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Abstract. Data breaches—mass leakage of stored information—are a
major security concern. Encryption can provide confidentiality, but
encryption depends on a key which, if compromised, allows the attacker
to decrypt everything, effectively instantly. Security of encrypted data
thus becomes a question of protecting the encryption keys. In this paper,
we propose using keyless encryption to construct a mass leakage resis-
tant archiving system, where decryption of a file is only possible after the
requester, whether an authorized user or an adversary, completes a proof
of work in the form of solving a cryptographic puzzle. This proposal is
geared towards protection of infrequently-accessed archival data, where
any one file may not require too much work to decrypt, decryption of
a large number of files—mass leakage—becomes increasingly expensive
for an attacker. We present a prototype implementation realized as a
user-space file system driver for Linux. We report experimental results
of system behaviour under different file sizes and puzzle difficulty lev-
els. Our keyless encryption technique can be added as a layer on top
of traditional encryption: together they provide strong security against
adversaries without the key and resistance against mass decryption by
an attacker.

1 Introduction

Attacks on information systems have become increasingly common. Whatever
the attack vector, a frequent outcome is a data breach, in which a large volume
of sensitive information is stolen from the victim organization. Archival data—
stored indefinitely but not regularly accessed—has been targeted in many data
breaches [4,14,18], leading to loss of privacy, loss of reputation, business setbacks,
and costly remediation.

Modern IT security protection techniques focus on defense-in-depth, one com-
ponent of which is encryption of data at rest to support confidentiality. However,
encryption, even when implemented using secure, carefully implemented algo-
rithms, is typically all-or-nothing: if the key is secure, the attacker learn virtually
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nothing, and the attack cannot succeed, but once the key is compromised, the
attacker can decrypt everything, with minimal overhead.

Hardware-assisted cryptography, such as hardware security modules (HSMs),
trusted computing, or secure enclaves like Intel SGX' or ARM TrustZone? may
prevent keys from leaking if decryption is only ever done inside a trusted module,
but many IT systems remain software-only without use of these technologies.

Scenario and Goals. Against these types of threats, we aim develop a mass
leakage resistant archiving system with the goal of enhancing defense-in-depth
for encryption. We aim to preserve confidentiality even in the presence of an
adversary with full access to the system, including ciphertexts and decryption
keys. While no system can provide full cryptographic security in the face of
such a well-informed adversary, our goal is to increase the economic cost of
mass leakage, which for our purposes is defined as an adversary obtaining the
plaintexts of a large number of files or database records, not just one.

Unlike most applications of cryptography, we do not aim to achieve a differ-
ence in work factor between honest parties and adversaries. Rather, we assume
that honest parties and adversaries have different goals, and we aim to change
the economics of data breaches by achieving a difference in the cost of honest
parties and adversaries achieving their goals. In our scenario, honest parties need
to store a large number of files, but only access a small number of them. Consider
for example a tax agency: after processing millions of citizens’ tax returns each
year, those files must be stored for several years in case an audit or further anal-
ysis is required, but only a small fraction of those records will end up actually
being pulled for analysis. In contrast, an adversary breaching the tax agency’s
records may want to read a large number of files to identify good candidates for
identity theft or other criminal actions.

1.1 Contributions

We design a system, called ArchiveSafe, where access to a resource is only pos-
sible after the requester—whether an honest user on adversary—has expended
sufficient computational effort, in the form of solving a “moderately hard” proof-
of-work or cryptographic puzzle [10]. Since we will not rely on the access control
system nor any keys to be uncompromised, the decryption operation itself must
be tied to the cryptographic puzzle. In our approach, while a proper crypto-
graphic key is used to encrypt a file, the encryption key is not stored, even for
legitimate users. Instead, the key is wrapped in a proof-of-work-based encryption
scheme with a desired difficulty level, and all users—adversarial or honest—must
perform the proof-of-work to recover the key and then decrypt the file.

Our main technical tool for building of ArchiveSafe is a new cryptographic
primitive that we call difficulty-based keyless encryption (DBKE), which is an
encryption scheme that does not make use of a stored key. We give a generic

! https://software.intel.com/en-us/sgx.
2 https://developer.arm.com/ip-products /security-ip /trustzone.
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Fig. 1. High-level overview of ArchiveSafe, showing a write followed by a read.

construction for DBKE from a standard symmetric encryption scheme and a
new tool called difficulty-based keyless key wrap, which wraps the symmetric
encryption key in an encapsulation that can only be unwrapped by performing a
sufficiently high number of operations, as in a proof-of-work scheme. Difficulty-
based keyless key wrap can be achieved from many types of cryptographic puz-
zles, and we show one example based on hash function partial pre-image finding
[11,12]. One interesting feature of using this form of hash-based puzzle, which to
our knowledge is a novel observation on hash-based puzzles, is that the puzzle
and ciphertext can be degraded—i.e., turned into a harder one—essentially for
free. We use the reductionist security methodology to formalize the syntax and
security properties of difficulty-based keyless encryption and keyless key wrap
and show that our hash-based construction achieves these properties.

Figure 1 gives a high-level overview of how an application interacts with the
ArchiveSafe system. The two main operations performed by the ArchiveSafe
system are (i) creating a puzzle and encrypting during writes, and (ii) solving
the puzzle and decrypting during reads. ArchiveSafe could be used in a variety
of data storage architectures: on a local computer; on a file server; or in a cloud
architecture. In a file server or cloud scenario, an IT system may be set up so
the file server enforces that all files are protected by ArchiveSafe during writes
by centralizing puzzle creation and encryption, but leaves puzzle solving and
decryption to clients. Since puzzle creation and encryption in our system is
cheap, this avoids bottlenecks on the file server. Individual client applications
occasionally reading a small number of files have to do a moderate, but not
prohibitive, amount of work to solve the puzzle to obtain the key to decrypt.

