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Abstract. Integrating data from multiple sources with the aim to iden-
tify records that correspond to the same entity is required in many real-
world applications including healthcare, national security, businesses,
and government services. However, privacy and confidentiality concerns
impede the sharing of personal identifying values to conduct linkage
across different organizations. Privacy-preserving record linkage (PPRL)
techniques have been developed to tackle this problem by performing
clustering based on the similarity between encoded record values, such
that each cluster contains (similar) records corresponding to one sin-
gle entity. When employing PPRL on databases from multiple parties,
one major challenge is the prohibitively large number of similarity com-
parisons required for clustering, especially when the number and size
of databases are large. While there have been several private blocking
methods proposed to reduce the number of comparisons, they fall short
in providing an efficient and effective solution for linking multiple large
databases. Further, all private blocking methods are largely dependent on
data. In this paper, we propose a novel private blocking method address-
ing the shortcomings of existing methods for efficiently linking multiple
databases by exploiting the data characteristics in the form of probabilis-
tic signatures, and we introduce a local blocking evaluation framework
for locally validating blocking methods without knowing the ground-
truth data. Experimental results on large datasets show the efficacy of
our method in comparison to several state-of-the-art methods.

Keywords: Entity resolution · Privacy · Scalability · Probabilistic
signatures · Clustering

1 Introduction

Linking data from multiple sources with the aim to identify matching pairs
(from two sources) or matching sets (from more than two sources) of records
that correspond to the same real-world entity is a crucial data pre-processing
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task for quality data mining and analytics [3]. Various real-world applications
require record linkage to improve data quality and enable accurate decision mak-
ing. Example applications come from healthcare, businesses, the social sciences,
government services, and national security.

Record linkage involves several challenges making the process not trivial.
Due to the absence of unique entity identifiers across different databases, it is
required to use the commonly available quasi-identifiers (QIDs), such as names
and addresses, for linking records from those databases. QIDs generally contain
personal and often sensitive information about the entities to be linked, which
precludes the sharing of such values among different organizations for linkage
due to privacy concerns. Known as privacy-preserving record linkage (PPRL)
[16,19], this research has attracted increasing interest over the last two decades
and has been employed in several real projects [2,6,13].

A prominent challenge of PPRL of multiple large databases is the quadratic
complexity of similarity comparisons required between QIDs of records with the
number of databases to be linked and their sizes. Blocking techniques are being
used in the linkage to reduce the number of comparisons by grouping records
according to a certain criteria and limiting the comparison only to the records in
the same group [3]. However, existing private blocking methods do not perform
well on low latency and high-scale data due to either (1) their dependency on
data-sensitive parameters that need to be tuned for different datasets [7,8,10,
11,14,15,20,23], (2) they require external data of similar distribution [8,10,14,
20,23], (3) they require similarity computations for blocking itself which makes
them not scalable to linking multiple large databases [1,8,10,14,15], (4) most
of them are not developed for linking multiple databases (except [8,11,15]), or
(5) they do not support efficient subset matching from any number of databases
[8,11,15]. In this paper, we address these shortcomings by developing a novel
private blocking method based on probabilistic signatures and proposing a local
blocking evaluation framework for tuning data-dependent parameters.

The values in QIDs are often prone to data errors and variations, which
impacts the quality of blocking as well as makes the linkage task challenging
[3]. Probabilistic signatures (p-signatures) leverage the redundancy in data to
reduce the impact of data quality issues on blocking. Subset of information
contained in a record that can be used to identify the entity corresponding to
that record is called as a signature. For example, ‘John Smith’ is a frequently
occurred name, however, ‘John Smith, Redfern’ is more unique and more likely
to correspond to the real-world entity as similar as ‘John Smith, Redfern, NSW
2015’. Probabilistic identification of such signatures for linking records (in the
non-PPRL context) has been studied in an existing work [24].

In this paper, we extend the idea of using p-signatures for efficient data-
driven blocking for PPRL of multiple databases. Our approach does not depend
on external data, and it does not require any similarity computations between
records for blocking, as required by most of the existing methods [8,10,14,15].
In addition, our method enables subset matching for multi-party PPRL, which
aims to identify matching records from any subset of multiple databases held
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by different parties, for example, linking patients who have visited at least three
out of ten hospitals. Existing blocking methods do not facilitate nor efficiently
facilitate blocking for subset matching [8,11,15]. Moreover, existing methods are
sensitive to errors and variations in the blocking keys. For example, if a record
contains missing values in part of the blocking key, it will be misplaced in a wrong
block, while with signatures the part with the missing value will not become a
signature and thus will not be placed in a wrong bucket, improving the quality
of blocking.

