+q2k′=m
δ̃j ′c

q2

i−2,k′

⎞

⎠ , i > 0, m ≥ 0

with the initial values ci,0 = π̃q
i−1

di
and c−1,m = 0. Clearly, we can choose C > 0

such that |̃δj | ≤ Cj and |γ̃j | ≤ Cj |π̃q−1| for all j ≥ 0, and additionally, we
can suppose that the inequality of the Lemma is true for |ci,m| with i = 0, 1. We
now prove the inequality by induction over i. Indeed, note that if j + qk = m,
then, by induction hypothesis, |γ̃j cqi−1,k| ≤ Cjq−(i−1)qi−1qCkq |π̃ |qi−q |π̃ |q−1 ≤
Cmq−(i−1)qi |π̃ |qi−1 and similarly, if j + q2k = m, then we have |̃δj cq

2

i−2,k| ≤
Cmq−(i−2)qi |π̃ |qi−2−1, and the inequality follows. ��

We write ϑ = χ(θ). If we set

W = (θIn − ϑ)−1 ∈ GLn(K),
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we have that for all a ∈ A:

(χ(a)− aIn)W ∈ Fq(t%)[θ ]n×n. (4.18)

Now, we consider, for χ and W as in (4.18), the matrix function Q(z) = (
zW
W

)
,

which is a holomorphic function � → KN×n. We observe that if γ = ( a bc d ) ∈ �,
then

Q(γ (z)) = Jγ (z)−1
(
(az+ b)W
(cz+ d)W

)

≡ Jγ (z)−1ρχ (γ )Q(z) (mod �N×nz ).

Hence, if we set

F(z) := E(z,Q(z)), (4.19)

then, by the fact that �z ⊗ Fq(t) is contained in the kernel of exp�z ,

F(γ (z)) = Jγ (z)−1
E(z, Jγ (z)Jγ (z)

−1ρχ (γ )Q(z)) = Jγ (z)−1ρχ (γ )F(z), ∀γ ∈ �.

This means that the function F : �→ KN×n is modular-like of weight −1 for ρχ .
We are going to describe this function F in more detail.

Theorem 4.9.3 We have F ∈ M !−1(ρχ )
1×n.

Proof We set eC(z) = expC(π̃z) so that u(z) = 1
eC(z)

. Lemma 4.8.2 implies:

τ (eC(W)) = (ϑ − θIn)eC(W), τ (eC(zW)) = (ϑ − θIn)eC(zW)+ eC(z).

The subset W ⊂ R>0 of the r ∈ |C∞| such that the elements |d−1
i r

qi | are all
distinct for i ≥ 0 is dense in R>0. Let z ∈ C∞ be such that r = |π̃z| ∈W . Then:

|eC(z)| = max
i
{q−iqi |π̃ |qi |z|qi }.

We write F = (F1
F2

)
with Fi : �→ Kn×n. We first look at the matrix function

F1 = exp�(zW) =
∑

i≥0

αi(z)z
qi τ i(W).

We suppose that |u(z)| < 1
B

with B as in Lemma 4.9.2. Then

F1 =
∑

i≥0

zq
i

τ i(W)
∑

j≥0

ci,j u
j
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so that if ‖zWπ̃‖ = r ∈W with |u| < 1
B

, then

‖F1‖ = max
i,j
{|z|qi q−iqi |π̃ |qi−1(C|u|

︸︷︷︸
<1

)j }

= ‖ expC(π̃zW)‖
= ‖eC(z/θ)‖,

and F1
eC(z/θ)

− π̃−1In is bounded as |z|% is bounded from below.
We now look at the matrix function F2 = e�(W). Since F2 =∑
i≥0 αi(z)τ

i(W), for |u| < 1
B

we get in a similar way that F2 − π̃−1eC(W)

goes to zero as |z|% → ∞. Hence, the n columns of the matrix function F, which
are modular-like of weight −1 are weak modular forms ofM !

−1(ρχ). ��
We set

F = (F, τ (F)) =
(
F1 τ (F1)

F2 τ (F2)

)

.

Then, F is an analytic function � → KN×N and the first n columns are weak
modular forms of weight −1, while the last n columns are weak modular forms of
weight −q (for the representation ρχ ).

Lemma 4.9.4 We have the difference equation τ (F) = F� where

� =
(

0  ̃−1(χ(θ)− θIn)
1 − ̃−1g̃In

)

.

Proof For any choice of n,m > 0, we extend the function E(z, Z) of Lemma 4.7.5
to

�×K
n×m E−→ K

n×m

by setting E(z, Z) = ∑
i≥0 αi(z)τ

i(Z) (so τ acts diagonally). Lemma 4.7.5 holds
in this generalised setting, where the Drinfeld modules φ� now acts on Kn×m (case
of � = �z). The present statement follows from (1) of Lemma 4.7.5 with a = θ
in a manner which is sensibly similar to that of [Pel14, Theorem 1.3]. Indeed, note
that, with φ�(θ) = θ + g̃τ +  ̃τ 2, we have φ�(θ)(F)− χ(θ)F = 0. ��
Lemma 4.9.5 We have that supz∈�M ‖F− XYZ‖ → 0 asM →∞, where

X =
(
In 0
0 eC(W)

)

, Y =
(
eC(zW) τ(eC(zW))

In ϑ − θIn
)

, Z =
(
π̃−1In 0

0 π̃−qIn

)

.
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Proof We observe (recall that ϑ = χ(θ)):

XYZ =
(
π̃−1eC(zW) π̃

−q((ϑ − θIn)eC(zW)+ e0In)

π̃−1eC(W) π̃−q (ϑ − θIn)eC(W)
)

.

Since the second block column of F is the image by τ of the first block column, all

we need to show is that supz∈�M ‖F−
(π̃−1eC(zW)

π̃−1eC(W)

)‖ → 0 asM →∞. We note that

F1 = e�(zW) = π̃−1eC(zW)+
∑

i≥0

zq
i

τ i (W)
∑

j>0

ci,j u
j

︸ ︷︷ ︸
=:ϒ

.

We show that ‖ϒ‖ tends to zero when |z|% → ∞. We suppose that |z|% is large so
that |u|C < 1. then, the double series defining ϒ is convergent and we can write

ϒ =
∑

j>0

∑

i≥0

ujci,j z
qi τ i(W).

The general term of this series, ϒi,j := uj ci,j zqi τ i(W), has absolute value which
satisfies:

‖ϒi,j ‖ ≤ q−iqi |π̃ |qi−1(|u|C)j |z|qi‖W‖qi

≤ |u|Cmax
i
{|z|qi‖W‖qi |π̃ |qi−1}

≤ |π̃ |−1C

∣
∣
∣
∣
eC(z/θ)

eC(z)

∣
∣
∣
∣

and tends to zero as |z|% → ∞. In a similar way, one proves that ‖F2− π̃−1eC(W)‖
tends to zero in the same way, we leave the details to the reader. ��
Lemma 4.9.6 We have ‖ det(F) − (−1)neC(z)nπ̃−n(q+1) det(eC(W))‖ → 0 as
|z|% → ∞, and det(eC(W)) is non-zero.

Proof The formula follows directly from the expression for XYZ . The non-
vanishing of det(eC(W)) is easy to show. ��

This result implies that the columns of F are linearly independent. More-
over, it is plain that supz∈�M ‖ det(F−1) − (−1)nunπ̃ (q+1)n det(eC(W))−1‖ →
0 as M → ∞. Since at once the scalar function F = det(F−1) satisfies
F(γ (z)) = Jγ (z)

n(q+1) det(γ )−nF (z) for all z ∈ � and γ ∈ �, we get F ∈
Mn(q+1)(det−n)⊗C∞ K. Now, Fh−n is a modular form of weight 0, therefore equal
to an element of K×. We obtain:
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Corollary 4.9.7 We have det(F−1) = (−1)nπ̃−(q+1)nhn det(eC(W))−1 and, writ-
ing H := tF−1 = (H1,H2) with Hi : � → Kn×n, we have that the n columns of
H1 are linearly independent modular forms of weight 1 and the n columns of H2 are
linearly independent modular forms of weight q for the representation ρ∗χ .

What can be further proved is, by setting

M(ρ∗χ ) =
⊕

w

Mw(ρ
∗
χ )

the weight-graded (M ⊗C∞ K)-module of modular forms for ρ∗χ , where M =⊕
w Mw(1) is the C∞-algebra of scalar modular forms (1 is the trivial represen-

tation):

Theorem 4.9.8 M(ρ∗χ) = (M ⊗C∞ K)1×NH.

We will not give the details of the deduction of the proof of this theorem from
Corollary 4.9.7, since it rests on an easy generalisation and modification of [Pel18,
Theorem 3.9]. Instead of this, we insist on the result of Gekeler [Gek88, Theorem
(5.13)], which implies that

Mw(det−m) = Mw−m(q+1)h
m, m ≤ q − 1

with h the Poincaré series of weight q + 1 and ’type 1’ defined in ibid. (5.11) (with
u-expansion (4.15)) so that, withM(det−m) = ⊕wMw(det−m),

M(det−m) = Mhm.

In view of this, we can think about H (up to normalisation) as to a matrix-valued
generalisation of the Poincaré series h.

4.9.2 Jacobi-Like Forms

We consider the series

�(z,Z) := ψ�z(Z) =
∑

a,b∈A

1

Z − az− b (χ(a), χ(b)),

converging for Z ∈ C∞ \ � where � = �z = Az + A, z ∈ �. We have the
following functional identities

�

(

γ (z),
Z

Jγ (z)

)

= Jγ (z)�(z,Z)ρ(γ )−1, γ ∈ �,
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together with the identities arising from (4.14). Proposition 4.8.3 implies that, for
Z ∈ D(0, r) for some r ∈ |C∞|∩]0, 1[,

t�(z, Z) = −
∑

j>0
j≡1(q−1)

Zj−1E(j ;χ)

where E(j ;χ) is the Eisenstein series (non-vanishing if j ≡ 1 (mod q − 1))

E(j ;χ) :=
∑′

a,b∈A

1

(az+ b)j
(
χ(a)

χ(b)

)

,

which satisfies

E(j ;χ)(γ (z)) = Jγ (z)jρ∗χ (γ )E(j ;χ), γ ∈ �, z ∈ �.

Since it is also apparent that ‖E(j ;χ)(z)‖ is bounded on�M forM > 1 and j > 0,
we deduce that the n columns of E(j ;χ) are modular forms of weight j for ρ∗χ in the
sense of Definition 4.9.1 (see [Pel18, §3.2.1] for a special case). By Theorem 4.8.8
we obtain

�(z,Z) = [H(Z),Dq−1(H)(Z)(−1)]��(z)−1 (4.20)

which allows to explicitly compute the Eisenstein series E(j ;χ) in terms of the
function H(Z). To make this interesting relation a little bit more transparent, we
give below an explicit expression of the matrix ��(z)

−1. We have:

��(z)
−1 =

(
0 1
1 0

)

τ−1(�)F−1 =
⎛

⎝1 −
(
g̃

 ̃

) 1
q

0 (χ(θ)− θ 1
q ) ̃

− 1
q

⎞

⎠F−1, (4.21)

with � the matrix defined in Lemma 4.9.4. To see this, observe that in the notation
of Theorem 4.8.8,

��(z) = (F, τ−1(F)) = τ−1(F)

(
0 1
1 0

)

,

with � = �z as above. By Lemma 4.9.4, τ (F) = F� , so that τ−1(F) =
F(τ−1(�))−1 which yields

�� = τ−1(F)

(
0 1
1 0

)

= F

(
0 1
1 0

)(
0 1
1 0

)

(τ−1(�))−1
(

0 1
1 0

)

,

which implies (4.21) by the (licit) inversion of the two sides.
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Substituting in (4.20) and transposing, we get:

−
∑

j≥1
j≡1(q−1)

E(j;χ)Zj−1 = H

⎛

⎝
1 0

−
(
g̃

 ̃

) 1
q
 ̃
− 1
q (tχ(θ)− θ 1

q )

⎞

⎠

(
tH(Z)

Dq−1(
tH)(Z)(−1)

)

.

For example, the Eisenstein series of weight one E(1;χ) arises as the coefficient of
Z0 in the left-hand side and the above yields an explicit formula for it. Note that the
constant term of the Z-expansion of t [H(Z),Dq−1(H)(Z)(−1)] is

t [(θIn − χ(θ))−1, α1(z)
1
q ((θIn − χ(θ))−1 − (θ 1

q In − χ(θ))−1)].

The formula that we get is this one:

−E1(1;χ) = H

⎛

⎝
1 0

−
(
g̃

 ̃

) 1
q
 ̃
− 1
q (t χ(θ)− θ 1

q )

⎞

⎠

(
t (θIn − χ(θ))−1

α1(z)
1
q t ((θIn − χ(θ))−1 − (θ 1

q In − χ(θ))−1)

)

,

and what looks as a miracle at first sight is that it greatly simplifies, by using the
explicit computation of α1 which arises from [Pel14, (2.14)], and which is α1 =
g̃

θq−θ , we reach the following:

Theorem 4.9.9 The following identity holds

E1(1;χ) = −H
(t (θIn − χ(θ))−1

0n

)

,

involvingN × n matrices whose columns are modular forms of weight 1.

In fact, this is not a miracle; it is just due to the fact that the left-hand side must be
bounded at the infinity; this is only possible if the second matrix entry of the column
above is identically zero, because it is anyway a multiple by a constant matrix of the
weak modular form g̃/ ̃ (this somewhat forces α1 to be equal to the above multiple
of g̃, giving this artificial impression of miraculous simplification). It is easy from
here to deduce [Pel12, Theorem 8] in the special case of N = 2, n = 1 and χ = χt .
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Chapter 5
Berkovich Curves and Schottky
Uniformization I: The Berkovich
Affine Line

Jérôme Poineau and Daniele Turchetti

Abstract This is the first part of a survey on the theory of non-Archimedean curves
and Schottky uniformization from the point of view of Berkovich geometry. This
text is of an introductory nature and aims at giving a general idea of the theory of
Berkovich spaces by focusing on the case of the affine line. We define the Berkovich
affine line and present its main properties, with many details: classification of points,
path-connectedness, metric structure, variation of rational functions, etc. Contrary to
many other introductory texts, we do not assume that the base field is algebraically
closed.

5.1 Introduction

The purpose of the present notes is to provide an introduction to non-Archimedean
analytic geometry from the perspective of uniformization of curves. The main
characters of this compelling story are analytic curves over a non-Archimedean
complete valued field (k, | · |), and Schottky groups. The main difficulty in establish-
ing a theory of non-Archimedean analytic spaces over k is that the natural topology
induced over k by the absolute value | · | gives rise to totally disconnected spaces,
that are therefore not suitable for defining analytic notions, such as that of a function
locally expandable in power series.

However, in the late 1950s, J. Tate managed to develop the basics of such a theory
(see [Tat71]), and christened the resulting spaces under the name rigid analytic
spaces. To bypass the difficulty mentioned above, those spaces are not defined as
usual topological spaces, but as spaces endowed with a so-called Grothendieck
topology: some open subsets and some coverings are declared admissible and are
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the only ones that may be used to define local notions. For instance, one may define
an analytic function by prescribing its restrictions to the members of an admissible
covering. We refer to [Pel20, Sect. 5.1] in this volume for a short introduction to
rigid analytic spaces.

Towards the end of the 1980s, V. Berkovich provided another definition of
non-Archimedean analytic spaces. One of the advantages of his approach is that
the resulting spaces are true topological spaces, endowed with a topology that
makes them especially nice: they are Hausdorff, locally compact, and locally path-
connected. This is the theory that we will use.

In the present text, which forms the first part of the survey, we introduce
the Berkovich affine line over a non-Archimedean valued field k and study its
properties. Contrary to several introductory texts, we do not assume that k is
algebraically closed. The text is meant to be completely introductory, includes many
details, and could be read by an undergraduate student with a minimal knowledge
of abstract algebra and valuation theory. We develop the theory of the Berkovich
affine line A

1,an
k over k starting from scratch: definition (Sect. 5.2), classification of

points with several examples (Sect. 5.3), basic topological properties, such as local
compactness or a description of bases of neighborhoods of points (Sect. 5.4), and
definition of analytic functions (Sect. 5.5). We then move to more subtle aspects
of the theory such as extensions of scalars, including a proof that the Berkovich
affine line over k is the quotient of the Berkovich affine line over k̂a (the completion
of an algebraic closure of k) by the absolute Galois group of k (Sect. 5.6) and
connectedness properties, culminating with the tree structure of A1,an

k (Sect. 5.7).

We finally investigate even finer aspects of A
1,an
k by considering virtual discs

and annuli, and their retractions onto points and intervals respectively (Sect. 5.8),
defining canonical lengths of intervals inside A

1,an
k (Sect. 5.9), and ending with

results on variations of rational functions, which are the very first steps of potential
theory (Sect. 5.10).

The second part [PT20] of the survey, which is more advanced, contains a review
of the theory of Berkovich analytic curves and a treatment of uniformization in
this setting, as well as references to further developments and applications in the
literature.

Notation Let (�, | · |) be a non-Archimedean valued field.
We set �◦ := {a ∈ � : |a| � 1}. It is a subring of � with maximal ideal

�◦◦ := {a ∈ � : |a| < 1}. We denote the quotient by �̃ and call it the residue
field of �.

We set |�×| := {|a|, a ∈ �×}. It is a multiplicative subgroup of R>0 that we
call the value group of �. We denote its divisible closure by |�×|Q. It is naturally
endowed with a structure of Q-vector space.

Once and for all the paper, we fix a non-Archimedean complete valued field
(k, | · |), a separable closure ks of k and the corresponding algebraic closure ka . The
absolute value | · | on k extends uniquely to an absolute value on ka , thanks to the
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fact that it extends uniquely to any given finite extension.1 We denote by k̂a the
completion of ka: it is algebraically closed and coincides with the completion k̂s

of ks . We still denote by | · | the induced absolute value on k̂a . We have |k̂a×| =
|k×|Q.

The first object we introduce in our exposition of non-Archimedean analytic
geometry is the Berkovich affine line. This is already an excellent source of
knowledge of properties of Berkovich curves, such as local path-connectedness,
local compactness, classification of points, and behaviour under base change. Other
properties, such as global contractibility, do not generalize, but will be useful later
to study curves that “locally look like the affine line” (see [PT20, Section 2.1]).

Our main reference for this section is V. Berkovich’s foundational book [Ber90].
We have also borrowed regularly from A. Ducros’s thorough manuscript [Duc].

5.2 The Underlying Set

Definition 5.2.1 The Berkovich affine line A
1,an
k is the set of multiplicative semi-

norms on k[T ] that induce the given absolute value | · | on k.

In more concrete terms, a point of A1,an
k is a map | · |x : k[T ] → R+ satisfying

the following properties:

(i) ∀P,Q ∈ k[T ], |P +Q|x � max(|P |x, |Q|x);
(ii) ∀P,Q ∈ k[T ], |PQ|x = |P |x |Q|x ;

(iii) ∀α ∈ k, |α|x = |α|.
With a slight abuse of notation, we set

ker(| · |x) := {P ∈ k[T ] : |P |x = 0}.

It follows from the multiplicativity of | · |x that ker(| · |x) is a prime ideal of k[T ].
In the following, we often denote a point of A

1,an
k by x and by | · |x the

corresponding seminorm. This is purely for psychological and notational comfort
since x and | · |x are really the same thing.

Example 5.2.2 Each element α of k gives rise to a point of A1,an
k via the seminorm

| · |α : P ∈ k[T ] �−→ |P(α)| ∈ R+.

We denote it by α again. Such a point is called a k-rational point of A1,an
k .

1The reader can find a proof of this classical result in many textbooks, for example in [Cas86,
Chapter 7].
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Note that, conversely, the element α may be recovered from | · |α since
ker(| · |α) = (T − α). It follows that the construction provides an injection
k ↪→ A

1,an
k .

Example 5.2.3 The construction of the previous example still makes sense if we
start with a point α ∈ ka and consider the seminorm

| · |α : P ∈ k[T ] �−→ |P(α)| ∈ R+.

Such a point is called a rigid point of A1,an
k .

However, it is no longer possible to recover α from | · |α in general. Indeed, in
this case, we have ker(| · |a) = (μα), where μα denotes the minimal polynomial
of α over k and, if σ is a k-linear automorphism of ka , then, by uniqueness of the
extension of the absolute value, we get | · |σ(α) = |· |α . One can check that we obtain
an injection ka/Aut(ka/k) ↪→ A

1,an
k .

Readers familiar with scheme theory will notice that the rigid points of A1,an
k

correspond exactly to the closed points of the schematic affine line A1
k . However the

Berkovich affine line contains many more points, as the following examples show.

Example 5.2.4 Each element α of k̂a gives rise to a point of A1,an
k via the seminorm

| · |α : P ∈ k[T ] �−→ |P(α)| ∈ R+.

This is similar to the construction of rigid points but, if α is transcendental over k,
then we have ker(| · |α) = (0) (i.e. | · |α is an absolute value) and the set of
elements α′ in k̂a such that | · |α′ = | · |α is infinite.

There also are examples of a different nature: points that look like “generic
points” of discs.

Lemma 5.2.5 Let α ∈ k and r ∈ R>0. The map

| · |α,r : k[T ] −→ R�0∑
i�0 ai(T − α)i �−→ maxi�0(|ai|ri)

is an absolute value on k[T ].
For α, β ∈ k and r, s ∈ R>0, we have | · |α,r = |· |β,s if, and only if, |α − β| � r

and r = s.
Proof It is easy to check that | · |α,r is a norm. It remains to prove that it is
multiplicative.

Let P = ∑
i�0 aiT

i and Q = ∑
j�0 bjT

j . We may assume that PQ �= 0. Let

i0 be the minimal index such that |ai0|ri0 = |P |r and j0 be the minimal index such
that |bj0 |rj0 = |Q|r .
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For � ∈ N, the coefficient of degree � in PQ is

c� :=
∑

i+j=�
aibj ,

hence we have

|c�|r� � max
i+j=�(|ai |r

i |aj |rj ) � |P |r |Q|r .

For � = �0 := i0 + j0, we find

c�0 = ai0bj0 +
∑

i+j=�0
(i,j) �=(i0,j0)

aibj .

For each (i, j) �= (i0, j0) with i + j = �0, we must have i < i0 or j < j0,
hence |ai |ri < |P |r or |bj |rj < |Q|r and, in any case, |aibj |r�0 < |P |r |Q|r . We
now deduce from the equality case in the non-Archimedean triangle inequality that
|c�0|r�0 = |P |r |Q|r . The result follows.

Let α, β ∈ k and r, s ∈ R>0. Assume that we have | · |α,r = |· |β,s . Applying the
equality to T − α and T − β, we get

r = max(|α − β|, s) and max(|α − β|, r) = s.

We deduce that r = s and |α − β| � r , as claimed.
Conversely, assume that we have r = s and |α − β| � r . Arguing by symmetry,

it it enough to prove that, for each P ∈ k[T ], we have |P |β,r � |P |α,r . Let P =∑
i�0 ai(T − α)i ∈ k[T ]. We have

|T − α|β,r = max(|α − β|, r) = r

and, since | · |β,r is multiplicative, |(T − α)i |β,r = ri for each i � 0. Applying the
non-Archimedean triangle inequality, we now get

|P |β,r � max
i�0
(|ai|ri) = |P |α,r .

The result follows. ��
Example 5.2.6 Let α ∈ k and r ∈ R>0. The map

| · |α,r :
∑

i�0

ai(T − α)i �→ max
i�0
(|ai |ri)
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Fig. 5.1 The Berkovich
affine line A

1,an
k when k is an

algebraically closed,
complete, valued field

η1

η0

ηr r ∈ |k×|, |r| < 1

ηr′ r′ ∈ |k×|, |r′| > 1

η1,0

from Lemma 5.2.5 is an absolute value, hence gives rise to a point of A1,an
k , which

we will denote by ηα,r . To ease notation, we set | · |r := | · |0,r and ηr := η0,r . For a
graphical representation of these points see Fig. 5.1.

Note that the relation characterizing the equality between ηα,r and ηβ,s is the
same that characterizes the equality between the disc with center α and radius r
and the disc with center β and radius s in a non-Archimedean setting. This is no
coincidence and one can actually prove that, if k is not trivially valued, the absolute
value | · |α,r is equal to the supremum norm on the closed disc of radius α and
center r in the algebraic closure ka of k.

Remark 5.2.7 The definitions of | · |r and | · |α,r from Example 5.2.6 still make sense
for r = 0. In this case, the points η0 and ηα,0 that we find are the rational points
associated to 0 and α respectively. It will sometimes be convenient to use this
notation.

Note that we could combine the techniques of Examples 5.2.3 and 5.2.6 to define
even more points.

5.3 Classification of Points

In this section, we give a classification of the points of the Berkovich affine
line A1,an

k . Let us first introduce a definition.

Definition 5.3.1 Let x ∈ A
1,an
k . The completed residue field H (x) of x is the

completion of the fraction field of k[T ]/ ker(| · |x) with respect to the absolute value
induced by | · |x . It is a complete valued extension of k.
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We will simply denote by | · | the absolute value induced by | · |x on H (x).

The construction provides a canonical morphism of k-algebrasχx : k[T ]→H (x).
We think of it as an evaluation morphism (into a field that varies with the point x).
For P ∈ k[T ], we set P(x) := χx(P ). It then follows from the definition that we
have |P(x)| = |P |x .

Example 5.3.2 Let x ∈ A
1,an
k . If x is a k-rational point, associated to some element

α ∈ k, we have H (x) = k and the morphism χx is nothing but the usual evaluation
morphism P ∈ k[T ] �→ P(α) ∈ k.

If x is a rigid point, associated to some element α ∈ ka , we have an isomorphism
H (x) / k(α). Conversely, if H (x) is a finite extension of k, then we have
ker(| · |x) = (P ) for some irreducible polynomial P , hence the point x is rigid
(associated to any root of P ).

Example 5.3.3 Let α ∈ k and r ∈ R>0 − |k×|Q. Then H (ηα,r ) is isomorphic to
the field

kr :=
{
f =

∑

i∈Z
ai(T − α)i : lim

i→±∞ |ai|r
i = 0

}

endowed with the absolute value |f | = maxi∈Z(|ai|ri).
In the previous example, there exists a unique i0 ∈ Z for which the quantity |ai |ri

is maximal. The fact that kr is a field follows. This is no longer true for r ∈ |k×|Q
and the completed residue field H (ηα,r) is more difficult to describe (see [Chr83,
Theorem 2.1.6] for instance).

Definition 5.3.4 A character of k[T ] is a morphism of k-algebras χ : k[T ] → K ,
whereK is some complete valued extension of k.

Two characters χ ′ : k[T ] → K ′ and χ ′′ : k[T ] → K ′′ are said to be equivalent if
there exists a character χ : k[T ] → K and isometric embeddings i ′ : K → K ′ and
i ′′ : K → K ′′ that make the following diagram commutative:

K ′

k[T ] K

K ′′

χ

χ ′

χ ′′

i′

i′′
.

We have already explained how a point x ∈ A
1,an
k gives rise to a character

χx : k[T ] → H (x). Conversely, to each character χ : k[T ] → K , where (K, | · |)
is a complete valued extension of (k, | · |), we may associate the multiplicative
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seminorm

| · |χ : P ∈ k[T ] → |χ(P )| ∈ R.

Any equivalent character would lead to the same seminorm.

Lemma 5.3.5 The map x �→ χx is a bijection from A
1,an
k to the set of equivalences

classes of characters of k[T ]. Its inverse is the map χ �→ | · |χ . ��
We mention the following related standard fact (see [Ked15, Lemma 2.8 and

Remark 2.9] for instance).

Lemma 5.3.6 Any two complete valued extensions of k may be isometrically
embedded in a common one. ��

Even if we do not have a explicit description of the completed residue fields
associated to the points of A1,an

k , we can use them to introduce some invariants.

Notation 5.3.7 For each valued extension (�, | · |) of (k, | · |), we set

s(�) := tr. deg.(�̃/k̃)

and

t (�) := dimQ(|�×|Q/|k×|Q).

For x ∈ A
1,an
k , we set

s(x) := s(H (x)) and t (x) := t (H (x)).

This invariants are related by the Abhyankar inequality (see [Bou06, VI, §10.3,
Cor 1]).

Theorem 5.3.8 Let � be a valued extension of k. Then, we have

s(�)+ t (�) � tr. deg.(�/k).

Moreover, if �/k is a finitely generated extension for which equality holds, then
|�×|/|k×| is a finitely generated abelian group and �̃/k̃ is a finitely generated field
extension.

For each x ∈ A
1,an
k , the fraction field of k[T ]/ ker(| · |x) has degree of transcen-

dence 0 or 1 over k. Since its invariants s and t coincide with that of H (x), it
follows from Abhyankar’s inequality that we have

s(x)+ t (x) � 1.

We can now state the classification of the points of the Berkovich affine line.
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Definition 5.3.9 Let x ∈ A
1,an
k .

The point x is said to be of type 1 if it comes from a point in k̂a in the sense of
Example 5.2.4. In this case, we have s(x) = t (x) = 0.

The point x is said to be of type 2 if we have s(x) = 1 and t (x) = 0.
The point x is said to be of type 3 if we have s(x) = 0 and t (x) = 1.
The point x is said to be of type 4 otherwise. In this case, we have s(x) = t (x) =

0.

Example 5.3.10 Let α ∈ k and r ∈ R>0.
Assume that r ∈ |k×|Q. There exist n,m ∈ N�1 and γ ∈ k with rn = |c|m.

Consider such an equality with nminimal. Denote by t the image of (T −α)n/cm in

H̃ (x). It is transcendental over k̃ and we have k̃(t) = H̃ (x). We deduce that ηα,r
has type 2.

Assume that r /∈ |k×|Q. Then, we have H̃ (ηα,r ) = k̃, so ηα,r has type 3.

The classification can be made more explicit when k is algebraically closed. Note
that, in this case, we have |k×|Q = |k×|.
Lemma 5.3.11 Assume that k is algebraically closed. Then x has type 2 (resp. 3)
if, and only if, there exist α ∈ k and r ∈ |k×|Q (resp. r /∈ |k×|Q) such that x = ηα,r .
Proof Assume that x is of type 2. Since s(x) = 1, there exists P ∈ k[T ] such
that |P(x)| = 1 and P̃ is transcendental over k̃. Since k is algebraically closed,
we have |k×| = |k×|Q = |H(x)×|Q, hence we may write P as a product of linear
polynomials, all of which have absolute value 1. One of these linear polynomials has

an image in H̃ (x) that is transcendental over k̃. Write it as c(T − α), with c ∈ k×
and α ∈ k. We then have x = ηα,|c|−1 .

Assume that x is of type 3. Since t (x) = 1, there exists P ∈ k[T ] such that
r := |P(x)| /∈ |k×|Q. As before, we may assume that P = T − α with α ∈ k. We
then have x = ηα,r .

The converse implications are dealt with in Example 5.3.10. ��
Proposition 5.3.12 Assume that k is algebraically closed. Let x ∈ A

1,an
k . There

exist a set I , a family (αi)i∈I of k and a family (ri)i∈I of R�0 such that, for each
i, j ∈ I , we have

max(|αi − αj |, ri ) � rj or max(|αi − αj |, rj ) � ri
and, for each P ∈ k[T ],

|P |x = inf
i∈I(|P |αi,ri ).

Proof Our set I will be the underlying set of k. For each a ∈ k, we set αa := a and
ra := |T − a|x .
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Let a, b ∈ k. We have

|a − b| = |a − b|x = |a − T + T − b|x � max(|a − T |x, |T − b|x),

so the first condition of the statement is satisfied. It implies that we have

∀P ∈ k[T ], |P |a,ra � |P |b,rb or ∀P ∈ k[T ], |P |b,rb � |P |a,ra .

It follows that the map v : P ∈ k[T ] �→ infa∈k(|P |a,ra ) is multiplicative, hence a
multiplicative seminorm.

Since k is algebraically closed, every polynomial factors as a product of
monomials. As a consequence, to prove that v and | · |x coincide, it is enough to
prove that they coincide on monomials, because of multiplicativity.

Let α ∈ k. We have |T − α|α,rα = rα = |T − α|x , hence v(T − α) � |T − α|x .
On the other hand, for each a ∈ k, we have

|T−α|x = |T −a+a−α|x � max(|T −a|x, |a−α|x) = max(ra, |a−α|) = |T −α|a,ra ,

hence |T − α|x � v(T − α). ��
Remark 5.3.13 One should think of the families (αi)i∈I and (ri)i∈I in the statement
of Proposition 5.3.12 as a single family of discs in k (with center αi and radius ri).
Then, the condition of the statement translates into the fact that, for each pair of
discs of the family, one is contained in the other.

Moreover, it is not difficult to check that, if the intersection of this family of discs
contains a point α of k, then we have | · |x = |· |α,r , where r = infi∈I (ri ) � 0.

On the other hand, if the family of discs has empty intersection, we find a new
point, necessarily of type 4. Note that we must have infi∈I (ri ) > 0 is this case.
Otherwise, the completeness of k would ensure that the intersection of the discs
contains an element of k.

Definition 5.3.14 Assume that k is algebraically closed. For each x ∈ A
1,an
k , we

define the radius of the point x to be

r(x) := inf
c∈k(|T − c|x).

It can be thought of as the distance from the point to k.

Example 5.3.15 Assume that k is algebraically closed. Let x ∈ A
1,an
k .

If x has type 1, then r(x) = 0.
If x has type 2 or 3, then, by Lemma 5.3.11, it is of the form x = ηα,r and we

have r(x) = r .
If x has type 4, then, with the notation of Proposition 5.3.12, we have

r(x) = infi∈I (ri). Indeed, for each i ∈ I , we have |T − αi |x � |T − αi |αi ,ri = ri .
It follows that r(x) � infi∈I (ri ). On the other hand, let c ∈ k. For i big enough, c is
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Fig. 5.2 The points ηα,r with
r ∈ |k×| are of type 2, the
points ηα,s with s /∈ |k×| are
of type 3, and the points ηα,0
are of type 1. If k is not
spherically complete, points
of type 4 will occur

η1

η0
Type 1

ηr r ∈ |k×|Type 2

ηs s /∈ |k×|

Type 3 Type 4

not contained in the disc of center αi and radius ri , that is to say |αi − c| > ri , from
which it follows that |T − c|αi,ri = |αi − c|.

We deduce that |T − c|x = infi∈I (|αi − c|) � infi∈I (ri ); see Fig. 5.2 for a
representation of these types of points on the affine line.

Remark 5.3.16 The radius of a point of type different from 1 is not intrinsically
attached to the point in the sense that it depends on the chosen coordinateT onA1,an

k .

However, by studying the automorphisms of A1,an
k , one can prove that any change

of coordinate will have the effect of multiplying all the radii by the same constant
(in |k×|), see Proposition 5.5.12 and Remark 5.5.13. In particular, the quotient of
the radii of two points is well-defined.

Definition 5.3.17 The field k is said spherically complete if every family of discs
that is totally ordered by inclusion has a non-empty intersection.

The field k is said maximally complete if it has no non-trivial immediate
extensions, i.e. extensions with the same value group and residue field.

We refer to the paper [Poo93] by B. Poonen for more on those topics and
in particular the construction of spherical completions, i.e. minimal spherically
complete extensions. We only quote the following important result.

Theorem 5.3.18 A valued field is spherically complete if, and only if, it is maxi-
mally complete. ��
Remark 5.3.19 Assume that k is algebraically closed. Then, the completed residue
field of a point of type 4 is an immediate extension of k. Using Remark 5.3.13, we
can deduce a proof of Theorem 5.3.18 in this case.
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To make things more concrete, we would now like to give a rather explicit
example of a point of type 4.

Example 5.3.20 Let r ∈ (0, 1) and consider the field of Laurent series C((t))

endowed with the absolute value defined by |f | = rvt (f ). Recall that the t-adic
valuation vt (f ) of f is the infimum of the indices of the non-zero terms of f in its
Taylor expansion f = ∑

n∈Z antn. (Note that, for f = 0, we have vt (0) = +∞,
hence |f | = 0.)

The algebraic closure of C((t)) is the field of Puiseux series:

C((t))a =
⋃

m∈N�1

C((t1/m)).

In particular, the exponents of t in the expansion of any given element of C((t))a are
rational numbers with bounded denominators.

We choose our field k to be the completion of C((t))a . Its elements may still be
written as power series with rational exponents. This time, the exponents may have
unbounded denominators but they need to tend to +∞.

Consider a power series of the form
∑
n∈N tqn where (qn)n∈N is a strictly

increasing bounded sequence of rational numbers. (For instance, qn = 1 − 2−n
would do.) The associated point of A1,an

k is then a point of type 4. In this case, one
can explicitly describe an associated family of discs by taking, for each m ∈ N, the
disc with center αm :=∑m

n=0 t
qn and radius rm := rqm+1 .

One can go even further in this case and describe a spherical completion of k. It
is the field of Hahn series C((tQ)) consisting of the power series f = ∑

q∈Q aqtq ,
where the aq ’s are rational numbers and the support {q ∈ Q | aq �= 0} of f is
well-ordered: each of its non-empty subsets has a smallest element.

5.4 Topology

We endow the set A1,an
k with the coarsest topology such that, for each P ∈ k[T ], the

map

x ∈ A
1,an
k �−→ |P(x)| ∈ R

is continuous. In more concrete terms, a basis of the topology is given by the sets

{x ∈ A
1,an
k : r < |P(x)| < s},

for P ∈ k[T ] and r, s ∈ R.
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Remark 5.4.1 By Example 5.2.2, we can see k as a subset of A1,an
k . The topology

on k induced by that on A
1,an
k then coincides with that induced by the absolute

value | · |.
Lemma 5.4.2 The Berkovich affine line A

1,an
k is Hausdorff.

Proof Let x �= y ∈ A
1,an
k . Then, there exists P ∈ k[T ] such that |P(x)| �= |P(y)|.

We may assume that |P(x)| < |P(y)|. Let r ∈ (|P(x)|, |P(y)|). Set

U := {z ∈ A
1,an
k : |P(z)| < r} and V := {z ∈ A

1,an
k : |P(z)| > r}.

The sets U and V are disjoint open subsets of A1,an
k containing respectively x and y.

The result follows. ��
Definition 5.4.3 For α ∈ k and r ∈ R>0, the open disc of center α and radius r is

D−(α, r) = {x ∈ A
1,an
k : |(T − α)(x)| < r}.

For α ∈ k and r ∈ R>0, the closed disc of center α and radius r is

D+(α, r) = {x ∈ A
1,an
k : |(T − α)(x)| � r}.

For α ∈ k and r < s ∈ R>0, the open annulus of center α and radii r and s is

A−(α, r, s) = {x ∈ A
1,an
k : r < |(T − α)(x)| < s}.

For α ∈ k and r � s ∈ R>0, the closed annulus of center α and radii r and s is

A+(α, r, s) = {x ∈ A
1,an
k : r � |(T − α)(x)| � s}.

For α ∈ k and r ∈ R>0, the flat closed annulus of center α and radius r is

A+(α, r, r) = {x ∈ A
1,an
k : |(T − α)(x)| = r}.

These analytic spaces are represented in Figs. 5.3 and 5.4. In the result that
follows, we study the topology of discs and annuli as subsets of A1,an

k .

Lemma 5.4.4 Let α ∈ k and r ∈ R>0. The closed disc D+(α, r) is compact and
has a unique boundary point: ηα,r . The open disc D−(α, r) is open and its closure
is D−(α, r) ∪ {ηα,r }.

Let α ∈ k and r < s ∈ R>0. The closed annulus A+(α, r, s) is compact and has
two boundary points: ηα,r and ηα,s . The open annulus A−(α, r, s) is open and its
closure is A−(α, r, s) ∪ {ηα,r , ηα,s}.

Let α ∈ k and r ∈ R>0. The flat closed annulus A+(α, r, r) is compact and has
a unique boundary point: ηα,r .
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α

ηα,r′

ηα,r

α

ηα,r′

Fig. 5.3 On the left, the closed disc D+(α, r). On the right, the open disc D−(α, r), which is a
maximal open sub-disc of D+(α, r), but not the only one

ηα,s

ηα,r

����

��

Fig. 5.4 On the left, the closed annulus A+(α, r, s). On the right, the open annulus A−(α, r, s),
which is the unique maximal open sub-annulus of A+(α, r, s)

Proof Let x ∈ D+(α, r). We have |T − α|x � r , hence it follows from the non-
Archimedean triangle inequality that we have | · |x � | · |α,r , as seminorms on k[T ].

