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Abstract. In recent years, location-based social networks (LBSNs) such
as Foursquare have emerged that enable users to share with each other,
their (geographical) locations together with the semantic information
associated with their locations. The semantic information captures the
type of a location and is usually represented by a semantic tag. Semantic
tag sharing increases the threat to users’ location privacy which is already
at risk because of location sharing. The existing solution to protect the
location privacy of users in such LBSNs is to obfuscate the location
and the semantic tag independently of each other in a so called disjoint
obfuscation approach. More precisely, in this approach, the semantic tag
is obfuscated i.e., replaced by a more general tag. Also, the location
is obfuscated i.e., replaced by a generalized area (called the cloaking
area) made of the actual location and some of its nearby locations. How-
ever, since in this approach the location obfuscation is performed in a
semantic-oblivious manner, an adversary can still increase his chance to
infer the actual location by detecting semantic incompatibility between
the locations in the cloaking area and the obfuscated semantic tag. In
this work, we address this issue by proposing a joint obfuscation app-
roach in which the location obfuscation is performed based on the result
of the semantic tag obfuscation. We also provide a formal framework for
evaluation and comparison of our joint approach with the disjoint app-
roach. By running an experimental evaluation on a dataset of real-world
user mobility traces, we show that in almost all cases (i.e., for different
values of the obfuscation parameters), the joint approach outperforms
the disjoint approach in terms of location privacy protection. We also
study how different obfuscation parameters can affect the performance
of the obfuscation approaches. In particular, we show how changing these
parameters can improve the performance of the joint approach.

Keywords: Privacy · Social networks · Location-based services ·
Semantics

1 Introduction

In location-based social networks (LBSNs) such as Foursquare and Facebook,
users can share with each other, their (geographical) locations together with the
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Fig. 1. A check-in to a burger joint called “Whitmans” on Foursquare. The
location and the semantic tag of the venue are highlighted by the red bounding boxes.
(Color figure online)

semantic information associated with their locations. For instance, by checking-
in to venue “Whitmans” on Foursquare, a user implicitly accepts to share with
her friends, the address of the venue together with its type (category), which is
represented in the form of a semantic tag “burger joint” (See Fig. 1). A venue’s
semantic tag usually belongs to a predefined set of tags, where the set of tags
form a hierarchical tree in which the “burger joint” tag could be a descendant
of the “restaurant” tag and the “restaurant” tag could be a descendant of the
“food” tag, and so forth [1,5].

It is known that by disclosing their locations in LBSNs and in location-based
services (LBSs), users put their location privacy at risk. In fact, an adversary
(e.g., a curious service provider) can use a collection of users’ disclosed locations
to re-identify their pseudonymous location traces or to infer their locations at
given time instants [20,23,24]. As shown in [1], revealing semantic tags together
with locations, creates a still more powerful threat to the users’ location privacy.
Intuitively, this is because the mobility of users have some regular semantic
patterns (e.g., people usually go to the movies after dining in a restaurant),
which can be learned and exploited to better track their locations [1,5].

One way to protect the privacy of users is to build privacy-aware LBSNs in
which users only share obfuscated versions of their locations and semantic tags.
Thus, when a user checks-in to a venue on a privacy-aware LBSN, the venue’s
name, its exact location and its semantic tag are not disclosed to anyone. Instead,
an obfuscated version of the location and an obfuscated version of the semantic
tag are sent to the service provider and then shared with the user’s friends on
the LBSN. The existing solution in the literature to build such privacy-aware
LBSNs consists of obfuscating the location and the semantic tag independently of
each other in a so called disjoint semantic tag-location obfuscation approach [1].
Figure 2.a illustrates a toy example of this approach, where a geographical area
is partitioned into four square regions (locations) and each region is identified
by a number. Let us assume that a user Alice wants to check-in to venue “Super
Duper Burger” on a privacy-aware LBSN. Thus, in the semantic tag obfuscation
process, her location’s semantic tag (i.e., “burger joint”) is replaced by a more
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Fig. 2. Toy Examples of the obfuscation approaches.

general tag “restaurant”. Also, in the location obfuscation process, her location
(i.e., region 1) is replaced by a generalized area (also called a cloaking area) made
of regions 1 and 2.1 The problem with this approach is that an adversary (e.g.,
a curious service provider) who knows the semantic tags of the venues in the
map can easily filter out region 2 from the cloaking area and infers that Alice
is located in region 1. The reason is that region 2 is not semantically compatible
with the “restaurant” tag i.e., it has no venue whose semantic tag is equal to the
“restaurant” tag or is a descendant of the “restaurant” tag in the tag hierarchy.