However, as with all existing methods, the blocking quality in terms of effec-
tiveness of reducing the comparison space as well as coverage of true matches
depends significantly on the signatures used. We use multi-signature strategy to
improve blocking quality. Further, we propose a framework to locally evaluate
the blocking quality guarantees individually by the database owners in order
to choose an appropriate signature strategy (or parameter settings) depending
on the datasets to be blocked. Our proposed local blocking evaluation met-
rics (which we refer to as PQR-guarantees metrics for Privacy, Quality, and
Reduction guarantees of blocking) can be used to locally evaluate any blocking
method for PPRL.

We provide a comparative evaluation of our proposed method with several
state-of-the-art blocking methods for PPRL in terms of coverage of true matches,
reduction in record comparisons, and privacy guarantees against frequency infer-
ence attacks [21] using large datasets. We also evaluate the effectiveness of our
blocking method for multi-party PPRL using a black box clustering method
[22] and compare the results with no blocking and using an existing multi-party
blocking method [11]. Experimental results show that our method outperforms
the state-of-the-art methods in terms of all three aspects.

Outline: We describe preliminaries in Sect. 2 and in Sect. 3 we present our proto-
col. In Sect. 3.1, we introduce a novel method to locally evaluate Privacy, Quality,
and Reduction guarantees of any blocking methods. We analyze our protocol in
terms of complexity, privacy in Sects. 3.2 and 3.3, respectively, and validate these
analyses through an empirical evaluation in Sect. 4. Related work is reviewed in
Sect. 5. Finally, we conclude the paper in Sect. 6.

2 Preliminaries

An outline of the general PPRL pipeline is shown in Fig. 1. Assume P1, . . . , Pp

are the p owners (parties) of the deduplicated databases D1, . . . ,Dp, respectively.
PPRL allows the party Pi to determine which of its records ri,x ∈ Di match
with records in other database(s) rj,y ∈ Dj with 1 ≤ i, j ≤ p and j �= i based on
the similarity/distance between (masked or encoded) quasi-identifiers (QIDs) of
these records. The output of this process is a set M of match clusters, where a
match cluster m ∈ M contains a set of matching records of a maximum of one
record from each database and 1 < |m| ≤ p. Each m ∈ M is identified as a set of
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Fig. 1. General pipeline of the PPRL process

matching records representing the same entity. A linkage unit (LU) is generally
employed to conduct PPRL using the encoded QID values of records sent by the
database owners.

Assuming each of the p databases contains n records (n×p records in total),
the number of similarity comparisons required is quadratic in both n and p (i.e.
n2 ·p2). The quadratic comparison space is computationally expensive for cluster-
ing techniques with large-scale data. However, majority of the comparisons are
between non-matches as record linkage is generally a class-imbalance problem
[3]. Blocking aims at reducing the comparison space for linkage by eliminating
the comparisons of record pairs that are highly unlikely to be matches. There are
numerous blocking strategies [4] developed in the literature for record linkage
and PPRL.

Generally, the records are grouped into blocks for each database Di (denoted
as Bi) and the blocks of encoded records of each database (denoted as BE

i ) are
sent to a linkage unit (LU) to conduct the linkage of these encoded records from
multiple databases using a clustering technique [22]. At the LU , the records are
processed block by block (i.e. clustering is applied on each block B ∈ B, where
B contains the union of blocking keys in BE

i , with 1 ≤ i ≤ p).
The existing blocking methods for PPRL require data dependent parameters

to be tuned or external data of similar distribution for blocking. Exploiting the
data characteristics, we propose a blocking method based on multiple signatures.
Redundancy is one of the common data characteristics in real data as only some
information in a record is sufficient to uniquely identify and link records. Such
informative part in a record becomes a signature. Each unique signature becomes
a blocking key in our blocking method.

Definition 1 (Signature). Given records R with QIDs A, a signature s is a
subset of information in a record r ∈ R, i.e. s ⊂ ∀a∈Ar.a, that can uniquely
identify the corresponding entity with high probability.

Example 1: A record r1 with the values of QIDs r1.a1 = ‘smith’, r1.a2 =
‘william’, r1.a3 = ‘redfern’, r1.a4 = ‘2015’, has the signature s1 = ‘smwr316’,
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Fig. 2. An example encoding of two sets S1 = {‘apple’, ‘orange’, ‘berry’, and ‘pear’}
and S2 = {‘apple’, ‘orange’, ‘berry’} into BFs b1 and b2, respectively, and membership
test on the intersected BF (b1 ∩ b2). For example, ‘pear’ is not a member of b1 ∩ b2.

where the signature is generated based on the concatenation of the first two
characters of a1, first character of a2, none of the characters of a4, and phonetic
encoding of a3.