Consider the product
∏
P∈k[T ][0, |P |r ] endowed with the product topology and

its closed subset F consisting of the elements (xP )P∈k[T ] satisfying the conditions

{
∀P,Q ∈ k[T ], λP+Q � max(λP , λQ);
∀P,Q ∈ k[T ], λPQ = λP λQ.
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It follows from the previous argument that the map

p : D+(α, r) −→ ∏
P∈k[T ][0, |P |r ]

x �−→ (|P |x)P∈k[T ]

induces a bijection betweenD+(α, r) and F . (The only non-trivial point is to check
that the seminorm on k[T ] associated to an element of F induces the given absolute
value | · | on k.) Moreover, it follows from the very definition of the topology that p
is a homeomorphism onto its image. Since F is closed in

∏
P∈k[T ][0, |P |r ], and the

latter is compact by Tychonoff’s theorem, F is compact, henceD+(α, r) is compact
too.

Let x ∈ D+(α, r) − {ηα,r}. Then, there exists P∈k[T ] such that |P |x �= |P |α,r ,
hence |P |x < |P |α,r . In other words, the point x belongs to the open subset
{y ∈ A

1,an
k : |P |y < |P |α,r } of A1,an

k , which is contained in D+(α, r). It follows
that x belongs to the interior of D+(α, r).

Let U be an open subset of A1,an
k containing ηα,r . By definition of the topology,

there exist P1, . . . , Pn ∈ k[T ] and u1, v1, . . . , un, vn ∈ R such that

ηα,r ∈ {y ∈ A
1,an
k : ui < |Pi |y < vi} ⊆ U.

Using the explicit definition of the norms | · |α,s , one shows that, for each s ∈ R�0
that is close enough to r , we have ηα,s ∈ U . We deduce that ηα,r belongs to the
boundary ofD+(α, r) (because we can choose s > r) and to the closure ofD−(α, r)
(because we can choose s < r).

This finishes the proof that the boundary of D+(α, r) is equal to {ηα,r }.
By definition of the topology, the disc D−(α, r) is open. Since D+(α, r) is

compact, it contains the closure ofD−(α, r). We have already proved that its closure
contains ηα,r .

Let x ∈ D+(α, r)− (D−(α, r) ∪ {ηα,r }). We have |T − α|x = r and there exists
P ∈ k[T ] such that |P |x < |P |α,r . Let us choose such a polynomialP with minimal
degree.

Arguing by contradiction, assume that |P(α)| < |P |α,r . Write P = P(α)+(T −
α)Q, with Q ∈ k[T ]. We then have

|P |α,r = max(|P(α)|, r|Q|α,r ) = r|Q|α,r .

If |P(α)| �= r|Q|x , we have

r|Q|x � max(|P(α)|, r|Q|x) = |P |x < |P |α,r = r|Q|α,r .

If |P(α)| = r|Q|x , the same inequality holds. In any case, we have |Q|x < |Q|α,r ,
which contradicts the minimality of the degree of P .
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We have just proved that |P(α)| = |P |α,r . It follows that, for each y ∈ D−(α, r),
we have |P |y = |P |α,r , hence the open set {y ∈ A

1,an
k : |P |y < |P |α,r } contains x

and is disjoint from D−(α, r), so x does not belong to the boundary of D−(α, r).
We have finally proven that the closure of D−(α, r) is D−(α, r) ∪ {ηα,r}.
The results for the annuli are proven similarly. ��
Since A

1,an
k may be exhausted by closed discs, we deduce the following result.

Corollary 5.4.5 The Berkovich affine line A
1,an
k is countable at infinity and locally

compact. ��
It is possible to give a characterization of the fields k for which the space A

1,an
k

is metrizable.

Corollary 5.4.6 The following assertions are equivalent:

(i) the Berkovich affine line A
1,an
k is metrizable;

(ii) the field k contains a countable dense subset.

Proof (i) 0⇒ (ii) Assume that A1,an
k is metrizable. We fix a metric on A

1,an
k

and will consider balls with respect to it. Let (εn)n∈N be a sequence of positive real
numbers converging to 0.

Let r ∈ R>0. By Lemma 5.4.4, the closed disc D+(0, r) is compact. As a
consequence, for each n ∈ N, it is covered by finitely many metric balls of radius εn.
For each such ball that contains a point of k, pick a point of k in it. The collection
of those points is a finite subset kr,n of k. The set kr := ⋃

n∈N kr,n is a countable
subset of k that is dense in k ∩D+(0, r).

It follows that the set k′ :=⋃
m∈N�1

km is a countable dense subset of k.

(ii) 0⇒ (i) Assume that the field k contains a countable dense subset k′. Then,
the family of sets

{x ∈ A
1,an
k : r < |P(x)| < s}

with P ∈ k′[T ] and r, s ∈ Q is a countable basis of the topology. The result now
follows from Corollary 5.4.5 and Urysohn’s metrization theorem. ��

By removing the boundary point of a closed disc, one may obtain either one
or infinitely many discs, depending on the radius. We will deal with this question
assuming that k is algebraically closed and consider first the case where the radius
does not belong to the value group of k.

Lemma 5.4.7 Assume that k is algebraically closed. For each α ∈ k and r ∈
R>0 − |k×|, we have

D+(α, r) = {ηα,r} �D−(α, r).

Proof Let x ∈ D+(α, r)−D−(α, r). We then have |T − α|x = r .
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Let P(T ) = adT
d + · · · + a0 ∈ k[T ]. Since k is algebraically closed, |k×| is

divisible and since r /∈ |k×|, all the terms |ai |ri are distinct. It follows that

|P |x = max
1�i�d

(|ai |ri) = |P |α,r .

��
We now handle the case of the discD+(0, 1). When k is algebraically closed, any

disc of the form D(α, r) with r ∈ |k×| may be turned into the latter by a suitable
linear change of variable.

Notation 5.4.8 For each u ∈ k̃, we set D−(u, 1) := D−(α, 1), where α is a lift
of u in k◦.

Since any two lifts α1 and α2 satisfy |α1−α2| < 1, the definition does not depend
on the choice of α.

Lemma 5.4.9 Assume that k is algebraically closed. We have

D+(0, 1) = {η0,1} �
⊔

u∈k̃
D−(u, 1).

Proof Let u1 ∈ k̃ and let α1 ∈ k◦ such that α̃1 = u1. We have |T − α1|0,1 =
max(1, |α1|) = 1, hence η0,1 /∈ D−(α1, 1).

Let u2 �= u1 ∈ k̃ and let α2 ∈ k◦ such that α̃2 = u2. For each x ∈ D−(u2, 1), we
have

|T − α1|x = |(T − α2)+ (α2 − α1)|x = 1,

since |T − α2|x < 1 and |α2 − α1| < 1. It follows that x /∈ D−(u1, 1).
To finish, it remains to prove that D+(0, 1) − {η0,1} is covered by the discs

D−(u, 1) with u ∈ k̃. Let x ∈ D+(0, 1) − {η0,1}. There exists P ∈ k[T ] such
that |P |x �= |P |0,1, hence |P |x < |P |0,1. Since k is algebraically closed, we may
find such a P that is a monomial: P = T − α for some α ∈ k. If |α| > 1, then we
have |T − α|x = |α| = |T − α|0,1, which contradicts the assumption. We deduce
that |α| � 1, hence |T − α|x < |T − α|0,1 = 1 and x ∈ D−(α̃, 1). ��

We now want to describe bases of neighborhoods of the points of A1,an
k , at least

in the algebraically closed case. To do this, contrary to the usual complex setting,
discs are not enough. We will also need annuli and even more complicated subsets.

Definition 5.4.10 An open (resp. closed) Swiss cheese2 over k is a non-empty
subset of A1,an

k that may be written as the complement of finitely many closed (resp.
open) discs over k in an open (resp. a closed) disc over k.

2This is called a “standard set” in [Ber90, Section 4.2].
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Proposition 5.4.11 Assume that k is algebraically closed. Let x ∈ A
1,an
k .

If x has type 1 or 4, it admits a basis of neighborhoods made of discs.
If x has type 2, it admits a basis of neighborhoods made of Swiss cheeses.
If x has type 3, it admits a basis of neighborhoods made of annuli.

Proof By definition of the topology, every neighborhood of x contains a finite
intersection of sets of the form {u < |P | < v} with P ∈ k[T ] and u, v ∈ R. Since
the sets in the statement are stable under finite intersections, it is enough to prove
that each set of the form {u < |P | < v} that contains x contains a neighborhood
of x as described in the statement.

Let P ∈ k[T ] and u, v ∈ R such that |P(x)| ∈ (u, v). Write P = c∏m
j=1(T−γj )

with c ∈ k× and γ1, . . . , γm ∈ k.
Assume that x has type 1. Since k is algebraically closed, it is a rational point,

hence associated to some α ∈ k. One checks that {u < |P | < v} then contains a
disc of the form D−(α, r) for r ∈ R>0.

Assume that x has type 3. By Lemma 5.3.11, there exist α ∈ k and r ∈ R>0 such
that x = ηα,r . One checks that {u < |P | < v} then contains an annulus of the form
A−(α, r1, r2) for some r1, r2 ∈ R>0 with r ∈ (r1, r2).

Assume that x has type 4. By Proposition 5.3.12 and Remark 5.3.13, it is
associated to a family of closed discs (D+(αi , ri ))i∈I whose intersection contains
no rational point. Because of this condition, there exists i ∈ I such that D+(αi , ri )
contains none of the γj ’s. Then, for each j ∈ {1, . . . ,m}, we have

|αi − γj | > ri,

hence, for each y ∈ D+(αi , ri ), we have

|T (y)− γj | = |T (y)− αi + αi − γj | = |αi − γj |.

We deduce that, for each y ∈ D+(αi , ri ), we have |P(y)| = |P(x)| and the result
follows.

Assume that x has type 2. By Lemma 5.3.11, there exist α ∈ k and r ∈ R>0 such
that x = ηα,r . We have

|P(x)| = |c|
m∏

j=1

max(r, |α − γj |) < v,

hence there exists ρ > r such that |c|∏m
j=1 max(ρ, |α − γj |) < v. Then, for each

y ∈ D−(α, ρ), we have |P(y)| < v.
There exists (ρ1, . . . , ρm) ∈ ∏m

j=1(0, |T (x) − γj |) such that |c|∏m
j=1 ρi > u.

Then, for each y ∈ A
1,an
k −⋃m

j=1D
+(γj , ρj ), we have |P(y)| > u.

It follows that D−(α, ρ) −⋃m
j=1D

+(γj , ρj ) is a neighborhood of x contained
in {u < |P | < v}. ��
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Remark 5.4.12 If k is not algebraically closed, bases of neighborhoods of points
may be more complicated. Let us give an example. Let p be a prime number that
is congruent to 3 modulo 4, so that −1 is not a square in Qp. Consider the point x

of A1,an
k associated to a square root of −1 in Cp. Equivalently, the point x is the

unique point of A1,an
k satisfying |T 2 + 1|x = 0.

The subset U of A
1,an
k defined by the inequality |T 2 + 1| < 1 is an open

neighborhood of x. It does not contain 0, so the function T is invertible on it and we
may write

−1 = T 2 − (T 2 + 1) = T 2
(

1− T
2 + 1

T 2

)

.

At each point y of U , we have |T 2 + 1|y < 1, hence |T 2|y = 1 and we deduce
that −1 has a square root on U . In particular, U contains no Qp-rational points and
no discs.

Note that the topology of A1,an
k is quite different from the topology of k. We have

already seen that A1,an
k is always locally compact, whereas k is if, and only if, |k×|

is discrete and k̃ is finite. In another direction, k is always totally disconnected, but
A

1,an
k contains paths, as the next result shows.

Lemma 5.4.13 Let α ∈ k. The map

r ∈ R�0 �−→ ηα,r ∈ A
1,an
k

is a homeomorphism onto its image Iα .

Proof It is clear that the map is injective and open, so to prove the result, it is
enough to prove that it is continuous. By definition, it is enough to prove that, for
each P ∈ k[T ], the map r ∈ R�0 �→ |P |α,r ∈ R�0 is continuous. The result then
follows from the explicit description of | · |α,r (see Example 5.2.6). ��
Remark 5.4.14 One may use the paths from the previous lemma to connect the
points of k. Let α, β ∈ k and consider the paths Iα and Iβ . Example 5.2.6 tells us that
they are not disjoint but meet at the point ηα,|α−β| = ηβ,|α−β| (and actually coincide
from this point on). The existence of a path from α to β inside A1,an

k follows.

We will use this construction in Sect. 5.7 to show that A1,an
k is path-connected.

5.5 Analytic Functions

So far, we have described the Berkovich affine line A
1,an
k as a topological space.

It may actually be endowed with a richer structure, since we may define analytic
functions over it.
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Definition 5.5.1 Let U be an open subset of A1,an
k . An analytic function on U is a

map

F : U →
⊔

x∈U
H (x)

such that, for each x ∈ U , the following conditions hold:

(i) F(x) ∈H (x);
(ii) there exist a neighborhood V of x and sequences (Pn)n∈N and (Qn)n∈N of

elements of k[T ] such that the Qn’s do not vanish on V and

lim
n→+∞ sup

y∈V

(∣
∣
∣F(y)− Pn(y)

Qn(y)

∣
∣
∣
)
= 0.

Remark 5.5.2 The last condition can be reformulated by saying that F is locally a
uniform limit of rational functions without poles, which then makes the definition
similar to the usual complex one (where analytic functions are locally uniform limits
of polynomials).

The Berkovich affine line A
1,an
k together with its sheaf of analytic functions O

now has the structure of a locally ringed space. It satisfies properties that are similar
to those of the usual complex analytic line C. We state a few of them here without
proof.

The set of global analytic functions on some simple open subsets of A1,an
k may

be described explicitly.

Proposition 5.5.3 Let r ∈ R>0. Then O(D−(0, r)) is the set of elements

∑

i∈N
ai T

i ∈ k�T �

with radius of convergence greater than or equal to r:

∀s ∈ (0, r), lim
i→+∞ |ai | s

i = 0.

��
Corollary 5.5.4 The local ring O0 at the point 0 of A1,an

k consists of the power
series in k�T � with positive radius of convergence.

Proof It follows from Proposition 5.5.3 and the fact that the family of
discs D−(0, r), with r > 0, forms a basis of neighborhoods of 0 in A

1,an
k (see

the proof of Proposition 5.4.11). ��
Corollary 5.5.5 Assume that k is algebraically closed. Let x ∈ A

1,an
k be a

point of type 4, associated to a family of closed discs (D+(αi, ri ))i∈I as in
Proposition 5.3.12. The local ring Ox at the point x of A1,an

k consists of the union
over i ∈ I of the sets of power series in k�T −αi� with radius of convergence bigger
than or equal to ri .
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Proof It follows from Proposition 5.5.3 and the fact that the family of
discs (D+(αi , ri ))i∈I , with i ∈ I , forms a basis of neighborhoods of x in A

1,an
k (see

the proof of Proposition 5.4.11). ��
Proposition 5.5.6 Let r, s ∈ R>0 with r < s. Then O(A−(0, r, s)) is the set of
elements

∑

i∈Z
ai T

i ∈ k�T , T −1�

satisfying the following condition:

∀t ∈ (r, s), lim
i→±∞ |ai| t

i = 0.

��
Corollary 5.5.7 Let t ∈ R>0 − |k×|. The local ring Oηt at the point ηt of A1,an

k is
the set of elements

∑

i∈Z
ai T

i ∈ k�T , T −1�

satisfying the following condition:

∃t1, t2 ∈ R>0 with t1 < t < t2 such that lim
i→−∞ |ai| t

i
1 = lim

i→+∞ |ai | t
i
2 = 0.

��
Proof It follows from Proposition 5.5.6 and the fact that the family of
annuli A−(0, t1, t2), with t1 < t < t2, forms a basis of neighborhoods of ηt
in A

1,an
k (see the proof of Proposition 5.4.11). ��

Remark 5.5.8 The local rings at points of type 2 of A1,an
k do not admit descriptions

as simple as that of the other points, due to the fact that they have more complicated
bases of neighborhoods (see Proposition 5.4.11). Over an algebraically closed
field k, one may still obtain a rather concrete statement as follows. Let C be a
set of lifts of the elements of k̃ in k◦. Then, the local ring Oη1 at the point η1

of A
1,an
k consists in the functions that may be written as a sum of power series

with coefficients in k of the form

∑

i∈N
ai T

i +
∑

c∈C0

∑

i∈N�1

ac,i (T − c)−i ,

where C0 is a finite subset of C and the series all have radius of convergence strictly
bigger than 1. We refer to [FvdP04, Proposition 2.2.6] for details.
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Let us now state some properties of the local rings, i.e. germs of analytic
functions at one point. They are easily seen to hold for O0 using its explicit
description as a ring of power series (see Proposition 5.5.3).

Proposition 5.5.9 Let x ∈ A
1,an
k . The ring Ox is a local ring with maximal ideal

mx = {F ∈ Ox : F(x) = 0}.

The quotient Ox/mx is naturally a dense subfield of H (x).
If x is a rigid point (see Example 5.2.3), then Ox is a discrete valuation ring that

is excellent and henselian. Otherwise, Ox is a field. ��
Remark 5.5.10 The existence of the square of −1 in Remark 5.4.12 may be
reproved using Henselianity. With the notation of that remark, we have Ox/mx =
H (x) = k[T ]/(T 2 + 1), hence the residue field Ox/mx contains a root of T 2 + 1.
Since we are in characteristic 0, this root is simple, hence, by Henselianity, it lifts to
a root of T 2 + 1 in Ox .

The next step is to define a notion of morphism between open subsets of A1,an
k . As

one should expect, such a morphism ϕ : U → V underlies a morphism of locally
ringed spaces (hence a morphism of sheaves ϕ$ : OV → ϕ∗OU ), but the precise
definition is more involved since we want the seminorms associated to the points
of U and V to be compatible. For instance, for each x ∈ U , we want the map
Oϕ(x)/mϕ(x) → Ox/mx induced by ϕ$ to be an isometry with respect to | · |ϕ(x)
and | · |x (so that it induces an isometry H (ϕ(x))→H (x)). We will not dwell on
those questions, which would lead us too far for this survey. Anyway, in the rest of
the text, we will actually make only a very limited use of morphisms.

Let us mention that, as in the classical theories, global sections of the structure
sheaf correspond to morphisms to the affine line.

Lemma 5.5.11 Let U be an open subset of A1,an
k . Then, the map

Hom(U,A1,an
k ) −→ O(U)

ϕ �−→ ϕ$(T )

is a bijection. ��
For later use, we record here the description of isomorphisms of discs and annuli.

Once the rings of global sections are known (see Propositions 5.5.3 and 5.5.6),
those results are easily proven using the theory of Newton polygons (or simple
considerations on the behaviour of functions as in Sect. 5.10). We refer to [Duc,
3.6.11 and 3.6.12] for complete proofs.

Proposition 5.5.12 Let r1, r2 ∈ R>0. Let ϕ : D−(0, r1) → D−(0, r2) be an
isomorphism such that ϕ(0) = 0. Write

ϕ$(T ) =
∑

i∈N�1

aiT
i ∈ k�T �
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using Proposition 5.5.3. Then, we have

∀s ∈ (0, r1), |a1| s > sup
i�2
(|ai | si).

In particular, we have r2 = |a1| r1 and, for each s ∈ [0, r1), ϕ(ηs) = η|a1|s . ��
Remark 5.5.13 The previous result still holds if we allow the radii to be infinite,
considering the affine line as the disc of infinite radius.

Proposition 5.5.14 Let r1, s1, r2, s2 ∈ R>0 with r1 < s1 and r2 < s2. Let
ϕ : A−(0, r1, s1)→ A−(0, r2, s2) be an isomorphism. Write

ϕ$(T ) =
∑

i∈Z
aiT

i ∈ k�T , T −1�

using Proposition 5.5.6. Then, there exists i0 ∈ {−1, 1} such that we have

∀t ∈ (r1, s1), |ai0 | si0 > sup
i �=i0
(|ai| si ).

In particular, if i0 = 1, we have r2 = |a1| r1, s2 = |a1| s1 and, for each t ∈ (r1, s1),
ϕ(ηs) = η|a1|s . If i0 = −1, we have r2 = |a1|/s1, s2 = |a1|/r1 and, for each
t ∈ (r1, s1), ϕ(ηs) = η|a1|/s . ��
Remark 5.5.15 The previous result still holds if we allow r1 or r2 to be 0 and s1
or s2 to be infinite.

Definition 5.5.16 Let A = A−(α, r, s) be an open annulus. We define the modulus
of A to be

Mod(A) := s

r
∈ (1,+∞).

By Proposition 5.5.14, the modulus of an annulus only depends on its isomor-
phism class and not on the coordinate chosen to describe it.

5.6 Extension of Scalars

Let (K, | · |) be a complete valued extension of (k, | · |). The ring morphism k[T ] →
K[T ] induces a map

πK/k : A1,an
K −→ A

1,an
k

called the projection map. In this section, we study this map.
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Proposition 5.6.1 Let K be a complete valued extension of k. The projection
map πK/k is continuous, proper and surjective.

Proof The map πK/k is continuous as a consequence of the definitions. To prove
that it is proper, note that the preimage of a closed disc in A

1,an
k is a closed disc

in A
1,an
K with the same center and radius, hence a compact set by Lemma 5.4.4.

It remains to prove that πK/k is surjective. Let x ∈ A
1,an
k and consider the

associated character χx : k[T ] → H (x). By Lemma 5.3.6, there exists a complete
valued field L containing both K and H (x). The character χx over k induces a
character overK given by

K[T ] χx⊗K−−−→H (x)⊗k K → L.

The associated point of A1,an
K belongs to π−1

K/k(x). ��
The following result shows that the fibers of the projection map may be quite big.

Lemma 5.6.2 Let K be a complete valued extension of k. Assume that k andK are
algebraically closed and that K is maximally complete. Let x ∈ A

1,an
k be a point of

type 4. Then π−1
K/k(x) is a closed disc of radius r(x).

Proof Fix notation as in Proposition 5.3.12. We have r(x) = infi∈I (ri ). Since K is
maximally complete, the intersection of all the discs D+(αi , ri ) in A

1,an
K contains a

point γ ∈ K .
Let us prove that π−1

K/k(x) = D+(γ, r(x)) in A
1,an
K .

Let c ∈ k. For i big enough, c is not contained in the disc of center αi and
radius ri , that is to say |αi − c| > ri . It follows that, for each y ∈ D+(αi, ri ), we
have

|T − c|y = |αi − c| = |T − c|αi,ri .

We have D+(γ, r(x)) ⊆ ⋂
i∈I D+(αi , ri ). It then follows from the previous

argument that, for each z ∈ D+(γ, r(x)) and each c ∈ k, we have

|T − c|z = inf
i∈I(|αi − c|) = |T − c|x.

Since k is algebraically closed, every polynomial is a product of linear terms and we
deduce thatD+(γ, r(x)) ⊆ π−1

K/k(x).

Let y ∈ A
1,an
K \D+(γ, r(x)). Then, there exists i ∈ I such that

|T − αi |y > ri = |T − αi |αi,ri � |T − αi |x.

The result follows. ��
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Remark 5.6.3 Fix notation as in Proposition 5.3.12. The preceding proof also shows
that we have

⋂
i∈I D+(αi , ri ) = {x} in A

1,an
k .

Remark 5.6.4 The preceding lemma shows that the projection map is not open and
does not preserve the types of points in general.

We now deal more specifically with the case of Galois extensions. Let
σ ∈ Aut(K/k) and assume that it preserves the absolute value on K . (This
condition is automatic if K/k is algebraic.) For each x ∈ A

1,an
K , the map

P ∈ K[T ] �−→ |σ(P )|x ∈ R�0

is a multiplicative seminorm. We denote by σ(x) the corresponding point of A1,an
K .

Proposition 5.6.5 Let K be a finite Galois extension of k. The map

(σ, x) ∈ Gal(K/k)× A
1,an
K �−→ σ(x) ∈ A

1,an
K

is continuous and proper.
The projection map πK/k induces a homeomorphism

A
1,an
K /Gal(K/k)

∼−→ A
1,an
k .

In particular, πK/k is continuous, proper, open and surjective.

Proof To prove the first continuity statement, it is enough to prove that, for each
P ∈ K[T ], the map

(σ, x) ∈ Gal(K/k)× A
1,an
K �−→ |P(σ(x))| = |σ(P )|x ∈ R�0

is continuous.
Let P ∈ K[T ]. We may assume that P �= 0. For each σ, τ ∈ Gal(K/k) and each

x, y ∈ A
1,an
K , we have

∣
∣|σ(P )|x − |τ (P )|y

∣
∣ �

∣
∣|σ(P )|x − |σ(P )|y

∣
∣+ ∣

∣|σ(P )|y − |τ (P )|y
∣
∣

�
∣
∣|σ(P )|x − |σ(P )|y

∣
∣+‖(σ − τ )(P )‖∞ max(1, |T |y)deg(P ),

where, for each R ∈ K[T ], we denote by ‖R‖∞ the maximum of the absolute
values of its coefficients. The continuity now follows from the continuity of the
maps z ∈ A

1,an
K �→ |σ(P )|z and σ ∈ Gal(K/k) �→ σ(c), for c ∈ K .

Let us now prove properness. Since any compact subset of A1,an
K is contained in a

disc of the formD+(0, r) for some r ∈ R>0, it is enough to prove that the preimage
of such a disc is compact. Since this preimage is equal to Gal(K/k)×D+(0, r), the
result follows from the compactness of D+(0, r) (see Lemma 5.4.4).

We now study the map πK/k. It is continuous and proper, by Proposition 5.6.1.
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Let x ∈ A
1,an
k and consider the associated character χx : k[T ] → H (x). It

induces a morphism of K-algebras χK,x : K[T ] →H (x)⊗k K .
Let α ∈ K be a primitive element forK/k. Denote by P its minimal polynomial

over k and by P1, . . . , Pr the irreducible factors of P in H (x)[T ]. For each i ∈
{1, . . . , r}, let Li be an extension of H (x) generated by a root of Pi . We then have
an isomorphism of K-algebras ϕ : H (x)⊗k K ∼−→ ∏r

i=1 Li .
For each i ∈ {1, . . . , r}, by composing ϕ ◦ χK,x with the projection on the

i th factor, we get a character χi : K[T ] → Li . Denote by yi the associated point
of A1,an

K . We have πK/k(yi) = x.

Conversely, let y ∈ A
1,an
K such that πK/k(y) = x. The field H (y) is an extension

of both H (x) andK , so the universal property of the tensor product yields a natural
morphism H (x) ⊗k K → H (y). It follows that there exists i ∈ {1, . . . , r} such
that H (y) is an extension of Li , and we then have y = yi . We have proven that
π−1
K/k(x) = {y1, . . . , yr }.

Since P is irreducible in k[T ], the group Gal(K/k) acts transitively on its
roots, hence on the Pi ’s. It follows that, for each i, j ∈ {1, . . . , r}, there exists
σ ∈ Gal(K/k) such that χi ◦ σ = χj , hence σ(yi) = yj . We have proven that
π−1
K/k(x) is a single orbit under Gal(K/k).

The arguments above show that the projection map πK/k : A1,an
K → A

1,an
k factors

through a map π ′K/k : A1,an
K /Gal(K/k) → A

1,an
k and that the latter is continuous

and bijective. Since πK/k is proper, π ′K/k is proper too, hence a homeomorphism.
��

Recall that every element of Gal(ks/k) preserves the absolute value on ks . In
particular, it extends by continuity to an automorphism of k̂s = k̂a . We endow
Gal(ks/k) with its usual profinite topology.

Corollary 5.6.6 The map

(σ, x) ∈ Gal(ks/k)×A
1,an
k̂a

�→ σ(x) ∈ A
1,an
k̂a

is continuous and proper.
The projection map πk̂a/k induces a homeomorphism

A
1,an
k̂a
/Gal(ks/k)

∼−→ A
1,an
k .

In particular, πk̂a/k is continuous, proper, open and surjective.

Proof The first part of the statement is proven as in Proposition 5.6.5, using the fact
that the group Gal(ks/k) is compact.

Let x, y ∈ A
1,an
k̂a

such that πk̂a/k(x) = πk̂a/k(y). By Proposition 5.6.5, for
each finite Galois extension K of k, there exists σK in Gal(K/k) such that
σK(πK/k(x)) = πK/k(y). By compactness, the family (σK)K admits a subfamily
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converging to some σ ∈ Gal(ks/k). We then have

∀P ∈ ks[T ], |σ(P )|x = |P |y .

Let Q ∈ k̂a[T ]. We want to prove that we still have |σ(Q)|x = |Q|y . We may
assume thatQ is non-zero. Let d be its degree. By density of ks into k̂a , there exists
a sequence (Qn)n�0 of elements of ks [T ] of degree d that converge to Q for the
norm ‖·‖∞ that is the supremum norm of the coefficients. Note that we have

|Q−Qn|y � ‖Q −Qn‖∞ max(1, |T |y)d,

so that (|Qn|y)n�0 converges to |Q|y . The same argument shows that
(|σ(Qn)|x)n�0 converges to |σ(Q)|x and the results follows.

We have just proven that the map A
1,an
k̂a
/Gal(ks/k)→ A

1,an
k induced by πk̂a/k is

a bijection. The rest of the statement follows as in the proof of Proposition 5.6.5. ��
Lemma 5.6.7 Let y, z ∈ A

1,an
k̂a

such that πk̂a/k(y) = πk̂a/k(z). Then y and z are of
the same type and have the same radius.

Proof By Corollary 5.6.6, there exists σ ∈ Gal(ks/k) such that z = σ(y). The
result follows easily. ��

As a consequence, we may define the type and the radius of a point of the
Berkovich affine line over any complete valued field.

Definition 5.6.8 Let x ∈ A
1,an
k .

We define the type of the point x to be the type of the point y, for any y ∈
π−1
k̂a/k

(x).

We define the radius of the point x to be the radius of the point y, for any y ∈
π−1
k̂a/k

(x). We denote it by r(x).

We end this section with a finiteness statement that is often useful.

Lemma 5.6.9 Let X be a subset of A1,an
k̂a

that is either a disc, an annulus or a
singleton containing a point of type 2 or 3. Then, the orbit of X under Gal(ks/k) is
finite.

In particular, for each x ∈ A
1,an
k of type 2 or 3, the fiber π−1

k̂a/k
(x) is finite.

Proof Let us first assume that X is a closed disc: there exists α ∈ k̂a and r ∈ R>0
such that X = D+(α, r). Since ka is dense in k̂a , we may assume α ∈ ka . Then
orbit of α is then finite, hence so is the orbit of X. The case of an open disc is dealt
with similarly.

Points of type 2 or 3 are boundary points of closed discs by Lemma 5.4.4, hence
the orbits of such points are finite too. Since closed and open annuli are determined
by their boundary points, which are of type 2 or 3 (see Lemma 5.4.4 again), their
orbits are finite too.
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Finally, if x ∈ A
1,an
k is a point of type 2 (resp. 3), then, by Corollary 5.6.6, the

fiber π−1
k̂a/k

(x) is an orbit of a point of type 2 (resp. 3). The last part of the result

follows. ��

5.7 Connectedness

In this section, we study the connectedness properties of the Berkovich affine line
and its subsets. Our main source here is [Ber90, Section 4.2] for the connectedness
properties (see also [Ber90, Section 3.2] for higher-dimensional cases) and [Duc,
Section 1.9] for properties of quotients of graphs.

Proposition 5.7.1 Open and closed discs, annuli and Swiss cheeses are path-
connected. The Berkovich affine line A

1,an
k is path-connected and locally path-

connected.

Proof Let us first handle the case of a closed disc, say D+(α, r) with α ∈ k and
r ∈ R>0. By Proposition 5.6.1, the projection map πK/k is continuous and surjective
for any complete valued extension K of k. As a result, it is enough to prove the
result on some extension of k, hence we may assume that k is algebraically closed
and maximally complete.

Let x ∈ D+(α, r). By Lemma 5.3.11 and Remark 5.3.19, there exist β ∈ k and
s ∈ R�0 such that x = ηβ,s . Since x ∈ D+(α, r), we have

|T − α|β,s = max(|α − β|, s) � r,

hence s � r and ηα,r = ηβ,r . As a consequence, the map

λ ∈ [0, 1] �→ ηα,s+(r−s)λ ∈ A
1,an
k

defines a continuous path from x to ηα,r inD+(α, r) (see Lemma 5.4.13). It follows
that the disc D+(α, r) is path-connected.

The same argument may be used in order to prove that closed annuli and Swiss
cheeses are connected. Indeed, if such a set S is written as the complement of some
open discs in D+(α, r), it is easy to check that, for each x ∈ S, the path joining x
to ηα,r that we have just described actually remains in S.

Since the open figures may be written as increasing unions of the closed ones,
the result holds for them too.

The last statement follows from the fact thatA1,an
k may be written as an increasing

union of discs for the global part, and from Proposition 5.4.11 and Corollary 5.6.6
for the local part. ��
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The Berkovich affine line actually satisfies a stronger connectedness property: it
is uniquely path-connected. We will now prove this result, starting with the case of
an algebraically closed field.

Definition 5.7.2 We define a partial ordering � on A
1,an
k̂a

by setting

x � y if ∀P ∈ k̂a[T ], |P |x � |P |y .

For each x ∈ A
1,an
k̂a

, we set

Ix := {y ∈ A
1,an
k̂a

: y � x}.

Remark 5.7.3 Let σ ∈ Gal(ks/k). By definition of the action of σ , for every x, y ∈
A

1,an
k̂a

, we have x � y if, and only if, σ(x) � σ(y). It follows that, for each z ∈
A

1,an
k̂a

, we have σ(Iz) = Iσ(z).
The proof of the following lemma is left as an exercise for the reader.

Lemma 5.7.4 Let α ∈ k̂a and r ∈ R>0. For each x ∈ A
1,an
k̂a

, we have x � ηα,r if,

and only if, x ∈ D+(α, r).
In particular, for β ∈ k̂a and s ∈ R�0, we have ηα,r � ηβ,s if, and only if,

max(|α − β|, r) � s. Moreover, when those conditions hold, we have ηβ,s = ηα,s .
��

Corollary 5.7.5 The minimal points for the ordering � on A
1,an
k̂a

are exactly the
points of type 1 and 4.

Proof It follows from Lemma 5.7.4 that points of type 2 and 3 are not minimal
and that points of type 1 are. To prove the result, it remains to show that points
of type 4 are minimal too. This assertion follows from the fact that any such point
is the unique point contained in the intersection of a family of closed discs (see
Remark 5.6.3) by applying Lemma 5.7.4 again. ��
Corollary 5.7.6 Let α ∈ k̂a and r ∈ R�0. We have

Iηα,r = {ηα,s, s � r}.

Let x ∈ A
1,an
k̂a

be a point of type 4 and fix notation as in Proposition 5.3.12. Then,
for each i, j ∈ I , we have Iηαi ,ri ⊆ Iηαj ,rj or Iηαj ,rj ⊆ Iηαi ,ri and we have

Ix = {x} ∪
⋃

i∈I
Iηαi ,ri .

��
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The former result shows in particular that our notation is consistent with that of
Lemma 5.4.13.

Corollary 5.7.7 Let x ∈ A
1,an
k̂a

. The radius map r : A1,an
k̂a

→ R�0 induces a
homeomorphism from Ix onto [r(x),+∞).

The restriction of the projection map πk̂a/k to Ix is injective.

Proof The fact that the radius map induces is a bijection from Ix onto its image
follows from Corollary 5.7.6. One can then prove directly that its inverse is
continuous and open by arguing as in the proof of Lemma 5.4.13.

Let us now prove the second part of the statement. Let y, z ∈ Ix such that
x < y < z. Then, there exist α ∈ k̂a and r < s ∈ R>0 such that y = ηα,r and
z = ηα,s . Since ks in dense in k̂a , we may assume that α ∈ ks . Let Pα ∈ k[T ]
be the minimal polynomial of α over k. Since there exists Qα ∈ k̂a[T ] such that
Pα = (T − α)Qα , we have

|Pα|y = r |Qα|y < s |Qα|y = |Pα|z.

It follows that πk̂a/k(y) �= πk̂a/k(z).
Finally, assume that there exists z ∈ Ix − {x} such that πk̂a/k(z) = πk̂a/k(x). For

each y ∈ Ix such that x < y < z and each P ∈ k[T ], we have

|P |x � |P |y � |P |z = |P |x,

hence |P |y = |P |z, which contradicts what we have just proved. ��
Corollary 5.7.8 Let x, y ∈ A

1,an
k̂a

. The set {z ∈ A
1,an
k̂a

: z � x and z � y} admits a
smallest element. We will denote it by x ∨ y.

In particular, if x and y are comparable for �, then Ix ∪ Iy is homeomorphic to
a half-open interval and, otherwise, Ix ∪ Iy is homeomorphic to a tripod with one
end-point removed, i.e. the union of two closed intervals and one half-open interval
glued along a common end-point.

Proof We have {z ∈ A
1,an
k̂a

: z � x and z � y} = Ix ∩ Iy . By Corollary 5.7.7,
Ix and Iy may be sent to intervals of the form [∗,+∞) by order-preserving
homeomorphisms. We deduce that, in order to prove the result, it is enough to prove
that Ix ∩ Iy is non-empty. Setting R := max(|T |x, |T |y), the points x and y belong
to D+(0, R), hence ηR belongs to Ix,y , by Lemma 5.7.4.

Denoting by x ∨ y the smallest element of Ix ∩ Iy , we have Ix ∩ Iy = Ix∨y . In
particular, by Corollary 5.7.7, Ix ∩ Iy is homeomorphic to a half-open interval with
end-point x ∨ y. Set

[x, x∨y] := {z ∈ Ix : x � z � (x∨y)} and [y, x∨y] := {z ∈ Iy : y � z � (x∨y)}.

By Corollary 5.7.7 again, [x, x ∨ y] and [y, x ∨ y] are homeomorphic to closed
intervals (possibly singletons if x and y are comparable). Finally, the result follows
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by writing

Ix ∪ Iy = [x, x ∨ y] ∪ [y, x ∨ y] ∪ Ix∨y.

��
Corollary 5.7.9 Let x ∈ A

1,an
k̂a

. The set A1,an
k̂a

− Ix is a union of open discs. In
particular, Ix is closed.

Proof Let y ∈ A
1,an
k̂a

− Ix . The point x ∨ y defined in Corollary 5.7.8 belongs to Iy
and is not equal to y. It follows that there exists z ∈ Iy − Ix such that y < z.
By Corollary 5.7.6, y is a point of type 2 or 3, hence, by Lemma 5.7.4, the set
D := {u ∈ A

1,an
k̂a

: u � z} is a closed disc of positive radius. It is contained in

A
1,an
k̂a

− Ix . Since z is not the boundary point of D, y indeed belongs to some open
subdisc of D by Lemmas 5.4.7 and 5.4.9. ��
Proposition 5.7.10 Let � be a subset of A1,an

k̂a
such that, for each x ∈ �, Ix ⊆ �.

Then, A1,an
k̂a

− � is a union of discs and points of type 4.

If, moreover, � is closed, then A
1,an
k̂a

− � is a union of open discs.

Proof To prove the first statement, it is enough to show that each point of A1,an
k̂a

−�
that is not of type 4 is contained in a closed disc. Let x be such a point. Then, by
Lemma 5.7.4, {y ∈ A

1,an
k̂a

: y � x} is a closed disc. By assumption, it is contained

in A
1,an
k̂a

− �, and the result follows.

Let us now assume that � is closed. Let x ∈ A
1,an
k̂a

− �. Since � is closed,
there exists y ∈ Ix − � such that y > x. We then conclude as in the proof of
Corollary 5.7.9. ��
Corollary 5.7.11 For every x, y ∈ A

1,an
k̂a

, there exists a unique injective path from x
to y.