In this work, we introduce a joint semantic tag-location obfuscation approach
for building privacy-aware LBSNs. This approach aims to overcome the draw-
backs of the disjoint approach by performing the location obfuscation based on
the result of the semantic tag obfuscation. More precisely, in the location obfus-
cation process, the cloaking area is defined so that it has the maximum number
of semantically compatible regions with the obfuscated semantic tag among the
existing potential cloaking areas. Figure 2.b illustrates a toy example of this app-
roach. Similar to the toy example of Fig. 2.a, in this example a user Alice wants
to check-in to venue “Super Duper Burger” on a privacy-aware LBSN. Thus, in
the semantic tag obfuscation process, her location’s semantic tag (i.e., “burger
joint”) is replaced by a more general tag “restaurant”. However, in the location
obfuscation process, her location (i.e., region 1) is replaced by a cloaking area
made of regions 1 and 3. The advantage of merging region 1 with region 3 instead
of merging region 1 with region 2, is that region 3 is semantically compatible
with the “restaurant” tag since it has two venues (i.e, “Joe’s Pizzeria” and “Haru
Noodle House”) whose semantic tags (i.e., “pizza place” and “noodle house”)
are descendants of the “restaurant” tag in the tag hierarchy, respectively. Hence,
the adversary cannot filter out the region 3 by knowing the “restaurant” tag.
Thus, the resulting cloaking area has two semantically compatible regions with
the “restaurant” tag, which is the maximum number of semantically compatible

1 For simplicity’s sake, in this work we consider only obfuscation by generalization,
both for locations and semantic tags.
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regions that can be achieved for the “restaurant” tag and the cloaking area size
of two regions.

Contributions. We introduce a joint semantic tag-location obfuscation app-
roach for privacy protection in LBSNs (and in LBSs, in general). We also provide
a formal framework that can be used for evaluation and comparison of our app-
roach with the disjoint obfuscation approach. Using a dataset of real-world user
mobility traces, we perform an experimental evaluation for comparison of the
joint and the disjoint approaches. The evaluation results show that in almost all
cases (i.e., for different values of the obfuscation parameters), the joint approach
outperforms the disjoint approach in terms of location privacy protection. We
also study the impact of different obfuscation parameters on the performance of
the obfuscation approaches. In particular, we show how changing these param-
eters can improve the performance of the joint approach. The most important
contribution of our work is introducing joint obfuscation as a new type of obfus-
cation, in which some private attributes of a user are obfuscated based on the
result of the obfuscation of some of her other private attributes. Accordingly,
our work can be used as a model for more advanced obfuscation schemes that
jointly obfuscate a greater number of private attributes.

Road Map. The remainder of the paper is organized as follows. In Sect. 2,
we describe the system model and introduce some definitions. In particular, we
present a privacy protection mechanism that can be defined to use one of the
joint or disjoint obfuscation approaches. We also present an adversary model
and describe the adversary’s knowledge and attack. In Sect. 3, we introduce an
implementation of the adversary’s attack based on dynamic bayesian networks.
In Sect. 4, we present the location privacy metric. In Sect. 5, we perform an
experimental evaluation to compare the joint and the disjoint approaches in
terms of location privacy protection and we discuss the results. In Sect. 6, we
discuss the related work. Finally, we conclude the paper in Sect. 7.

2 System Model

In this section, we present the system model. Our model is built upon the frame-
work proposed in [20,23,24] and its extension in [1].

Regions and Semantic Tags. We assume that the users move in a geograph-
ical area that is partitioned into a finite set R of distinct regions. We use the
terms region, geographical location and location interchangeably. Each region has
a unique identifier and contains a set of venues. A venue is characterized by its
type, which is represented in the form of a semantic tag. The semantic tag of a
venue belongs to a set S of all possible semantic tags. We assume that S can be
represented as a tree data structure where each node is a semantic tag and the
parent of a given node is a more general semantic tag with respect to a speci-
fied tag hierarchy. Below, we present some definitions that capture the semantic
characteristics of venues and regions.
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• Let v be a venue in a region in R and s be a semantic tag in S. Then, we
say v is semantically compatible with s, if v’s semantic tag is equal to s or
descendant of s in the semantic tag tree.

• Let r be a region in R and s be a semantic tag in S. Then, NVs(r) denotes
the number of venues in r whose semantic tags are equal to s. Simi-
larly, NDVs(r) denotes the number of venues in r whose semantic tags
are descendants of s in the semantic tag tree. Finally, NCVs(r) denotes
the number of venues in r that are semantically compatible with s. Thus,
NCVs(r)=NVs(r)+ NDVs(r).

• Let r be a region in R and s be a semantic tag in S. Then, we say that r
is semantically compatible with s if r contains at least one venue which is
semantically compatible with s, i.e., NCVs(r) > 0.

Time. Time is discrete and the set of time instants when the users may be
observed is T = {1, ..., T}. The set T is called the observation interval.

Users. We assume a finite set of users, where each user has a unique identi-
fier. The mobility of a user is characterized by her events and her traces. More
specifically, the fact that a user u is at location r with semantic tag s at time
t, can be represented by a tuple <u, r, s, t>. We call this tuple an event. Note
that the semantic tag of location of u at time t refers in fact to the semantic tag
of the location’s venue where u is located at time t. The location trace and the
semantic tag trace of user u can then be obtained based on the set of her events
over the entire observation interval. Thus, the location trace of u is defined as
r1:Tu � {r1u, ..., rT

u }, where rt
u with t ∈ T , denotes the location of u at time t. We

assume that rt
u is an instantiation of random variable Rt

u that takes values in
R. Moreover, the semantic tag trace of u is defined as s1:Tu � {s1u, ..., sT

u }, where
st

u with t ∈ T , denotes the semantic tag of location of u at time t. We assume
that st

u is an instantiation of random variable St
u that takes values in S.

