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Abstract. We address engineering of smart behavior of agents in evacu-
ation problems from the perspective of cooperative path finding (CPF) in
this paper. We introduce an abstract version of evacuation problems we
call multi-agent evacuation (MAE) that consists of an undirected graph
representing the map of the environment and a set of agents moving in
this graph. The task is to move agents from the endangered part of the
graph into the safe part as quickly as possible. Although the abstract
evacuation task can be solved using centralized algorithms based on net-
work flows that are near-optimal with respect to various objectives, such
algorithms would hardly be applicable in practice since real agents will
not be able to follow the centrally created plan. Therefore we designed
a decentralized evacuation planning algorithm called LC-MAE based on
local rules derived from local cooperative path finding (CPF) algorithms.
We compared LC-MAE with near-optimal centralized algorithm using
agent-based simulations in multiple real-life scenarios. Our finding it that
LC-MAE produces solutions that are only worse than the optimum by a
small factor. Moreover our approach led to important observations about
how many agents need to behave rationally to increase the speed of evac-
uation. A small fraction of rational agents can speed up the evacuation
dramatically.

Keywords: Evacuation planning · Cooperative path-finding · Local
algorithms · Decentralized algorithms · Agent-based simulations ·
Real-life scenarios · Network flows

1 Introduction

We address in this paper the evacuation problem from the point of view of engi-
neering of smart behavior of individual evacuated agents. Evacuation planning
represents an important real-life problem and is increasingly studied as a topic
in artificial intelligence [4,16]. The evacuation task consists of evacuation of peo-
ple or other agents from the endangered area into the safe zone. The important
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computational challenge in evacuation represents the fact that centralized plan-
ning can hardly be applied as the task involves individual self-interested agents
usually not willing to follow a centrally created plan.

Various techniques have been applied to address the evacuation problem
both from the centralized and decentralized point of view including modeling the
problem as network flows [1] or nature inspired computation such as bee colony
optimization. The important distinguishing feature of evacuation planning algo-
rithms is whether single evacuation route is being planned [20] or the problem is
regarded as multi-agent scenario [19]. In multi-agent evacuation scenarios some-
times multiple types of agents are present such as those assisting the evacuation
[15] and those being evacuated.

The environment where the evacuation task takes place is often modeled
as a graph where vertices represent locations for agents, and edges model the
possibility of moving between pairs of locations [14] (directed case may be used
for representing one way path - a case often appearing in practice). Hence the
evacuation problem can be interpreted as a variant of path finding or cooperative
path finding [6,21,23–25] (CPF).

1.1 Related Work

Specifically in these problems graphs are used as abstractions for the environ-
ment. Similarly as in CPF, the evacuation modeling must take into account
potential collisions between agents and solving techniques must ensure proper
avoidance [7]. The collision avoidance in CPF is usually represented by a con-
straint of having at most one agent per vertex (in some versions of CPF more
than one agent is allowed per vertex).

In contrast to CPF, where agents have unique individual goals (location/ver-
tex), we usually do not distinguish between individual agents in the evacuation
task. That is, an agent can evacuate itself to anywhere in the safe zone (not
to a specific location in the safe zone). From the theoretical point of view, this
feature makes evacuation planning algorithms similar to single commodity net-
work flows [3] while the standard CPF is reducible to the multi-commodity flow
problem [2].

Another important challenge in evacuation planning is represented by the
execution of a plan by real agents. In real-life evacuation scenarios, we cannot
simply assume that all agents will want to follow the plan. Centralized con-
trol of all agents is not feasible in the setup with self-interested agents. The
real agent in evacuation scenario may for example prefer the nearest exit or a
path through which it has arrived while a centrally created plan could force the
agent go elsewhere, thus not being believable for the agent. This differs from
classical planning [8], where the planning authority fully observes the environ-
ment, actions are assumed to be deterministic, and plans created in advance are
assumed to be perfectly executed.
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1.2 Contribution and Organization

Therefore in this work we focus on local evacuation planning relying on local
cooperative path finding techniques and agent-based simulations. Our assump-
tion is that evacuation paths planned locally using information available to the
agent will be more realistic and could be executed by the real agent. At the same
time we do not rule out the central aspect completely, as we also consider some
agents to be more informed (about alternative exits, through a communication
device) than others.