Proof Set Ix,y := Ix ∪ Iy . It follows from Corollaries 5.7.7 and 5.7.8 that it is
homeomorphic to a half-open interval or a tripod with one end-point removed. It
follows that there exists a unique injective path from x to y inside Ix,y . In particular,
there exists an injective path from x to y in A

1,an
k̂a

.

By Corollary 5.7.9 and Proposition 5.7.10, A1,an
k̂a

− Ix,y is a union of open discs.
By Lemma 5.4.4, every open disc has a unique boundary point. As a consequence,
an injective path going from x to y cannot meet any of these open discs, since
otherwise it would contain its boundary point twice. It follows that such a path is
contained in Ix,y . ��

We want to deduce the result for A
1,an
k by using the projection map

πk̂a/k : A1,an
k̂a

→ A
1,an
k . Recall that, by Corollary 5.6.6, it is a quotient map by

the group Gal(ks/k).
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Proposition 5.7.12 For every x, y ∈ A
1,an
k , there exists a unique injective path

from x to y.

Proof To ease notation, we will write π instead of πk̂a/k.

Let x, y ∈ A
1,an
k . Choose x ′ ∈ π−1(x) and y ′ ∈ π−1(y). Set J := Ix ′ ∪ Iy ′ .

By Lemma 5.7.7, π(Ix ′) and π(Iy ′) are half-open intervals and, by Corollary 5.7.8,
they meet.

Let z ∈ π(Ix ′) ∩ π(Iy ′). There exists z′ ∈ Ix ′ such that π(z′) = z and
σ ∈ Gal(ks/k) such that σ(z′) ∈ Iy ′ . By Remark 5.7.3, we have σ(Iz′) = Iσ(z′)
and we deduce that π(J ) is a tripod with one end-point removed. In particular, there
exists a unique injective path from x to y in π(J ), and at least one such path in A

1,an
k .

To conclude, let us prove that any injective path from x to y in A
1,an
k is contained

in π(J ). Set

� := π−1(π(J )) =
⋃

σ∈Gal(ks/k)

σ (J ).

Since the action of the elements of Gal(ks/k) preserves the norm, for each
R ∈ R>0, we have

� ∩D+(0, R) = π−1(π(J ∩D+(0, R))),

and it follows that � ∩D+(0, R) is compact. We deduce that � is closed.
Moreover, we have

� =
⋃

z∈π−1(x)∪π−1(y)

Iz,

hence, by Proposition 5.7.10, A1,an
k̂a

−� is a union of open discs. Using the fact that
it is invariant under the action of Gal(ks/k), we may now conclude as in the proof
of Corollary 5.7.11. ��
Notation 5.7.13 For x, y ∈ A

1,an
k , we will denote by [x, y] the unique injective

path between x and y. We set (x, y) := [x, y] − {x, y}.
Remark 5.7.14 The fact that A1,an

k is uniquely path-connected means that it has
the structure of a real tree. The type of the points may be easily read off this
structure. Indeed the end-points are the points of type 1 and 4 (see Remark 5.6.3
for points of type 4). Among the others, type 2 points are branch-points (with
infinitely many edges meeting there, see Lemma 5.4.9) while type 3 points are not
(see Lemma 5.4.7). For a graphical representation of this fact, see Fig. 5.2.
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5.8 Virtual Discs and Annuli

In this section, we introduce generalizations of discs and annuli that are more
suitable when working over arbitrary fields and study them from the topological
point of view. We explain that they retract onto some simple subsets of the real
line, namely singletons and intervals respectively. Here we borrow from [Ber90,
Section 6.1], which also contains a treatment of more general spaces.

5.8.1 Definitions

Definition 5.8.1 A connected subset U of A
1,an
k is called a virtual open (resp.

closed) disc if π−1
k̂a/k

(U) is a disjoint union of open (resp. closed) discs. We define

similarly virtual open, closed and flat annuli and virtual open and closed Swiss
cheeses.

We now introduce particularly interesting subsets of virtual annuli.

Definition 5.8.2 Let A be a virtual open or closed annulus. The skeleton of A is the
complement of all the virtual open discs contained in A. We denote it by %A.

Example 5.8.3 Consider the open annulus A := A−(γ, ρ1, ρ2), with γ ∈ k and
ρ1 < ρ2 ∈ R>0. Its skeleton is

%A = {ηγ,s, ρ1 < s < ρ2}.

It is represented in Fig. 5.5.

Lemma 5.8.4 Let A be a virtual open (resp. closed) annulus. Let C be a connected
component ofπ−1

k̂a/k
(A). Then,C is an open (resp. closed) annulus andπk̂a/k induces

a homeomorphism between %C and %A. In particular, %A is an open (resp. closed)
interval.

Proof Let us handle the case of a virtual open annulus, the other one being
dealt with similarly. The connected component C is an open annulus, by the very
definition of virtual open annulus. It also follows from the definitions that we have
%A = πk̂a/k(%C).

Denote by GC the subgroup of Gal(ks/k) consisting of those elements that
preserve C. By Corollary 5.6.6, πk̂a/k induces a homeomorphism C/GC / A,
hence a homeomorphism%C/GC / %A.

Write C = A−(γ, ρ1, ρ2), with γ ∈ k̂a and ρ1 < ρ2 ∈ R>0. Its complement
in A

1,an
k̂a

has two connected components, namelyD+(γ, ρ1) and

D+∞(γ, ρ2) := {x ∈ A
1,an
k̂a

: |(T − γ )(x)| � ρ2}.
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Fig. 5.5 The skeleton of an
open annulus is the open line
segment joining its boundary
points

����

����

For r big enough, we have ηγ,r = ηr , which belongs to D+∞(γ, ρ2) and is stable
under Gal(ks/k). It follows thatD+(γ, ρ1) andD+∞(γ, ρ2) are stable underGC .

Let σ ∈ GC . We have

σ(D+(γ, ρ1)) = D+(σ (γ ), ρ1) = D+(γ, ρ1),

hence |σ(γ )− γ | � ρ1. It follows that, for each s ∈ (ρ1, ρ2), we have

σ(ηγ,s) = ησ(γ ),s = ηγ,s,

that is to say σ acts as the identity on %C . The result follows. ��
Remark 5.8.5 Virtual discs and annuli are usually defined as arbitrary connected
k-analytic curves (see [PT20, Section 2.2]) whose base change to k̂a is a disjoint
union of discs or annuli, without requiring an embedding into A

1,an
k . Our definition

is a priori more restrictive.
With this definition of virtual annulus, an additional difficulty appears. If A is

such a virtual annulus and C is a connected component of π−1
k̂a/k

(A), then there may

exist elements of Gal(ks/k) that preserve C but swap its two ends. In this case, the
skeleton %A is a half-open interval. (For an example of such a behaviour, consider
a Galois orbit in k̂a consisting of two points, its image x in A

1,an
k and let A be the

complement in P
1,an
k of a small virtual closed disc containing x.) Some authors (for

instance A. Ducros) explicitly rule out this possibility in the definition of virtual
annulus.
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We may also extend the notion of modulus (see Definition 5.5.16) from annuli to
virtual annuli. Recall that, by Lemma 5.6.9, the set of connected components of the
preimage of a virtual open annulus by π−1

k̂a/k
is finite and that, by Corollary 5.6.6,

Gal(ks/k) acts transitively on it.

Definition 5.8.6 Let A be a virtual open annulus. Denote by C the set of connected
components of π−1

k̂a/k
(A) and let C0 be one of them. We define the modulus of A to

be

Mod(A) := Mod(C0)
1/$C ∈ (1,+∞).

It is independent of the choice of C0.

Remark 5.8.7 Beware that other normalizations exist in the literature for the mod-
ulus of a virtual open annulus. For instance, A. Ducros sets Mod(A) := Mod(C0)

(see [Duc, 3.6.15.11]).

We refer the reader to [Duc, Section 3.6] for a thorough treatment of classical
and virtual discs and annuli.

5.8.2 The Case of an Algebraically Closed and Maximally
Complete Base Field

In this section, we assume that k is algebraically closed and maximally complete.
This will allow us to prove our results through direct computations.

Recall that, by Lemma 5.3.11 and Remark 5.3.19, each point of A1,an
k (or a disc

or an annulus) is of the form ηα,r , for α ∈ k and r ∈ R�0.
Let γ ∈ k and ρ ∈ R>0. We consider the closed disc D+(γ, ρ).

Lemma 5.8.8 The map

[0, 1] ×D+(γ, ρ) 2 (t, ηα,r ) �−→ ηα,max(r,tρ) ∈ D+(γ, ρ)

is well-defined and continuous. It induces a deformation retraction ofD+(γ, ρ) and
D−(γ, ρ) ∪ {ηγ,ρ} onto their unique boundary point ηγ,ρ . ��

Let γ ∈ k and ρ1 < ρ2 ∈ R>0. We consider the open annulus
A := A−(γ, ρ1, ρ2). Each rational point of A is contained in an open disc. Indeed,
let α ∈ k ∩ A (which implies that ρ1 < |γ − α| < ρ2). Then, the open disc
D−(α, |γ − α|) is the maximal open disc containing α that lies in A. This open disc
is relatively compact in A and its unique boundary point is ηα,|γ−α| = ηγ,|γ−α|.

We have

A−%A =
⋃

α∈k∩A
D−(α, |γ − α|).
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In particular, each connected component of A− %A is an open disc. For each such
open disc D, we denote by ηD its boundary point in A.

Lemma 5.8.9 The map

[0, 1] ×A 2 (t, ηα,r ) with r � |γ − α| �−→ ηα,max(r,t |γ−α|) ∈ A

is well-defined and continuous. It induces a deformation retraction of A onto %A.
Its restriction to each connected componentD ofA−%A coincides with the map

from Lemma 5.8.8 and induces a deformation retraction of D onto ηD .
For each η ∈ %A, the set of points that are sent to η by the retraction map is the

union of η and all the connected componentD of A−%A such that ηD = η. It is a
flat closed annulus. ��

5.8.3 The General Case

We now remove the assumption on k. LetK be an extension of k that is algebraically
closed and maximally complete. IfX is a virtual disc or a virtual annulus, then each
connected component of π−1

K/k(X) is a true disc or annulus over K and the results
of the previous section apply. By continuity and surjectivity of πK/k, we deduce
retraction results in this setting too.

Proposition 5.8.10 Let D be a virtual open disc in A
1,an
k . Then, D has a unique

boundary point ηD in A
1,an
k and there exists a canonical deformation retraction

τD : D ∪ {ηD} → {ηD}. ��
Proposition 5.8.11 Let A be a virtual open annulus. Each connected component of
A−%A is a virtual open disc.

There exists a canonical deformation retraction τA : A → %A. Its restriction to
any connected componentD ofA−%A induces the map τD from Proposition 5.8.10.

Moreover, for each open interval (resp. closed interval, resp. singleton) I in %A,
the set τ−1

A (I) is a virtual open annulus (resp. a virtual closed annulus, resp. a
virtual flat closed annulus). ��
Lemma 5.8.12 Let A be a virtual open annulus. Let F be a finite subset of %A and
denote by I the set of connected components of%A−F . The elements of I are open
intervals and we have

Mod(A) =
∏

I∈I
Mod(τ−1

A (I)).

��
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5.9 Lengths of Intervals

In this section, we show that intervals inside A1,an
k may be endowed with a canonical

(exponential) length. To start with, we define the useful notion of branch at a point.

Notation 5.9.1 For α ∈ k̂a and r ∈ R>0, we set

D−∞(α, r) := {x ∈ A
1,an
k : |(T − α)(x)| > r}.

Lemma 5.9.2 Let x ∈ A
1,an
k̂a

.

If x is of type 1 or 4, then A
1,an
k̂a

− {x} is connected.

If x = ηα,r , with α ∈ k̂a and r ∈ R>0 − |k×|, then the connected components of
A

1,an
k̂a

− {x} are D−(α, r) andD−∞(α, r).
If x = ηα,r , with α ∈ k̂a and r ∈ |k×|, then the connected components of

A
1,an
k̂a

− {x} are D−∞(α, r) and the discs of the form D−(β, r) with |β − α| � r .
Proof Assume that x is of type 1 or 4. Let y, y ′ ∈ A

1,an
k̂a

− {x}. By Corollary 5.7.8,

Iy ∪ Iy ′ is a connected subset of A1,an
k̂a

containing y and y ′. By Corollary 5.7.5, it

does not contain x. It follows that A1,an
k̂a

− {x} is connected.

Assume that x = ηα,r , with α ∈ k̂a and r ∈ R>0 − |k×|. By Proposition 5.7.1,
D−(α, r) is connected. Since D−∞(α, r) may be written as an increasing union of
open annuli, we deduce from Proposition 5.7.1) that it is connected too. The result
now follows from Lemma 5.4.7.

Assume that x is of type 2. Up to a change of variables, we may assume that
x = η0,1. As before, we deduce from Proposition 5.7.1 that D−∞(0, 1) and the discs
of the form D−(β, 1) with |β| � 1 are connected. The result now follows from
Lemma 5.4.9. ��
Remark 5.9.3 We have D−(β, r) = D−(β ′, r) if, and only if, |β − β ′| < r .
Definition 5.9.4 Let x ∈ A

1,an
k . Let y, z ∈ A

1,an
k − {x}. We say that the intervals

(x, y] and (x, z] are x-equivalent if (x, y] ∩ (x, z] �= ∅.
An x-equivalence class of intervals (x, y], with x �= y, is called a branch at x.

We denote by Bx the set of branches at x.

Remark 5.9.5 If (x, y] and (x, z] are equivalent, if follows from the unique path-
connectedness of A1,an

k (see Proposition 5.7.12) that there exists t ∈ A
1,an
k − {x}

such that (x, t] = (x, y] ∩ (x, z].
Lemma 5.9.6 Let x ∈ A

1,an
k . Denote by Cx the set of connected component

of A1,an
k − {x}.



216 J. Poineau and D. Turchetti

For each y ∈ A
1,an
k −{x}, denote byCx(y) the connected component of A1,an

k −{x}
containing y. The map

C : Bx −→ Cx
(x, y] �−→ Cx(y)

is well-defined and bijective.

Proof Let y ∈ A
1,an
k − {x}. For each t ∈ (x, y], the interval [t, y] is connected

and does not contain x, hence Cx(t) = Cx(y). It then follows from Remark 5.9.5
that C((x, y)) only depends on the equivalence class of (x, y). In other words, C is
well-defined.

Let y, z ∈ A
1,an
k − {x} such that (x, y] is not equivalent to (x, z]. It follows that

[y, x] ∪ [x, z] is an injective path from y to z. Since, by Proposition 5.7.12, A1,an
k is

uniquely path-connected, the unique injective path [y, z] from y to z contains x. It
follows that y and z belong to different connected components of A1,an

k − {x}. This
proves the injectivity of C.

Finally, the surjectivity of C is obvious. ��
Lemma 5.9.7 Let x ∈ A

1,an
k be a point of type 2 or 3. Let y ∈ A

1,an
k − {x}. Then,

there exists z in (x, y) such that, for each t ∈ (x, z), the interval (x, t) is the skeleton
of a virtual open annulus.

Proof Let x ′ ∈ π−1
k̂a/k

(x). Let y ′ ∈ π−1
k̂a/k

(y). The image of the path [x ′, y ′] by πk̂a/k
is a path between x and y. It follows that, up to changing x ′ and y ′, we may assume
that πk̂a/k restricts to a bijection between [x ′, y ′] and [x, y].

By Lemma 5.9.6 and the explicit description of the connected components
of A

1,an
k̂a

− {x ′} from Lemma 5.9.2, there exists z′ in (x, y ′) such that, for each
t ′ ∈ (x, z′), the interval (x, t ′) is the skeleton of a open annulus.

By Lemma 5.6.9, the orbit of any open annulus under the action of Gal(ks/k)
is finite. It follows that, up to choosing z′ closer to x, we may assume that, for
each t ′ ∈ (x, z′), the interval (x, t ′) is the skeleton of a open annulus, all of whose
conjugates either coincide with it or are disjoint from it. The image of such an open
annulus by πk̂a/k is a virtual open annulus, and the result follows. ��

As a consequence, we obtain the following result, which is the key-point to define
lengths of intervals.

Lemma 5.9.8 Let x, y ∈ A
1,an
k be points of type 2 or 3. Then, there exists a finite

subset F of (x, y) such that each connected component of (x, y)−F is the skeleton
of a virtual open annulus. ��
Definition 5.9.9 Let x, y ∈ A

1,an
k be points of type 2 or 3. Let F be a finite subset

of (x, y) such that each connected component of (x, y) − F is the skeleton of a
virtual open annulus. Let I be the set of connected components of (x, y)− F and,
for each J ∈ J , denote by AJ the virtual open annulus with skeleton J .



5 Berkovich Curves and Schottky Uniformization I: The Berkovich Affine Line 217

We define the (exponential) length of (x, y) to be

�((x, y)) :=
∏

J∈J
Mod(AJ ) ∈ [1,+∞).

It is independent of the choices, by Lemma 5.8.12.

Definition 5.9.10 Let I be an interval inside A1,an
k that is not a singleton. We define

the (exponential) length of I to be

�(I) := sup({�((x, y)) : x, y ∈ I of type 2 or 3}) ∈ [1,+∞].

Example 5.9.11 Let α ∈ k and r ∈ R>0 with r � |α|. Then, we have

�([η1, ηα,r ]) = �((η1, ηα,r )) =
⎧
⎨

⎩

1
r

if |α| � 1;
|α|
r

if |α| � 1.

In particular, we always have �([η1, ηα,r ]) � 1/r .

Lemma 5.9.12 Let I be an interval in A
1,an
k . We have �(I) = +∞ if, and only if,

the closure of I contains a point of type 1.
Let I1, I2 be intervals in A

1,an
k such that I = I1 ∪ I2 and I1 ∩ I2 is either empty

or a singleton. Then, we have

�(I) = �(I1) �(I2).

��

5.10 Variation of Rational Functions

In this section, for every rational function F ∈ k(T ), we study the variation of |F |
on A

1,an
k . We will explain that it is controlled by a finite subtree of A

1,an
k and

investigate metric properties.

Notation 5.10.1 Let x ∈ A
1,an
k . We set

Ix := πk̂a/k(Ix ′),

for x ′ ∈ π−1
k̂a/k

(x).

By Remark 5.7.3, this does not depend on the choice of x ′.

As in the case of an algebraically closed base field, Ix may be thought of as a
path from x to ∞.
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Proposition 5.10.2 Let F ∈ k(T )− {0}. Let Z be the set rigid points of A1,an
k that

are zeros or poles of F . Set

IZ :=
⋃

z∈Z
Iz.

Then |F | is locally constant on A
1,an
k − IZ .

Proof One immediately reduces to the case where the base field is k̂a . Since k̂a

is algebraically closed, F may be written as a quotient of products of linear
polynomials. It follows that is is enough to prove the results for linear polynomials.

Let α ∈ k̂a and let us prove the result for F = T − α. Let C be a connected
component of A1,an

k − Iα . Let η in the closure of C. It belongs to Iα , hence is of the
form ηα,r for r ∈ R�0.

Recall that discs are connected, by Proposition 5.7.1. By Lemma 5.4.7, the case
r /∈ |k×| leads to a contradiction. It follows that r ∈ |k×|. Performing an appropriate
change of variables and using Lemma 5.4.9, we deduce that there exists β ∈ k̂a with
|α − β| = r such that C = D−(β, r). For each x ∈ C, we have

|(T − α)(x)| = |(T − β)(x)+ (β − α)| = r,

because of the non-Archimedean triangle inequality. The results follows. ��
Our next step is to describe the behaviour of |F | on IZ using metric data.

Recall that, for each x ∈ A
1,an
k , we denote by Bx the set of branches at x (see

Definition 5.9.4).

Definition 5.10.3 Let x ∈ A
1,an
k and b ∈ Bx . Let E be a set. A map f : b → E

is the data of a non-empty subset I of representatives of b and a family of maps
(fI : I → E)I∈I such that, for each I, J ∈ I, fI and fJ coincide on I ∩ J .

Let I be a representative of b. We say that f is defined on I if I belongs to I. In
this case, we usually write f : I → E instead of fI : I → E.

Note that a map f : I → E defined on some representative I of b naturally gives
rise to a map f : b→ E.

Definition 5.10.4 Let x ∈ A
1,an
k and b ∈ Bx . Let f : b→ R�0. Let N ∈ Z.

We say that f is monomial along b of exponent N if there exists a representa-
tive (x, y] of b such that f is defined on (x, y] and

∀z ∈ (x, y],∀t ∈ (x, z], f (z) = f (t) �([t, z])N .

We then set

μb(f ) := N.

We say that f is constant along b if it is monomial along b of exponent 0.
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Remark 5.10.5 Written additively, the last condition becomes

∀z ∈ (x, y],∀t ∈ (x, z], log(f (z)) = log(f (t))+ N log(�([t, z])).

This explains why, in the literature, such maps are often referred to as log-linear and
N denoted by ∂b log(f ).

Let x ∈ A
1,an
k and x ′ ∈ π−1

k̂a/k
(x). Let b′ ∈ Bx ′ . It follows from Lemmas 5.9.7

and 5.8.4 that, for each small enough representative (x ′, y ′] of b′, πk̂a/k induces a
homeomorphism from (x ′, y ′] to (x, πk̂a/k(y

′)]. This property allows to define the
image of the branch b′.

Definition 5.10.6 Let x ∈ A
1,an
k and x ′ ∈ π−1

k̂a/k
(x). Let b′ ∈ Bx ′ . The image of the

branch b′ by πk̂a/k is the branch

πk̂a/k(b
′) := (x, πk̂a/k(y ′)] ∈ Bx,

for a small enough representative (x ′, y ′] of b′.

Lemma 5.10.7 Let x ∈ A
1,an
k and x ′ ∈ π−1

k̂a/k
(x). Let b ∈ Bx . For each b ∈ Bx ,

there exists b′ ∈ Bx ′ such that πk̂a/k(b
′) = b. The set of such b′’s is finite and

Gal(ks/k) acts transitively on it.

Proof The existence of b′ is proved as in the beginning of the proof of Lemma 5.9.7.
The rest of the statement follows from Lemmas 5.9.7 and 5.6.9 and Corollary 5.6.6.

��
The following result is a direct consequence of the definitions.

Lemma 5.10.8 Let x ∈ A
1,an
k and b ∈ Bx . Let f : b → R�0. Assume that there

exists N ∈ Z such that, for each b′ ∈ π−1
k̂a/k

, f ◦ πk̂a/k is monomial along b′ of

exponent N . Then, f is monomial along b of exponent N · $π−1
k̂a/k

(b).

Definition 5.10.9 Let F ∈ k̂a(T ) − {0}. Let α ∈ k̂a . The order of F at α is the
unique integer v such there exists P ∈ k̂a[T ] with P(α) �= 0 satisfying

F(T ) = (T − α)v P (T ).

We denote it by ordα(P ).

Theorem 5.10.10 Let F ∈ k̂a(T ) − {0}. Let x ∈ A
1,an
k̂a

and b ∈ Bx . Then the
map |F | is monomial along b.

If x is of type 1, then μb(|F |) = ordx(F ).
If x is of type 2 or 3 and C(b) is bounded, then

μb(|F ]) = −
∑

z∈k̂a∩C(b)
ordz(F ).
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If x is of type 2 or 3 and C(b) is unbounded, then

μb(|F ]) = deg(F )−
∑

z∈k̂a∩C(b)
ordz(F ).

If x is of type 4, then μb(|F |) = 0.

Proof Let us first remark that if the result holds for G and H in k̂a(T ) − {0}, then
it also holds for GH and G/H . As a result, since k̂a is algebraically closed, it is
enough to prove the result for a linear polynomial, so we may assume that F =
T − a, with a ∈ k.
• Assume that x is of type 1.

There exists α ∈ k such that x = α. By Lemmas 5.9.2 and 5.9.6, there is a unique
branch at x. It is represented by

(α, ηα,s ] = {ηα,t , t ∈ (0, s]},
for any s ∈ R>0.

If α = a, then for each t ∈ R>0, we have |(T − a)(ηa,t )| = t , hence |T − a| is
monomial along b of exponent 1. Since we have orda(T − a) = 1, the result holds
in this case.

If α �= a, then for each t ∈ (0, |a − α|), we have |(T − a)(ηα,t )| = |aα|, hence
|T − a| is monomial along b of exponent 0. Since we have ordα(T − a) = 0, the
result holds in this case too.

• Assume that x is of type 2 or 3 and that C(b) is bounded.

There exist α ∈ k and r ∈ R>0 such that x = ηα,r . By Lemma 5.9.2, there exists
β ∈ k with |β − α| � r such that C(b) = D−(β, r). Since ηα,r = ηβ,r , we may
assume that α = β. The branch b is then represented by

(ηα,r , ηα,s ] = {ηα,t , t ∈ [s, r)},
for any s ∈ (0, r].

If a ∈ C(b), then we have |a − α| < r , hence, for each t ∈ [|a − α|, r), we have
|(T − a)(ηα,t )| = t , hence |T − a| is monomial along b of exponent−1. It follows
that the result holds in this case.

If a /∈ C(b), then we have |a − α| = r , hence, for each t ∈ [0, r), we have
|(T − a)(ηα,t )| = |a − α|, hence |T − a| is monomial along b of exponent 0. It
follows that the result holds in this case too.

• Assume that x is of type 2 or 3 and that C(b) is unbounded.

There exist α ∈ k and r ∈ R>0 such that x = ηα,r . By Lemma 5.9.2, the branch b
is then represented by

(ηα,r , ηα,s ] = {ηα,t , t ∈ (r, s]},
for any s ∈ (r,+∞).
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If a ∈ C(b), then we have |a − α| > r , hence, for each t ∈ (r, |a − α|), we have
|(T − a)(ηα,t )| = |a − α|, hence |T − a| is monomial along b of exponent 0. We
have

deg(T − a)−
∑

z∈k̂a∩C(b)
ordz(T − a) = deg(T − a)− orda(T − a) = 1− 1 = 0,

hence the result holds in this case.
If a /∈ C(b), then we have |a − α| � r , hence, for each t ∈ (r,+∞), we have

|(T − a)(ηα,t )| = t , hence |T − a| is monomial along b of exponent 1. We have

deg(T − a)−
∑

z∈k̂a∩C(b)
ordz(T − a) = deg(T − a) = 1,

hence the result holds in this case too.

• Assume that x is of type 4.

By Proposition 5.4.11, x admits a basis of neighborhood made of discs. It follows
that there exist α ∈ k and r ∈ R>0 such that x ∈ D−(α, r) and a /∈ D−(α, r). For
each y ∈ D−(α, r), we have |(T − a)(y)| = |(T − α)(y) + (α − a)| = |a − α|,
hence |T − a| is constant in the neighborhood of x. The result follows. ��
Remark 5.10.11 The term deg(R) that appears in the formula when C(b) is
unbounded may be identified with the opposite of the order of R at ∞. If we had
worked on P

1,an
k̂a

instead of A1,an
k̂a

, it would not have been necessary to discuss this
case separately.

Corollary 5.10.12 Let F ∈ k(T ) − {0}. Let x ∈ A
1,an
k be a point of type 2 or 3.

Then, there exists a finite subset Bx,F of Bx such that, for each b ∈ Bx \ Bx,F , |F |
is constant along b and we have

∑

b∈Bx
μb(|F |) =

∑

b∈Bx,F
μb(|F |) = 0.

Proof Using Lemma 5.10.8, one reduces to the case where the base field is k̂a . The
result then follows from Theorem 5.10.10, since we have ordz(F ) = 0 for almost
all z ∈ k̂a and

∑

z∈k̂a
ordz(F ) = deg(F ).

��
Remark 5.10.13 The statement of Corollary 5.10.12 corresponds to a harmonicity
property. This is more visible written in the additive form (see Remark 5.10.5):

∑

b∈Bx
∂b log(|F |) = 0.
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A full-fledged potential theory actually exists over Berkovich analytic curves. We
refer to A. Thuillier’s thesis [Thu05] for the details (see also [BR10] for the more
explicit case of the Berkovich line over an algebraically closed field).

Since analytic functions are, by definition, locally uniform limits of rational
functions, the results on variations of functions extend readily.

Theorem 5.10.14 Let x ∈ A
1,an
k be a point of type 2 or 3 and let F ∈ Ox − {0}.

Then, for b ∈ Bx , |F | is monomial along b with integer slope. Moreover, there exists
a finite subset Bx,F of Bx such that, for each b ∈ Bx \Bx,F , |F | is constant along b
and we have

∑

b∈Bx
μb(|F |) = 0.

��
Corollary 5.10.15 Let x ∈ A

1,an
k be a point of type 2 or 3 and let F ∈ Ox − {0}.

If |F | has a local maximum at x, then it is locally constant at x. ��
Corollary 5.10.16 Let U be a connected open subset of A1,an

k and let F ∈ O(U).
If |F | is not constant on U , then there exists y ∈ ∂U and b ∈ By such that

lim
z−→
b
y
|F(z)| = sup

t∈U
(|F(t)|),

where the limit is taken on points z converging to y along b, and |F | has a negative
exponent along b. ��

We conclude with a result of a different nature, showing that, if ϕ is a finite
morphism of curves, the relationship between the length of an interval at the source
and the length of its image is controlled by the degree of the morphism. We state
a simplified version of the result and refer to [Duc, Proposition 3.6.40] for a more
general statement.

Theorem 5.10.17 Let A1 and A2 be two virtual annuli over k with skeleta %1
and %2. Let ϕ : A1 → A2 be a finite morphism such that ϕ(%1) = %2. Then,
for each x, y ∈ %1, we have

�(ϕ([x, y])) = �([x, y])deg(ϕ).

��
Example 5.10.18 Let n ∈ N�1 and consider the morphism ϕ : A1,an

k → A
1,an
k given

by T �→ T n. For each r ∈ R>0, we have ϕ(ηr) = ηrn . In particular, for r < s ∈
R>0, we have

�(ϕ([ηr , ηs ])) = �([ηrn, ηsn]) = s
n

rn
= �([ηr, ηs ])n.
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Chapter 6
Berkovich Curves and Schottky
Uniformization II: Analytic
Uniformization of Mumford Curves

Jérôme Poineau and Daniele Turchetti

Abstract This is the second part of a survey on the theory of non-Archimedean
curves and Schottky uniformization from the point of view of Berkovich geometry.
It is more advanced than the first part and covers the theory of Mumford curves
and Schottky uniformization. We start by briefly reviewing the theory of Berkovich
curves, then introduce Mumford curves in a purely analytic way (without using
formal geometry). We define Schottky groups acting on the Berkovich projective
line, highlighting how geometry and group theory come together to prove that the
quotient by the action of a Schottky group is an analytic Mumford curve. Finally,
we present an analytic proof of Schottky uniformization, showing that any analytic
Mumford curve can be described as a quotient of this kind. The guiding principle
of our exposition is to stress notions and fully prove results in the theory of non-
Archimedean curves that, to our knowledge, are not fully treated in other texts.

6.1 Introduction

In the first part [PT20] of this survey, we provided a concrete description of the
Berkovich affine line over a non-Archimedean complete valued field (k, | · |) and
investigated its main properties. It is a remarkable fact that, combining topology,
algebra, and combinatorics, one can still get a very satisfactory description of more
general analytic curves over k, in the sense of Berkovich theory.

If k is algebraically closed, for instance, one can show that a smooth compact
Berkovich curve X can always be decomposed into a finite graph and an infinite
number of open discs. If the genus of X is positive, there exists a smallest graph
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satisfying this property. It is classically called the skeleton of X, an invariant that
encodes a surprising number of properties of X. As an example, if the Betti number
of the skeleton of X is equal to the genus of X and is at least 2, then the curve X
can be described analytically as a quotient �\O , where O is an open dense subset
of the projective analytic line P

1,an
k and � a suitable subgroup of PGL2(k). This

phenomenon is known as Schottky uniformization, and it is the consequence of a
celebrated theorem of D. Mumford, which is the main result of [Mum72a].

Obviously, D. Mumford’s proof did not make use of Berkovich spaces, as they
were not yet introduced at that time, but rather of formal geometry and the theory
of Bruhat-Tits trees. A few years later, L. Gerritzen and M. van der Put recasted
the theory purely in the language of rigid analytic geometry (using in a systematic
way the notion of reduction of a rigid analytic curve). We refer the reader to the
reference manuscript [GvdP80] for a detailed account of the theory and related
topics, enriched with examples and applications.

In this text, we develop the whole theory of Schottky groups and Mumford curves
from scratch, in a purely analytic manner, relying in a crucial way on the nice
topological properties of Berkovich spaces, and the tools that they enable us to use:
the theory of proper actions of groups on topological spaces, of fundamental groups,
etc. We are convinced that those features, and Berkovich’s point of view in general,
will help improve our understanding of Schottky uniformization.

In this second part of the survey, we have allowed ourselves to be sometimes
more sketchy than in the first part [PT20], but this should not cause any trouble to
anyone familiar enough with the theory of Berkovich curves. We begin by reviewing
standard material. In Sect. 6.2, we define the Berkovich projective line P1,an

k over k,
consider its group of k-linear automorphisms PGL2(k) and introduce the Koebe
coordinates for the loxodromic transformations. In Sect. 6.3, we give an introduction
to the theory of Berkovich analytic curves, starting with those that locally look like
the affine line. For the more general curves, we review the theory without proofs,
but provide some references. We conclude this section by an original purely analytic
definition of Mumford curves. In Sect. 6.4, we propose two definitions of Schottky
groups, first using the usual description of their fundamental domains and second,
via their group theoretical properties, using their action of P

1,an
k . We show that

they coincide by relying on the nice topological properties of Berkovich spaces. In
Sect. 6.5, we prove that every Mumford curve may be uniformized by a dense open
subset of P1,an

k with a group of deck transformations that is a Schottky group. Once
again, our proof is purely analytic, relying ultimately on arguments from potential
theory. To the best of our knowledge, this is the first complete proof of this result.
We conclude the section by investigating automorphisms of Mumford curves and
giving explicit examples.

We put a great effort in providing a self-contained presentation of the results
above and including details that are often omitted in the literature. Both the
theories of Berkovich curves and Schottky uniformization have a great amount of
ramifications and interactions with other branches of mathematics. For the interested
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readers, we provide an appendix with a series of references that will hopefully help
them to navigate through this jungle of wonderful mathematical objects.

The idea of writing down these notes came to the first author when he was taking
part to the VIASM School on Number Theory in June 2018 in Hanoi. Just as the
school was, the material presented here is primarily aimed at graduate students,
although we also cover some of the most advanced developments in the field.
Moreover, we have included questions that we believe could be interesting topics for
young researchers (see Remarks 6.4.20 and 6.5.7). The appendix provides additional
material leading to active subjects of research and open problems.

The different chapters in this volume are united by the use of analytic techniques
in the study of arithmetic geometry. While they treat different topics, we encourage
the reader to try to understand how they are related and may shed light on each other.
In particular, the lecture notes of F. Pellarin [Pel20], about Drinfeld modular forms,
mention several topics related to ours, although phrased in the language of rigid
analytic spaces, such as Schottky groups (Section 5) or quotient spaces (Section 6).
It would be interesting to investigate to what extent the viewpoint of Berkovich
geometry presented here could provide a useful addition to this theory.

We retain notation as in [PT20]. In particular, (k, | · |) is a non-Archimedean
complete valued field, ka is a fixed algebraic closure of it, and k̂a is the completion
of the latter.

6.2 The Berkovich Projective Line and Möbius
Transformations

6.2.1 Affine Berkovich Spaces

We generalize the constructions of [PT20], replacing k[T ] by an arbitrary k-algebra
of finite type. Our reference here is [Ber90, Section 1.5].

Definition 6.2.1 Let A be k-algebra of finite type. The Berkovich spectrum
Specan(A) of A is the set of multiplicative seminorms on A that induce the given
absolute value | · | on k.

As in [PT20, Definition 5.3.1], we can associate a completed residue field H (x)

to each point x of Specan(A). As in [PT20, Section 5.4], we endow Specan(A) with
the coarsest topology that makes continuous the maps of the form

x ∈ Specan(A) �−→ |f (x)| ∈ R

for f ∈ A. Properties similar to that of the Berkovich affine line still hold in this
setting: the space Specan(A) is countable at infinity, locally compact and locally
path-connected.
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We could also define a sheaf of function on Specan(A) as in [PT20, Defini-
tion 5.5.1]1 with properties similar to that of the usual complex analytic spaces.

Lemma 6.2.2 Each morphism of k-algebras ϕ : A→ B induces a continuous map
of Berkovich spectra

Specan(ϕ) : Specan(B) −→ Specan(A)

| · |x �−→ |ϕ( ·)|x .

Let us do the example of a localisation morphism.

Notation 6.2.3 Let A be a k-algebra of finite type and let f ∈ A. We set

D(f ) := {x ∈ Specan(A) : f (x) �= 0}.

It is an open subset of Specan(A).

Lemma 6.2.4 Let A be a k-algebra of finite type and let f ∈ A. The map
Specan(A[1/f ])→ Specan(A) induced by the localisation morphism A→ A[1/f ]
induces a homeomorphism onto its image D(f ). ��

6.2.2 The Berkovich Projective Line

In this section, we explain how to construct the Berkovich projective line over k. It
can be done, as usual, by gluing upside-down two copies of the affine line A

1,an
k

along A
1,an
k − {0}. We refer to [BR10, Section 2.2] for a definition in one step

reminiscent of the “Proj” construction from algebraic geometry.
To carry out the construction of the Berkovich projective line more precisely,

let us introduce some notation. We consider, as before, the Berkovich affine line
X := A

1,an
k with coordinate T , i.e. Specan(k[T ]). By Lemma 6.2.4, its subset U :=

A
1,an
k − {0} = D(T ) may be identified with Specan(k[T , 1/T ]).
We also consider another Berkovich affine lineX′ with coordinate T ′ and identify

its subset U ′ := X′ − {0} with Specan(k[T ′, 1/T ′]).
By Lemma 6.2.2, the isomorphism k[T ′, 1/T ′] ∼−→ k[T , 1/T ] sending T ′ to 1/T

induces an isomorphism ι : U ∼−→ U ′.

1Note however that the ring of global sections is always reduced, so that we only get the right
notion when A is reduced. The proper construction involves defining first the space A

n,an
k :=

Specan(k[T1, . . . , Tn]), then open subsets of it, and then closed analytic subsets of the latter, as we
usually proceed for analytifications in the complex setting.
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Definition 6.2.5 The Berkovich projective line P1,an
k is the space obtained by gluing

the Berkovich affine lines X and X′ along their open subsets U and U ′ via the
isomorphim ι.

We denote by ∞ the image in P
1,an
k of the point 0 in X′.

The basic topological properties of P1,an
k follow from that of A1,an

k .

Proposition 6.2.6 We have P1,an
k = A

1,an
k ∪ {∞}.

The space P
1,an
k is Hausdorff, compact, uniquely path-connected and locally

path-connected. ��
For x, y ∈ P

1,an
k , we denote by [x, y] the unique injective path between x and y.

6.2.3 Möbius Transformations

Let us recall that, in the complex setting, the group PGL2(C) acts on P
1(C) via

Möbius transformations. More precisely, to an invertible matrix A =
(
a b

c d

)

, one

associates the automorphism

γA : z ∈ P
1(C) �−→ az+ b

cz+ d ∈ P
1(C)

with the usual convention that, if c �= 0, then γA(∞) = a/c and γA(−d/c) = ∞,
and, if c = 0, then γA(∞) = ∞.

We would like to define an action of PGL2(k) on P
1,an
k similar to the complex

one. Let A :=
(
a b

c d

)

∈ GL2(k).

First note that we can use the same formula as above to associate to A an
automorphism γA of the set of rational points P1,an

k (k).
It is actually possible to deal with all the points this way. Indeed, let x be a point

of P
1,an
k − P

1,an
k (k). In [PT20, Section 5.3], we have associated to x a character

χx : k[T ] → H (x). Since x is not a rational point, χx(T ) does not belong to k,
hence the quotient (aχx(T ) + b)/(cχx(T ) + d) makes sense. We can then define
γA(x) as the element of A1,an

k associated to the character

P(T ) ∈ k[T ] �→ P
(aχx(T )+ b
cχx(T )+ d

)
∈H (x).