Privacy Protection Mechanism (PPM). The privacy-protection mecha-
nism (also called PPM) obfuscates user’s locations and their corresponding
semantic tags before reporting them to the online service provider. More pre-
cisely, PPM transforms each actual event <u, r, s, t> to an obfuscated event
<u, r̃, s̃, t>, where r̃ and s̃ are the obfuscated versions of r and s, respectively.

The obfuscation of r is achieved through the location obfuscation process of
the PPM. The resulting pseudo-location r̃ is an instantiation of random variable
˜Rt

u that takes values in set ˜R, where ˜R is the power set of R. We use the
terms pseudo-location and obfuscated location interchangeably. In the literature,
there exist various types of location obfuscation (see Sect. 6). In this work, we
assume that the PPM performs a type of location obfuscation called location
generalization. Thus, r is merged with its nearby regions to form an extended
region (also called a cloaking area (CA)) that is represented by r̃. We also assume
the existence of a parameter oloc called the location obfuscation level. In this work,
oloc defines the number of regions in r̃. Thus, formally, r̃ represents a set that is
composed of r and the other merged regions and has a cardinality of oloc.
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The obfuscation of s is achieved through the semantic tag obfuscation process
of the PPM. The resulting pseudo-semantic tag s̃ is an instantiation of random
variable ˜St

u that takes values in set S. We use the terms pseudo-semantic tag
and obfuscated semantic tag interchangeably. In this work, we assume that the
PPM performs a type of semantic tag obfuscation called semantic tag general-
ization, in which s is replaced by a more general semantic tag in the semantic
tag tree. The level of generalization is defined by a parameter osem called the
semantic tag obfuscation level. Thus, formally, s̃ is the ancestor of s that is osem
level(s) above s in the semantic tag tree.

Based on what we have described, the location obfuscation and the semantic
tag obfuscation can each be modeled by a probability distribution function.
Thus, formally, a PPM is defined as a pair (f , g) where f and g are probability
distribution functions that model the semantic tag obfuscation and the location
obfuscation, respectively. By applying these functions on a user’s events over
time, the PPM creates the obfuscated traces of the user from her actual traces.
Thus, the obfuscated location trace of a user u is defined as r̃1:Tu � {r̃1u, ..., r̃T

u },
where r̃t

u with t ∈ T , denotes the pseudo-location of u at time t and is an
instantiation of ˜Rt

u. Moreover, the obfuscated semantic tag trace of user u is
defined as s̃1:Tu � {s̃1u, ..., s̃T

u }, where s̃t
u with t ∈ T , denotes the pseudo-semantic

tag of location of u at time t and is an instantiation of ˜St
u. The definition of

f and g functions depends on the obfuscation approach used by the PPM. In
the following, we introduce two obfuscation approaches and give the definition
of the probability distribution functions for each approach.

• Disjoint semantic tag-location obfuscation approach. In this approach,
the location obfuscation and the semantic tag obfuscation are performed inde-
pendently of each other. Thus, the probability distribution functions in this
approach are defined as follows [1].

fu(s, s̃) = Pr
(

˜St
u = s̃

∣

∣ St
u = s

)

(1)

gu(r, r̃) = Pr
(

˜Rt
u = r̃

∣

∣ Rt
u = r

)

(2)

• Joint semantic tag-location obfuscation approach. In this approach,
the location obfuscation is performed based on the result of the semantic tag
obfuscation. Thus, first s̃ is obtained from s by applying the semantic tag
obfuscation process. Then, in the location obfuscation process, the merging
of r with nearby locations is performed in a way that the resulting r̃ has the
maximum number of semantically compatible regions with s̃. Formally this
can be expressed as follows. Let C(r) be the set of potential cloaking areas
for region r and NCRs̃(.) denote the number of regions that are semantically
compatible with s̃ in a given cloaking area. Then, an element r̃ of C(r) has
the maximum number of semantically compatible regions with semantic tag
s̃ if NCRs̃(r̃)≥ NCRs̃(ρ̃) for ∀ρ̃ ∈ C(r). Based on what we have described,
the probability distribution functions in this approach are defined as follows.
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fu(s, s̃) = Pr
(

˜St
u = s̃

∣

∣ St
u = s

)

(3)

gu(r, r̃, s̃) = Pr
(

˜Rt
u = r̃

∣

∣ Rt
u = r, ˜St

u = s̃
)

(4)

Adversary. Typically, the adversary is a curious service provider or an observer
who observes the obfuscated traces of the users and wants to infer the locations
of users at given time instants. We model the adversary by his knowledge and
his attack.

