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Abstract. For a Complex Event Processing (CEP) system to be widely
accepted, mitigating leaks of private information is paramount. In CEP
systems, often private information are revealed through patterns instead
of single events. There are very few mechanisms that protect privacy at
the level of patterns. However these mechanisms consider only sequential
patterns, one of the common pattern types in CEP. But this is highly
confined since there are other common pattern types like conjunction,
negation etc. So as a first step towards multiple pattern type privacy pro-
tection, in this paper we present a hybrid pattern level privacy protection
mechanism that considers three common pattern types: sequence, con-
junction and negation. Our approach is based on three event obfuscation
strategies: event reordering, event suppression and introduction of fake
events to conceal private patterns on the one hand, while minimizing
impact on useful non-sensitive information required by IoT services to
provide a certain Quality of Service (QoS) on the other hand. Our eval-
uations over real-world datasets show that our algorithms are effective
in maximizing QoS while preserving privacy.
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1 Introduction

The Internet of Things (IoT) envisions a world with billions of networked sensors
connected to the internet. Studies show that over 2.5 quintillion bytes of data
are produced every day from these sensors[14]. These data are often raw sensor
values and need to be processed into meaningful information in order to be useful
for IoT applications like smart homes, e-health etc. Complex Event Processing
(CEP) is a famous state-of-the-art paradigm for processing streams of such raw
basic events into meaningful information (called “complex events”) using a set of
processing rules [11]. For example, a fitness tracker can infer the activity “doing
sports” via basic events: speed > 10 km/h and heart rate > 100 bpm.

The challenges while inferring meaningful information is a double-edged
sword. On one side meaningful information is required to offer a certain Qual-
ity of Service (QoS). There is loss in QoS if a CEP system does not detect
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some events that originally existed (false negatives) or detects some non-existing
events (false positives). On the other side some complex events might be privacy-
sensitive. Though a user needs complex events to be detected accurately, he/she
might not want to share any privacy-sensitive events. Thus a privacy protection
mechanism is necessary for users to conceal private events while preserving QoS.

Access control is one prominent technique for privacy protection in CEP.
However, most access control mechanisms protect privacy only at the level of sin-
gle attributes of data [2,16]. But sensitive information is often revealed through
complex data patterns that usually span several attributes. For example, heart
rate and blood pressure might not reveal any useful information when analysed
separately, but might reveal a disease when combined. We call these privacy-
sensitive patterns in the event stream that a user or data owner wants to protect
private patterns, while those patterns that are necessary for CEP applications to
offer services and are not privacy-sensitive public patterns. Hence a pattern-level
access control mechanism is required with which private patterns can be obfus-
cated while preserving as many public patterns as possible (maximum QoS).

Pattern-based access control strategy for CEP systems were proposed in
[13,18]. However both these mechanisms only deal with patterns defined as a
sequence of events. Although a sequence operator is one of the most common
operator types in CEP, there are other common types like conjunction, negation
etc.[5]. Also there can be more than one type of private pattern appearing at
the same time which a user wants to conceal. For instance, on a weekday a user
has taken a day off from work and is shopping. In the area of location privacy,
this scenario can be viewed as two private patterns: a) “shopping” deduced by a
series of location events [17] which is a sequence pattern; b) “not at work” which
is a negation pattern. A user might want both these patterns to be concealed.

So as a first step towards multiple operator privacy protection in this paper,
we introduce Multi-Operator Privacy Protection component (MOP) based on
Integer Linear Programming (ILP) that considers all three commonly used CEP
operator types namely sequence, conjunction and negation. Our MOP is based
on three event obfuscation strategies: event suppression, event reordering and
introduction of fake events, to conceal private patterns while maximizing QoS.

Overall, we make the following contributions in this paper: (1) We propose
a baseline event obfuscation approach MOP, to maximize the utility of obfus-
cated event stream. (2) We introduce two extensions of the baseline approach
working against two different adversary models. (3) For the evaluation of these
approaches, we define the two adversary models that consider background knowl-
edge of event distributions etc. gained from event histories.

The rest of this paper is organized as follows. In Sec. 2 we discuss related
works followed by system model and problem statement in Sec. 3. In Sec. 4, we
present our event obfuscation approaches that strive to maximize the utility of
obfuscated event streams. In Sec. 5, we describe how an adversary uses obser-
vations learned from history data to reveal event obfuscations and describe our
evaluation results, before concluding the paper in Sec. 6.
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2 Related Works

Various access control mechanisms have been proposed to ensure privacy in
event processing systems. However most of these works protect privacy at the
level of attributes, ensuring that certain attributes in the event stream are only
accessible to authorized parties [2,10]. However this is highly confined, since
some attributes are either accessible or not at all, irrespective of whether it is
part of a private or public pattern.