This construction can also be made in a more algebraic way. By Lemmas 6.2.2
and 6.2.4, the morphism of k-algebras

P(T ) ∈ k[T ] �→ P
(aT + b
cT + d

)
∈ k

[
T ,

1

cT + d
]
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induces a map γA,1 : A1,an
k − {− d

c
} → A

1,an
k ⊆ P

1,an
k (with the convention that

−d/c = ∞ if c = 0).
Similarly, the morphism of k-algebras

Q(U) ∈ k[T ′] �→ Q
( c + dT ′
a + bT ′

)
∈ k

[
T ′, 1

a + bT ′
]

induces a map γA,2 : P1,an
k −{0,− b

a
} → P

1,an
k (with the convention that−b/a = ∞

if a = 0).
A simple computation shows that the maps γA,1 and γA,2 are compatible with the

isomorphism ι from Sect. 6.2.2. Note that we always have − d
c
�= − b

a
. If ad �= 0, it

follows that we have
(
A

1,an
k − {− d

c
})∪ (

P
1,an
k − {0,− b

a
}) = P

1,an
k , so the two maps

glue to give a global map

γA : P1,an
k → P

1,an
k .

We let the reader handle the remaining cases by using appropriate changes of
variables.

Notation 6.2.7 For a, b, c, d ∈ k with ad−bc �= 0, we denote by

[
a b

c d

]

the image

in PGL2(k) of the matrix

(
a b

c d

)

.

From now on, we will identify each element A of PGL2(k) with the associated
automorphism γA of P1,an

k .

Lemma 6.2.8 The image of a closed (resp. open) disc of P
1,an
k by a Möbius

transformation is a closed (resp. open) disc.

Proof Let A ∈ GL2(k). We may extend the scalars, hence assume that k is
algebraically closed. In this case, A is similar to an upper triangular matrix. In
other words, up to changing coordinates of P1,an

k , we may assume that A is upper
triangular. The transformation γA is then of the form

γA : z ∈ P
1,an
k �→ αz ∈ P

1,an
k

or

γA : z ∈ P
1,an
k �→ z+ α ∈ P

1,an
k

for some α ∈ k. In both cases, the result is clear. ��
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6.2.4 Loxodromic Transformations and Koebe Coordinates

Definition 6.2.9 A matrix in GL2(k) is said to be loxodromic if its eigenvalues in ka

have distinct absolute values.
A Möbius transformation is said to be loxodromic if some (or equivalently every)

representative is.

Lemma 6.2.10 Let a, b, c, d ∈ k with ad−bc �= 0 and setA :=
(
a b

c d

)

∈ GL2(k).

Then A is loxodromic if, and only if, we have |ad − bc| < |a + d|2.

Proof Let λ and λ′ be the eigenvalues of A in ka . We may assume that |λ| � |λ′|.
On the one hand, if |λ| = |λ′|, then we have

|a + d|2 = |λ+ λ′|2 � |λ′|2 = |λ| |λ′| = |ad − bc|.

On the other hand, if |λ| < |λ′|, then we have

|a + d|2 = |λ+ λ′|2 = |λ′|2 > |λ| |λ′| = |ad − bc|.

��
Let A ∈ PGL2(k) be a loxodromic Möbius transformation.
Fix some representative B of A in GL2(k). Denote by λ and λ′ its eigenvalues

in ka . We may assume that |λ| < |λ′|. The characteristic polynomial χB of B cannot
be irreducible over k, since otherwise its roots in ka would have the same absolute
values. It follows that λ and λ′ belong to k. Set β := λ/λ′ ∈ k◦◦.

The eigenspace of B associated to the eigenvalue λ (resp. λ′) is a line in k2.
Denote by α (resp. α′) the corresponding element in P1(k).

Definition 6.2.11 The elements α, α′ ∈ P1(k) and β ∈ k◦◦ depend only on A and
not on the chosen representative. They are called the Koebe coordinates of A.

There exists a Möbius transformation ε ∈ PGL2(k) such that ε(0) = α and
ε(∞) = α′. The Möbius transformation ε−1Aε now has eigenspaces corresponding
to 0 and ∞ in P1(k) and the associated automorphism of P1,an

k is

γε−1Aε : z ∈ P
1,an
k �→ βz ∈ P

1,an
k .

We deduce that 0 and ∞ are respectively the attracting and repelling fixed points
of γε−1Aε in P

1,an
k . It follows that α and α′ are respectively the attracting and

repelling fixed points of γA in P
1,an
k .
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The same argument shows that the Koebe coordinates determine uniquely the
Möbius transformation A. In fact, given α, α′, β ∈ k with α �= α′ and 0 < |β| < 1,
the Möbius transformation that has these elements as Koebe coordinates is given
explicitly by

M(α, α′, β) =
[
α − βα′ (β − 1)αα′
1− β βα − α′

]

, (6.2.1)

In an analogous way, whenever∞ ∈ P
1,an
k is an attracting or repelling point of a

loxodromic Möbius transformation, we can recover the latter as:

M(α,∞, β) =
[
β (1− β)α
0 1

]

or M(∞, α′, β) =
[

1 (β − 1)α′
0 β

]

. (6.2.2)

Remark 6.2.12 Let A ∈ PGL2(k) be a Möbius transformation that is not loxo-
dromic. Then, extending the scalars to k̂a and possibly changing the coordinates,
the associated automorphism of P1,an

k̂a
is a homothety

z ∈ P
1,an
k̂a

�→ βz ∈ P
1,an
k̂a

with |β| = 1

or a translation

z ∈ P
1,an
k̂a

�→ z+ b ∈ P
1,an
k̂a
.

Note that those automorphisms have several fixed points in P
1,an
k̂a

(ηr with r � 0 in
the first case and r � |b| in the second). It follows that A itself also has infinitely
many fixed points in P

1,an
k .

6.3 Berkovich k-Analytic Curves

6.3.1 Berkovich A1-like Curves

In this section we go one step beyond the study of affine and projective lines, by
introducing a class of curves that “locally look like the affine line”, and see that
there are interesting examples of curves belonging to this class.

A much more general theory of k-analytic curves exists but it will be discussed
only briefly in this text in Sect. 6.3.2, in the case of smooth curves. For more on this
topic, the standard reference is [Ber90, Chapter 4]. The most comprehensive account
to-date can be found in A. Ducros’ book project [Duc], while deeper discussions of
specific aspects are contained in the references in the Appendix A.1 of the present
text.
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Definition 6.3.1 A k-analyticA1-like curve is a locally ringed space in which every
point admits an open neighborhood isomorphic to an open subset of A1,an

k .

It follows from the explicit description of bases of neighborhoods of points
of A1,an

k (see [PT20, Proposition 5.4.11]) that each k-analytic A1-like curve admits a
covering by virtual open Swiss cheeses. By local compactness, such a covering can
always be found locally finite. It can be refined into a partition (no longer locally
finite) consisting of simpler pieces.

Theorem 6.3.2 Let X be a k-analytic A1-like curve. Then, there exist

(i) a locally finite set S of type 2 points of X;
(ii) a locally finite set A of virtual open annuli of X;

(iii) a set D of virtual open discs of X

such that S ∪A ∪D is a partition of X.

Proof Each virtual open Swiss cheese may be written as a union of finitely many
points of type 2, finitely many virtual open annuli and some virtual open discs (as
in Example 6.3.5 below). By a combinatorial argument that is not difficult but quite
lengthy, the covering so obtained can be turned into a partition. ��
Definition 6.3.3 Let X be a k-analytic A1-like curve. A partition T = (S,A,D)
ofX satisfying the properties (i), (ii), (iii) of Theorem 6.3.2 is called a triangulation
of X. The locally finite graph naturally arising from the set

%T := S ∪
⋃

A∈A
%A

is called the skeleton of T . It is such thatX−%T is a disjoint union of virtual open
discs.

A triangulation T is said to be finite if the associated set S is finite. If this is
the case, then %T is a finite graph. By the results of [PT20, Section 5.9], for each
triangulation T , %T may be naturally endowed with a metric structure.

Remark 6.3.4 It is more usual to define a triangulation as the datum of the set S
only. Note that S determines uniquely A and D since their elements are exactly the
connected components of X − S, so our change of convention is harmless.

Example 6.3.5 Consider the curve

X := D−(0, 1)− (D+(a, r) ∪D+(b, r))

for r ∈ (0, 1) and a, b ∈ k with |a|, |b| < 1, |a − b| > r . Set

S := {ηa,|a−b|},

A := {A−(a, |a − b|, 1), A−(a, r, |a − b|), A−(b, r, |a − b|)}
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ηa,|a−b|

a

b

Fig. 6.1 The Swiss cheese X described in Example 6.3.5. Its skeleton %X is the union of the three
edges in evidence

and

D := {D−(u, |a − b|), u ∈ k, |u− a| = |u− b| = |a − b|}.

Then, the triple T := (S,A,D) is a triangulation of X. The associated skeleton is a
finite tree with three (half open) edges (Fig. 6.1).

Proposition 6.3.6 Let X be a connected A1-like curve. Let T = (S,A,D) be a
triangulation of X such that S �= ∅ or A �= ∅.

There exists a canonical deformation retraction τT : X → %T . Its restriction
to any virtual open annulus A ∈ A induces the map τA from [PT20, Proposi-
tion 5.8.11] and its restriction to any connected componentD of A−%A (which is
a virtual open disc) induces the map τD from [PT20, Proposition 5.8.10].

In particular, for each η ∈ %A, the set τ−1
T (η) is a virtual flat closed annulus. ��

Definition 6.3.7 Let X be a k-analytic A1-like curve. The skeleton of X is the
complement of all the virtual open discs contained in X. We denote it by %X.

Remark 6.3.8 Let X be a k-analytic A1-like curve. It is not difficult to check that
we have

%X =
⋂

T
%T ,
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for T ranging over all triangulations ofX. In particular,%X is a locally finite metric
graph (possibly empty).

Assume that X is connected and that %X is non-empty. Then there exists a
triangulation T0 of X such that %X = %T0 . In particular, there is a canonical
deformation retraction τX : X→ %X.

6.3.2 Arbitrary Smooth Curves

It goes beyond the scope of this survey to develop the full theory of Berkovich
analytic curves. We only state a few definitions and general facts, to which we would
like to refer later.

Definition 6.3.9 A smooth k-analytic curve is a locally ringed space X that
is locally isomorphic to an open subset of a Berkovich spectrum of the
form Specan(A), where A is the ring of functions on a smooth affine algebraic
curve over k.

For each smooth k-analytic curveX and each complete valued extensionK of k,
one may define the base-change XK of X to K , by replacing each Specan(A)

by Specan(A ⊗k K) in its definition. It is a smooth K-analytic curve and there
is a canonical projection morphism πK/k : XK → X. The analogues of [PT20,
Proposition 5.6.5] and [PT20, Corollary 5.6.6] hold in this more general setting.

Example 6.3.10 For each complete valued extension K of k, the base-change
of A1,an

k to K is A1,an
K .

If one starts with a smooth algebraic curve X over k, one may cover it by
curves of the form Spec(A), with A as in Definition 6.3.9 above, and then glue the
corresponding analytic spaces Specan(A) to get a smooth k-analytic curve, called
the analytification of X , and denoted by X an.

Example 6.3.11 The analytification of A1
k is A1,an

k .

As in the complex case, smooth compact k-analytic curves are automatically
algebraic.

Theorem 6.3.12 Let X be a smooth compact k-analytic curve. Then, there exists a
projective smooth algebraic curve over k such that X = X an.

The invariants we have defined so far for the Berkovich affine line A
1,an
k have

natural counterparts for smooth k-analytic curves. Let X be a smooth k-analytic
curve. For each point x ∈ X, the completed residue field H (x) is the completion of
a finitely generated extension of k of transcendence degree less than or equal to 1.
We may then define integers s(x) and t (x) such that s(x) + t (x) � 1 and the type
of x, as we did in the case of A1,an

k (see [PT20, Definition 5.3.9]).
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If x is of type 2, then, by the equality case in Abhyankar’s inequality (see [PT20,
Theorem 5.3.8]), the group |H (x)×|/|k×| is finitely generated, hence finite, and the

field extension H̃ (x)/k̃ is finitely generated.
Let us fix the definition of genus of an algebraic curve.

Definition 6.3.13 Let F be a field and let C be a projective curve over F , i.e. a
connected normal projective scheme of finite type over F of dimension 1.

If F is algebraically closed, then C is smooth, and we define the geometric genus
of C to be

g(C) := dimF H 0(C,�C).

In general, let F̄ be an algebraic closure of F . Let C′ be the normalization of a
connected component of C ×F F̄ . It is a projective curve over F̄ and we define the
geometric genus of C to be

g(C) := g(C′).

It does not depend on the choice of C′.

Definition 6.3.14 Let X be a smooth k-analytic curve and let x ∈ X be a point of
type 2.

The residue curve at x is the unique (up to isomorphism) projective curve Cx

over k̃ with function field H̃ (x). The genus of x is the geometric genus of Cx . We
denote it by g(x).

The stable genus of x, is the genus of any point x ′ over x in Xk̂a . We denote it
by gst(x). It does not depend on the choice of x ′.

Example 6.3.15 Let α ∈ k and r ∈ |k×|Q. By [PT20, Example 5.3.10], the residue
curve at the point ηα,r in A

1,an
k is the projective line P1

k̃
over k̃. In particular, we have

g(ηα,r ) = 0.
By [PT20, Lemma 5.3.11], any point of type 2 in A

1,an
k (hence in any k-analytic

A1-like curve) has stable genus 0.

The fact that the stable genus does not need to coincide with the genus is what
motivates our definition. Let us give an example of this phenomenon.

Remark 6.3.16 Let p � 5 be a prime number. Consider the affine analytic
plane A

2,an
Qp

with coordinates x, y. Let X be the smooth Qp-analytic curve

inside A
2,an
Qp

given by the equation y2 = x3 + p and let π : X → A
1,an
Qp

be the
projection onto the first coordinate x.
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The fiber π−1(η0,|p|−1/3) contains a unique point, that we will denote by a. One

may check that H̃ (a) is a purely transcendental extension of Fp generated by the
class u of px3 (which coincides with the class of py2):

H̃ (a) / Fp(u).

In particular, we have Ca = P1
Fp

and g(a) = 0.
Let us now extend the scalars to the field Cp, whose residue field is an algebraic

closure Fp of Fp. Let b be the unique point of XCp over a. The field H̃ (b) is now
generated by the class v of p−1/3x and the class w of p−1/2y:

H̃ (b) / Fp(v)[w]/(v3 −w2 + 1).

In particular, Cb is an elliptic curve over Fp, and we have gst(a) = g(b) = 1.

We always have an inequality between genus and stable genus.

Lemma 6.3.17 Let X be a smooth k-analytic curve and let x ∈ X be a point of
type 2. Then, we have g(x) � gst(x).

Proof Let x ′ be a point of Xk̂a over x. By definition, the residue curve Cx at x is

defined over k̃ and the residue curve Cx ′ at x ′ is defined over an algebraic closure ¯̃k
of k̃.

The projection morphism πk̂a/k : Xk̂a → X induces an isometric embedding

H (x)→H (x ′), hence an embedding H̃ (x)→ H̃ (x ′). It follows that we have a

morphismCx ′ → Cx , hence a morphism ϕ : Cx ′ → Cx×k̃ ¯̃k. Its image is a connected

componentC of Cx ×k̃ ¯̃k. The morphism ϕ factors through C, and even through the
normalization C̃ of C. By definition, we have g(C̃) = g(x) and g(Cx ′) = gst(x).
The result now follows from the Riemann–Hurwitz formula. ��
Proposition 6.3.18 LetX be a smooth k-analytic curve and let x ∈ X be a point of
type 2. There is a natural bijection between the closed points of the residue curve Cx
at x and the set of directions emanating from x in X. ��
Example 6.3.19 Assume that k is algebraically closed. For X = A

1,an
k and x = η1,

the result of Proposition 6.3.18 follows from [PT20, Lemma 5.4.9].

The structure of smooth k-analytic curves is well understood.

Theorem 6.3.20 Every smooth k-analytic curve admits a triangulation in the sense
of Theorem 6.3.2.

The result of Proposition 6.3.6 also extends. If T is a non-empty triangulation
of a smooth connected k-analytic curve X, then there is a canonical deformation
retraction of X onto the skeleton %T of T , which is a locally finite metric graph.
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We may also define the skeleton of X as in Definition 6.3.7, and it satisfies the
properties of Remark 6.3.8.

Remark 6.3.21 With this purely analytic formulation, Theorem 6.3.20 is due to
A. Ducros, who provided a purely analytic proof in [Duc]. It is very closely related to
the semi-stable reduction theorem of S. Bosch and W. Lütkebohmert (see [BL85]):
for each smooth k-analytic curve X, there exists a finite extension �/k such that X�
admits a model over �◦ whose special fiber is a semi-stable curve over �̃, that is, it
is reduced and its singularities are at worst double nodes.

If a smooth k-analytic curve X admits a semi-stable model over k◦, then we
may associate to it a triangulation of X. The points of S, A and D then correspond
respectively to the irreducible components, the singular points and the smooth points
of the special fiber of the model. Moreover, the genus of a point of S (which, in this
case, coincides with its stable genus) is equal to the genus of the corresponding
component. We refer to [Ber90, Theorem 4.3.1] for more details.

In the other direction, it is always possible to associate a model over k◦ to a
triangulation of X, but it may fail to be semi-stable in general. The reader may
consult [Duc, Sections 6.3 and 6.4] for general results.

Definition 6.3.22 Assume that k is algebraically closed. Let X be a smooth
connected k-analytic curve. We define the genus of X to be

g(X) := b1(X)+
∑

x∈X(2)
g(x),

where b1(X) is the first Betti number of X and X(2) the set of type 2 points of X.
If k is arbitrary, we define the genus of a smooth geometrically connected k-

analytic curve X to be the genus of Xk̂a .

This notion of genus is compatible with the one defined in the algebraic setting.

Theorem 6.3.23 For each smooth geometrically connected projective algebraic
curve X over k, we have

g(X ) = g(X an).

Let us finally comment that, among the results that are presented here, Theo-
rem 6.3.20 is deep and difficult, but we will not need to use it since an easier direct
proof is available for k-analytic A1-like curves (see Theorem 6.3.2). The others are
rather standard applications of the general theory of curves.
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6.3.3 Mumford Curves

Let us now return to A1-like curves over k. A special kind of such curves is obtained
by asking for the existence of an open covering made of actual open Swiss cheeses
over k rather than virtual ones. Recall that open Swiss cheeses over k are defined as
the complement of closed discs in an open disc over k.

Definition 6.3.24 A connected, compact k-analytic (A1-like) curveX is called a k-
analytic Mumford curve if every point x ∈ X has a neighborhood that is isomorphic
to an open Swiss cheese over k.

Remark 6.3.25 Such a curve is automatically projective algebraic by Theo-
rem 6.3.12.

The following proposition relates the definition of a k-analytic Mumford curve
with the existence of a triangulation of a certain type, and therefore with the original
algebraic definition given by Mumford in [Mum72a]. Its proof uses some technical
notions that were not fully presented in the first sections of this text, but we believe
that the result of the proposition is important enough to deserve to be fully included
for completeness.

Proposition 6.3.26 Let X be a compact k-analytic curve.
If g(X) = 0, thenX is a k-analytic Mumford curve if and only ifX is isomorphic

to P
1,an
k .

If g(X) � 1, then X is a k-analytic Mumford curve if and only if there exists a
triangulation (S,A,D) of X such that the points of S are of stable genus 0 and the
elements of A are open annuli.

Proof

• Assume that g(X) = 0. If X is isomorphic to P
1,an
k , then it is obviously a

Mumford curve.
Conversely, assume that X is a k-analytic Mumford curve. By Theo-

rems 6.3.12 and 6.3.23, it is isomorphic to the analytification of a projective
smooth algebraic curve over k. Therefore, to prove that it is isomorphic to P

1,an
k ,

it is enough to prove that it has a k-rational point.
By assumption, X contains an open Swiss cheese over k. In particular, it

contains an open annulus A over k. Let x be a boundary point of the skeleton
of A. By assumption, x has a neighborhood that is isomorphic to an open Swiss
cheese over k. It follows thatA is contained in a strictly bigger annulusA′ whose
skeleton strictly contains that of A. Arguing this way (possibly considering the
union of all the annuli and applying the argument again), we show thatX contains
an open annulus over k of infinite modulus. At least one of its boundary points is
a k-rational point, and the result follows.

• Assume that g(X) � 1. If X is a k-analytic Mumford curve, then it may be
covered by finitely many Swiss cheeses over k. The result then follows from the
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fact that every Swiss cheese over k admits a triangulation (S,A,D) such that the
points of S are of stable genus 0 and the elements of A are annuli.

Conversely, assume that there exists a triangulation (S,A,D) of X satisfying
the properties of the statement. Since g(X) � 1, we have A �= ∅. Up to adding
a point of S in the skeleton of each element of A, we may assume that all the
elements of A have two distinct endpoints in X.

Let x ∈ S. Denote by Dx (resp. Ax ) the set of elements of D (resp. A) that
have x as an endpoint and set

Ux := {x} ∪
⋃

D∈Dx
D ∪

⋃

A∈Ax
A.

It is an open neighborhood of x in X. Let us now enlarge Ux in the following
way: for each A ∈ Ax , we paste a closed disc at the extremity of A that is
different from x. The resulting curve Vx is compact, hence the analytification of a
projective smooth algebraic curve over k, by Theorem 6.3.12. Since x is of stable
genus 0, the genus of the base-change (Vx)k̂a of Vx to k̂a is 0. By Theorem 6.3.23,

we deduce that (Vx)k̂a is isomorphic to P
1,an
k̂a

. Since Vx contains k-rational points

(inside the pasted discs, for instance), Vx itself is isomorphic to P
1,an
k . We deduce

that Ux is a Swiss cheese over k.
Since any point of X has a neighborhood that is of the form Ux for some

x ∈ S, it follows that X is a Mumford curve.
��

Remark 6.3.27 If X is a compact k-analytic curve and k is algebraically closed,
then Proposition 6.3.26 shows that the following properties are equivalent:

(i) X is a Mumford curve;
(ii) X is an A1-like curve;

(iii) the points of type 2 of X are all of genus 0.

Remark 6.3.28 Using the correspondence between triangulations and semi-stable
models (see Remark 6.3.21), the result of Proposition 6.3.26 says that k-analytic
Mumford curves are exactly those for which there exists a semi-stable model over k◦
whose special fiber consists of projective lines over k̃, intersecting transversally
in k̃-rational points. This is indeed how algebraic Mumford curves are defined in
Mumford’s paper [Mum72a].

Corollary 6.3.29 Let X be a k-analytic Mumford curve and T be a triangulation
of X. Then the following quantities are equal:

(i) the genus of X;
(ii) the cyclomatic number of the skeleton %T ;

(iii) the first Betti number of X.

Proof We may assume that T = (S,A,D) satisfies the conclusions of Proposi-
tion 6.3.26. We will assume that A �= ∅, the other case being dealt with similarly.
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Consider the base-change morphism πk̂a/k : Xk̂a → X. By assumption, every

element A of A is an annulus over k, hence its preimage π−1
k̂a/k

(A) is an annulus

over k̂a . In particular, πk̂a/k induces a homeomorphism between the skeleton of

π−1
k̂a/k

(A) and that of A. Since each point of S lies at the boundary of the skeleton of

an element of A, we deduce that each point of S has exactly one preimage by πk̂a .
It follows that the set T ′ = (S′,A′,D′) of Xk̂a , where

• S′ is the set of preimages of the elements of S by πk̂a/k;
• A′ is the set of preimages of the elements of A by πk̂a/k;
• D′ is the set of connected components of the preimages of the elements of D

by πk̂a/k

is a triangulation of Xk̂a and, moreover, that πk̂a/k induces a homeomorphism
between the skeleta %T ′ and %T . In particular, their cyclomatic numbers are equal.

Since X is a Mumford curve, all the points of type 2 of the curve Xk̂a are of
genus 0, hence the genus ofXk̂a coincides with its first Betti number, hence with the
cyclomatic number of %T ′ , by Proposition 6.3.6. The equality between (i) and (ii)
follows.

The equality between (ii) and (iii) follows from Proposition 6.3.6 again. ��

6.4 Schottky Groups

Let (k, | · |) be a complete valued field. Some of the material of this section is adapted
from Mumford [Mum72a], Gerritzen and van der Put [GvdP80] and Berkovich
[Ber90, Section 4.4].

6.4.1 Schottky Figures

Let g ∈ N�1.

Definition 6.4.1 Let γ1, . . . , γg ∈ PGL2(k). Let B = (D+(γ εi ), 1 � i � g, ε ∈
{±1}) be a family of pairwise disjoint closed discs in P

1,an
k . For each i ∈ {1, . . . , g}

and ε ∈ {−1, 1}, set

D−(γ εi ) := γ εi (P1
k −D+(γ−εi )).

We say that B is a Schottky figure adapted to (γ1, . . . , γg) if, for each i ∈
{1, . . . , g} and ε ∈ {−1, 1}, D−(γ εi ) is a maximal open disc inside D+(γ εi ). (See
Fig. 6.2 for an illustration.)
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D+(γ1)

D+(γ−1
1 )

D+(γ2)

D+(γ−1
2 )

γ2

γ2

γ1

γ1

Fig. 6.2 A Schottky figure adapted to a pair (γ1, γ2)

Remark 6.4.2 Let i ∈ {1, . . . , g}. It follows from Remark 6.2.12 that γi is
loxodromic. Moreover, denoting by αi and α′i the attracting and repelling fixed
points of γi respectively, we have

α′i ∈ D−(γ−1
i ) and αi ∈ D−(γi).

The result is easily proven for γ =
[

1 0
0 q

]

and one may reduce to this case by

choosing a suitable coordinate on P
1,an
k .

For the rest of the section, we fix γ1, . . . , γg ∈ PGL2(k) and a Schottky figure
adapted to (γ1, . . . , γg), with the notation of Definition 6.4.1.

Notation 6.4.3 For σ ∈ {−,+}, we set

Fσ := P
1
k −

⋃

1�i�g
ε=±1

D−σ (γ εi ).

Note that, for γ ∈ {γ±1
1 , . . . , γ±1

g }, D+(γ ) is the unique disc that con-
tains γ (F+) among those defining the Schottky figure.

Remark 6.4.4 The sets F− and F+ are open and closed Swiss cheeses respectively.
Denote by ∂F+ the boundary of F+ in P

1,an
k . It is equal to the set of boundary

points of theD+(γ±1
i )’s, for i ∈ {1, . . . , g}. The skeleton%F+ of F+ is the convex
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envelope of ∂F+, that is to say the minimal connected graph containing ∂F+, or

%F+ =
⋃

x,y∈∂F+
[x, y].

The skeleton %F− of F− satisfies

%F− = %F+ ∩ F− = %F+ − ∂F+.

Set  := {γ1, . . . , γg}. Denote by Fg the abstract free group with set of
generators  and by � the subgroup of PGL2(k) generated by  . The existence
of a Schottky figure for the g-tuple (γ1, . . . , γg) determines important properties
of the group �. In fact, we have a natural morphism ϕ : Fg → � inducing an

action of Fg on P
1,an
k . We now define a disc in P1

k associated with each element
of Fg . As usual, we will identify these elements with the words over the alphabet
 ± := {γ±1

1 , . . . , γ±1
g }.

Notation 6.4.5 For a non-empty reduced word w = w′γ over  and σ ∈ {−,+},
we set

Dσ (w) := w′Dσ (γ ).

Lemma 6.4.6 Let u be a non-empty reduced word over ±. Then we have uF+ ⊆
D+(u).

Let v be a non-empty reduced word over  ±. If there exists a word w over  ±
such that u = vw, then we have uF+ ⊆ D+(u) ⊆ D+(v). If, moreover, u �= v,
then we haveD+(u) ⊆ D−(v).

Conversely, if we have D+(u) ⊆ D+(v), then there exists a word w over  ±
such that u = vw.

Proof Write in a reduced form u = u′γ with γ ∈  ±. We have γF+ ⊆ D+(γ ),
by definition. Applying u′, it follows that uF+ ⊆ D+(u).

Assume that there exists a word w such that u = vw and let us prove that
D+(u) ⊆ D+(v). We first assume that v is a single letter. We will argue by induction
on the length |u| of u. If |u| = 1, then u = v and the result is trivial. If |u| � 2,
denote by δ the first letter of w. By induction, we have D+(w) ⊆ D+(δ). Since
δ �= v−1, we also have D+(δ) ⊆ P

1
k −D+(v−1). The result follows by applying v.

Let us now handle the general case. Write in a reduced form v = v′γ with
γ ∈  ±. By the former case, we have D+(γw) ⊆ D+(γ ) and D+(γw) ⊆ D−(γ )
if w is non-empty. The result follows by applying v′.

Assume that we haveD+(u) ⊆ D+(v). We will prove that there exists a word w
such that u = vw by induction on |v|. Write in reduced forms u = γ u′ and v = δv′.
By the previous result, we have D+(u) ⊆ D+(γ ) and D+(v) ⊆ D+(δ), hence
γ = δ. If |v| = 1, this proves the result. If |v| � 2, then we deduce that we have
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D+(u′) ⊆ D+(v′), hence, by induction, there exists a word w such that u′ = v′w.
It follows that u = vw. ��
Proposition 6.4.7 The morphism ϕ is an isomorphism and the group � is free on
the generators γ1, . . . , γg .

Proof Ifw is a non-empty word, then the previous lemma ensures thatwF+ �= F+.
The result follows. ��

As a consequence, we now identify � with Fg and express the elements of � as
words over the alphabet  ±. In particular, we allow us to speak of the length of an
element γ of �, that we denote by |γ |. Set

On :=
⋃

|γ |�n
γF+.

Since the complement of F+ is the disjoint union of the open disks D−(γ ) with
γ ∈  ±, it follows from the description of the action that, for each n � 0, we have

P
1,an
k −On =

⊔

|w|=n+1

D−(w).

It follows from Lemma 6.4.6 that, for each n � 0, On is contained in the interior
of On+1. We set

O :=
⋃

n�0

On =
⋃

γ∈�
γF+.

We now compute the orbits of discs under Möbius transformations P
1,an
k . Set

ι :=
[

0 1
1 0

]

∈ PGL2(k). It corresponds to the map z �→ 1/z on P
1,an
k . The first result

follows from an explicit computation.

Lemma 6.4.8 Let α ∈ k× and ρ ∈ [0, |α|). Then, we have ι
(
D+(α, ρ)

) =
D+

(
1
α
,
ρ

|α|2
)

. ��

Lemma 6.4.9 Let r > 0 and let γ =
[
a b

c d

]

in PGL2(k) such that γ
(
D+(0, r)

) ⊆
A

1,an
k . Then, we have |d| > r|c| and γ

(
D+(0, r)

) = D+
(
b
d
,
|ad−bc| r
|d |2

)
.

Proof Let us first assume that c = 0. Then, we have d �= 0, so the inequality
|d| > r|c| holds, and γ is affine with ratio a/d . The result follows.
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Let us now assume that c �= 0. In this case, we have γ−1(∞) = − d
c

, which does
not belong to D(0, r) if, and only if, |d| > r|c|. Note that we have the following
equality in k(T ):

aT + b
cT + d =

a

c
− ad − bc

c2

1

T + d
c

.

By Lemma 6.4.8, there exist β ∈ k and σ > 0 such that ι
(
D+( d

c
, r)

) = D+(β, σ ).
Then, we have γ

(
D+(0, r)

) = D+( a
c
− ad−bc

c2 β,
∣
∣ad−bc
c2

∣
∣ σ) and the result follows

from an explicit computation. ��
Lemma 6.4.10 Let D′ ⊆ D be closed discs in A

1,an
k . Let γ ∈ PGL2(k) such that

γD′ ⊆ γD ⊆ A
1,an
k . Then, we have

radius of γD′

radius of γD
= radius of D′

radius of D
.

Proof Let p be a k-rational point in D′ and let τ be the translation sending p to 0.
Up to changing D into τD, D′ into τD′, γ into γ τ−1 and γ ′ into γ ′τ−1, we may
assume thatD andD′ are centered at 0. The result then follows from Lemma 6.4.9.

��
Proposition 6.4.11 Assume that ∞ ∈ F−. Then, there exist R > 0 and c ∈ (0, 1)
such that, for each γ ∈ � − {id}, D+(γ ) is a closed disc of radius at most R c|γ |.

Proof Let δ, δ′ ∈  ± such that δ′ �= δ−1. By Lemma 6.4.6, we have D+(δ′δ) ⊂
D−(δ′) ⊆ D+(δ′). Set

cδ,δ′ := radius of D+(δ′δ)
radius of D+(δ′)

∈ (0, 1).

For each γ ∈ � such that γ δ′ is a reduced word, by Lemma 6.4.10, we have

radius of D+(γ δ′δ)
radius of D+(γ δ′)

= radius of γD+(δ′δ)
radius of γD+(δ′)

= cδ,δ′ .

Set

R := max({radius of D+(δ) | δ ∈  ±})

and

c := max({cδ,δ′ | δ, δ′ ∈  ±, δ′ �= δ−1}).
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By induction, for each γ ∈ � − {id}, we have

radius of D+(γ ) � R c|γ |.

��
Corollary 6.4.12 Every element of � − {id} is loxodromic.

Proof In order to prove the result, we may extend the scalars. As a result, we may
assume that F− ∩ P

1,an
k (k) �= ∅, hence up to changing coordinates, that ∞ /∈ F−.

Let γ ∈ � − {id}. By Proposition 6.4.11 the radii of the discs γ n(D+(γ )) tend to 0
when n tends to ∞, which forces γ to be loxodromic, by Remark 6.2.12. ��
Corollary 6.4.13 Let w = (wn) �=0 be a sequence of reduced words over  ± such
that the associated sequence of discs (D+(wn))n�0 is strictly decreasing. Then,
the intersection

⋂
n�0D

+(wn) is a single k-rational point pw . Moreover, the discs

D+(wn) form a basis of neighborhoods of pw in P
1,an
k .

Proof Let k0 be a finite extension of k such that F− ∩ P1(k0) �= ∅. Consider
the projection morphism π0 : P1,an

k0
→ P

1,an
k . For each i ∈ {1, . . . , g}, γi may

be identified with an element γi,0 in PGL2(k0). The family (π−1
0 (D−(γ±1

i ), 1 �
i � g, ε = ±1) is a Schottky figure adapted to (γ1,0, . . . , γg,0). We will denote
with a subscript 0 the associated sets: F−0 , D+0 (w), etc. Note that these sets are all
equal to the preimages of the corresponding sets by π0.

Up to changing coordinates on P
1,an
k0

, we may assume that ∞ ∈ F−0 . The

sequence of discs (D+0 (wn))n�0 is strictly decreasing, so by Lemma 6.4.6, the
length of wn tends to ∞ when n goes to ∞ and, by Proposition 6.4.11, the radius
of D+0 (wn) tends to 0 when n goes to ∞. It follows that

⋂
n�0D

+
0 (wn) is a single

pointpw,0 of type 1 and that the discsD+0 (wn) form a basis of neighborhood of pw,0
in P

1,an
k0

.
Set pw := π0(pw,0). It follows from the results over k0 that

⋂
n�0D

+(wn) =
{pw} and that the discs D+(wn) form a basis of neighborhoods of pw in P

1,an
k .

It remains to show that pw is k-rational. Note that pw belongs to the closure
of P1(k), since it is the limit of the centers of the D+(wn)’s. Since k is complete,
P1(k) is closed in P1(k̂a) and the result follows. ��
Corollary 6.4.14 The set O is dense in P

1,an
k and its complement is contained

in P1(k). ��
Definition 6.4.15 We say that a point x ∈ P

1,an
k is a limit point if there exist

a point x0 ∈ P
1,an
k and a sequence (γn)n�0 of distinct elements of � such that

limn→∞ γn(x0) = x.
The limit set L of � is the set of limit points of �.

Let us add a short reminder on proper group actions.
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Definition 6.4.16 ([Bou71, III, §4, Définition 1]) We say that the action of a
topological groupG on a topological space E is proper if the map

� × E → E ×E
(γ, x) �→ (x, γ · x)

is proper.

Proposition 6.4.17 ([Bou71, III, §4, Propositions 3 and 7]) Let G be a locally
compact topological group and E be a Hausdorff topological space. Then, the
action of G on E is proper if, and only if, for every x, y ∈ E, there exist
neighborhoods Ux and Uy of x and y respectively such that the set {γ ∈ � |
γUx ∩ Uy �= ∅} is relatively compact (that is to say finite, if G is discrete).

In this case, the quotient space �\E is Hausdorff. ��
We denote by C the set of points x ∈ P

1,an
k that admit a neighborhood Ux

satisfying {γ ∈ � : γUx ∩ Ux �= ∅} = {id}. The set C is an open subset of P1,an
k

and the quotient map C → �\C is a local homeomorphism. In particular, the
topological space �\C is naturally endowed with a structure of analytic space via
this map.

Theorem 6.4.18 We have O = C = P
1,an
k − L. Moreover, the action of � on O is

free and proper and the quotient �\O is a Mumford curve of genus g.
Set X := �\O and denote by p : O → X the quotient map. Let %O , %F+ and

%X denote the skeleta of O , F+ and X respectively. Then, %O is the trace on O of
the convex envelope of L:

%O = O ∩
⋃

x,y∈L
[x, y]

and we have

p−1(%X) = %O and p(%O) = p(%F+) = %X.

(See Fig. 6.3 for an illustration.)

Proof Let x ∈ L. By definition, there exist x0 ∈ P
1,an
k and a sequence (γn)n�0 of

distinct elements of � such that limn→∞ γn(x0) = x. Assume that x ∈ F+. Since
F+ is contained in the interior of O1, there exists N � 0 such that γN(x0) ∈ O1,
hence we may assume that x0 ∈ O1. Lemma 6.4.6 then leads to a contradiction.
It follows that L does not meet F+, hence, by �-invariance, L is contained in
P

1,an
k −O .

Let y ∈ P
1,an
k − O . By definition, there exists a sequence (wn)n�0 of reduced

words over ± such that, for each n � 0, |wn| � n and y ∈ D−(wn). Let y0 ∈ F−.
By Lemma 6.4.6, for each n � 0, we have wn(y0) ∈ D−(wn) and the sequence of
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Fig. 6.3 The closed fundamental domain F+ (on the left) of the Schottky group � is a Swiss
cheese. The group � identifies the ends of the skeleton %F+ , so that the corresponding Mumford
curve (on the right) contains the finite graph %X

discs (D+(wn))n�0 is strictly decreasing. By Corollary 6.4.13, (wn(y0))n�0 tends
to y, hence y ∈ L. It follows that P1,an

k −O = L.
Set

U := F+ ∪
⋃

γ∈ ±
γF− = P

1,an
k −

⊔

|γ |=2

D+(γ ).

It is an open subset of P1,an
k and it follows from the properties of the action (see

Lemma 6.4.6) that we have {γ ∈ � | γU ∩U �= ∅} = {id}∪ ±. Using the fact that
the stabilizers of the points of U are trivial, we deduce that U ⊆ C. Letting � act,
it follows that O ⊆ C. Since no limit point may belong to C, we deduce that this is
actually an equality.

We have already seen that the action is free on O . Let us prove that it is proper.
Let x, y ∈ O . There exists n � 0 such that x and y belong to the interior of On. By
Lemma 6.4.6, the set {γ ∈ � : γOn ∩ On �= ∅} is made of elements of length at
most 2n+1. In particular, it is finite. We deduce that the action of � onO is proper.

The compact subset F+ of P1,an
k contains a point of every orbit of every element

of O . It follows that �\O is compact. The set F− is an open k-Swiss cheese and
the map p is injective on it, which implies that p|F− induces an isomorphism onto
its image. In addition, one may check that each subset of the formD+(γ )−D−(γ )
for γ ∈ {γ±1

1 , . . . , γ±1
g } is contained in an open k-annulus on which p is injective.

It follows that any element of �\O has a neighborhood isomorphic to a k-Swiss
cheese, hence �\O is a Mumford curve.

Set% := O ∩⋃
x,y∈L[x, y]. It is clear that no point of% is contained in a virtual

open disc insideO , hence % ⊆ %O . It follows from [PT20, Proposition 5.7.10] that
P

1,an
k −% is a union of virtual open discs, hence%O ∩ (P1,an

k −%) = ∅. We deduce
that %O = %. Note that it follows that %F+ = %O ∩ F+.