• Adversary’s Knowledge. The adversary has full knowledge of regions
(including their venues and their semantic tags) and the semantic tag tree.
He knows which obfuscation approach is used by the PPM and also knows the
semantic tag obfuscation function (f) and the location obfuscation function
(g) of PPM in both disjoint and joint approaches. We assume that the adver-
sary performs his attack a posteriori, meaning that the adversary has access
to the obfuscated traces of the users over the complete observation interval.
In addition, he has access to some of the past semantic tag traces and past
location traces of the users. We refer to this as his prior information.

• Adversary’s Attack. The adversary performs the location-inference attack
against users. In this attack, the goal of the adversary is to find the location
of a user u at time t, given the obfuscated location trace and the obfuscated
semantic tag trace of u. The attack can be formalized as finding the following
posterior probability distribution over set R of regions:

Pr
(

Rt
u = r

∣

∣ r̃1:Tu , s̃1:Tu

)

(5)

3 Implementation of the Attack

To implement the attack, the adversary first builds a dynamic bayesian network
(DBN ) model for each user based on his knowledge. Roughly speaking, the DBN
model for a user encodes the probabilistic dependencies between the random
variables involved in the inference attack against that user. Once a DBN is built
for a user, the adversary can perform his attack against the user by applying
an existing DBN inference algorithm (such as junction tree algorithm or loopy
belief propagation algorithm [11,16,17]) on the DBN built for the user. In the
following, we discuss the DBN models.

3.1 The Dynamic Bayesian Network (DBN) Models

Based on his knowledge, the adversary builds a dynamic bayesian network
(DBN ) model for each user. A DBN is a probabilistic graphical model. It belongs
to a wider class of probabilistic graphical models known as bayesian networks
(BNs). In fact, a DBN is a BN which is used to model time series, sequential
data [11,16].

The DBN of a user u presents a joint distribution over the random variables
R1:T

u , S1:T
u , ˜R1:T

u , ˜S1:T
u , where R1:T

u � {R1
u, ..., RT

u }, S1:T
u � {S1

u, ..., ST
u }, ˜R1:T

u �
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(b) DBN for the Disjoint Approach

Time slice 1 Time slice 2 Time slice 3 

S1
uS1
u S2

uS2
u S3

uS3
u

R1
uR1
u R2

uR2
u R3

uR3
u

˜S1
u

˜S1
u

˜S2
u

˜S2
u

˜S3
u

˜S3
u

˜R1
u

˜R1
u

˜R2
u

˜R2
u

˜R3
u

˜R3
u

(c) DBN for the Joint Approach
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Fig. 3. The Dynamic Bayesian Network (DBN) Models.

{ ˜R1
u, ..., ˜RT

u } and ˜S1:T
u � {˜S1

u, ..., ˜ST
u }. These random variables can be divided

into two categories: (1) Observed variables. These are the variables that are
directly observed and whose values are known by the adversary. They include
˜R1:T

u and ˜S1:T
u ; (2) Unobserved variables (also called hidden variables). These

are the variables that are not directly observed and whose values are supposed
to be inferred from the observed variables. They include R1:T

u and S1:T
u . The

graphical structure of the DBN specifies all probabilistic dependencies between
the hidden variables, between the hidden and the observed variables and between
the observed variables.

The probabilistic dependencies between the hidden and the observed vari-
ables as well as between the observed variables themselves, depend on the obfus-
cation approach used by the PPM. Thereby, the DBN of a user in the case where
the disjoint obfuscation approach is used differs from her DBN in the case where
the joint approach is used. However, in both cases the probabilistic dependencies
between the hidden variables remain the same. Thus, in the following we first
present a basic DBN for a user u that encodes only the probabilistic depen-
dencies between the hidden variables. Then, we present the DBNs of u for the
disjoint and the joint obfuscation cases. These DBN models are made by adding
the corresponding observed variables of each case to the basic DBN.

3.1.1 The Basic DBN
This model encodes the probabilistic dependencies between the hidden variables
associated to user u, namely R1:T

u , S1:T
u (see Fig. 3.a). The basic DBN models the

mobility of u. The adversary builds this model based on the following assumption
on user mobility: to move to the next location, a user first decides on the type
(i.e., semantic tag) of the next location based on the type (i.e., semantic tag)
of her current location [1]. Once the next location type is decided, the user
can choose her next (geographical) location based on her current (geographical)
location and the next location type [1]. For instance, a user is in a restaurant and
decides to go to the movies, as she usually does after going to a restaurant. Thus,
considering her current geographical location, she chooses the movie theater that
is most convenient to her (e.g., the closest movie theater to the restaurant) [1].
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Let us take a closer look at the model. Since a DBN is a type of bayesian
network (BN), the model exhibits the general properties of BNs. More precisely,
it is a directed acyclic graph in which nodes represent random variables and the
edges represent conditional dependencies between variables. In addition, each
node has a conditional probability distribution (CPD) associated to it, which is
the CPD of the variable represented by the node, given the parent variables of the
node (by parent variables of a node, we mean the variables that are represented
by the parent nodes of that node in the graph) [14]. For instance, in each time
slice t of Fig. 3.a, to represent the fact that St

u depends on St−1
u , an edge connects

the corresponding nodes and the associated CPD is Pr
(

St
u

∣

∣ St−1
u

)

. The model
has also some properties that are specific to DBNs. Firstly, it has a structure
which is repeated over time. Secondly, the model is first order Markovian, i.e., the
random variables in each time slice t are independent of all random variables from
time slices 1 to t − 2, given the random variables in time slice t − 1. Finally, the
model is time-invariant, i.e., the CPDs of the model do not change as a function
of time. As a consequence of the Markov and the time-invariance properties of
the model, R1:T

u and S1:T
u each form a time-invariant first order Markov chain.