Another branch of privacy protection in event processing systems is differ-
ential privacy [4,8] and zero-knowledge privacy guarantees [15]. Though these
mechanisms promise provable privacy guarantees, these works either protect pri-
vacy at the level of individual events/attributes or they protect privacy for indi-
vidual users whose data are part of a dataset from a large population of users.
The goal of our work is different in the sense that we try to achieve pattern-level
privacy, considering data from a single user rather than a population of users.

Very few works [7,18] have been published that protect privacy at the level
of patterns for CEP systems. Wang et al. [18] proposed a pattern-based access
control strategy based on event suppression for sequence patterns. This approach
conceals patterns by suppressing events that are part of private patterns while
maximizing utility. In [13], Palanisamy et al. proposed an approach based on
event reordering rather than suppression, but again only for sequence patterns.
To the best of our knowledge there are not any research works that ensure
pattern level privacy for CEP systems that consider multiple pattern types.

3 System Model and Problem Statement

In this section, we introduce our system model, which also includes our assump-
tions about the adversary who tries to detect private patterns. Moreover, we use
the utility metric defined in [13] that defines the utility of an obfuscated event
stream, which is then used as an objective in our problem statement.

3.1 System Model

Our system consists of the following components (cf. Figure 1): producers, con-
sumers, CEP middleware in addition to Multi-Operator Privacy protection.

EVENT DEFINITION 
RULES

PRODUCERS
Mul�-Operator

Privacy Protec�on
(MOP)

CONSUMERS
O1

O2

O3

CEP MIDDLEWARE
TRUSTED ENVIRONMENT

Fig. 1. CEP System + Multi-operator privacy protection component
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Like in a typical CEP system [11], Producers generate basic events as input
to the system. A CEP system could have multiple producers, but for this paper
we assume that event streams from different producers are merged together into
a single event stream in the order of timestamps like in [18]. Of course it is
not possible for the users to know the exact event patterns that reveal sensitive
information. Thus a separate system to translate the privacy requirements of
a user into event patterns is necessary and this is a separate area of research
[12]. For our work we assume that the user uses such a system to provide the
necessary event patterns to be concealed. The CEP middleware extracts high
level information (complex events) from basic events which are then forwarded
to the consumers (e.g. an IoT service provider). We use a standard CEP middle-
ware [6] which is a set of interconnected operators (Ox in Fig. 1). Operators are
computing nodes that transforms input event stream into one or more outgoing
event streams based on a set of predefined rules. The cooperative processing of
several such operators result in a complex event. Generally, operators do not
consider the complete (theoretically infinite length) event stream, instead pro-
cess the event stream in smaller frames within a limited time or length called
windows.

In this paper we consider three common operator types: sequence, negation,
and conjunction [5]. A sequence operator captures a pattern in which a set of
events arrive in a specific order in a window. An example sequence pattern denot-
ing unhealthy behaviour of a diabetes patient (i.e., a private pattern) that should
be hidden to an untrusted party (say health insurance company of the user)
could be: SEQ(Eating Sugar,High Blood Sugar Level, Insulin Intake). A
conjunction operator queries the occurrence of a set of events within a win-
dow in any order and an example private pattern for the same user could
be: AND(Eating Sugar,No Insulin Intake). A negation operator queries the
absence of a particular event within a specified window and an example private
pattern could be: NOT (Insulin Intake).

Like in [13,18], we also assume that the CEP middleware and the consumers
are untrusted and are operated by another party other than the user (e.g., an IoT
service provider). So private patterns from producers should be concealed before
they are forwarded to the CEP or consumer. Thus we place our Multi-Operator
Privacy Protection component (MOP) between producers and CEP and forward
all producer events via MOP as shown in Fig. 1. The MOP performs three obfus-
cation strategies namely event reordering, event suppression and introduction of
fake events to hide sequence, conjunction and negation type private patterns
respectively. Both, producers and MOP, run in a trusted execution environment
(e.g. smart phone of a user, private fog node etc.).