Definition 2 (Signature strategy). A signature strategy is a function f(·) of
generating a signature for each record r ∈ R from ∀a∈Ar.a.

Example 2: f(a1[0 : 2] + a2.phonetic()) is a signature strategy, which returns
the first two characters and phonetic code of QIDs a1 and a2, respectively.

We use multiple such signature strategies to improve the blocking quality
(recall of true matches) at the cost of more record pair comparisons. For each of
the signature strategies records containing the same signature are grouped into
one block, and blocks of records of the same signature across multiple databases
are compared and linked using clustering techniques [22].

In order to identify the common blocks (signatures) between two or multiple
databases held by different parties without learning the non-common signatures
of a party by other parties as well as any signatures by the LU , the parties
encode their signatures into a Bloom filter (BF).

Definition 3 (BF encoding). A BF bi is a bit vector of length l bits where
all bits are initially set to 0. k independent hash functions, h1, . . . , hk, each with
range 1, . . . l, are used to map each of the elements s in a set S into the BF by
setting the bit positions hj(s) with 1 ≤ j ≤ k to 1.

Figure 2 illustrates the encoding of two sets S1 = {‘apple’, ‘orange’, ‘berry’,
and ‘pear’} and S2 = { ‘apple’, ‘orange’, ‘berry’} into two BFs b1 and b2, respec-
tively, of l = 9 bits long using k = 2 hash functions. Collision of hash-mapping
occurs where two different elements are mapped to the same bit position. Colli-
sion can result in false positives however providing privacy guarantees through
the level of uncertainty about a true mapping at the cost of utility loss.
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Definition 4 (Membership test). Membership of an element s in a set that
is encoded into a BF b can be tested by checking if ∀k

i=1b[hi(s)] == 1. If at
least one of the hash functions returns 0, then the element could not have been
a member of the set that is encoded into b.

We use counting Bloom filter (CBF) [5] to count the number of par-
ties/databases that have common signatures for multi-party PPRL.

Definition 5 (CBF encoding). A counting Bloom filter (CBF) c is an integer
vector of length l bits that contains the counts of values in each position. Multiple
BFs can be summarized into a single CBF c, such that c[β] =

∑p
i=1 bi[β], where

β, 1 ≤ β ≤ l. c[β] is the count value in the β bit position of the CBF c. Given p
BFs bi with 1 ≤ i ≤ p, the CBF c can be generated by applying a vector addition
operation between the bit vectors such that c =

∑
i bi.

Secure summation protocols can be used to securely calculate the sum of p
values v1, · · · , vp without learning the individual values vi, but only the sum∑p

i=1 vi. vi can either be a single numeric value or a vector of numeric values.

3 Methodology

In this section we describe the steps of our Privacy Preserving Probabilistic sig-
nature (P3-SIG) blocking method, which is outlined in Algorithm 1. It consists
of three phases:

1. Signature generation: This phase involves identifying and agreeing on
signature strategies and generating candidate signatures (lines 1–5 in Algorithm
1). The probability of a candidate signature to appear in records is bounded
by the minimum and maximum size of resulting blocks (kmin and kmax, respec-
tively) for privacy and comparison reduction guarantees, respectively. Signatures
that appear in too many records are often redundant (non-informative) and sig-
natures that appear in very few records can be uniquely re-identified against
inference attacks.

The resulting candidate signatures are locally evaluated in order to select and
agree on a set of good signature strategies to be used by all parties to generate
signatures or blocking keys (lines 6–7 in Algorithm 1). We use multi-signature
approach where multiple such good signature strategies are used to improve the
coverage of true matches. Good signature strategies are determined considering
three aspects: (1) comparison reduction, (2) coverage of true matches, and (3)
privacy guarantees of the resulting blocks against frequency attack. We will
describe the local blocking evaluation in terms of these three aspects in Sect. 3.1.