This paper is an extension of the original conference paper where the idea
of evacuation planning using local cooperative path finding algorithms has been
presented first time [18]. In this revised version we have extended the set of
experiments and added more detailed explanation of network flow based algo-
rithm that was omitted in the conference paper.

The organization of the paper is as follows. We begin with a formal introduc-
tion to the concept of evacuation planning, followed by a short summary of local
cooperative path finding algorithms. Local CPF algorithms represent a basis of
our novel evacuation algorithm called Local Cooperative Multi-agent Evacuation
(LC-MAE) described next. Finally we present extensive experimental evaluation
of LC-MAE in multiple scenarios using agent-based simulations. As part of the
simulations, the algorithm is compared to a network-flow based algorithm which
produces near-optimal plans.

2 Background

2.1 Evacuation Planning Formally

We introduce formal definition of evacuation task in this section. The abstract
multi-agent evacuation problem (MAE) takes place in an undirected graph G =
(V,E). The set of vertices is divided into a set of endangered (D) vertices and a
set of safe (S) vertices together modeling the zone to be evacuated and the safe
zone. Agents from a set, A = {a1, a2, ..., ak}, are distributed among the vertices
and the task is to evacuate them from endangered to safe vertices.

The crisp variant of the problem requires that all agents are evacuated while
in the optimization variant we want to have as many as possible agents in safety.

The MAE problem is similar to cooperative path finding (CPF) [21] from
which we took the model for agent movement. Each agent is placed in a vertex
of G so that there is at most one agent per vertex. The configuration of agents
in vertices of the graph at time t will be denoted as ct : A → V . Similarly to
CPF, an agent can move into a vacant adjacent vertex1.

Multiple agents can move simultaneously, provided they do not collide with
each other (that is, no two agents enter the same target vertex at the same time)
and agents only enter vacant vertices.

1 Alternative definitions of possible movements in CPF exist that for example permit
train of agents to move simultaneously atc.
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Definition 1. Multi-agent evacuation (MAE) is a 5-tuple E = [G =
(V,E), A, c0,D, S], where G represents the environment, A = a1, a2, ..., ak is
a set of agents, c0 : A → V is the initial configuration of agents, D and S such
that D ⊆ V , S ⊆ V , V = D ∪ S with D ∩ S �= ∅, and |S| ≥ k represent a set of
endangered and a set of safe vertices respectively.

The task in MAE is to find a plan that moves all agents into the safe vertices
(the crisp variant). That is we are searching for a plan π = [c0, c1, ..., cm] so that
cm(a) ∈ S ∀a ∈ A. The total time until the last agent reaches the safe zone is
called a makespan; the makespan of π is m. An illustration of simple evacuation
problem is shown in Fig. 1 and 2.

Fig. 1. Grid map depicting a multi-agent evacuation instance. Green squares represent
agents that need to be evacuated from the pink endangered area to the white safe zone.
(Color figure online)

The assumption is that everything in the endangered zone will be destroyed
at some unknown point in the future. Hence, to increase chances of evacua-
tion, the makespan should be small. An evacuation plan with the near opti-
mal makespan can be found in polynomial time using network flow techniques
[1,26,27]. However, these algorithms require a centralized approach where agents
perfectly follow the central plan which is hardly applicable in real-life evacuation
scenarios [7,11].

Fig. 2. MAE instance shown using undirected graph with the endangered and safe
zone depicted using red and green vertices respectively.
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2.2 Cooperative Path Finding Algorithms

We address MAE from a local point of view inspired by CPF algorithms like
Local Repair A* (LRA*) and Windowed Hierarchical Cooperative A* (WHCA*)
[21]. These algorithms feature a decentralized approach to cooperative path find-
ing. Instead of using optimization techniques or network flow, each agent’s path
is found separately by using local rules, resolving conflicts between agents trying
to enter the same vertex as they occur. In other words, each agent’s next move is
derived from the knowledge of the relative position of the goal vertex and agents
in the neighborhood of the agent the move is planned for.