It is also important to specify the assumptions about the adversary that tries
to compromise the privacy of users by detecting private patterns. We assume a
“honest-but-curious” adversary which is a common model in privacy. In other
words, one of the non-trusted components (CEP middleware or consumer) might
be the adversary. In this case, the adversary is not able to observe the original
event stream, but can observe the whole obfuscated event stream as sent by the
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MOP. We also assume that the adversary has some background knowledge about
the original event stream learned from external sources (say publicly available
event streams).

3.2 Problem Statement

Informally, the problem solved by our approach is to preserve privacy by perform-
ing the three obfuscations while maximizing QoS. This is not a trivial problem,
since there might be different combinations of obfuscations each having vary-
ing impact on QoS. We measure QoS in terms of false positive patterns (public
patterns introduced by obfuscations that never happened) and false negative
patterns (actual public patterns destroyed by obfuscations). In order to define
the impact of obfuscations more precisely, we use the utility metric proposed
in [13] as given in Equ. 1. However for our work the three terms of this utility
metric now include all three pattern types as opposed to only sequence type
patterns in case of [13]. The utility metric (U) is given as follows:

U = Σ# of matched true public Patterns
i=1 wi − Σ# of matched false positives

j=1 wj

−Σ# of matched private patterns
k=1 wk (1)

The second term in the equation is to introduce a negative penalty for each
false positive. Negative penalties for false negatives are deducted already, since
they are not included in matched public patterns thus reducing the actual utility
metric. Thus, the first two terms increase the utility for each true positive match
of a public pattern and decrease the utility for each false positive or false negative
match. The weights wi and wj shown in Equ. 1 show the relative importance
of different public patterns onto QoS. Matched private patterns are considered
in the third term. Including private patterns in the utility metric rather than
making it a hard constraint (no private pattern matches) enables us to obtain a
trade-off between privacy and QoS, i.e., revealing some private information for
more public pattern matches. Here, weight wk of a private pattern k is given as:

wk = (Σwi + 1) ∗ cpk (2)

Tuning parameter cpk enables to leverage privacy for QoS by specifying a crit-
icality percentage for private pattern k. If we set the private pattern criticality
to 100%, i.e., cpk = 1, then a single match of that private pattern k would
outweigh the effect of all public pattern matches such that, no private patterns
of that type will be revealed (100% privacy). For cpk = 0 that type of private
pattern is always revealed. The problem now is to find a strategy that performs
the three obfuscations and maximizes utility while making it (ideally) impossi-
ble for the adversary to detect concealed private patterns. Solving this problem
requires some assumptions about the background knowledge of the adversary
to understand what possibilities the adversary has to detect event obfuscations.
We consider two kinds of adversary model: deterministic and probabilistic.
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Deterministic Adversary model: This type of adversary requires 100% “con-
fidence” that a private pattern is concealed. One example for such an adversary
could be a car manufacturer who is curious to detect a concealed private pattern
(say bad driving behaviour of the user) that caused damage to the vehicle, with
100% confidence to deny a warranty claim. The adversary in this case employs
three attacks one for each obfuscation mechanism.

Causal order constraint attacks rely on knowledge about causal relationship
between events. We say the order of two events e1 and e2 is causally constrained
if e2 must never happen before e1. Reordering e1 and e2 could immediately be
detected as a violation of this constraint known to the adversary.

Periodic event constraint attacks rely on knowledge about periodic events. For
instance, in a e-health scenario the event “blood sugar level” is recorded every
30 mins. Suppressing such events could be detected immediately as a violation
of this constraint.

Infeasible event constraint attacks are based on knowledge about events that are
impossible to happen in a window. For example, the location event “at mall”
is infeasible after closing hours. Introducing such fake events could be detected
immediately as a constraint violation.

Probabilistic Adversary model: Here, it is sufficient for the adversary to
detect a concealed private pattern with a confidence (γ) < 100%. An exam-
ple adversary could be a car insurance company who might increase the insur-
ance premium, even if a concealed private pattern about the user’s bad driving
behaviour is revealed with 80% confidence. The adversary in this model employs
statistical attacks, in addition to those from the deterministic adversary.

Statistical attacks consider the inter-arrival time distribution of events, either
between same or different types of events. For instance, by analysing a publicly
available data set, an adversary might know that, in 90% of all cases the time
between two insulin injections for patients is around 2 h. Suppressing an “insulin
injection” event would lead to a difference of 4 h between two injections indi-
cating the adversary that an event has been suppressed with 90% confidence.
Thus, besides maximizing utility, obfuscations are to be performed such that
it is unlikely to detect event obfuscations performed with 100% confidence for
deterministic adversaries and below a certain confidence threshold (γ) for prob-
abilistic adversaries.

