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Abstract. Current user authentication systems are based on PIN code,
password, or biometrics traits, which can have some limitations in usage
and security. Lifestyle authentication has become a new research app-
roach in which the promising idea is to use the location history since
it is relatively unique. Even when people live in the same area or have
occasional travel, it does not vary from day to day. For Global Position-
ing System (GPS) data, previous work used the longitude, latitude, and
timestamp as the classification features. In this paper, we investigate a
new approach utilizing distance coherence, which can be extracted from
the GPS itself without the need to require other information. We applied
three ensemble classifications, including RandomForest, ExtraTrees, and
Bagging algorithms. The experimental result showed that our approach
could achieve 99.42%, 99.12%, and 99.25% of accuracy, respectively.

Keywords: Smartphone location-based authentication · Lifestyle
authentication · Global Positioning System (GPS) · Biometrics
authentication

1 Introduction

“Society 5.0” [4] has become a well-known buzzword which was introduced by
the Japanese government in 20111. Society 5.0 focuses on two critical keywords,
human-centered and smart society with the support of Artificial Intelligent
(AI), Internet of Things (IoT), big data, and cutting-edge technologies.

Let’s consider an example of the electronic payment system. In 1871, West-
ern Union debuted the electronic fund transfer (EFT), allowing people to send
money to pay for goods and services without necessarily having to be physically
present at the point-of-sale. In 1946, John Biggins invented the first bank-issued
credit card to replace paper money (the concept of using a card for purchases
and the term credit card was described in 1887 by Edward Bellamy). In 2011,
Google launched a mobile wallet project to replace physical cash and credit cards.

1 Society 5.0 follows Society 1.0 (the hunting society), Society 2.0 (agricultural soci-
ety), Society 3.0 (industrial society), and Society 4.0 (information society).
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Nowadays, the cashless payment system has become a new trend. Many digital
wallet services appeared, such as Apple Pay (from 2014), Google Pay (from 2015
as Android Pay and 2018 as Google Pay), Rakuten Pay (from 2016), etc. The
biggest challenge is how to authenticate the users. The current approach relies
on the mobile phones’ authentication using PIN code, password, biometrics (i.e.,
fingerprinting, iris, face, etc.), or multi-factor method, which combines more than
one form of authentication from independent categories of credentials.

Attacks and Vulnerabilities in Current Smartphone Authentication.
Many sophisticated attacks in smartphone authentication have appeared. First,
PIN code/password-guessing attack [15,16] tries to recover the password plain-
text from its hashed form using a brute force search, which systematically checks
every combination of letters, symbols, numbers and dictionary attack which uses
a dictionary of common words. Second, biometric spoofing tries to generate syn-
thetic or fake biometric traits of legal users to fool the capture sensors including
facial spoofing which utilizes printed facial photographs and digital video [21] or
a 3D mask [22], fingerprinting spoofing [23] which utilizes artificial replicas with
different materials such as gelatin, latex, play-doh or silicone, and iris spoof-
ing [17] which utilizes an image forging natural iridal texture characteristics [18]
or even cosmetic contact lenses [19,20], and the combination of all these three
spoofing types [24]. Third, smudge attack tries to guess the graphical password
pattern in touch screen phones by analyzing the epidermal oils and smears left on
the device’s screen by the user’s fingers [25]. Fourth, shoulder-surfing attack [26]
uses social engineering techniques to steal the victim’s personal information such
as PIN code and password by looking over the victim’s shoulder or by eavesdrop-
ping on sensitive information being spoken and heard or keystrokes on a device.
Finally, a large number of users themselves do not lock their smartphones. [11]
analyzed over 150 smartphone users and showed that 33% of the users do not use
any screen lock. [12] conducted face-to-face qualitative interviews with 28 par-
ticipants. 29% of the users responded that they did not lock their devices with
three common reasons, including emergency personnel not identifying them, not
having the devices returned if lost, and not believing they worth data. [13] run
an online survey with 260 participants and a field study with 52 participants
to analyze smartphone users’ risk perception and behaviors. They showed that
40.9% of users use slide-to-unlock, and 16.2% of users do not use any screen lock.

Location-Based Behavioral Authentication. There are some research ques-
tions in constructing a smarter and securer mobile-based authentication. First,
for mitigating the attacks above, is there an additional mobile-based authentica-
tion for supporting the conventional authentication using PIN code, password,
and biometric traits (i.e., fingerprints, face, iris)? Second, imaging the scenario
that a user is on the way to going to a coffee shop. Before he arrives, the coffee
shop can predict that he will arrive 15 min later with a high probability, pre-
pare in advance his usual order, and automatically subtract the charge from his
account. The user then does not need to wait for the order and payment process.
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So, the question is: is it possible to authenticate and predict the location (for
example, the coffee shop) that the users are likely going to? Last but not least, in
the situation of the COVID-19, the current smartphone-based cashless payment
can reduce the chance of using cash or card, but still, the user needs to touch
the smartphone screen to show the bar code to the cashier. The final question is
whether the user can pay for goods when only bringing the smartphone without
touching the screen?