We build a prototype implementation showing the use of ArchiveSafe on
a local computer. Our prototype is implemented as a filesystem-in-userspace
(FUSE) driver on Linux. A FUSE driver can be used to intercept I/O operations
in certain directories (mount points) before reading/writing to disk. This allows
us to implement ArchiveSafe in a manner that is transparent to the application,
as well as transparent to the underlying storage mechanism, which could be
a local disk (with normal disk encryption enabled or not), or a network share
mounted locally. We validate the performance of our prototype implementation,
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focusing primarily on ensuring that write operations incur minimal overhead.
(Since system administrators can set policies with puzzle difficulties requiring
seconds or minutes of computational effort to solve, slow read performance is
intended, and there is little sense in performance measurements on reads, beyond
checking that they scale as intended with no unexpected overhead.) We envision
that, when used on a local computer, ArchiveSafe would be applied only to a
subset of the directories on the computer. One might use ArchiveSafe to protect
documents created by the user more than a certain number of days ago, but
would not use it on system libraries and executables.

We highlight that ArchiveSafe is meant to add defense-in-depth to confiden-
tiality: one would typically not rely on ArchiveSafe alone, but combine it with
traditional encrypted file system or database encryption. In this combination,
traditional encryption using strong algorithms and keys, provides a high level of
security if the keys are not compromised, but we still have the difficulty-based
keyless encryption of ArchiveSafe as a bulwark if the keys are compromised. To
succeed under this setup, the adversary must compromise the traditional encryp-
tion keys in addition to solving a large number of DBKE puzzles corresponding
to the files in the archive.

1.2 Related Work

Filesystem Encryption. Blaze [6] introduced the Cryptographic File System
(CFS). CFS uses a different key for each directory, and the user is required
to enter the key in every session to access the directory and its contents. Sub-
sequent proposals include the Transparent Cryptographic File System (TCFS)
[7], Cryptfs [24] and Neryptfs [23]. In recent years, encrypted filesystems have
become widespread, and all major operating systems provide implementations,
often enabled by default (FileVault on Apple’s macOS?, BitLocker on Microsoft
Windows?, and a range of options on Linux such as Linux Unified Key Setup
(LUKS)?). The common practice in these technologies is to use a single master
key from which multiple keys are derived per-file, per-directory, or per-sector;
the master key is usually stored on the device itself, encrypted under the user’s
password. Once the user has logged in, the filesystem transparently and auto-
matically decrypts files.

Over the past decade, there has been much research on encrypted databases
(e.g., [13,15,16]) that retain some functionality for legitimate users, for example
using order-preserving encryption so that sorting a column of ciphertexts yields
approximately the same order as if the plaintexts were sorted. This increased
functionality comes at the cost of information leakage, and there is an extensive
debate in the literature about these techniques.

3 https:/ /support.apple.com /en-ca/HT204837.

* https://docs.microsoft.com/en-us/windows/security /information- protection /
bitlocker /bitlocker-overview.

5 https://guardianproject.info/archive/luks/.
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Proof-of-Work Systems. Dwork and Naor [10] introduced client puzzles to con-
trol junk email: recipients would only accept emails if the sender was able to
solve a puzzle. It should be “moderately hard” for the sender to solve the puz-
zle, but easy for recipient to check whether a solution is valid. This was the first
example of a proof-of-work system, which in general grants access to a resource
dependent on the requester being able to demonstrate proof that they have per-
formed some work, typically in the form of solving a puzzle. Client puzzles were
for many years suggested as a means to prevent denial of service attacks in a
range of contexts [2,8,12,17,20,22], but have seen renewed interest as a building
block for cryptocurrencies and blockchains. Client puzzles are generally classified
either based on their limiting factors in solving the puzzle (CPU-bound versus
memory-bound) or based on whether the operations required to solve the puzzle
is parallelizable. The simplest CPU-bound puzzles are based on cryptographic
hash functions, such as: finding a preimage of a hash given a hint (e.g., a part
of the preimage) [11,12]; or finding an input whose hash starts with a certain
number of zero bits [3]. Non-parallelizable CPU-bound puzzles often rely on a
number of theoretical approaches. For example, [19] uses repeated squaring mod-
ulo an RSA modulus. Memory-bound puzzles [1,9] use techniques for which the
best known solving algorithm involves a large number of memory accesses; it
is argued that memory access time varies less than CPU speed between small
and large computing platforms, and that building customized hardware is more
expensive for memory-bound puzzles.

Proof-of-Work Systems for Confidentiality. In [19], time-lock encryption was
proposed as a way of “sending information into the future”, and focused specif-
ically on hiding keys or data in a proof-of-work system that had a predictable
wall-clock time for solving, thus focusing on puzzles for which the best known
solving algorithm is inherently sequential. Vargas et al. [21] designed a database
encryption system called “Dragchute” based on time-lock encryption, aiming
to provide both confidentiality and the ability to demonstrate compliance with
retention laws. Each ciphertext in this system is accompanied by an authenti-
cation tag which contains a non-interactive zero-knowledge proof. Solving the
puzzle will yield a valid decryption key for the ciphertext; moreover, the proof
can be checked much more efficiently than the full work required to solve and
decrypt the ciphertext. A simpler database encryption scheme relying on hash-
based client puzzles, without any efficient verification of well-formedness, was
proposed by Moghimifar [13].

