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Foreword from the DPM 2020 Program Chairs

This volume contains the post-proceedings of the 15th Data Privacy Managmeent
International Workshop (DPM 2020), which was organized within the 25th European
Symposium on Research in Computer Security (ESORICS 2020). The DPM series
started in 2005 when the first workshop took place in Tokyo, Japan. Since then, the
event has been held in different venues: Atlanta, USA (2006); Istanbul, Turkey (2007);
Saint-Malo, France (2009); Athens, Greece (2010); Leuven, Belgium (2011); Pisa,
Italy (2012); Egham, UK (2013); Wrocław, Poland (2014); Vienna, Austria (2015);
Crete, Greece (2016); Oslo, Norway (2017); Barcelona, Spain (2018); and Luxem-
bourg (2019).

This 2020 edition was intended to be held in the University of Surrey, UK, but was
finally held virtually due to the COVID-19 pandemic together with the ESORICS main
conference and all its workshops.

We received 38 submissions. The Program Committee performed excellent work
and all submissions went through a careful review process. Each paper was evaluated
on the basis of significance, novelty, and technical quality. After reviewing the sub-
missions, 12 full papers and 5 short papers were accepted for presentation at the event
and further publication in these post-proceedings.

We would like to thank everyone who helped in organizing the event, including all
the members of the Organizing Committee of both ESORICS and DPM 2020. Our
gratitude goes to Mark Manulis, the workshop chair of ESORICS 2020, and to the
ESORICS 2020 general chair, Steve Schneider. During the event, we had the valued
assistance and help from Kent Leeding. Thanks also go to Sergi Delgado, CEO of
Talaia Labs, Spain, and Marc Juarez, from the University of Southern California, USA,
for accepting our invitation to conduct the invited talks. Last, but by no means least, we
thank all the DPM 2020 Program Committee members, additional reviewers, all the
authors who submitted papers, and all the workshop attendees.

Finally, we want to acknowledge the support received from the sponsors of the
workshop: Institut Mines-Telecom and Institut Polytechnique de Paris (Télécom
SudParis), France, Universitat Autònoma de Barcelona, Spain, UNESCO Chair in Data
Privacy, Cybercat, and projects TIN2017-87211-R and SECURITAS RED2018-
102321-T from the Spanish Government.

November 2020 Joaquin Garcia-Alfaro
Guillermo Navarro-Arribas
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Foreword from the CBT 2020 Program Chairs

The 4th International Workshop on Cryptocurrencies and Blockchain Technology
(CBT 2020) was held in collaboration with the 25th European Symposium on Research
in Computer Security (ESORICS 2020) and the 15th International Workshop on Data
Privacy Management (DPM 2020). Due to the COVID-19 outbreak, the event was held
virtually.

We wish to thank all of the authors who submitted their work. This year, CBT
received 24 submissions, out of which, 8 papers were accepted for presentation as full
papers, complemented by 4 short papers, 2 invited talks, and a discussion panel. The
review process was conducted virtually, involving a rigorous process conducted by the
Technical Program Committee (TPC) chairs, all the members of the TPC, and the help
of some external reviewers.

The CBT 2020 program was organized in three sessions grouping the contributions
into the following topics: Transactions, Mining, Second Layer, Signature Schemes,
Formal Methods, Privacy, SNARKs, and Anonymity. The sessions were chaired by
members of the TCP, and authors and attendees engaged in exciting discussions on
new frontiers in the field of cryptocurrencies and blockchain technology.

We would like to thank all of the people involved in CBT 2020. We are grateful to
the TPC members and the external reviewers for their help in providing detailed and
timely reviews of the submissions; to Sergi Delgado, CEO of Talaia Labs, Spain, and
Marc Juarez, from the University of Southern California, USA, for accepting our
invitation to conduct two keynotes, and for their presence during the event and talks; to
Shin’ichiro Matsuo (Georgetown University, USA), Pindar Wong (VeriFi Ltd., Hong
Kong), Nat Sakimura (OpenID Foundation), Julien Bringer (Convenor of ISO TC307/
WG2), Patrick McCorry (PISA Research), and Florian Kammueller (Middlesex
University London, UK, and TU Berlin, Germany) for accepting our invitation to
conduct a discussion panel on “How cryptocurrency and blockchain technology will
become a trust foundation for the New Normal while ensuring data privacy
management?” We also thank all the members of the Surrey team, especially to Steve
Schneider, Mark Manulis, Kent Leeding, and Mohammed Alsadi, for all their help and
support. Thanks also go to Springer for their great support throughout the entire
process.

Finally, the organization was made possible through the strong help of our
supporters: Institut Mines-Télécom and Institut Polytechnique de Paris, SAMOVAR,
France, Universitat Autonoma de Barcelona, Spain, Cybercat, BART (Inria, IRT
SYSTEMX, Télécom SudParis, and Télécom Paris, France). A special thank you to all
of them. Last, but by no means least, we thank all the authors who submitted papers
and talks, and all the workshop attendees.

November 2020 Joaquin Garcia-Alfaro
Jordi Herrera-Joancomartí
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Fairness-Aware Privacy-Preserving
Record Linkage

Dinusha Vatsalan1(B), Joyce Yu1, Wilko Henecka1, and Brian Thorne2

1 CSIRO’s DATA61, Eveleigh, NSW 2015, Australia
{dinusha.vatsalan,joyce.yu,wilko.henecka}@data61.csiro.au

2 Hardbyte, Christchurch, New Zealand
brian@hardbyte.nz

Abstract. Record linkage aims to identify records corresponding to the
same real-world entity from different databases, while Privacy-Preserving
Record Linkage (PPRL) conducts the linkage in a privacy-preserving
context where private and sensitive information about individuals is not
compromised. Linking records is considered as a classification task where
pairs of records from different databases are classified into matches (i.e.
they refer to the same entity) or non-matches (i.e. they refer to dif-
ferent entities). Due to the absence of unique entity identifiers across
databases, commonly available quasi-identifiers (QIDs), such as name,
gender, address, and date of birth, are used to determine the linkage.
The values in such QIDs are often prone to data errors and variations
making the linkage task challenging.

Fairness in classification is an emerging concept that determines how
much a classifier distorts from producing correct predictions with equal
probabilities for individuals across different protected groups based on
sensitive features (e.g. gender or race). Developing classifiers that are fair
with respect to such sensitive features is an important problem for classi-
fication in general and specifically for PPRL to mitigate the bias against
sensitive and/or minority groups, for example against female group due
to higher likelihood of variations in the QIDs such as last name and
address. While there have been increased interest in this field, fairness
specifically in PPRL research has not been studied in the literature so
far. Fairness for PPRL brings in specific challenges and requirements.

In this paper, we study fairness for PPRL classifiers, analyse appropri-
ate fairness criteria/metric for PPRL, study different forms of fairness-
bias for PPRL and investigate the effectiveness of using fairness-aware
PPRL. Our experimental results conducted on real and synthetically
biased datasets show the efficacy and significance of incorporating fair-
ness constraints in the linkage, leading to higher linkage quality in terms
of both correctness and fairness.

Keywords: Entity resolution · Privacy · Correctness · Fairness ·
Classification

c© Springer Nature Switzerland AG 2020
J. Garcia-Alfaro et al. (Eds.): DPM 2020/CBT 2020, LNCS 12484, pp. 3–18, 2020.
https://doi.org/10.1007/978-3-030-66172-4_1
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1 Introduction

The demand of record linkage to identify records corresponding to the same real-
world entity in different databases has increased significantly in various appli-
cations, such as anti-money laundry, clinical data sharing, and fraud prevention
[4,17,23]. Due to the absence of unique entity identifiers across databases, per-
sonal identifiable information (PII) in commonly available attributes, known as
quasi-identifiers (QIDs), such as name, gender, address, occupation, and date of
birth, is often used to determine the linkage. Given the sensitivity of the PII
used to identify matching records across different organizations and the privacy
concerns, privacy-preserving record linkage (PPRL) is required [23]. PPRL (and
record linkage) is generally a binary classification problem where pairs of records
need to be classified into either ‘match’ (i.e. the pair of records refer to the same
entity) or ‘non-match’ (i.e. the records in the pair refer to different entities)
[7,18,22,23].

Features used in the classification are built by comparing the similarity of
encoded QIDs of record pairs and class labels are ‘matches’ or ‘non-matches’ of
the record pairs. BF encoding of QIDs is a widely used method for PPRL with
different variations proposed in the literature [7,18]. Cryptographic Long-term
Key is one such BF encoding method that encodes all the QIDs of a record into
a single similarity-preserving BF [18]. Similarity of a pair of records encoded
into BFs is then calculated using any token-based similarity functions, such as
Jacccard, Dice, or Hamming [18].

Different classifiers are used in the record linkage as well as PPRL literature,
ranging from simple threshold-based classifiers, rule-based classifiers, to proba-
bilistic linkage and machine learning classifiers [22]. Developing classifiers that
are fair with respect to a protected/sensitive feature/attribute [25], such as gen-
der or race, is an important problem for classification in general and specifically
for PPRL. Fairness of a classifier with regard to a certain protected feature deter-
mines how much the classifier distorts from producing predictions with equal
probabilities for individuals across different protected groups/values. There has
been increased interest in this field due to the concerns that classifiers may intro-
duce significant bias with respect to a certain protected/sensitive feature, such
as race or gender, for example against black people in fraud and crime detection
systems [12] or online recommendation systems [20], and against women in job
recommendation systems [6], however fairness has not been studied specifically
in PPRL literature so far.

As with other classification problems, PPRL can also be biased to certain
groups of individuals grouped by one or several protected attributes (e.g. gender
or race). This imposes different levels of challenges on classifying record pairs
into matches and non-matches for record pairs belonging to different groups.
For example, consider a gender attribute that has two values: male and female.
Further let’s assume that several QIDs exhibit more variance in female records
than in their male counterparts. This variance causes record pairs belonging to
the female cohort to be more difficult to classify. Another challenge to consider
is fairness with regard to record linkage involving minority groups. In supervised
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machine learning a classifier can learn to ignore poor performance on a small
group if it can exploit knowledge about the majority population, potentially
leading to unfair outcomes. Without careful treatment a classifier may inadver-
tently be biased towards the cohort that is easier to classify. These examples
show that achieving fair linkage across different groups is a difficult yet impor-
tant challenge.

In this paper, we study how to improve fairness in PPRL using fairness-aware
classifier following the reductions-based approach [1]. Despite PPRL can be con-
sidered as a classification problem, there exist several challenges for fairness-
aware PPRL classification requiring appropriate fairness definitions and metrics.
We define fairness-bias and fairness metrics for binary classification in PPRL.
We study different forms of fairness-bias for the PPRL problem. To the best of
our knowledge, this is the first work that addresses fairness in PPRL. Our ini-
tial experimental results on real and synthetically biased datasets are promising,
showing fair and accurate linkage for PPRL.

Outline: We describe the preliminaries in the following section, and discuss
fairness metrics for PPRL in Sect. 3. We then describe our approach to reduce
fairness-bias in PPRL in Sect. 4. We conduct an experimental study on real and
synthetically biased datasets in Sect. 5. Finally, we conclude the paper in Sect. 6
with an outlook to future directions of this work.

2 Preliminaries

In this section, we define the problem and describe the preliminaries required
for our study.

We assume p database owners (or parties) P1, P2, · · · , Pp with their respective
databases D1, D2, · · · , Dp (containing sensitive or confidential person-specific
data) participate in the process. A record in database Di is denoted as ri,x
with 1 ≤ i ≤ p and 1 ≤ x ≤ |Di|. We assume a trusted Linkage Unit (LU) is
available to conduct the linkage on encoded records sent by the parties, which is
a commonly used linkage model in many real applications [17]. We also assume
a set of QID attributes A, which will be used for the linkage, is common to all
these databases.

PPRL allows the party Pi to determine which of its records ri,x ∈ Di match
with records in other database(s) rj,y ∈ Dj with 1 ≤ i, j ≤ p and j �= i based
on the similarity/distance between (encoded) QIDs of these records. A binary
classifier C is used to classify every pair of records (ri,x, rj,y) into ‘match’ (labeled
as 1) where the records ri,x and rj,y refer to the same real-world entity or ‘non-
match’ (labeled as 0) where the records refer to two different entities.

In certain applications, the classifier C classifies record pairs into three
classes: match, non-match, and potential match, where the record pairs clas-
sified as ‘potential match’ need to go through a manual clerical review process
[4]. However, clerical review is difficult to be conducted in a privacy-preserving
setting, and research studies have been done on interactive or semi-supervised
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methods for clerical review in PPRL [14]. Without loss of generality, we assume
a binary classifier with the classes of ‘match’ and ‘non-match’ in this paper.

The general PPRL pipeline consists of several steps, starting from pre-
processing databases, encoding or encrypting records using the privacy encod-
ing/masking functions [22], then matching records based on their QIDs using
similarity functions [4], and finally classifying record pairs into ‘matches’ and
‘non-matches’.

Pre-processing: Each party performs the necessary data pre-processing steps
including de-duplication to ensure the quality of their own database. Errors in
the data can propagate to other steps in the pipeline, and therefore this step is
crucial for quality data linkage. It is a common practice to first internally link
(de-duplicate) records within a single database before linking with records from
other databases [4,16]. This ensures that there is only one record per entity in a
database, and therefore leading to one-to-one linking of records across different
databases.

Encoding: QIDs are required to conduct the linkage, however these data often
contain PII and therefore cannot be shared or exchanged with or between the
LU and/or other database owners. Several encoding or masking functions have
been used in the literature [22]. We describe the encoding and matching steps of
PPRL using Bloom filter (BF) encoding technique, which is widely used in both
research and practical applications of PPRL [3,17,22].

A BF bi is a bit vector of length l bits where all bits are initially set to 0. k
independent hash functions, h1, . . . , hk, each with range 1, . . . l, are used to map
each of the elements s in a set S into the BF by setting the bit positions hj(s)
with 1 ≤ j ≤ k to 1. For PPRL, the set S of q-grams (sub-strings of length q) of
QIDs of string values are hash-mapped into BFs [18]. The resulting BFs can be
compared in the matching step using a similarity function.

Matching: The encoded record pairs are compared using a similarity function.
For example, BF encoding requires token-based similarity functions, such as
Jaccard, Dice, and Hamming functions. Dice-coefficient is commonly used for
comparing BFs, as it is insensitive to large number of zeros in long BFs. The
Dice-coefficient of two BFs (b1, b2) is calculated as 2×c∑2

i=1 xi
, where c is the number

of common bit positions that are set to 1 in both BFs, and xi is the number of
bit positions set to 1 in bi, 1 ≤ i ≤ 2.

Classification: The calculated similarities are input to a classifier to classify
the corresponding record pairs into matches or non-matches. Different classi-
fiers are used in the record linkage as well as privacy-preserving record linkage
(PPRL) literature, such as simple threshold-based classifiers, rule-based classi-
fiers, probabilistic linkage and machine learning classifiers [22]. Machine learn-
ing classifiers can provide high quality of linkage, however, supervised machine
learning classifiers require training data with ground-truth labels of ‘matches’
and ‘non-matches’, which are not often available in PPRL context.

Evaluation: The evaluation of the performance of the linkage task consists of
three main criteria: computational and communication efficiency, privacy guar-
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antees, and linkage quality. Computation and communication efficiency is mea-
sured either theoretically using the big-O notation [5] or empirically using run-
time, memory size, number of communication steps, number and size of messages
to be communicated, and number of record pair comparisons required [23]. Pri-
vacy guarantees are either formally proven or empirically measured using metrics
such as Information gain and disclosure risk metrics [22] against privacy attacks.

Linkage quality often refers to the correctness of classification/ prediction
and is measured using the standard metrics, such as precision, recall, area under
curve (AUC), accuracy, and f1-measure [4]. However, linkage quality has another
dimension in addition to correctness, which is fairness. Fairness is the accuracy
of linkage results with regard to different subgroups of individuals [25], while
correctness only considers the overall accuracy of linkage. Different subgroups
are based on one or several sensitive/protected features, such as gender or race.
Such protected features can either be part of the QIDs or not. Even if the
protected feature is not used in the linkage, the linkage can still be biased towards
vulnerable sub-groups based on the protected feature, as will be validated in our
experimental study in Sect. 5.

3 Fairness Metrics

Fairness of the classifier measures the classification model’s behavior towards
different individuals grouped by a particular protected or sensitive feature [2].
The protected feature could either be part of the QIDs used to link records or
not. Let’s assume “gender” is a protected feature dividing a dataset into two
groups: male and female. Fairness of a classifier on this dataset would essentially
mean whether the model treats both the male and female user groups equally in
terms of correct predictions of record pairs belonging to the different groups as
‘matches’ without giving benefit to one group more than the other. We assume
that the protected feature is private and sensitive and therefore not accessible
by the classifier used in PPRL.

While PPRL can be considered as a binary classification problem, the main
difference is that the input features to the classifier come from pairs of records
whereas in general classification problem they are the features of individual
records. The features for PPRL classifier are the similarity scores calculated
between the encoded QIDs of every record pair. These features can either con-
tain one similarity score of a linkage schema or a list of similarity scores cor-
responding to different linkage schemas. Without loss of generality, we assume
in this work that the features for the classifier contain only one similarity score
(resulting from a good or optimal linkage schema).

The classifiers can result in biased predictions for different groups based
on the protected feature. For example, with gender as the protected feature,
female record pairs might have poor accuracy of linkage compared to male record
pairs due to different levels of challenges involved in the linkage. The female
group of individuals might have more likelihood of changing their last name or
address than the male group due to marriage and/or separation. Additionally,
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if the classifier is trained on a protected feature-imbalanced dataset, then the
predictions could be biased towards the minority group. These challenges impose
fairness-bias in PPRL classifiers.

There are many definitions of fairness that have been proposed in the liter-
ature for classification tasks, including group fairness, individual fairness, and
counterfactual fairness [24]. In this study, we limit our scope to group fairness
which states that a classification model is considered fair, if it predicts a par-
ticular outcome for individuals (pair of individuals in PPRL) across the pro-
tected subgroups with almost equal probability [9,24]. Group fairness has three
most commonly used definitions: Demographic Parity, Equal Opportunity, and
Equalized Odds. Without loss of generality, we describe these definitions with
the assumption that the number of groups based on a protected attribute A
is two (a1 and a2) and the number of classes is two (1 for matches and 0 for
non-matches). Y denotes the true labels and Ŷ denotes the predicted labels.