4 Event Obfuscation Approaches

In this section, we present our two event obfuscation approaches: Counter Deter-
ministic Attack (CDA) and Counter Probabilistic Attack (CPA) obfuscation
strategies that conceals private patterns against deterministic and probabilistic
adversaries respectively. Both the approaches are extensions of a baseline app-
roach based on Integer Linear Programming (ILP) which we will present first in
the next sub-section followed by the two extensions.
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4.1 Baseline ILP Approach

The primary goal of this ILP approach is to find an optimal combination of the
three event obfuscation strategies that maximizes utility as defined by Equ. 1.
The ILP is invoked on a full window of events, whenever this window contains at
least one private pattern of any type. Of course, those windows without private
patterns can be forwarded as it is. The problem of finding an optimal combina-
tion of the event obfuscation strategies is translated as an ILP with the utility
metric as objective.

ILP Formulation:- Parameters: We now derive the parameters to formulate
our ILP.

Table 1. ILP parameters

Parameters Parameter description

N Number of events in the window

TN Set of timestamps of event instances in
the window

NS
TQ, NC

TQ, NN
TQ, NS

FQ, NC
FQ, NN

FQ Set of true and false positives for
sequence, conjunction and negation
type public patterns

NS
TP , NC

TP , NN
TP , NS

FP , NC
FP , NN

FP Set of true and false positives for
sequence, conjunction and negation
type private patterns

WS
TQ, NC

TQ, NN
TQ, WS

FQ, NC
FQ, NN

FQ Set of weights for true and false pos-
itives for sequence, conjunction and
negation type public patterns

WS
TP , NC

TP , NN
TP , WS

FP , NC
FP , NN

FP Set of weights for true and false pos-
itives for sequence, conjunction and
negation type private patterns

We define N as number of events in the window on which our ILP is invoked.
We introduce another parameter set TN of size N representing arrival times-
tamps of event instances in that window. N S

TQ, N C
TQ, and N N

TQ represent list
of matched sequence, conjunction, and negation type true positive public pat-
terns in the window before obfuscation. N S

FQ, N C
FQ, and N N

FQ represent list
of sequence, conjunction and negation type false positive public patterns. Here
TQ and FQ represent true and false positive public patterns. Similar to pub-
lic patterns, we have N S

TP , N C
TP , N N

TP , N S
FP , N C

FP , and N N
FP representing list

of true and false positive private patterns for the three operator types. Here,
TP and FP represent true and false positive private patterns. The above 12
parameters are collectively called pattern parameters. As described in Equ. 1, we
require positive weights signifying relative importance between public patterns
and negative weights for false positives and private patterns. Thus we define 12
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Table 2. ILP variables

Variables Variable description

VS
TQ, VC

TQ, VN
TQ, VS

FQ, VC
FQ, VN

FQ Set of decision variables for true and
false positives for sequence,
conjunction and negation type public
patterns

VS
TP , VC

TP , VN
TP , VS

FP , VC
FP , VN

FP Set of decision variables for true and
false positives for sequence,
conjunction and negation type private
patterns

ONN Matrix for all N ×N ordered pairs in
the window

XN Set of variables representing change in
timestamps

EN Set of decision variables representing
event suppressions

II Set of decision variables representing
event introductions

sets of parameters representing weights (WY
XX) for all three pattern types that

correspond to each of the pattern parameters as shown in the last two rows of
Table 1. These weights are the objective coefficients of our ILP.

Variables: We now define variables required for our ILP formulation
(cf. Table 2). We define 3 sets of binary decision variables: VS

TQ, VC
TQ, and

VN
TQ, one for each pattern type and each variable in a set represent a match for

a true positive public pattern of that type. Similarly VS
TP , VC

TP , and VN
TP rep-

resent match for true positive private patterns. Similarly for false positives, we
introduce another 6 sets of decision variables representing matched false positive
public and private patterns for each operator type: VS

FQ, VC
FQ, VN

FQ and VS
FP ,

VC
FP , VN

FP . Among the false positive variables, those that represent sequence
and conjunction patterns are positive integer variables. This is because there
might be multiple false positive matches for the same pattern after obfuscation
(since there can be multiple instances of the same event type) which is not known
a priori in case of sequence and conjunction patterns which in turn should be
considered for determining the optimal solution. However it is sufficient to define
binary variables for false positive negation type patterns since there cannot be
multiple false positive matches for the same negation type pattern in a window.
The sizes of these 12 variable sets are determined by the cardinality of their
corresponding pattern parameters as given in Table 1.
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All the binary decision variables mentioned above have a common interpreta-
tion and a sample interpretation is given as: VS