Parameters. The model is fully specified by the following probability distribu-
tions.

• The transition distributions: Pr
(

St
u

∣

∣ St−1
u

)

and Pr
(

Rt
u

∣

∣ St
u , R

t−1
u

)

.
These are the CPDs that define the transition between any two consecutive
time slices t−1 and t in the model. According to [1], the distribution Pr

(

Rt
u

∣

∣

St
u, Rt−1

u

)

can be computed as follows:

Pr
(

Rt
u = r

∣

∣ St
u = s,Rt−1

u = r′) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

0, if NVs(r) = 0

α
Pr

(

Rt
u = r

∣

∣ Rt−1
u = r′)

∑

ρ∈E
Pr

(

Rt
u = ρ

∣

∣ Rt−1
u = r′) otherwise

+(1 − α) · Pr
(

Rt
u = r

∣

∣ St
u = s

)

,

(6)
where E = {ρ ∈ R : NVs(ρ) > 0} and α is a real-valued parameter that
is used to set the weight of each term in the equation. The distributions
Pr

(

St
u

∣

∣ St−1
u

)

and Pr
(

Rt
u

∣

∣ Rt−1
u

)

can be learned from the prior traces by
applying maximum likelihood estimation (if the traces are complete) or by
using algorithms such as Gibbs sampling (if the traces have missing locations
or if they are noisy) [6,20,23]. The distribution Pr

(

Rt
u

∣

∣ St
u

)

can also be
learned from the prior traces. More precisely, Pr

(

Rt
u = r

∣

∣ St
u = s

)

can
be estimated by counting in the user’s prior traces, the number of visits to a
region r given the semantic tag s [1]. Note that in the experimental evaluation
in [1], Ağir et al. set α = 0.5 to accord the same importance to both terms
of the equation. In this paper, we also set α = 0.5 for the experimental
evaluation.

• The initial state distributions: Pr
(

R1
u

∣

∣ S1
u

)

and Pr
(

S1
u). These are the

distributions associated to the nodes of the first time slice of the model. For
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the estimation of Pr
(

R1
u

∣

∣ S1
u

)

, we refer the reader to the previous point,
where we discuss the estimation of Pr

(

Rt
u

∣

∣ St
u

)

from the prior traces (recall
that the model is time-invariant). Moreover, we assume that Pr

(

S1
u) is equal

to the stationary distribution of the Markov chain S1:T
u . Accordingly, it can

be found based on Pr
(

St
u

∣

∣ St−1
u

)

, which is the transition distribution of
the chain. We refer the reader to the previous point where we discuss the
estimation of Pr

(

St
u

∣

∣ St−1
u

)

from the prior traces.

3.1.2 The DBNs for the Obfuscation Approaches
Figure 3.b depicts the DBN built for user u in the case where the PPM uses the
disjoint obfuscation approach. Also, Fig. 3.c depicts the DBN built for user u
in the case where the PPM uses the joint obfuscation approach. Each of these
DBNs is made by adding the observed variables ˜R1:T

u and ˜S1:T
u to the basic DBN,

where the observed variables correspond to the obfuscation approach used by
the PPM. Note that in the DBN model built for the joint approach, to represent
the fact that in the joint obfuscation, ˜Rt

u depends also on ˜St
u, an edge connects

the corresponding nodes in each time slice t of the model (See Fig. 3.c).

Parameters. Each of these models is fully specified by the parameters of the
basic DBN plus the observation distributions. The observation distributions of
a model are the CPDs that define the probabilistic dependencies between the
hidden and the observed variables in any time slice t in that model. The obser-
vation distributions of a model are defined based on the obfuscation approach
used by the PPM. So, we have:

• The observation distributions for the disjoint obfuscation case:
Pr

(

˜St
u

∣

∣ St
u

)

and Pr
(

˜Rt
u

∣

∣ Rt
u

)

. These are in fact the obfuscation functions
of the PPM in the disjoint obfuscation approach (see Eqs. 1 and 2), and hence
known by the adversary.

• The observation distributions for the joint obfuscation case:
Pr

(

˜St
u

∣

∣ St
u

)

and Pr
(

˜Rt
u

∣

∣ Rt
u,

˜St
u

)

. These are in fact the obfuscation func-
tions of the PPM in the joint obfuscation approach (see Eqs. 3 and 4), and
hence known by the adversary.