An idea to answer the questions is using behavioral-based information. This
new research’s main challenge is how to decide useful behavioral information
for authentication. Inspirited from L. Fridman (MIT) et al. [5], just in 2016,
GPS location history is a promising approach because “It is relatively unique to
each individual even for people living in the same area of a city. Also, outside of
occasional travel, it does not vary significantly from day to day. Human beings
are creatures of habit, and in as much as location is a measure of habit”. At
this time, single behavioral authentication is used as an additional method to
support the conventional authentication or to combine with other behavioral
authentications. In the future, if we can construct a payment system such that
(i) the users do not need to bring devices, (ii) the security and privacy are
ensured, and (iii) the conventional biometrics authentication can be replaced
entirely, it is a step closer to Society 5.0.

Motivation. A system can achieve a high authentication accuracy when it can
collect multiple factors as much as possible. However, in the users’ viewpoint,
a convenient system should not bring strong privacy concerns to the users by
requiring too much information. From the GPS, most of the previous work uti-
lized the longitude, latitude, and timestamp as the features for the user authen-
tication. Given the limited information, if we can obtain metadata that carries
extra independent information from the GPS itself, we can improve the accu-
racy. An example of GPS-based self-enhancement is [7] in which they extracted
the address from the pair of longitude and latitude using a reverse geocoding.

Contribution. In this paper, we propose an idea to extract the distance coher-
ence features from the GPS itself without any other information besides the GPS.
The locations at close time clocks may have some closer correlation in physical dis-
tance than the locations at far time clocks for each user. The idea is inspired by the
fact that a human needs time to move from one location to another. Since this con-
cept can reflect a movement “lifestyle” of the users, we hypothesized that it might
improve the accuracy. Although it may be not 100% correct when the user goes
forward and then backward within the considered period of time, we combine the
proposeddistance coherence featureswith the previous ones.To evaluate how feasi-
ble the approach is, we collected 107,637 GPS records from 348 users. We applied
three ensemble machine learning classification (RandomForest, ExtraTrees, and
Bagging) on a total of 13 features, including the distance coherences features. The
experimental result showed that our approach outperforms the approach without
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the distance coherence features with the accuracy of 99.42% (for RandomForest),
99.12% (for ExtraTrees), 99.25% (for Bagging).

Considering its reasonability, it may raise a question. Since we infer the
distance coherence from the GPS and timestamp, whether the distance coher-
ence’s entropy is the same as that of the GPS and timestamp? In other words,
whether the distance coherence gives no additional information to the GPS and
timestamp. However, for each sample, the corresponding distance coherence is
computed from a sample and other samples with a close timestamp with the
considered sample. Therefore, the GPS, timestamp, and distance coherence are
independent variables. Of course, we can improve the model if we combine the
GPS and timestamp with other factors such as Wifi information, web browser
log, etc. However, this paper aims to clarify whether the distance coherence
extracted from the GPS and the timestamp can improve the classification model.
We thus excluded other factors to make the comparison clean.

Roadmap. The rest of this paper is organized as follows. The related work is
introduced in Sect. 2. The proposed method is described in Sect. 3. The experi-
ment is presented in Sect. 4. The threat model is presented in Sect. 5. The dis-
cussion about future work is shown in Sect. 6. Finally, the conclusion is drawn
in Sect. 7.

2 Related Work

This section presents related work focusing on multimodal authentication using
human-smartphone interactions and other factors. The term multimodal (not
multimodel) is used to indicate the biometrics authentication using multiple bio-
metric data. It is the opposite with unimodal, which uses only a single biometric
data.

2.1 Multimodal Authentication for Smartphone

L. Fridman et al. [5] analyzed four modal behavioral data from active mobile
devices, including text stylometry typed on a soft keyboard, application usage
patterns, web browsing behavior, and physical location of the device from GPS
(outdoor) and Wifi (indoor). They collected the data from 200 users in more
than 30 d. The authors proposed a parallel binary decision-level fusion architec-
ture for classifiers based on four biometric modalities. A. Alejandro et al. [8]
analyzed multimodal data from four biometric data channels (including touch
gestures, keystroking, accelerometer, and gyroscope) and three behavior profil-
ing (including WiFi, GPS location, and app usage). They obtained the data
during the natural human-smartphone interaction of 48 users, on average, ten
days per user. They proposed two authentication models named the one-time
approach that uses all the channel information available during one session, and
an active approach that uses behavioral data from multiple sessions by updat-
ing a confidence score. W. Shi et al. [6] proposed an authentication framework
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that enables continuous and implicit user identification service for a smartphone.
They collected the data from four sensor modalities, including voice, GPS loca-
tion, multitouch, and locomotion. They conducted a preliminary empirical study
with a small set of users (seven). The result showed that the four modalities are
enough for mobile user identification. R. Valentin et al. [10] analyzed multimodal
sensing modalities with mobile devices when the GPS, accelerometer, and audio
signals are utilized for human recognition. They collected the data from four
existing datasets which consist of 491 users. They applied four variants of deep
learning for interpreting user activity and context as captured by multi-sensor
systems. M. Upal et al. [14] investigated user authentication methods using the
first non-commercial multimodal data, which focuses on three smartphone sen-
sors (front camera, touch sensor, and location service). They collected the data
from 48 users for two months. Their benchmark results for face detection, face
verification, touch-based user identification, and location-based next place pre-
diction showed that more robust methods fine-tuned to the mobile platform are
needed to achieve satisfactory verification accuracy. T. Thao et al. [7] extracted
the addresses given the longitudes and latitudes from the GPS records. They
then applied the text mining on the addresses. They collected the data from 50
users for about four months. Their experimental result showed that the combina-
tion between the text features and the GPS data could improve the classification
accuracy. B. Aaron et al. [9] proposed a wallet repository that can store biomet-
ric data using multiple layers: a biometric layer, a genomic layer, a health layer,
a privacy layer, and a processing layer. They used the processing layer to deter-
mine and track the user location, the speed when the user is moving using GPS
data.