2 Requirements

In this section, we discuss the functionality and security requirements for a
mass leakage resistant archiving system, which informs our construction and
evaluation in subsequent sections.
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2.1 Design Criteria

Confidentiality in the Face of Compromised Keys. The system should achieve
some level of confidentiality even if all stored keys are compromised. This means
we assume that an adversary can learn a symmetric key or a private key corre-
sponding to a public key stored for later use in decrypting a ciphertext, even if
the key is stored in a separate key management service, trusted computing or
secure enclave environment, or separate tamper-resistant device.

Cooperation with Traditional Encryption. It should be possible to use the system
in conjunction with the traditional encryption mechanisms applied to storage
systems (folder/disk encryption, database encryption, etc.), so that strong con-
fidentiality is achieved if keys are not compromised, but some confidentiality is
retained in the face of compromised keys.

Reliance on Industry Standard Cryptographic Algorithms. Deployed IT systems
should rely only on well-vetted, standardized cryptographic algorithms. But all
such algorithms for achieving confidentiality—public key or symmetric—require
a secret key, seemingly conflicting with the first design criteria of confidentiality
in the face of compromised keys. Our construction builds a mechanism for confi-
dentiality without keys while still relying on standard cryptographic algorithms
like AES for symmetric encryption: while a proper cryptographic key is used to
encrypt data, that key is not kept, even by authorized users. Instead, the key
is wrapped in a proof-of-work-based encryption scheme with a desired difficulty
level, and users must solve the proof-of-work to recover the key and then decrypt
the data. We introduce difficulty-based keyless encryption in Sect.3 which for-
malizes this idea and generically construct it from standard cryptographic algo-
rithms such as AES and Argon2.

Imposing a Significant Cost to Access a Large Number of Files While Maintaining
Acceptable Cost to Access One File. Since we do not have a key that gives
honest users an advantage over the adversary, we should look at things from the
viewpoint of typical honest behaviour—periodically accessing a small number of
files—versus adversary behaviour—accessing a large number of files in a data
breach. Proof-of-work and related techniques have long been used to achieve
security goals from that viewpoint, whether in password hardening or client
puzzles for denial of service resistance.

Customizing File Access Cost. It should be possible for a system administrator
or user to control the cost incurred by the adversary or honest user for accessing
a file. This may be set as a system-wide policy or a file-by-file basis, depending
on the desired access control paradigm. This is achieved in our system by varying
the difficulty level of the puzzle wrapping the decryption key.

A related design criteria is the ability to customize file access cost over time.
Demand for access to records may change over time; for example, records older
than 5 years may be accessed much less frequently than more recent records. Our
system allows the file access cost to be increased with minimal effort, through
a process we call puzzle degradation, that could be performed as part of regular
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system maintenance. This is a novel feature available from some types of puzzle
constructions but not others, and in particular not from the number-theoretic
repeated squaring non-parallelizable constructions used in time-lock puzzles [19]
and the Dragchute database encryption system [21].

2.2 Choice of Puzzle

One of the major design decisions for our system is which type of puzzles to use:
sequential versus parallelizable, and CPU-bound versus memory-bound.

As our design criteria focus on mass leakage adversaries trying to decrypt
many files, and since we think of cost in a general economic sense, we do not have
to restrict to proof-of-work mechanisms that are sequential/non-parallelizable.
Concerned with an adversary trying to decrypt many files who has parallel com-
puting resources available to them, it does not matter whether they choose to
deploy their parallel resources to sequentially decrypt each file quickly or in par-
allel decrypt many files more slowly. Overall, they will decrypt the same number
of files with the same resources. We also need not worry about the variability
of puzzle solving time for individual instances, only the expected puzzle solv-
ing time for many instances. These design choices are, for example, significantly
different from those of the Dragchute system for database confidentiality and
integrity from proof-of-work. Moreover, parallelization permits honest users to
reduce the latency in occasional access of files by taking advantage of short,
on-demand use of cloud servers (see Table 3).

Whereas sequential versus parallelizable puzzles is a qualitative choice for our
scenario, CPU-bound versus memory-bound is a quantitative choice with respect
to the economic cost. To achieve a given dollar-cost-for-adversary, it is possible
to pick appropriate parameters for both CPU-bound and memory-bound puzzles
under appropriate cost and puzzle-solving assumptions. So, a priori, either can be
used in our constructions. For our prototype we choose simple hash-based CPU-
bound puzzles because puzzle creation is cheaper (thereby achieving extremely
low overhead on write operations) and because they allow us to obtain novel
useful functionality such as puzzle degradation (Sect.3.3), but with the hash
function being Argon2 which is designed to be resistant to GPU and ASIC
optimization. Picking appropriate difficulty levels for puzzles is something an
adopter must do as a function of the tolerable cost for honest users to access data,
the perceived risk of a data breach, and the anticipated value of the information
to an adversary. We do not aim to study such economic calculations exhaustively,
but we provide one worked example in Sect. 4.4 and Table 3.