While LRA* only resolves conflicts at the moment agent tries to enter an
occupied vertex, a naive strategy which can easily lead to deadlock, WHCA*
is more advanced. Instead of only planning agents’ paths in space (in graph),
agents plan their paths in space-time and share them with other agents using
a data structure called reservation table which is fact is expanded underlying
graph over time. The time expansion is done by making a copy of the graph for
each time step. In this data structure, we cab reserve space/time point for an
agent once it goes through. When planning, vertices reserved by another agent
at a given time are considered to be impassable.

If each agent planned and reserved its whole path to destination, agents plan-
ning later would have information about its complete route and their needs and
goals would not be taken into account, leading to selfish behavior and deadlocks.
The fix to this behavior is windowing, in which agents plan their paths only for a
certain, small, number of time units and the planning is staggered, so that each
agent has an option of reserving a certain vertex. The windowing mechanism
supports local behavior of agents which is in line with our assumptions about
real-agents in evacuation scenarios.

3 Local Multi-agent Evacuation (LC-MAE)

Our novel local multi-agent evacuation (LC-MAE) algorithm divides the evacu-
ation task into three sub-problems:

• Evacuation destination selection: This sub-problem arises from the most
important difference between MAE and simple CPF as in MAE agents’ des-
tinations/goals are not specified. Hence first we need to specify individual
destination vertex for each agent.

• Path-finding to safety: Once each agent has picked its destination vertex in
S, it has to find a collision-free path to the selected destination. At this stage
the task is identical to CPF.

• Behavior in the safe zone: Agents that have left D and arrived to their des-
tination vertex do not disappear from the map. We need to ensure that their
behavior will not block other agents from entering S.

Agent movement in the last two sub-problems is based on modified versions
of WHCA* algorithm, described in their respective sections.
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3.1 Evacuation Destination Selection

The basic data structure used by LC-MAE when choosing an evacuation des-
tination vertex is the frontier denoted F , F ⊆ S. The frontier is a set of safe
vertices which separates the endangered zone from the safe zone.

In other words, removing F from G will separate D and S into disconnected
components. F is created on algorithm initialization. It holds that an agent
must enter S by passing a vertex from F . So the frontier can be constructed as
a standard vertex cut in a graph [17].

Destination selection uses a modified A* algorithm, inspired by the RRA*
algorithm [21]. Agent’s position is set as the path-finding goal, while all nodes
in F are added to the initial open set. Manhattan distance [12] is used as the
heuristic guiding the search of A*.

The result is a vertex in F that is located at the shortest true distance from
the agent while, at the same time, being reachable by the agent. With the vertex
at hand, the algorithm returns its true distance from the agent. This matches
many real-world evacuation scenarios in which people are being evacuated from
an area they know and thus have a mental map of the nearest exits [13].

While evacuating, agents keep track of the number of steps they have taken to
reach their destination. Since the goal’s true distance from the starting position
is known, they can compare these two numbers. If the number of steps taken is
significantly higher than the distance, it may indicate the agent has veered off
the optimal path. This could be, for example, because the path to the chosen
destination is congested. In that case, the agent repeats the destination selection
process, an action that we call retargeting.

3.2 Reservation Table

In LC-MAE we use a variant of the reservation table used in the Cooperative
A* algorithm [21]. Every vertex in G is associated with a mapping of time units
to reservation structures. Every reservation structure includes a reference to the
reserved vertex, the ID of the agent that created the reservation and a priority.

Associating priority with reservations is our primary distinguishing feature.
Agents can make a reservation for vertex v and time step t provided they fulfill
one of the following conditions:

1. No reservation exists yet for v at time t and the vertex can be reserved at
time t + 1.

2. A lower-priority reservation exists for v at time t and the vertex can be
reserved at time t + 1.

3. The agent holds a reservation for vertex v at t − 1.

Condition 3 ensures that CPF algorithms used in LC-MAE can always per-
form at least one action, staying in place, without having to dynamically change
the order in which agents’ paths are planned or performing invalid actions, like
colliding with another agent.
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The t+1 reservability requirement in conditions 1 and 2 prevents the creation
of so-called trains - lines or crowds of agents which move in the same direction
at the same time and which reduce the simulation realism. A simple example of
a train being formed is shown in the right column of Fig. 3.