2.2 Other Multimodal Authentication

Besides using human-smartphone interactions, multimodal authentication also
uses other factors. T. Kaczmarek et al. [27] investigated a new hybrid biomet-
ric based on a human user’s seated posture pattern in an average office chair
throughout a typical workday. Their experimental results on a population of 30
users showed that the posture pattern biometric could capture a unique com-
bination of physiological and behavioral traits and can authenticate the users
with 91% of accuracy. M. Ivan et al. [28] proposed an approach which combines
the PIN code and the pulse-response. For the experiment process, they collected
biometric information from 10 users. The result showed that each human body
exhibits a unique response to a signal pulse applied at the palm of one hand and
measured at the other’s palm. The experimental result for user authentication
achieved 88% of accuracy when taking the records weeks apart. W. Louis et
al. [30] and R. Alejandro et al. [32] constructed a continuous authentication sys-
tem based on electrocardiogram (ECG) and electroencephalogram (EEG). Their
approaches achieved 1.57% and 0.82% of the false-negative rate, respectively.
E. Simon et al. [29] extracted distinct patterns from eye movement (it is differ-
ent from iris) with 21 features for user authentication. The data was collected
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from 30 users in 2 weeks with three scenarios (no prior knowledge, the knowl-
edge gained through description, and knowledge gain through observation). The
experimental result achieved 3.98% of equal error rate.

3 Proposed Approach

This section describes our proposed method, including data collection, feature
extraction and selection, and our learning method.

3.1 Data Collection

We created a navigation application named MITHRA (Multi-factor Identifica-
tion/auTHentication ReseArch) in the project of the University of Tokyo to
collect the users’ GPS information. The application is available on both iOS and
Android smartphones. We developed the application run in the background. We
collected the data from 348 users with 107,637 GPS records, including pairs of
longitude and latitude for four months from January 11 to April 26 in 20172.
Compared to the existing works (see Sect. 2), the number of users in our dataset
is higher than most of the papers and is only lower than [10], which could collect
the information from 491 users. We recruited the participants randomly. The
users live and work in random areas. The GPS data was measured every minute.
The value of the longitudes and latitudes were collected with the precision up to
6 decimal places (e.g., 36.xxxxxx) corresponding to 0.1 m.

Privacy Consent. The privacy consent is shown to the users during the instal-
lation process. The installation can only be done if the users accept the terms and
conditions agreement. Even after successfully installing the application, the users
can choose to start or stop using the application anytime. Any personal informa-
tion of the users such as name, age, gender, race, ethnicity, income, education,
etc. is not collected. We collected only the email addresses the user identity used
to distinguish the users from each other. Although the application collects the
GPS information, the users do not need to disclose their home location, office
location, etc. Our project was reviewed by the Ethics Review Committee of
the Graduate School of Information Science and Technology, the University of
Tokyo. Finally, all the users who installed the application agreed to participate
in our project.

3.2 Feature Extraction and Selection

We categorized the features into two groups: (i) the features extracted from the
GPS and the timestamp, and (ii) the features using the distance coherence score.

2 Although we collected the GPS from smartphones in this project, we can also collect
the GPS from many smaller devices such as smartwatches or smartbands nowadays.
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GPS and Datetime. There are seven features in this group. Two features were
extracted from the GPS, including the latitudes and the longitudes represented
by float numbers. The valid ranges for the latitudes and the longitudes are the
continuous range [−90,+90] and [−180,+180], respectively. Five features were
extracted from the timestamp, including month, day, hour, minute, and day of a
week (i.e., seven days from Monday to Sunday) represented by integer numbers.
The valid ranges for these features are the intervals [1, 12], [1, 31], [0, 23], [0, 59],
and [1, 7], respectively. We did not extract the year as a feature because all the
data samples were collected in the same year (2017).

Distance Coherence. There are α features in this group (we will soon explain
how to choose α). Each z-th feature (z ∈ [1, α]) represents the distance coherence
(similarity score) between each data sample with the average of all the other
samples in the dataset that belong to the same user and that occur before or
after p hours for every p ∈ [0, z] with the considered sample. p = 0 is when the
other samples occur in the same hour with the considered sample.