1. Demographic Parity (also known as Independence or Statistical Parity) is
one of the most well-known criteria for group fairness. It states that the
proportion of each group of a protected attribute (e.g. gender) should receive
the positive outcome at equal rates. Positive outcome for the PPRL problem
is being classified as a match (1). A classifier C satisfies demographic parity
if C is independent of the protected attribute A:

P (Ŷ = 1|A = a1) = P (Ŷ = 1|A = a2) (1)

The difference between positive outcome rates of different groups should be
ideally zero, but this is usually not the case in real applications. Approximate
versions of this criteria are:

P (Ŷ = 1|A = a1)
P (Ŷ = 1|A = a2)

≥ 1 − ε (2)

|P (Ŷ = 1|A = a1) − P (Ŷ = 1|A = a2)| ≤ ε (3)

2. Equalized Opportunity (also known as true positive parity) states that each
group should get the positive outcome at equal rates, assuming that people
in this group qualify for it, i.e. conditioned on the ground truth labels. A
classifier C satisfies equalized opportunity criteria if

P (Ŷ = 1|A = a1, Y = 1) = P (Ŷ = 1|A = a2, Y = 1) (4)

3. Equalized Odds (also known as separation) states that the model should miss-
classify positive outcome at equal rates across groups (same False Positive
rate across groups), but also miss-classify the negative outcome at equal rates
across groups (same False Negative rate). A classifier C satisfies Equalized
odds, if it satisfies both

P (Ŷ = 1|A = a1, Y = 0) = P (Ŷ = 1|A = a2, Y = 0) (5)

and
P (Ŷ = 0|A = a1, Y = 1) = P (Ŷ = 0|A = a2, Y = 1) (6)



Fairness-Aware Privacy-Preserving Record Linkage 9

In the PPRL context, predictions of truly matching record pairs as ‘matches’
are important, i.e. equal true positive and/or false positive rate across different
groups. Since Demographic Parity requires equal rate of predictions as ‘matches’
for both groups regardless of the ground truth, it can result in linkage accuracy
loss. Moreover, unlike other classification tasks, PPRL (and record linkage in
general) is a class-imbalanced problem with significantly lower number of record
pairs truly belonging to ‘matches’ while the vast majority of record pairs belong
to ‘non-matches’. This imbalance in ground-truth labels can lead to many false
positives with the Demographic Parity fairness criteria.

Equalized Opportunity only takes the true positive rate of the classifier into
account, whereas Equalized Odds also considers the errors (false negatives and
false positives). In record linkage we are particularly concerned about linkage
errors, as linkage is usually only the first step in an analytics task and the errors
propagate through the analysis pipeline. Therefore, Equalized Odds is the best
fit fairness criteria for PPRL and we therefore use Equalized Odds as the fairness
criteria in our study.

We define fairness loss for the Equalized Odds criteria with respect to a
binary protected attribute A with two groups (a1 and a2) as follows: the average
of (a) the absolute difference between (1) the probability of true matching record
pairs being classified as non-matches given the protected attribute is a1 and (2)
the probability of true matching record pairs being classified as non-matches
given the protected attribute is a2 and (b) the absolute difference between (1)
the probability of true non-matching record pairs being classified as matches
given the protected attribute is a1 and (2) the probability of true non-matching
record pairs being classified as matches given the protected attribute is a2. In
other words, it calculates the average of the differences of false positive rates and
false negative rates between the two groups.

fairness loss = 1/2 × [abs(Pr(Ŷ = 1|A = a1, Y = 0)

− Pr(Ŷ = 1|A = a2, Y = 0)), abs(Pr(Ŷ = 0|A = a1, Y = 1)

− Pr(Ŷ = 0|A = a2, Y = 1))],

(7)

where Y and Ŷ are the true and predicted class labels, respectively, with two
values of 1 (for matches) and 0 (for non-matches). Fairness is calculated as:

fairness = 1.0 − fairness loss (8)

4 Reducing Fairness-Bias in PPRL

Fairness-bias in classification models has attracted a large body of research over
the past decade. There have been several algorithms and techniques proposed
in the literature to improve fairness or mitigate bias in classification problems.
These are broadly categorized into: pre-processing, in-processing (i.e. at training
time), and post-processing.
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1. The aim of pre-processing is to learn a new representation of data such that
it removes the information correlated to the sensitive attribute [13,26]. The
classifier can thus use the new data representation and produce results that
meet the fairness criteria.
It can only be used for optimizing Demographic Parity or Individual Fairness
because it does not have the information of label Y. Further, this category
of methods does not perform well compared to the other two categories and
inferior to the other two categories in terms of fairness and accuracy (correct-
ness). Moreover, the features in PII are usually correlated. Thus it is pretty
much impossible to fully remove the information about the protected feature,
for example, the ‘female-ness’ or ‘indigenous-ness’ of an entity.

2. In in-processing techniques, the idea is to add a constraint or a regulariza-
tion term to the existing optimization objective functions of classifiers. Most
works in literature fall into this category [1,21,25]. Such methods can be used
to optimize for any fairness definition. Moreover, these methods can provide
higher flexibility to choose the trade-off between accuracy and fairness mea-
sures depending on specific algorithm.

3. Post-processing methods attempt to modify a learned classifier in a way that
satisfies fairness constraints. It can be used to optimize most fairness defi-
nitions [10,11]. As with pre-processing, any classifier can be supported and
no re-training is required. However, it lacks the flexibility of choosing any
accuracy–fairness trade-off.

We therefore choose to use in-processing methods to achieve our objective
of fair and accurate PPRL. In the following we describe the reductions-based
approach using grid search algorithm [1] for fairness-aware PPRL classification.

4.1 Reductions-Based Fairness-Aware Classification Method

Since PPRL is a binary classification problem, we study the applicability of
an existing in-processing algorithm for binary classification problem based on
reductions approach, as proposed in [1]. The key idea of this method is to reduce
fair classification problem to a sequence of cost-sensitive classification problems,
whose solutions yield a randomized classifier with the lowest error subject to the
desired fairness constraints.

[1] proposes reduction methods to reduce the classification problem to a series
of different models. To derive fair classification, the objective function is consid-
ered as a saddle point problem from game-theoretic perspective and a Lagrange
multiplier λk is introduced for each of the constraints in the objective function.

The saddle point can be considered as an equilibrium of a game between
two players: the classifier Q and the Lagrange multipliers λ. The Lagrangian
L(Q, λ) specifies how much the Q-player has to pay to the λ-player for each
of their choices. At the saddle point, neither player wants to deviate from their
choice. [1] proposed a ν-approximate saddle point of the Lagrangian in which
neither player can gain more than ν by changing their choice. The algorithm is
run iteratively until the ν-approximate saddle point is met.
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However, when the number of constraints is very small, as is the case with a
binary protected attribute, it is reasonable to consider a grid of values λi, and
select the best value with the desired trade-off between accuracy and fairness.
This algorithm is called grid search algorithm using the reduction approach [1].
In this work, we use the grid search-based reductions algorithm with Equalized
Odds constraints to achieve fair and accurate PPRL.

The proposed method tries a series of different models, each parameterized
by a Lagrange multiplier λi. For each value of λ, the algorithm re-weights and
relabels the input data, and trains a new model (note that λ = 0 corresponds to
the unaltered model). The best model found is finally used to predict the binary
class labels for PPRL with fairness constraints.

4.2 Efficiency Aspects

The complexity of the fairness-aware classification algorithm depends on the
number of candidate record pairs that are input to the classifier. Assuming each
of the p databases contains n records (n×p records in total), the number of sim-
ilarity/distance comparisons required by the naive linkage techniques (without
using any computation reduction methods, such as blocking or filtering [23]) is
quadratic in both n and p (i.e. n2 · p2). The quadratic comparison space can be
reduced by using a blocking or computation reduction method [23].

Any machine learning supervised classifier can be used with the reductions-
based approach for fairness-aware classification. Different classifiers have differ-
ent computation complexity. Assuming the number of features is f , number of
classes is c, number of training samples (record pairs) is s, and the number of
iterations is i, then the complexity of training a logistic regression, for example,
is O((f + 1) × c × s × i) (f operations +1 for bias). Note that this complexity
can change based on things like regularization. The complexity of predictions of
s′ record pairs using the trained classifier is O((f + 1) × c × s′).

In order to make the grid search more efficient, we use a two-step approach.
In the first step, a set of smaller number of values of λ is used. In the second
step, the grid search space is limited to the neighbourhood of values of λ around
the λ of the best model found in the first step to improve the model further.

4.3 Privacy Aspects

As with most existing PPRL approaches, we assume the honest-but-curious
(semi-honest) adversary model [15]. We also assume the linkage model with a
LU to classify the record pairs. There has been a large body of work conducted
on the privacy aspect of the blocking and matching steps [18,23]. In this paper,
we focus on the classification step of the PPRL pipeline (as described in Sect. 2).

Once the similarities are calculated in the matching step, the classifier uses
the similarities of record pairs to classify them into matches and non-matches.
Supervised classifiers require training data with ground-truth labels of matches
and non-matches. The fairness-aware classifier requires training data with only
the similarity scores and the (encoded) protected group values along with the
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ground truth labels to train the classifier. No information about the QIDs nor
encoded QIDs is required.

Similarity scores for different groups would not reveal much information
about the PII of individuals in the group, unless the group contains only one or
a few individuals, in which case the protected group value can be inferred as well
as the individual, especially if it has matching records in the different databases.
To improve the privacy guarantees, these scores can be perturbed at the cost of
some loss in utility. Furthermore, noise addition mechanisms for similarity scores
can be used to meet differential privacy guarantees [8].

5 Experimental Evaluation

In this section, we present the results of our experimental study of our approach
for fairness-aware PPRL described in Sect. 4. In our experiments, the similarity
scores are calculated based on comparing BF encodings (using the Cryptographic
Long-Term Keys method [18]) of record pairs and the protected attribute is
assumed to be gender with two groups, which are ‘male’ and ‘female’. The class
labels are match/1 and non-match/0.

We conducted experiments on the (encoded) dataset from the Australian
Department of Social Science (DSS), Census dataset from the Australian Bureau
of Statistic, as well as synthetically biased DSS datasets. 70% of the data are used
for training the classifier and 30% as test data. We implemented the prototype
for fairness-aware PPRL in Python 3.5.2, and ran all experiments on a server
with four 2-core 64-bit Intel Core I7 2.6 GHz CPUs, 8 GBytes of memory and
running Ubuntu 16.04. We used logistic regression classifier available in sklearn
library for classifying record pairs. We used the grid search algorithm based on
reductions approach [1] available in FairLearn library for mitigating fairness-bias
in classification. We used 50 iterations for the grid search method.

We evaluate the performance of PPRL in terms of two dimensions, which are
correctness and fairness. We use precision, recall, f1-measure, and area under
curve (AUC) metrics to evaluate the correctness. Precision is the percentage of
correctly classified matches against all pairs that are classified as matches and
recall is the percentage of correctly classified matches against all true matches.
f1-measure is the harmonic mean of precision and recall, and is calculated as
f1 = 2 × Precision×Recall

Precision+Recall . AUC measures the 2-dimensional area underneath
the curve of false positive rate vs. true positive rate at different points in [0, 1]
indicating the trade-off between these two rates. Fairness loss and fairness met-
rics are calculated using Eqs. 7 and 8, respectively, to evaluate the fairness. The
objectives of our experimental study are:

1. Studying the impact of imbalance in the protected feature (gender) on the
fairness and correctness of linkage and evaluating how the bias towards the
minority group based on the protected feature can be mitigated

2. Evaluating the trade-off between fairness and correctness achieved with
fairness-aware model compared to the original (fairness-unaware) model
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Fig. 1. Comparison of precision, recall, and f1-measure of male (left) and female (cen-
ter) groups, and overall precision, recall, f1-measure, and fairness (right) for Original
and Fair models on protected feature-imbalanced DSS dataset

3. Studying the impact of bias in QIDs of a certain protected group (e.g. female)
using synthetically biased datasets such that female group contains similarity
scores that are difficult to be differentiated between matches and non-matches
than male group, and evaluating the fairness-bias and the necessity of fairness-
aware PPRL

4. Investigating the adverse effect of large bias in QIDs of a certain group to
the fair predictions using significantly biased datasets such that the overlap
of similarity scores of matches and non-matches is significantly higher for
female group than male group, and evaluating the effectiveness of fairness-
aware PPRL

5. Investigating if simply removing the protected feature (gender) from encod-
ing, matching, and classification helps overcoming the fairness-bias with
respect to the protected feature

In the following, we discuss the results with regard to each of these objectives.

1. Imbalanced protected groups: We first sampled records from the DSS
dataset with different numbers for the two groups. In order to evaluate the
impact of fairness-bias towards the minority group, we sampled records such
that there exist 17760 record pairs belonging to male group and 4000 record
pairs belonging to female group. We did not perturb the similarity scores of the
record pairs.

We generated predictions from the logistic regression model (labeled as ‘Orig-
inal’ in the plots) and fairness-aware logistic regression models with grid search
method (labeled as ‘Fair’). Figure 1 compares the precision, recall, and f1-
measure of each group as well as overall precision, recall, f1-measure, and fair-
ness of linkage with the original and fair models. As can be seen, the recall of
female group with the original model is very low resulting in unfair results for the
female (minority) group. Precision of both groups and overall precision, decrease
slightly with the fairness-aware model, while recall significantly improves with
both groups (especially for the female group) as well as overall. The fairness
value improves significantly and reaches to 1.0 with the fair model. As these
results show, the overall fairness of the model improves significantly at the cost
of some loss in correctness.

2. Trade-off between fairness and correctness: The impact of imposing
the fairness constraints in the classification on the correctness of classification
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Fig. 2. Comparison of fairness loss vs. AUC on the DSS dataset (left) and DSS-biased
dataset (center), and comparison of precision, recall, f1-measure, and fairness on the
ABS dataset (right) for original and grid/fair models.

depends on the dataset, the fairness definition used, as well as the algorithms
used for mitigating unfairness. In general, fairness can have a negative impact
on correctness because it diverts the objective from correctness only to both
correctness and fairness. However, as is the case with the DSS protected feature-
imbalanced dataset, both the overall correctness and fairness could also improve
with the fairness-aware linkage.

As shown in Fig. 2 (left), there are several grid models found with the grid
search method that achieve both higher AUC and lower fairness loss than the
original model (fairness-unaware linkage). However, achieving both higher AUC
and lower fairness loss becomes highly challenging with the synthetically biased
DSS dataset, as shown in Fig. 2 (center). The trade-off between fairness and
correctness results on the ABS dataset is shown in Fig. 2 (right).

3. Bias in QIDs: We next sampled equal number of record pairs from the
DSS dataset for male and female groups and then modified the similarity scores
of female record pairs in order to make female group of record pairs biased with
regard to predictions. We sampled 17760 record pairs for each group (female and
male groups) with equal number of matches and non-matches in each group, i.e.
8880 record pairs are matches in each group and 8880 are non-matches. We used
this balanced dataset in terms of number of classes and number of protected
groups in order to study the sole impact of bias in the QIDs used for linkage on
the classification results.

We then modified the similarity scores of record pairs belonging to female
group. We have drawn random values from normal distribution in the range
of [0.5, 1.0] for matches and [0.4, 0.8] for non-matches and assigned them as
similarity scores for female group. The similarity score distributions of matches
and non-matches are shown in Figs. 3 (left) and 3 (center), for male and female
groups, respectively. As can be seen, there exists a high overlap of similarity
scores of matches and non-matches for female group, making the classification
task for female group more challenging.

Since the fairness loss of the original model is reasonably low (i.e. fairness-
bias is not significant), only one model was identified (with the grid search of
50 iterations) that improves the linkage in terms of both lower fairness loss and
higher accuracy values. As shown in Fig. 4, the improvement in fairness is not
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Fig. 3. Similarity score distribution of true matches and true non-matches in different
groups in the QID-biased (left and center) and highly QID-biased (left and right) DSS
synthetic datasets

Fig. 4. Comparison of precision, recall, and f1-measure of male (left) and female (cen-
ter) groups, and overall precision, recall, f1-measure, and fairness (right) for Original
and Fair models on the QID-biased DSS synthetic dataset

Fig. 5. Comparison of precision, recall, and f1-measure of male (left) and female (cen-
ter) groups, and overall precision, recall, f1-measure, and fairness (right) for Original
and Fair models on the highly QID-biased DSS synthetic dataset

significant, as similar to the improvement in the recall and f1-measure for the
female group at the cost of loss in precision in both groups and overall.

4. More biased QIDs: To study the impact of highly biased QIDs on the
correctness and fairness of linkage as well as the effectiveness of the fairness-
aware model in achieving fair and accurate linkage, we generated a synthetic
highly biased dataset from the DSS dataset. The bias is illustrated in Figs. 3
(left) and 3 (right) for male and female groups, respectively, which shows higher
bias towards the female group with a large overlap between similarity scores
of matches and non-matches making the classification even more challenging.
Comparison of fairness and correctness metrics for each group and overall for
the original and fair models is shown in Fig. 5. The recall of female group with
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Fig. 6. Comparison of precision, recall, and f1-measure of male (left) and female (cen-
ter) groups, and overall precision, recall, f1-measure, and fairness (right) for Original
and Fair models with the protected feature excluded on the DSS dataset

the original model is significantly low due to the high bias in QIDs, resulting in
very low fairness. The fairness-aware model was able to significantly improve the
recall of the female group. As a result, the overall fairness of the model improves
significantly while the overall f1-measure also improves slightly, at the cost of
some loss in precision.

5. Dependency of QIDs on protected feature: We next compare the
fairness and correctness results for each group and overall with the original and
fair models that do not include the protected feature (gender) in the classification
neither in the encoding (i.e. gender is not used as a QID for encoding). We used
the highly biased DSS dataset (Figs. 3 (left) and 3 (right)) for this experiment.
The results are shown in Fig. 6. As shown in these results, the classification model
can still be biased towards a certain vulnerable or minority group based on the
protected attribute even if the protected attribute is excluded from features used
in the classification model as well as not used as a QID for matching and there-
fore not involved in the similarity score calculation. Even when the protected
feature is completely removed from the classification, there could still exist fea-
ture dependency between some of the QIDs and the protected feature, resulting
in hidden bias in the data. As the results show, the fairness can significantly be
improved with the fair model at a small cost to the precision.