2. Common signatures identification: Once a set of good signature
strategies are agreed upon by all parties, the parties individually generate the
signatures for their records using the agreed signature strategies and hash-map
the resulting signatures into a Bloom filter (BF) (lines 16–18). If the linkage
task is to identify common blocks across all p parties, then the intersected BF
of all parties’ BFs is sufficient to calculate the common signatures/blocks. The
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Algorithm 1. P3-SIG blocking (described in Sect. 3)

Input:
- Ri : Party Pi’s records, 1 ≤ i ≤ p

- S′ : A set of signature strategies f(·)
- e(·) : A function to locally evaluate blocking
- sm : Minimum subset size, with 2 ≤ sm ≤ p
- h(·) : Hash functions for BF encoding
- l : Length of BF
- k : Number of hash functions
Output:
- C : Blocks from all parties

Phase 1 (by each party Pi, with 1 ≤ i ≤ P):

1: for f ∈ S′ do: // Iterate strategies
2: Bf = {} // Initialize inverted index
3: for r ∈ Ri do: // Iterate records
4: s = f(r) // Signature
5: Bf [s].add(r) // Store in inverted index
6: e(Bf ) // Evaluate signature strategy
7: f′ = agree(S′, ∀f e(Bf )) // Agree on a signature strategy

Phase 2 (by all parties Pi, with 1 ≤ i ≤ P):
8: for 1 ≤ i ≤ P do: // Iterate P parties
9: Bi = {}; bfi = [] // Initialization
10: for r ∈ Ri do: // Iterate records
11: s = f′(r) // Signature of r
12: Bi[s].add(r) // Store in inverted index
13: for s ∈ Bi do // Iterate signatures
14: if not kmin ≤ len(Bi(s)) ≥ kmax do // Larger and smaller blocks
15: Bi.remove(s) // Prune signatures
16: for s ∈ Bi do: // Iterate signatures
17: for 1 ≤ j ≤ k do: // Hash functions
18: bfi[hj(s)] = 1 // Set to 1 in BF
19: cbf = sec sum(∀ibfi) // Generate CBF

Phase 3 (by LU and by each party Pi, with 1 ≤ i ≤ P):
20: C = {} // Initialization of C
21: for c ∈ cbf // LU iterates positions in CBF
22: if c < sm then // Count less than sm
23: c = 0 // Set to 0
24: else // Count of at least sm
25: c = 1 // Set to 1
26: ∀iC.send to Pi() // LU sends Common BF to parties
27: for 1 ≤ i ≤ P do // All parties
28: for s ∈ Bi do // Iterate signatures
29: if not ∀k

j=1cbf[hj(s)] == 1 then // Membership test
30: Bi.remove(s) // Remove non-matching signatures
31: Bi.encode() // Encode records and BKVs
32: Bi.send to LU() // Send encoded blocks to LU
33: for 1 ≤ i ≤ P do // LU iterates parties
34: C = ∪iBi // Union of blocks from all parties
35: return C // Output C

intersected BF contains 1 in positions that have 1 in all parties’ BFs and 0 if at
least one of the parties does not have 1 in those positions. An example is shown
in Fig. 2 for two BFs.

However, for the linkage task of identifying all signatures/blocks that are
common in at least sm of p parties (for subset matching), we propose to use a
CBF of p BFs which contains counts of 1-bits from all p BFs. A CBF is generated
from all p BFs using a secure summation protocol (line 19). It contains the
count values of common signatures (i.e. how many parties have those common
signatures), which are in between 0 (if none of the p parties’ BFs contain 1 in
those bit positions) and p (if all p parties’ BFs contain 1).

3. Blocks generation: The LU replaces all the count values in the generated
CBF that are below the minimum subset size, sm, to 0 as these are not common
signatures across at least sm parties, while count values above or equal to sm
are set to 1 (lines 21–25 in Algorithm 1). This implies that blocks need to be
common across at least sm parties for subset matching. The resulting CBF that
contains 1s and 0s (which is essentially a BF) is sent to all the parties (line 26).
The parties individually perform a membership test (as described in Sect. 2) on
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the received CBF by checking all their signatures in order to determine if they
are common or not (line 27–30 in Algorithm 1).

The encoded records belonging to each of the common signatures/blocks are
sent to the LU to perform clustering on records belonging to the same blocks
(lines 31–32). The union of blocks from all parties are stored in C and returned
by the blocking method (lines 33–35), which will be used as an input to the
clustering step.

3.1 Local Blocking Evaluation Framework

The performance of blocking (in terms of comparison space reduction, retaining
true matches, and not being susceptible to frequency attacks) depends on the
signature strategies (similar to most of the existing blocking methods). For such
data-driven blocking techniques, we propose a framework to locally evaluate the
blocking performance in order to choose and agree on a signature strategy that
performs better in terms of all three aspects. This framework is applicable to
any blocking method for local evaluation that provides minimum guarantees of
the global blocking results.