More concretely, the features are computed as follows (see Fig. 1). Let {dcz}
denote the set of α features where z ∈ [1, α]. Let si denote each sample in the
dataset where i ∈ [1, n] and n denotes the number of samples (in our dataset,
n = 107, 637). For each feature dcz, let Kz = {s′

j} (where j ∈ [1, n] and j �= i)
denotes the set of all the other samples such that si and s′

j belong to the same
user Ut (where t ∈ [1, 348]). State differently, si and s′

j have the same label Ut.
Let lat(si) and lat(s′

j), lon(si) and lon(s′
j), and hour(si) and hour(s′

j) denote
the latitude, the longitude, and the hour features for si and s′

j , respectively. For
each dcz, Kz is chosen such that:

hour(si) = hour(s′
j) ± p for ∀p ∈ [1, z] (1)

The average coordinate s′′
j is determined from all the samples s′

j in Kz such as:

lat(s′′
j ) = average(lat(s′

j)) ∀s′
j ∈ Kz (2)

lon(s′′
j ) = average(lon(s′

j)) ∀s′
j ∈ Kz (3)

The features are finally calculated as the distance between si and s′′
j :

dcz(si) = 2

√
(lat(si) − lat(s′′

j ))2 + (lon(si) − lon(s′′
j ))2 (4)

From Eq. 1, we can observe that Kz chosen for dcz is a subset of Kz′ chosen for
dcz′ for all z, z′ ∈ [1, α] such that z′ > z. It may raise the question that whether
all the α features have a correlation. However, the averages from even correlated
sets are completely different (for example, average(1, 2, 3) = 2 which is different
from average(1, 2, 3, 4) = 5). All the features dcz are thus independent variables.
A numeric example for how to calculate the distance coherence features will be
given in Appendix A.
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Fig. 1. Distance coherence (similarity score)

We now explain how the concrete value for α is. In our approach, we use
three advanced classification machine learning algorithms, which are Random-
Forest, ExtraTrees, and Bagging (explained in more detail in Sect. 3.3). We
experimented with every α from 1 and increased it gradually. We found that
the best α for RandomForest, ExtraTrees, and Bagging is 3, 4, and 5, respec-
tively, at which the algorithms reach the peak performance (Sect. 4.3). Since
α reflects the movement lifestyle of the users, it is reasonable for α to be not
large. For instance, the GPS (latitude, longitude) of a user Ut at 15:00 may have
some physical distance coherence with the GPS records at 14:00 and 16:00 than
the GPS records at 13:00 and 17:00. In the rest of this paper, we use α-DC
to denote the approach in which α distance coherence features are used, and
{lat, lon, mon, day, hour, min, weekday, dc1, dc2, · · · , dc6} to denote the set of
the thirteen features related to both the GPS and timestamp and the distance
coherence.

Feature Distribution. We describe the distribution statistics for the features
in Table 1, including the mean, standard error, median, standard deviation, Kur-
tosis score, skewness score, min value, and max value. A normal distribution
check for the features is not necessary [31]. The negative and positive values in
the latitude and the longitude in the “Min” and “Max” columns indicate that
the users who used to commute in Japan might travel abroad during the data
collection. This kind of data can create noises during the training and testing
processes. However, we did not remove it because the data reflects the users’ nat-
ural behavior. Although the noises may lower the accuracy, we want to measure
how practical the approach is when using real data without being manipulated.
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Table 1. Feature distribution

Feature Mean SE Median SD Kurtosis Skewness Min Max

lat 35.262 0.014 35.376 4.554 151.722 −10.935 −36.858 43.907

lon 136.783 0.034 137.846 11.165 248.09 −15.101 −121.979 174.799

month 3.321 0.002 3.000 0.753 −0.260 −0.777 1.000 4.000

day 17.328 0.026 19.000 8.600 −1.075 −0.285 1.000 31.000

hour 13.421 0.019 14.000 6.388 −0.820 −0.417 0.000 23.000

min 28.919 0.053 29.000 17.357 −1.186 0.038 0.000 59.000

weekday 3.986 0.006 4.000 1.966 −1.215 −0.016 1.000 7.000

dc1 4,104.198 137.84 191.318 45,214.683 976.703 27.756 0.000 2,545,473.711

dc2 4,359.489 137.598 239.163 45,140.323 988.797 27.801 0.000 2,548,301.562

dc3 4,586.805 140.910 259.640 46,228.488 995.124 27.895 0.000 2,549,190.471

dc4 4,678.671 140.658 272.654 46,147.07 978.139 27.653 0.004 2,554,832.383

dc5 4,781.704 141.784 276.978 46,516.486 1,002.699 28.001 0.048 2,567,773.385

dc6 4,822.694 143.361 284.604 47,033.864 1,013.685 28.284 0.017 2,568,234.888

SE (Standard Error), SD (Standard Deviation), DC: Distance Coherence

3.3 Learning

This section explains the machine learning algorithms chosen for our model and
the evaluation method. In the dataset, each user has a different label. Each label
has a different set of records.