2.3 Threat Model

ArchiveSafe is a software system with one target asset, the data files. The secu-
rity goal for the target asset is confidentiality. As shown in Fig. 1, information
flows from the user application through the ArchiveSafe driver to the underlying
storage during writes, and in the reverse direction during reads.
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ExpRi(A): Expiy (A): Expi; ™ (A):
1. (mo, m1, st) «s A(1%) L. (mo,mu, st) <= A() 1. (ko,w) s X . Wrap()
2. b+s{0,1} 2. ks K 2. k1 s K
3. c+s AEnc(d, my) 3. bs{0,1} 3. b+s{0,1}
4. b s A(c, st) 4. ¢ I1.Enc(k, my) 4. b s A(w, ko, k1)
5. return (b’ = b) 5. b s Alc, st) 5. return (b = b)
6. return (' =b)

Fig. 2. Security experiments for (left) indistinguishability of difficulty-based keyless
encryption scheme A at difficulty level d; (centre) one-time indistinguishability of sym-
metric encryption scheme I7; and (right) indistinguishability of difficulty-based keyless
key wrap scheme X' with keyspace K and difficulty level d.

An adversary could access the system either via the same mechanism as
an honest user application (i.e., mediated by the ArchiveSafe driver), or may
have direct access to the underlying storage. We aim to achieve confidentiality
against a strong adversary that can bypass the ArchiveSafe driver during read
operations (e.g., because they are untrusted server administrators, or because
they have compromised the kernel using privilege escalation), or who can directly
read from the underlying storage (e.g., an untrusted cloud storage provider, or
physical theft of a hard drive). We do not consider in our threat model an
adversary who undermines the write operation to intercept data during a write
operation or who prevents the ArchiveSafe technique from being applied when
saving files. We assume operations by honest parties are performed on a trusted
and uncompromised system that faithfully deletes keys from memory once an
operation is completed.

3 Difficulty-Based Keyless Encryption

A difficulty-based key encryption scheme is similar to a symmetric encryption
scheme, except that no secret key is kept for use between the encryption and
decryption algorithm.

Definition 1 (Difficulty-Based Keyless Encryption). A difficulty-based
keyless encryption (DBKE) scheme A for a message space M with mazimum
difficulty D € N consists of two algorithms:

— A.Enc(d,m) s— c: A (probabilistic) encryption algorithm that takes as input
difficulty level d < D and message m and outputs ciphertext c.

- ADec(c) — m': A deterministic decryption algorithm that takes as input
ciphertext ¢ and outputs message m’ or an error L & M.

A DBKE A is correct if, for all messages m € M and all difficulty levels
d < D, we have that Pr[A.Dec(A.Enc(d,m)) = m] = 1, where the probability
is taken over the randomness of A.Enc.
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The desired security property for a DBKE is semantic security in the form
of ciphertext indistinguishability. Since there is no persistent secret key, there
is no need to consider security notions incorporating chosen plaintext or cho-
sen ciphertext attacks: each plaintext is protected by independent random-
ness. The security experiment Expﬂ”'ail“d (A) for an adversary A trying to break
indistinguishability of DBKE scheme A at difficulty level d is shown in Fig. 2.

We define the advantage of such an adversary in the security experiment as
Adv‘ﬁ’:cil"d (A) = ’2 - Pr [Expﬂ’,’;"d (A) = true] — 1{. Useful forms of Adv%’:&"d(A)
will relate the amount of work done by the adversary, the difficulty level, and
the adversary’s success probability.

3.1 Generic Construction of DBKE

Our main construction of DBKE, as shown in Fig. 3, generically combines a
traditional symmetric encryption scheme with a “keyless key wrap”, which is
difficulty-based form of key wrapping: there is no “master key” wrapping the
session key, instead the session key is recovered via some difficulty-based opera-
tion. In this subsection we present the generic building blocks we use to construct
DBKE. In Sect. 3.2 we show how to instantiate the keyless key wrap.

Definition 2 (Symmetric encryption scheme). A symmetric encryption
scheme IT with secret key space K = {0,1}* and message space M consists of
two algorithms:

— II.LEnc(k, m) s— c: A (probabilistic) encryption algorithm that takes as input
key k € K and message m € M and outputs ciphertext c.

- II.Dec(k,c) — m’: A deterministic decryption algorithm that takes as input
key k € K and ciphertext ¢ and outputs message m’ € M or an error L & M.

| I I |
! Symmetric |1 l Symmetric |
m | g . ' ) . ,om
; ncryption , , Decryption —
! C c 1
‘ I1.Enc ‘ / I1.Dec |
| | . I |
File
| 3 I | |
I k | System I k |
| I | |
d : Keyless )‘u/ % Keyless :
— " ) Key Wrap ) i | Key Unwrap |
: X .Wrap : : X . Unwrap :
| ___ | | - - - & |
DBKE encryption DBKE decryption

Fig. 3. Architectural diagram for generic construction of a difficulty-based keyless
encryption scheme I' = I'[II, X] from a difficulty-based keyless key wrap scheme X
and a symmetric encryption scheme 1.
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I'Enc(d, m): I''Dec((c, w)):
1. (k,w) +s X . Wrap(d) 1. k' + X.Unwrap(w)
2. ¢ ¢s I1.Enc(k,m) 2. m’ < II.Dec(k,c)
3. return (¢, w) 3. return m’

Fig.4. Generic construction of a difficulty-based keyless encryption scheme I' =
I'[11, ¥] from a difficulty-based keyless key wrap scheme X and a symmetric encryption
scheme 1.