Let x ∈ O−%O . Then x is contained in a virtual open disc insideO . Assume that
there exists γ ∈ � such that x ∈ γF−. Then, the said virtual open disc is contained
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in γF−. Since p|γF− induces an isomorphism onto its image, p(x) is contained in
a virtual open disc in X, hence p(x) /∈ %X. As above, the argument may be adapted
to handle all the points of O −%O . It follows that p−1(%X) ⊆ %O .

Let x ∈ %O . In order to show that p(x) ∈ %X, we may replace x by γ (x) for any
γ ∈ �, hence assume that x ∈ F+∩%O = %F+ . From the explicit description of the
action of � on F+, we may describe precisely the behaviour of p on%F+ = %F− ∪
∂F+: it is injective on%F− and identifies pairs of points in ∂F+. It follows that p(x)
belongs to a injective loop inside X and Remark 6.3.8 then ensures that p(x) ∈ %X.
The results about the skeleta follow directly.

It remains to prove that the genus of X = �\O is equal to g. The arguments
above show that %X / �\%F+ is a graph with cyclomatic number g. The result
now follows from Corollary 6.3.29. ��
Example 6.4.19 (Tate Curves) If g = 1 in the theory above, one starts with the
data of an element γ ∈ PGL2(k) and of two disjoint closed discs D+(γ ) and
D+(γ−1) in such a way that γ (P1,an

k − D+(γ−1)) is a maximal open disc inside
D+(γ ). Since γ is loxodromic, up to conjugation, it is represented by a matrix of

the form

[
q 0
0 1

]

for some q ∈ k satisfying 0 < |q| < 1. In other words, up to a

change of coordinate in P
1,an
k , the transformation γ is the multiplication by q and

hence the limit set L consists only of the two points 0 and ∞. The quotient curve
obtained from applying Theorem 6.4.18 is an elliptic curve, whose set of k-points is
isomorphic to the multiplicative group k×/qZ.

Remark 6.4.20 It follows from Theorem 6.4.18 and Corollary 6.4.13 that each point
in the limit set may be described as the intersection of a nested sequence of discs
of the form

⋂
n�0D

+(wn), for a sequence of words wn whose lengths tend to
infinity. This is a rather concrete description, that could easily be implemented to
any precision on a computer. The complex version of this idea gave rise to beautiful
pictures in [MSW15].

Actually, we highly recommend the whole book [MSW15] to the reader. It starts
with the example of a complex Schottky group with two generators in a very
accessible way and then carefully presents a large amount of advanced material,
with an original and colorful terminology, enriched with many pictures. Among
the subjects covered are the Hausdorff dimension of the limit set (“fractal dust”),
the degeneration of the notion of Schottky groups when the discs in the Schottky
figures become tangent (“kissing Schottky groups”), etc. We believe that it is worth
investigating those questions in the non-Archimedean setting too. In particular,
finding a way to draw meaningful non-Archimedean pictures would certainly be
very rewarding.
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6.4.2 Group-Theoretic Version

We now give the general definition of Schottky group over k and explain how it
relates to the geometric situation considered in the previous sections. As regards
proper actions, recall Definition 6.4.16 and Proposition 6.4.17.

Definition 6.4.21 A subgroup � of PGL2(k) is said to be a Schottky group over k
if

(i) it is free and finitely generated;
(ii) all its non-trivial elements are loxodromic;

(iii) there exists a non-empty �-invariant connected open subset of P1,an
k on which

the action of � is free and proper.

Remark 6.4.22 Schottky groups are discrete subgroups of PGL2(k). Indeed any
element of PGL2(k) that is close enough to the identity has both eigenvalues of
absolute value 1, hence cannot be loxodromic.

Remark 6.4.23 There are other definitions of Schottky groups in the literature.
L. Gerritzen and M. van der Put use a slightly different version of condition (iii)
(see [GvdP80, I (1.6)]). This is due to the fact that they work in the setting of rigid
geometry, where the space consists only of our rigid points. We chose to formulate
our definition this way in order to take advantage of the nice topological properties
of Berkovich spaces and make it look closer to the definition used in complex
geometry.

D. Mumford considered a more general setting where k is the fraction field of a
complete integrally closed noetherian local ring and he requires only properties (i)
and (ii) in his definition of Schottky group (see [Mum72a, Definition 1.3]). The
intersection with our setting consists of the complete discretely valued fields k.

When k is a local field, all the definitions coincide (see [GvdP80, I (1.6.4)] and
Sect. 6.4.4).

Schottky groups arise naturally when we have Schottky figures as in Sect. 6.4.1.
Indeed, the following result follows from Proposition 6.4.7, Corollary 6.4.12 and
Theorem 6.4.18.

Proposition 6.4.24 Let � be a subgroup of PGL2(k) generated by finitely many
elements γ1, . . . , γg. If there exists a Schottky figure adapted to (γ1, . . . , γg), then �
is a Schottky group. ��

We now turn to the proof of the converse statement.

Lemma 6.4.25 Let γ be a loxodromic Möbius transformation. Let A and A′ be
disjoint virtual flat closed annuli. Denote by I the open interval equal to the interior
of the path joining their boundary points. Assume that γA1 = A2 and γ I ∩ I = ∅.
For ε ∈ {∅,′ }, denote by Dε the connected component of P1,an

k − Aε that does
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not meet I . Then, for ε ∈ {∅,′ }, Aε is a flat closed annulus, Dε is an open disc,
Eε := Dε ∪ Aε is a closed disc and we have

γD = P
1,an
k − E′ and γE = P

1,an
k −D′.

Proof For each ε ∈ {∅,′ }, Dε and Eε are respectively a virtual open disc and a
virtual closed disc. Note that the set P1,an

k − Aε has two connected components,

namelyDε and P
1,an
k − Eε , and that the latter contains I .

Since γ is an automorphism, it sends the connected component P1,an
k − E of

P
1,an
k − A to a connected component C of P

1,an
k − γA = P

1,an
k − A′. Denote

by η and η′ the boundary points of A and A′. Let z ∈ P
1,an
k − E. The unique

path [η, z] between η and z then meets I . Its image is the unique path [η′, γ (z)]
between γ (η) = η′ and γ (z). If γ (z) /∈ E′, then this path meets I , contradicting the
assumption γ I ∩ I = ∅. We deduce that γ (z) ∈ E′, hence that C = D′. It follows
that we have

γD = P
1,an
k − E′ and γE = P

1,an
k −D′,

as wanted.
In particular, D and D′ contain respectively the attracting and repelling fixed

point of γ . Since those points are k-rational, we deduce that D and D′ are discs.
The rest of the result follows. ��
Theorem 6.4.26 Let � be a Schottky group over k. Then, there exists a basis β of �
and a Schottky figure B that is adapted to β.

Proof By assumption, there exists a non-empty �-invariant connected open sub-
set U of P1,an

k on which the action of � is free and proper. The quotient X := �\U
is then an A

1,an
k -like curve in the sense of Sect. 6.3.1. Since U is a connected

subset of P1,an
k , it is simply connected, hence the fundamental group π1(X) of X

is isomorphic to �. Since X is finitely generated, the topological genus g of X is
finite.

Fix a skeleton % of X and consider the associated retraction τ : X → %. Fix
g elements γ1, . . . , γg of � corresponding to disjoint simple loops in %. Note that
γ1, . . . , γg is a basis of �.

For each i ∈ {1, . . . , g}, pick a point xi ∈ αi that is not a branch point of %. Its
preimage by the retraction Ai := τ−1(xi) is then a virtual flat closed annulus.

Let Y ′ be an open subset of U such that the morphism Y ′ → X induced by the
quotient is an isomorphism onto X −⋃

1�i�Ai . We extend it to a compact lift Y
of X in U by adding, for each i ∈ {1, . . . , g}, two virtual flat annuli Bi and B ′i that
are isomorphic preimages of Ai . Up to switching the names, we may assume that
γiBi = B ′i .

Let i ∈ {1, . . . , g}. The complement of Bi (resp. B ′i ) has two connected
components. Let us denote by D−(γi) (resp. D−(γ−1

i )) the one that does not
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meet Y . It is a virtual open disc. We set D+(γ−1
i ) = D−(γ−1

i ) ∪ Bi and D+(γi) =
D−(γi) ∪ B ′i .

By construction of Y ′, for each γ ∈ � − {id}, we have γ Y ′ ∩ Y ′ = ∅. It now
follows from Lemma 6.4.25 that the family (D+(γ σi ), 1 � i � g, σ = ±) is a
Schottky figure adapted to (γ1, . . . , γg).

��
Remark 6.4.27 The fact that � is free is actually not used in the proof of Theo-
rem 6.4.26. As a result, Proposition 6.4.24 shows that it is a consequence of the
other properties appearing in the definition of a Schottky group. It could also be
deduced from the fact that the fundamental group of a Berkovich curve (which is
the same as that of its skeleton) is free.

6.4.3 Twisted Ford Discs

We can actually be more precise about the form of the discs in the Schottky figure
from Theorem 6.4.26. To do so, we introduce some terminology.

Definition 6.4.28 Let γ =
[
a b

c d

]

∈ PGL2(k), with c �= 0, be a loxodromic

Möbius transformation and let λ ∈ R>0. We call open and closed twisted Ford
discs associated to (γ, λ) the sets

D−(γ ,λ) :=
{
z ∈ k : λ|γ ′(z)| = λ |ad − bc||cz + d|2 > 1

}

and

D+(γ ,λ) :=
{
z ∈ k : λ|γ ′(z)| = λ |ad − bc||cz + d|2 � 1

}
.

Lemma 6.4.29 Let α, α′, β ∈ k with α �= α′ and |β| < 1 and let λ ∈ R>0. Set

γ :=M(α, α′, β) =
[
a b

c d

]

. The twisted Ford discs D−(γ ,λ) andD+(γ ,λ) have center

α′ − βα
1− β = −d

c

and radius

ρ = (λ|β|)
1/2|α − α′|
|1− β| = (λ |ad − bc|)

1/2

|c| .

In particular, α′ ∈ D−(γ ,λ) if, and only if, |β| < λ.
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The twisted Ford discs D−
(γ−1,λ−1)

andD+
(γ−1,λ−1)

have center

α − βα′
1− β = a

c

and radius ρ′ = ρ/λ.
In particular, α ∈ D−

(γ−1,λ−1)
if, and only if, |β| < λ−1. ��

Lemma 6.4.30 Let γ ∈ PGL2(k) be a loxodromic Möbius transformation that does
not fix∞ and let λ ∈ R>0. Then, we have γ (D+(γ ,λ)) = P

1,an
k −D−

(γ−1,λ−1)
.

Proof Let us write γ =
[
a b

c d

]

. Since γ does not fix ∞, we have c �= 0. Let K be a

complete valued extension of k and let z ∈ K . We have | − cγ (z)+ a| |cz+ d| =
|ad − bc|, hence

z ∈ D(γ,λ) ⇐⇒ λ
|ad − bc|
|cz+ d|2 ≥ 1 ⇐⇒ λ−1 |ad − bc|

| − cγ (z)+ a|2 ≤ 1.

Since we have γ−1 =
[
d −b
−c a

]

, the latter condition describes precisely the

complement of D−
(γ−1,λ−1)

. ��
Lemma 6.4.31 Let γ ∈ PGL2(k) be a loxodromic Möbius transformation. Let
D+(γ ) andD+(γ−1) be disjoint closed discs in P

1,an
k . Set

D−(γ ) := γ (P1,an
k −D+(γ−1)) andD−(γ−1) := γ−1(P

1,an
k −D+(γ )).

Assume that D−(γ ) and D−(γ−1) are maximal open discs inside D+(γ ) and
D+(γ−1) respectively and that they are contained in A

1,an
k .

Then, there exists λ ∈ R>0 such that, for each σ ∈ {−,+}, we have

Dσ (γ ) = Dσγ,λ andDσ (γ−1) = Dσ
γ−1,λ−1 .

Proof Denote by α and α′ the attracting and repelling fixed points of γ respectively.
By the same argument as in Remark 6.4.2, we have α ∈ D−(γ−1) and α′ ∈ D−(γ ).
Let r, r ′ > 0 such thatD−(γ ) = D−(α′, r ′) and D−(γ−1) = D−(α, r).

Write γ =
[
a b

c d

]

with a, b, c, d ∈ k. Since α, α′ ∈ A
1,an
k , we have c �= 0.

By assumption, ∞ ∈ γ (D−(γ−1)), hence −d/c ∈ D−(γ−1) and D−(γ−1) =
D−(−d/c, r). Similarly, we have D−(γ ) = D−(a/c, r ′).
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Writing

aT + b
cT + d =

a

c
− ad − bc

c2

1

T + d
c

,

it is not difficult to compute γ (D−(γ−1)) and prove that we have

r = |ad − bc|
|c|2 r ′ = |β| |α − α′|2

r ′
.

Set

λ := r2

|β| |α − α′|2 =
r

r ′
= |β| |α − α′|2

(r ′)2
.

SinceD+(γ ) andD+(γ−1) are disjoint, we have max(r, r ′) < |α−α′|, hence |β| <
min(λ, λ−1). It follows thatD−γ,λ andD−

γ−1,λ−1 contains respectivelyα′ and α, hence

D−(γ ,λ) = D−(α′, r ′) = D−(γ ) and D−
(γ−1,λ−1)

= D−(α, r) = D−(γ−1).

��
Corollary 6.4.32 Let � be a Schottky group over k whose limit set does not
contain ∞. Then, there exists a basis (γ1, . . . , γg) of � and λ1, . . . , λg ∈ R>0
such that the family of discs

(
D+
(γ εi ,λ

ε
i )
, 1 � i � g, ε ∈ {±1}) is a Schottky figure

that is adapted to (γ1, . . . , γg).

Proof By Theorem 6.4.26, there exists a basis β = (γ1, . . . , γg) of � and a Schottky
figure B = (D+(γ εi ), 1 � i � g, ε ∈ {±1}) that is adapted to β. As in Sect. 6.4.1,
define the open discs D−(γ±1

i ) and set

F+ := P
1
k −

⋃

1�i�g
ε=±1

D−(γ εi ).

By Theorem 6.4.18, since ∞ is not a limit point of �, there exists γ ∈ � such that
∞ ∈ γF+.

Set β ′ := (γ γ1γ
−1, . . . , γ γgγ

−1). It is a basis of � and the family of discs B′ :=
(γD+(γ εi ), 1 � i � g, ε ∈ {±1}) is a Schottky figure that is adapted to it. Since all

the discs γD+(γ±1
i ) are contained in A

1,an
k , we may now apply Lemma 6.4.31 to

conclude. ��
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6.4.4 Local Fields

When k is a local field, the definition of a Schottky group can be greatly simplified.
Our treatment here borrows from [GvdP80, I (1.6)] (see also [Mar07, Lemma 2.1.1]
in the complex setting).

Lemma 6.4.33 Let (γn)n∈N be a sequence of loxodromic Möbius transformations
such that

(i) (γn)n∈N has no convergent subsequence in PGL2(k);
(ii) the sequence of Koebe coordinates ((αn, α′n, βn))n∈N converges to some

(α, α′, β) ∈ (P1(k))3.

Then, (γn)n∈N converges to the constant function α uniformly on compact subsets
of P1,an

k − {α′}.
Proof By definition, for each n ∈ N, we have |βn| < 1, which implies that |β| < 1.

Up to changing coordinates, we may assume that α, α′ ∈ k. Up to modifying
finitely many terms of the sequences, we may assume that, for each n ∈ N, we have
αn, α

′
n ∈ k. In this case, for each n ∈ N, we have

γn =:
[
αn − βnα′n (βn − 1)αnα′n

1− βn βnαn − α′n

]

in PGL2(k).

The determinant of the above matrix is βn(αn − α′n)2. Since (γn)n∈N has no
convergent subsequence in PGL2(k), we deduce that β(α − α′)2 = 0. In each of
the two cases β = 0 and α = α′, it is not difficult to check that the claimed result
holds.

��
The result below shows that the definition of Schottky group may be simplified

when k is a local field. Note that, in this case, P1(k) is compact, hence closed
in P

1,an
k .

Corollary 6.4.34 Assume that k is a local field. Let � be a subgroup of PGL2(k)

all of whose non-trivial elements are loxodromic.
Let� be the set of fixed points of the elements of �−{id} and let �̄ be its closure

in P
1,an
k . Then, �̄ is a compact subset of P1,an

k that is contained in P1(k) and the

action of � on P
1,an
k − �̄ is free and proper.

Proof Since k is locally compact for the topology given by the absolute value,
P1(k) is compact. By [PT20, Remark 5.4.1], the topology on k given by the absolute
value coincides with that induced by the topology on A

1,an
k . We deduce that P1(k)

is a compact subset of P1,an
k . It follows that �̄ is contained in P1(k) and that it is

compact, as it is closed.
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The action of � is obviously free on P
1,an
k − �̄. Assume, by contradiction, that

it is not proper. Then, there exist x, y /∈ �̄ such that, for every neighborhoods U
and V of x and y respectively, the set {γ ∈ � : γU ∩ V �= ∅} is infinite.

Since k is a local field, [PT20, Corollary 5.4.6] ensures that the space A
1,an
k is

metrizable. In particular, we may find countable bases of neighborhoods (Un)n∈N
and (Vn)n∈N of x and y respectively. By assumption, there exist a sequence (γn)n∈N
of distinct elements of � and a sequence (xn)n∈N of elements of P1,an

k −�̄ such that,
for each n ∈ N, we have xn ∈ Un and γn(xn) ∈ Vn. In particular, (xn)n∈N converges
to x and (γn(xn))n∈N converges to y.

Since all the non-trivial elements of � are loxodromic, by the same argument
as in Remark 6.4.22, the group � is discrete. As a result, up to passing to a
subsequence, we may assume that the assumptions of Lemma 6.4.33 are satisfied.
Define α and α′ as in this Lemma. Since x does not belong to �̄, it cannot be equal
to α′. It follows that the sequences (γn(xn))n∈N and (γn(x))n∈N converge to the
same limit y = α, and we get a contradiction since α ∈ �̄. ��
Corollary 6.4.35 Assume that k is a local field. Then, a subgroup � of PGL2(k) is
a Schottky group if, and only if, it is finitely generated and all its non-trivial elements
are loxodromic. ��

6.5 Uniformization of Mumford Curves

The main result of this section, Theorem 6.5.3, states that the procedure described
in Sect. 6.4.1 can be reversed: any Mumford curve may be uniformized by an open
subset of the Berkovich projective line P1,an

k with a Schottky group as group of deck
transformations. The consequences of this result are many and far-reaching. Some
of them are discussed in Appendix A.3.

This was first proved by D. Mumford in his influential paper [Mum72a],
where he introduces this as a non-Archimedean analogue of the uniformization of
handlebodies by means of Schottky groups in the complex setting. His arguments
make a heavy use of formal models of the curves. Here, we argue directly on the
curves themselves, following the strategy of [GvdP80, Chapter IV] and [Lüt16,
Proposition 4.6.6]. Note, however that the proof in the first reference is flawed (since
it relies on the wrong claim that every k-analytic curve of genus 0 embeds into P

1,an
k ,

see Remark 6.5.7) and that the second reference assumes that the curve contains at
least three rational points.

As an application, we discuss how Theorem 6.5.3 can be used to study the
automorphism groups of Mumford curves. This is far from being the sole purpose
of uniformization. Other important consequences are mentioned in Appendix A.3.
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6.5.1 The Uniformization Theorem

In this section, we prove that any analytic Mumford curve as defined in 6.3.24 can
be obtained as the quotient of an open dense subspace of P1,an

k by the action of a
Schottky group, leading to a purely analytic proof of Mumford’s theorem. We begin
with a few preparatory results.

Lemma 6.5.1 Let L be a compact subset of P1(k). Set O := P
1,an
k − L.

(i) Every bounded analytic function on O is constant.
(ii) Every automorphism of O is induced by an element of PGL2(k).

Proof

(i) Let F ∈ O(O). The function F is constant if, and only if, its pullback to Ok̂a
is, hence we may assume that k is algebraically closed.

Assume, by contradiction, that F is not constant. Then, there exists x ∈ O
and a branch b at x such that F(x) �= 0 and |F | is monomial at x along b with a
positive integer exponent. We may assume that x is of type 2 or 3. Then, there
exists y ∈ O − {x} and N ∈ N�1 such that, for each z ∈ [x, y], we have
|F(z)| = |F(x)| �([x, z])N .

Let us now consider a path [x, y], with y ∈ P
1,an
k , with the following

property: for each z ∈ (x, y), |F | is monomial at z with positive integer slope
along the branch in (x, y) going away from x. By Zorn’s lemma, we may find
a maximal path [x, y] among those.

We claim that y is of type 1. If y is of type 4, then, by [PT20, The-
orem 5.10.10], |F | is constant in the neighborhood of y in (x, y), and we
get a contradiction. Assume that b is of type 2 or 3. Then, the exponent
of |F | at y along the branch corresponding to [y, x] is negative. By [PT20,
Corollary 5.10.12], there exists a branch b at y such that |F | is monomial with
positive exponent at y along b, which contradicts the maximality. Finally, y is
of type 1.

By assumption, |F | has a positive integer exponent everywhere on (x, y). It
follows that, for each z ∈ (x, y), we have |F(z)| � |F(x)| �([x, z]). Since y
is of type 1, by [PT20, Lemma 5.9.12], we have �([x, y]) = ∞, hence F is
unbounded. This is a contradiction.

(ii) Let σ be an automorphism of O .
Let us first assume that O contains at least 2 k-rational points. Up to

changing coordinates, we may assume that 0,∞ ∈ O . Let us choose an
automorphism τ ∈ PGL2(k) that agrees with σ on 0 and ∞. Then τ−1 ◦ σ
is an automorphism of O that fixes 0 and ∞. In particular, it corresponds to
an analytic function with a zero of order 1 at 0 and a pole of order 1 at ∞.
Let us consider the quotient analytic function ϕ := (τ−1 ◦ σ)/id. There exist
a neighborhood U of 0 and a neighborhood V of ∞ on which ϕ is bounded.
Since τ−1 ◦ σ is an automorphism, it sends V to a neighborhood of ∞, hence
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it is bounded on O − V . It follows that ϕ is bounded on O − (U ∪ V ), hence
on O . By (i), we deduce that ϕ is constant, and the result follows.

Let us now handle the case where O ∩ P1(k) = ∅. There exists a finite
extension K of k such that OK contains a K-rational point. Applying the
previous argument after extending the scalars to K , we deduce that σ belongs
to PGL2(K). Since it preserves P1(k), it actually belongs to PGL2(k).

��
Lemma 6.5.2 Let Y be a connected k-analytic A1-like curve of genus 0. Let T =
(S,A,D) be a triangulation of Y . Assume that A is non-empty and consists of
annuli. Let U be an open relatively compact subset of %T . Then, there exists an
embedding of τ−1

T (U) into P
1,an
k such that the complement of τ−1

T (U) is a disjoint
union of finitely many closed discs.

Proof Recall that %T is a locally finite graph (see Theorem 6.3.2). As a conse-
quence, the boundary ∂U of U in %T is finite. For each z ∈ ∂U , let Iz be an open
interval in %T having z as an end-point. Up to shrinking the Iz’s, we may assume
that they are disjoint.

Let z ∈ ∂U . Set Az := τ−1
T (Iz). Since every element of A is an annulus, up

to shrinking Iz (so that it contains no points of S), we may assume that Az is an
annulus. The open annulus Az may be embedded into an open disc Dz such that the
complement is a closed disc.

Let us construct a curve Y ′ by starting from τ−1
T (U) an gluing Dz along Az for

each z ∈ ∂U . By construction, the curve Y ′ is compact and of genus 0. Moreover, it
contains rational points, as the Dz do. It follows from Theorems 6.3.12 and 6.3.23
that Y ′ is isomorphic to P

1,an
k . By construction,

P
1,an
k − τ−1

T (U) =
⋃

z∈∂U
Dz − Az

is a disjoint union of finitely many closed discs. ��
We now state and prove the uniformization theorem.

Theorem 6.5.3 Let X be a k-analytic Mumford curve. Then the fundamental
group � of X is a Schottky group. If we denote by L the limit set of �, then
O := P

1,an
k − L is a universal cover of X. In particular, we have X / �\O .

Proof Assume that the genus of X is bigger than or equal to 2.
Let p : Y → X be the topological universal cover of X. Since p is a local

homeomorphism, we may use it to endow Y with a k-analytic structure. The set Y
then becomes an A1-like curve and the map p becomes a local isomorphism of
locally ringed spaces. Note that the curve Y has genus 0.

We claim that it is enough to prove that Y is isomorphic to an open subset
of P1,an

k whose complement lies in P1(k). Indeed, in this case, Y is simply connected,
hence the fundamental group � of X may be identified with the group of deck
transformations of p. By Lemma 6.5.1, it embeds into PGL2(k). It now follows
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from the properties of the universal cover and the fundamental group that � is a
Schottky group (see Remark 6.2.12 for the fact that the non-trivial elements of �
are loxodromic). Moreover, by Theorem 6.4.18, we have Y ⊆ P

1,an
k −L, where L is

the limit set of �, henceX = �\Y ⊂ �\(P1,an
k −L). Since �\Y and �\(P1,an

k −L)
are both connected proper curves, they have to be equal, hence Y = P

1,an
k − L.

In the rest of the proof, we show that Y embeds into P
1,an
k with a complement

in P1(k). SinceX is a k-analytic Mumford curve of genus at least 2, it has a minimal
skeleton %X and the connected components of %X deprived of its branch points are
skeleta of open annuli over k. Its preimage p−1(%X) coincides with the minimal
skeleton%Y of Y . Similarly, the connected components of%Y deprived of its branch
points are skeleta of open annuli over k. We denote by τY : Y → %Y the canonical
retraction.

Let x0 ∈ X and y0 ∈ p−1(x0). Let �X be a loop in %X based at x0 that is not
homotopic to 0. It lifts to a path in%Y between y0 and a point y1 of p−1(x0). We may
then lift again �X to a path in %Y between y1 and a point y2 of p−1(x0). Repeating
the procedure, we obtain a non-relatively compact path λ(�X) in %Y starting at y0.
Note that the length of λ(�X) is infinite since it contains infinitely many copies
of �X.

More generally, all the maximal paths starting from y0 in %Y are of infinite
length, since they contain infinitely many lifts of loops from %X.

Since X is of genus at least 2, we may find two loops �X,0 and �X,1 based at x0
in �X that are not homotopic to 0 and not homotopic one to the other. Set �0 :=
λ(�X,0), �∞ := λ(�−1

X,0) and �1 := λ(�X,1). Away from some compact set of Y , the
three paths �0, �∞, �1 are disjoint. Up to moving x0 and y0, we may assume that

�0 ∩ �1 = �∞ ∩ �1 = �0 ∩ �∞ = {y0}.

For i ∈ {0, 1,∞} and r ∈ R�1, we denote by ξi,r the unique point of �i such that
�([y0, ξi,r ]) = r .

Let n ∈ N�1. Set

Un := {z ∈ %Y : �([y0, z]) < 2n} and Yn := τ−1
Y (Un).

We already saw that all the maximal paths starting from y0 in %Y are of infinite
length, hence Un is relatively compact in %Y . Denote by ∂Un the boundary of Un
in %Y . For each z ∈ ∂Un, we have �([y0, z]) = 2n.

By Lemma 6.5.2, there exists an open subset On of P1,an
k and an isomorphism

ϕn : Yn ∼−→ On such that P1,an
k − On is a disjoint union of closed discs. For each

z ∈ ∂Un, we denote by pz the end-point of ϕn([y0, z)) in P
1,an
k − On and by Dz

the connected component of P1,an
k − On whose boundary point is pz. To ease the

notation, for i ∈ {0, 1,∞}, we set Di,n := Dξi,2n .

Let us fix a point at infinity on P
1,an
k and a coordinate T on A

1,an
k ⊂ P

1,an
k . We

may assume that, for each i ∈ {0, 1,∞}, we have i ∈ Di,n. By pulling back the
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analytic function T on On by ϕn, we get a analytic function on Yn. We denote it
by ψn. Recall that it is actually equivalent to give oneself ϕn or ψn, see [PT20,
Lemma 5.5.11]. ��
Lemma 6.5.4 We have ϕn(y0) = η1. For each r ∈ [1, 2n), we have

ϕn(ξ0,r ) = η1/r , ϕn(ξ∞,r ) = ηr and ϕn(ξ1,r ) = η1,1/r .

Let C be a connected component C of Y − (�0 ∪ �∞). For each y ∈ C ∩ Yn, we
have

|ψn(y)| =
{

1/r if the boundary point of C is ξ0,r;
r if the boundary point of C is ξ∞,r .

LetN ∈ �1, n�. The image ϕn(YN) is an open Swiss cheese. More precisely, there
exist d ∈ N�2, α2, . . . , αd ∈ k∗ and, for each j ∈ �2, d�, rj ∈ [2−N, |αj |) such

that ϕn(YN) is the subset of A1,an
k defined by the following conditions:

⎧
⎪⎪⎨

⎪⎪⎩

2−N < |T | < 2N ;
|T − 1| > 2−N ;
∀j ∈ �2, d�, |T − αj | > rj .

Proof It follows from the construction that, for each i ∈ {0, 1,∞}, ϕn([y0, ξi,2n ) is
an injective path joining ϕn(y0) to the boundary point of a disc centered at i. Since
those paths only meet at ϕn(y0), the only possibility is that ϕn(y0) = {η1}.

Let r ∈ [1, 2n). Since lengths are preserved by automorphism (see [PT20,
Proposition 5.5.14]), for each i ∈ {0, 1,∞}, we have �([η1, ϕn(ξi,r )]) = r . Since
ϕn(ξ∞,r ) belongs to [η1,∞], it follows that ϕn(ξ∞,r ) = ηr . By a similar argument,
we have ϕn(ξ0,r ) = η1/r and ϕn(ξ1,r ) = η1,1/r .

Recall that we have I0 = {ηr : r ∈ R�0} ⊂ A
1,an
k . Let C be a connected

component of A1,an
k − I0 and let ηr be its boundary point. Then, for each z ∈ C, we

have |T (z)| = r .
We have ϕ−1

n (I0 ∩On) = (�0 ∪ �∞) ∩ Yn. By definition of ψn, for each y ∈ Yn,
we have |ψn(y)| = |T (ϕn(y))|. It follows that, for each connected component C of
Y − (�0 ∪ �∞) and each y ∈ C ∩ Yn, we have

|ψn(y)| =
{

1/r if the boundary point of C is ξ0,r;
r if the boundary point of C is ξ∞,r .

The set On is an open Swiss cheese. The set ϕn(UN) is a connected open subset
of its skeleton and ϕn(YN) is the preimage of it by the retraction. It follows that
ϕn(YN) is an open Swiss cheese too, hence the complement in P

1,an
k of finitely

many closed discs E∞, E0, . . . , Ed . Let z∞, z0, . . . , zd denote the corresponding
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boundary points. The set ϕn(YN) contains ϕn(y0) = η1 and, by construction of YN ,
for each i ∈ {∞} ∪ �0, d�, we have �([η1, zi ]) = 2N .

Since 0, 1 and ∞ do not belong to On, some of those discs Ei contain those
points. Since ϕn(YN) contains η1, those discs are disjoint. We may assume that, for
each i ∈ {0, 1,∞}, we have i ∈ Ei . The length property then implies that we have
z∞ = η2N , z0 = η2−N and z0 = η1,2−N . In other words,

P
1,an
k − (E∞ ∪ E0 ∪E1) = {x ∈ A

1,an
k : 2−N < |T (x)| < 2N, |T − 1| > 2−N }.

For j ∈ �2, d�, let αj be a k-rational point of Ej . The boundary point zj of Ej
is then of the form ηαj ,rj for some rj ∈ R�0. Since Ej does not contain 0, we have
rj < |αj |. Moreover, the condition �([η1, ηαj ,rj ]) = 2N implies that rj � 2−N (see
[PT20, Example 5.9.11]). The result follows. ��

Let N,n,m ∈ N�1 with n � m > N . The analytic function ψm has no zeros
on Ym, hence the quotient ψn|Ym/(ψm) defines an analytic function on Ym. Set

hn,m := ψn|Ym
ψm

− 1 ∈ O(Ym).

Lemma 6.5.5 For N,n,m ∈ N�1 with n � m > N , we have ‖hn,m‖YN �
max(2N−m, 2−m/2).

Proof By Lemma 6.5.4, for each y ∈ Ym, we have |ψn(y)| = |ψm(y)|. It follows
that ‖hm,n‖Ym � 1. We now distinguish two cases.

• Assume that |hn,m| is not constant on YN .

By [PT20, Corollary 5.10.16], there exists y ∈ ∂YN such that ‖hn,m‖YN =
|hn,m(y)| and |hn,m| has a negative exponent at y along the branch entering YN . By
harmonicity (see [PT20, Theorem 5.10.14]), there exist a branch b at y not belonging
to YN such that the exponent of |hn,m| along b is positive. Repeating the procedure,
we construct a path joining y to a boundary point y ′ of Ym such that |hn,m| has a
positive exponent at each point of [y, y ′) along the branch pointing towards y ′. It
follows that we have

‖hn,m‖Yn � |hn,m(y)| �([y, y ′]) � ‖hn,m‖YN 2m−N,

hence

‖hn,m‖YN � 2N−m.

• Assume that |hn,m| is constant on YN .
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Let N ′ be the maximum integer smaller than or equal to m such that |hn,m| is
constant on YN ′ . Then, for every r ∈ [1, 2N ′), we have |hn,m(ξ1,r )| = ‖hn,m‖YN ′ .
We also have

|hn,m(ξ1,r )| = |(ψn − ψm)(ξ1,r )|
|ψm(ξ1,r )|

= |(ψn − ψm)(ξ1,r )|
|T (η1,1/r)|

� max(|(ψn − 1)(ξ1,r )|, |(ψm − 1)(ξ1,r )|)
� |(T − 1)(η1,1/r)|

� 1

r
.

We deduce that ‖hn,m‖YN ′ � 2−N ′ .
If N ′ < m, it follows from the previous case that we have ‖hn,m‖YN ′ � 2N

′−m.
In any case, we have

‖hn,m‖YN � 2−m/2.

��
It follows from Lemma 6.5.5 that the sequence (ψn)n>N converges uniformly

on YN . Let ψ(N) be its limit. It is an analytic function on YN .
The functions ψ(N) are compatible, by uniqueness of the limit, which gives rise

to an analytic function ψ ∈ O(Y ). By [PT20, Lemma 5.5.11], there exists a unique
analytic morphism ϕ : Y → A

1,an
k such that the pull-back of T by ϕ is ψ .

Let N ∈ N�1. By Lemma 6.5.5, there exists m > N such that, for each n �
m, we have ‖hn,m‖YN � 2−2N . (For instance, one could choose m = 4N .) By
Lemma 6.5.4, we have ‖ψm‖YN = ‖T ‖ϕm(YN) = 2N . It follows that ‖ψn−ψm‖YN �
‖ψm‖YN ‖hn,m‖YN � 2−N . By passing to the limit over n, we deduce that

‖ψ − ψm‖YN � 2−N .

Lemma 6.5.6 We have ϕ(YN) = ϕm(YN) and ϕ|YN is an isomorphism onto its
image.

Proof By Lemma 6.5.4, there exist d ∈ N�2, α2, . . . , αd ∈ k∗ and, for each j ∈
�2, d�, rj ∈ [2−N, |αj |) such that ϕm(YN) is the subset of A1,an

k defined by
⎧
⎪⎪⎨

⎪⎪⎩

2−N < |T | < 2N ;
|T − 1| > 2−N ;
∀j ∈ �2, d�, |T − αj | > rj .
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For t ∈ (1, 2N), letWt be the subset of A1,an
k defined by

⎧
⎪⎪⎨

⎪⎪⎩

2−N t � |T | � 2Nt−1;
|T − 1| � 2−N t;
∀j ∈ �2, d�, |T − αj | � rj t.

EachWt is compact and the family (Wt )t∈(1,2N) is an exhaustion of ϕm(YN).
Let n � m. For t ∈ (1, 2N), the set ϕ−1(Wt )∩ YN is the subset of points y ∈ YN

such that
⎧
⎪⎪⎨

⎪⎪⎩

2−N t � |ψ(y)| � 2Nt−1;
|ψ(y)− 1| � 2−N t;
∀j ∈ �2, d�, |ψ(y)− αj | � rj t.

From the inequality ‖ψ − ψm‖YN � 2−N , we deduce that ϕ−1(Wt ) ∩ YN =
ϕ−1
m (Wt) ∩ YN .

It follows that ϕ(YN) = ϕm(YN) and that the morphism ϕ|YN : YN → ϕ(YN) is
proper. Since YN is a smooth curve and ϕ|YN is not constant, it is actually finite.

To prove that ϕ|YN is an isomorphism, it is enough to show that it is of degree 1.
We will prove that, for each r ∈ [1, 2N), we have ϕ−1

|YN (ξ∞,r ) = {ηr}. This implies
the result, by [PT20, Theorem 5.10.17].

Let r ∈ [1, 2N). Let y ∈ YN such that ϕ(y) = ηr . To prove that y = ξ∞,r , we
may extend the scalars to k̂a . The point ηr of A1,an

k is characterized by the following
equalities:

⎧
⎨

⎩

|T (ηr)| = r;
∀α ∈ k̂a with |α| = r, |(T − α)(ηr )| = r.

Since ϕ(y) = ηr , we have

⎧
⎨

⎩

|ψ(y)| = r;
∀α ∈ k̂a with |α| = r, |ψ(y)− α| = r.

Since ‖ψ − ψm‖YN � 2−N < r , the same equalities hold with ψm instead of ψ . It
follows that ψm(y) = ηr , hence y = ξ∞,r since ψm is injective. ��

It follows from Lemmas 6.5.4 and 6.5.6 that, for each N ∈ N�1, P1,an
k − ϕ(YN)

is a disjoint union of closed discs with radii smaller than or equal to 2−N . It follows
that

P
1,an
k − ϕ(Y ) =

⋂

N�1

P
1,an
k − ϕ(YN)
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is a compact subset of P
1(k) (see the proof of Corollary 6.4.13 for details on k-

rationality). By Lemma 6.5.6 again, ϕ induces an isomorphism onto its image.
We briefly sketch how the proof needs to be modified to handle the case of

genus 0 and 1. One may use similar arguments but the paths �0, �∞, �1 have to
be constructed in a different way. In genus 0, one first proves that X has rational
points and consider paths joining y0 to them. (In this case, one may also argue more
directly to prove that X is isomorphic to P

1,an
k by Theorems 6.3.12 and 6.3.23.) In

genus 1, the skeleton provides two paths and we can use a rational point to construct
the third one. Such a point has to exist, since any annulus over k whose skeleton is
of large enough length contains some.

Remark 6.5.7 The most difficult part of the proof of Theorem 6.5.3 consists in
proving that the k-analytic curve Y , which is known to be of genus 0, may be
embedded into P

1,an
k . Contrary to what happens over the field of complex numbers,

this is not automatic. This problem was studied extensively by Q. Liu under the
assumption that k is algebraically closed. He proved that the answer depends
crucially on the maximal completeness of k. If it holds, then any smooth connected
k-analytic curve of finite genus may be embedded into the analytification of an
algebraic curve of the same genus (hence into P

1,an
k in the genus 0 case), see

[Liu87b, Théorème 3] or [Liu87a, Théorème 3.2]. Otherwise, there exists a smooth
connected k-analytic curve of genus 0 with no embedding into P

1,an
k , see [Liu87b,

Proposition 5.5]. Q. Liu also prove several other positive results that hold over any
algebraically closed base field.

The results of Q. Liu are stated and proved in the language of rigid analytic
geometry. We believe that it is worth adapting them to the setting of Berkovich
geometry and that this could lead to a different point of view on the sufficient
conditions for algebraizablity. One may also wonder whether it is necessary to
assume that the base field is algebraically closed to obtain an unconditional positive
result. The case of a discretely valued base field (hence maximally complete but not
algebraically closed) is, of course, particularly interesting.

6.5.2 Automorphisms of Mumford Curves

In this section, we use the uniformization of Mumford curves to study their groups of
k-linear automorphisms. The fundamental result, proven by Mumford in [Mum72a,
Corollary 4.12], is the following theorem. We include a proof of this fact that relies
on the topology of Berkovich curves.