4 Location Privacy Metric

The location privacy of a user u a time t is measured by the expected error of
the adversary when performing the location-inference attack [23]. The expected
error of the adversary is computed as:

∑

r∈R
Pr

(

Rt
u = r

∣

∣ r̃1:Tu , s̃1:Tu

)

· dloc(r, rt
u) (7)

where Pr
(

Rt
u = r

∣

∣ r̃1:Tu , s̃1:Tu

)

over set R, is the output of the location-
inference attack defined in Sect. 2 and dloc(·,·) denotes a distance function on
the set R of regions. Here, we assume that dloc(·,·) is the Haversine distance
between the centers of the two regions [14].



Joint Obfuscation for Privacy Protection in Location-Based Social Networks 121

5 Experimental Evaluation

Using a dataset of real-world user mobility traces, we perform an experimental
evaluation to compare the performance of the joint approach with the perfor-
mance of the disjoint approach in terms of location privacy protection. We also
study the impact of different obfuscation parameters on the performance of these
approaches. More precisely, we first obfuscate the user traces under the disjoint
and the joint approaches using different combinations of the obfuscation param-
eters. Then, we perform the location-inference attack on the obfuscated traces
and measure the location privacy of users in both approaches based on the results
of the attack.

5.1 Evaluation Setup

In this section, we describe the evaluation’s setup.

5.1.1 Dataset and Space Discretization
We use the dataset that is introduced and described in [1]. It comprises the
semantically-annotated location traces of Foursquare check-ins of 1065 users dis-
tributed across six large cities in North America and Europe [1]. The location
information in the traces is presented as GPS coordinates. The dataset also con-
tains a snapshot of Foursquare category tree at the time of data collection [1].

Regarding the space discretization, we use the same space discretization
described in [1]. More precisely, within each city in the dataset, a geographi-
cal area of size ∼2.4 km × 1.6 km that contains the largest number of check-ins
is selected. Then, each selected area is partitioned into 96 locations (cells) by
using a 12 × 8 regular square grid. Each grid cell has a unique ID. Once the par-
titioning is done, the GPS coordinates in user traces are mapped to the location,
that is, the grid cell, they fall into. Moreover, for each grid cell, the Foursquare
semantic tags of the venues that are located in that cell are identified and stored
in an associative array. Thus, the associative array contains the key-value pairs,
where in each pair the key is a grid cell ID and the value is the set of the semantic
tags of the venues located in that cell.

5.1.2 Obfuscation
In the following, we first introduce the obfuscation algorithms used in our eval-
uation. We then describe the process of building the obfuscated traces from the
real traces using these algorithms. In practice, these algorithms are implemented
in Python.

Semantic Tag Obfuscation Algorithm. The semantic tag obfuscation in
both disjoint and joint obfuscation approaches is performed by the semantic tag
obfuscation algorithm described as below. The algorithm gets as input a set S
of semantic tags that form a semantic tag tree, a semantic tag s in S and a
semantic tag obfuscation level osem. It returns as output a pseudo-semantic tag
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s̃, where s̃ is the ancestor of s that is osem level(s) above s in the semantic tag
tree. In the case where the depth of semantic tag s in the semantic tag tree is
smaller than osem, the algorithm returns the root of the semantic tag tree as s̃.

Location Obfuscation Algorithm. The location obfuscation in both disjoint
and joint obfuscation approaches is performed by the location obfuscation algo-
rithm. The algorithm takes as input a grid that we call the main grid for the
sake of precision, a cell r of the main grid, a location obfuscation level oloc and
an obfuscation approach. In the case of joint obfuscation, in addition to what
has been described, the following inputs should also be provided: the semantic
tag tree that is used as input by the semantic tag obfuscation algorithm, the
pseudo-semantic tag s̃ that is output by the semantic tag obfuscation algorithm
and an associative array that contains key-value pairs where in each pair the key
is a main grid cell ID and the value is the set of the semantic tags of the venues
located in that cell. The algorithm returns as output a cloaking area r̃ for r.

The main idea behind the algorithm is to first find a set of potential cloaking
areas for r and then based on the obfuscation approach, select an area among
the potential cloaking areas and return it as r̃. The algorithm finds the potential
cloaking areas by building a set of cloaking grids. A cloaking grid is an alternative
tessellation for the same surface presented by the main grid. It has two properties:
(1) each cell of a clocking grid is made of oloc distinct cells of the main grid; (2)
the number of rows and the number of columns of a cloaking grid are factors of
the number of rows and the number of columns of the main grid, respectively.
Each cloaking grid can be used to find a potential cloaking area for r. More
precisely, the cell of a cloaking grid that contains r, is a potential clocking area
for r and can be added to the set of potential cloaking areas.