Correctness is defined in the obvious way. For our purposes, a sufficient secu-
rity property will be one-time semantic security, in the form of ciphertext indis-
tinguishability. As above, we will not need to consider security notions incorpo-
rating chosen plaintext or chosen ciphertext attacks, since our system will use a
key only once. The security experiment ExpT¢(A) for an adversary A trying to
break indistinguishability of symmetric encryption scheme I7 is shown in Fig. 2.

We define the advantage of such an adversary in the security experiment as
Advi(A) = ’2 -Pr [Expij}d(A) = true] - 1‘.

The second building block for our construction is a keyless key wrap scheme.

Definition 3 (Keyless key wrap scheme). A keyless key wrap scheme X
for a key space K = {0, 1}* with mazimum difficulty level D € N consists of two
algorithms:

- X . Wrap(d) s— (k,w): A (probabilistic) key wrapping algorithm that takes as
input difficulty level d < D and outputs key k € K and wrapped key w.

— X Unwrap(w) — k': A deterministic key unwrapping algorithm that takes as
input wrapped key w and outputs key k € KC or an error 1L € K.

Correctness, again, is defined in the natural way: applying Unwrap to a
wrapped key w output by Wrap should yield, with certainty, the same key k
as originally output by Wrap.

The desirable security property for a keyless key wrap scheme will be indis-
tinguishability of keys: given the wrapped key, can the adversary learn any-
thing about the key within it? The key indistinguishability security experi-
ment Expkg?';i'"d for an adversary A trying to break key indistinguishability of
a keyless key wrap scheme at difficulty level d is shown in Fig. 2. We define the
advantage of such an adversary in the security experiment as Ade;?';"d(A) =

‘2 - Pr [Explggnd(fl) = true} - 1‘. As with DBKE security, useful forms of

Adv';f)yc‘l'"d(A) will relate the amount of work done by the adversary, the diffi-
culty level, and the adversary’s success probability.

As noted above, we generically construct a difficulty-based keyless encryption
scheme by combining a traditional symmetric encryption scheme with a keyless
key wrap scheme, as outlined in Fig. 3. Let II be a symmetric encryption scheme
with key space K = {0,1}*, and let ¥ be a keyless key wrap scheme for key
space K with maximum difficulty level D. Construct the difficulty-based keyless



ArchiveSafe: Mass-Leakage-Resistant Storage from Proof-of-Work 99

encryption scheme I'[IT, X] from IT and X' as outlined in Fig.3 and specified in
Fig. 4.

Our DBKE scheme I is secure, in the sense of Fig. 2, under the assumption
that the building blocks are secure. The proof follows from a straightforward
game-hopping argument; details are omitted due to space constraints and appear
in the full version.®

Theorem 1. If X is a key-indistinguishable difficulty-based keyless key wrap
scheme, and II is a one-time indistinguishable symmetric encryption scheme,
then I' = I'[Il, X] is a secure difficulty-based keyless encryption scheme. More
precisely, let d < D and let A be a probabilistic algorithm. Then there exists
algorithms By and B, such that Adv‘}tj;li"d (A) <2 Advk;’y;”d (B + Adviid(Bs).

Moreover, B{* and Bs' have about the same runtime as A.

3.2 Hash-Based Construction of Difficulty-Based Keyless Key Wrap

We now show how to construct our difficulty-based keyless key wrap using a
hash-based puzzle. The idea is simple: a random seed 7 is chosen, and the key
and a checksum of the seed are derived from the seed using hash functions. The
wrapped key consists of the checksum of the seed and the seed with some of its
bits removed; the number of bits removed corresponds to the difficulty of the
puzzle. This is similar to the sub-puzzle construction of Juels and Brainard [12]
or partial inversion proof of work by Jakobsson and Juels [11]. Such a puzzle is
solved by trying all possibilities for the missing bits, in any order and with or
without using parallelization.

In particular, let A € N, and let Hy, Hy : {0,1}* — {0,1}* be independent
hash functions. Define keyless key wrap scheme P = P[H;, Hs] as in Fig. 5 (left).
The notation r[A — d : A] on line 2 of P.Wrap denotes taking the substring of r
corresponding to indices A — d up to A, removing the first d bits of r.

P.Wrap(d): P.Unwrap(w = (h,T)): I'[II, P].Degrade(é, d'):
1. r+s{0,1} 1. d«< X—|7| 1. parse ¢ as (c,w = (h,T))
2. T rA—d:) 2 forie{0,1}% 2. d— A—|7
3. h+ Hi(r) 3. r |7 3. abort if d' < d
4. k « Hy(r) 4 B« Hy(r") 4. 7 «7[d —d: ||
5. w « (h,T) 5 if i = h: 5. w' + (h,7")
6. return (k,w) 6. k <+ Ha(r") 6. return (c,w’)
7 return k
8. return L

Fig. 5. Left: Construction of a hash-based keyless key wrap scheme P = P[H;, Hs]
from hash functions H., Hs. Right: Degradation algorithm for DBKE I' = I'[II, P]
constructed using generic construction I" of Fig. 4 using hash-based keyless key wrap
scheme P of left.

5 https://arxiv.org/abs,/2009.00086.
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The following theorem shows the key indistinguishability security of our hash-
based keyless key wrap scheme P in the random oracle model. The proof consists
of a query counting argument in the random oracle model; details are omitted
due to space constraints and appear in the full version.