Theorem 6.5.8 Let X be a k-analytic Mumford curve. Let � ⊂ PGL2(k) be its
fundamental group, and let N := NPGL2(k)(�) be the normalizer of � in PGL2(k).
Then, we have

Aut(X) ∼= N/�.
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Proof Let p : O → X be the universal cover of X provided by Theorem 6.5.3,
and let σ ∈ Aut(X). Since p is locally an isomorphism of k-analytic curves, the
automorphism σ can be lifted to an analytic automorphism σ̃ ∈ Aut(O) such that
p ◦ σ̃ = σ ◦ p. By Lemma 6.5.1, σ̃ extends uniquely to an automorphism of P1,an

k ,
that is, an element τ ∈ PGL2(k). The automorphism τ has to normalize �: in fact,
for any γ ∈ �, the element τγ τ−1 ∈ Aut(O) induces the automorphism σσ−1 = id
on X. It follows that τγ τ−1 ∈ �, so that τ ∈ N .

Conversely, let τ ∈ N . By definition, the limit set L of � is preserved by τ . It
follows that τ induces an automorphism of O = P

1,an
k − L. Moreover, for each

γ ∈ � and each x ∈ P
1,an
k , we have

τ (γ (x)) = (τγ τ−1)(τ (x)) ∈ � · τ (x).

It follows that τ descends to an automorphism of X / �\O . ��
As was the case for the uniformization, Mumford’s proof relies on non-trivial

results in formal geometry. The Berkovich analytic proof turns out to be shorter and
much less technical due to the fact that the uniformization of a Mumford curve can
be interpreted as a universal cover of analytic spaces.

Recall from Remark 6.3.8 that the skeleton%X of the Mumford curveX is a finite
metric graph. We will denote by Aut(%X) the group of isometric automorphisms
of %X. An interesting feature of the automorphism group of an analytic curve,
which is immediate in the Berkovich setting, is the existence of a restriction
homomorphism

ρ : Aut(X) −→ Aut(%X)
σ �−→ σ|%X .

Proposition 6.5.9 Let X be a Mumford curve of genus at least 2. Then, the
restriction homomorphism ρ : Aut(X)→ Aut(%X) is injective.

Proof Let σ ∈ Aut(X) such that ρ(σ) = id, that is, σ acts trivially on the skeleton
%X. Then, as in the proof of Theorem 6.5.8, one can lift σ to an automorphism of the
universal cover p : O −→ X. By possibly composing this lifting with an element
of the Schottky group, we can find a lifting σ̃ that fixes a point x in the preimage
p−1(%X) ⊂ O . Since σ fixes %X pointwise, then σ̃ fixes the fundamental domain
in p−1(%X) by the action of the Schottky group �X containing x. By continuity of
the action of �X on p−1(%X), the automorphism σ̃ has to fix the whole p−1(%X)

pointwise. But then the corresponding element τ ∈ PGL2(k) obtained by extending
σ̃ thanks to Lemma 6.5.1(ii) has to fix the limit set of �X, which is infinite when
g(X) ≥ 2. It follows that τ is the identity of PGL2(k), hence that σ is the identify
automorphism. ��
Remark 6.5.10 The previous proposition can be proved also using algebraic meth-
ods as follows. The fact that g(X) ≥ 2 implies that Aut(X) is a finite group.
Then, for every σ ∈ Aut(X), Y := X/〈σ 〉 makes sense as a k-analytic curve, and
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the quotient map fσ : X → Y is a ramified covering. Let us now suppose that
ρ(σ) = id. Then Y contains an isometric image of the graph%X, whose cyclomatic
number is g(X), by Corollary 6.3.29. It follows from the definition of the genus that
g(Y ) � g(X). We can now apply Riemann–Hurwitz formula to find that

2g(X)− 2 = deg(fσ )(2g(Y )− 2)+ R,

where R is a positive quantity. Since g(Y ) � g(X) ≥ 2, we deduce that
deg(fσ ) = 1, hence σ = id.

The proposition shows that Aut(%X) controls Aut(X), but it is a very coarse
bound when the genus is high. Much better bounds are known, as one can see in
the examples below and in the first part of Appendix A.3, containing an outline
of further results about automorphisms of Mumford curves, including the case of
positive characteristic.

Example 6.5.11 Let X be a Mumford curve such that Aut(%X) = {1}. Then
Proposition 6.5.9 ensures that X has no non-trivial automorphisms as well. Since,
up to replacing k with a suitable field extension, every stable metric graph can be
realized as the skeleton of a Mumford curve, one can build in this way plenty of
examples of Mumford curves without automorphisms. For example, the graph of
genus 3 in Fig. 6.4 below has a trivial automorphism group, as long as the edge
lengths are generic enough, for example when all lengths are different.

This graph can be obtained by pairwise identifying the ends of a tree as in
Fig. 6.5.

One can realize this tree inside P
1,an
k as the skeleton of a fundamental domain

under the action of a Schottky group in many ways. As an example, if k = Qp

with p ≥ 5, a suitable Schottky group is obtained by carefully choosing the

Fig. 6.4 The metric graph
%X has trivial group of
automorphisms if the edge
lengths are all different

v1

v2 v3

Fig. 6.5 The graph in the
previous figure is obtained
from its universal covering
tree by pairwise gluing the
ends of the finite sub-tree %F .
The gluing is made by
identifying the ends that are
marked with the same shape

p−1(v1)

p−1(v2) p−1(v3)
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0

γ−1
1 (π)

γ−1
1 (0)

γ−1
2 (0)

γ−1
2 (π)

π

1

1 + π
− π

π−2

γ2(1)

γ2(1 + π)

γ1(1)

γ1(1 + π)

x1 x2

D+(γ2)

D+(γ1)

D+(γ−1
2 )

D+(γ−1
1 )

Fig. 6.6 The Schottky figure associated with (γ1, γ2)

Koebe coordinates that give rise to the desired skeleton. One can for instance pick
� = 〈M(0,∞, p3),M(1, 2, p4),M(p, p − 2, p3)〉 and verify that it gives rise to
a fundamental domain whose skeleton is the tree in Fig. 6.5. As a consequence of
Theorem 6.5.8, the normalizer of � in PGL2(k) is the group � itself.

Example 6.5.12 Assume that k is algebraically closed and that its residue character-
istic is different from 2 and 3. Let π, ρ be elements of k satisfying |π | < 1, ρ3 = 1
and ρ �= 1. Fix the following elements of PGL2(k):

a =
[−π 0
−2 π

]

, b =
[

1+ π − ρ (1+ π)(ρ − 1)
1− ρ (1+ π)ρ − 1

]

.

These elements are of finite order, respectively two and three. The fixed rigid points
of a are 0 and π , while the fixed rigid points of b are 1 and 1+ π .

Thanks to our assumption that char(̃k) �= 2, the transformation a acting on P
1,an
k

fixes the path joining 0 and π , and sends every open disc whose boundary point lies
on this path to a disjoint open disc with the same boundary point. For example, the
image by a of the discD−(− π

π−2 , 1) is the disc2 P
1,an
k −D+(

0, |π |), and vice versa.
The same happens for the action of b: the path joining 1 and 1 + π is fixed,

while any open disc with its boundary point on this path is sent to a disjoint open
disc with the same boundary point. Since b is of order three, the orbit of such a
disc consists of three disjoint discs. For example, the orbit of D−(0, 1) contains
b
(
D−(0, 1)

) = D−(
1− π

(1+π)ρ−1 , 1
)

and b2
(
D−(0, 1)

) = D−(
1− π

(1+π)ρ2−1
, 1

)
.

Let us consider the elements γ1 := abab2 and γ2 := ab2ab. Using
the geometry of a and b described above, one can check that the 4-tuple(
D+(γ1),D

+(γ−1
1 ),D+(γ2),D

+(γ−1
2 )

)
represented in Fig. 6.6 provides a

Schottky figure adapted to (γ1, γ2).
Thanks to Proposition 6.4.24, the existence of a Schottky figure ensures that � =

〈γ1, γ2〉 is a Schottky group of rank 2. Denote its limit set byL. By Theorem 6.4.18,

2Recall that on the projective line we consider also discs “centered in∞” such as this one.
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Fig. 6.7 The skeleton %X of
the Mumford curve
uniformized by � p(x1) p(x2)

the quotient X := �\(P1,an
k − L) makes sense as a k-analytic space and it is a

Mumford curve of genus 2. Let p : (P1,an
k − L) → X denote the universal cover.

It also follows from Theorem 6.4.18 that the topology of X may be described quite
explicitly from the action of �. We deduce in this way that the skeleton %X of X
is the metric graph represented in Fig. 6.7. By measuring the lengths of the paths
joining the boundaries of the discs in the Schottky figure, one can verify that the
three edges of %X have equal lengths.

Let us now compute the automorphism group Aut(X). By Theorem 6.5.8, this
can be done by computing the normalizer N of � in PGL2(k). The elements a and
b lie in N , since γia = aγ−1

i for i = 1, 2 and γ1b = bγ−1
2 , but we can also find

elements in N that do not belong to the subgroup generated by a and b. Let

c :=
[

1+ π −π(1+ π)
2 −(1+ π)

]

∈ PGL2(k).

A direct computation shows that the transformation c is such that c2 = id, cac = a
and cbc = b2, so that c belongs to N . The group N ′ = 〈a, b, c〉 ⊂ PGL2(k) is
then contained in N , and the quotient N ′/� is isomorphic to the dihedral group
D6 of order 12. In fact, if we call α, β, γ the respective classes of a, b, c in N ′/�,
we have that αβ = βα, and then 〈α, β〉 is a cyclic group of order 6. However, the
same computation above shows that γ does not commute with β. The group D6
is also the automorphism group of the skeleton %X, and so, by Proposition 6.5.9,
we have N = N ′ and the restriction homomorphism Aut(X) → Aut(%X) is an
isomorphism.

Note that one can extract quite a lot of information from the study of the action
of N on P

1,an
k . In this example, α ∈ Aut(X) is an order 2 automorphism known

as the hyperelliptic involution, since it induces a degree 2 cover of the projective
line ϕ : X → P

1,an
k . This last fact can be checked on the skeleton %X by noting

that α(p(x1)) = p(x2), and hence α has to switch the ends of every edge of %X.
As a result, the quotient X/〈α〉 is a contractible Mumford curve, and hence it is
isomorphic to P

1,an
k .

This description of X as a cover of P
1,an
k is helpful to compute an explicit

equation for the smooth projective curve whose analytification is X. In fact, a
genus 2 curve that is a double cover of the projective line can be realized as the
smooth compactification of a plane curve of equation

y2 =
6∏

i=1

(x − ai),
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where the ai ∈ k are the ramification points of the cover, and the involution defining
the cover sends y to −y.

In order to find the ai , we shall first compute the branch locus B ⊂ X of
the hyperelliptic cover. The fixed points of a are 0 and π , so the corresponding
points p(0), p(π) are in B. The other branch points can be obtained by finding
those x ∈ P

1,an
k (k) satisfying the condition γi(x) = a(x) for i = 1, 2. We have

γ1(b(0)) = abab2b(0) = aba(0) = a(b(0)), and the same applies to b(π), so
the images by p of these two points are also in B. In the same way, we find that
γ2(b

2(0)) = a(b2(0)) and γ2(b
2(π)) = a(b2(π)). We have found in this way that

B = {p(0), p(b(0)), p(b2(0)), p(π), p(b(π)), p(b2(π))}.
To find the ramification locus, we have to compute ϕ(B). Since 〈α〉 is a normal

subgroup of Aut(X), the element β acts as an automorphism of order 3 of X/〈α〉 ∼=
P

1,an
k . Up to a change of coordinate of this projective line, we can suppose that the

fixed points of β are 0 and ∞, so that β is the multiplication by a primititve third
root of unity, and that the first ramification point is a1 = ϕ(p(0)) = 1. Then, after
possibly reordering them, the remaining ramification points are a2 = ρ, a3 = ρ2

and a4, ρa4, ρ
2a4, with |a4 − 1| < 1.

With a bit more effort, we can actually compute the value of a4. To do this, notice
that the function p is injective when restricted to the open fundamental domain

F− = P
1,an
k − (

D+(γ1) ∪D+(γ−1
1 ) ∪D+(γ2) ∪D+(γ−1

2 )
)
.

If we set F ′ = ϕ ◦ p(F−) we then have a two-fold cover F− −→ F ′ ⊂ P
1,an
k

induced by ϕ ◦ p, which can be explicitly written as a rational function z �→ z2

(z−π)2
(this function can be found by looking at the action of a on F− explicitly). Note
that F− contains both the fixed rigid points of b, i.e. 1 + π and 1, and those of a,
i.e. 0 and π . When we reparametrize the projective line on the target of ϕ to get the
wanted equation, we are imposing the conditions α ◦p(1+π) �→ ∞, α ◦p(1) �→ 0
and α◦p(0) �→ 1 = a1. These choices leave only one possibility for the ramification
point a4: it is

( 1−π
1+π

)2. We have now found the equation of the plane section of our
Mumford curve: it is

y2 = (x3 − 1) ·
(
x3 − (1− π)

6

(1+ π)6
)
.

Note that |a4 − a1| =
∣
∣
∣
(1−π)2
(1+π)2 − 1

∣
∣
∣ = |π |.

A different example of a hyperelliptic Mumford curve with a similar flavour
is discussed in the expository paper [CK05], accompanied with figures and other
applications of automorphisms of Mumford curves.

Example 6.5.13 The curve in Example 6.5.12 has the same automorphism group
in every characteristic (different from 2 and 3). However, Mumford curves in
positive characteristic have in general more automorphism than in characteristic 0.
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An interesting class of examples are the so-called Artin-Schreier-Mumford curves,
first introduced by Subrao in [Sub75]. We sketch here the main results and refer
to [CKK10] for more detailed proofs of these facts. Let p be a prime, q = pe be
a power of p, and k = Fq((t)). Let X be the analytification of the curve defined
inside P1

k × P
1
k by the equation

(yq − y)(xq − x) = f (t) with f ∈ tFq [[t]].

This is an ordinary curve in characteristic p > 0 with many automorphisms, and
for this reason has caught the attention of cryptographers and positive characteristic
algebraic geometers alike. One way to study its automorphisms is to observe that X
is a Mumford curve. A Schottky group attached to it can be constructed by fixing an
element v ∈ k and looking at the automorphisms of P1,an

k of the form

au =
[

1 u
0 1

]

, bu =
[
v 0
u v

]

∈ PGL2(k), u ∈ F
×
q .

These transformations are all of order p, au represent translations by elements
of F×q and bu their conjugates under the inversion z �→ v

z
. The subgroup �v =

〈a−1
u b

−1
u′ aubu′ : (u, u′) ∈ F

×
q

2〉 of PGL2(k) is a Schottky group of rank (q − 1)2,

and for a certain value of v3 it gives rise to the curveX by Schottky uniformization.
The immediate consequence of this fact, is that X is a Mumford curve of genus
(q − 1)2.

The group of automorphisms Aut(X) is isomorphic to a semi-direct product
(Z/pZ)2e�Dq−1, and its action is easy to describe using the equation of the curve:
the elementary abelian subgroup (Z/pZ)2e consists of those automorphisms of the
form (x, y) �→ (x + α, y + β) with (α, β) ∈ (Fq)2, while the dihedral subgroup
Dq−1 is generated by (x, y) �→ (y, x) and (x, y) �→ (γ x, γ−1y) for γ ∈ F×q . We

deduce that the order of Aut(X) is 2(q − 1)q2. In characteristic 0, it is not possible
to have these many automorphisms, thanks to bounds by Hurwitz and Herrlich that
would give rise to a contradiction (see Appendix A.3 for the precise statement of
these bounds).
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Appendix: Further Reading

The theory of Berkovich curves has several applications to numerous fields of
mathematics, and uniformization plays a role in many of these. A complete
description of these applications goes far beyond the scope of the present text, but
we would like to provide the interested reader with some hints about the state of
the art and where to find more details in the existing literature, as well as point out
which simplifications adopted in this text are actually instances of a much richer
theory.

A.1 Berkovich Spaces and their Skeleta

We provided a short introduction to the theory of Berkovich curves and their skeleta
in Sect. 6.3.2 of this text.

The first discussion of this topic appears already in Chapter 4 of Berkovich’s
foundational book [Ber90]. In this context, the definition of the skeleton of a
Berkovich curve X makes use of formal models and the semi-stable reduction
theorem, that states that for the analytification of a smooth proper and geometrically
irreducible algebraic curve over k, there exists a finite Galois extensionK of k such
that the base changeXK has a semi-stable formal model. Berkovich showed that the
dual graph of the special fiber of any semi-stable formal model embeds in the curve
XK and that it is invariant by the action of the Galois group Gal(K/k) over XK ,
which allows to define skeleta ofX as quotients of skeleta ofXK . This construction
is again found in A. Thuillier’s thesis [Thu05], where it is exploited to define a
theory of harmonic functions on Berkovich curves.

In Definition 6.3.3, we adopted another approach to the study of skeleta, via the
use of triangulations. This was first introduced by Ducros in [Duc08] to study étale
cohomology groups of Berkovich curves. In the case where k is algebraically closed,
a comprehensive exposition of skeletons, retractions, and harmonic functions on
non-Archimedean curves can be found in the paper [BPR14]. There, the authors are
motivated by connections with tropical geometry, as, for a given algebraic variety
over k, the skeletons of its analytification are tightly related to its tropicalization
maps. Other than in the aforementioned paper, these connections are exposed in
[Wer16], where the higher-dimensional cases are highlighted as well.

As for higher-dimensional spaces, Berkovich introduced skeleta in [Ber99].
They are simplicial sets onto which the spaces retract by deformation. They are
constructed using semi-stable formal models and generalizations of them, so they
are not known to exist in full generality, but Berkovich nonetheless managed to use
them to prove that smooth spaces are locally contractible (hence admits universal
covers).
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The connections with tropical geometry have proven fruitful, among other things,
to study finite covers of Berkovich curves Y → X over k. The general pattern is
that these covers are controlled by combinatorial objects that are enhanced versions
of compatible pairs (%Y ,%X) of skeletons of the curves Y and X. Assume that k
is algebraically closed. Whenever the degree of such a cover is coprime with the
residue characteristic of k, the papers [ABBR15a] and [ABBR15b] give conditions
on a pair (%Y ,%X) to lift to a finite morphism of curves Y → X. In the case of
covers of degree divisible by the residue characteristic of k, the situation is still far
from understood, but progress has been made thanks to the work of M. Temkin and
his collaborators in the papers [CTT16, Tem17, BT20]. The main tool used in these
works is the different function.

With regard to higher-dimensional varieties, a new approach to skeletons was
proposed by E. Hrushosvksi and F. Loeser in [HL16] using techniques coming from
model theory. They are able to define skeleta of analytifications of quasi-projective
varieties and deduce the remarkable result that any such space has the homotopy
type of a CW-complex.

In the specific case of curves over an algebraically closed base field, the
paper [CKP18] uses triangulations in order to give a more concrete model-theoretic
version of Berkovich curves (and morphisms between them). In particular, the
authors manage to give an explicit description of definable subsets of curves and
prove some tameness properties.

Without the assumption that k is algebraically closed, or rather thatX has a semi-
stable formal model over the valuation ring of k, the structure of analytic curves is
much harder to grasp, due among other things to the difficulty of classifying virtual
discs and virtual annuli. The curious reader will find much food for thought in the
book by A. Ducros [Duc], which can nevertheless be of difficult reading for a first
approach. If k is a discrete valuation field, a generalization of potential theory on
Berkovich curves is provided in [BN16] thanks to a careful study of regular models,
and the introduction of the notion of weight function. In regard to the problem of
determining a minimal extension necessary for the existence of a semi-stable model,
an approach via triangulations has been recently proposed in [FT19].

Finally, let us mention that we chose to introduce Berkovich curves as A1-like
curves because we are convinced that this is a natural framework for studying
uniformization, but the general theory is much richer, and contains many examples
of Berkovich curves that are not A1-like.

A.2 Non-Archimedean Uniformization in Arithmetic
Geometry

In the case of curves over the field of complex numbers, Schottky uniformization
can be seen in the context of the classical uniformization theorem for Riemann
surfaces, proven independently by P. Koebe and H. Poincaré in 1907. It states that
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every simply connected complex Riemann surface is conformally equivalent to the
complex projective line, the complex affine line, or the Poincaré upper-half plane.
As a consequence, the universal covering space of any Riemann surface X is one
of these, and when X is compact, Koebe-Poincaré uniformization factors through
the Schottky uniformization

(
P

1,an
C

− L) → X. A remarkable book on complex
uniformization [dSG10] has been written by the group of mathematicians known
under the collective name of Henri Paul de Saint-Gervais. It constitutes an excellent
reference both on the historical and mathematical aspects of the subject.

In the non-Archimedean case, the history of uniformization is much more recent.
The uniformization theory of elliptic curves over a non-Archimedean field (k, | · |)
was the main motivation underlying J. Tate’s introduction of rigid analytic geometry
in the 1960s. Using his novel approach, Tate proved that every elliptic curve with
split multiplicative reduction over k is analytically isomorphic to the multiplicative
group k×/qZ for some q in k with 0 < |q| < 1. Tate’s computations were known to
experts, but remained unpublished until 1995, when they were presented in [Tat95]
together with a discussion on further aspects of this theory, including automorphic
functions, a classification of isogenies of Tate curves, and a brief mention of how to
construct “universal” Tate curves over the ring Z[[q]][q−1] using formal geometry.
These formal curves appeared for the first time in the paper [DR73] by P. Deligne
and M. Rapoport, who attributed it to M. Raynaud and called them generalized
elliptic curves. In loc. cit. the authors exploited them to give a moduli-theoretic
interpretation at the cusps of the modular curves X0(Np) with p � N . Further
reading in this direction include the foundational paper [KM85], that concerns the
case of modular curves X(Npn) and [Con07], that provides a more contemporary
perspective on generalized elliptic curves.

Interpreting the Schottky uniformization of Mumford curves of [Mum72a] as
a higher genus generalization of Tate’s theory inspired several novel arithmetic
discoveries. One of the most important is the uniformization of Shimura curves,
fundamental objects in arithmetic geometry that vastly generalize modular curves.
In [Che76], I. Cherednik considered a Shimura curve C associated with a quaternion
algebra B over Q. For a prime p where B is ramified, he proved that the p-adic
analytic curve (C ×Q Qp)

an can be obtained as a quotient of Drinfeld p-adic

halfplane P
1,an
Qp

− P
1,an
k (Qp), by the action of a Schottky group. This Schottky

group can be as a subgroup of a different quaternion algebra B ′ over Q, constructed
explicitly from B via a procedure known as interchange of invariants. The theory
obtained in this way is classically referred to as Cherednik-Drinfeld uniformization,
since V. Drinfeld gave a different proof of this result in [Dri76], building on a
description of C as a moduli space of certain abelian varieties. The excellent paper
[BC91] provides a detailed account of these constructions.

By generalizing Drinfeld’s modular interpretation, the approach can be extended
to some higher dimensional Shimura varieties, resulting in their description as
quotients of the Drinfeld upper-half space via a uniformization map introduced
independently by G. Mustafin [Mus78] and A. Kurihara [Kur80]. For a firsthand
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account of the development of this uniformization, we refer the reader to the book
[RZ96] by M. Rapoport and T. Zink.

Non-Archimedean uniformization of Shimura varieties has remarkable conse-
quences. First of all, it makes possible to find and describe integral models of
Shimura varieties, since the property of being uniformizable imposes restrictions
on the special fibers of such models. Furthermore, it gives a way to compute étale
and �-adic cohomology groups, as well as the action of the absolute Galois group
Gal(Qp/Qp) on these, making it a powerful tool for studying Galois represen-
tations. All the aforementioned results were shown in the framework of formal
and rigid geometry. However, more contemporary approaches to uniformization of
Shimura varieties and Rapoport-Zink spaces make use of Berkovich spaces (see
[Var98, JLV03]), or Huber adic geometry in the form of perfectoid spaces (see
[SW13] and [Car19]). In particular, the perfectoid approach can be used to vastly
generalize the uniformization of Shimura varieties and establish a theory of local
Shimura varieties. This construction is exposed in the lecture notes [SW20] by P.
Scholze and J. Weinstein.

Local and global uniformization of Shimura varieties are investigated in rela-
tion to period mappings, Gauss-Manin connections, and uniformizing differential
equations in the book by Y. André [And03], where striking similarities between the
complex and p-adic cases are highlighted. For more results about the relevance of
Shimura varieties, not necessarily with regard to uniformization, we refer to [Mil05].

Finally, let us mention that Tate’s uniformization of elliptic curves with split
multiplicative reduction generalizes to abelian varieties. This is also a result of
Mumford, contained in the paper [Mum72b], that can be regarded as a sequel to
[Mum72a], since the underlying ideas are very similar. In this case, the uniformiza-
tion theorem is formulated by stating that a totally degenerate abelian variety of
dimension g over k is isomorphic to the quotient of the analytic torus (Ggm,k)

an by
the action of a torsion-free subgroup of (k×)g . This applies in particular to Jacobians
of Mumford curves, a case surveyed in detail in the monograph [Lüt16]. We shall
remark that Mumford’s constructions are more general than their presentation in
this text: they work not only over non-Archimedean fields, but more generally over
fields of fractions of complete integrally closed noetherian rings of any dimension.

A.3 The Relevance of Mumford Curves

The uniformization theorem in the complex setting is a very powerful tool, and one
of the main sources of analytic methods applied to the study of algebraic curves.
This leads to the expectation that, in the non-Archimedean setting, Mumford curves
can be more easily studied, turning out to be a good source of examples for testing
certain conjectures. This is indeed the case for several topics in algebraic curves
and their applications, as we could already sample in Sect. 6.5.2 on the subject of
computing the group of automorphisms of curves.
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This appendix is a good place to remark that Examples 6.5.12 and 6.5.13 in that
section are instances of a much deeper theory. For a smooth projective algebraic
curveC of genus g ≥ 2 over a field of characteristic zero, the Hurwitz bound ensures
that the finite group of automorphisms Aut(C) is of order at most 84(g − 1). This
bound is sharp: there exist curves of arbitrarily high genus whose automorphism
groups attain it, the so-called Hurwitz curves. However, if we know that C is (the
algebraization of) a Mumford curve, F. Herrlich proved a better bound in [Her80].
Namely, if we denote by p the residue characteristic of K , he showed that:

|Aut(C)| ≤

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

48(g − 1) p = 2

24(g − 1) p = 3

30(g − 1) p = 5

12(g − 1) otherwise.

This result relies on the characterization of automorphism groups of Mumford
curves as quotients N/�, where � is a Schottky group associated with C and N
its normalizer in PGL2(K) (see Theorem 6.5.8). One can show that the group N
acts discontinuously on an infinite tree that contains the universal covering tree of
the skeleton %Can , and use Serre’s theory of groups acting on trees to prove that N
is an amalgam of finite groups. In his paper, Herrlich achieves the bounds above by
classifying those amalgams that contain a Schottky group as a normal subgroup of
finite index.

Over a field of characteristic p > 0, the Hurwitz bound is replaced by the
Stichtenoth bound, stating that |Aut(C)| ≤ 16g4, unless C is isomorphic to a
Hermitian curve. When C is a Mumford curve, this bound can be improved in
principle using Herrlich’s strategy. However, this is not an easy task, as one has to
overcome the much bigger difficulties that arise in positive characteristic. This has
been achieved recently by M. Van der Put and H. Voskuil, who prove in [VvdP19,
Theorem 8.7] that |Aut(C)| < max{12(g − 1), g

√
8g + 1 + 3} except for three

occurrences of (isomorphism classes of) X, which happen when p = 3 and g = 6.
Moreover, in [VvdP19, Theorem 7.1] they show that the bound is achieved for any
choice of the characteristic p > 0. The bound corrects and extends a bound given
by G. Cornelissen, F. Kato and A. Kontogeorgis in [CKK01].

Another application of uniformization of Mumford curves is the resolution of
non-singularities for hyperbolic curves1 over Qp. Given such a curve X, and a
smooth point P of the special fiber of a semi-stable model of X, it is an open
problem to find a finite étale cover Y −→ X such that a whole irreducible
component of the special fiber of the stable model of Y lies above P . Earlier
versions of this problem were introduced and proved by S. Mochizuki [Moc96]
and A. Tamagawa [Tam04], that showed connections with important problems in

1A hyperbolic curve in this context is a genus g curve with nmarked points satisfying the inequality
2g − 2+ n > 0.
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anabelian geometry. The interest of the version proposed here is also motivated
by anabelian geometry: F. Pop and J. Stix proved in [PS17] that any curve for
which resolution of non-singularities holds satisfies also a valuative version of
Grothendieck’s section conjecture. In the paper [Lep13], E. Lepage uses Schottky
uniformization in a Berkovich setting to show that resolution of non-singularities
holds when X is a hyperbolic Mumford curve. His approach consists in studying
μpn-torsors of the universal cover of X, which are better understood since they can
be studied using logarithmic differentials of rational functions. With this technique,
he can show that there is a dense subset of type 2 points V ∈ X, with the
following property: every x ∈ V can be associated with a μpn-torsor τ : Y → X

such that τ−1(x) is a point of positive genus. This last condition ensures that the
corresponding residue curve is an irreducible component of the stable model of Y .

Mumford curves have been also proven useful in purely analytic contexts, for
instance to study potential theory and differential forms. Using the fact that all type 2
points in a Mumford curve are of genus 0, P. Jell and V. Wanner [JW18] are able to
establish a result of Poincaré duality and compute the Betti numbers of the tropical
Dolbeaut cohomology arising from the theory of bi-graded real valued differential
forms developed in [CLD12].

Finally, let us mention that archimedean and non-archimedean Schottky
uniformizations can be studied in a unified framework thanks to work of the
authors [PT], where a moduli space Sg parametrizing Schottky groups of fixed
rank g over all possible valued fields is constructed for every g ≥ 2. This
construction is performed in the framework of Berkovich spaces over Z developed
in [Poi10, Poi13, LP]. More precisely, the space Sg is realized as an open, path-

connected subspace of A3g−3,an
Z

, it is endowed with a natural action of the group
Out(Fg) of outer automorphisms of the free group, and exhibits interesting
connections with other constructions of moduli spaces, in the frameworks of
tropical geometry and geometric group theory. The space Sg seems to be ideal
to study phenomena of degeneration of Schottky groups from archimedean to
non-archimedean.

A different take on the interplay between archimedean and non-archimedean
Schottky uniformizations is provided by Y. Manin’s approach to Arakelov geom-
etry. In the paper [Man91] several formulas for computing the Green function
on a Riemann surface using Schottky uniformization and are explicitly inspired
by Mumford’s construction. These formulas involve the geodesics lengths in
the hyperbolic handlebody uniformized by the Schottky group associated with
such a surface, suggesting connections between hyperbolic geometry and non-
archimedean analytic geometry. This result has been reinterpreted in term of
noncommutative geometry by C. Consani and M. Marcolli [CM04] by replacing the
Riemann surface with a noncommutative space that encodes certain properties of
the archimedean Schottky uniformization. This noncommutative formalism has led
to applications both in the non-archimedean world (see for example [CM03]) and
in the archimedean one, for instance to Riemannian geometry in [CM08]. We think
that the theory of Berkovich spaces could fit nicely in this picture, and it would be an
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interesting project to investigate the relations between noncommutative geometric
objects related to Schottky uniformization (e.g. graph C�-algebras) and Mumford
curves in the Berkovich setting.
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Chapter 7
On the Stark Units of Drinfeld Modules

Floric Tavares Ribeiro

Abstract We present the notion of Stark units and various techniques involving
it. The Stark units constitute a useful tool to study the unit and class modules
of a Drinfeld module as defined by Taelman. We review some recent results on
Drinfeld Fq [θ ]-modules which make use of this notion. In particular, we present the
“discrete Greenberg conjectures” which explain the structure of the class module of
the canonical multi-variable deformations of the Carlitz module, and a result on the
non vanishing modulo a given prime of a class of Bernoulli-Carlitz numbers.

7.1 Introduction

This text aims to constitute an introduction, largely accessible to non specialist
readers, to the notion of Stark units of Drinfeld modules. The germs of the
concept of Stark units can be found in [APTR16, APTR18]. The notion has been
conceptualized in [ATR17] for Drinfeld modules over Fq [θ ] and then further
developed in the general context of Drinfeld modules in [ANDTR17] and in
[ANDTR20a] for t-modules.

Let Fq be a finite field with q elements, θ be an indeterminate over Fq , A =
Fq [θ ], and B be a finite integral extension ofA, and denote by τ the map x �→ xq . A
DrinfeldA-module defined overB is a ring homomorphismφ : A→ B[τ ], a �→ φa
where φa ≡ a (mod τ ). We first define the z-deformation of φ which consists in
twisting the Frobenius τ by a new variable z which commutes with τ . This can
be obtained simply by the formula φ̃ : A → B[z][τ ], a �→ φ̃a where, if φa =∑r
i=0 aiτ

i , then φ̃a =∑r
i=0 aiz

iτ i .
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This naive construction reveals its interest when one computes the unit module
U(φ) of the Drinfeld module φ. This unit module, introduced by L. Taelman along
with the class module (see [Tae12]), is, roughly speaking, the A-module of the
elements which map to integral elements via the exponential map associated to φ.
One can obtain a submodule of finite index of U(φ) by computing U(φ̃) and then
evaluating at z = 1. This is the module of Stark units of φ.

The terminology of Stark units comes from the remark of Anderson from
[And96] that the elements that he constructed play a role similar to the circular
units, which generalize in the classical case to Stark units. The idea of considering
Stark units indeed arose from investigations on log-algebraicity. A log-algebraicity
result consists in the construction of a specific unit from the L-series of a Drinfeld
module. The concept of log-algebraicity is due to D. Thakur and has been notably
developed by G. Anderson in [And94, And96]. It has become a very lively topic in
the current research. In a log-algebraicity statement, one in fact builds an element in
U(φ̃), its evaluation at z = 1 is then always a Stark unit.

We can track this analogy in particular in Theorem 7.4.6 which states that the
Fitting ideal of the quotient of U(φ) by the module of Stark units is equal to the
Fitting ideal of the class module of φ.

The chapter is organized as follows. We start defining the basic notions involved
in the theory of Drinfeld A-modules and introduce the tools which are necessary
to state Taelman’s class formula. The first three sections are meant to be self
contained and present the general machinery of Stark units in the case of Drinfeld
Fq [θ ]-modules. This machinery has been generalized for Anderson A-modules
with general A without difficulty. We invite the interested reader to [ANDTR17,
ANDTR20a] for more details.

We present in Sect. 7.5 several class formulas and explain how Stark units appear
in these formulas or can be computed from them.

We then turn to a slightly more general kind of objects, which are deformations of
Drinfeld modules, in particular the multi-variable “canonical” deformations of the
Carlitz module, which is canonical in the sense that the Carlitz module is deformed
by its own shtuka function. This is a key object for arithmetic applications that we
then review. First we show that the class module of the canonical deformation of
the Carlitz module is, depending on the case, pseudo cyclic or pseudo null, which
reminds of the classical Greenberg conjectures. Then we prove that, given a prime
P , almost all Bernoulli-Carlitz numbers of a certain form do not vanish modulo P .

We finish with some words on Stark units in more general settings.
Some new proofs are given when possible and references are provided along

the way. For the general references on Drinfeld modules, we refer the reader to
[Gos96, Ros02, Tha04]. There are also obvious links between this survey and F.
Pellarin’s contribution [Pel20] to this volume, although the settings and notation
might sometimes differ.
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7.2 Background

After some notation, we present in this section the notions of Fitting ideals and
ratios of covolumes which will be needed later, in particular in Sect. 7.5 to state
class formulas.

7.2.1 Notation

We will use the following notation:

• Fq : a finite field with q elements, of characteristic p,
• θ : an indeterminate over Fq ,
• A = Fq [θ ],K = Fq(θ), K∞ = Fq((

1
θ
)),

• v∞: the valuation at the place∞ such that v∞(θ) = −1,
• C∞: the completion of a fixed algebraic closure of K∞,
• τ : C∞ → C∞, x �→ xq the Frobenius endomorphism.

Note that K∞ is the completion of K with respect to v∞.
If k is a field containing Fq , we set (kK)∞ = k⊗̂FqK∞ = k(( 1

θ
)). This is a field.

If x ∈ (kK)×∞, we can write x uniquely as x = ∑
n≥N xn 1

θn
, xn ∈ k with xN �= 0.

Then we call xN ∈ k× the sign of x and write sgn(x) = xN . We say that such an
x ∈ (kK)∞ is monic if sgn(x) = 1. The valuation v∞ extends naturally to (kK)∞
which is complete with respect to this valuation.

If L is a finite extension ofK we denote byOL the integral closure ofA in L. We
write L∞ = L ⊗K K∞ and if k is a field containing Fq , (kL)∞ = L ⊗K (kK)∞.
Note that (kL)∞ / L∞ when k = Fq . As a finite dimensional (kK)∞-vector space,
(kL)∞ is endowed with a natural topology. Moreover,OkL or kOL will denote the
sub-k-vector space of (kL)∞ spanned byOL. This is isomorphic to k ⊗Fq OL.

The Frobenius homomorphism τ extends uniquely to a continuous homomor-
phism on (kL)∞ by putting τ (x) = x for all x ∈ k. We then have τ (OkL) ⊂ OkL.

A case of particular interest in this text will be k = Fq(z) where z is a new
indeterminate over Fq . In this case, we will consider the Tate algebra

Tz(L∞) :=
⎧
⎨

⎩

∑

n≥0

anz
n ; an ∈ L∞, lim

n→∞ an = 0

⎫
⎬

⎭
⊂ (Fq(z)L)∞.

We have also the description Tz(K∞) / Fq [z][[ 1
θ
]] and more generally

Tz(L∞) / Fq [z][[1
θ
]] ⊗K L.

Remark that τ (Tz(L∞)) ⊂ Tz(L∞), and Tz(L∞) ∩OFq(z)L = OL[z].
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It will be useful to also use the notation (Fq [z]L)∞ = (L[z])∞ = Tz(L∞), and
OFq [z]L = OL[z] = OL[z] so that if k denotes either Fq , Fq(z) or Fq [z], then (kL)∞
stands respectively for L∞, (Fq(z)L)∞ or Tz(L∞), and OkL for OL, OFq(z)L or
OL[z].

7.2.2 Fitting Ideals

In this section, we review basic facts on the theory of Fitting ideals. The standard
references are the appendix to [MW84] and [Nor76, Eis95, Lan02].

We fix a commutative ring R and consider a finitely presented R-module M . If
for a, b ∈ N,

Ra −→ Rb −→ M −→ 0

is a presentation ofM , and if X is the matrix of the map Ra → Rb then one defines
FittM (R) to be the ideal of R generated by all the b × b minors of X if b ≤ a, and
FittR (M) = 0 if b > a. This is independent from the presentation chosen for M .
Note that ifM is torsion, one has b ≤ a.

In the case where R is a principal ideal domain (or more generally a Dedekind
domain), the structure theorem asserts that if M is a torsion R-module, then there
exist ideals I1, . . . , In of R such thatM is isomorphic to the product R/I1 × · · · ×
R/In. This implies that FittR (M) =

∏n
i=1 Ii . Fitting ideals are also multiplicative

in exact sequences. That is, if 0 → M1 → M → M2 → 0 is exact, then

FittR (M1) · FittR (M2) = FittR (M) . (7.1)

This can be deduced, for instance, from [Bou65, VII. §4 n.5 Proposition 10].
In the case where k is a field and R = k[θ ] we will denote by [M]k[θ] the monic

generator of Fittk[θ] (M). Remark that in this case, there is a simple way to compute
this quantity:

[M]k[θ] = det
k[Z] (Z − θ |M) |Z=θ . (7.2)

We fix a field k ⊃ Fq such that Fq is algebraically closed in k. As an example,
one can choose k = Fq(z). Let us write R = k[θ ]. Let G be a finite abelian group

whose order is prime to p. Let us denote by Ĝ = Hom(G,Fq
×
) the set of characters

onG. For χ ∈ Ĝ, we denote by Fq(χ) the (finite, Galois) extension of Fq generated
by the values of χ :

Fq(χ) := Fq [χ(g), g ∈ G].