The results of our experimental study explain that fairness-bias exists in
various forms for the PPRL problem leading to poor performance of standard
classifiers for a certain (vulnerable/minority) group of individuals. Incorporating
fairness constraints with Equalized Odds criteria in the classification, a fair and
accurate linkage can be achieved for PPRL.

6 Conclusion and Future Work

In this paper, we have studied fairness-bias in privacy-preserving record link-
age (PPRL) and investigated appropriate fairness metrics for PPRL and the
effectiveness of using fairness-aware classifier based on reductions approach [1]
in the context of PPRL binary classification with binary protected attribute.
We studied various forms of fairness-bias for the PPRL problem. Experimental
evaluation conducted on real datasets from the Australian Department of Social
Science (DSS) and Australian Bureau of Statistics (ABS) as well as synthetically
biased datasets shows the effectiveness of the method for fairness-aware PPRL.
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While the initial results are promising, it opens up several lines of research
and experiments in this direction:

1. Evaluating the effectiveness of fairness-aware PPRL algorithm on several real
and/or synthetic datasets that are significantly biased

2. Studying fairness constraints with regard to multiple protected attributes
(e.g. gender and occupation) as well as with multi-valued (more than two)
protected attributes (e.g. race)

3. Investigating fair regression models for continuous similarity values to predict
fairly and accurately the similarity scores of record pairs for PPRL

4. Improving efficiency of the grid search method in terms of the number of
iterations required, for example, using Bayesian optimization method [19]

5. Studying fairness-aware blocking methods to reduce the computation com-
plexity of PPRL while not affecting the fairness of linkage

6. Finally, conducting extensive set of experiments to understand the fairness-
accuracy trade-off with different data, fairness constraints and algorithms
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Abstract. In assessing accurately the risk of being compromised,
anonymized data must consider the balance between utility and secu-
rity. In this paper, we propose a new model for profiling customer pur-
chase records. Our model uses a fixed-size vector that indicates the set
of all goods that a customer has purchased. Aggregating all records for
n customers gives a profile matrix for a customer base. Our interest is
in assessing the risk of re-identification by an adversary who has access
to the profile matrix as an adversarial knowledge. To evaluate the pri-
vacy budget of the differential privacy, we estimate the probability that
a dataset has a profile under some reasonable assumptions. This profile
probability allows us to estimate not only the privacy of the profile, but
also its utility in the form of its mean absolute error.

We have examined the privacy gain expected by performing
representative anonymizations, including top/bottom coding, sam-
pling/suppression, and generalization (the fundamental techniques in k-
anonymity). These anonymization are modeled by means of simple fac-
tors, which allow us to estimate the privacy loss and the mean absolute
error under the assumption that the profile’s bit errors occur as a sum of
independent and identically distributed random variables characterized
by the number of records.

1 Introduction

Big data analytics is an increasingly attractive tool for industries, governments
and scientists. Businesses acquire data about customers and use their personal
data to estimate potential interests and to predict future marketing demands. An
efficient marketing technique segments the set of customers into target subsets,
such as “valuable” users, and communicates effectively with each of the subsets.
This process is referred to as profiling. The profiling process extracts features that
enable the identification of a target user. Typically, pattern recognition, correla-
tion, and machine learning algorithms are used to extract appropriate features.
However, privacy issues have emerged that may have far-reaching consequences.
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Mavriki and Karyda [1] identified the privacy threats related to profiling and
discussed the implications of profiling for individuals, groups and society.

Anonymization, or de-identification, plays an important role in the safe shar-
ing of data in the age of big data because it enables massive-scale data collection
of human activities involving banks, stores, and social networking sites without
revealing individual identities. Profiling personally identifiable information (PII)
is not only risky, but is also restricted by data protection legislation, such as the
EU General Data Protection Regulation [2]. A variety of anonymization tech-
niques have been developed to reduce the re-identification risk. ISO/IEC 20889
[21] classifies the techniques into several categories, namely, statistical tools,
cryptographic tools, suppression, pseudonymization, generalization, and ran-
domization. Typically, the risks are evaluated using a range of privacy models in
which a privacy condition guarantees an upper bound on the risk of reidentifica-
tion disclosure by an intruder. Examples of privacy models include k-anonymity
[11], �-diversity [12], t-closeness [13], β-likeness [14], ε-differential privacy [15],
the maximum-knowledge-attacker model [6], general confidentiality metrics [17],
and the copula-based model [10].

A new issue in anonymization is aggregation. Pyrgelis et al. have pointed out
that aggregated location statistics can violate the privacy of individuals [22].
They studied the membership inference threat by an adversary who has access
to aggregated location time series. The risks associated with anonymization in
aggregated datasets are unclear and are hard to evaluate precisely. Xiao et al.
studied privacy in dynamic datasets in [18]. Examples of the features of these
datasets include the trajectory of locations [22], the statistics of transactions, the
URLs of websites that the target has visited, the titles of movies that the target
has seen [20], the items that the customer has rated [7], the medical records of
operations that the patient has undergone [5], and the list of goods that the
target has purchased [3]. Such features can be used to generate useful profiles
for identifying the target individual.

In this paper, we propose a new model for the profile of customer purchase
records. Our model uses a fixed-size vector that indicates the set of all goods
that a customer has purchased. Aggregating all records for n customers gives
the profile matrix a customer base. Our interest is in assessing the risk of re-
identification by an adversary who has access the profile matrix as a back-ground
knowledge. To evaluate the privacy loss in terms of the differential privacy model
[15], we estimate the probability that a dataset represents a profile under some
reasonable assumptions. This profile probability allows us to estimate not only
the privacy of the profile, but also its utility in the form of its mean absolute
error (MAE) of profiles. To reduce the privacy loss from a profile, we consider
to perform known anonymization techniques and analyze their expected effects
on privacy.

Our contributions of the paper are as follows,

– We propose a new model for profiling cumulative time-series records, e.g.,
customer purchase records for the year, as an � × n matrix involving the
number of goods � and the number of customers n.
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– We prove that the profile of customer purchase records meets a differential-
privacy criterion involving some parameters and shows an improvement in the
privacy budget provided by some representative anonymization techniques.

– We also evaluate the utility loss of an anonymized dataset in terms of the
MAE estimated from the probability of inconsistent bits between the original
and the anonymized datasets.

– Using the open-access database of the 45,047 customer purchase records in
the UCI Machine Learning dataset, we shows a numerical analysis of our
proposed model.

The rest of this paper is organized as follows. In Sect. 2, we define the
differential-privacy model. In Sect. 3, we give fundamental definitions for pro-
filing, a dataset of purchase records, and an adversary. Section 4 proves the
differential privacy of profiling after showing some useful profiling properties
and models for typical anonymization techniques. Section 5 evaluates the effects
of the various techniques on anonymizations. in terms of the privacy and the
utility metrics. After summarizing the trade-off between the privacy and the
utility, we conclude our study in Sect. 6.

2 Preliminary

Differential privacy guarantees that a randomized algorithm behaves similarly
when applied to similar input databases.

Definition 1 (ε-DP). A randomized algorithm A is ε-differentially private if for
any S ∈ Range(A) and for any pairs of neighboring datasets D and D′,

e−ε ≤ Pr[A(D) = S]
PrA(D′) = S]

≤ eε. (1)

Note that we say D and D′ are neighboring if a record t ∈ D does not belong
to D′. In practice, ε-DP is too strong to be satisfied. It is therefore generalized
to allow violation of Eq. (1) with a small failure probability δ as follows.

Definition 2 ((ε, δ)-DP). A randomized algorithm Ais (ε, δ)-private if for any
S ∈ Range(A), and for any pairs of neighboring datasets D and D′, Pr[A(D) =
S] ≤ eεPr[A(D′) = S] + δ.

This implies that Eq. (1) holds with probability of least 1 − δ.

3 Privacy of Aggregated Purchase Records

3.1 Purchase Records

Anonymization or de-identification is the process that removes the association
between a set of data attributes and the data principal that they relate to [4]. In
our study, we model the association as a linkage, in terms of identity, between
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the records in an individual master dataset M and the records in a transaction
dataset D. We assume that data principals are uniquely identified for the records
of table M from certain external knowledge. This assumption is reasonable, given
that each data principal is represented by a single record in table M . In contrast,
the transaction table D stores multiple records for a data principal, making it
relatively difficult to associate records with the correct data principals. Example
of purchase record can be found in the Online Retail dataset in the UCI Machine
Learning Repository1. The master table M describes the customer ID, sex, day
of birth, and country for n = 4 individuals, expressed as a 4 × 4 matrix.

3.2 Customer Profiling

Profiling is the process of constructing user profiles aggregated from personal
data such as online purchase history, financial records, and credit card transac-
tions. It aims to predict the individual’s behavior, interests and decisions. From
an industry perspective, profiling is referred to as Customer Relations Manage-
ment (CRM) or Personalization. We define a simple model of profiling as follows.

A transaction dataset (a matrix) is divided into n subsets according to the n
individuals to give D = D1 ∪ D2 ∪ · · · ∪ Dn. Let mi be the number of records in
Di, i.e., mi = |Di|. Note that the size of each subset depends on the individual
concerned. Generally, there is a power-law distribution of mi, such as Zipf or the
Pareto distribution [16].

For simplicity, we suppress redundant columns from a record and regard it
as a time series of values in a single column. Let D

(g)
i be a projection of dataset

Di to the column regarded as the goods that the i-th customer has purchased
during the observation period. Let G = {g1, . . . , g�} be a set of goods that a
shop carries, where the total number of goods is �.

Definition 3 (profile). Let Di be a dataset for the i-th user, comprising of
mi records. A profile of i-th user is an �-dimensional vector x = (x1, . . . , x�) ∈
{0, 1}� where

xj =
{

1 if gj is in D
(g)
i ,

0 otherwise.

for j = 1, . . . , �.

By using A(Di), we generate a profile x for the i-th customer. Although this
is too simple to model customer profiling in practice, it is significant enough to
identify individuals when many records of activities are aggregated over a long
period. For example, Narayanan and Shamatikov [20] demonstrated that 500,000
Netflix subscribers can be identified from a very small number of records. After
some records are linked to the same customer, an adversary may learn additional
private information based on these linked records. This simple model of a profile
is therefore critical from the privacy point of view.

1 Available at http://archive.ics.uci.edu/ml/datasets/Online+Retail/.

http://archive.ics.uci.edu/ml/datasets/Online+Retail/
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Table 1. Examples of profiles for n = 5, m = 13, � = 3

ID i rank ri Profile xi # records mi Minority

1 1 (1,1,1) 6 0

2 2 (1,0,1) 3 0

3 3 (1,1,0) 2 0

4 4 (0,1,0) 1 1

5 5 (1,0,0) 1 1

Table 2. List of symbols

Symbol Description Range

U Set of customers |U | = n

G Set of goods |G| = �

D Dataset of purchase records |D| = m

mi Number of records that the i-th customer has purchased mmin ≤ mi ≤ mmax

θ Threshold value used for top/bottom coding θ ∈ [1, mmax]

β Random sampling rate β ∈ [0, 1]

c Generalization factor categorizing c elements together 1 ≥ c

Di Array of mi records for the i-th customer mi = |Di|
A(Di) Profile of the i-th customer x ∈ {0, 1}�

A(D) Aggregated customer profiles � × n matrix

Given an aggregation of n profiles, we define A(D), as an � × n matrix of
binary values, which can be useful to an adversary who wishes to track customers.
Table 1 shows an example of profiles for a dataset of m = 13 records for n = 5
customers. The profile xi indicates whether the i-th customer has ordered the
corresponding goods g1, g2, g3, respectively. For example, suppose the history of
orders for the second customer is D2 = (g1, g3, g1). This customer’s history is
then profiled as A(D2) = (1, 0, 1), where the count of g1 is ignored. The column
labeled as “Minority” relates to differential privacy and will be discussed shortly.
In the example, for simplicity, we assign the customer IDs according to their rank
ri in the number of records mi.

Table 2 gives the list of symbols used in the following definitions and analyses.

3.3 Adversary

Given the aggregated customer profiles A(D) and an unknown series of records
Di, an adversary may aim to identify the corresponding profile from A(Di).
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We are interested in the level of confidence the adversary will have in iden-
tifying users based on customer profiles. If we can quantify the risk of being
identified from the profile in terms of an accurate probability, we can adaptively
control the duration of profile accumulation to maintain an acceptably small risk
of privacy breach. Therefore, we evaluate the probabilities related to profiling in
the following sections (Fig. 1)

4 Quantifying Privacy

4.1 Profile Probability

Theorem 1 (profile probability). Let Di be a sequence of mi records of pur-
chase for the i-th customer that are independent and identically distributed over
G with 1/� probability. Then, the i-th profile x occurs with Pr[A(Di) = x] =
pz

i (1 − pi)�−z, where z is the Hamming weight of x and pi is the probability that
a certain bit of x is 1, computed as

pi = 1 − (1 − 1
�
)mi . (2)

Proof. Under the iid assumption, each gj of the � elements of G is chosen with
probability 1/�. The same good may be purchased many times, but only the
first purchase has an effect. Therefore, the probability that gj is not chosen,
even after mi orders (records), is (1 − 1/�)mi , and its complement gives pi.

All bits of x can be 1 with uniform probability pi, implying that the probabil-
ity of x is determined by the number of 1-bits without regards of their locations.
Letting z be the number of 1-bits in x, we have the theorem.

Note that the number of 1-bits in x (= Hamming weight z) follows a binomial
distribution B(�, pi) whose mean is E(z) = �pi.

4.2 Differential Privacy of Profiling

First, we should note a negative aspect of the differential privacy of profiling.
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Remark 1. The profile A(D) does not satisfy ε-differential privacy.

Suppose two neighboring datasets D and D′ such that t ∈ D but t �∈ D′

for a record t, where t is a record made by the i-th individual, who has mi

records in D and has mi − 1 records in D′. Here, Dj = D′
j for j �= i and

Pr[A(D)] =
∏

i Pr[A(Di)]. We are interested in whether

Pr[A(D) = S]
Pr[A(D′) = S]

=
∏n

i Pr[A(Di) = Si]∏n
i Pr[A(D′

i) = Si]
=

Pr[A(Di) = x]
Pr[A(D′

i) = x]
(3)

=
(

pi

p′
i

)z (
1 − pi

1 − p′
i

)�−z

=
(

1 − (1 − 1/�)mi

1 − (1 − 1/�)mi−1

)z (
1 − 1

�

)�−z

is bounded within some range for arbitrary S ∈ Range(A). Note that the quan-
tity, called privacy loss, is monotone increasing with respect to z for 0, . . . , �,
and monotone decreasing with respect to 1 ≤ mi ≤ m. Figure 2 and 3 illus-
trate the distribution of privacy loss for particular values � = 20, 30, 50 and
mi = 20, 30, 40.

It is clear immediately that mi = 1 maximizes the privacy loss. If the i-th
customer has just mi = 1 record in Di, his profile will be xi = (0, . . . , 1, . . . , 0)
(a single bit is 1 and all others are 0) with 1/� probability. However, he has no
record in D′

i, and will never have the same profile as xi, i.e., Pr[A(Di) = xi] = 0
and the privacy loss increases to infinity. This implies that any adversary can
distinguish D from D′ deterministically and ε-differential privacy is too strong to
guarantee the privacy level of profiling. We therefore need to consider a weaker
version of this notion.

Let N1 be the number of customers who have only one record in D. In many
big databases, customers rarely purchase just once and this number may repre-
sent only a small fraction. We can then satisfy Eq. (3) with failure probability
δ1 = N1/n in terms of the following theorem.

Theorem 2 ((ε, δ)-differentially private profile). A profile A(D) is (ε2, δ1)-
differentially private with ε2 = 2 ln(2 − 1/�) + (� − 2) ln(1 − 1/�) and δ1 = N1/n.
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Proof. For any mi > 1, Eq. (3) will satisfy

e−ε− ≤ Pr[A(Di) = S]
Pr[A(D′

i) = S]
=

(
1 − (1 − 1/�)mi

1 − (1 − 1/�)mi−1

)z (
1 − 1

�

)�−z

≤ eε+

for small values of ε− and ε+. If mi = 2, it will be maximized. Because at least
one bit must be 1 in the profile of mi = 2, 1 ≤ z ≤ 2. Therefore,

e−ε− ≤
(

1 − (1 − 1/�)1

1 − (1 − 1/�)

)(
1 − 1

�

)�−1

≤
(

1 − (1 − 1/�)2

1 − (1 − 1/�)

)2 (
1 − 1

�

)�−2

≤ eε+ .

Taking logarithm gives ε− = − ln(2−1/�)−(�−1) ln(1−1/�) and ε+ = +2 ln(2−
1/�)+ (�− 2) ln(1− 1/�). For any � > 2, ε− < ε+. Therefore, ε = ε+ and we have
the theorem.

4.3 Anonymization Models

Profiling the history of purchased goods allows database user to identify cus-
tomers in the records of purchase (at least with a certain probability) and to
predict future purchase orders that the customer might make. We have esti-
mated the privacy loss when the profile is available to an adversary in the pre-
vious section. The risk can be reduced if we modify the dataset slightly before
profiling. This process is known as de-identification, or anonymization.

An anonymization technique is designed to reduce the risk of re-identification
without decreasing the utility of the anonymized data for intended use cases.
Because it is well known that there is a trade-off between utility and privacy
(or degree of resilience against an identification threat), much effort has gone
into exploring combination of anonymization techniques via parameters such as
k-anonymity.

A broad range of algorithms for anonymization have been proposed to date.
ISO/IEC 20889 [21] classifies the techniques into several categories: statistical
tools, cryptographic tools, suppression, pseudonymization, generalization, and
randomization. Here we choose some representative techniques from these cat-
egories for evaluation by our profiling model from both the privacy and utility
perspectives.

Definition 4 (sampling). Let β be a sampling rate in [0, 1]. Let fβ be random
sampling procedure that uses dataset D to output fβ(D), which suppress records
with a probability of 1 − β.

After sampling, the number of records for the i-th customer is reduced to
m′

i = βmi. Note that m′
i can be 0 but we regard the total number of individuals

n an unchanged.