Theorem 2. Let Hy and Hy be random oracles. Let A € N and let d < .
Let P = P[H,, Hs) be the keyless key wrap scheme from Fig. 5 (left). Let A
be an adversary in key indistinguishability experiment against P which makes
q1 and qo distinct queries to its Hy and Hs random oracles, respectively. Then

key-ind q 2
Ava7d (A) S Qdil + ﬂ'

Puzzle Granularity. The partial pre-image puzzle construction used in Fig.5
does not allow for fine-grained control of difficulty: removing each additional bit
increases the expected computational cost by a factor of 2. Higher granularity
can be achieved similar to how the puzzle difficulty in Bitcoin is set, by giving a
hint that narrows the range of data from 2¢ to some smaller subset.

3.3 Puzzle Degradation

We now introduce an additional feature of difficulty-based keyless encryption
that emerges naturally from our hash-based keyless key wrap construction: puz-
zle degradation. Abstractly, puzzle degradation is a process that takes a DBKE
ciphertext and increases the difficulty of decrypting it, preferably without need-
ing to decrypt and then re-encrypt at a higher difficulty level.

In the context of the ArchiveSafe long-term archiving system, this may be
used to gradually increase the difficulty of files that have not been accessed for a
certain period of time. For example, a monthly maintenance process could apply
degradation to stored files to gradually increase the cost (to both an attacker
and an honest party) of accessing increasingly older files.

The DBKE system A from Definition 1 is augmented with the algorithm:

— A.Degrade(c,d’) s— ¢/: A (possibly probabilistic) algorithm that takes as
input ciphertext ¢ and target difficulty level d’ < D, and outputs updated
ciphertext ¢’.

Correctness is extended to demand that a ciphertext output by A.Enc then
degraded any number of times is still correctly decrypted by A.Dec (although
decryption may take longer).

Security with the degraded algorithm included should mean, intuitively, that
a ciphertext degraded any number of times can be decrypted only using the
required amount of work at the new difficulty level.

We capture both correctness and security of degradation formally by demand-
ing that, for all d < d’ < D and all m € M, we have that A.Enc(d',m) =
A.Degrade(d’, A.Enc(d, m)); in other words: the distribution of ciphertexts pro-
duced by encrypting at difficulty d’ is identical to the distribution of ciphertexts
produced by encrypting at difficulty d and then degrading to difficulty d’.
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We can achieve degradation in DBKE I' = I'[II, P] constructed from our
hash-based keyless key wrap P in a trivial way: by removing (d’ — d) more bits
from the puzzle hint 7. This clearly requires no decryption and re-encryption,
only a constant-time edit to the metadata stored containing the wrapped key.
The procedure I'Degrade is stated in Fig.5 (right). Degraded ciphertexts are
identically distributed to ciphertexts freshly generated at the target difficulty
level, as removing additional bits of the partial seed 7 is associative. An adversary
who possess a copy of the metadata from an earlier version of the archive prior to
degradation can solve puzzles and decrypt at the earlier, non-degraded difficulty
level.

3.4 Additional Considerations

Outsourcing Puzzle Solving. The generic DBKE construction I' of Fig. 4 allows
the key unwrapping and ciphertext decryption to be done separately, so the
expensive key unwrapping could be outsourced to a cloud server. In the example
of the hash-based keyless key wrap scheme P of Fig.5, the user could give the
wrapped key w = (h,7) to the cloud server who unwraps and returns the key k,
which the user then locally uses to decrypt the ciphertext c.

This does mean that the cloud server learns the encryption key k. However,
this can be avoided with the following adaption to the construction P of Fig. 5.
During wrapping, the algorithm generates an additional salt value s +s {0,1}*
and computes k < Ha(r||s); s is stored in the wrapped key w. When outsourcing
the unwrapping to the cloud server, the user only sends h and 7, but not s. The
cloud server is still able to use the checksum h with the partial seed 7 to recover
the full seed r, but lacks the salt s and thus the cloud server alone cannot
compute the decryption key k. Theorem 2 still applies to this adaptation.

Combining Keyless and Keyed Encryption. As previously mentioned, our keyless
encryption approach can (and should) be used in conjunction with traditional
keyed encryption mechanisms using a different set of keys. Traditional keyed
encryption gives honest parties a (conjecturally exponential) work factor advan-
tage over adversaries if keys remain uncompromised, while keyless encryption
slows adversaries if the traditional encryption keys are compromised. The two
schemes can be layered in one of two ways: first applying keyless encryption
DBKE and encrypting the result using keyed symmetric encryption Sym (i.e.,
¢ < Sym.Enc(k, DBKE.Enc(d,m))) or in the order, with keyless encryption on
the outer layer (i.e., ¢ «— DBKE.Enc(d, Sym.Enc(k,m))). Either approach yields
robust confidentiality, but we recommend the latter method as it facilitates the
puzzle degradation process described in Sect. 3.3.

4 FEvaluation

We evaluate ArchiveSafe by measuring its performance against other systems
through real life experiment. The goals of the experiment are to: (1) measure
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the overhead ArchiveSafe introduces on adversaries and honest users, and (2)
verify that puzzle solving difficulty scale according to the theoretical system
design.

4.1 Prototype Implementation

To run the evaluation experiment, we implemented a prototype of ArchiveSafe.”
In terms of instantiating the difficulty-based keyless encryption using the generic
construction from Sect. 3.1, our proof-of-concept uses AES-128 in CBC mode
for the symmetric encryption scheme. The hash functions H; and H, in the
hash-based keyless key wrap scheme are both instantiated with Argon2id [5]
with a prefix byte acting as a domain separator between H; and H,, with the
following parameters: parallelism level: 8; memory: 102,400 KiB; iterations: 2;
output length: 128 bits. We did not parallelize puzzle solving in Unwrap to
avoid locking other system operations, but it is easily parallelized.