3.3 Path-Finding to Safety

Once the agent has picked its destination vertex s in S, it plans a path towards
s using WHCA* with the RRA* heuristic. An agent plans the next part of its
path on-demand when it has to return an action for the next time step and
fulfills any of these conditions:

• Is more than halfway through its planned path2

• Has to retarget
• Has lost a reservation for a vertex on its planned path
• Is making its first step

Endangered agents are processed before agents located in S, thus being pri-
oritized relative to agents that are in S. This ensures that endangered agents
generate their plans first.

As soon as an agent enters S (even if it is not its current destination vertex),
it stops following the planned path and switches to the behavior described in
the next section.

3.4 Safe Zone Behavior

While some parts of the behavior of an endangered agent, e.g. on-demand plan-
ning for a specified number of steps in advance and reserving the vertices for
given times do not change once the agents enters a safe zone, the costs for dif-
ferent actions that WHCA* algorithm considers for each step are different and
more dynamic.

The major difficulty in the safe zone is that freshly arriving agents must not
impede the ongoing evacuation. A simple approach is to move agents as far from
D as possible. However, knowing whether an agent is getting away from D is
not a trivial problem from the local point of view.

The behavior agents adopt after entering S in LC-MAE (called surfing) is
based on modified WHCA* algorithm. Costs for the passage from one vertex to
another are computed dynamically, depending on the positions of other agents
and the type of the agent’s target vertex.

The basic idea is that an agent’s priorities should vary according to the
number of agents following behind, on the same path. When no other agents are
following, it will prefer staying in place. With an increasing number of agents
behind, the cost of staying in place also increases.

2 Only using half of the planned path before replanning is a simple way of improving
agent cooperation described in [22].
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Algorithm 1. The algorithm for computing the number of agents following agent

a [18].

1 previous-reserved (E, π, a, t)
2 let π = [c0, c1, ..., ct]

3 Va ← {ct−b(a) | b = 0, ..., l
2
}

4 for v ∈ Va do
5 if reserved(v, t) then
6 r ← r + 1

7 return r

The agent determines the number of following agents by checking whether
there are reservations created for positions it has passed before. The process is
formalized in pseudo-code as Algorithm 1.

Since agents only make this check when they start planning their next few
steps, the results have to be adjusted to account for the increasing uncertainty
about the steps that other agents will take. This is done by subtracting the
number of future time steps from the number of following agents (see line 11 of
Algorithm 2).

Algorithm 2. Computing costs of different actions for agents in the safe zone.

Actions are considered relative to agent a located at v at time t. tc specifies the

time at which the plan is generated [18].

1 neighbors (E, π, a, t, v, tc)
2 let π = [c0, c1, ..., ct]
3 Ap ← previous-reserved(E ,π,a,tc)
4 costs ← []
5 foreach u ∈ S | {v, u} ∈ E do
6 if reservable(u, t + 1)∧u ∈ S then
7 if u ∈ {ct(a) | t = 0, 1, ..., t} then
8 costs ← costs ∪{(u, 3)}
9 else

10 costs ← costs ∪{(u, 2)}

11 b ← max(1, |Ap| − (t − tc))
12 if reservable(v, t + 1) then
13 costs ← costs ∪{(u, 1 ∗ b)}
14 else
15 costs ← costs ∪{(u, 4 ∗ b)}
16 return costs



310 R. Selvek and P. Surynek

The complete cost-calculation algorithm can be found in Algorithm 2. With
increasing back-pressure, moving into a reservable adjacent vertex becomes the
cheapest option. The agent keeps a list of positions it has already visited and
assigns them a higher cost. This leads to better diffusion of agents through S as
endangered agents can “nudge” safe agents deeper.

4 Centralized Evacuation Based on Network Flows

Near optimal solutions of MAE can be found by modeling an MAE instance as
network flow [1,26] and planning it centrally.

The core concept is to construct a time expanded network having m copies
of G in which a flow of size |A| exists if and only if the corresponding relaxed
MAE has a solution with makespan m. In the relaxed MAE we do not require
that agents only enter vacant vertices which is a condition hard to model in the
context of network flows.