Comparison Space Reduction: This refers to the global measure of reduction
ratio of a blocking method [4]. The reduction ratio measures the percentage of
record pair comparisons reduced after blocking from the total number of record
pair comparisons. Different signature strategies generate different number and
size of blocks and therefore vary by the reduction ratio. Performing blocking
with many different strategies across parties and evaluating and comparing their
reduction ratio to choose the best strategy is not trivial in a real application due
to operational cost and privacy concerns. Therefore, we use a measure to locally
evaluate and compare different signature strategies by each party individually
on their records.

The statistics of the block sizes for each of the signature strategies can be
compared to learn about their impact on the reduction ratio. We consider the
average and maximum block sizes as local measures of reduction guarantees.
We normalise these values in the range of [0, 1] for comparative evaluation. The
Reduction Guarantees metric RG is defined as RG = 1 − m/n, where m is
the average or maximum block size and n is the total number of records in the
dataset. For example, if a blocking strategy results in a maximum block size of
m = 1 for a dataset of n = 10000 records, then RGmax = 1 − 1/10000 = 0.9999,
while a maximum block size of m = 10000 results in RGmax = 0.0.

True Matches Preservation: This refers to the global measure of pairs com-
pleteness (or recall) of a blocking method [4]. Pairs completeness measures the
percentage of true matches preserved in the candidate record pairs resulting from
blocking in the total number of true matches. Smaller blocks favor the reduction
ratio, however, they can have a negative impact on the pairs completeness as they
have more likelihood of missing true matches (not grouped into the same block).
We use Quality Guarantees (QG) metrics to locally evaluate the likelihood of
not missing true matches in the candidate record pairs.
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This likelihood is determined by the coverage of records in blocks. We mea-
sure the coverage by calculating the statistics of number of blocks per record
(average and minimum). The larger the number of blocks where a record appears
in, the more likelihood that it will be compared with a potential matching record
in one of those blocks. Specifically, a signature strategy that leads records being
appear in average m out of b total blocks and at least 1 block (minimum), then
the QG metrics are calculated as QGavg = m/b and QGmin = 1/b.

Privacy Guarantees: While smaller blocks are preferred for reduction guaran-
tees, and overlapping blocks are preferred for quality guarantees, these two have
negative impact on the privacy guarantees. Based on the sizes of the blocks,
the LU can perform a frequency inference attack by matching the frequency
distribution of blocks to a known frequency distribution, as will be detailed in
Sect. 3.3). A blocking method that generates blocks with low variance between
their sizes is less susceptible to such frequency inference attacks. Moreover, too
small blocks are highly vulnerable as they provide information about unique and
rare values.

For Privacy Guarantees (PG) metrics, we calculate disclosure risk statistics
[21] (average, maximum, and marketer risk) based on the probability of suspicion
(Ps) for each record in blocks of a local database D. Ps for a record r is calculated
as Ps(r) = 1/ng where ng is the number of possible matches in the global
database DG with r. We assume the worst case of DG ≡ D, to calculate the
minimum local privacy guarantees. Each of the records in a block of k records
has the Ps of 1/k (i.e. each record matches with k records in the worst case).
For example, if k = 1, then Ps = 1.0, whereas k = 100 gives Ps = 0.01 for all
k records. Based on the Ps values, we calculate the maximum PG as PGmax =
maxri∈D(Ps(ri)), average PG as PGavg =

∑n
i Ps(ri)/n, and marketer PG

as the proportion of records that can be exactly re-identified, i.e. Ps = 1.0,
PGmar = |{ri ∈ D : Ps(ri) = 1.0}|/n [21].

By locally evaluating and comparing the blocks generated by different block-
ing strategies using the privacy guarantees (PG), quality guarantees (QG), and
reduction guarantees (RG) metrics, the parties can choose and agree on a strat-
egy that can generate good blocking results in terms of the three aspects. We
name the family of these metrics for local blocking evaluation as PQR-guarantees
metrics, which refer to the Privacy, Quality, and Reduction guarantees of block-
ing methods.

3.2 Complexity Analysis

Assume p parties participate in the linkage of their respective databases, each
containing n records, and b blocks are generated by the blocking function, with
each block containing n/b records. Phase 1 has a linear computation complexity
for each party as it requires a loop over all records in its database for multiple
different signature strategies in a set of strategies, S′, and calculating the Privacy,
Quality, and Reduction Guarantees (PQR-guarantees) metrics as described in
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Sect. 3.1 (O(n · |S′|)). Agreeing on a signature strategy across multiple parties
based on the PQR-guarantees metrics has a constant communication complexity.