7 On the Stark Units of Drinfeld Modules 285

And similarly,

k(χ) := k[χ(g), g ∈ G]
is the compositum of k and Fq[χ] and is just isomorphic to k ⊗Fq Fq [χ].

For χ ∈ Ĝ, we define the idempotent

eχ := 1

|G|
∑

g∈G
χ(g)g−1 ∈ Fq(χ)[G].

If χ ∈ Ĝ, we also define:

[χ] := {σ ◦ χ , σ ∈ Gal(Fq(χ)/Fq)} ⊂ Ĝ
and the corresponding idempotent:

e[χ] =
∑

ψ∈[χ]
eψ ∈ Fq [G].

We define a map e[χ]Fq [G] → Fq(χ) by associating, for x ∈ Fq [G], to
e[χ]x the unique λ ∈ Fq(χ) such that eχx = λeχ in Fq(χ)[G]. It is not hard to
check that this is a well defined isomorphism, and thus it induces isomorphisms
e[χ]k[G] → k(χ) and e[χ]R[G] → k(χ)[θ ] = R(χ). Remark that the notion of a
monic element in e[χ]R[G] is then well defined and does not depend on the choice
of the representative χ of [χ].

Then, R[G] is the direct sum of its [χ]-components e[χ]R[G]. It is thus a
principal ideal ring, and the notion of monic elements on each component leads to
a natural notion of monic elements on R[G]. Thus, ifM is an R[G]-module which
is finite dimensional over k, then we can define [e[χ]M]e[χ]R[G] for all character χ ,
and

[M]R[G] =
∑

χ

[e[χ]M]e[χ]R[G] ∈ e[χ]R[G].

IfM is now an R(χ)[G]module which is finite dimensional over k, then we can
define in a similar way [eχM]eχR(χ)[G] ∈ eχR(χ)[G] = R(χ)eχ . So if M is an
R[G]-module which is finite dimensional over k, we can setM(χ) := M⊗RR(χ)
and then we remark that:

[
e[χ]M

]
e[χ]R[G] =

∑

ψ∈[χ]

[
eψM(ψ)

]
eψR[G] ∈ R[G].

If nowM is a free R[G]-module, then we also have the equality:

[M]R[G] = det
k[G][Z] (Z − θ |M) |Z=θ .
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7.2.3 Ratio of Covolumes

We define here k[θ ]-lattices and the notion of ratio of covolumes which will be used
to compare two lattices.

We fix k a field containing Fq and recall that (kK)∞ = k⊗̂FqK∞ = k(( 1
θ
)).

In what follows, we fix V to be a finite dimensional (kK)∞-vector space endowed
with the natural topology coming from (kK)∞.

Definition 7.2.1 A sub-k[θ ]-moduleM of V is a k[θ ]-lattice in V if M is discrete
in V and ifM generates V over (kK)∞.

Lemma 7.2.2 Let M be a sub-k[θ ]-module of V . If M is discrete in V , then M is
finitely generated over k[θ ] and its rank is lower or equal to the dimension of V
over (kK)∞. Equality holds if, and only if,M is a k[θ ]-lattice in V .

Proof We choose a norm of (kK)∞-vector space on V . Let e1 ∈ M be an element
of minimal norm among the non zero elements ofM . Let d be the dimension of the
(kK)∞-vector space generated by M . We build by induction a family (e1, . . . , ed )

of elements ofM such that for 1 ≤ i ≤ d , ei is an element of minimal norm among
the non zero elements of M \ ((kK)∞e1 ⊕ · · · ⊕ (kK)∞ei−1). If x ∈ M , then
there are λ1, . . . , λd ∈ (kK)∞ such that x = ∑d

i=1 λiei . For 1 ≤ i ≤ d , write
λi = λi,0 + λi,1 with λi,0 ∈ k[θ ] and λi,1 ∈ 1

θ
k[ 1
θ
]. Then

x −
d∑

i=1

λi,0ei =
d∑

i=1

λi,1ei ∈ M. (7.3)

Let j be the maximal index, if it exists, for which λj,1 �= 0. Then (7.3) contradicts
the minimality of ej . We therefore must have λi,1 = 0 for all i, and thus, M =
⊕d
i=1 k[θ ]ei . We get the desired inequality.
This also proves that the dimension of the (kK)∞-vector space generated by M

is the rank ofM , whence the case of equality. ��
As an immediate consequence, we can state:

Proposition 7.2.3 Let M be a sub-k[θ ]-module of V . The following are equiva-
lent:

(i) M is a k[θ ]-lattice in V ,
(ii) There exists a (kK)∞-basis (e1, . . . , en) of V such that M is the free k[θ ]-

module of basis (e1, . . . , en),
(iii) M is discrete in V and its k[θ ]-rank is equal to the dimension of V over (kK)∞.

We can now proceed with the definition of ratio of co-volumes of lattices.
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Let M and M ′ be two k[θ ]-lattices in V . Let B and B′ be k[θ ]-bases of M and
M ′, respectively. The ratio of co-volumes ofM inM ′ is then defined as

[
M ′ : M]

k[θ] =
detB′ B

sgn(detB′ B)
∈ (kK)∞.

Note that this is independent of the choices of B and B′.

Remark 7.2.4

• The definition immediately implies that ifM0,M1 andM2 are lattices in V , then

[M0 : M1]k[θ] [M1 : M2]k[θ] = [M0 : M2]k[θ] .

• We also see that for two latticesM ,M ′ in V ,
[
M ′ :M]

k[θ] =
[
M : M ′]−1

k[θ].

The two following results are also immediate:

Proposition 7.2.5 Let M be a k[θ ]-lattice of V and u be a (kK)∞-automorphism
of V . Then u(M) is a lattice of V and

[M : u(M)]k[θ] = detu

sgn(detu)
.

Proposition 7.2.6 If M and M ′ are two k[θ ]-lattices of V and M ′ ⊂ M , then
M/M ′ is a torsion k[θ ]-module and

[
M : M ′]

k[θ] =
[
M/M ′]

k[θ] .

Now let G be a finite abelian group whose order is prime to p. We suppose
further that V is a free (kK)∞[G]-module. Write R = k[θ ]. An R[G]-latticeM in
V is an R-lattice in the (kK)∞-vector space V which is an R[G]-submodule of V .

Let us fix a character χ ∈ Ĝ. Then e[χ]M is an e[χ]R[G] lattice in e[χ]V .
Thus it makes sense to define for two R[G]-lattices M and M ′ in V the ratio[
e[χ]M : e[χ]M ′]

e[χ]R[G]. We then set

[
M :M ′]

R[G] =
∑[

e[χ]M : e[χ]M ′]
e[χ]R[G]

where the sum runs over the classes of characters [χ].

7.3 Drinfeld Modules

We review in this section the definition of Drinfeld modules and of the two
fundamental associated maps: the exponential and the logarithm maps. We finish
with the simplest example of a Drinfeld module, the Carlitz module, which allows
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some explicit computations. We also refer the reader to [Pel20, §3] where Drinfeld
modules are presented for a general ring A.

7.3.1 Drinfeld Modules

In what follows, we fix k = Fq or k = Fq(z) and R = kA, that is, R = A = Fq[θ ]
or R = Fq(z)[θ ]. Let L be a finite extension of K . We write S = OkL, that is
S = OL if R = A and S = OFq(z)L otherwise. We recall that S is endowed with the
Frobenius homomorphism τ .

Definition 7.3.1 A Drinfeld R-module defined over S is a k-algebra homomor-
phism φ : R→ S[τ ]; a �→ φa such that φa ≡ a (mod S[τ ]τ ) for all a ∈ A.

We remark that the data of φθ is sufficient to define the Drinfeld module φ. In
particular, a Drinfeld A-module over OL extends naturally to a Drinfeld Fq(z)[θ ]-
module overOFq(z)L.

The degree degτ φθ is called the rank of φ.

Example 7.3.2 We do not exclude the rank 0 case. In this case the Drinfeld module
is the trivial map φ : a �→ φa = a.

Example 7.3.3 The Carlitz module is the Drinfeld A-module C over A defined by
Cθ = θ + τ . It is of rank 1. See Sect. 7.3.3 below.

Definition 7.3.4 Let φ be a Drinfeld A-module overOL given by φθ =∑n
i=0 aiτ

i

with ai ∈ OL. The z-twist of φ is the Drinfeld Fq(z)[θ ]-module φ̃ over OFq(z)L

given by φ̃θ =∑n
i=0 aiz

iτ i and extended by Fq(z)-linearity for any a ∈ Fq(z)[θ ].
If M is an S[τ ]-module and φ is a Drinfeld R-module over S, then φ induces a

structure of R-module on M via (a,m) ∈ R ×M �→ φa(m). We then write φ(M)
for the R-moduleM considered with this structure of R-module.

7.3.2 Exponential and Logarithm

We keep the notation of the previous section. Let φ be a Drinfeld kA-module over
OkL.

Let M be a finitely generated and free (kL)∞-module equipped with a semi-
linear map τ , that is:

∀a ∈ (kL)∞, ∀m ∈ M, τ(a.m) = τ (a).τ (m).

We call such a module a τ -module over (kL)∞. It is in particular a finite dimensional
(kK)∞-vector space, and all norms of (kK)∞-vector space onM are equivalent.
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Proposition 7.3.5 There exists a unique series expφ =
∑
i≥0 eiτ

i ∈ kL[[τ ]] such
that:

(i) e0 = 1,
(ii) expφ a = φa expφ holds in kL[[τ ]] for all a ∈ A.

Moreover, if ‖ · ‖ is a norm of (kK)∞-vector spaces over (kL)∞, then

lim
n→∞‖en‖

q−n = 0.

As a consequence, if M is a τ -module over (kL)∞, then expφ defines a function
which converges everywhere onM .

Proof We refer the reader to [And86, Proposition 2.1.4] for a proof of this classical
result. Since this will be useful later on, we give a short proof of the last assertion:
expφ converges on the wholeM .

We fix a norm ‖ · ‖ of (kK)∞-vector spaces on M . From the identification
(kK)∞ / k(( 1

θ
)), we see that for all x ∈ (kK)∞, we have |τ (x)| ≤ |x|q . Thus,

since M is finite dimensional over (kK)∞, there exists some constant α ≥ 1 such
that for all x ∈ M , ‖τ (x)‖ ≤ α‖x‖q . Thus for all x ∈ M and all n ≥ 1, we have:

‖τn(x)‖ ≤ α q
n−1
q−1 ‖x‖qn ≤ (α‖x‖)qn . Thus for all n,

‖enτn(x)‖ ≤
(
‖en‖q−nα‖x‖

)qn
(7.4)

which concludes the proof. ��
We call expφ the exponential map associated to the Drinfeld module φ.

Corollary 7.3.6 If M is a τ -module over (kL)∞, then the exponential map expφ :
M → M is locally an isometry.

Proof We use the same notation as in the previous proof. Let us write m =
maxn ‖en‖q−n . From Inequality (7.4), we get that for all n ≥ 1, and for all x ∈ M
such that ‖x‖ ≤ (mα)−1,

‖enτn(x)‖ ≤ (mα‖x‖)q .

Thus, if ‖x‖ < min
(
(mα)−1, (mα)

q
1−q

)
, and for all n ≥ 1, ‖enτn(x)‖ < ‖x‖. It

implies that ‖ expφ(x)‖ = ‖x‖. The proof is finished. ��
Proposition 7.3.7 There exists a unique series logφ =

∑
i≥0 liτ

i ∈ kL[[τ ]] such
that:

(i) l0 = 1,
(ii) logφ φa = a logφ holds in kL[[τ ]] for all a ∈ A.
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Moreover, we have expφ logφ = logφ expφ = 1 in kL[[τ ]] and if ‖ · ‖ is a norm of

(kK)∞-modules over (kL)∞, then ‖ln‖q−n is bounded. As a consequence, ifM is a
τ -module over (kL)∞, then logφ converges on a neighborhood of 0 inM .

Proof The construction of logφ is standard: if it exists, then we must have
expφ logφ = logφ expφ = 1. So it can be obtained as the inverse series (in τ ) of the
exponential map, and this gives both (i) and (ii). Note that it can also be constructed
directly by solving the equation logφ φθ = θ logφ .

Let m = max(1,maxn ‖en‖). We prove by induction that for all n, ‖ln‖ ≤ mqn .
The case n = 0 is trivial. The inequality

‖ln‖ = ‖ −
n−1∑

i=0

lie
qi

n−i‖ ≤ max
i
‖lieq

i

n−i‖ ≤ max
i≤n−1

m2qi ≤ mqn

concludes the proof. ��
We call logφ the logarithm map associated to the Drinfeld module φ.

Corollary 7.3.8 The logarithm map logφ is an isometry on a neighborhood of 0.

Proof The proof can be done along the same lines as that of Corollary 7.3.6. It
is also a consequence of the fact that the logarithm map is formally an inverse
map of the exponential map, that it converges on a neighborhood of 0 and that the
exponential map is locally an isometry. ��

If φ is a Drinfeld A-module over OL, and φ̃ denotes its z-twist, then we
have expφ̃ (Tz(L∞)) ⊂ Tz(L∞), and if x ∈ Tz(L∞) and logφ̃(x) converges in
(Fq(z)L)∞, then it converges in Tz(L∞). Thus Corollary 7.3.6 and 7.3.8 remain
true on Tz(L∞).

7.3.3 The Carlitz Module

The Carlitz module is often considered as the first case of a Drinfeld module, and
we can make a lot of the constructions completely explicit here. We give a short
overview of these explicit constructions and refer the reader to [Pel20, §4] or, for
instance, to [Gos96, §3] for more details.

Let us recall that the Carlitz module is the Drinfeld A-module C over A defined
by Cθ = θ + τ . We define D0 = 1, and for i ≥ 1, Di+1 = Dqi (θq

i+1 − θ), so that
v∞(Di) = −iqi . Then the exponential map associated to C is expC =

∑
i≥0

1
Di
τ i .

Similarly, if l0 = 1, and for i ≥ 1, li+1 = li(θ − θqi ), then logC =
∑
i≥0

1
li
τ i .

The kernel of expC : C∞ → C∞ is a rank one A-module. One can give an explicit
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description of a generator of this kernel as

π̃ := (−θ) 1
q−1 θ

∏

j≥1

1

1− θ1−qj (7.5)

where (−θ) 1
q−1 is a fixed q − 1-st root of −θ in C∞. We call π̃ “the” period of the

Carlitz module (uniquely determined up to F×q ).

7.4 Stark Units

We come to the definition of the Stark units. We first review Taelman’s class and
unit modules. Then we will be able to define the module of Stark units which is a
submodule of the unit module. The section ends with some words on Anderson’s
[And94] which inspired the notion of Stark units.

7.4.1 Taelman Modules

We define here the class module and the unit module of a Drinfeld module as
introduced by L. Taelman in [Tae12].

Let L/K be a finite extension and let φ denote a Drinfeld A-module overOL.
We define the unit module of φ to be

U(φ;OL) =
{
x ∈ L∞, expφ(x) ∈ OL

}

and the class module of φ to be

H(φ;OL) = φ(L∞)
φ(OL)+ expφ(L∞)

.

Since expφ is a homomorphism of A-modules, those are naturally A-modules.
We also write φ̃ for the z-twist of φ and define the corresponding Taelman

modules:

U(φ̃;OFq(z)L) =
{
x ∈ (Fq(z)L)∞, expφ̃ (x) ∈ OFq(z)L

}

and

H(φ̃;OFq(z)L) =
φ̃((Fq(z)L)∞)

φ̃(OFq(z)L)+ expφ̃((Fq(z)L)∞)
.
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And finally, at the “integral” level, we define:

U(φ̃;OL[z]) =
{
x ∈ Tz(L∞), expφ̃ (x) ∈ OL[z]

}

and

H(φ̃;OL[z]) = φ̃(Tz(L∞))
φ̃(OL[z])+ expφ̃ (Tz(L∞))

.

We fix from now on a Drinfeld A-module φ overOL and write k = Fq , Fq(z) or
Fq [z] and ϕ = φ in the first case and ϕ = φ̃ otherwise.

Proposition 7.4.1

1. The class moduleH(ϕ;OkL) is finitely generated over k, thus a finitely generated
and torsion kA-module.

2. Suppose that k = Fq or k = Fq(z). The unit module U(ϕ;OkL) is a kA-lattice
in (kL)∞.

Proof We use the proof of [Dem14, Proposition 2.6].
For Part 1, since expϕ is locally an isometry on (kL)∞, we can find a

neighborhood V of 0 such that expϕ is an isometry on V , expϕ(V ) = V and

V ∩OkL = {0}. We remark that (kL)∞
OkL+V is finitely generated over k. But we have a

surjection (kL)∞
OkL+V � H(ϕ;OkL) so that H(ϕ;OkL) is also finitely generated.

For Part 2, since expϕ is locally an isometry, we get that U(ϕ;OkL) is discrete in
(kL)∞. The exponential map induces a short exact sequence of kA-modules:

0 −→ (kL)∞
U(ϕ;OkL)+ V −→ ϕ((kL)∞)

ϕ(OkL)+ V −→ H(ϕ;OkL) −→ 0.

Since the vector space in the middle is finite dimensional over k, then so is the
first one. If U(ϕ;OkL) did not generate (kL)∞ over (kK)∞, we could find x ∈
(kL)∞ such that (kK)∞U(ϕ;OkL) ∩ (kK)∞x = {0}. But, there is an injection
OkL ↪→ (

k
L)∞V , and (kL)∞

U(ϕ;OkL)+V is the cokernel of the natural map U(ϕ;OkL)→
(
k
L)∞V . We deduce that the kA-ranks of OkL and U(ϕ;OkL) must coincide. Thus
U(ϕ;OkL) is a lattice in (kL)∞. ��
Proposition 7.4.2 We have:

1. U(φ̃;OFq(z)L) = Fq(z)U(φ̃;OL[z]) ⊂ (Fq(z)L)∞,
2. H(φ̃;OFq(z)L) / Fq(z)⊗Fq [z] H(φ̃;OL[z]).
Proof For Part 1, we mimic the proof of [APTR16, Proposition 5.4].

The inclusion Fq(z)U(φ̃;OL[z]) ⊂ U(φ̃;OFq(z)L) is clear.
We have that Fq(z)Tz(L∞) is dense in (Fq(z)L)∞. We fix a neighborhood

V of 0 in Tz(L∞) such that expφ̃(V ) = V . We write V ′ for the closure of
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Fq(z)V in (Fq(z)L)∞. We still have expφ̃(V
′) = V ′. We then have (Fq(z)L)∞ =

Fq(z)Tz(L∞) + V ′. Let f ∈ U(φ̃;OFq(z)L). We can write f = g + h with
g ∈ Fq(z)Tz(L∞) and h ∈ V ′. We get:

expφ̃ (h) = expφ̃ (f )− expφ̃ (g) ∈
(
OFq(z)L + Fq(z)Tz(L∞)

) ∩ V ′.

But

(
OFq(z)L + Fq(z)Tz(L∞)

) ∩ V ′ = Fq(z)Tz(L∞) ∩ V ′ = Fq(z)V .

Thus, h ∈ Fq(z)V and f ∈ Fq(z)Tz(L∞). This proves Part 1.
Part 2 is a consequence of the fact that Fq(z)Tz(L∞) is dense in (Fq(z)L)∞ and

expφ̃ is locally an isometry. ��
Proposition 7.4.3 The A[z]-module H(φ̃;OL[z]) is a finitely generated and tor-
sion Fq [z]-module, with no z-torsion.

Proof We copy the proof of [ATR17, Proposition 2].
By Proposition 7.4.1,H(φ;OL[z]) is finitely generated overFq [z]. Since expφ̃ ≡

1 (mod L[z][[τ ]]zτ), we get:

Tz(L∞) = zTz(L∞)+ expφ̃ (Tz(L∞)).

We deduce that the multiplication by z is surjective on H(φ̃;OL[z]). Thus, if we
denote by H(φ̃;OL[z])[z] the z-torsion of H(φ̃;OL[z]), the multiplication by z
induces an exact sequence of finitely generated Fq [z]-modules:

0 −→ H(φ̃;OL[z])[z] −→ H(φ̃;OL[z]) −→ H(φ̃;OL[z]) −→ 0.

By the structure theorem for finitely generated modules over Fq [z], this implies that
H(φ̃;OL[z])[z] = 0 and that H(φ̃;OL[z]) is a torsion Fq [z]-module. ��
Corollary 7.4.4 The class moduleH(φ̃;OFq(z)L) vanishes.

Proof This is a consequence of the previous proposition and Proposition 7.4.2. ��

7.4.2 The Module of Stark Units

We define here the module of Stark units, and compute its covolume in the unit
module.

We keep the notation of Sect. 7.4.1. The evaluation z �→ 1 induces a map ev :
Tz(L∞)→ L∞.
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Definition 7.4.5 The module of Stark units is defined as:

USt(φ;OL) = ev
(
U(φ̃,OL[z])

)
.

We observe that USt(φ;OL) ⊂ U(φ;OL). We will now prove the following
theorem by using the proof of [ATR17, Theorem 1] or [ANDTR17, Proposition
2.7].

Theorem 7.4.6 The A-module USt(φ;OL) is an A-lattice in L∞ and

[
U(φ;OL)
USt(φ;OL)

]

A

= [H(φ;OL)]A .

We introduce a map on L∞:

α :
{
L∞ → Tz(L∞)
x �→ expφ̃ (x)−expφ(x)

z−1 .

The map is well defined since ev(expφ̃(x)) = expφ(x) so that z − 1 divides
expφ̃ (x)− expφ(x) in Tz(L∞).

Proposition 7.4.7 The map α induces an isomorphism of A-modules:

α : U(φ,OL)
USt(φ;OL) / H(φ̃;OL[z])[z− 1]

where H(φ̃;OL[z])[z− 1] is the (z− 1)-torsion of H(φ̃;OL[z]).
Proof Let us first show that α : U(φ,OL)→ H(φ;Tz(L∞)) is a homomorphism
of A-modules. Let x ∈ U(φ,OL) and a ∈ A. Write φa =∑n

i=0 aiτ
i with ai ∈ OL.

Thus,

α(ax) = expφ̃ (ax)− expφ(ax)

z− 1

= φ̃a(expφ̃(x))− φa(expφ(x))

z− 1

= φ̃a(α(x))+
n∑

i=0

ai
zi − 1

z− 1
τ i(expφ(x))

and this equals φ̃a(α(x)) in H(φ̃;OL[z]) since expφ(x) ∈ OL.
We now prove that the image of U(φ,OL) in H(φ̃;OL[z]) through α lies in

H(φ̃;OL[z])[z− 1].
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Let x ∈ U(φ;OL). We then have

(z− 1)α(x) = expφ̃ (x)− expφ(x) ∈ expφ(Tz(L∞))+OL[z]

so that it vanishes in H(φ̃;OL[z]).
We now show that α is surjective on H(φ̃;OL[z])[z− 1].
Let x ∈ Tz(L∞) be such that its image in H(φ̃;OL[z]) lies in H(φ̃;OL[z])[z−

1]. Thus, (z − 1)x ∈ expφ̃ (Tz(L∞)) + OL[z]. Write (z − 1)x = expφ̃ (u) + v
with u ∈ Tz(L∞) and v ∈ OL[z]. Write u = u1 + (z − 1)u2 with u1 ∈ L∞ and
u2 ∈ Tz(L∞) and v = v1 + (z− 1)v2 with v1 ∈ OL and v2 ∈ OL[z]. Then we have

(z− 1)x = expφ̃(u1)+ v1 + (z− 1)(expφ̃(u2)+ v2)

so that, by evaluating at z = 1, we get expφ(u1) + v1 = 0. Thus u1 ∈ U(φ;OL).
Moreover, we get:

α(u1) =
expφ̃ (u1)− expφ(u1)

z− 1

= expφ̃ (u1)+ v1

z− 1

= x − expφ̃ (u2)+ v2

so that the images of α(u1) and x in H(φ̃;OL[z]) coincide.
We claim that the kernel κ of α : U(φ;OL)→ H(φ̃;OL[z]) equalsUSt(φ;OL).

We start with the inclusion USt(φ;OL) ⊂ κ .
Let x ∈ USt(φ;OL), it is the evaluation at z = 1 of some u ∈ U(φ̃;OL[z]), so

there exists v ∈ Tz(L∞) such that x = u+ (z− 1)v. Thus

α(x) = expφ̃ (u)− expφ(x)

z− 1
+ expφ̃ (v)

but expφ(x) is the evaluation at z = 1 of expφ̃(u) ∈ OL[z]. Thus α(x) ∈ OL[z] +
expφ(Tz(L∞)).

Lastly, we show the other inclusion: κ ⊂ USt(φ;OL). Let x ∈ U(φ;OL) be such
that α(x) vanishes in H(φ̃;OL[z]), that is, α(x) ∈ OL[z] + expφ̃ (Tz(L∞)). Thus
(z−1)α(x) = expφ̃(x)−expφ(x) = (z−1)u+expφ̃((z−1)v) for some u ∈ OL[z]
and v ∈ Tz(L∞). Thus x − (z − 1)v ∈ U(φ̃;OL[z]) and its evaluation at z = 1 is
x, that is, x ∈ USt(φ;OL). ��
Proposition 7.4.8 We have:

[
H(φ̃;OL[z])[z− 1]]

A
= [H(φ;OL)]A .
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Proof The evaluation map ev induces an exact sequence of A-modules:

0 −→ (z− 1)H(φ̃;OL[z]) −→ H(φ̃;OL[z]) −→ H(φ;OL) −→ 0

from which we get the exact sequence of finitely generated k-vector spaces

0 → H(φ̃;OL[z])[z− 1] → H(φ̃;OL[z]) z−1−→ H(φ̃;OL[z])→ H(φ;OL)→ 0.

By (7.1), the multiplicativity of the Fitting ideal in exact sequences, we obtain

[
H(φ̃;OL[z])[z− 1]]

A
= [H(φ;OL)]A .

��
Proof of Theorem 7.4.6 It only remains to show that USt(φ;OL) is an A-lattice. It
is a direct consequence of the fact that U(φ;OL)

USt(φ;OL) is a finite dimensional Fq -vector
space. ��

Let now E/L be a finite abelian extension of degree prime to p and let G =
Gal(E/L). Then U(φ;OE) and USt(φ;OE) are both A[G]-lattices in E∞ = E⊗K
K∞ and H(φ;OE) is naturally an A[G]-module. We remark that the map α of
Proposition 7.4.7 is G-equivariant, so that the equivalent of Theorem 7.4.6 remains
true in the equivariant setting:

Proposition 7.4.9 We have

[
U(φ;OE)
USt(φ;OE)

]

A[G]
= [H(φ;OE)]A[G] .

An example will be given in Theorem 7.5.10 below in the context of the equivariant
class formula.

7.4.3 Link with Anderson’s Special Points

Let us finish this section with a few words on the origin of the notion of Stark Units.
This notion grew up from attempts to understand the fundamental work [And94]
of Anderson. Following Thakur, Anderson considers the formal power series for
integersm ≥ 0:

lm(X,Z) :=
∑

a∈A monic

Ca(X)
m

a
Zq

deg a ∈ K[X][[Z]]
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where τ acts on X and Z via τ (X) = Xq and τ (Z) = Zq . He shows [And94,
Theorem 3] the following log-algebraicity result:

Sm(X,Z) := expC(lm(X,Z)) ∈ A[X,Z].

Let us fix now a monic irreducible polynomial P ∈ A of degree d and define λ :=
expC(

π̃
P
). Then L = K(λ) is the “cyclotomic” extension associated with P . We

refer the reader to [Ros02, Chapter 12] for more details on this extension. Anderson
considers the A-submodule S of C(OL) generated by Sm(λ, 1) for all m ≥ 0. He
(see [And94, §4.5]) calls S the module of special points and remarks that the special
points play a role analogue to the circular units in the classical setting of cyclotomic
fields.

It turns out that those special elements are just the images under the exponential
map of what we called Stark units. More precisely (see [AT15, §7, in particular
Theorem 7.5]):

S = expC(USt(C;OL)).

Stark units are therefore a generalization of the analogue of circular units for the
Carlitz module, which explains their name.

7.5 Class Formulas

This section is devoted to class formulas: the original Taelman class formula from
[Tae12] and some generalizations, in particular in the equivariant setting. We also
give some explicit examples.

In what follows, we keep considering a finite extension L of K and a Drinfeld
Fq [θ ]-module φ defined overOL.

7.5.1 Taelman’s Class Formula

We present Taelman’s class formula and how it can be expressed in terms of the
regulator of Stark units.

Let I be a non-zero ideal of OL. Then OL/IOL is a finite dimensional Fq -
vector space. Since τ (I) ⊂ I , it makes sense to define both [OL/IOL]A and
[φ(OL/IOL)]A.

Remark that the first one is easy to compute:

Lemma 7.5.1 Let I be a non-zero ideal of OL and denote by NL/K the norm map
from the ideals of OL to the ones of A. Then [OL/IOL]A is the monic generator of
NL/K(I).



298 F. Tavares Ribeiro

Proof The equality FittA (OL/IOL) = NL/K(I) is immediate from the
definitions. ��

If P is a prime ideal of OL, the Euler factor at P is then the quotient
[OL/POL]A / [φ(OL/POL)]A. By putting together all these local factors, we
obtain the L-series:

L(φ/OL) :=
∏

P

[OL/POL]A
[φ(OL/POL)]A

(7.6)

where the product runs over all the non-zero prime ideals of OL.

Lemma 7.5.2 Let I be a non-zero ideal of OL. Let n ≥ 1. Then:

[
OL/I

nOL
]
A
· [φ(OL/IOL)]A
= [
φ(OL/I

nOL)
]
A
· [OL/IOL]A .

Proof We prove this equality by induction on n. The case n = 1 is clear. The short
exact sequence

0 → InOL/I
n+1OL→ OL/I

n+1OL→ OL/I
nOL → 0

gives

[
OL/I

n+1OL

]

A
= [
OL/I

nOL
]
A
·
[
InOL/I

n+1OL

]

A
.

Similarly, we have the short exact sequence

0 → φ(InOL/I
n+1OL)→ φ(OL/I

n+1OL)→ φ(OL/I
nOL)→ 0

but for any x ∈ InOL, a ∈ A, φa(x) ≡ ax (mod I)qnOL, thus

φ(InOL/I
n+1OL) / InOL/In+1OL,

so that
[
φ(OL/I

n+1OL)
]

A
= [
φ(OL/I

nOL)
]
A
·
[
InOL/I

n+1OL

]

A
.

Putting altogether we get the desired result. ��
The previous lemma, together with the Chinese Remainder Theorem allows to

write the L-series as:

L(φ/OL) :=
∏

P

[OL/POL]A
[φ(OL/POL)]A

(7.7)



7 On the Stark Units of Drinfeld Modules 299

where the product runs over all the monic irreducible polynomials P of A. In this
form, the numerator is also very easy to compute:

[OL/POL]A = P [L:K].

The main result of [Tae12] is the following class formula:

Theorem 7.5.3 (Taelman) The product defining L(φ/OL) converges in K∞, and
the following equality holds:

L(φ/OL) = [OL : U(φ;OL)]A [H(φ;OL)]A .

Corollary 7.5.4 We have:

L(φ/OL) = [OL : USt(φ;OL)]A .

Proof This is immediate from Taelman’s class formula and Theorem 7.4.6. ��
The co-volume of the Taelman units or the Stark units in OL is very similar to

the classical notion of a regulator, so that the previous corollary can nicely translate
as: the L-value attached to φ is the regulator of its module of Stark units.

Remark that, as in (7.6), we can also define the z-twisted version of the L-series:

L(φ̃/OFq(z)L) :=
∏

P

[
OFq(z)L/POFq(z)L

]
Fq(z)A

[
φ̃(OFq(z)L/POFq(z)L)

]
Fq(z)A

where the product runs over all the non-zero prime ideals of OL. Here again, the
numerator of the local factor at P is

[
OFq(z)L/POFq(z)L

]
Fq(z)A

= NL/K(P).

And, similarly to (7.7), we have the alternative expression:

L(φ̃/OFq(z)L) :=
∏

P

[
OFq(z)L/POFq (z)L

]
Fq(z)A

[
φ̃(OFq(z)L/POFq (z)L)

]
Fq(z)A

where the product runs over all the monic irreducible polynomials P of A. And
again:

[
OFq(z)L/POFq (z)L

]
Fq(z)A

= P [L:K].
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By Demeslay’s adaptation of the work of Taelman, [Dem14, Theorem 2.7], we
also have the class formula:

Theorem 7.5.5 (Demeslay) The product defining L(φ̃/OFq(z)L) converges in
(Fq(z)K)∞, and the following equality holds:

L(φ̃/OFq(z)L) =
[
OFq(z)L : U(φ̃;OFq(z)L)

]
Fq(z)A

[
H(φ̃;OFq(z)L)

]
Fq(z)A

.

Remark that, because of Corollary 7.4.4, this result can simply be stated as

L(φ̃/OFq(z)L) =
[
OFq(z)L : U(φ̃;OFq(z)L)

]
Fq(z)A

.

Corollary 7.5.6 The L-series L(φ̃/OFq(z)L) converges in Tz(K∞).

Proof For any monic irreducible polynomial P ∈ A, we have:

[
φ̃(OL/POL)

]
Fq(z)A

= det
Fq(z)[Z]

(
Z − θ | φ̃(OL/POL)

) |Z=θ

which is a polynomial in z which evaluates to P [L:K] at z = 0. But

degθ
([
φ̃(OL/POL)

]
Fq(z)A

)
= dimFq OL/POL = degθ P

[L:K].

We deduce that the local factor at P belongs to Tz(K∞). The convergence of
L(φ̃/OFq(z)L) in (Fq(z)K)∞ then implies its convergence in Tz(K∞). ��

7.5.2 The Equivariant Class Formula

We present now the class formula in the equivariant setting.
We consider as previously a Drinfeld A-module φ defined over OL, and E/L a

finite abelian extension of degree prime to p and we letG = Gal(E/L).
In this context, we can define an equivariant L-series via:

L(φ/(OE/OL),G) :=
∏

P

[OE/POE]A[G]
[φ(OE/POE)]A[G]

where the product runs over the non-zero prime ideals of OE . As in (7.7), it is
equivalent to taking the product over the non-zero prime ideals of OL or of A. And
we have the z-twisted version:

L(φ̃/(OFq(z)E/OFq(z)L),G) :=
∏

P

[
OFq(z)E/POFq(z)E

]
Fq(z)A[G]

[
φ̃(OFq(z)E/POFq(z)E)

]
Fq(z)A[G]

.
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The convergence of the L-series L(φ/(OE/OL),G), and an equivariant class
formula involving it was proved, in an even more general setting, by Fang in [Fan18,
Theorem 1.12]:

Theorem 7.5.7 (Fang) We have:

L(φ/(OE/OL),G) = [OE : U(φ;OE)]A[G] [H(φ;OE)]A[G] .

The equivariant class formula has its origin in [AT15, Theorem A] for the Carlitz
module. We also signal to the reader the recent work [FGHP20] of Ferrara, Green,
Higgins and Popescu where an equivariant class formula is proved without the
restrictions thatG is abelian and of order prime to p.

Following the proof of [AT15, Theorem A] (the details can be found in [ATR17,
Proposition 4]), one can show the z-twisted version:

Theorem 7.5.8 The L-series L(φ̃/(OFq(z)E/OFq(z)L),G) converges in (Fq(z)

K)∞[G] and we have:

L(φ̃/(OFq(z)E/OFq(z)L),G) =
[
OFq(z)E : U(φ̃;OFq(z)E)

]
Fq(z)A[G] .

As for L(φ̃/OFq(z)L), the convergence of L(φ̃/(OFq(z)E/OFq(z)L),G) in
(Fq(z)K)∞[G] implies that it actually converges in Tz(K∞)[G]. We can then
evaluate it at z = 1, and we see that the result is just L(φ/(OE/OL),G).

Combining Theorem 7.5.7 with Proposition 7.4.9, we also get:

Theorem 7.5.9

L(φ/(OE/OL),G) = [OE : USt(φ;OE)]A[G] .

In the case where L = K , we have a simple description of the Stark units in
terms of the equivariant L-series (see [ATR17, Theorem 2]):

Theorem 7.5.10 Let φ be a Drinfeld A-module defined overA andE/K be a finite
abelian extension of degree prime to p, andG = Gal(E/K). We have:

U(φ̃;OE[z]) = L(φ̃/(OFq(z)E/Fq(z)A),G)OE[z]

and

USt(φ;OE) = L(φ/(OE/A),G)OE.

Proof Since A[G] and Fq(z)A[G] are principal ideal rings, we see that OE is a
rank 1 freeA[G]-module, and thatOFq(z)E and U(φ̃;OFq(z)E) are free Fq(z)A[G]-
modules of rank 1. By Theorem 7.5.8, we then have:

L(φ̃/(OFq(z)E/Fq(z)A),G)OFq(z)E = U(φ̃;OFq(z)E).
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And since L(φ̃/(OFq(z)E/Fq(z)A),G) converges in Tz(K∞)[G], we get:

L(φ̃/(OFq(z)E/Fq(z)A),G)OE[z] ⊂ U(φ̃;OE[z]).

If conversely x ∈ U(φ̃;OE[z]) ⊂ Tz(E∞), there is y ∈ OFq(z)E such that

x = L(φ̃/(OFq(z)E/Fq(z)A),G)y.

Since L(φ̃/(OFq(z)E/Fq(z)A),G) has sign 1, this implies that y ∈ OE[z]. Thus

U(φ̃;OE[z]) = L(φ̃/(OFq(z)E/Fq(z)A),G)OE[z].

The second assertion comes now from the evaluation at z = 1. ��

7.5.3 Examples

Let us now work out some examples of the class formula. We first treat the Carlitz
module C with L = K . We refer to Sect. 7.3.3 for the basic facts and notation on
the Carlitz module. The L-series associated to C is easily computed. Let P ∈ A be
monic and irreducible. Then obviously [A/PA]A = P . Moreover, as CP ≡ τ degP

(mod PA[τ ]), we get C(A/PA) / A/(P − 1)A so that the local factor at P is just
(1− 1

P
)−1 and

L(C/A) =
∏

P

(1− 1

P
)−1 =

∑

a∈A+

1

a

where A+ stands for the subset of monic polynomials in A. This is also the zeta
value at 1 as defined by Carlitz. The other values are, if n ≥ 0:

ζA(n) =
∑

a∈A+

1

an
.

Note that at a negative integer, the zeta value is also defined as the (finite!) sum, for
n ≥ 0:

ζA(−n) =
∑

d≥0

∑

a∈A+,deg a=d
an.

Let us define

N = {x ∈ K∞, v∞(x) > −1} .
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Because v∞(Di) = −iqi , we can make Corollary 7.3.6 explicit: expC is isometric
on N , so that expC(N ) = N . Consequently, expC(K∞) + A = K∞ so that
H(C;A) = {0}. Hence, by Theorem 7.4.6, U(C;A) = USt(C;A). This is a rank
one A-module, and since 1 ∈ N , we see that U(C;A) = A logC(1). The class
formula for C can then be written as:

ζA(1) = L(C/A) = [A : U(C;A)]A = logC(1).

We thus recover this well-known equality which is a consequence of a result of
Carlitz [Gos96, Theorem 3.1.5].

Let us now fix an integer d ≥ 0 and consider the Drinfeld A-module φ over A
defined by φθ = θ + (−θ)dτ . We see that if a ∈ A and Ca = ∑k

i=0 aiτ
i then

φa = ∑k
i=0 ai(−θ)d

qi−1
q−1 τ i . Let P ∈ A be monic and irreducible. We thus get that

φP ≡ (−θ)d
qdegP−1
q−1 τ degP (mod PA[τ ]). But

θ
qdegP−1
q−1 = θ1+q+···+qdegP−1 ≡ (−1)degP P (0) mod P.

We deduce that φP−P(0)d is identically zero on A/PA and since for any Q ∈ A,
φQ is a polynomial of A[τ ] of degree degQ in τ , P(X) − P(0)d is the minimal
polynomial of φθ , that is φ(A/PA) / A/(P − P(0)d)A. Thus [φ(A/PA)]A =
P − P(0)d . We get:

L(φ/A) =
∏

P

(

1− P(0)
d

P

)−1

=
∑

a∈A+

a(0)d

a
.