Only the requirement that there is at most one agent located on a vertex
in a single time unit is kept. Hence train-like movements of agents are possible
in the relaxed MAE. The illustration of train like movement and corresponding
movement following the move to unoccupied rule is shown in Fig. 3 possible.

The process of construction of flow network Gm based on time expansion of
the underlying graph G for m steps is described as follows:

• We add vertices z and s into Gm representing global source and global sink.
• For each vertex vj from G we add into Gm vertices i0j and o0j and edge

(i0j , o
0
j ). For each j such that vj contains an agent we add edge (z, i0j ) into

Gm. Intuitively this construction ensures interconnection with the source.
• For each t ∈ 1, . . . ,m − 1 and each vertex vj from G we add into Gm vertices

itj and otj connected by an edge. Moreover for each edge e = {vx, vy} ∈ E we
add into Gm edges (ot−1

x , ity), (o
t−1
y , itx).

• For each om−1
j such that vj is a safe vertex in G we add edge (om−1

j , s) into
Gm.

• Set the capacity of every edge in Gm to 1.

Finding the minimum makespan for the relaxed MAE can be done for exam-
ple by the modified binary search algorithm as shown in Algorithm 3. The algo-
rithm uses multiple yes/no queries about the existence of a solution for a specified
number of steps to find the optimum.

A solution of a relaxed MAE problem generated by the network flow algo-
rithms can be post-processed into a solution of ordinary MAE by postponing
moves that would violate the invariant of not entering a vertex that has just
been left by an agent. However, postponing moves may lead to deadlocks, so
the post-processing algorithm swaps the paths planned for deadlocked agents
when a deadlock is detected. We’re calling this planning algorithm based on
post-processed network flows POST-MAE ; the idea of post processing follows
the scheme from Fig. 3.
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Fig. 3. Movement of agents in ordinary MAE (left) and in relaxed MAE (right) [18].

5 Experimental Evaluation

We implemented LC-MAE in Python and evaluated it in multiple benchmark
scenarios. We also implemented the POST-MAE algorithm on top of Push-
relabel max-flow algorithm [9] that has been used to find the minimum makespan
for the relaxed MAE.

In order to estimate the difference between the makespans of plans generated
by LC-MAE and makespans of optimal (if completely unrealistic) plans, we
also benchmarked POST-MAE without the post-processing, denoted as flow in
comparison tables.

Our implementation relies on data structures implemented in the networkx
library [10]. The visualization is implemented on top of the arcade library [5].
In the LC-MAE implementation, the look-ahead window was set to 10 steps.

5.1 Agent Types

To simulate real-life scenarios with higher fidelity we used agents of two types.
They differ in their behavior in D, while in S all agents rely on surfing. Retar-
geting agents fully implement the destination selection algorithm while static
agents plan a path to a vertex specified in advance at scenario creation time.

5.2 Setup of Experiments

We used 4 different maps in our evaluations as shown in Fig. 4 - they represent
4-connected grids with obstacles. Free and safe vertices are white (surrounding
area), free and endangered vertices are pink. Vertices occupied by agents are
green. Black squares signify walls, so no vertices are present in the underlying
graph at those positions.

The respective test scenarios try to show evacuation on 3 realistic and 1
synthetic map:

• Concert (Fig. 4a) representing a concert hall with an unevenly distributed
crowd of 118 agents.
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Algorithm 3. Algorithm for finding minimum evacuation time.

1 minimum-makespan (E)
2 f ← 0
3 m ← |A|
4 whi ← 0
5 while f �= |A| do
6 Ee ← expand(E , m)
7 f ← maximum-flow(Ge)
8 if f �= |A| then
9 whi ← m

10 m ← m ∗ 3
2

11 while true do
12 mnew ← whi + �(m − whi)/2	
13 Ee ← expand(E , mnew)
14 f ←maximum-flow(Ge)
15 if f = |A| then
16 m ← mnew

17 if m = whi + 1 then
18 break

19 else
20 whi = mnew

21 if mnew = m − 1 then
22 break

23 return m

• Office (Fig. 4c) representing an office building corridor flanked on both sides
by small offices. Exits are located on both ends of the corridor. There are 2
agents in each office, the corridor is empty.

• Shops (Fig. 4d) representing a shopping center with complicated layout and
many exits. 299 agents are present on the map, located both in the shops an
on the corridors.