TQ[i] = 1 if ith pattern is matched
in that window and 0 otherwise (Here i ∈ {1, 2, ...|N S

TQ|}). Similarly all inte-
ger decision variables have the same interpretation and a sample interpretation is
given as VS

FQ[j] is ≥ 1, one for every match of that pattern and 0 if that pattern
has no match at all in that window (Here j ∈ {1, 2, ...|N S

FQ|}).
The linear combination of the weights and above mentioned decision variables

form the utility function and is also the objective function of our ILP. For clarity,
we group these 12 decision variable sets into 4 sets VTQ, VFQ, VTP , VFP

representing true positive public & private and false positive public & private
patterns by grouping variables of all three pattern types together into one. The
weight parameters are also similarly grouped: WTQ, WFQ, WTP , WFP . Now the
objective function is written as:

maximize

|NTQ|∑

i=1

WTQ ∗ VTQ +
|NFQ|∑

j=1

WFQ ∗ VFQ+

|NTP |∑

k=1

WTP ∗ VTP +
|NFP |∑

m=1

WFP ∗ VFP (3)

We will now describe the auxiliary variables necessary for our ILP. For a sequence
pattern (say SEQ(A,B,C)) to be matched in a window, all ordered event pairs
[SEQ(A,B), SEQ(B,C)] of that pattern should be matched. An ordered event
pair is said to be matched if the two events occur in the same sequence after
obfuscation. Thus we introduce a binary variable matrix ONN ∈ {0, 1}N×N

that represent whether the ordered pairs are matched in the window, and a set
of bounded integer variables XN of size N that represents the change in arrival
timestamps after obfuscation for all event instances in that window. The relation
between these two variables is written as a constraint given by:

ONN [i][j] =

{
1 → if TN [j] + XN [j] > TN [i] + XN [i]
0 → otherwise

(4)

where i, j ∈ {1, 2, ...N}. This means that if an event instance ei happens before
ej , then ONN [i][j] = 1.

For a conjunction pattern to be matched in a window, all instances of event
types that constitute a conjunction pattern should occur in that window. Thus,
we define a set of binary variables EN of size N such that E[i] = 0 if ith event
instance in that window is suppressed and is 1 otherwise (Here i ∈ {1, 2, ...N}).
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For a negation pattern to match, no event instance of that event type in
the negation pattern should occur in the window. To conceal a negation private
pattern, it is necessary to introduce a fake event instance of the event type that
constitutes the pattern. Thus we define another binary decision variable set II

of size |N N
TP | for each negation type private pattern in addition to EN defined

above. II is interpreted as II [i] = 1 if that ith event is introduced fake and 0
otherwise here i ∈ {1, 2, ...|N N

TP |}. This means that additional events might be
introduced in the window and so we extend ONN to O∗

NN , whose size will then
be (N + |N N

TP |) × (N + |N N
TP |). Also TN and XN are changed to T ∗

N and X∗
N

whose sizes are now changed to N + |N N
TP |.

Constraints: Now, we will explain the constraints, that translate the require-
ment for the event obfuscation problem. We classify these constraints into three
categories: sequence, conjunction, and negation constraints.

Sequence constraints ensure that a sequence pattern is matched only if all ordered
pairs of that pattern are matched. Here, all true positive sequence patterns (both
public & private) have similar constraints and a sample constraint is given by

∀N S
TQ : IF (AND(MS

TQ[i])) THEN (VS
TQ[i] = True) (5)

where M
S
TQ[i] ⊂ ONN consists set of all ordered pairs that correspond to ith

sequence pattern in N S
TQ. For false positive sequence patterns (both public and

private), since we do not know a priori the number of matches, it is necessary to
consider all possible combinations of ordered pairs that might lead to a match.
A sample constraint for a false positive sequence pattern is given as:

∀N S
FQ : VS

FQ[i] =
|MS

FQ[i]|∑

j=1

AND(MS
FQ[i][j]) (6)

where MS
FQ[i] contains list of all ordered pair combination sets of the ith sequence

pattern in N S
FQ and M

S
FQ[i][j] ⊂ O∗

NN . The above two constraints ensure
correctness of sequence pattern matches in terms of ordered pairs. Since we
might also perform suppression, when a suppressed event is part of a sequence
pattern, that sequence pattern is also suppressed. Thus to ensure correctness of
a sequence pattern match in terms of suppressed events, we add another set of
constraints for all sequence patterns, and a sample constraint is given as:

∀N S
TQ : IF (AND(US

TQ[i]) THEN (VS
TQ[i] = True) (7)

where U
S
TQ[i] ⊂ (EN ∪ II) consists set of all events that are part of sequence

pattern i. U contains set of all events for every true positive sequence pattern
and list of all sets of event combinations for every false positive sequence pattern.
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Conjunction constraints ensure that a conjunction pattern is matched only if all
event instances of that conjunction pattern are not suppressed. For true positive
conjunction patterns a sample constraint is given by:

∀N C
TQ : IF (AND(UC

TQ[i])) THEN (VC
TQ[i] = True) (8)

where U
C
TQ[i] ⊂ EN contains set of all events that are part of the conjunction

pattern i. This constraint is common for all true positive conjunction patterns
(both private and public). For false positive conjunction patterns (both public
and private) a sample constraint is given by:

∀N C
FQ : VC

FQ[i] =
|UC

FQ[i]|∑

j=1

AND(UC
FQ[i][j]) (9)

where U
C
FQ[i] contains list of all event combination sets that correspond to the

ith conjunction pattern in N C
FQ and U

C
FQ[i][j] ⊂ (EN ∪ II).

Negation constraints ensure that a negation pattern is matched only if an event
instance of a particular event type does not occur in that window. It is not
necessary for any additional constraints for true positive negation type public
patterns since those events will not be introduced. Only those events that are
part of true positive negation type private patterns might be introduced. Thus
the constraint for negation type private patterns is given by:

∀N N
TP : IF (II [i] == True) THEN (VN

TP [i] = False) (10)

Event suppression might introduce a false positive negation pattern. Formally
for a false positive negation pattern to be true, it is necessary that all event
instances of that event type that define the negation pattern are suppressed. A
sample constraint for a negation type false positive pattern is given as:

∀N N
FQ : IF (NOT (OR(UN

FQ[i]))) THEN (VN
FQ[i] = True) (11)

where U
N
FQ[i] ⊂ EN contains set of all event instances of that event type that

constitute ith negation pattern. The above constraint is common for all false
positive negation patterns (both public and private).

The baseline approach described above aims at maximizing utility but does
not consider all adversarial impacts. In the next subsections we will describe how
this baseline approach is extended to the CDA and CPA obfuscation strategies
that protect against deterministic and probabilistic adversaries respectively.
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4.2 Counter Deterministic Attack Obfuscation (CDA)

To ensure protection against the deterministic adversary, it is sufficient if the
approach does not perform any impossible obfuscations. So in this approach we
introduce constraints such that our ILP neither reorders causally ordered pairs
nor suppresses periodic events nor introduces fake infeasible events.

4.3 Counter Probabilistic Attack Obfuscation (CPA)

Probabilistic adversaries consider statistical attacks in addition to attacks of
deterministic adversaries. Thus it is necessary to reduce the confidence level of
the adversary below a certain confidence (γ) as described in Sect. 3. We propose
such an approach that reduces adversary confidence by introducing fake event-
obfuscations analogous to real ones such that obfuscations performed for con-
cealing private patterns become indistinguishable from the pseudo-obfuscations.
To achieve this, it is necessary to consider three factors:

1. Introduce pseudo-obfuscations: To introduce pseudo-obfuscations, we define
pseudo-private patterns similar (but not exactly the same) to real private
patterns. This is done by defining pseudo-private patterns with a combina-
tion of events that are predominantly part of real private patterns. We add
these pseudo-patterns to the list of private patterns to conceal in addition to
actual private patterns. The ILP, thus treats both pseudo and real private
patterns in the same manner and hence the output obfuscations introduced
are indistinguishable and thus the confidence of the adversary is reduced.

2. Number of pseudo-obfuscations to be introduced : To reduce the confidence of
the adversary below γ, by proportionality principle it is necessary to introduce
atleast κ = ((ρ/γ) − 1)% obfuscations where ρ is the prior probability the
adversary has, before we introduce pseudo-obfuscations. If ρ is below the
confidence threshold, it is not necessary to introduce any pseudo-obfuscations.