Once the potential cloaking areas are found, an area among them is selected
and returned as r̃. The selection is made based on the obfuscation approach.
More precisely, in the case of the disjoint obfuscation, the algorithm selects an
area uniformly at random among the potential cloaking areas and returns it as
r̃. In the case of the joint obfuscation, the algorithm first looks for the areas with
the maximum NCRs̃ value among the potential cloaking areas. The results are
then stored in the set CAsWithMaxNCR. If only one area with the maximum
NCRs̃ value is found (i.e., |CAsWithMaxNCR| = 1), the algorithm returns it as r̃.
Otherwise, the algorithm looks for the areas with the maximum SumNCVs̃ value
among the elements of CAsWithMaxNCR. The results are then stored in the set
CAsWithMaxSumNCV. Note that the SumNCVs̃ of an area is in fact the sum
of NCVs̃ values over all the main grid cells in that area. If only one area with
the maximum SumNCVs̃ value is found (i.e., |CAsWithMaxSumNCV| = 1), the
algorithm returns it as r̃. Otherwise, the algorithm selects an area uniformly at
random among the elements of CAsWithMaxSumNCV and returns it as r̃.

Note that, selecting the area with the maximum SumNCVs̃ value among the
areas with the maximum NCRs̃ value is an additional mechanism that we use
to enhance the resistance of the joint obfuscation against the privacy attacks.
Intuitively, by selecting the clocking area with the maximum NCRs̃ value (i.e.,
the area with the maximum number of semantically compatible locations), we
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decrease the number of locations that can be filtered out by the adversary
from the cloaking area and by selecting the cloaking area with the maximum
SumNCVs̃ value (i.e., the area with the maximum number of semantically com-
patible venues), we increase the number of locations and semantic tags that can
be guessed by the adversary as the actual location and semantic tag.

Building the Obfuscated Traces. For each city in the dataset, we choose
the location traces and the semantic tag traces of 20 randomly chosen users.
These traces are then obfuscated under the disjoint and the joint obfuscation
approaches using the obfuscation algorithms. To better capture the fact that the
users do not share their locations and their corresponding semantic tags all the
time on LBSNs, we apply the obfuscation algorithms with an additional hiding
process. Thus, we assume that at each time instant in the observation interval,
both the user’s location and its semantic tag can be hidden from the LBSN with
the hiding probability λ or shared on the LBSN (and accordingly obfuscated by
the algorithms under the disjoint and the joint approaches) with the probabil-
ity 1 − λ. The hidden locations and the hidden semantic tags are appeared in
the obfuscated traces as hidden, denoted by r⊥ and s⊥ symbols, respectively. To
build the obfuscated traces for each approach, we use all combinations of the fol-
lowing parameters: the location obfuscation level (oloc), the semantic tag obfus-
cation level (osem) and the hiding probability (λ), where oloc ∈ {1, 2, 4, 8, 16}
and osem ∈ {0, 1, 2} and λ ∈ {0, 0.2, 0.4, 0.6, 0.8}. Note that, in what follows, we
use the term the obfuscation parameters to refer to these parameters.

5.1.3 Attack and Privacy Evaluation
We implement the DBN models in Python by using the pomegranate package [19]
and the Bayesian Belief Networks library [3]. For the attack, we apply the loopy
belief propagation inference algorithm [17]. We perform the attack for the obser-
vation interval of length 3. We then use the metric defined in Sect. 4 to measure
the location privacy of the users.

5.2 Experimental Results

In this section we present the results for different values of the obfuscation
parameters. In this way, we can compare the performance of the two obfuscation
approaches in terms of location privacy under different values of these parame-
ters and also show how changing these parameters can affect the performance of
the approaches. Note that in addition to the location privacy metric presented
in Sect. 4, to discuss the results, we use the following additional metric:

• Ratio of the location privacy means (denoted by loc-priv-ratio). This is
the ratio of the location privacy mean obtained for the joint approach to the
location privacy mean obtained for the disjoint approach.

The evaluation results are depicted by Fig. 4 and Fig. 5. More precisely, Fig. 4
represents the location privacy results in the form of boxplots (i.e., first quartile,
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(a) For Different olocoloc Values (b) For Different osemosem Values (c) For Different λλ Values

disjoint approach joint approach

Fig. 4. Location privacy results.

(a) For Different olocoloc Values (b) For Different osemosem Values (c) For Different λλ Values

Fig. 5. loc-priv-ratio for different values of the obfuscation parameters.

median, third quartile and outliers). Note that the location privacy in Fig. 4 is
expressed in kilometres. Also, Fig. 5 represents the ratios of the location privacy
means in the form of scatterplots. Each figure has three subfigures (a), (b) and
(c). Each subfigure represents the aggregated results for different values of a
given obfuscation parameter, where the aggregation is performed over the results
obtained for all users, all values of the obfuscation parameters and all cities. We
have three main observations regarding these results. Thus, in the following
we first describe the observations. Then, we describe the reason behind the
observations.

1. As the values of oloc, osem and λ increase, the median location privacy for the
both obfuscation approaches increases (see subfigures (a),(b),(c) of Fig. 4).

2. Under all values of oloc, osem and λ, the median location privacy obtained for
the joint approach is higher than the median location privacy obtained for
the disjoint approach (see subfigures (a),(b),(c) of Fig. 4). The only exception
to this observation is the case where oloc = 1 (See Fig. 4.a). In this case, no
location obfuscation is performed and hence, the median location privacy is
the same for the both obfuscation approaches.