Average Ensemble Classifications. The dataset contains 107,637 samples
with a large number of labels (348 users). Instead of using the traditional algo-
rithms, we use average ensemble classifications to get better performance. The
average ensemble algorithms build several base estimators independently and
produce one optimal predictive estimator by averaging all the base estimators’
predictions. The combined estimator is better than any single base estimator by
reducing the variance to control over-fitting. The common algorithms include:

– RandomForest [1]: implements a meta estimator that fits some decision tree
classifiers on various randomized sub-samples and uses averaging to create the
best predictive estimator. When each estimator is built, a bootstrap is cre-
ated by randomly sampling the dataset with replacement. The sub-samples’
size is set to be the same as the size of the original input sample. A deci-
sion tree is usually trained by recursively splitting the data (converting the
non-homogeneous parent into the two most homogeneous child nodes). The
algorithm selects an optimal split on the features selected at every node.

– ExtraTrees [2]: produces the best predictive estimator in a way like Random-
Forest. However, there are some differences. While RandomForest uses the
optimal split, ExtraTrees uses the random split. While RandomForest sets
the bootstrap = True by default, ExtraTrees sets the bootstrap = False by
default. It means that while RandomForest supports drawing sampling with
replacement, ExtraTrees supports drawing sampling without replacement.
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– Bagging (Bootstrap Aggregating) [3]: uses all the features for splitting a node
while RandomForest and ExtraTrees select only a subset of randomized fea-
tures for splitting a node.

Stratified K-Fold. We shuffled the data at first and then used a k-fold cross
validation. Since the numbers of samples of the users are imbalanced, using the
normal k-fold cross validation can lead to the following problem. There may exist
a class ck (k ∈ {1, 2, · · · , 348}) in which all the samples belong to the test set; and
the training set does not contain any samples. The classifier, therefore, cannot
learn about the class ck. To solve this problem, we used Stratified k-fold cross-
validation object, which is a variation of k-fold and can deal with imbalanced
data in each class. As presented in Fig. 2, it splits the data in the train and the
test sets. It returns stratified folds made by preserving the percentage of samples
for each class.

Fold 1

Fold 2

Fold 3

Fold 1

Fold 2

Fold 3

Normal KFold

Stratified KFold

Test set Train set

Fig. 2. A stratified KFold

Evaluation Metrics. To evaluate our approach, we measure the following met-
rics:

accuracy =
tp + tn

tp + fp + fn + tn
, precision =

tp

tp + fp
, recall =

tp

tp + fn
(5)

F1 = 2 × recall × precision

recall + precision
, FPR =

fp

fp + tn
, FNR =

fn

fn + tp
(6)
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where tp, tn, fp, fn denote the true positive, true negative, false positive, and
false negative values, respectively. FPR and FNR denote the false positive rate
and false-negative rate, respectively. The accuracy is a good metric when the
distribution for each label is almost similar. However, for an imbalanced dataset,
F1-score is the better metric.

4 Experiment

This section presents the experimental setup, the results obtained after applying
the classification, and how to find the best α for each algorithm.

4.1 Experimental Setup

We implemented the program using Python 3.7.4 on a computer MacBook Pro
2.8 GHz Intel Core i7, RAM 16 GB. The machine learning algorithms are exe-
cuted using scikit-learn3 library version 0.22.

For each ensemble algorithm, the number of base estimators n estimators is
set to 100. The k value in the stratified k-fold cross validation is set to k = 10.
Since the categorical labels are represented in text strings (such as ‘user001’,
‘user002’, etc.), the labels are transformed to numerical values using the label
encoding. While the ordinal encoding encodes a label to an integer array and
the one-hot encoding encodes it to a one-hot numeric array, the label encoding
encodes it to the values between 0 and q − 1 where q is the number of distinct
labels of all the classes. The label encoding is the most lightweight method and
uses less disk space. Since the data is imbalanced, to avoid the situation that
F1 is not between precision and recall, we calculate the three metrics (precision,
recall, and F1 score) for each label and find their average weight by the number
of true instances of each class. This process can be done by setting the parameter
average = weighted in the sklearn.metrics. For the accuracy, this parameter
is not necessary. Since the values of the distance coherence features are small,
we scaled them up to ×104. For each of the three algorithms (RandomForest,
ExtraTrees, and Bagging), we experimented with different α’s. We applied the
classification 107,637 samples with 348 labels, which correspond to 348 users.

4.2 Main Result

The main result is presented in Table 2. In the table, NoDC represents the app-
roach not using distance coherence features, while α-DC represents the approach
using α distance coherence features. As proved later in Sect. 4.3, RandomForest,
ExtraTrees, and Bagging reach the best performance at α = 3, α = 4 and α = 5,
respectively. Thus, we chose 3-DC, 4-DC, and 5-DC to compare with NoDC in
this table (although only 1-DC can already beat NoDC (see Sect. 4.3)).

The result shows that our approach α-DC outperforms NoDC in all the
cases. Comparing all the algorithms using NoDC only with each other, Bagging
3 https://scikit-learn.org/stable/.

https://scikit-learn.org/stable/
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gives the best result with 98.69% of F1 score with 0.02% of false-negative rate.
Comparing all the algorithms using our approach with each other, RandomForest
gives the best result with 99.42% of F1 score and merely 0.01% of false-negative
rate even though RandomForest just reaches α = 3 (which is less than α = 4 for
ExtraTrees and α = 5 for Bagging). Comparing the improvement between α-DC
and NoDC, ExtraTrees gives the best result when 2.34% of F1 score is increased
(� = +2.34) and 0.04% of false-negative rate is reduced (� = −0.04).