3. Selection of windows for pseudo-obfuscations: For selecting windows to intro-
duce pseudo-obfuscations one simple way is to uniformly distribute the
pseudo-private patterns over all the windows. But utility of those windows
that already contain private patterns might get affected. This is because
higher the number of private patterns to be concealed, higher the proba-
bility that concealing a private pattern would also affect a public pattern. So
those windows that do not have any private pattern matches are selected for
introducing pseudo-private patterns.

Overall, the idea is to introduce pseudo-private patterns along with real private
patterns only to selected windows such that the obfuscations are revealed with
less than γ% confidence.

5 Evaluation Results

In this section, we evaluate our two obfuscation approaches with respect to their
ability to achieve indistinguishability against adversaries with minimum impact
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onto public patterns (preserving QoS). As all state-of-the-art approaches are
based on single operator types, it is not fair to compare our approach in terms
of either privacy or utility for our evaluations. This is because utility and privacy
are no longer the same between single and multi operator approaches even for
the same window of events. Moreover, obfuscating one operator type pattern
might introduce false positives or negatives of a different pattern type. Such
interdependencies do not exist in case of single operator approaches.

5.1 Evaluation Setup

For the performance evaluation, we used a commodity server with AMD Ryzen
5-2500U processor (6 cores at 2.0GHz) and 16GB RAM. We implemented our
obfuscation algorithms in Python using Gurobi as the ILP solver.

Datasets: To evaluate our approach we used two publicly available real-world
datasets. The first dataset is an online retail dataset [3] that contains all transac-
tions between 01/12/2010 and 09/12/2011 of a UK based online retailer selling
all-occasion gifts. It includes 20,000 transactions and 500,000 purchased items
from among 3,200 different products with timestamps and customer ids. We
selected 50 most popular sequence, conjunction (of length 2 to 4) and negation
patterns altogether as public and private patterns of varying length (e.g. A user
hosting a Christmas Party deduced by the pattern: AND(Party Cone Christ-
mas Decoration, Traditional Christmas Ribbons, Party invites Christmas)). The
window size for these patterns vary from 5–800 events.

The second dataset is a msbnc web page visit dataset [1]. The dataset includes
anonymous web page visits of users who visited msnbc.com in September 1999.
Each window in the dataset corresponds to page views of a user during that day.
Each event in the window corresponds to a user’s request for a web page. We use
the page visits of 20000 users. Similar to the e-commerce dataset, we searched
and selected 25 most popular sequence, conjunction and negation patterns of
varying length. Window size is the number of page visits of a user in a day
and it varies between 3 and 400 pages. Such a dataset might reveal private
information about the user like travel destinations, favourite TV-shows etc.

5.2 Adversary Model

To evaluate the effectiveness of our approaches in protecting privacy, we first
need to elaborate on the two adversary models. In our system model (Sec. 3),
we have assumed that the deterministic adversary has information about causal,
periodic and infeasible event constraints. We also assumed that the probabilistic
adversary has background knowledge about statistical information about true
(typical) inter-arrival time distribution of events on the modified event stream.
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Fig. 2. Evaluations results

Statistical attacks: We assume that from publicly available data the adversary
knows the true mean value μ(A) and true standard deviation σ(A) of the inter-
arrival time distribution for events of event types say A, B, C, etc. So now from
observing the obfuscated event stream, for an event instance say Ai, the adver-
sary can calculate the so-called z-score [9] z(Ai−1, Ai) = t(Ai)−t(Ai−1)−μ((A))

σ((A)) ,
i.e., the number of standard deviations by which the observed inter-arrival time
is below or above the true mean inter-arrival time. When the adversary observes
a potentially suppressed event say Ai in the event stream, he calculates the
Suppression Indicator (SI) = 1 − pz(Ai−1, Ai+1) where pz is the probabil-
ity value corresponding to the z-score of that event instance (z(Ai−1, Ai+1)).



192 S. M. Palanisamy

pz values corresponding to z-scores vary based on arrival-time distribution of
events. Besides it is sufficient to calculate SI for each event of a conjunction
pattern separately and then combine them, since event suppression is also done
at the level of single events. If SI is above the confidence threshold (γ), then the
adversary assumes that a private pattern is concealed in that window. Similar
calculation is employed when the adversary observes a potential fake introduced
event where the z-scores would be negative instead.

Statistical attacks for Sequence patterns : To this end, we assume that for each
ordered pair of event types (A,B), the adversary has knowledge about the true
mean value μ((A,B)) and standard deviation σ((A,B)) of the inter-arrival time
distribution of pairs of event types. Then similar to the calculation of SI, the
Reorder Indicator (RI) is calculated as 1 − pz(Ai, Bj) where pz(Ai, Bj) is cal-
culated from the corresponding z-score. If RI is above a pre-defined threshold,
then the adversary assumes that the event pair has been reordered.