Definition 5 (top coding). Let θm+ be a threshold for the maximum frequency
of records associated with an individual. We use fθm+

(D) to denote the suppres-
sion of records for all individuals with more than θm+ records. That is, no one
has more than θm+ records in fθm+

(D).
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We do not specify the way to choose the redundant records to suppress in this
paper. A reasonable suppression approach is to use random sampling because it
preserves the statistical properties within certain bounds.

Definition 6 (bottom coding). Let θm− be a threshold for the minimum fre-
quency of records associated with an individual. We use fθm− (D) to denote the
addition of dummy records for all individuals with less than θm− records. That
is, no one has less than θm− records in fθm− (D).

Similarly to top coding, we do not assume any particular method for gener-
ating the dummy records. However, the simple duplication of his/her records is
a reasonable approach. Note that, with bottom coding, θm− > 1 guarantees that
there is no record with mi = 1 in fθm− (D). Therefore, we can avoid the issue
of having too few records to satisfy the differential privacy of the anonymized
dataset.

Definition 7. Let c be a generalizing factor in [1, �]. By fc, we denote a gener-
alized set of goods G such that �′ = �/c, where � = |G|. Similarly, let fc(D) be
the generalized dataset for which its set of goods is classified into �/c categories.

A generalizing factor involving real numbers, e.g., c = 1.2, is allowed in our
model. According to ISO 20889 [21], generalization preserves data truthfulness at
the record level. For example, with c = 2, we replace values g1, g2 by a new cate-
gory, say, {g1, g2}, and both records with g1 and g2 in D preserve the relationship
with the new record {g1, g2} in fc(D). This is an important interpretation when
we evaluate the utility of the generalized dataset.

5 Theoretical Analysis

5.1 Privacy of Anonymizations

We can note that neither top coding nor sampling changes the differential-privacy
guarantee.

Remark 2. Given a profile A(D) that satisfies (ε2, δ1)-differential privacy, both
top coding fθm+

and sampling fβ satisfy (ε2, δ1)-differential privacy.

Sampling reduces the number of records for all individuals with the same
probability. The set of individuals having single records in D is therefore reduced
to a set of size βN1. However, the denominator of failure probability will simul-
taneously decrease with βn. Eventually, the failure probability is the same to
δ1.

Theorem 3. For any θm− > 1, a profiling after bottom coding A[fθm− (D)]

satisfies (εθm− , 0)-differential privacy, where εθm− = θm− ln(1 − (1 − 1/�)θm− −
θm− ln(1 − (1 − 1/�)θm− ).
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Proof. With a bottom coding of θm− > 1, the number of records for any indi-
vidual mi is in 1 < θm− ≤ mi ≤ mmax. The privacy loss in Eq. (3) is maximized
for mi = z = θm− . Taking logarithms of both sides, we have the privacy budget
εθm− .

From the premise of θm− > 1, the case of infinite privacy loss will not occur.
We therefore have strict differential privacy when δ = 0.

Figure 4 shows the distribution of privacy budget ε for a bottom coding
threshold of θm− . The privacy degree improves as θm− increases provided the
threshold is below about 10. It slightly increases with θm− because ε maximizes
at the lower bound of z = θm− , which increases with θm− (i.e., the density of
1-bits increases).

Theorem 4. For any c > 1, a profiling after generalization A[fc(D)] satisfies
(εc, δ1)-differential privacy, where εc = 2 ln(2 − c/�) + (� − 2) ln(1 − c/�).

Proof. Simply, replacing � in Eq. (3) by �′ = �/c gives εc. Because N1 is inde-
pendent of �′, the failure probability δ1 is unchanged.

The privacy improves as c increases. We will estimate the utility loss incurred
by generalization in the next section.

k-anonymity is a privacy model that ensures that every equivalence class con-
tains at least k records. To satisfy k-anonymity, the combination of suppression
and generalization is applied with adequate parameters. The above results state
that the privacy budget ε does not change for any suppression by sampling, but
depends on generalization factor c. Hence, we claim that a generalization is a
dominant strategy to control the privacy.

5.2 Utility of Anonymizations

Evaluation of MAE. We evaluate the utility loss incurred by anonymization
processes in terms of MAE between the original profile matrix A(D) and the
altered profiles A(f(D)) performed by anonymization f .

Definition 8 (MAE). Given a dataset D involving n individuals and
anonymization f , the MAE of f(D) is

wf (D) =
1
n

n∑
i

||A(Di) − A(f(Di))|| =
1
n

n∑
i

||xi − x′
i||,

where ||x − x′|| is the Hamming weight of xi ⊕ x′
i = (w1, . . . , w�).

Assuming that w1, . . . , w� are independently and identically distributed, we
consider a random variable Wj for j = 1, . . . , � for wj . The random variable Wj

is 1 if and only if the bits of two profiles, A(Di) and A(f(Di)), are different,
and is 0 otherwise. We can then estimate the conditional probability of Wj = 1
given mi as
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Pr[Wj = 1|mi] = Pr[xj = 1, x′
j = 0 ∨ xj = 0, x′

j = 1|mi]
= pi(1 − p′

i) + (1 − pi)p′
i − pi(1 − p′

i)p
′
i(1 − p′

i),

where pi and p′
i are the probabilities of bits in Di and f(Di) being 1, respectively,

as defined in Eq. (2). We denote as PF (pi, p
′
i) the probability that the two profiles

characterized by pi and p′
i take the same value for a certain bit.

Using probability PF , we estimate MAE as the expected value of Wj , which
has a binomial distribution of size � and PF and is expressed as

ŵf (D) = E[wf (D)] = E[
∑

Wj ] = E[B(PF (pi, p
′
i), �)] = �

n∑
i

PF (pi, p
′
i).

Figure 5 shows the probability distribution of PF (pi, pj). Note that PF is not
always 0 even if pi = pj (the distribution at the orthogonal line in the figure), and
it maximizes at pi = 0.5. Therefore, the MAE has wf > 0 even for f(Di) = Di.

Data. We used the Online Retail dataset (m = 45, 047 and � = 3, 090) [3]
for our analysis. Figure 6 shows the distribution of the number of records mi

with respect to the rank ri over the range 1 to 100. We can characterize its
power-law behavior from the fitted plot of a nonlinear least-squares estimation
as mi = 4250/r0.908

i + 14.06.

Top/bottom Coding. Top coding with θm+ suppresses records whose fre-
quency exceeds the threshold and results in the dataset fθm+

(D), where, for
i = 1, . . . , n,

m′
i =

{
θm+ if mi > θm+

mi otherwise.
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By letting r+ = m−1
i (θm+) be the lower bound of ranking, for which mri

> θm+

for any ri < r+, the estimated MAE is

ŵθm+
=

1
n

⎛
⎝ r+∑

r=1

�PF (pir , pir+
) +

n∑
r=r++1

||xir − xir ||
⎞
⎠ ≤ r+

n
�PF (pmax, pir+

),

where i1, . . . , in are indexes sorted by the number of records. That is, mi1 ≤
· · · ≤ min and pmax = pir1

.
The lower bound of rank r+ increases as the threshold for top coding θm+

decreases. Accordingly, the MAE increases.
Bottom coding with θm− can be made in either by suppressing records whose

frequencies are less than θm− or by adding dummy records for individuals who
otherwise would have too few records. The utility loss of the former may be
smaller than the latter, but we should first estimate both worst cases.

Bottom coding is similar to top coding, with the numbers of records being
modified to

m′
i =

{
θm− if mi < θm−
mi otherwise

for i = 1, . . . , n after the bottom coding. Letting r− be the upper bound of
ranking, for which mir− ≤ θm− , the estimated MAE is

ŵθm− (D) =
1
n

⎛
⎝ n∑

r=r−

�Pr(pir , pir− ) + 0

⎞
⎠ ≤ n − r−

n
�PF (pmin, pir− ),

where pmin = pirn
. Because pmin is very small for most n, and knowing that

PF (pi, 0) = pi, the estimation can be simplified to ŵθm− ≤ (n − ri)/n�pir− .
The threshold in bottom coding θm− controls both privacy and utility met-

rics. If it is high, many records need to be altered and the privacy budget ε
decreases toward εθm− , resulting in better privacy. However, the utility loss will
increase as the threshold increases, in addition to pir− increasing, as shown
above. Consequently, our analysis confirms that bottom coding involves a trade-
off between privacy and utility.

Figure 7 shows that how the estimated MAE decreases as the threshold θm+

increases. We can observe that the utility loss is limited even if we perform the



Differentially Private Profiling of Anonymized Customer Purchase Records 31

0.0 0.2 0.4 0.6 0.8 1.0

30
32

34
36

38
40

42

β

M
A

E
l = 100
l = 90
l = 80

Fig. 9. MAE for sampling

0 50 100 150 200

0.
2

0.
4

0.
6

0.
8

1.
0

mi

p i

c = 5
c = 2
c = 1

Fig. 10. Probability distributions
pi after generalization with c =
1, 2, 5

top coding at θm+ = 200. This is a consequence of the property of long-tail
distribution that a small number of individuals account for most of the records.
In contrast, bottom coding has a significant effect on utility, as shown in the
distribution of the estimated MAE a range of thresholds in Fig. 8.

Sampling. The sampling process samples the records for every individual in D
using a sampling rate β. That is, the number of records for the i-th individual
is modified to m′

i = βmi. The MAE consequently increases and is expressed as

ŵβ(D) =
1
n

n∑
i=1

�PF (pi, βpi) ≥ w(D)+
1
n

n∑
i=1

�(1− (1− 1
�
)βmi − (1− 1

�
)(1+β)mi),

where w(D) is the MAE without any anonymization. Here, the sampling yields
an additional error, given by the second term in the above formula, which is a
function of β.

Figure 9 shows the distribution of the estimated MAE with respect to the
sampling rate β. The utility is reduced as β approaches 0. The MAE is not
exactly zero even if β = 1.0 (i.e., no sampling is performed) because a type of
false positive occurs with PF (pi, 1pi), as discussed in Sect. 5.2.

Generalization uses a generalizing factor c ∈ [1, �] to classify a set of goods
(values) into �/c categories �′ = �/c, while keeping other parameters such as mi

unchanged. The MAE for generalization is therefore given by

ŵc(D) =
1
n

n∑
i=1

�

c
PF (pi, p

′
i) =

�

cn

n∑
i=1

PF (1 − (1 − 1
�
)mi , (1 − (1 − c

�
)mi).

It is not useful to evaluate the difference between profiles with different length
vectors (� and �/c bits). Instead, we consider the change in the mean probability
of non-matching bits of two profiles with respect to the generalizing factor c.
Consider two profiles A(Di) = (0, 0, 0, 1) and A(fc(Di)) = (0, 1) for c = 2 and
� = 4, where the first two bits (underlined) are generalized to give the first bit
0 in A(fc(Di)). We say the bit is consistent if the two bit values (i.e., both are
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Table 3. Summary of privacy and utility for representative anonymization techniques

Anonymization
techniques f

Parameters Privacy Utility
MAE

Factor Range (mi) �′ z ε δ

Identity N/A [mmin, mmax] � mi N/A N/A w(D)

Top coding θm+ [mmin, θm+ ] � 2 ε2 δ0 ŵθm+
(D)

Bottom coding θm− [θm− , mmax] � θm− εθm− 0 ŵθm− (D)

Sampling β [βmmin, βmmax] � 2 ε2 δ0 ŵβ(D)

Generalization c [mmin, mmax] �/c 2 εc δ0 ŵc(D)

k-anonymity ck [mmin, mmax] �/ck 2 εck δ0 ŵck(D)

0 or both are 1). In this example, the profile has one consistent bit and one
inconsistent bit.

The bit probability of profile pi increases as c increases. The mean probabil-
ity of an inconsistent bit PF also increases with c. This is unsurprising because
generalization involves increasing the MAE. Figure 10 shows the probability dis-
tribution pi for mi = 1, . . . , 200. The MAE increases as the generalization factor
c increases.

We can now address the question: How large is the error associated with k-
anonymity? We start by recalling that k-anonymity is ensured by an appropriate
combination of generalization and suppression. Suppression can be done via top
or bottom coding but either does not contribute the privacy budget ε in Sect. 5.1.
We, therefore, focus on generalization as an approach to satisfying k-anonymity.
We note that k is monotone increasing with respect to generalizing factor c and
k = n for the extreme case c = �. Therefore, there will exist 1 < ck ≤ � such
that all equivalent classes contain at least k records.

Remark 3. k-anonymity generalized with ck is (εck , δ)-differentially private and
has an MAE of ŵck .

5.3 Summary

Table 3 summarizes our analysis from the viewpoints of differential privacy and
the utility. We examined several anonymization functions that are modeled as
mapping on a dataset D according to the factors θ, β, and c. The anonymized
dataset f(D) can have variations in the range of numbers of records per individ-
ual mi (frequency of orders) and in the number of values (categories of goods).
From the differential-privacy viewpoint, bottom coding has a significant effect on
both ε and δ. It ensues that, in the anonymized dataset, no one has purchased on
too few occasions, which would aid adversarial identification. It satisfies strict
differential privacy with δ = 0. Our analysis gives estimates for privacy and
utility with k-anonymity under the assumption that k is achieved via the gen-
eralizing factor ck in the analysis.
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6 Conclusions

We have studied the privacy and the utility of profiling cumulative purchase
records. We have proposed a model for profiling records that uses a vector of
goods that a target customer has purchased at least once during the period
of observation. We have analyzed the probability distribution of profiles, given
the number of records for each customer, and proved that it does not satisfy
a strict differential privacy. This is because some customers may have only one
record in the dataset, which can be distinguished easily and implies an infinite
privacy loss. Instead, we have developed a weaker differential-privacy measure
that has a small probability of failure against an adversary who has a background
knowledge of the profiles for all customers.

Some techniques of anonymization are known to reduce the risk of re-
identification from an anonymized dataset. We have examined the privacy gain
expected by performing representative anonymizations including a top/bottom
coding, sampling/suppression, and generalization (the fundamental techniques in
k-anonymization). These anonymizations are modeled in terms of simple factors
that enable us to estimate the privacy budget and the MAE under the assump-
tion that the profile’s bit errors occur as a sum of independent and identically
distributed random variables characterized by the number of records.

One of the interesting results from our analysis is that, among the set of
anonymization techniques, bottom coding plays the most significant role in char-
acterizing differential privacy. With a threshold on the number of records, bottom
coding best suppresses (or hides among dummy records) those risky records that
are most likely to be identified by an adversary.
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Abstract. Integrating data from multiple sources with the aim to iden-
tify records that correspond to the same entity is required in many real-
world applications including healthcare, national security, businesses,
and government services. However, privacy and confidentiality concerns
impede the sharing of personal identifying values to conduct linkage
across different organizations. Privacy-preserving record linkage (PPRL)
techniques have been developed to tackle this problem by performing
clustering based on the similarity between encoded record values, such
that each cluster contains (similar) records corresponding to one sin-
gle entity. When employing PPRL on databases from multiple parties,
one major challenge is the prohibitively large number of similarity com-
parisons required for clustering, especially when the number and size
of databases are large. While there have been several private blocking
methods proposed to reduce the number of comparisons, they fall short
in providing an efficient and effective solution for linking multiple large
databases. Further, all private blocking methods are largely dependent on
data. In this paper, we propose a novel private blocking method address-
ing the shortcomings of existing methods for efficiently linking multiple
databases by exploiting the data characteristics in the form of probabilis-
tic signatures, and we introduce a local blocking evaluation framework
for locally validating blocking methods without knowing the ground-
truth data. Experimental results on large datasets show the efficacy of
our method in comparison to several state-of-the-art methods.

Keywords: Entity resolution · Privacy · Scalability · Probabilistic
signatures · Clustering

1 Introduction

Linking data from multiple sources with the aim to identify matching pairs
(from two sources) or matching sets (from more than two sources) of records
that correspond to the same real-world entity is a crucial data pre-processing
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task for quality data mining and analytics [3]. Various real-world applications
require record linkage to improve data quality and enable accurate decision mak-
ing. Example applications come from healthcare, businesses, the social sciences,
government services, and national security.

Record linkage involves several challenges making the process not trivial.
Due to the absence of unique entity identifiers across different databases, it is
required to use the commonly available quasi-identifiers (QIDs), such as names
and addresses, for linking records from those databases. QIDs generally contain
personal and often sensitive information about the entities to be linked, which
precludes the sharing of such values among different organizations for linkage
due to privacy concerns. Known as privacy-preserving record linkage (PPRL)
[16,19], this research has attracted increasing interest over the last two decades
and has been employed in several real projects [2,6,13].

A prominent challenge of PPRL of multiple large databases is the quadratic
complexity of similarity comparisons required between QIDs of records with the
number of databases to be linked and their sizes. Blocking techniques are being
used in the linkage to reduce the number of comparisons by grouping records
according to a certain criteria and limiting the comparison only to the records in
the same group [3]. However, existing private blocking methods do not perform
well on low latency and high-scale data due to either (1) their dependency on
data-sensitive parameters that need to be tuned for different datasets [7,8,10,
11,14,15,20,23], (2) they require external data of similar distribution [8,10,14,
20,23], (3) they require similarity computations for blocking itself which makes
them not scalable to linking multiple large databases [1,8,10,14,15], (4) most
of them are not developed for linking multiple databases (except [8,11,15]), or
(5) they do not support efficient subset matching from any number of databases
[8,11,15]. In this paper, we address these shortcomings by developing a novel
private blocking method based on probabilistic signatures and proposing a local
blocking evaluation framework for tuning data-dependent parameters.

The values in QIDs are often prone to data errors and variations, which
impacts the quality of blocking as well as makes the linkage task challenging
[3]. Probabilistic signatures (p-signatures) leverage the redundancy in data to
reduce the impact of data quality issues on blocking. Subset of information
contained in a record that can be used to identify the entity corresponding to
that record is called as a signature. For example, ‘John Smith’ is a frequently
occurred name, however, ‘John Smith, Redfern’ is more unique and more likely
to correspond to the real-world entity as similar as ‘John Smith, Redfern, NSW
2015’. Probabilistic identification of such signatures for linking records (in the
non-PPRL context) has been studied in an existing work [24].