The ArchiveSafe prototype is implemented as a Linux Filesystem in
Userspace (FUSE) using a Python toolkit® to simplify implementation. Our
Python FUSE driver relies on the OpenSSL library for encryption and decryp-
tion, and Ubuntu’s argon2 package. In a real deployment in the context of a
filesystem, ArchiveSafe would be implemented as a kernel module, likely written
in C, for improved performance and reliability.

Our prototype has a tuneable difficulty level, which we label in this section
as D1, D2, D3, etc. Difficulty Dz corresponds to hash-based keyless key wrap
scheme P of Fig. 5 with difficulty parameter d = 4x; in other words, D1 removes 4
bits of the seed, D2 removes 8 bits of the seed, etc. We chose a 4-bit step between
difficulty levels to focus on how system behaviour scales across difficulty levels;
finer gradations could be chosen by users.

4.2 Experimental Setup

The experiment measures ArchiveSafe’s performance at three difficulty levels
(D1, D2, D3) compared to an unencrypted file system (denoted UN) and Linux’s
built-in folder encryption using eCryptfs? (denoted FE) and disk encryption
(denoted DE) on read and write tasks at different file sizes. When running the
ArchiveSafe experiments, the ArchiveSafe FUSE driver was writing its files to
an unencrypted file system.

Measurements. For each storage system being evaluated, we measure read and
write times for files of sizes 1 KB, 100 KB, 1 MB, 10 MB, and 100 MB. Perfor-
mance is measured at the application level, from the time the file is opened until
the time the read/write operation is completed. For folder and disk encryption,

" Our prototype is available at https://github.com/moesabry/ArchiveSafe.
8 https://github.com/skorokithakis/python-fuse-sample.
9 https://www.ecryptfs.org/.
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this includes the filesystem’s encryption operations. For ArchiveSafe, we instru-
mented the driver to record the total time as well times for different sub-tasks
(encryption, puzzle solving, decryption, file system 1/0).

Test Environment. Measurements were performed on a single-user Linux machine
with no other processes running. The computer was a MacBook Pro running
Ubuntu Linux 18.04 LTS with an 4-core Intel Core i7-4770HQ processor with
base frequency 2.2 GHz, bursting to 3.4 GHz. The computer had 16 GiB of RAM.
The hard drive was a 256 GiB solid state drive with 512-byte logical sectors and
4096-byte physical sectors. The disk encryption was done using Linux Unified
Key Setup system version 2.0, and folder encryption was done using the Enter-
prise Cryptographic Filesystem (eCryptfs) version 5.3.

Ezecution. For each storage system and file size, we performed many repetitions
of the following tasks. A file was created with randomly generated alphanumeric
characters using a non-cryptographic random number generator. Read and write
operations were measured as indicated above. For file sizes of 1 KB, 100 KB,
1MB, and 10 MB, we collected data for 1000 writes and reads; for 100 MB files,
we ran 200 writes and reads, due to extensive time of operations at this size.

4.3 Results

Table 1 shows average read and write times for the file systems under consid-
eration at different file sizes. Since read operations in the ArchiveSafe system
become increasingly expensive with difficulty, we show in Table2 the average
time of sub-tasks of ArchiveSafe read operations at different file sizes and diffi-
culties: the puzzle solving time (which should scale with puzzle difficulty), the
system file read time plus decryption time (which should scale with file size),
and the overhead from other file system driver operations (which includes puz-
zle read and system file open times). As the partial pre-image puzzle used in
ArchiveSafe leads to highly variable solving times, Fig. 6 shows the average time
and standard deviation for puzzle solving at difficulties D1, D2, and D3.

Table 1. Average read and write times in milliseconds

File system Read Write

1KB 100KB | 1MB 10MB | 100 MB | 1 KB 100KB | 1MB | 10MB | 100 MB
Unencrypted 0.526 0.550 1.70 10.1 110 0.07 0.25 0.85 6.76 | 97.82
(UN)
Disk Encryption | 0.737 0.924 3.15 10.5 160 0.08 0.25 0.83 6.63 | 97.97
(DE)
Folder 0.737 0.961 3.42 10.9 190 0.12 0.50 3.31 | 29.07 | 319.88
Encryption (FE)
ArchiveSafe D1 630 630 630 650 860 141.05 | 141.67 | 146.09 | 221.73 | 848.30
ArchiveSafe D2 7070 7080 7310 7180 7290 141.25 | 141.43 | 145.08 | 223.50 | 847.02
ArchiveSafe D3 112140 | 111760 | 107390 | 114530 | 107630 | 141.01 | 140.98 | 145.74 | 222.40 | 846.06
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Table 2. Read sub-tasks average times in millisec-
onds 10° T
wn
g
Diff. 1KB | 100KB | 1IMB | 10MB | 100 MB 5 10*
D1 Puzzle Solve | 510 510 510 510 500 é
Decryption 5.42 5.71 7.25 20 150 g 103
Other 0.387 | 0.373 | 0.378 | 0.384 | 0.363
D2 | Puzzle Solve | 6960 | 6980 7210 | 7050 | 6930 m
Decryption 5.58 6.12 7.89 20 140
Other 0.357 | 0.373 | 0.376 | 0.374 | 0.335 D1 D2 D3
D3 | Puzzle Solve | 112040 | 111730 | 107280 | 114410 | 107270
Decryption | 5.56 5.94 7.96 20 140 Fig.6. Puzzle solving time in
Other 1.075 | 1.216 | 0.971 | 1.195 | 1.045 milliseconds (average, standard
deviation)

4.4 Discussion

The results show consistent behaviour across different file sizes. The larger files
consumed more time in decrypting and reading. We also observed that the time
consumed is roughly the same for smaller file sizes (1 KB and 100 KB) where
operation cost is dominated by overhead.