• Blocker (Fig. 4b) an unrealistic map of a room with two emergency exits. It’s
completely filled with 414 agents.

5.3 Experimental Results

We first compared the makespan of evacuation plans generated by LC-MAE with
optimal makespans calculated by the flow-based algorithm for relaxed MAE and
with makespans of solutions post-processed with POST-MAE - see Table 1. LC-
MAE generates plans that are only worse by a small constant factor (ranging
from 1.52 to 2.73) than those generated by POST-MAE, which indicates that
LC-MAE solutions are close to the true optimal makespan. Moreover, plans
generated by LC-MAE are more realistic as they need local communication only.
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Fig. 4. Maps on which different evacuation scenarios were tested [18].

The performance of LC-MAE is better than the performance of flow algo-
rithm and than that of POST-MAE, as demonstrated in Table 2. An additional
advantage is that since LC-MAE is a local algorithm and uses windowing, the
plans can be used while they are being generated, since the steps taken by agents
do not change.

5.4 Agent-Based Simulations

We also performed a series of experiments to understand the real process of
evacuation in scenarios in which various types of agents are mixed together,
that is, when some agents are better informed than others.

For each map, we created multiple scenarios with some of the retargeting
agents replaced by static agents. These static agents try to exit through the
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Table 1. Makespans for evacuation plans [18].

Scenario Agents LC-MAE Flow POST-MAE

Concert 118 90 17 33

Office 80 94 47 62

Shops 299 129 36 75

Blocker 414 146 23 69

largest opening between the safe and endangered zone (which could be described
as the main exit from the area) and ignore all other exits. With this setup,
retargeting agents could be considered to be better informed, given they take all
the possible exits into account.

The percentage of agents that have reached safety as a function of time is
shown in Fig. 5.

5.5 Concert

The largest discrepancy between makespans of evacuations planned by POST-
MAE and LC-MAE occurred on the Concert map. Our hypothesis was that
small dimensions of side emergency exits and limited space in the safe zone
behind them quickly caused congestion and hindered the evacuation, as can be
seen in Fig. 6b.

To verify this hypothesis, we created two other scenarios, called Static Crowd
and All Static. In Static Crowd there are 42 agents standing in front of the stage.
Those agents try to escape through the main exit located on the bottom of the
map (see Fig. 6a). In the All Static scenario all agents use this exit.

Our hypothesis was confirmed (see Table 3). While a scenario with only
retargeting agents has a makespan of 90 time units, when all agents are static,
the makespan is only 74 time units. The shortest makespan, 51 time units, occurs
in the Static Crowd scenario, since informed agents use side exits which don’t
get congested and free the space in the center of the map for the crowd escaping
through the main exit.

5.6 Offices

For the Offices map, we created two modified scenarios, Half and Sixth. Their
names indicate the fraction of agents which was left as retargeting. The rest of
the agents is static, using the left exit to evacuate.

In Sixth, 14 retargeting agents are located in 7 columns to the right of the
map center (see Fig. 7a). We expected the retargeting agents heading right and
static agents heading left to collide in the narrow corridor. This expectation was
fulfilled. The evacuation of 14 informed agents took 77 time units, only 17 time
units less than the evacuation of 80 retargeting agents in the original scenario.
Both this collision and the congestion occurring at the left exit impeded the
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evacuation of static agents, causing their evacuation to take 158 time units. The
gap in evacuation flow caused by the collision can be seen in Fig. 7b.

Table 2. Seconds taken by plan generation [18].

Scenario LC-MAE Flow POST-MAE Speedup

Concert 7 52 62 8.9×
Office 4 57 61 15.3×
Shops 20 379 403 20.2×
Blocker 27 220 243 9.0×

Fig. 5. The percentage of safe agents in time. Line colors differentiate between different
scenarios. Dashed lines represent percentage of retargeting agents in S, dotted lines
represent the percentage of static agents in S [18].
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In Half, there was one static and one retargeting agent in each office. In the
makespan plot for this scenario, there is a significant slowdown around time unit
60, caused by a crowd forming in front of left exit and making both static and
retargeting agents evacuate at the same rate (see Table 4).