In this paper, we extend the idea of using p-signatures for efficient data-
driven blocking for PPRL of multiple databases. Our approach does not depend
on external data, and it does not require any similarity computations between
records for blocking, as required by most of the existing methods [8,10,14,15].
In addition, our method enables subset matching for multi-party PPRL, which
aims to identify matching records from any subset of multiple databases held
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by different parties, for example, linking patients who have visited at least three
out of ten hospitals. Existing blocking methods do not facilitate nor efficiently
facilitate blocking for subset matching [8,11,15]. Moreover, existing methods are
sensitive to errors and variations in the blocking keys. For example, if a record
contains missing values in part of the blocking key, it will be misplaced in a wrong
block, while with signatures the part with the missing value will not become a
signature and thus will not be placed in a wrong bucket, improving the quality
of blocking.

However, as with all existing methods, the blocking quality in terms of effec-
tiveness of reducing the comparison space as well as coverage of true matches
depends significantly on the signatures used. We use multi-signature strategy to
improve blocking quality. Further, we propose a framework to locally evaluate
the blocking quality guarantees individually by the database owners in order
to choose an appropriate signature strategy (or parameter settings) depending
on the datasets to be blocked. Our proposed local blocking evaluation met-
rics (which we refer to as PQR-guarantees metrics for Privacy, Quality, and
Reduction guarantees of blocking) can be used to locally evaluate any blocking
method for PPRL.

We provide a comparative evaluation of our proposed method with several
state-of-the-art blocking methods for PPRL in terms of coverage of true matches,
reduction in record comparisons, and privacy guarantees against frequency infer-
ence attacks [21] using large datasets. We also evaluate the effectiveness of our
blocking method for multi-party PPRL using a black box clustering method
[22] and compare the results with no blocking and using an existing multi-party
blocking method [11]. Experimental results show that our method outperforms
the state-of-the-art methods in terms of all three aspects.

Outline: We describe preliminaries in Sect. 2 and in Sect. 3 we present our proto-
col. In Sect. 3.1, we introduce a novel method to locally evaluate Privacy, Quality,
and Reduction guarantees of any blocking methods. We analyze our protocol in
terms of complexity, privacy in Sects. 3.2 and 3.3, respectively, and validate these
analyses through an empirical evaluation in Sect. 4. Related work is reviewed in
Sect. 5. Finally, we conclude the paper in Sect. 6.

2 Preliminaries

An outline of the general PPRL pipeline is shown in Fig. 1. Assume P1, . . . , Pp

are the p owners (parties) of the deduplicated databases D1, . . . ,Dp, respectively.
PPRL allows the party Pi to determine which of its records ri,x ∈ Di match
with records in other database(s) rj,y ∈ Dj with 1 ≤ i, j ≤ p and j �= i based on
the similarity/distance between (masked or encoded) quasi-identifiers (QIDs) of
these records. The output of this process is a set M of match clusters, where a
match cluster m ∈ M contains a set of matching records of a maximum of one
record from each database and 1 < |m| ≤ p. Each m ∈ M is identified as a set of
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Fig. 1. General pipeline of the PPRL process

matching records representing the same entity. A linkage unit (LU) is generally
employed to conduct PPRL using the encoded QID values of records sent by the
database owners.

Assuming each of the p databases contains n records (n×p records in total),
the number of similarity comparisons required is quadratic in both n and p (i.e.
n2 ·p2). The quadratic comparison space is computationally expensive for cluster-
ing techniques with large-scale data. However, majority of the comparisons are
between non-matches as record linkage is generally a class-imbalance problem
[3]. Blocking aims at reducing the comparison space for linkage by eliminating
the comparisons of record pairs that are highly unlikely to be matches. There are
numerous blocking strategies [4] developed in the literature for record linkage
and PPRL.

Generally, the records are grouped into blocks for each database Di (denoted
as Bi) and the blocks of encoded records of each database (denoted as BE

i ) are
sent to a linkage unit (LU) to conduct the linkage of these encoded records from
multiple databases using a clustering technique [22]. At the LU , the records are
processed block by block (i.e. clustering is applied on each block B ∈ B, where
B contains the union of blocking keys in BE

i , with 1 ≤ i ≤ p).
The existing blocking methods for PPRL require data dependent parameters

to be tuned or external data of similar distribution for blocking. Exploiting the
data characteristics, we propose a blocking method based on multiple signatures.
Redundancy is one of the common data characteristics in real data as only some
information in a record is sufficient to uniquely identify and link records. Such
informative part in a record becomes a signature. Each unique signature becomes
a blocking key in our blocking method.

Definition 1 (Signature). Given records R with QIDs A, a signature s is a
subset of information in a record r ∈ R, i.e. s ⊂ ∀a∈Ar.a, that can uniquely
identify the corresponding entity with high probability.

Example 1: A record r1 with the values of QIDs r1.a1 = ‘smith’, r1.a2 =
‘william’, r1.a3 = ‘redfern’, r1.a4 = ‘2015’, has the signature s1 = ‘smwr316’,
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Fig. 2. An example encoding of two sets S1 = {‘apple’, ‘orange’, ‘berry’, and ‘pear’}
and S2 = {‘apple’, ‘orange’, ‘berry’} into BFs b1 and b2, respectively, and membership
test on the intersected BF (b1 ∩ b2). For example, ‘pear’ is not a member of b1 ∩ b2.

where the signature is generated based on the concatenation of the first two
characters of a1, first character of a2, none of the characters of a4, and phonetic
encoding of a3.

Definition 2 (Signature strategy). A signature strategy is a function f(·) of
generating a signature for each record r ∈ R from ∀a∈Ar.a.

Example 2: f(a1[0 : 2] + a2.phonetic()) is a signature strategy, which returns
the first two characters and phonetic code of QIDs a1 and a2, respectively.

We use multiple such signature strategies to improve the blocking quality
(recall of true matches) at the cost of more record pair comparisons. For each of
the signature strategies records containing the same signature are grouped into
one block, and blocks of records of the same signature across multiple databases
are compared and linked using clustering techniques [22].

In order to identify the common blocks (signatures) between two or multiple
databases held by different parties without learning the non-common signatures
of a party by other parties as well as any signatures by the LU , the parties
encode their signatures into a Bloom filter (BF).

Definition 3 (BF encoding). A BF bi is a bit vector of length l bits where
all bits are initially set to 0. k independent hash functions, h1, . . . , hk, each with
range 1, . . . l, are used to map each of the elements s in a set S into the BF by
setting the bit positions hj(s) with 1 ≤ j ≤ k to 1.

Figure 2 illustrates the encoding of two sets S1 = {‘apple’, ‘orange’, ‘berry’,
and ‘pear’} and S2 = { ‘apple’, ‘orange’, ‘berry’} into two BFs b1 and b2, respec-
tively, of l = 9 bits long using k = 2 hash functions. Collision of hash-mapping
occurs where two different elements are mapped to the same bit position. Colli-
sion can result in false positives however providing privacy guarantees through
the level of uncertainty about a true mapping at the cost of utility loss.
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Definition 4 (Membership test). Membership of an element s in a set that
is encoded into a BF b can be tested by checking if ∀k

i=1b[hi(s)] == 1. If at
least one of the hash functions returns 0, then the element could not have been
a member of the set that is encoded into b.

We use counting Bloom filter (CBF) [5] to count the number of par-
ties/databases that have common signatures for multi-party PPRL.

Definition 5 (CBF encoding). A counting Bloom filter (CBF) c is an integer
vector of length l bits that contains the counts of values in each position. Multiple
BFs can be summarized into a single CBF c, such that c[β] =

∑p
i=1 bi[β], where

β, 1 ≤ β ≤ l. c[β] is the count value in the β bit position of the CBF c. Given p
BFs bi with 1 ≤ i ≤ p, the CBF c can be generated by applying a vector addition
operation between the bit vectors such that c =

∑
i bi.

Secure summation protocols can be used to securely calculate the sum of p
values v1, · · · , vp without learning the individual values vi, but only the sum∑p

i=1 vi. vi can either be a single numeric value or a vector of numeric values.

3 Methodology

In this section we describe the steps of our Privacy Preserving Probabilistic sig-
nature (P3-SIG) blocking method, which is outlined in Algorithm 1. It consists
of three phases:

1. Signature generation: This phase involves identifying and agreeing on
signature strategies and generating candidate signatures (lines 1–5 in Algorithm
1). The probability of a candidate signature to appear in records is bounded
by the minimum and maximum size of resulting blocks (kmin and kmax, respec-
tively) for privacy and comparison reduction guarantees, respectively. Signatures
that appear in too many records are often redundant (non-informative) and sig-
natures that appear in very few records can be uniquely re-identified against
inference attacks.

The resulting candidate signatures are locally evaluated in order to select and
agree on a set of good signature strategies to be used by all parties to generate
signatures or blocking keys (lines 6–7 in Algorithm 1). We use multi-signature
approach where multiple such good signature strategies are used to improve the
coverage of true matches. Good signature strategies are determined considering
three aspects: (1) comparison reduction, (2) coverage of true matches, and (3)
privacy guarantees of the resulting blocks against frequency attack. We will
describe the local blocking evaluation in terms of these three aspects in Sect. 3.1.

2. Common signatures identification: Once a set of good signature
strategies are agreed upon by all parties, the parties individually generate the
signatures for their records using the agreed signature strategies and hash-map
the resulting signatures into a Bloom filter (BF) (lines 16–18). If the linkage
task is to identify common blocks across all p parties, then the intersected BF
of all parties’ BFs is sufficient to calculate the common signatures/blocks. The
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Algorithm 1. P3-SIG blocking (described in Sect. 3)

Input:
- Ri : Party Pi’s records, 1 ≤ i ≤ p

- S′ : A set of signature strategies f(·)
- e(·) : A function to locally evaluate blocking
- sm : Minimum subset size, with 2 ≤ sm ≤ p
- h(·) : Hash functions for BF encoding
- l : Length of BF
- k : Number of hash functions
Output:
- C : Blocks from all parties

Phase 1 (by each party Pi, with 1 ≤ i ≤ P):

1: for f ∈ S′ do: // Iterate strategies
2: Bf = {} // Initialize inverted index
3: for r ∈ Ri do: // Iterate records
4: s = f(r) // Signature
5: Bf [s].add(r) // Store in inverted index
6: e(Bf ) // Evaluate signature strategy
7: f′ = agree(S′, ∀f e(Bf )) // Agree on a signature strategy

Phase 2 (by all parties Pi, with 1 ≤ i ≤ P):
8: for 1 ≤ i ≤ P do: // Iterate P parties
9: Bi = {}; bfi = [] // Initialization
10: for r ∈ Ri do: // Iterate records
11: s = f′(r) // Signature of r
12: Bi[s].add(r) // Store in inverted index
13: for s ∈ Bi do // Iterate signatures
14: if not kmin ≤ len(Bi(s)) ≥ kmax do // Larger and smaller blocks
15: Bi.remove(s) // Prune signatures
16: for s ∈ Bi do: // Iterate signatures
17: for 1 ≤ j ≤ k do: // Hash functions
18: bfi[hj(s)] = 1 // Set to 1 in BF
19: cbf = sec sum(∀ibfi) // Generate CBF

Phase 3 (by LU and by each party Pi, with 1 ≤ i ≤ P):
20: C = {} // Initialization of C
21: for c ∈ cbf // LU iterates positions in CBF
22: if c < sm then // Count less than sm
23: c = 0 // Set to 0
24: else // Count of at least sm
25: c = 1 // Set to 1
26: ∀iC.send to Pi() // LU sends Common BF to parties
27: for 1 ≤ i ≤ P do // All parties
28: for s ∈ Bi do // Iterate signatures
29: if not ∀k

j=1cbf[hj(s)] == 1 then // Membership test
30: Bi.remove(s) // Remove non-matching signatures
31: Bi.encode() // Encode records and BKVs
32: Bi.send to LU() // Send encoded blocks to LU
33: for 1 ≤ i ≤ P do // LU iterates parties
34: C = ∪iBi // Union of blocks from all parties
35: return C // Output C

intersected BF contains 1 in positions that have 1 in all parties’ BFs and 0 if at
least one of the parties does not have 1 in those positions. An example is shown
in Fig. 2 for two BFs.

However, for the linkage task of identifying all signatures/blocks that are
common in at least sm of p parties (for subset matching), we propose to use a
CBF of p BFs which contains counts of 1-bits from all p BFs. A CBF is generated
from all p BFs using a secure summation protocol (line 19). It contains the
count values of common signatures (i.e. how many parties have those common
signatures), which are in between 0 (if none of the p parties’ BFs contain 1 in
those bit positions) and p (if all p parties’ BFs contain 1).

3. Blocks generation: The LU replaces all the count values in the generated
CBF that are below the minimum subset size, sm, to 0 as these are not common
signatures across at least sm parties, while count values above or equal to sm
are set to 1 (lines 21–25 in Algorithm 1). This implies that blocks need to be
common across at least sm parties for subset matching. The resulting CBF that
contains 1s and 0s (which is essentially a BF) is sent to all the parties (line 26).
The parties individually perform a membership test (as described in Sect. 2) on
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the received CBF by checking all their signatures in order to determine if they
are common or not (line 27–30 in Algorithm 1).

The encoded records belonging to each of the common signatures/blocks are
sent to the LU to perform clustering on records belonging to the same blocks
(lines 31–32). The union of blocks from all parties are stored in C and returned
by the blocking method (lines 33–35), which will be used as an input to the
clustering step.

3.1 Local Blocking Evaluation Framework

The performance of blocking (in terms of comparison space reduction, retaining
true matches, and not being susceptible to frequency attacks) depends on the
signature strategies (similar to most of the existing blocking methods). For such
data-driven blocking techniques, we propose a framework to locally evaluate the
blocking performance in order to choose and agree on a signature strategy that
performs better in terms of all three aspects. This framework is applicable to
any blocking method for local evaluation that provides minimum guarantees of
the global blocking results.

Comparison Space Reduction: This refers to the global measure of reduction
ratio of a blocking method [4]. The reduction ratio measures the percentage of
record pair comparisons reduced after blocking from the total number of record
pair comparisons. Different signature strategies generate different number and
size of blocks and therefore vary by the reduction ratio. Performing blocking
with many different strategies across parties and evaluating and comparing their
reduction ratio to choose the best strategy is not trivial in a real application due
to operational cost and privacy concerns. Therefore, we use a measure to locally
evaluate and compare different signature strategies by each party individually
on their records.

The statistics of the block sizes for each of the signature strategies can be
compared to learn about their impact on the reduction ratio. We consider the
average and maximum block sizes as local measures of reduction guarantees.
We normalise these values in the range of [0, 1] for comparative evaluation. The
Reduction Guarantees metric RG is defined as RG = 1 − m/n, where m is
the average or maximum block size and n is the total number of records in the
dataset. For example, if a blocking strategy results in a maximum block size of
m = 1 for a dataset of n = 10000 records, then RGmax = 1 − 1/10000 = 0.9999,
while a maximum block size of m = 10000 results in RGmax = 0.0.

True Matches Preservation: This refers to the global measure of pairs com-
pleteness (or recall) of a blocking method [4]. Pairs completeness measures the
percentage of true matches preserved in the candidate record pairs resulting from
blocking in the total number of true matches. Smaller blocks favor the reduction
ratio, however, they can have a negative impact on the pairs completeness as they
have more likelihood of missing true matches (not grouped into the same block).
We use Quality Guarantees (QG) metrics to locally evaluate the likelihood of
not missing true matches in the candidate record pairs.
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This likelihood is determined by the coverage of records in blocks. We mea-
sure the coverage by calculating the statistics of number of blocks per record
(average and minimum). The larger the number of blocks where a record appears
in, the more likelihood that it will be compared with a potential matching record
in one of those blocks. Specifically, a signature strategy that leads records being
appear in average m out of b total blocks and at least 1 block (minimum), then
the QG metrics are calculated as QGavg = m/b and QGmin = 1/b.

Privacy Guarantees: While smaller blocks are preferred for reduction guaran-
tees, and overlapping blocks are preferred for quality guarantees, these two have
negative impact on the privacy guarantees. Based on the sizes of the blocks,
the LU can perform a frequency inference attack by matching the frequency
distribution of blocks to a known frequency distribution, as will be detailed in
Sect. 3.3). A blocking method that generates blocks with low variance between
their sizes is less susceptible to such frequency inference attacks. Moreover, too
small blocks are highly vulnerable as they provide information about unique and
rare values.

For Privacy Guarantees (PG) metrics, we calculate disclosure risk statistics
[21] (average, maximum, and marketer risk) based on the probability of suspicion
(Ps) for each record in blocks of a local database D. Ps for a record r is calculated
as Ps(r) = 1/ng where ng is the number of possible matches in the global
database DG with r. We assume the worst case of DG ≡ D, to calculate the
minimum local privacy guarantees. Each of the records in a block of k records
has the Ps of 1/k (i.e. each record matches with k records in the worst case).
For example, if k = 1, then Ps = 1.0, whereas k = 100 gives Ps = 0.01 for all
k records. Based on the Ps values, we calculate the maximum PG as PGmax =
maxri∈D(Ps(ri)), average PG as PGavg =

∑n
i Ps(ri)/n, and marketer PG

as the proportion of records that can be exactly re-identified, i.e. Ps = 1.0,
PGmar = |{ri ∈ D : Ps(ri) = 1.0}|/n [21].

By locally evaluating and comparing the blocks generated by different block-
ing strategies using the privacy guarantees (PG), quality guarantees (QG), and
reduction guarantees (RG) metrics, the parties can choose and agree on a strat-
egy that can generate good blocking results in terms of the three aspects. We
name the family of these metrics for local blocking evaluation as PQR-guarantees
metrics, which refer to the Privacy, Quality, and Reduction guarantees of block-
ing methods.

3.2 Complexity Analysis

Assume p parties participate in the linkage of their respective databases, each
containing n records, and b blocks are generated by the blocking function, with
each block containing n/b records. Phase 1 has a linear computation complexity
for each party as it requires a loop over all records in its database for multiple
different signature strategies in a set of strategies, S′, and calculating the Privacy,
Quality, and Reduction Guarantees (PQR-guarantees) metrics as described in
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Sect. 3.1 (O(n · |S′|)). Agreeing on a signature strategy across multiple parties
based on the PQR-guarantees metrics has a constant communication complexity.