As expected, the read speeds decrease with the difficulty level because the
system must solve the puzzle before reading the file and the puzzle solving effort
scales with the difficulty level. As per Table2, puzzle solve times on average
scale by a factor of 13.6-14.1x between D1 and D2 and a factor of 14.9-16.2x
between D2 and D3, roughly in line with the theoretical scaling factor of 16x.

Evaluating the overhead added by ArchiveSafe for write operations, we see in
Table 1 that ArchiveSafe incurs a baseline overhead related to setting up the puz-
zle (which involves 2 Argon2 calls), then scales with the file size due to the cost of
AES encryption and writing. Note that ArchiveSafe uses a different encryption
library (user-space calls to OpenSSL) compared with disk and file encryption
(kernel encryption via dm-crypt), so symmetric encryption/decryption perfor-
mance is not directly comparable, but we see similar scaling.

The short summary of performance is that ArchiveSafe adds a 140-520 ms
overhead when writing a file, and a customizable overhead when reading a file,
ranging from 510ms at difficulty D1, 7s at D2, or 110s at D3. But recall
that adding computational overhead at read time is exactly the purpose of
ArchiveSafe! What an acceptable difficulty level—and hence acceptable com-
putational overhead at read time for honest users—is a policy choice by the
system administrator. As noted earlier, choosing the difficulty level depends on
the tolerable cost for honest users to access data, the perceived risk of a data
breach, and the anticipated value of the information to an adversary, and is
a calculation that must be left to the adopter. Note that honest users need
not solely rely on sequential operations on their own computer: as described in
Sect. 3.4 an ArchiveSafe installation could be configured so that honest users
offload their puzzle solving tasks to private or commercial clouds which are spun
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Table 3. Dollar cost and computation time required to unlock ArchiveSafe files

D3 D4 D5 | D6
Honest user decrypting 1 file
Local machine, threaded 4 cores, 2.2 GHz | 0.5min | 7.3min |2h 31h
Cloud server c5.metal, spot pricing <$0.01 | <$0.01 |$0.05 |$0.73
Adversary decrypting 1 million files
Cloud server c5.metal 8days |130days|5.7yrs |91.4yrs
Cloud server c5.metal, spot pricing $178 $2,852 | $45,648 | $730,364

up on demand with large amounts of parallelization to reduce the wall clock
time before they can access a file.

Table 3 shows examples of costs at higher difficulty levels. To provide further
interpretation to these costs, we look not only at the computation time required
for an honest user on our test platform to decrypt a file, but also at the real-world
cost for an adversary, based on the cost of renting computation time on Amazon
Web Services (AWS) Elastic Cloud Compute (EC2) platform. EC2 has many
machine types available; Argon2 is designed to not be substantially accelerated
by more sophisticated architectures, GPUs, or ASICs. As such we choose for our
pricing example an EC2 instance that minimizes cost per core-GHz-hour; the
c5.metal EC2 instance type has 96 Intel Xeon cores running at 3.6 GHz at a
cost of USD$0.9122 per hour using Amazon’s cheapest spot pricing model.'?

We can see, for example, that at difficulty D5, an honest user can unlock
an archived file with about 2h of work on a local machine, or about 3min of
c5.metal rental costing 4.5 cents at spot pricing (20 cents on-demand pricing).
However, an adversary trying to decrypt 1 million such files from a data breach
would need 5.7 years of c5.metal rental at a spot pricing cost of USD$45,648.

5 Conclusion

ArchiveSafe, using difficulty-based keyless encryption, can add defense-in-depth
to confidentiality of archived data and change the economics of mass leakage
attacks via data breaches. We expect that most uses of ArchiveSafe would be in
addition to, not as a replacement for, traditional keyed encryption; full crypto-
graphic security would be achieved if encryption keys are properly managed and
kept safe, but ArchiveSafe provides a residual level of protection if traditional
encryption keys are also breached. This means the key management service is
no longer a single point of failure.

One target application is I'T systems which retain large amounts of archival
data, most of which will be rarely or perhaps never again accessed by legiti-
mate users. Although honest users have no advantage in difficulty-based decryp-

19 https://aws.amazon.com/ec2/instance-types/, https://aws.amazon.com/ec2/spot/
pricing/; prices as of April 23, 2020.
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tion compared to an adversary on a file-by-file basis, if their operational goals
are different—an honest user decrypting 1 file occasionally, versus an adversary
decrypting thousands or millions of files quickly—their costs are different.

Our approach can be applied in a variety of system architectures: local storage
and execution (as demonstrated by our prototype), local storage with private or
public cloud assistance for puzzle solving, or remote (file server/cloud) storage
with local or assisted puzzle solving. Our approach can also apply to different
storage paradigms, including file systems, cloud “blob” storage, and databases.

Puzzle difficulty can be set as a system-wide or with higher granularity based
individual records’ sensitivity. A novel features of our construction is the ability
to degrade puzzle difficulty effectively for free, which could be built into periodic
maintenance or through a heuristic system based on suspicious activity.
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