In the second phase, encoding the candidate signatures into a BF of length
l bits using k hash functions has a computation complexity of O(b′ · k) (assum-
ing b′ candidate signatures) for each party, and generating a CBF using secure
summation protocol is of O(l) computation and communication complexity. In
phase 3, the LU loops through the CBF to generate the intersected BF, which is
O(l), and sending to all parties is O(l ·p) communication complexity. Each party
individually performs membership test of their candidate signatures, which is of
O(b′ · k). Then the records containing any of the common signatures (assuming
b common signatures/blocks) need to be retrieved and sent to the LU , which
has a computation and communication complexity of O(n · b). At the LU , the
number of candidate record pairs generated is n2/b ·p2. Similar to many existing
methods, the reduction in the number of candidate record pairs depends on the
number (b) and size of blocks (n/b on average) generated. Therefore, the pro-
posed RG metric based on local block sizes can provide an estimate to locally
evaluate the reduction in candidate record pairs.

3.3 Privacy Analysis

As with most existing PPRL methods, we assume that all parties follow the
honest-but-curious adversary model [21], where the parties follow the protocol
while being curious to find out as much as possible about other parties’ data by
means of inference attacks on (blocks of) encoded records or by colluding with
other parties [21].

In Phase 2, the parties perform secure summation of their BFs, which does
not leak any information about the individual BFs. However, secure summation
protocols can be susceptible to collusion attacks where two or more parties col-
lude to learn about another party’s BF. There have been several extended secure
summation protocols developed to reduce their vulnerability to collusion risk.
For example, secret sharing-based protocol [17] generates p random shares ri
(one share per party) from the secret input value vi, such that

∑
i ri = vi, and

therefore even when some of the parties collude, without knowing the shares of
other non-colluding parties the input value vi of a party cannot be learned by
the colluding parties.

In Phase 3, since the CBF contains only the summary information (count
values), it provides more privacy guarantees than BFs against an inference attack
by the LU .

Proposition 1. The probability of inferring the values of individual signatures
si of a party Pi (with 1 ≤ i ≤ p) given a single CBF c is smaller than the
probability of inferring the values of si given the corresponding party’s BF bi,
1 ≤ i ≤ p.

Proof. Assume the number of potential matching signatures from an external
database that can be matched to a single signature s ∈ si encoded into the BF
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bi through an inference attack is ng. ng = 1 in the worst case, where a one-to-one
mapping exists between the encoded BF bi and the candidate signatures (based
on performing membership test). The probability of inferring the signature value
s belonging to a party Pi given its BF bi in the worst case scenario is therefore
Pr(s ∈ si|bi) = 1/ng = 1.0. However, a CBF represents signatures from p
parties and thus Pr(s ∈ si|c) = 1/p in the worst case with p > 1. Hence,
∀p
i=1Pr(s ∈ si|c) < Pr(s ∈ si|bi).

Finally, the parties send their blocks of encoded records to the LU . If one of
the resulting blocks contains only one record, for example, then the likelihood
of a successful inference of this record by the LU is higher than the inference
of a record that belongs to a block of size 100. Similarly, a very large block can
be uniquely identified by matching to a frequent value in the global database.
Therefore, the variance between block sizes needs to be smaller to reduce the
vulnerability of blocking methods to frequency inference attack. Our P3-SIG
method prunes highly frequent (> kmax) and rare (> kmin) blocks to provide
privacy guarantees, which can be locally evaluated as discussed in Sect. 3.1.

4 Experimental Evaluation

We conducted our experiments on three different datasets:
(1) NCVR: We extracted 4611, 46,116 and 461,116 records from the North

Carolina Voter Registration (NCVR) database1 for two parties with 50% of
matching records between the two parties. Ground truth is available based on
the voter registration identifiers. We generated another series of datasets where
we synthetically corrupted/modified randomly chosen attribute value of records
by means of character edit operations and phonetic modifications using the GeCo
tool [18].

(2) NCVR-Subset: We sampled 10 datasets from the NCVR database each
containing 10,000 records such that 50% of records are non-matches and 5% of
records are true matches across each different subset size of 1 to 10 (1, 2, 3,
· · · , 9, 10), i.e. 45% of records are matching in any 2 datasets while only 5%
of records are matching in any 9 out of all 10 datasets. This dataset is used to
evaluate our method for multi-party PPRL with different subset sizes.

(3) ABS Dataset: This is a synthetic dataset used internally for link-
age experiments at the Australian Bureau of Statistics (ABS). It simulates an
employment census and two supplementary surveys. There are 120000, 180000
and 360000 records, respectively, with 50000 true matches.