In the second phase, encoding the candidate signatures into a BF of length
l bits using k hash functions has a computation complexity of O(b′ · k) (assum-
ing b′ candidate signatures) for each party, and generating a CBF using secure
summation protocol is of O(l) computation and communication complexity. In
phase 3, the LU loops through the CBF to generate the intersected BF, which is
O(l), and sending to all parties is O(l ·p) communication complexity. Each party
individually performs membership test of their candidate signatures, which is of
O(b′ · k). Then the records containing any of the common signatures (assuming
b common signatures/blocks) need to be retrieved and sent to the LU , which
has a computation and communication complexity of O(n · b). At the LU , the
number of candidate record pairs generated is n2/b ·p2. Similar to many existing
methods, the reduction in the number of candidate record pairs depends on the
number (b) and size of blocks (n/b on average) generated. Therefore, the pro-
posed RG metric based on local block sizes can provide an estimate to locally
evaluate the reduction in candidate record pairs.

3.3 Privacy Analysis

As with most existing PPRL methods, we assume that all parties follow the
honest-but-curious adversary model [21], where the parties follow the protocol
while being curious to find out as much as possible about other parties’ data by
means of inference attacks on (blocks of) encoded records or by colluding with
other parties [21].

In Phase 2, the parties perform secure summation of their BFs, which does
not leak any information about the individual BFs. However, secure summation
protocols can be susceptible to collusion attacks where two or more parties col-
lude to learn about another party’s BF. There have been several extended secure
summation protocols developed to reduce their vulnerability to collusion risk.
For example, secret sharing-based protocol [17] generates p random shares ri
(one share per party) from the secret input value vi, such that

∑
i ri = vi, and

therefore even when some of the parties collude, without knowing the shares of
other non-colluding parties the input value vi of a party cannot be learned by
the colluding parties.

In Phase 3, since the CBF contains only the summary information (count
values), it provides more privacy guarantees than BFs against an inference attack
by the LU .

Proposition 1. The probability of inferring the values of individual signatures
si of a party Pi (with 1 ≤ i ≤ p) given a single CBF c is smaller than the
probability of inferring the values of si given the corresponding party’s BF bi,
1 ≤ i ≤ p.

Proof. Assume the number of potential matching signatures from an external
database that can be matched to a single signature s ∈ si encoded into the BF
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bi through an inference attack is ng. ng = 1 in the worst case, where a one-to-one
mapping exists between the encoded BF bi and the candidate signatures (based
on performing membership test). The probability of inferring the signature value
s belonging to a party Pi given its BF bi in the worst case scenario is therefore
Pr(s ∈ si|bi) = 1/ng = 1.0. However, a CBF represents signatures from p
parties and thus Pr(s ∈ si|c) = 1/p in the worst case with p > 1. Hence,
∀p
i=1Pr(s ∈ si|c) < Pr(s ∈ si|bi).

Finally, the parties send their blocks of encoded records to the LU . If one of
the resulting blocks contains only one record, for example, then the likelihood
of a successful inference of this record by the LU is higher than the inference
of a record that belongs to a block of size 100. Similarly, a very large block can
be uniquely identified by matching to a frequent value in the global database.
Therefore, the variance between block sizes needs to be smaller to reduce the
vulnerability of blocking methods to frequency inference attack. Our P3-SIG
method prunes highly frequent (> kmax) and rare (> kmin) blocks to provide
privacy guarantees, which can be locally evaluated as discussed in Sect. 3.1.

4 Experimental Evaluation

We conducted our experiments on three different datasets:
(1) NCVR: We extracted 4611, 46,116 and 461,116 records from the North

Carolina Voter Registration (NCVR) database1 for two parties with 50% of
matching records between the two parties. Ground truth is available based on
the voter registration identifiers. We generated another series of datasets where
we synthetically corrupted/modified randomly chosen attribute value of records
by means of character edit operations and phonetic modifications using the GeCo
tool [18].

(2) NCVR-Subset: We sampled 10 datasets from the NCVR database each
containing 10,000 records such that 50% of records are non-matches and 5% of
records are true matches across each different subset size of 1 to 10 (1, 2, 3,
· · · , 9, 10), i.e. 45% of records are matching in any 2 datasets while only 5%
of records are matching in any 9 out of all 10 datasets. This dataset is used to
evaluate our method for multi-party PPRL with different subset sizes.

(3) ABS Dataset: This is a synthetic dataset used internally for link-
age experiments at the Australian Bureau of Statistics (ABS). It simulates an
employment census and two supplementary surveys. There are 120000, 180000
and 360000 records, respectively, with 50000 true matches.

We use six existing private blocking methods as the baseline approaches
to compare our proposed approach (P3-SIG), which are three-party (two
database owners and a LU) sorted neighbourhood clustering (SNC)-based block-
ing (SNC-3P) [20], two-party (without LU) SNC-based method (SNC-2P)
[23], hierarchical clustering based approach (HCLUST) [14], k-nearest neigh-
bourhood clustering-based method (k-NN) [10], Hamming LSH-based blocking

1 Available from ftp://alt.ncsbe.gov/data/.

ftp://alt.ncsbe.gov/data/.
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(a) (b) (c)

Fig. 3. Comparison of (a) Scalability, (b) Pairs Completeness, and (c) Reduction ratio
vs. Pairs Completeness for two-database linking on NCVR dataset.

(a) (b) (c)

Fig. 4. Correlation between (a) local block sizes and reduction ratio (RR) metric and
(b) local coverage and pairs completeness (PC) metric, and comparison of (c) disclosure
risk of P3-SIG method with baseline methods on NCVR dataset.

method (HLSH) [7], and λ-fold LSH-based blocking method (λ-LSH) [11]. We
choose methods for comparison that fall under different categories of shortcom-
ings of existing methods as described in Sect. 1.

We evaluate the complexity (computational efficiency) using runtime required
for the blocking and reduction ratio (RR) of record pair comparisons for the link-
age (clustering). RR is calculated as 1.0 − number ofcomparisons after blocking

total number of comparisons . The
quality of the resulting candidate record pairs by a blocking method is measured
using the pairs completeness (PC) for two-database linking and set completeness
(SC) for multi-database linking [3,21]. They are calculated as the percentage of
true matching pairs/sets that are found in the candidate record pairs/sets in the
total number of true matching record pairs/sets, respectively. We evaluate privacy
guarantees against frequency attack using block sizes and disclosure risk values
[21], as described in Sect. 3.1.

We implemented our P3-SIG approach and the competing baseline
approaches in Python 3.7.42, and ran all experiments on a server with 4-core
64-bit Intel 2.8 GHz CPU, 16 GBytes of memory and running OS X 10.15.1. For
the baseline methods, we used the parameter settings as used by the authors in
the corresponding methods. For P3-SIG method, the default parameter setting
is length of BFs l = 2048, and number of hash functions k = 4. We evaluated
multiple different strategies generated from the combinations of first character,
first 2 characters, first 3 characters, all characters, phonetic encodings, q-grams,
2 available in http://doi.org/10.5281/zenodo.3653169.

http://doi.org/10.5281/zenodo.3653169
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(a) (c)(b)

Fig. 5. (a) Reduction ratio vs. Set Completeness for multi-database linking on ABS
dataset, (b) Set Completeness of P3-SIG blocking for subset matching of p = 10
databases against sm on NCVR-subset dataset, and (c) comparison of block size
distribution of P3-SIG method with baseline methods on NCVR dataset.

and ‘None of the characters’ in each of the QID (attribute) values of a record.
Based on greedy search parameter tuning method, we used the numerical values
in the first four attributes combined with the gender value as the default signa-
ture strategy for ABS dataset, and for the NCVR dataset we used the full first
and last names, phonetic encoding of the first and last names along with the
first one or two characters of first and last names and suburb values.

4.1 Discussion

We compare our method with the baseline methods in terms of runtime, pairs
completeness (PC), and reduction ratio (RR) vs. pairs completeness (PC) in
Fig. 3 for two-database linkage on the NCVR dataset. In terms of runtime, LSH-
based methods and clustering based methods require more time followed by
SNC-2P. Our method requires lower runtime than these methods, however SNC-
3P is more efficient than our method. Our method however achieves higher RR
and PC than the SNC-3P method. LSH-based blocking method generates higher
quality blocking results, but they require higher computational cost for blocking.
We were unable to conduct experiments for the λ-LSH and HCLUST methods
on the largest dataset due to their memory and space requirements.

We next study the effectiveness of our local blocking evaluation framework.
The correlation between the local block sizes and global reduction ratio (RR)
metric as well the correlation between the local coverage values and global pairs
completeness (PC) metric for a set of different signature strategies are shown
in Figs. 4(a) and 4(b), respectively. As the results show, there exist a high cor-
relation between them which reveals that local RG and QG metrics can be
effectively used for blocking quality evaluation. PC and coverage values have a
strong positive correlation, while RR and block sizes are negatively correlated.
Figure 4(c) compares the maximum disclosure risk values calculated against a
frequency attack in the worst case (D ≡ DG) with baseline methods. The privacy
guarantees (PG) results show that the disclosure risk values against a frequency
inference attack are lower with our method.

We compare our method with the λ-fold LSH multi-party blocking method
for multi-party linkage in Fig. 5(a). As can be seen, P3-SIG method outperforms
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(a) (b) (c)

Fig. 6. Comparison of (a) runtime, (b) precision, and (c) recall of clustering for multi-
party PPRL [22] with P3-SIG, λ-fold LSH [11], and no blocking on NCVR dataset.

λ-fold LSH for multi-party blocking in terms of higher blocking quality. Please
note that λ-LSH method works efficiently on small datasets, however on large
datasets it requires high runtime and memory space. Figure 5(b) shows the set
completeness results for subset matching of p = 10 databases from NCVR-Subset
dataset against different minimum subset sizes sm. The larger the value for sm
is, the more difficult it is to find the set of records that match across at least sm
databases/parties. This reflects the challenge of subset matching in multi-party
PPRL. These results show that P3-Sig can efficiently be used for multi-party
linkage applications. Further, we compare the size of blocks generated by the
different blocking methods in Fig. 5(c), which shows that the size of the blocks
resulting from our method is similar to that of LSH-based methods, as they both
generate overlapping blocks, however our method is more efficient and faster than
these methods while achieving similar or superior blocking quality.

Finally, we evaluate our proposed P3-SIG method’s performance on a recently
developed incremental clustering method for multi-party PPRL [22] and com-
pare with no blocking and λ-fold LSH multi-party blocking method in Fig. 6. The
runtime of the PPRL reduces significantly using our method without impact-
ing the linkage quality, which validates the efficacy of our blocking method for
efficient clustering required by multi-party PPRL.

5 Related Work

Various blocking techniques have been proposed in the literature tackling the
scalability problem of PPRL, as surveyed in [16,19,21]. Most of these methods
require external data (reference values) of similar distribution as the original
databases to be linked and employ a similarity comparison function to group
similar records. For example, in [10] reference values are clustered using the k-
nearest neighbor clustering algorithm and then the records are assigned to the
nearest cluster. A token-based blocking method is proposed in [1], which requires
calculating the TF-IDF distances of the hash signatures of blocking keys.

Similarly, sorted neighbourhood clustering is used in [20] and [23] to group
similar reference and record values with and without a LU , respectively. Another
method using hierarchical clustering to group similar reference values is proposed
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in [14] where the records are then assigned to the nearest clusters and differential
privacy noise is added to the blocks (clusters) to reduce the vulnerability to
inference attacks.

Other set of methods rely on data-specific parameters that are highly sen-
sitive to data. A private blocking method for PPRL of multiple database using
Bloom filters and bit-trees is proposed [15]. This method is only applicable to
Bloom filter encoded data. The method introduced in [7] uses a set of hash func-
tions (Minhash for Jaccard or Hamming LSH for Hamming distances) to generate
keys from records that are encoded into Bloom filters to partition the records, so
that similar records are grouped into the same block [12]. [11] proposed a λ-fold
LSH blocking approach for linking multiple databases. LSH provides guaran-
teed accuracy, however, this approach requires data dependent parameters to be
tuned effectively and it can be applied only to specific encodings, such as Bloom
filters or q-gram vectors.

6 Conclusion

We have presented a scalable private blocking protocol for PPRL that is highly
efficient and improves blocking quality compared to existing private blocking
approaches. In contrast to most of the existing methods that rely on a cluster-
ing technique for blocking records, our method uses signatures in the records
to efficiently group records as well as to account for data errors and variations.
Further, our blocking method is applicable to linking multiple databases as well
as subset matching for multi-party PPRL. We also introduce a local blocking
evaluation framework to choose good signature strategies/parameter settings in
terms of privacy, blocking quality, and comparison reduction guarantees. Exper-
iments conducted on datasets sampled from two real datasets show the efficacy
of our proposed method compared to six state-of-the-art methods.

In future work, we aim to study optimisation techniques, such as Bayesian
optimisation, to choose/tune signature strategies for optimal results. We also
plan to study parallelisation to improve the scalability of blocking and linkage
for multi-party PPRL. Finally, improving privacy guarantees for blocking meth-
ods needs to be explored in two different directions: (1) developing methods that
provide formal privacy guarantees, such as output-constrained differential pri-
vacy [9], without significant utility loss, and (2) developing hybrid methods that
combine cryptographic methods with probabilistic encoding methods (such as
Bloom filter encoding) without excessive computational overhead.
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Abstract. Data mining techniques are highly efficient in sifting through
big data to extract hidden knowledge and assist evidence-based deci-
sions. However, it poses severe threats to individuals’ privacy because
it can be exploited to allow inferences to be made on sensitive data.
Researchers have proposed several privacy-preserving data mining tech-
niques to address this challenge. One unique method is by extending
anonymisation privacy models in data mining processes to enhance pri-
vacy and utility. Several published works in this area have utilised clus-
tering techniques to enforce anonymisation models on private data, which
work by grouping the data into clusters using a quality measure and then
generalise the data in each group separately to achieve an anonymisa-
tion threshold. Although they are highly efficient and practical, however
guaranteeing adequate balance between data utility and privacy pro-
tection remains a challenge. In addition to this, existing approaches do
not work well with high-dimensional data, since it is difficult to develop
good groupings without incurring excessive information loss. Our work
aims to overcome these challenges by proposing a hybrid approach, com-
bining self organising maps with conventional privacy based clustering
algorithms. The main contribution of this paper is to show that, dimen-
sionality reduction techniques can improve the anonymisation process by
incurring less information loss, thus producing a more desirable balance
between privacy and utility properties.

Keywords: k-anonymity · Clustering · Self Organising Map · Privacy
Preserving Data Mining

1 Introduction

Data mining techniques allow the extraction of implicit and useful information
from big data. They are programmed to sift through data automatically, seeking
patterns that will likely generalise to make evidence-based decisions or accurate
predictions that hold in data collections [1]. Although this emerging technology
enjoys intense commercial attention, there is a growing concern that data min-
ing results could potentially be exploited to infer sensitive information, therefore
potentially breaching individual privacy in a variety of ways [2]. In response to
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these privacy concerns, Privacy Preserving Data Mining (PPDM) has been pro-
posed by a number of studies [3–7] as an effective method for accommodating
privacy concerns during mining processes to address the risk of re-identification.
PPDM aims to provide a trade-off between data utility on one side and data
privacy on the other side, by enforcing a certain degree of privacy without relin-
quishing the purposefulness of the data. It has remained a successful approach,
particularly when applied to satisfy anonymisation protection models such as
k-anonymity, l-diversity and t-closeness. Several published works [8–12] in this
area have proposed different clustering techniques to enforce anonymisation mod-
els on private data. These techniques work by grouping the data into clusters
using a quality measure and then generalising the data in each group separately
to achieve an anonymisation threshold [13]. These studies have illustrated that
clustering-based methods are able to produce high-quality anonymisation while
allowing data mining to take place with less concern about privacy violations.
Despite this breakthrough, conventional approaches cannot achieve a good bal-
ance between data utility and privacy protection [9,14,15]. They mostly optimise
privacy, and as a result cannot guarantee a minimum level of data utility [16].
Our aim is to enhance data utility in PPDM processes, which can further guar-
antee a greater degree of balance between the two properties.

This paper proposes a hybrid strategy for improving data utility in PPDM
techniques. In this approach, conventional clustering algorithms such as OKA
and K-member are applied in combination with a Self-Organising Map (SOM).
To illustrate this point, we apply proposed method to the Adult data set [17]. In
the first step, the aforementioned clustering algorithms are used to anonymise
specific features of the dataset using a selected anonymity threshold. Secondly,
a SOM is used to map other data features to a 1-dimensional space of a set
of neurons. These data features are otherwise dropped by traditional clustering
strategies because they are mostly classified as sensitive attributes, thus they may
increase the chances of attribute or membership disclosures. This unsupervised
neural network model preserves the topological relationship and increases the
correlation between features of the primary data space. Thirdly, the results of
the anonymisation methods are fused with the results of the 1-dimensional SOM
strategy as a single data domain. Lastly, the newly produced dataset is subjected
to several classification techniques that are typically employed on the original
Adult data.

The main contribution of this work is to show that the proposed strategy
is a more productive approach in scenarios where the need for higher data
utility supersedes the need for higher data privacy, particularly if there are
no privacy costs associated with the desire for more data utility. Therefore,
the results obtained with the application of this strategy justify its use. The
remainder of the paper is organised as follows: Sect. 2 presents a brief biblio-
graphical review about privacy preserving data mining algorithms, and Sect. 3
describes the main aspects of the SOM algorithm, detailing its advantages to
other unsupervised neural networks. Section 4 describes the Adult data set and
its properties, while Sect. 5 presents the strategy for this experiment. In Sect. 6,
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the methodology for conducting the experiments is expressed, while Sect. 7
presents the outcomes of the proposed strategy, comparing it with results
obtained from conventional approaches. Finally, Sect. 8 presents conclusions and
the direction of future PPDM research.

2 A Review of PPDM

k-anonymity was first introduced by Samarati and Sweeney [18] in an attempt
to prevent possible re-identification of user information from published micro-
data. This concept requires that each combination of quasi-identifier values in
a released table must be indistinctly matched to at least k respondents [19].
For example, a table D(S1, S2, ..., Sm) is said to satisfy k-anonymity if each
quasi-identifier QI associated with the values maps to at least k records in a
transformed version of the table Dk.1 More formally, k is the largest number
such that the magnitude of each equivalence class in table D is at least k.