5.3 QoS Preservation

QoS Preservation for CDA: We begin our evaluation by evaluating the negative
impact of concealing private patterns onto QoS. As performance metric, we use
the utility metric defined in Eq. 1. We configure the utility metric such that a)
no private patterns are revealed (privacy takes strict precedence over QoS i.e.,
cp = 1); b) all public patterns are assigned uniformly random weights between
1 and 10 to express the impact of different types of public patterns onto QoS; c)
consequently false positive and false negative public patterns get same weights
in negative. We first evaluate the capability of our approach to conceal private
patterns for different combination of pattern types (sequence, conjunction and
negation). For this evaluation we use the CDA obfuscation strategy. Figure 2a
show the results from both the datasets for all combinations. It can be seen that
the impact of our event obfuscation approach onto utility (QoS) is very small.
The utility value shown here is represented as percentage of maximum theoretical
utility (utility considering only public patterns). The number of public patterns
for the msnbc dataset is lesser compared to e-commerce dataset which in turn
results in lesser false positives and false negatives and hence better utility.

Privacy-QoS trade-off : With increase in number of public patterns, there is a
higher chance that an obfuscation to conceal a private pattern might also impact
public patterns. In this respect we show the impact of our event obfuscation
approaches with increase in the number of public patterns. Figure 2b shows the
result for increasing number of public patterns with the number of private pat-
terns unchanged for both the datasets. It can be seen that the number of public
patterns indeed influence QoS. Besides we show the impact of increasing public
patterns on the number of false positives and false negatives with the same setup
for the two datasets. in Fig. 2c.

CPA Approach: The pseudo-obfuscations introduced by our CPA approach might
affect some public patterns and hence there is a drop in utility at the expense
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of making our obfuscations indistinguishable. Here we compare the drop in util-
ity with and without pseudo-obfuscations. We again use the setting such that
the approaches do not reveal any private patterns. To evaluate the reduction in
confidence achieved by our CPA approach, the required reduction in confidence
ρ−γ is set to 20%. Also we introduce pseudo-obfuscations only in windows that
do not have any private pattern matches. Now for CPA approach, we calculate
κ (cf. Sect. 4), generate 10 pseudo-private patterns for each operator type, dis-
tribute these 10 pseudo patterns κ times uniformly over the selected windows.
Figure 2d shows that the utility comparison between CDA and CPA obfuscation
strategies with decrease in size of selected windows for introducing pseudo-event
reorderings for the e-commerce database and it can be seen that the drop in
utility is negligible to achieve reduction in confidence of the adversary.

Robustness to probabilistic attacks: The confidence of the adversary is evalu-
ated by his precision (correctly identified private patterns divided by the overall
number of correctly or incorrectly identified private patterns). Figure 2e shows
the achieved reduction in adversary precision using CPA approach compared
to CDA approach with decrease in the number of selected windows for pseudo-
obfuscations in case of reordering for both the datasets. We select those windows
with no private patterns to introduce pseudo-private patterns for this evalua-
tion. It can be seen from the figure that, if the number of selected windows
for pseudo-obfuscations decreases, then the achieved reduction in confidence of
adversary also decreases. Figure 2f and Fig. 2g shows the drop in adversary pre-
cision achieved using the CPA approach with the same setup with respect to
suppression and introduction of fake events respectively for both datasets.

Till now, we only evaluated with a setup where privacy took precedence over
QoS, i.e., with 0% revealed private patterns. Now, we evaluate the privacy-QoS
trade-off. In order to realize this trade-off we tune the criticality percentage cpk

in Equ. 5. Figure 2h and Fig. 2i shows number of private patterns and number
of false positives and false negatives over cpk respectively. The figures show that
increase in values of cp increase privacy while decreasing QoS.

6 Summary and Future Works

In this paper, we proposed a hybrid pattern-level access control component for
three most commonly used CEP operators namely sequence, conjunction and
negation. The approach conceals private patterns using three obfuscation strate-
gies: event reordering, event suppression and introduction of fake events. The
approach besides protecting privacy by concealing private patterns, also maxi-
mizes quality of service by preserving as many public patterns as possible. We
presented two approaches that maximize utility while protecting against deter-
ministic and probabilistic adversaries. For future work, the approach could be
extended to include privacy protection for other CEP operators.
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