We use six existing private blocking methods as the baseline approaches
to compare our proposed approach (P3-SIG), which are three-party (two
database owners and a LU) sorted neighbourhood clustering (SNC)-based block-
ing (SNC-3P) [20], two-party (without LU) SNC-based method (SNC-2P)
[23], hierarchical clustering based approach (HCLUST) [14], k-nearest neigh-
bourhood clustering-based method (k-NN) [10], Hamming LSH-based blocking

1 Available from ftp://alt.ncsbe.gov/data/.

ftp://alt.ncsbe.gov/data/.
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(a) (b) (c)

Fig. 3. Comparison of (a) Scalability, (b) Pairs Completeness, and (c) Reduction ratio
vs. Pairs Completeness for two-database linking on NCVR dataset.

(a) (b) (c)

Fig. 4. Correlation between (a) local block sizes and reduction ratio (RR) metric and
(b) local coverage and pairs completeness (PC) metric, and comparison of (c) disclosure
risk of P3-SIG method with baseline methods on NCVR dataset.

method (HLSH) [7], and λ-fold LSH-based blocking method (λ-LSH) [11]. We
choose methods for comparison that fall under different categories of shortcom-
ings of existing methods as described in Sect. 1.

We evaluate the complexity (computational efficiency) using runtime required
for the blocking and reduction ratio (RR) of record pair comparisons for the link-
age (clustering). RR is calculated as 1.0 − number ofcomparisons after blocking

total number of comparisons . The
quality of the resulting candidate record pairs by a blocking method is measured
using the pairs completeness (PC) for two-database linking and set completeness
(SC) for multi-database linking [3,21]. They are calculated as the percentage of
true matching pairs/sets that are found in the candidate record pairs/sets in the
total number of true matching record pairs/sets, respectively. We evaluate privacy
guarantees against frequency attack using block sizes and disclosure risk values
[21], as described in Sect. 3.1.

We implemented our P3-SIG approach and the competing baseline
approaches in Python 3.7.42, and ran all experiments on a server with 4-core
64-bit Intel 2.8 GHz CPU, 16 GBytes of memory and running OS X 10.15.1. For
the baseline methods, we used the parameter settings as used by the authors in
the corresponding methods. For P3-SIG method, the default parameter setting
is length of BFs l = 2048, and number of hash functions k = 4. We evaluated
multiple different strategies generated from the combinations of first character,
first 2 characters, first 3 characters, all characters, phonetic encodings, q-grams,
2 available in http://doi.org/10.5281/zenodo.3653169.

http://doi.org/10.5281/zenodo.3653169
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(a) (c)(b)

Fig. 5. (a) Reduction ratio vs. Set Completeness for multi-database linking on ABS
dataset, (b) Set Completeness of P3-SIG blocking for subset matching of p = 10
databases against sm on NCVR-subset dataset, and (c) comparison of block size
distribution of P3-SIG method with baseline methods on NCVR dataset.

and ‘None of the characters’ in each of the QID (attribute) values of a record.
Based on greedy search parameter tuning method, we used the numerical values
in the first four attributes combined with the gender value as the default signa-
ture strategy for ABS dataset, and for the NCVR dataset we used the full first
and last names, phonetic encoding of the first and last names along with the
first one or two characters of first and last names and suburb values.

4.1 Discussion

We compare our method with the baseline methods in terms of runtime, pairs
completeness (PC), and reduction ratio (RR) vs. pairs completeness (PC) in
Fig. 3 for two-database linkage on the NCVR dataset. In terms of runtime, LSH-
based methods and clustering based methods require more time followed by
SNC-2P. Our method requires lower runtime than these methods, however SNC-
3P is more efficient than our method. Our method however achieves higher RR
and PC than the SNC-3P method. LSH-based blocking method generates higher
quality blocking results, but they require higher computational cost for blocking.
We were unable to conduct experiments for the λ-LSH and HCLUST methods
on the largest dataset due to their memory and space requirements.

We next study the effectiveness of our local blocking evaluation framework.
The correlation between the local block sizes and global reduction ratio (RR)
metric as well the correlation between the local coverage values and global pairs
completeness (PC) metric for a set of different signature strategies are shown
in Figs. 4(a) and 4(b), respectively. As the results show, there exist a high cor-
relation between them which reveals that local RG and QG metrics can be
effectively used for blocking quality evaluation. PC and coverage values have a
strong positive correlation, while RR and block sizes are negatively correlated.
Figure 4(c) compares the maximum disclosure risk values calculated against a
frequency attack in the worst case (D ≡ DG) with baseline methods. The privacy
guarantees (PG) results show that the disclosure risk values against a frequency
inference attack are lower with our method.