The k-anonymity requirement is typically enforced through generalisation,
suppression and deletion techniques. Generalisation replaces real values with
“less specific but semantically consistent values” [20]. Numerical values are typ-
ically specified by a range of values, while categorical values are combined into a
set of distinct values based on a hierarchical tree of the data attribute domain.
Suppression replaces attribute values with a special symbol, and deletion removes
an entire attribute from a dataset. Algorithms based on these techniques are
conceptually straightforward; however, there are limitations: the computational
complexity of finding an optimal solution for the k-anonymity problem has been
shown to be NP-hard [21], possible generalisations are limited by the imposed
hierarchical tree [22], also suppression and deletion techniques often compromise
data utility by producing results that are unsuitable for further analysis [14]. To
overcome these challenges, several PPDM approaches have viewed anonymisa-
tion as a clustering problem [6,8,10–12]. Clustering-based anonymisation works
by partitioning datasets into clusters using a quality measure and generalising
the data for each cluster to ensure that they contain at least k records [23]. This
method produces high data quality because it reduces data distortion, making
the results suitable for further analysis, mining, or publishing purposes. In addi-
tion, it is a unified approach, which gives it the benefit of simplicity, unlike
the combination of suppression and generalisation techniques in traditional k-
anonymity approaches [13]. Several published works in this area have proposed
different clustering techniques to enforce anonymisation models on private data.

For instance, Byun et al. in [8] proposed a greedy algorithm for K -member
clustering where each cluster must contain at least k records and the sum of all
intra-cluster distances is minimised. Although this is shown to be efficient, it is
impractical in cases involving categorical attributes which cannot be enumerated
in any specific order. Loukides and Shao in [13] improve the greedy clustering
algorithm by introducing measures that capture usefulness and protection in

1 Dk denotes a k-anonymised version of the original table D.
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k-anonymisation. Thus, they are able to produce better clusters by ensuring a
balance between usefulness and protection. However, this approach suffers from
the same drawbacks as its predecessor. In [6], Lin et al. propose a new clus-
tering anonymisation method known as OKA (One-pass K -means Algorithm).
Unlike the conventional K -means clustering, this only runs for one iteration and
proceeds in two phases. In the first phase, all records are sorted by their quasi-
identifier. Then K records are randomly selected as the seeds (centroids) to build
clusters. The nearest records are assigned to a cluster, and the centroid is subse-
quently updated. In the second phase, formed clusters are adjusted by removing
records from clusters with more than k records and adding them to ones with
less than k records. Although this algorithm outperforms the K -member algo-
rithm, however the whole process is restricted to one iteration, thus prohibiting
the possibility of finding more optimal clustering solutions. The most current
modification of the K -member clustering is an improved approach proposed in
[24], referred to as K -member Co-clustering. This approach is adjusted to work
in conjunction with maximising the aggregate degree of clustering so that each
cluster is composed of records which are mutually related. Despite this, it only
performs better than the conventional K -member clustering for high anonymity
levels (k > 30), and has so far been only applied on numerical attributes. Thus,
its true performance against other clustering approaches is yet to be fully deter-
mined.

So far, clustering approaches have proven to be successful in providing a
trade-off between data utility on one side and data privacy on the other side by
enforcing a certain degree of privacy without relinquishing the purposefulness of
the data. However, there still remain myriad ways of improving the state of the
art through hybrid approaches that can sufficiently reduce the risks of inferences
while still maintaining maximal data utility with reasonable computational costs.

3 Self-Organising Map

SOM is a variation of the competitive-learning approach in which the goal is to
generate a low-dimensional discretized representation of high-dimensional data
while preserving its topological and metric relationships [25]. The basic idea
in competitive learning is not to map inputs to outputs in order to correct
errors or to have output and input layers with the same dimensionality, as in
autoencoders. Rather an input layer and output layer are connected to adjacent
neurons based on predefined neighbourhood relationships, forming a topographic
map [26]. Neurons are tuned to various input patterns until a winning neuron
is determined, where the neuron best matches the input vector, more commonly
known as the Best Matching Unit (BMU). The BMU (c) for one input pattern
(x) can be formally defined by:2

||x − xc|| = min||x − xi|| (1)

The closer a node is to the BMU, the more its weights get altered, and
the farther away the neighbour is from the BMU, the less it learns. The broad
2 where || · || is the measure of distance.
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idea of the training occurs in a similar manner to K-means clustering where
a winning centroid moves by a small distance towards the training instance
once a point is assigned to it at the end of each iteration. SOM allows some
variation of this framework, albeit in a different way because it cannot guarantee
assigning the same number of instances to each class. Despite this, SOM is an
excellent tool that can be used for unsupervised applications like clustering and
information compression. A number of frameworks for combining SOM with
clustering techniques to improve the solutions of data mining have been proposed
in [27–29].

4 Adult Dataset

The Adult dataset[17] is used in a variety of studies on data privacy [8,30–
32] and is considered the de facto benchmark for experimenting and evaluating
anonymisation techniques and PPDM algorithms. It is an extract of the 1994
U.S. census database and is generally applied to predict whether an individ-
ual’s annual income exceeds $50,000 using traditional statistical modeling and
machine learning techniques. The data comprises 48,842 entries with 15 different
attributes, of which 8 are categorical and 7 numerical.

Table 1 presents all features of the dataset, categorised by their attribute
types and their attribute set. 9 features of the dataset have been classified as
quasi-identifiers, 5 other features as sensitive attributes, and 1 feature as a non-
sensitive attribute. The dataset does not contain any value which can directly
identify an individual on its own, thus the lack of an identifier category. This
classification of the Adult dataset can be defined as follows:

– Identifiers: a data attribute that explicitly declares the identity of an indi-
vidual e.g. name, social security number, ID number, biometric record.

– Quasi-Identifiers: a data attribute that is inadequate to reveal individual
identities independently, however, if combined with other publicly available
information (quasi-identifiers), they can explicitly reveal the identity of a data
subject e.g. date of birth, postcode, gender, address, phone number.

– Sensitive Attributes: a data attribute that reveals personal information
about an individual that they may be unwilling to share publicly. These
attributes can implicitly reveal confidential information about individuals
when combined with quasi-identifiers and are likely to cause harm e.g. medical
diagnosis, financial records, criminal records.

– Non-Sensitive Attributes: a data attribute that may not explicitly or
implicitly declare any sensitive information about individuals. These records
need to be associated with identifiers, quasi-identifiers or sensitive attributes
to determine a respondent’s behaviour or action e.g. cookie IDs.

Table 1 also presents the quality of each feature in the Adult dataset using
3 measures, correlation, id-ness, and stability.

– Correlation: measures the linear correlation between each feature and the
label feature (Income). (A value between 1 and -1)
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Table 1. Adult Dataset

– ID-ness: measures the fraction of unique values.
– Stability: measures the fraction of constant non-missing values.

All of these measures are essential in identifying patterns in the dataset which
can help determine which features to select or deselect when applying a machine
learning model for a specific task.

5 Proposed Strategy

This section presents a hybrid strategy for improving data quality and efficiency
in PPDM using clustering-based approaches such as OKA and K -member. The
proposed strategy works in the following stages:

1. Initially, the dataset is analysed and vertically partitioned based on the
attribute set type: categorical or numerical.

2. A traditional k-anonymity clustering algorithm is applied to a local dataset
containing the categorical attribute set to produce a k-anonymised result.

3. SOM is applied to compress the local dataset containing the numerical
attribute set that are dropped by the clustering-based algorithms and gener-
ate a 1-dimensional representation of all input spaces.

4. The partial results are unified in a combined dataset based on their index and
reference vectors, ensuring that objects are in the same order as the original
dataset.

5. Classification techniques are applied on the combined results for generic data
mining tasks.

An overview of the complete architecture is illustrated in Fig. 1.
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Fig. 1. Architecture of Proposed Strategy

6 Methodology

In order to verify the precision of the proposed strategy, results from this app-
roach are compared with those of conventional clustering-based strategies (OKA
and K-member). The implementation of these algorithms available from [33] is
specifically designed with the purpose of anonymising the Adult dataset, thus
making it suitable for this experiment.

In the aforementioned implementation, a distance function is used to measure
dissimilarities among data points for both categorical and numerical attributes.
For numerical attributes, the difference between two values vi and vj of a finite
numeric domain D is defined as:

δN (v1, v2) = |v1 − v2|/|D| (2)

where the domain size |D| is the difference between the maximum and minimum
values in D.
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However, this is not applicable to categorical attributes as they cannot be
enumerated in any specific order. Therefore, for categorical attributes with no
semantic relationship amongst their values, every value in such domain is treated
as a different entity to its neighbours. For attributes with semantic relationships
as is the case in Fig. 2 and Fig. 3, a taxonomy tree is applied to define the
dissimilarity (i.e., distance). Therefore, the distance between two values vi and
vj of a categorical domain D is defined as:

δC(v1, v2) = H(Λ(vi, vj))/H(TD), (3)

where Λ(vi, vj) is the subtree rooted at the lowest common ancestor of x and
y, and H(T ) represents the height of tree T .

Example 1. Consider attribute Workclass and its taxonomy tree in Fig. 3. The
distance between Federal-gov and Never-worked is 2/2 = 1, while the distance
between Federal-gov and Private is 1/2 = 0.5. On the other hand, for attribute
Race as defined in Fig. 4, where the taxonomy tree has only one level, the distance
between all values is always 1.

It is important to note that only the Marital-status and Workclass attributes
have a predefined taxonomy tree in the clustering implementations published in
[33].

Fig. 2. Taxonomy Tree of Marital-status

Fig. 3. Taxonomy Tree of Workclass
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Fig. 4. Taxonomy Tree of Race

In our SOM architecture, we use cosine similarity as a distance metric, which
ensures the smallest distance between points from the same class and a large
margin of separation of points from different classes. This is a particularly use-
ful approach because the Adult dataset has a combination of categorical and
numerical data and other more common measures do not translate the distance
well between vectors with categorical data. The cosine similarity of two vectors
of attributes, a and b, can be formally defined as:

C(a,b) =
a ∗ b

|a| ∗ |b| (4)

Herein, we used a one-dimensional set of 150 neurons. For each sample i, we
search for a neuron which is closest to it. The neuron with the smallest distance
to the i-th sample is classified as the BMU, and the weight update is executed
until all samples are mapped to an output neuron in the set.

We utilise a method known as hyper-parameter optimization for choosing an
optimal set of neurons for our SOM based on their correlation with the Income
attribute. The ultimate goal of the prediction task with the Adult dataset is
to identify who earns a certain type of income, thus any set of neurons with
the highest correlation with the label feature can enhance this task with the
anonymised version of the dataset. With this method, we perform an exhaustive
search of all possible neurons within a range of manually set bounds. Following
this, the set of neurons with the highest correlation with the label feature (i.e.,
winning neurons or BMUs) is selected as the optimal neuron set.

Finally, we unify our anonymised features with the SOM feature in a central
dataset based on their index and reference vectors. Then, we subject this output
to 7 classification models for performing the prediction tasks the Adult dataset
is intended for (i.e., income prediction). The seven classification models applied
are Naive Bayes, Generalised Linear Model, Logistic Regression, Deep Learning,
Decision Tree, Random Forest and Gradient Boosted Trees.

To validate the experiment, several quality measures were used to evalu-
ate and compare the results of our proposed strategy with the two traditional
clustering approaches highlighted earlier (OKA and K-member). The quality
measures are as follows:

1. Normalised Certainty Penalty (NCP ): measures information loss of all
formed equivalence classes.
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(a) For attributes that are numerical, the NCP score of an equivalence class
T is defined as:

NCPAnum
(T ) =

maxT
Anum

− minT
Anum

maxAnum
− minAnum

(5)

Where the numerator and denominator represent attribute ranges of
Anum for the class T and the whole table, respectively.

(b) For attributes that are categorical, in which no distance function or com-
plete order is present, NCP is described w.r.t the attribute’s taxonomy
tree:

NCPAcat
(T ) =

{
0, card(u) = 1
card(u)/|Acat|, otherwise

(6)

where u represents lowermost common predecessor of all values in Acat

that are included in T , card(u) is the number of leaves (i.e., values of
attribute) in the subtree of u, and |Acat| represents the total count of
discrete values of Acat.

(c) The NCP score of class T over all attributes classified as quasi-identifier
is:

NCP (T ) =
n∑

i=1

wi · NCPAi
(T ) (7)

where n represents number attributes in a quasi-identifier set. Ai can
either be a categorical or numerical attribute and has a weight wi, where∑

wi = 1.
2. Accuracy: measures the percentage of correctly classified instances by the

classification model used, which is calculated using the number of (true pos-
itives {TP}, true negatives {TN}, false positives {FP} and false negatives
{FN}) [34]. Classification accuracy is defined mathematically as:

A =
TP + TN

TP + TN + FP + FN
(8)

3. FMeasure: another classification-based metric used to measure the accuracy
of a classifier model. The metric score computes the harmonic mean between
precision and recall. Precision p denotes the number of true positives divided
by all positive results returned by the classification model, whereas recall r
denotes the number of true positives by the number of all samples which
should have been returned as positive [34].

F1 = 2 ∗
(

p ∗ r

p + r

)
(9)

4. Time: indicates the length of time it takes to execute an algorithm based on
an input data size and a k parameter.
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7 Experiments

In this section, we discuss our environment and evaluation methods, which
include both information loss and privacy preservation. We have evaluated the
accuracy of the proposed approach with conventional classification models on
the original and anonymised datasets. The test environment used for our experi-
ment is a Windows platform with an Intel(R) i5-7500T 2.7 GHz 4-core processor
and 16 GB of memory. We have also used another platform, a MacBook with a
2.5 GHz dual-core processor and 8 GB memory.

Table 2. NCP score and running time of OKA and K-member algorithms with 3
different k thresholds.

k-VALUE ALGORITHM NCP% TIME (sec)

5-anonymity OKA 9.99 2939.93

K-member 6.09 6706.59

10-anonymity OKA 16.74 2034.22

K-member 11.07 7258.76

30-anonymity OKA 32.43 840.12

K-member 23.90 8518.48

We have evaluated the performance of the proposed approach with respect
to privacy, execution time, accuracy, and F-score, where accuracy and F-score
are calculated on the original and updated anonymised versions of the Adult
dataset.

First, we have evaluated the NCP score of the K-member and OKA algo-
rithms, considering 3 different k thresholds for anonymity as illustrated in
Table 2. We have used the OKA and K-member algorithms for the purpose of
anonymity. It is observed that the NCP score using OKA is always higher as
compared to K-member, and by increasing k threshold for anonymity, the dif-
ference in loss also increases. The reason behind this is that OKA only uses
one iteration for clustering, which leads to higher information loss; however, its
one-pass nature makes it more time efficient than K-member clustering, thus its
execution time is significantly less than that of K-member (Fig. 5).

Following this, we have applied SOM clustering on all the numerical features
that are dropped by the two algorithms. These features include (capital-gain,
capital-loss, hours-per-week, and fnlwgt). Due to categorical features in the Adult
dataset, we have used the cosine similarity metric because Euclidean distance-
based results are biased. The bias arises because L1 and L2 distances are not
applicable for vectors with text. We have used hyper-parameter tuning to identify
the correct number of neurons for SOM, setting the stride size equal to 10 and
iterating 100–300 times. After this, we determine the co-relation between the
results and the actual income group. We have selected the number of neurons
with which we got a higher co-relation.
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Fig. 5. Information loss & Total time

We have modified the Adult dataset in four versions: one is OKA+SOM, in
which we have applied OKA and SOM on the original dataset and another version
is K-member+SOM. The other two versions are obtained by just applying OKA
and K-member methods. After this, we have evaluated the performance of the dif-
ferent resulting datasets on the general classification models. We have categorized
the performance by different thresholds of k-anonymity: 5, 10, and 30.

In Fig. 6 we have considered 5 members in a cluster. After applying the
naive Bayes classification model, we have observed that accuracy of the K-
member+SOM version of the Adult dataset provides around 80% accuracy
whereas on the original dataset it was around 83%. The OKA+SOM dataset
accuracy is bit lower than that of K-member+SOM. Even on the original dataset,
the lowest accuracy was given by the decision tree method, and the same applies
to our versions. The highest accuracy achieved is around 82% using a deep learn-
ing classification model, whereas on the original dataset it is around 85%. The
same trend is observed for the F-score as well.

In Fig. 7 we have considered the same variations of data with similar models
as we used in previous experiment but with a k-anonymity threshold of 10. It
is observed that the overall accuracy is lower for all variations of the dataset
except for the original one. Still, the dataset generated with K-member+SOM
gave higher accuracy than other variations on all of the models. In Fig. 8 we
have evaluated our datasets with anonymity threshold of 30, and we have found
that the accuracy of our datasets are slightly lower compared to 10-anonymity
classification results, but the K-member+SOM dataset still has higher accuracy
than other variations of original dataset. The OKA+SOM dataset accuracy has
decreased more significantly than the others.

In evaluations, we have observed that, other than the original dataset, accu-
racy lowered on all other datasets when the cluster size increased from 5 to 10
to 30. K-member+SOM information loss is quite low, which is why its dataset
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Fig. 6. Income prediction task with 5-anonymity Adult dataset using seven classifica-
tion models

accuracy improved, however, neither the K-member nor OKA based dataset
performed better. Another aspect to consider is that OKA+SOM accuracy is
lower than K-member+SOM because OKA uses only one iteration for cluster-
ing, which leads to greater time efficiency but also greater information loss com-
pared to other methods. K-member+SOM has a trade-off of data loss with time
efficiency. This experiment shows that dimensionality reduction is an effective
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Fig. 7. Income prediction task with 10-anonymity Adult dataset using seven classifi-
cation models.

method for preserving the topological and metric relationships of data features,
while anonymising its sensitive content. In addition, results obtained from this
process improves the utility of data in classification tasks, as shown in Fig. 6,
Fig. 7 and Fig. 8.
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Fig. 8. Income prediction task with 30-anonymity Adult dataset using seven classifi-
cation models.