5.7 Shopping Center

For the Shopping Center map, we created 3 modified scenarios, called Quarter,
Sixth and All Static, named in the same pattern as scenarios for the Offices
map. Main exit, used by static agents, is located on the bottom of the map. The
different types of agents are distributed randomly throughout the map.

Fig. 6. Situations from the Concert map.

Table 3. Number of agents and evacuation makespan for different scenarios on the
Concert map broken down by agent type.

Scenario Retargeting agents Static agents

Count Makespan Count Makespan

All Retargeting 118 90 0

Static Crowd 76 51 42 49

All Static 0 118 74
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The safe zone around the map is narrow so this scenario tests how the spread
of agents between different exits influences the makespan. As can be seen on the
plot the evacuation slows down around time unit 90 in all scenarios, because the
area in front of the main exit gets filled and agents are not dispersing fast enough.
This situation can be seen occurring in Sixth scenario in Fig. 8b. Makespan
results are summarized in Table 5.

Fig. 7. The Sixth scenario of the Offices map.

Table 4. Number of agents and evacuation makespan for different scenarios on the
Offices map broken down by agent type.

Scenario Retargeting agents Static agents

Count Makespan Count Makespan

All Retargeting 80 94 0

Half 40 96 40 160

Sixth 14 77 66 158

5.8 Blocking

The Blocking map is specific due to being an unrealistic map used to test agent
behavior in a completely filled area. We created 3 modified scenarios, called
Quarter, Sixth and All Static, named in the same pattern as scenarios for the
Offices map. The exit, used by static agents, is located on the bottom of the
map. In each row there is only one type of agents (see Fig. 9a).
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Due to map’s regularity, the results are unsurprising. The evacuation in All
Static has a makespan 2.06 times as long as evacuation using both exits (see
Table 6). Safe zone saturation effects are similar to the Shopping Center map,
being more pronounced for retargeting agents stuck in the crowd in front of the
bottom exit.

An interesting situation can be seen in Fig. 9b. Retargeting agents from the
upper part of the map choose the upper exit and create reservations for their
paths. These reservations block static agents trying to reach the bottom exit.
Thus even some of the static agents use the upper exit to get to safety. On the
other hand, some of retargeting agents, which get blocked by static agents, use
the bottom exit, even though they are closer to the upper one.

Fig. 8. The Sixth scenario of the Offices map.

Table 5. Number of agents and evacuation makespan for different scenarios on the
Shopping Center map broken down by agent type.

Scenario Retargeting agents Static agents

Count Makespan Count Makespan

All retargeting 299 129 0

Quarter 75 61 224 257

Sixth 42 60 257 303

All static 0 299 368
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Fig. 9. Situations from Blocking map.

Table 6. Number of agents and evacuation makespan for different scenarios on the
Blocking map broken down by agent type.

Scenario Retargeting agents Static agents

Count Makespan Count Makespan

All Retargeting 414 146 0

Half 216 207 198 219

Third 144 214 270 236

All Static 0 414 301

6 Conclusion

We introduced an abstraction for evacuation problems called multi-agent evac-
uation (MAE) based on graph theoretical concepts similar to cooperative path
finding. We suggested a new local algorithm called LC-MAE for solving MAE
that produces solutions in which individual agents try to behave smartly during
the evacuation process. LC-MAE uses a modification of WHCA* as the under-
lying path-finding process but also introduces several high-level procedures that
guide agents’ behaviour depending on whether they are in the endangered or the
safe zone. We performed experimental evaluation with multiple scenarios includ-
ing scenarios inspired by real-life evacuation cases as well as synthetic scenarios.
The experimental evaluation indicates that LC-MAE generates solutions with
makespan that is only a small factor worse than the optimum. We also studied
how different ratios of less informed agents affect the process of evacuation. We
found that depending on the scenario, the presence of some informed agents can
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improve the evacuation outcome for the whole group of agents. Additionally, even
large numbers of uninformed agents don’t impede informed agents from reaching
the correct exit. For the future work we would like to continue with a framework
for automated inference of simple local movement rules from solutions generated
by optimal centralized evacuation algorithms. We expect that such rules could
mimic the evacuation process produced by the centralized algorithm at the local
level.
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