We compare our method with the λ-fold LSH multi-party blocking method
for multi-party linkage in Fig. 5(a). As can be seen, P3-SIG method outperforms
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(a) (b) (c)

Fig. 6. Comparison of (a) runtime, (b) precision, and (c) recall of clustering for multi-
party PPRL [22] with P3-SIG, λ-fold LSH [11], and no blocking on NCVR dataset.

λ-fold LSH for multi-party blocking in terms of higher blocking quality. Please
note that λ-LSH method works efficiently on small datasets, however on large
datasets it requires high runtime and memory space. Figure 5(b) shows the set
completeness results for subset matching of p = 10 databases from NCVR-Subset
dataset against different minimum subset sizes sm. The larger the value for sm
is, the more difficult it is to find the set of records that match across at least sm
databases/parties. This reflects the challenge of subset matching in multi-party
PPRL. These results show that P3-Sig can efficiently be used for multi-party
linkage applications. Further, we compare the size of blocks generated by the
different blocking methods in Fig. 5(c), which shows that the size of the blocks
resulting from our method is similar to that of LSH-based methods, as they both
generate overlapping blocks, however our method is more efficient and faster than
these methods while achieving similar or superior blocking quality.

Finally, we evaluate our proposed P3-SIG method’s performance on a recently
developed incremental clustering method for multi-party PPRL [22] and com-
pare with no blocking and λ-fold LSH multi-party blocking method in Fig. 6. The
runtime of the PPRL reduces significantly using our method without impact-
ing the linkage quality, which validates the efficacy of our blocking method for
efficient clustering required by multi-party PPRL.

5 Related Work

Various blocking techniques have been proposed in the literature tackling the
scalability problem of PPRL, as surveyed in [16,19,21]. Most of these methods
require external data (reference values) of similar distribution as the original
databases to be linked and employ a similarity comparison function to group
similar records. For example, in [10] reference values are clustered using the k-
nearest neighbor clustering algorithm and then the records are assigned to the
nearest cluster. A token-based blocking method is proposed in [1], which requires
calculating the TF-IDF distances of the hash signatures of blocking keys.

Similarly, sorted neighbourhood clustering is used in [20] and [23] to group
similar reference and record values with and without a LU , respectively. Another
method using hierarchical clustering to group similar reference values is proposed
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in [14] where the records are then assigned to the nearest clusters and differential
privacy noise is added to the blocks (clusters) to reduce the vulnerability to
inference attacks.

Other set of methods rely on data-specific parameters that are highly sen-
sitive to data. A private blocking method for PPRL of multiple database using
Bloom filters and bit-trees is proposed [15]. This method is only applicable to
Bloom filter encoded data. The method introduced in [7] uses a set of hash func-
tions (Minhash for Jaccard or Hamming LSH for Hamming distances) to generate
keys from records that are encoded into Bloom filters to partition the records, so
that similar records are grouped into the same block [12]. [11] proposed a λ-fold
LSH blocking approach for linking multiple databases. LSH provides guaran-
teed accuracy, however, this approach requires data dependent parameters to be
tuned effectively and it can be applied only to specific encodings, such as Bloom
filters or q-gram vectors.

6 Conclusion

We have presented a scalable private blocking protocol for PPRL that is highly
efficient and improves blocking quality compared to existing private blocking
approaches. In contrast to most of the existing methods that rely on a cluster-
ing technique for blocking records, our method uses signatures in the records
to efficiently group records as well as to account for data errors and variations.
Further, our blocking method is applicable to linking multiple databases as well
as subset matching for multi-party PPRL. We also introduce a local blocking
evaluation framework to choose good signature strategies/parameter settings in
terms of privacy, blocking quality, and comparison reduction guarantees. Exper-
iments conducted on datasets sampled from two real datasets show the efficacy
of our proposed method compared to six state-of-the-art methods.

In future work, we aim to study optimisation techniques, such as Bayesian
optimisation, to choose/tune signature strategies for optimal results. We also
plan to study parallelisation to improve the scalability of blocking and linkage
for multi-party PPRL. Finally, improving privacy guarantees for blocking meth-
ods needs to be explored in two different directions: (1) developing methods that
provide formal privacy guarantees, such as output-constrained differential pri-
vacy [9], without significant utility loss, and (2) developing hybrid methods that
combine cryptographic methods with probabilistic encoding methods (such as
Bloom filter encoding) without excessive computational overhead.
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