3. As the values of oloc and osem increase, the value of loc-priv-ratio also increases
(see Fig. 5.a and Fig. 5.b). However, as the value of λ increases, the value of
loc-priv-ratio decreases (see Fig. 5.c).

To explain these observations, we apply the following reasoning. As the value
of oloc increases, the number of regions (locations) in the cloaking area increases.
Thus, by increasing oloc, the median location privacy for the both approaches
increases. Also, as the value of osem increases, the number of semantic tags that
can be semantically compatible with the obfuscated semantic tag increases. This,
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in turn, increases the chance of having more semantically compatible regions with
the obfuscated semantic tag in every potential cloaking area. Thus, by increas-
ing osem the median location privacy for the both approaches increases. More-
over, we observe that by increasing oloc and osem, the value of loc-priv-ratio
also increases. Roughly speaking, this means that the joint approach shows a
much better performance in terms of location privacy protection compared to
the disjoint approach under higher values of oloc and osem. In fact, as the value
of oloc increases, the number of candidate regions for being in the clocking area
also increases. This, in turn, increases the chance that a greater number of the
candidate regions are semantically compatible with the obfuscated semantic tag.
Similarly, as the value of osem increases, the chance that a greater number of
candidate regions are semantically compatible with the obfuscated semantic tag
increases. The joint approach takes advantage of this increase, i.e., as the number
of semantically compatible candidate regions increases, the joint approach selects
a cloaking area with a greater number of semantically compatible regions and
semantically compatible venues, whereas the disjoint approach is oblivious to the
concept of semantic compatibility. Accordingly, the performance of the disjoint
approach does not improve as much as the performance of the joint approach
by increasing the values of oloc and osem. We also observe that as the value of λ
increases, the median location privacy for the both approaches increases. How-
ever, by increasing λ, the value of loc-priv-ratio decreases. Roughly speaking, this
means that by increasing λ, the difference between the performance of the both
approaches becomes less significant. Intuitively, this is because by increasing λ,
we increase the number of hidden locations and hidden semantic tags compared
to the number of the obfuscated locations and the obfuscated semantic tags in
the obfuscated traces. This, in turn, increases the location privacies resulting
for the both approaches but it also decreases the importance of the obfuscation
approach in defining the amount of the resulting location privacies.

6 Related Work

The problem of protecting location privacy of users in LBSNs (and in LBSs, in
general) has been extensively studied in the literature and various protection
mechanisms are proposed. Many of the location privacy protection mechanisms
apply location obfuscation. The popularity of the location obfuscation lies in the
fact that it does not require changing the infrastructure, as it can be performed
entirely on the user’s side [25]. There exist different methods to obfuscate a loca-
tion, for instance, by hiding the location from the LBS [4,8], by perturbing the
location (e.g., by adding noise to the location coordinates) [2], by generalizing
the location (e.g., by merging the location with nearby locations using a cloak-
ing algorithm) [9,10,15,26] and by adding fake (dummy) locations to the actual
location [6,7,12,27] (See [13,21,22] for detailed surveys on location obfuscation
methods). Our work differs from these works by the fact that it considers not
only the obfuscation of location but also the obfuscation of the semantic informa-
tion to protect the location privacy. In addition, the location obfuscation in our
work is performed with respect to the obfuscated semantic information, whereas
the location obfuscation in these works is semantic-oblivious.
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The disjoint obfuscation approach discussed in this paper, was originally
introduced in [1]. Our work is close to the work presented in [1], in the sense
that it assumes a similar system model and adversary model. In fact, our work
and the work in [1] are both built upon the Shokri’s framework for quantifying
location privacy [20,23,24]) and they both rely on bayesian network models for
implementing the inference attacks. However, as already discussed, in this paper
we try to improve the work in [1], by proposing a joint obfuscation approach.
Another difference between this paper and the work presented in [1] is the fact
that, in [1], the authors study the impact of the location obfuscation and the
semantic tag obfuscation on both location privacy and the semantic location
privacy of users, whereas in this paper we only discuss the impact of the location
obfuscation and the semantic tag obfuscation on location privacy. We intend to
discuss the impact on semantic location privacy in a future work.

7 Conclusion

In this paper, we have introduced a joint semantic tag-location obfuscation app-
roach for privacy protection in LBSNs. This approach aims to overcome the
drawbacks of the existing disjoint approach, by performing the location obfusca-
tion based on the result of the semantic tag obfuscation. We provided a formal
framework for evaluation and comparison of the joint approach with the dis-
joint approach. Then, using a dataset of real-world user mobility traces, we per-
formed an experimental evaluation. The evaluation results show that in almost
all cases (i.e., for different values of the obfuscation parameters), the joint app-
roach outperforms the disjoint approach in terms of location privacy protection.
We also studied the impact of changing different obfuscation parameters on the
obfuscation approaches. In particular, we showed that compared to the disjoint
approach, the joint approach can take better advantage of higher values of loca-
tion obfuscation level and semantic tag obfuscation level and exhibits even more
satisfactory performance under higher values of these parameters.
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