These computations are also consequences of Sect. 7.6.2 below. See in particular
Eq. (7.9). Let us now describe the units and Stark units of φ. For that purpose, we
use results that will be proved later on. We have by Proposition 7.6.5:

USt(φ;A) = L(φ/A)A.

There are now two different cases, whether n ≡ 1 (mod q − 1) or not. This
difference is linked to the fact that the kernel of expφ : K∞ → K∞ is non trivial if
and only if n ≡ 1 (mod q − 1).

In the case n �≡ 1 (mod q − 1), by the proof of Theorem 7.7.1 we have
H(φ;A) = {0} and thus

U(φ;A) = USt(φ;A) = L(φ/A)A.

In the case n ≡ 1 (mod q − 1), the unit module is the kernel of expφ if n �= 1 and
more generally the inverse image of the A-torsion submodule of φ(K∞) if n = 1.
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More explicitly, if n = 1:

U(φ;A) = π̃

(−θ) 1
q−1 θ

A

and if n > 1:

U(φ;A) = π̃

(−θ) 1
q−1 θ

n−1
q−1

A

where (−θ) 1
q−1 is the fixed (q − 1)-st root of −θ (see Eq. (7.5)). Thus, if n > 1,

there is Bn ∈ A of degree n−q
q−1 such that

(−θ) 1
q−1 θ

n−1
q−1L(φ/A) = π̃Bn.

Taelman’s class formula (Theorem 7.5.3) tells us that [H(φ;OL)]A = Bn.
Moreover, [H(φ;OL)]A just vanishes when n = 1.

7.6 The Multi-Variable Deformation of a Drinfeld A-Module

7.6.1 The Multi-Variable Setting

We have presented in the previous section the z-deformation of a Drinfeld module
φ, which, roughly speaking, “evaluates” at z = 1 to φ. It turns out that there are
other natural ways to twist a Drinfeld module using multiple variables. The idea
here is still to twist the Frobenius τ by a polynomial in the new variables. It is
also of interest to combine those two deformations and define Stark units for the
multiple variable deformation of our Drinfeld module. Let us now give more precise
statements:

Let t1, . . . , tn be new variables, with n ≥ 1. We will denote by t the set of
variables t1, . . . , tn. We fix some additional notation:

• k = Fq(t) = Fq(t1, . . . , tn),
• A = k[θ ], K = k(θ), K∞ = k(( 1

θ
)),

• v∞ the valuation at the place ∞ such that v∞(θ) = −1, extending the valuation
on K∞.

We fix a complete algebraically closed extension of K and we identify C∞ with
the completion of the algebraic closure of K in this extension. For L a fixed finite
extension of K , L will denote the compositum of L and K, and OL the integral
closure of A in L. We set L∞ = L ⊗K K∞. We extend τ to L by k-linearity and
thus to L∞.
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Then, the theory developed in the previous sections remain valid by replacing
Fq by k. We leave to the reader as an exercice to check that the arguments carry
over. We will then be interested in Drinfeld A-modules φ defined over OL with an
obvious definition. The existence of the exponential and logarithmic maps and their
properties described in Sect. 7.3.2 remain valid and we can define the A-modules
U(φ;OL) and H(φ;OL). By Demeslay’s work [Dem14], we have in particular:

Theorem 7.6.1 (Demeslay) Let φ be a Drinfeld A-module defined over OL.
Then:

1. the unit module

U(φ;OL) =
{
x ∈ L∞, expφ(x) ∈ OL

}

is an A-lattice in K∞,
2. the class module

H(φ;OL) = φ(L∞)
φ(OL)+ expφ(L∞)

is a finite dimensional k-vector space and an A-module via φ,
3. the infinite product

L(φ/OL) :=
∏

P

[OL/POL]A
[φ(OL/POL)]A

,

where the product runs over the monic irreducible polynomialsP ∈ A, converges
in L×∞ and we have the class formula:

L(φ/OL) = [OL : U(φ;OL)]A[H(φ;OL)]A.

Proof Part 1 and Part 2 follow from [Dem14, Proposition 2.6] and Part 3 from
[Dem14, Theorem 2.7] ��

As previously, we can define the z-twist φ̃ of a Drinfeld A-module φ defined over
OL by twisting the frobenius τ by z. It is thus a Drinfeld k(z)A-module overOk(z)L.
Demeslay’s work also applies to this case and we have similarly:

Theorem 7.6.2 (Demeslay) Let φ be a Drinfeld A-module defined over OL and φ̃
be its z-twist. Then:

1. the unit module

U(φ̃;Ok(z)L) =
{
x ∈ (k(z)L)∞, expφ̃(x) ∈ Ok(z)L

}

is a k(z)A-lattice in (k(z)K)∞,
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2. the class module

H(φ̃;Ok(z)L) = φ̃((k(z)L)∞)
φ̃(Ok(z)L)+ expφ̃((k(z)L)∞)

is a finite dimensional k(z)-vector space and a k(z)A-module via φ̃,
3. the infinite product

L(φ̃/Ok(z)L) :=
∏

P

[
Ok(z)L/POk(z)L

]
k(z)A

[
φ̃(Ok(z)L/POk(z)L)

]
k(z)A

,

where the product runs over the monic irreducible polynomialsP ∈ A, converges
in (k(z)L)×∞ and we have the class formula:

L(φ̃/Ok(z)L) = [Ok(z)L : U(φ̃;Ok(z)L)]k(z)A[H(φ̃;Ok(z)L)]k(z)A.

Remark 7.6.3 As in Proposition 7.4.3, H(φ̃;OL[z]) is a finitely generated torsion
k[z]-module, so that the class module H(φ̃;Ok(z)L) vanishes, which simplifies the
class formula.

We now want to work at the integral level in A or K∞. We then suppose that
φθ ∈ OL[t][τ ]. We can thus consider φ either as a Drinfeld A-module defined over
L or as a Drinfeld A[t]-module defined overOL[t]. We denote by Tn(L∞) the Tate
algebra in variables t1, . . . , tn and coefficients in L∞ and we define the Taelman
modules:

U(φ;OL[t]) =
{
x ∈ Tn(L∞), expφ(x) ∈ OL[t]

} ⊂ U(φ;OL)

and

H(φ;OL[t]) = φ(Tn(L∞))
φ(OL[t])+ expφ(Tn(L∞))

.

Since φ is defined over OL[t], by using the functional equation φθ expφ = expφ θ ,
one shows that expφ has coefficients in L[t], so that expφ(Tn(L∞)) ⊂ Tn(L∞). We
deduce that:

U(φ;OL[t]) = U(φ;OL) ∩ Tn(L∞).

By the same argument as in Proposition 7.4.2, we also have

U(φ;OL) = kU(φ;OL[t])
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and

H(φ;OL[t])⊗Fq [t] k / H(φ;OL).

By evaluation at z = 1 of the unit module, we have a well defined notion of the
module of Stark units USt(φ;OL). Let us be more explicit for the construction at
the integral level. We denote by Tn,z(L∞) the Tate algebra in variables t1, . . . , tn, z
and coefficients in L∞. Then we define

U(φ̃;OL[t, z]) =
{
x ∈ Tn,z(L∞), expφ̃(x) ∈ OL[t, z]

}

and

H(φ̃;OL[t, z]) = φ̃(Tn,z(L∞))
φ̃(OL[t, z])+ expφ̃ (Tn,z(L∞))

.

The evaluation at z = 1 of U(φ̃;OL[t, z]) is our module of Stark units
USt(φ;OL[t]) ⊂ U(φ;OL[t]).

Theorem 7.4.6 remains true here, in particular we have the following version (see
[ATR17, Proposition 6]):

Proposition 7.6.4 The map

α :
{
Tn(L∞)→ Tn,z(L∞)
x �→ expφ̃ (x)−expφ(x)

z−1

induces an isomorphism of A[t]-modules:

U(φ;OL[t])
USt(φ;OL[t]) / H(φ̃;OL[t, z])[z− 1].

7.6.2 The Canonical Deformation of the Carlitz Module

We focus here on a natural multi-variable deformation of the Carlitz module built
by means of its shtuka function.

Let φ be a Drinfeld A-module defined over OL and f (t) = f (t1, . . . , tn) ∈
OL[t]. Then we can use f to twist φ: if a ∈ A and φa =∑m

i=0 aiτ
i , then

φ̂a =
m∑

i=0

ai(f (t)τ )i =
m∑

i=0

ai

⎛

⎝
i∏

j=0

τ j (f )(t)

⎞

⎠ τ i .
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Remark that, as for the z-twist, we in fact twist here the action of the Frobenius τ by
f (t), which induces the deformation of φ. We get a DrinfeldA[t]-module φ̂ defined
overOL[t].

From now on, we will be only interested in the case of the Carlitz module C.
Let us recall (see Sect. 7.3.3) that C is the Drinfeld A-module defined over A by
Cθ = θ+τ . To such a Drinfeld module one can associate a so-called shtuka function
(see e.g. [Gos96, §7.11], or [Tha93]), from which one recovers the Drinfeld module,
and which encodes its arithmetic properties. In the case of the Carlitz module, the
shtuka function is simply t − θ . There is therefore a natural n variable twist of the
Carlitz module, which we call the canonical deformation of the Carlitz module,
given by

f (t) =
n∏

i=1

(ti − θ).

We thus consider the Drinfeld A[t]-module ϕ = Ĉ defined over A[t] by

ϕθ = θ + f (t)τ = θ +
n∏

i=1

(ti − θ)τ.

We will denote for k ≥ 0, by fk(t) the polynomial appearing in the formula
(f (t)τ )k = fk(t)τ k , that is:

fk(t) =
n∏

i=1

k∏

j=0

(ti − θqj ).

We get the exponential map expϕ =
∑
i≥0

1
Di
fi(t)τ i and the logarithm map

logϕ =
∑
i≥0

1
li
fi(t)τ i .

We also introduce the Anderson-Thakur ω function:

ω(t) := (−θ) 1
q−1

∏

j≥0

(

1− t

θq
j

)−1

∈ T1(K∞)×.

We see from (7.5) that −π̃ is the residue of ω at t = θ and that ω enjoys the
functional equation:

τ (ω(t)) = (t − θ)ω(t).

Thus, we get

expϕ =
(
n∏

i=1

ω(ti)

)−1

expC

(
n∏

i=1

ω(ti)

)

.
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In particular, we obtain:

ker(expϕ : Tn(C∞)→ Tn(C∞)) = π̃
∏n
i=1 ω(ti)

A[t]. (7.8)

And we remark that this kernel is included in Tn(K∞) if, and only if, n ≡ 1
(mod q − 1).

The L-series associated to ϕ can be computed similarly to the one of C (see
Sect. 7.5.3). We have

ϕP ≡ fdegP (t)τ degP (mod PA[t][τ ])

but

(t − θ)(t − θq) · · · (t − θqdegP−1
) ≡ P(t) (mod PA[t])

so that

ϕP ≡ P(t1) · · ·P(tn)τ degP (mod PA[t][τ ]).

We deduce that P(X) − P(t1) · · ·P(tn) is an annihilating polynomial of φθ acting
on A/PA(t). Since it is also a monic irreducible polynomial in Fq(t)[X], of degree
degP , it is its characteristic polynomial and we get by (7.2):

[
A

PA
(t)

]

A

= P − P(t1) · · ·P(tn).

Putting all the local factors together, we obtain

L(ϕ/A) =
∏

P

(

1− P(t1) · · ·P(tn)
P

)−1

=
∑

a∈A+

a(t1) · · · a(tn)
a

∈ Tn(K∞)×.

(7.9)

Similar calculations for the z-twist of ϕ lead to:

L(ϕ̃/k(z)A) =
∏

P

(

1− z
degPP (t1) · · ·P(tn)

P

)−1

=
∑

a∈A+
zdegP a(t1) · · · a(tn)

a
∈ Tn,z(K∞)×.
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Let us compute the units:

Proposition 7.6.5 We have

U(ϕ̃;A[t, z]) = L(ϕ̃/k(z)A)A[t, z]

so that

USt(ϕ;A[t]) = L(ϕ/A)A[t].

Moreover, [H(ϕ;A)]A ∈ A[t] ∩ Tn(K∞)× and

[H(ϕ;A)]A U(ϕ;A[t]) = L(ϕ/A)A[t].

Proof We give the proof for U(ϕ;A[t]). The other assertion can be proved in a
similar way, since, by Remark 7.6.3,H(ϕ̃; k(z)A) vanishes.

First, since ϕ has coefficients in A[t] and because we can compute [H(ϕ;A)]A
as a determinant by Eq. (7.2), we see that [H(ϕ;A)]A ∈ A[t].

Since the unit module has rank 1, by the class formula (Theorem 7.5.5), we get
[H(ϕ;A)]AU(ϕ;A) = L(ϕ/A)A. Since U(ϕ;A) = kU(ϕ;A[t]), we can find
η ∈ U(ϕ;A[t]) such that U(ϕ;A) = Aη. We can, and will, also assume that η is
primitive in Tn(K∞), that is, not divisible by a non constant polynomial δ ∈ Fq [t].
We get [H(ϕ;A)]A ηA = L(ϕ/A)A, so that

L(ϕ/A) = λ [H(ϕ;A)]A η

for some λ ∈ F×q . In particular, [H(ϕ;A)]A ∈ Tn(K∞)×. We get:

U(ϕ;A[t]) = U(ϕ;A) ∩ Tn(K∞) = ([H(ϕ;A)]−1
A
L(ϕ/A)A) ∩ Tn(K∞)

= [H(ϕ;A)]−1
A
L(ϕ/A)A[t]

whence the result. ��
We set

N =
{

x ∈ Tn(K∞), v∞(x) ≥ n

q − 1
− 1

}

.

Lemma 7.6.6 If x ∈ N , v∞(expϕ(x)−x) > v∞(x) and v∞(logϕ(x)−x) > v∞(x).
In particular, both expϕ and logϕ define isometries N → N .
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Proof For k ≥ 0, we compute: v∞(Dk) = −kqk, v∞(lk) = −q qk−1
q−1 and

v∞(fk(t)) = −nqk−1
q−1 . Thus, if x ∈ N , and k > 0,

v∞
(
fk(t)
Dk

τ k(x)

)

= v∞(x)+ (qk − 1)

(

v∞(x)+ k − n

q − 1

)

+ k > v∞(x)

and

v∞
(
fk(t)
lk
τ k(x)

)

= v∞(x)+ (qk − 1)

(
q − n
q − 1

+ v∞(x)
)

> v∞(x)

whence the result. ��
Remark 7.6.7 If n ≤ 2q−2, we haveTn(K∞) = N+A[t] ⊂ expϕ(Tn(K∞))+A[t]
so that H(ϕ;A[t]) = {0} and

U(ϕ;A[t]) = USt(ϕ;A[t]) = L(ϕ/A)A[t].

7.7 Applications

7.7.1 Discrete Greenberg Conjectures

As a first application of the notion of Stark Units, we present a pseudo-nullity
and a pseudo-cyclicity result from [ATR17] for the class module of the canonical
deformation of the Carlitz module. These theorems are reminiscent of the Greenberg
conjectures, in particular after evaluation at characters.

We keep the notation of all the previous sections. In particular, we recall that:

N =
{

x ∈ Tn(K∞), v∞(x) ≥ n

q − 1
− 1

}

.

We denote now

Bn(t) = [H(ϕ;A)]A ∈ A[t] ∩ Tn(K∞)×.

By Remark 7.6.7, we have Bn(t) = 1 if 1 ≤ n ≤ 2q − 2. We also introduce the
special elements:

un(t, z) = expϕ̃ (L(ϕ̃/k(z)A)) ∈ A[t, z]
and

un(t) = un(t, 1) = expϕ(L(ϕ/A)) ∈ A[t].
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By Proposition 7.6.5, those elements generate the A[t, z]-module (via ϕ̃)
U(ϕ̃;A[t, z]) and the A[t]-module (via ϕ) of Stark units USt(ϕ;A[t]).

If 1 ≤ n ≤ q−1,L(ϕ/A) ∈ N ; by Lemma 7.6.6, we have un(t) ∈ N∩A[t] = Fq

and un has the same sign as L(ϕ/A). Thus in this case, un(t) = 1.
As we have seen in (7.8), expϕ is injective on Tn(K∞) if and only if n �≡ 1

(mod q − 1). This leads us to distinguish the two cases, where different phenomena
occur.

7.7.1.1 Case n �≡ 1 (mod q − 1)

We prove in this case the following pseudo-nullity result (see [ATR17, Theorem 3]):

Theorem 7.7.1 We have Bn(t) = 1, that is, H(ϕ;A[t]) is a finitely generated and
torsion Fq [t]-module.

Proof Let r ∈ {2, . . . , q − 1} be such that n ≡ r (mod q − 1). We denote by ψ the
r-variable twist of the Carlitz module:

ψθ = (t1 − θ) · · · (tr − θ)τ + θ.

We set:

- := L(ψ/Fq(t1, . . . , tr ))
ω(tr+1) · · ·ω(tn) ∈ Tn(K∞)×.

We get for a ∈ A[t]:

expϕ (a-) =
expψ(aL(ψ/Fq(t1, . . . , tr )))

ω(tr+1) · · ·ω(tn)
= ψa(ur(t1, . . . , tr ))

ω(tr+1) · · ·ω(tn) =
ψa(1)

ω(tr+1) · · ·ω(tn) .

Remark now that N =
{
x ∈ Tn(K∞), v∞(x) ≥ n−r

q−1

}
so that

Tn(K∞) = A[t] ⊕N ⊕
n−r
q−1−1
⊕

k=1

θ
k− n−r

q−1 Fq [t].

We then define for 1 ≤ i, j ≤ n−r
q−1 − 1, βij ∈ Fq [t] by the formula:

expϕ
(
θ i-

)
−

n−r
q−1−1
∑

j=1

θ
j− n−rq−1 βij ∈ A[t] ⊕N .
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Our theorem is now equivalent to det(βij ) �= 0. Since det(βij ) ∈ Fq [t], it will be
enough to show that its evaluation at t1 = · · · tn = 0 does not vanish. Let us denote
by ev0 : Tn(K∞)→ K∞ this evaluation. We have:

ev0(expϕ
(
θ i-

)
) = ψ ′

θi
(1)

(−θ) n−rq−1

∈
n−r
q−1−1
∑

j=1

θ
j− n−r

q−1 ev0(βij )+ A+ ev0(N )

where ψ ′θ = (−θ)rτ + θ. An immediate induction now shows that for i ≥ 1,

ψ ′
θi
(1)− θ i ∈ θ i+1A.

Thus ev0(det(βij )) �= 0 and det(βij ) �= 0. ��

7.7.1.2 Case n ≡ 1 (mod q − 1)

Let us first describe the unit module in this case:

Proposition 7.7.2 If n = 1 then

U(ϕ;A[t]) = π̃

(t1 − θ)ω(t1)A[t].

and if n > 1, then

U(ϕ;A[t]) = π̃
∏n
i=1 ω(ti)

A[t].

Proof Since π̃∏n
i=1 ω(ti )

A[t] = ker expϕ , it is clearly included in U(ϕ;A[t]). As the

unit module has rank 1, we deduce that if x ∈ U(ϕ;A[t]), then y = expϕ(x) is a
torsion point for ϕ, that is there is a ∈ A[t] such that ϕa(y) = 0. But, if v∞(x) ≤ 0,
we see that

v∞((t1 − θ) · · · (tn − θ)(τ (x))) = qv∞(x)− n and v∞(θx) = v∞(x)− 1.

If n > 1, the first quantity is strictly lower than the second, this easily implies that
no non trivial torsion point can exist: if a ∈ A[t], ϕa(x) has the same (negative, and
even explicitly computable) valuation as ϕθdegθ (a)(x). With the same argument in the
case n = 1 we see that if x is a torsion point, it must have valuation 0, so x ∈ Fq(t).
Conversely, for x ∈ Fq(t), we have ϕ(θ−t )(x) = 0. ��

Remark that in both cases we have the decomposition of Fq [t]-modules:
Tn(K∞) = N ⊕ U(ϕ;A[t]). In particular, if n > 1:

expϕ(Tn(K∞)) = N . (7.10)
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In the case n = 1, we know that Bn(t) = 1, so that, units and Stark units coincide,
we deduce that L(ϕ/A) equals, up to the sign, π̃

(θ−t1)ω(t1) . But both have sign 1, so
that we recover Pellarin’s formula (see [Pel12]):

L(ϕ/A) = π̃

(θ − t1)ω(t1) .

If n > 1, we obtain another description of Bn(t):

Bn(t) = [H(ϕ;A)]A = (−1)
n−1
q−1L(ϕ/A)

∏n
i=1 ω(ti)

π̃
.

We deduce in particular that Bn(t) has degree in θ equal to n−q
q−1 . In particular, when

n = q , we recover that Bq(t) = 1 so that

L(ϕ/A) = π̃
∏q

i=1 ω(ti)
.

More generally, if one can explicitly computeBn(t), this gives us an explicit formula

for L(ϕ/A). We also stress that L(ϕ/A)
∏n
i=1 ω(ti )

π̃
∈ A[t] is one of the main results

of [AP15] where it is obtained without using the class formula.
Recall from Proposition 7.4.7 that we can build a map α : U(ϕ;A[t])

USt(ϕ;A[t]) →
H(ϕ̃;A[t, z])[z− 1]. We can compose it with the evaluation at z = 1 and obtain a
map β : U(ϕ;A[t])

USt(ϕ;A[t]) → H(ϕ;A[t]). Let us remark that β is induced by:

exp(1)ϕ

{
U(ϕ;A[t])→ Tn(K∞)

x �→ ∑
k≥1 k

fk(t)
Dk
τ k(x)

since we essentially differentiate expϕ̃ at 1 with respect to z.
Let us denote byH(1)(ϕ;A[t]) ⊂ H(ϕ;A[t]) the image of β.
We devote the rest of this section to the proof of the following pseudo-cyclicity

result (see [ATR17, Theorem 4]):

Theorem 7.7.3 Let n ≥ q . There is an isomorphism of A[t]-modules:

H(1)(ϕ;A[t]) / A[t]
Bn(t)A[t]

and the quotient H(ϕ;A[t])
H(1)(ϕ;A[t]) is a finitely generated and torsion Fq [t]-module.

Proof Since U(ϕ;A[t])
USt(ϕ;A[t]) is an A[t]-module isomorphic to A[t]

Bn(t)A[t] generated by the

image of π̃∏n
i=1 ω(ti )

, we are led to compute exp(1)ϕ ( π̃∏n
i=1 ω(ti )

). But we have once
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again:

exp(1)ϕ

(
π̃

∏n
i=1 ω(ti)

)

= 1
∏n
i=1 ω(ti)

exp(1)C (π̃ )

where exp(1)C = ∑
k≥1 k

1
Dk
τ k . The proof that can be found in [ATR17, Theorem 3]

relies on computations involving exp(1)C (π̃). We will give here a slightly different
proof, more similar to that of Theorem 7.7.1 above.

We denote by ψ the q-variable twist of the Carlitz module:

ψθ = (t1 − θ) · · · (tq − θ)τ + θ.

We first compute u′ = exp(1)ψ

(
π̃∏q

i=1 ω(ti)

)

. Since Bq (t) = 1, we have u′ ∈
A[t1, . . . , tq ]⊕Nq where Nq =

{
x ∈ Tq(K∞), v∞(x) ≥ 1

}
. But v∞( π̃∏q

i=1 ω(ti)
) =

0 and for k ≥ 1, v∞(Dk) = −kqk, v∞(lk) = −q qk−1
q−1 and v∞(fk(t)) = −nqk−1

q−1 .

v∞(
fk(t1, · · · , tq)

Dk
) = kqk − q q

k − 1

q − 1
= qk(k − q

q − 1
)+ q

q − 1

which is positive if k > 1 and equals 0 if k = 1. Thus (t1−θ)···(tq−θ)
θq−θ

π̃∏q
i=1 ω(ti )

has

sign 1, we obtain that u′ ∈ 1+Nq .
We get for a ∈ A[t]:

exp(1)ϕ

(

a
π̃

∏n
i=1 ω(ti)

)

=
exp(1)ψ (a

π̃∏q
i=1 ω(ti )

)

ω(tq+1) · · ·ω(tn)

≡ ψa(u
′)

ω(tq+1) · · ·ω(tn) (mod N + A[t])

≡ ψa(1)

ω(tq+1) · · ·ω(tn) (mod N + A[t]).

Remark now that

Tn(K∞) = A[t] ⊕N ⊕
n−q
q−1⊕

k=1

θ
k− n−1

q−1 Fq[t].

We then define for 1 ≤ i, j ≤ n−q
q−1 , βij ∈ Fq [t] by the formula:

exp(1)ϕ

(

θ i
π̃

∏n
i=1 ω(ti)

)

−
n−q
q−1∑

j=1

θ
j− n−1

q−1 βij ∈ A[t] ⊕N .
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The injectivity of β is now equivalent to det(βij ) �= 0. It is again enough to show that
its evaluation at t1 = · · · tn = 0 does not vanish. Let us denote by ev0 : Tn(K∞)→
K∞ this evaluation. We have:

ev0(exp(1)ϕ

(

θ i
π̃

∏n
i=1 ω(ti)

)

) = ψ ′
θi
(1)

(−θ) n−qq−1

∈
n−q
q−1∑

j=1

θ
j− n−1

q−1 ev0(βij )+ A+ ev0(N )

where ψ ′θ = (−θ)qτ + θ. But again, for i ≥ 1,

ψ ′
θi
(1)− θ i ∈ θ i+1A.

Thus ev0(det(βij )) �= 0 and det(βij ) �= 0.
Finally, H(1)(ϕ;A[t]) is a sub-Fq[t]-module of H(ϕ;A[t]) with same rank,

which gives the last assertion. ��

7.7.1.3 Evaluation at Characters

Let us now very briefly explain some consequences of Theorems 7.7.1 and 7.7.3
above. We refer the reader for instance to [APTR16, §9] for more details. Let a be
a non constant and square free element in A and χ : A/aA → Fq be a Dirichlet
character mod a. Let us denote by ka the extension of Fq generated by the roots
of a. Then one can find ζ1, . . . , ζn ∈ ka (in fact all of the ζi’s are roots of a) such
that for all b ∈ A, χ(b) = b(ζ1) · · · b(ζn). We then have a natural homomorphism
of Fq -vector spaces evχ : Tn(K∞) → (kaK)∞ which evaluates ti to ζi for all
1 ≤ i ≤ n.

We get for instance:

evχ(L(ϕ/A)) = L(C/A, χ) :=
∑

b∈A+

χ(b)

b
.

In order to define the class module associated to χ , we define τa : K∞ ⊗Fq

kaK∞ ⊗Fq ka by τa = τ ⊗ id. We use it to define the Drinfeld A-module C′ over
A⊗Fq ka by C′θ = θ +

∏n
i=1(1⊗ ζi − θ ⊗ 1)τa . Then:

Hχ :=
C′(K∞ ⊗Fq ka)

expC ′(K∞ ⊗Fq ka)+ C′(A⊗Fq ka)
.

In fact, evχ also induces a surjection H(ϕ;A[t]) → Hχ . Moreover, although the
number n of variables involved in this construction is not unique, it is unique modulo
q − 1. The minimal number n that can be used is called the type of χ . There is a
well defined notion of “almost all characters of type n” which is, roughly speaking,
all but a Zariski closed non trivial subset.
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Then, Theorems 7.7.1 and 7.7.3 imply:

Theorem 7.7.4

1. If n �≡ 1 (mod q − 1), then for almost all Dirichlet character χ of type n, we
have Hχ = {0}.

2. If n ≡ 1 (mod q − 1), then for almost all Dirichlet character χ of type n, Hχ is
a cyclic A⊗ ka-module.

These two results remind of the celebrated Greenberg conjectures. For details on
the analogy between the two contexts we refer the reader to [ATR17, Introduction].

7.7.2 On the Bernoulli-Carlitz Numbers

As a second application, we show the non vanishing of families of Bernoulli-
Carlitz numbers modulo monic irreducible polynomials P for almost all P . This
is a striking result as it is a stronger function field version of an open conjecture on
Bernoulli numbers.

The classical Bernoulli numbers have been discovered and studied by Jacob
Bernoulli during the late seventeenth century. They can be defined as the coefficients
Bm, m ≥ 0 which appear in the power series equality

t

et − 1
=

∑

m≥0

Bm
tm

m! . (7.11)

Euler computed the zeta values ζ(n) = ∑
k≥1 k

−n for even positive integers n with
the help of the Bernoulli numbers: if n > 0 is even then

ζ(n) = −1

2

(2iπ)n

n! Bn. (7.12)

For more background on Bernoulli numbers, we refer the reader for instance to
[IR90, Chapter 15 §1].

In 1935, Carlitz introduced analogues of the Bernoulli numbers. Those Bernoulli-
Carlitz numbers are linked with the polynomials Bn(t). We prove in this section a
quite surprising result on the Bernoulli-Carlitz numbers with the help of Bn(t). Let
N > 1 be an integer and N = ∑r

i=0 niq
i be its q-expansion. Then we define the

Carlitz factorial as:

0(N) =
r∏

i=0

D
ni
i ∈ A



318 F. Tavares Ribeiro

where we recall (see Sect. 7.3.3) thatD0 = 1, and for i ≥ 1,Di+1 = Dqi (θq
i+1−θ).

The Bernoulli-Carlitz numbers are defined as the coefficients BCN , N ≥ 0 which
appear in the power series equality (similar to (7.11)):

t

expC(t)
=

∑

m≥0

BCN
tN

0(N)
.

We also recall that for N ≥ 1, we have the Carlitz zeta value:

ζA(N) =
∑

a∈A+

1

aN
.

Then the N-th Bernoulli-Carlitz number is BCN = 0 if N �≡ 0 (mod q − 1) and, if
N ≡ 0 (mod q − 1),

ζA(N) = π̃N

0(N)
BCN

reminding of Euler’s formula (7.12). (Remark that the role of 2 is played here by
q − 1.)

If we have the q-expansion N = ∑r
i=0 niq

i , then we denote �q(N) = ∑r
i=0 ni

and define the evaluation map evN : T�q(N)(K∞) → K∞ by evN(tj ) = θq
k

if
∑k−1
i=0 ni < j ≤

∑k
i=0 ni , so that

evN(a(t1) · · · a(t�q(N))) = aN.

We recall the link between Bernoulli-Carlitz numbers and the polynomials Bn(t):

Proposition 7.7.5 Let N ≥ 2, N ≡ 1 (mod q − 1). Let P ∈ A be a monic
irreducible polynomial of degree d > 1, such that qd > N . Then BCqd−N ≡ 0
(mod P) if and only if evN(B�q(N)(t)) ≡ 0 (mod P).

We do not give the proof, which can be found in [ANDTR19, Proposition 4.3] or
in [AP14, Theorem 2]. Let us just sketch the main ideas: starting with the identity
in �q(N) variables:

(−1)
�q (N)−1
q−1

L(ϕ/A)

π̃

�q(N)∏

i=1

ω(ti) = B�q(N)(t).

We then apply τd and evaluate with evN so that, up to some terms, the left

hand side becomes ζA(q
d−N)

π̃q
d−N = BC

qd−N
0
qd−N

, and the right hand side is congruent to

evN(B�q(N)(t)) mod P since for all a ∈ A, aq
d ≡ a (mod P).
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As a consequence of Proposition 7.7.5, we see that if evN(B�q(N)(t)) �= 0, then
for all P not dividing evN(B�q(N)(t)) and such that qdegP > N , that is, for almost
all P , we have BCqd−N ≡ 0 (mod P). In fact, we have the more precise result:

Theorem 7.7.6 LetN ≥ 2,N ≡ 1 (mod q−1). Let P ∈ A be a monic irreducible

polynomial of degree d > 1, such that qd > N . If d ≥ �q(N)−1
q−1 N, then BCqd−N �≡

0 (mod P).

This is a strong version of the following open conjecture on classical Bernoulli
numbers:

Conjecture 7.7.7 Let N ≥ 3 be an odd integer, then there exist infinitely many
prime numbers p such that Bp−N �≡ 0 (mod p).

It seems however reasonable to expect that the equivalent of Theorem 7.7.6
does not hold for Bernoulli numbers. Namely, if N ≥ 3 is an odd integer, then
there should exist infinitely many prime numbers p such that Bp−N ≡ 0 (mod p).
This would be an example where number fields and function fields lead to different
results.

Theorem 7.7.6 is the main theorem of [ANDTR19]. The key result is that
evN(B�q(N)(t)) is not zero. We actually prove more generally:

Theorem 7.7.8 Let n ≥ 2, n ≡ 1 (mod q − 1). Then for any evaluation
homomorphism ev : A[t] → A such that ev(ti) is non constant for all i, we have

ev(Bn(t)) �= 0.

Proof We give a proof different from the one of [ANDTR19]. Recall:

H(ϕ;A) = ϕ(K)

expϕ(K)+ ϕ(A)
.

And Bn(t) = [H(ϕ;A)]A, in particular:

Bn(t) = det(Z − ϕθ | H(ϕ;A))|Z=θ .

We set r = n−q
q−1 . As for (7.10), we have

expϕ(K) =
{

x ∈ K, v∞(x) ≥ n

q − 1
− 1

}

.

Since n
q−1−1 = r+ 1

q−1 , a basis ofH(ϕ;A) is given by 1
θr
, · · · , 1

θ
. We compute the

matrix of ϕθ in this basis. It is the sum of a matrixMn that we must determine and of
a nilpotent matrixNn = (δi,j+1)1≤i,j≤r where δi,j is the Kronecker symbol. That is,
the coefficients of Nn immediately above the diagonal are 1, and 0 elsewhere. Note
thatMn is the matrix of (t1 − θ) · · · (tn − θ)τ . Since q(r − k) = r + n− q(k + 1),
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we get in H(ϕ;A):

(t1 − θ) · · · (tn − θ)τ ( 1

θr−k
) =

r−1∑

j=0

σ(q(k + 1)− j)
θr−j

where

σ(j) = (−1)j−1
∑

i1<i2<···<ij
ti1 · · · tij

if 0 ≤ j ≤ n, and σ(j) = 0 otherwise. (Note that σ(0) = −1.) Thus,

Mn = (σ (jq − (i − 1)))1≤i,j≤r .

We will replace the polynomials σ(j) by symbols independent of the number of
variables in order to proceed by induction on n. We define on Fq variables%j, j > 0
and a valuation val on Fq[%j , j > 0] such that val(%j ) = j by stating that if

f =
∑

k1,...,kn≥0

αk1,...,kn

n∏

j=1

%
kj
j

then val(f ) = −∞ if f = 0 and val(f ) = inf{∑n
j=1 jkj ; αk1,...,kn �= 0} otherwise.

We moreover set %0 = −1 and %j = 0 if j < 0. Let

Mn =
(
%jq−(i−1)

)
1≤i,j≤r .

We have the evaluation map evn : Fq [%j, j > 0] → Fq [t] defined by evn(%j ) =
σ(j) (recall that σ(j) = 0 if n < j ). Then val(f ) equals the valuation of evn(f )
with respect to the ideal (t1, . . . , tn), and

Mn = evn(Mn).

Developing now det(ZIr −Mn −Nn) with respect to the last column, we find

det(ZIr −Mn −Nn) = Z det(ZIr−1 −Mn−(q−1) −Nn−(q−1))+ ε

where ε is a sum of terms which are multiples of elements in the last column of
Mn, that is, %rq−(i−1), 0 ≤ i ≤ r all of them of valuation at least rq − (r − 1) =
r(q − 1)+ 1.

Thus, by induction, det(ZIr −Mn −Nn) = Zr +∑r
i=1 βiZ

r−i with val(βi) ≥
i(q − 1)+ 1, and thus

Bn = θr +
r∑

i=1

Bi(t)θr−i
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where the valuation of Bi(t) ∈ Fq [t] with respect to (t1, . . . , tn) is at least i(q −
1) + 1. Thus for every evaluation homomorphism ev, ev(Bn(t)) has valuation r at
the place θ of A. ��

7.8 Stark Units in More General Settings

In this final short section, we want to stress out that the machinery of Stark units
carries over to more general settings than Drinfeld Fq [θ ]-modules. The results
presented in Sect. 7.4 have indeed been developed in [ANDTR17] for Drinfeld
modules over a general A. More precisely, we replace K with a function field in
which Fq is algebraically closed, fix a place ∞ of K and write A for the ring
of functions regular outside ∞ (see [Pel20, §2.2]). If L/K is a finite extension,
a Drinfeld A-module overOL is an Fq -algebra homomorphism

φ :
{
A→ OL[τ ]
a �→ φa

such that φa ≡ a (mod τ ) for all a ∈ A. We refer the reader to [Pel20, §3] for
a presentation of the Drinfeld modules in this general setting. We can define units
in this setting, and follow the constructions presented in this text, that is, twist the
Frobenius by a new variable z, define z-units and evaluate them at z = 1 to obtain
Stark units.

Let K∞ denote the completion of K at ∞ and F∞ its residue field. We choose a
sign function sgn : K×∞ → F×∞, that is, a group homomorphism which is the identity
on F×∞. A rank one Drinfeld module φ is sign-normalized if there is an i ∈ N such
that

∀a ∈ A\{0}, φa = a + a1τ + · · · + sgn(a)q
i

τ deg a.

Stark units are used in [ANDTR17] to obtain various results for sign normalized
rank one Drinfeld modules: explicitly computing the Taelman units, obtaining a
class formula and some log-algebraicity results, that is, constructing explicit units by
the mean of the L-series. As in Sect. 7.6.2, canonical deformations of these Drinfeld
modules are also introduced by means of their shtuka functions.

In [ANDTR20a], Stark units have been extended to Anderson t-modules (for
A = Fq [θ ]) which are defined as Fq-algebra homomorphisms

E :
{
Fq [θ ] → Mn(OL)[τ ]
a �→ Ea = Ea,0 + Ea,1τ + · · · + Ea,r deg aτ

r dega
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such that (Ea −Ea,0)n = 0 for all a ∈ Fq [θ ]. For instance, the n-th tensor power of
the Carlitz module is the Anderson t-module defined by

Eθ :=

⎛

⎜
⎜
⎜
⎜
⎝

θ 1
. . .
. . .

. . . 1
θ

⎞

⎟
⎟
⎟
⎟
⎠
+

⎛

⎜
⎜
⎜
⎝

0 0 . . . 0
...
...

...

0 0 . . . 0
1 0 . . . 0

⎞

⎟
⎟
⎟
⎠
τ.

We refer the reader to [AT90] for more details about these Anderson t-modules.
Once again, Stark units play a key role in [ANDTR20a] to determine the

Taelman’s units of t-modules which allows to prove that a large class of t-modules
satisfy a conjecture of Taelman stated in [Tae09]. They are also used to establish
log-algebraicity identities for the tensor powers of the Carlitz module.

One can finally extend the definition of t-module to a generalA and define Stark
units in this context where the machinery of Sect. 7.4 still works.

We also signal to the reader two very recent works involving Stark units: in
[GND20] Green and Ngo Dac use Stark units to obtain log-algebraic identities for
Anderson t-modules. They derive from it some logarithmic identities on multiple
zeta values. In [ANDTR20b], the authors prove a class formula generalizing
Theorem 7.5.3 to a large class of Anderson modules over a general A, which
includes in particular all Drinfeld modules.

We will end this survey with a remark on the level of generality to which one
can extend the notion of Stark units. At the beginning of this work, we had an
exponential map, that is a power series in the Frobenius τ which satisfies a certain
functional identity involving τ , and we wanted to study the Taelman units, that is
the inverse image of the integral elements through the exponential map. We then
introduced the Stark units by twisting the Frobenius τ with a new variable z and
proceeded to the study of the z-units before evaluating at 1 to get a natural sub-
module of the Taelman units. If we now consider a difference field (K, τ) (see
[DV20, §2]), then the above construction should carry over if we have a suitable
exponential map. It would be interesting to work out Stark units in this general
setting (which involves a definition of a suitable exponential map). Due to the formal
nature of the construction, one would expect applications mainly in the case of non
archimedean fields. L. Di Vizio’s contribution [DV20] to this volume gives many
examples of difference fields for which one could try to see what comes out from a
construction of Stark units.
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