Table 2. Result for distance coherent with different ensemble algorithms

Measure RandomForest ExtraTrees Bagging

NoDC 3-DC � NoDC 4-DC � NoDC 5-DC �
F1 97.95 99.42 +1.47 96.77 99.11 +2.34 98.69 99.24 +0.55

Accuracy 97.97 99.42 +1.45 96.80 99.12 +2.32 98.69 99.25 +0.56

Precision 98.05 99.45 +1.40 96.90 99.15 +2.25 98.75 99.28 +0.53

Recall 97.97 99.42 +1.45 96.80 99.12 +2.32 98.69 99.25 +0.56

FPR 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

FNR 0.03 0.01 −0.02 0.05 0.01 −0.04 0.02 0.01 −0.01

NoDC: the approach without distance coherence features,

α-DC (α = 3, 4, 5): the approach using distance coherence features,

�: the improved score between α-DC and NoDC.

4.3 Best Alpha (α) for Each Algorithm

This section explains the experiment to find the best α for each algorithm. First,
α is set to 1 and is then gradually increased until the performance becomes
convergent or reduced after reaching the peak. The result and its graphs are
presented in Table 3 and Fig. 3. The proposed approach using RandomForest,
ExtraTrees, and Bagging got the best performance at α = 3, α = 4, and α = 5,
respectively. Figure 3 shows that in all the algorithms, the graph almost has the
cone shape (the result is gradually increased, gets the peak, and then is reduced
or becomes convergent), not a zigzag shape (in which we cannot predict where
is the peak). The result also shows that by even just using 1-DC (α = 1), our
approach can already beat NoDC.

4.4 Computation Time

For the best algorithms (5-DC using Bagging, 4-DC using ExtraTrees, and 3-
DC using RandomForest), the average computational time for the training and
cross-validation processes from 5 execution times is 2,272 s (38 min), merely 270 s
(4.5 min), and 596 s (10 min) respectively. It is not a big deal for the server.
When the number of users is much more increased (e.g., to thousands), it is not
complicated to transform the current model from the one-class classification to
a multi-class classification where each user has a different classifier with binary
labels representing whether or not a sample belongs to that user.
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Table 3. Result for each alpha

1-DC 2-DC 3-DC 4-DC 5-DC 6-DC

RandomForest F1 99.11 99.41 99.42 99.38 99.36 99.31

Accuracy 99.11 99.42 99.42 99.38 99.37 99.31

Precision 99.15 99.44 99.45 99.41 99.39 99.35

Recall 99.11 99.42 99.42 99.38 99.37 99.31

FPR 0.00 0.00 0.00 0.00 0.00 0.00

FNR 0.01 0.01 0.01 0.01 0.01 0.01

ExtraTrees F1 97.27 98.90 98.98 99.11 99.11 99.11

Accuracy 97.30 98.91 98.99 99.12 99.12 99.11

Precision 97.40 98.95 99.03 99.15 99.15 99.15

Recall 97.30 98.91 98.99 99.12 99.12 99.11

FPR 0.00 0.00 0.00 0.00 0.00 0.00

FNR 0.04 0.02 0.02 0.01 0.01 0.01

Bagging F1 99.03 99.07 99.10 99.14 99.24 99.23

Accuracy 99.04 99.07 99.10 99.14 99.25 99.23

Precision 99.07 99.11 99.14 99.18 99.28 99.26

Recall 99.04 99.07 99.10 99.14 99.25 99.23

FPR 0.00 0.00 0.00 0.00 0.00 0.00

FNR 0.01 0.01 0.01 0.01 0.01 0.01

5 Threat Model

This section presents the threat model, including the focused attack, the adver-
sary’s probability, and the assumptions.

5.1 Targeted Attack

Most of such authentication systems, not just our approach but other previous
biometrics-based authentication, focus on protecting against insider threats in
which the adversary tries to impersonate the authentication of an authorized
user in the system. As mentioned in Sect. 1, at this time, the behavioral-based
authentication should be used as an additional approach to support the conven-
tional PIN code, password, or biometric authentications. So let’s run an example
in which our approach is combined with PIN code-based authentication. Let PrA
denote the probability that the adversary A can break the system. PrA is defined
as:

PrA = Prguess · Prforge (7)

where Prguess and Prforge denote the probability that A can correctly guess
the PIN code and the average probability that A can fool the classifier, respec-
tively. Prforge is the false-negative rate which is the percentage of identification
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Fig. 3. Different alpha’s for distance coherence

instances in which the unauthorized users are incorrectly accepted. Table 2 shows
that all the 3-DC, 4-DC, and 5-DC approaches corresponding to the three differ-
ent algorithms have the same 0.01% of false-negative rate. Thus, Prforge = 10−4.
Let τ and σ denote the number of digits in the PIN code and the number of
guessing candidates for each PIN code digit. If A has nt tries before the device
is locked with many wrong PIN codes, we have Prguess = nt

στ . Therefore:

PrA = 10−4 · nt

στ
(8)

Most of the new smartphone operation systems nowadays require six digits for
PIN code. Typically, there are ten digits of candidates from 0 to 9 for each digit.
The users often have 4 to 6 PIN code tries for Android and iOS before the device
is locked. Therefore, PrA � 4 · 10−10 to 6 · 10−10.

Suppose the attacker can guess the PIN code after shoulder surfing and then
robs the user’s smartphone. Since the application is designed such that every
GPS record is sent to the server in realtime and the GPS history is not stored in
the user smartphone, the attacker cannot see the log from the robbed phone to
imitate the user’s behavior. Also, there is no function of downloading the GPS
log from the server to the smartphone because it is a doubtable action from a
(suspicious) user. The only action that the attacker can manipulate on the GPS
tracking application is to turn it on/off or uninstall it. If the attacker continues
to use the smartphone without being able to search for the history log from
the smartphone application), the probability for the attacker PrA is now 0.01%.
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Even though it is not 0% for the best case, it is still much better than 100% for
A to break the system without our approach. Similarly, if the collusion attack in
which an authorized user shares his/her PIN code to others occurs, PrA is also
0.01%. If the colluded user tells others his/her personal location history, every
single continuous GPS record cannot be imitated. It is why we investigated the
idea of using behaviors (especially long-term and continuous).

The model assumes that the server storing the GPS cannot be accessed or
corrupted by the adversary. The data is encrypted, and only the trusted server
can decrypt it. The data is transmitted via a secure network. Each smartphone
is used by only a unique user. The smartphone and the server are protected
against the side-channel attack collecting the user data via timing information,
power consumption, electromagnetic leaks, or sound. Finally, we assumed that
the users are honest in sending their data to the server, which performs the
classification.

5.2 Security Scenario Discussion

In this section, we discuss other security scenarios from using smartphones.

What if Two Users Live and Work in the Same Areas? As mentioned
in Sect. 3.1, since our project recruited the users randomly, the users live and
work in random areas. Even if in the rare case, when two users live and work
in the same area, they cannot have the same GPS tracking for every single
hour. Each user has many activities at different timestamps, not just at home
and office (such as shopping, outdoor exercising, picking children at schools,
etc.). Furthermore, we can collect indoor positioning inside the home and the
office building besides the GPS such as WiFi or Bluetooth beacons. Since this
paper aims to investigate the benefit of the extra information (i.e., the distance
coherence) from the GPS itself, we do not consider to collect indoor location
information. However, it is entirely possible since we can collect the GPS and
the indoor location information independently. Let’s consider the case when
legal users have the same trajectory within a period of time (e.g., older people
in a senior home have daily activities confined to the surroundings). Since the
longitude and latitude values have 6 decimal places (see Sect. 3.1), the precision
is 0.1 m. With this precision, two users cannot have the same movement log in
a long period.

How Does the System Work When Individuals Are Outside Their
Routine or When the Attacker Follows (imitates) the User’s Behav-
ior? Since these questions are not just for the GPS-based location authentication
but the general behavioral-based authentication, we discuss from the general to
specific perspectives. We emphasize that a single-factor behavioral-based authen-
tication is used to support (not to replace) the conventional approaches such as
password or biometrics; or it is combined with other behavioral factors to build
up a multi-factor behavioral-based authentication. Suppose a user is outside
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his/her routine or the attacker tries to imitate the user’s behavior. In that case,
the password/biometric or other routines are used to lower the false rejection
and false acceptance rates. Although behavioral-based authentication has not yet
been commonly used, researchers proved that this new but promising research
is possible for real applications. For instance, Google has launched the Project
Abacus [33] in 2016 to collect smartphone sensor signals (i.e., front-facing cam-
era, touchscreen and keyboard, gyroscope, accelerometer, magnetometer, ambi-
ent light sensor, etc.). They demonstrated that human kinematics could convey
important information about user identity and serve as a valuable component
of multi-modal authentication systems. Among many behaviors, location is a
typical factor in identifying users. Human beings are creatures of habit, and in
as much as location is a measure of habit [5]. Also, the location is easy to collect
since it is available in most modern smartphones.

Is It a Problem When a User Gets a New Phone? It has no problem
since the smartphone is just the device/tool, not the method. The user can reg-
ister a location-based authentication system with an account and its application
installed in his smartphones. As long as the user does not share his account with
others and an account can only log in one smartphone at a specific timestamp,
his unique GPS data can be collected regardless of how many smartphones are
used and whether the user shares his smartphones with others.

6 Future Work

This section describes an idea for future work based on the separation of daily
and weekly distance coherences. In our current approach, for each sample si, the
distance coherence features are calculated by grouping the other samples, which
have the corresponding clock hours close to the clock hour of si regardless of
the dates. We thus call it daily distance coherence. An example is given in the
first chart of Fig. 4. We can calculate the features chosen for the sample si at
the timestamp 7:00 April 10, 2020 (Friday) using the samples at 7:00±α on any
date of the same user.

However, another promising method may improve the accuracy or F1 score.
For each sample si, we can calculate the distance coherence features by grouping
the other samples, which have the clock hours close to the clock hour of si on
only the days with the same day of the week. We thus call it weekly distance
coherence. We consider the example in the second chart of Fig. 4. Suppose si

occurred at 7:00 April 10, 2020 (Friday); we can calculate the featured chosen
for si from the samples at 7:00 ±α on every Friday such as April 03, 2020, or
April 17, 2020, etc. These features may reflect the lifestyle of the users that we
are aiming for in this paper. For example, a worker goes to work every weekday
but goes to the usual supermarket every Saturday around 10:00; a student has
a training course at a usual stadium every Thursday around 15:00. The weekly
distance coherence can measure these habits. Remark that the weekly distance
coherence features are not covered in the daily ones. Each feature is computed
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Fig. 4. Daily and weekly distance coherence

from the average of all the samples chosen for the main sample. Even though
the set of the samples selected for the weekly case is a subset of the set, their
averages are different in the daily case.

7 Conclusion

This paper has shown that using the distance coherence score as the additional
features can improve user authentication. We collected 107,637 GPS records,
including longitude, latitude, and timestamp from 348 users in Japan. The three
average ensemble algorithms, including RandomForest, ExtraTrees, and Bag-
ging, are applied to the classification and are evaluated using stratified k-fold.
The experimental result showed that our approach outperforms the approach
without the distance coherence in all the cases. The accuracy can reach up to
99.42%, 99.12%, and 99.25% using RandomForest, ExtraTrees, and Bagging,
respectively. The F1 score can be improved even 2.34%, and the false-negative
rate can be reduced by 0.04% using ExtraTrees.

Appendix

A Numeric Example (for Distance Coherence Extraction)

In this section, we give a numeric example for the distance coherence extraction
in Sect. 3.2. Suppose the data consists of 7 samples {s1, s2, · · · , s7} from 2 users
{user1, user2} as showed in Table 4. We explain how to calculate the distance
coherence for each sample {dc11, dc12, dc13, dc21, dc22, dc23, dc24}. Suppose α
(the number of distance coherence feature) is set to α = 1.
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Table 4. Numeric example for calculating distance coherence

Sample ID User/class Timestamp Longitude Latitude Distance coherence

1 User1 2020/01/16 10:55 lon11 lat11 dc11

2 User1 2020/01/17 11:55 lon12 lat12 dc12

3 User1 2020/01/17 12:50 lon13 lat13 dc13

4 User2 2020/01/16 21:30 lon21 lat21 dc21

5 User2 2020/01/17 22:10 lon22 lat22 dc22

6 User2 2020/01/18 21:45 lon23 lat23 dc23

7 User2 2020/01/19 20:10 lon24 lat24 dc25

– For s1, the hour extracted from the timestamp is hour(s1) = 10. We find all
the samples si that belong to the same class (user1) and have hour(si) such
that (hour(s1) − α) ≤ hour(si) ≤ (hour(s1) + α) regardless of the date and
the second. Only s2 satisfies the conditions (i.e., hour(s2) = 11). Thus:

dc11 = 2
√

(lon11 − lon12)2 + (lat11 − lat12)2 (9)

– For s2, hour(s2) = 11. si from user1 that satisfy (hour(s2)−α) ≤ hour(si) ≤
(hour(s2) + α) are s1 and s3 (hour(s1) = 10, hour(s3) = 12). Thus:

dc12 = 2

√
(lon12 − lon11 + lon13

2
)2 + (lat12 − lat11 + lat13

2
)2 (10)

– For s3, hour(s3) = 12. si from user1 that satisfies (hour(s3) − α) ≤
hour(si) ≤ hour(s3) + α) is only s2 (hour(s2) = 11). Thus:

dc13 = 2
√

(lon13 − lon12)2 + (lat13 − lat12)2 (11)

– For s4, hour(s4) = 21. si from user2 that satisfy (hour(s4)−α) ≤ hour(si) ≤
(hour(s4) + α) are s5, s6, and s7 (hour(s5) = 22, hour(s6) = 21, hour(s7) =
20). Thus:

dc21 = 2

√
(lon21 − lon22 + lon23 + lon24

3
)2 + (lat21 − lat22 + lat23 + lat24

3
)2

(12)
– For s5, hour(s5) = 22. si from user2 that satisfy (hour(s5)−α) ≤ hour(si) ≤

(hour(s5) + α) are s4 and s6 (hour(s4) = hour(s6) = 21). Thus:

dc22 = 2

√
(lon22 − lon21 + lon23

2
)2 + (lat22 − lat21 + lat23

2
)2 (13)

– For s6, hour(s6) = 21. si from user2 that satisfy (hour(s6)−α) ≤ hour(si) ≤
(hour(s6) + α) are s4, s5, and s7 (hour(s4) = 21, hour(s5) = 22, hour(s7) =
20). Thus:

dc23 = 2

√
(lon23 − lon21 + lon22 + lon24

3
)2 + (lat23 − lat21 + lat22 + lat24

3
)2

(14)
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– For s7, hour(s7) = 20. si from user2 that satisfy (hour(s7)−α) ≤ hour(si) ≤
(hour(s7) + α) are s4 and s6 (hour(s4) = hour(s6) = 21). Thus:

dc24 = 2

√
(lon24 − lon21 + lon23

2
)2 + (lat24 − lat21 + lat23

2
)2 (15)
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