8 Conclusion

In this work, we proposed an effective hybrid strategy for improving data utility
in PPDM approaches, which combines self organising maps with conventional
privacy based clustering algorithms (OKA & K-Member). To illustrate this app-
roach we apply it to the Adult data set and utilise rarely used attributes that
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are commonly dropped by conventional clustering approaches. By considering
these additional attributes, we allow a revised balance between usefulness and
protection. To validate our experiment, we employed several quality measures to
evaluate our results and demonstrated an increase in precision on data predic-
tion tasks with our anonymised output for 3 varying k thresholds. The results
obtained from our work are useful in scenarios where the need for higher data
utility supersedes the need for stringent data privacy, particularly if there are no
privacy costs associated with more data utility. Future work will consider apply-
ing other data sets to verify the generality of our approach. We will also attempt
to optimise our SOM algorithm in order to increase data utility in dimensional-
ity reduction problems and minimise instances of divergence in our results. This
will ensure more optimal neurons so that the goal of usefulness can be enhanced
in PPDM strategies.
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Abstract. k-anonymity is a commonly used anonymization principle.
It provides an anonymous table by grouping the individuals of the table
in sets of at least k elements. This principle guarantees a good privacy
while limiting the data alteration. Within the k-anonymization process,
only quasi-identifier attributes are considered. Sensitive attributes are
not. As a consequence, in k-anonymous tables, sensitive values might
be disclosed. Thus, the concepts of l-diversity and t-closeness have been
defined. Considering anonymization principles that take into account the
distribution of the sensitive attributes values in the anonymous table, this
paper tackles the link between k-anonymity, l-diversity and t-closeness.
It then proposes to generate k-anonymous tables which simultaneously
optimize data alteration, l-diversity and t-closeness. To do so, this paper
describes seven optimization strategies, usable in an anonymization algo-
rithm, that are combinations of minimization of data alteration, maxi-
mization of l-diversity and minimization of t-closeness. At the end, this
study provides comparative experimental results of these strategies on
the Adult Data Set, a commonly used data set within the anonymization
research field that we extended with randomly generated data following
several distributions.

Keywords: k-anonymity · l-diversity · t-closeness · Data
anonymization · Optimization

1 Introduction

With the growth of data collected by companies or by public organizations (gov-
ernments, hospitals), the need to store and protect this large mass of raw data
has become a major issue. These data sets, if they are intended for statistical
analysis publication, must be anonymized to guarantee to individuals, who have
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voluntarily or not communicated their personal information, the respect of their
privacy. Big internet companies are aware of this problem and are already devel-
oping tools to protect the privacy of their customers (e.g. Apple’s differential
privacy deployment or Google’s RAPPOR [1]).

In this paper, we focus on Privacy-Preserving Data Publishing (PPDP) [2].
It aims to publish data table with respect to the privacy of the individuals of the
table. An other research area, mentioned in [2], is the Privacy-Preserving Data
Mining (PPDM). The authors say that research in PPDM has been motivated by
privacy concerns in data mining tools. Dwork and al. presented the differential
privacy in [3] as an anonymization principle to do PPDM. Contrary to PPDP,
the data holder in PPDM modifies the data to mask sensitive information while
retaining the expected results of the data mining tool. Thus, the data holder
must know how the data mining tool works, which is not the case in PPDP.

In this paper, we consider tables composed of records, representing individ-
uals, and columns, representing attributes. The attributes can be separated in
three categories. i) The identifier attributes are direct links between a record
and the identity of an individual (e.g. name, SSN); ii) The quasi-identifier
(QID) attributes [4] (e.g. age, gender) are a set of attributes that do not reveal
information if they are considered separately. However, with the values of the
quasi-identifiers and external information (e.g. other public released data sets),
an adversary could discover private data about individuals; iii) The sensitive
attributes contain the information we would like to protect in the table (e.g. a
disease, wages). Records could be gathered in equivalence classes with respect
to their QID attributes’ values. We define the identity disclosure as the fact to
uniquely associate a record with an individual in the anonymous table and the
attribute disclosure as the fact to learn new information about some individuals
after the publication of an anonymous version of the table [5].

2 Related Work

In order to provide PPDP, several anonymization techniques have been enun-
ciated. The simplest one is the pseudonymization. It merely consists in remov-
ing identifiers or replacing them with unique and random IDs. However, it has
been proved in [6] that you can deduce some information about individuals in
pseudonymized tables (i.e. linkage attack). As a consequence, Samarati presented
k-anonymity in [7]. As a definition, we consider that a table is k-anonymous if
each record is indistinguishable from at least k − 1 other records with respect
to the set of quasi-identifier attributes. Therefore, within a k-anonymization
context, the probability of identity disclosure is at most 1

k . k-anonymity brings
protection against identity disclosure, but it does not protect against attribute
disclosure. Indeed, a lack of diversity of the sensitive attributes’ values could
appear in k-anonymous tables [8]. First stated in [8] in 2006, the principle of
l-diversity was introduced by Machanavajjhala to face the previous issue. Unlike
k-anonymity, this principle takes into account the sensitive attributes’ values.
l-diversity guarantees that, in each equivalence class, we find at least l sensitive



l-diversity, t-closeness and Data Utility Co-optimization 75

values “well-represented”. As a definition, we consider that an equivalence class
is “well-represented” by l sensitive values if there exists at least l ≥ 2 different
sensitive values in the equivalence class such that the l most frequent values have
roughly the same frequency of appearance. In l-diversity, even if an adversary
has information about QID attributes, the diversity of the sensitive values will
complicate the discovery of sensitive information. In [9], authors point two draw-
backs of l-diversity: the skewness and the similarity attacks. Moreover, they pre-
sented a new principle called t-closeness. Like l-diversity, t-closeness deals with
the distribution of the values of the sensitive attributes in the anonymous table.
The distribution of the values of the sensitive attributes in the whole population
must be known. An equivalence class is said to have t-closeness if the distance
between the distribution of a sensitive attribute in the class and the distribu-
tion of the attribute in the whole table is no more than a threshold t. A table
is said to have t-closeness if all the equivalence classes have t-closeness. By the
work on the sensitive values, attribute disclosure is prevented with t-closeness.
Nevertheless, the problem of identity disclosure persists. Authors in [9] advocate
to use both t-closeness and k-anonymity to be protected from the two types of
disclosure. Like l-diversity, t-closeness manages equivalence classes in order to
have a homogeneous distribution of the sensitive attributes values. It could be a
weakness for statistical studies.

In [10], the authors conducted a study on the minimization of the data alter-
ation during a k-anonymization process. The quality of a k-anonymous table
can be measured thanks to an information loss metric. The authors compared
the efficiency of seven information loss metrics to maintain data utility during
a k-anonymization process. To continue what was undertaken in [10], we study
the link between l-diversity, t-closeness and k-anonymity. By influencing the
distributions of the sensitive attributes values, it is expected that adding the
constraints of l-diversity or t-closeness during the k-anonymization process will
enhance the privacy in the anonymous table. We want to measure the impact
of these additional constraints on the anonymous table’s data utility. We will
optimize the anonymous algorithm used in [10] according to strategies mixing
information loss metric, l-diversity and t-closeness. We propose seven strategies
whose effectiveness is measured by the data alteration and the values of l and
t of the k-anonymous tables produced. The rest of the paper is organized as
follows. In Sect. 3, we expose the concepts of generalization and information loss
metrics, then we justify our choice of metric. In Sect. 4, we present a l-diversity
measure and a t-closeness measure for a k-anonymous table. In Sect. 5, we specify
the anonymization algorithm used and we present the new optimization strate-
gies. In Sect. 6, we evaluate the optimization strategies on a public table and on
simulated data and we present the results obtained. We conclude in Sect. 7.

3 k-anonymity Optimization

The following notations are valid for the rest of the section. Let T be a table
with Q = {Q1, ..., Qm} its set of quasi-identifier attributes. Let C(T ) be the set
of equivalence classes of T .
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3.1 The Generalization Technique

To obtain anonymous tables, the generalization technique is a simple and efficient
method [7]. For each Qi ∈ Q, we build a generalization hierarchy denoted by GQi

.
It is a tree in which the leaves correspond to the values without generalization,
the internal nodes are generalized values and the root is the most generalized
value. The edges are oriented from the leaves to the root. We call height of a
generalization hierarchy the number of nodes in the longest path of the hierarchy,
denoted by hQi

for each i ∈ {1, ...,m}. Figure 1 is an example of a generalization
hierarchy.

cat lion tiger

felidae

dog wolf

canine

dolphin whale

cetaceans

mammals

Fig. 1. A generalization hierarchy

To generalize two equivalence classes, we use the notion of Lowest Common
Ancestor of two nodes. It is defined in [11] as the ancestor of the two nodes
that is located farthest from the root. Let C1, C2 ∈ C(T ) with representatives
c1 = [xQ1 , ..., xQm

] and c2 = [yQ1 , ..., yQm
] respectively. The result of the merg-

ing of C1 and C2 is Merge(C1, C2) := [LCA(xQ1 , yQ1), ..., LCA(xQm
, yQm

)],
with LCA(xQi

, yQi
) the lowest common ancestor of xQi

and yQi
in GQi

,
∀i ∈ {1, ...,m}.

3.2 Definition of an Information Loss Metric

An information loss metric μ is a map that estimates the amount of loss infor-
mation after an anonymization process using the generalization technique. We
use information loss metric to compute the data alteration between a table and
an anonymous version of it. We will formally define the expression of the cost
of an anonymous table for the metric μ thanks to the modeling presented in
[10]. Assume that the table T contains n lines {l1, ..., ln} and all the values of
the table are leaves. Let ˜T be a version of T in which generalizations have been
made and let ˜Tano be an anonymous version of ˜T obtained by the generalization
technique. We would like to express the cost of ˜Tano for μ.

Let Qi ∈ Q. As explained in [10], each directed edge (x, y) of GQi
can be

weighted by an elementary weight ω(x, y). We can express the ω(x, y) for μ
(and μ can be characterized by its elementary weights). Then, we build a matrix
of costs Mμ,Qi

from the ω(x, y). This matrix is indexed by the nodes of the
hierarchy GQi

. An entry (a, b) of Mμ,Qi
is defined by Mμ,Qi

(a, b) = wa→LCA(a,b),
with wa→LCA(a,b) =

∑

(x,y)∈E ω(x, y) for E the set of edges in the path from a

to the LCA(a, b).
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For each generalization hierarchy GQi
, let NQi

:= {n1
Qi

, ..., nsi

Qi
} be the

set of the nodes of GQi
. We set N := {[nj1

Q1
, ..., njm

Qm
] | nji

Qi
∈ NQi

and ji ∈
{1, ..., si} for i ∈ {1, ..,m}}. Thanks to the costs matrices Mμ,Qi

, we can define
the cost of generalization of two m-tuples of N by:

μ(t1, t2) =
m

∑

i=1

Mμ,Qi
(t1Qi

, t2Qi
) + Mμ,Qi

(t2Qi
, t1Qi

), (1)

with t1 = [t1Q1
, ..., t1Qm

] and t2 = [t2Q1
, ..., t2Qm

]. By extension, for C1, C2 ∈ C(T )
whose representatives are c1 = [x1

Q1
, ..., x1

Qm
] and c2 = [x2

Q1
, ..., x2

Qm
] respec-

tively, we can define:

μ(C1, C2) =
m∑

i=1

Mμ,Qi(x
1
Qi

, x2
Qi

) × |C1| + Mμ,Qi(x
2
Qi

, x1
Qi

) × |C2|. (2)

Formula 2 represents the cost for μ to merge the two equivalence classes.
We can now define the cost of an equivalence class ˜Cano of ˜Tano for μ. Let

C be the subset of T such that ˜Cano exactly contains the lines of C generalized.
Similarly, let ˜C be the subset of ˜T such that ˜Cano exactly contains the lines
of ˜C generalized. By convention, we set μ( ˜Cano) := μ( ˜Cano, C) and μ̃( ˜Cano) :=
μ( ˜Cano, ˜C). Thus, we can define the cost of the anonymous table ˜Tano for μ as:

μ(T̃ano) =
∑

˜Cano∈C( ˜Tano)

μ(C̃ano). (3)

Similarly, we have μ̃( ˜Tano) =
∑

˜Cano∈C(˜Tano)
μ̃( ˜Cano)1.

3.3 Comparison of Information Loss Metrics

The authors of [10] present seven information loss metrics. Three come from
previous papers: Distortion defined by Li in [12], NCP defined by Xu in [13] and
Total defined by Byun in [14]. The four other metrics are defined in their paper:
Lost Leaves Metrics (LLM), Normalized LLM (NLLM), Wid LLM (WLLM)
and Wid Normalized LLM (WNLLM). Let Metric = {Distortion, NCP, Total,
LLM, NLLM, WLLM, WNLLM }. For each metric μ of Metric, they give the
expressions of the elementary weights ω(x, y) to put in the edges of the hierar-
chies of the quasi-identifier attributes. Thanks to Sect. 3.2, we can deduce the
cost of an anonymous table for each metric in Metric.

Then, the authors of [10] introduce an anonymization algorithm. This algo-
rithm, inspired by the work of Li in [12], provides a k-anonymous version of the
table T by optimizing the performed mergings thanks to a metric μ. Its for-
malization is shown in Algorithm 1. Let Ck(T ) ⊆ C(T ) be the set of equivalence
1 μ̃ computes the amount of loss information between the table given to be anonymized

(T̃ ) and its anonymous version (T̃ano) while μ computes the amount of loss informa-
tion between the table exclusively composed of leaves (T ) and the anonymous table

(T̃ano).
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classes of size strictly less than k. While the table T is not k-anonymous, we
choose Csmall ∈ Ck(T ) among the smallest equivalence classes. We compute the
merging cost of Csmall with the other classes of Ck(T ) according to μ. Finally,
we perform in T the merging Merge(Csmall, C) which has the smallest cost for
μ. Thus, we can replace the metric μ in Algorithm 1 by each metric of Metric
and obtain k-anonymous tables for each metric. For k ≥ 2 and μ ∈ Metric, we
denote by Tμ,k the k-anonymous table obtained by using μ as the optimization
metric in Algorithm 1.

Algorithm 1. Greedy k-Anonymization Algorithm
1: procedure k-anonymization(T , k, μ)
2: while Ck(T ) is not empty do
3: Choose arbitrarily a class Csmall in Ck(T )
4: Find a class C in Ck(T )\Csmall such that μ(Csmall, C) is minimal
5: C(T ) ← C(T )\{Csmall, C} ∪ Merge(Csmall, C)
6: end while
7: end procedure

To compare the quality of the tables obtained previously, the authors intro-
duce the notion of average percentage of alteration of a table. First of all, they
define the alteration for a metric ν ∈ Metric of a table Tμ,k, for k ≥ 2 and
μ ∈ Metric, as:

Aν(Tμ,k) =
ν(Tμ,k)

ν(T ∗)
× 100, (4)

with T ∗ the generalization of T in which all the values are at the root for
each Qi ∈ Q. Then, they obtain a global measure to compare the anonymous
tables given by Algorithm1: the average percentage of alteration. It is defined as
A(Tμ,k) = 1

|Metric|
∑

ν∈Metric

Aν(Tμ,k), with k ≥ 2 and μ ∈ Metric.

Finally, they confront the experimental protocol on the Adult Data Set [15],
a table of 30162 lines and 9 quasi-identifier attributes. We denote by Adult the
Adult Data Set. They run Algorithm1 for 21 values of k between 2 and 15000 for
each metric in Metric. They compare the quality of the tables Adultμ,k produced
thanks to three criteria: the average percentage of alteration, the number of
modified values and the number of deleted values.

The results show that NLLM is the metric that permits to generate k-
anonymous tables with less information loss regards to the three criteria. Thus,
we choose NLLM as metric in our experiments on mixing data alteration, l-
diversity and t-closeness for k-anonymization. We explicit the expression of the
elementary weights and the expression of the cost of an equivalence class for
NLLM in Sect. 3.4.

3.4 Expression of NLLM

To begin with, we take some notations from the paper [10]. We set hmax =
max{hQi

, i = 1, ...,m} as the maximum of the heights of the generalization
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hierarchies of the quasi-identifier attributes. Let Qi ∈ Q and GQi
be its gen-

eralization hierarchy. Let (x, y) be an edge of GQi
. The number of leaves of x,

denoted by nl(x), is the number of leaves in the sub-tree of GQi
whose root is x.

The elementary weights of NLLM are defined as ω(x, y) = nl(y)−nl(x)
nl(GQi

) × hmax

hQi
.

We can compute the cost of an equivalence class for NLLM (and so deduce
the cost of an anonymous table for NLLM). As in Sect. 3.2, we take an equiv-
alence class ˜Cano of ˜Tano. We denote by c = [xQ1 , ..., xQm

] a representative of
˜Cano. The cost of ˜Cano for NLLM is NLLM( ˜Cano) =

m
∑

i=1

nl(xQi
)

nl(GQi
) × hmax

hQi
.

4 l-diversity and t-closeness as Privacy Quality
Measurement

During a k-anonymization process, we work on the QID attributes of the table
but the values of the sensitive attributes are not considered at all. Thus, there is
no control over the distribution of the sensitive values in the equivalence classes
of the k-anonymous table. For a sake of clarity, we will consider that the table
has only one sensitive attribute.

For a given table, there potentially exists a lot of k-anonymous versions of it2

Among those, some better respect l-diversity and t-closeness (i.e. they could have
a huge diversity in the sensitive values in each equivalence class or a distribution
of the sensitive values very close to the distribution in the whole population).
However, it could be synonymous with a large data alteration. Ideally, we would
like to be able to compute a k-anonymous table which would be interesting for
l-diversity and/or t-closeness and which would preserve a good data utility (by
minimizing the data alteration). We will consider the values l of l-diversity and
t of t-closeness as quality measures of a k-anonymous table. In the following,
we will respectively denote these values ldiv and tclose. Let T be a table with
a set Q of QID attributes and a single sensitive attribute S. Let Tano,k be a
k-anonymous version of T with C(Tano,k) its set of equivalence classes.

In [8], the authors present several formalizations of l-diversity. In this
paper, we use the entropy l-diversity definition. We compute ldiv of Tano,k

as ldiv(Tano,k) = min
C∈C(Tano,k)

ldiv(C) with ldiv(C) = exp(− ∑

s∈S

(p(C,s)log(p(C,s))))

and p(C,s) the proportion of the sensitive value s in the equivalence class C.
Similarly, the tclose value of Tano,k is tclose(Tano,k) = max

C∈C(Tano,k)
tclose(C) with

tclose(C) = 1
2

∑

s∈S

|p(C,s) − p(T,s)| and p(T,s) the proportion of the sensitive value

s in the whole table T . It is the Equal Distance from the Earth Mover’s Distance
used in [9].

Thanks to these formulas, we are able to measure l-diversity and t-closeness
on a table. We can now detail the anonymization algorithm used to generate

2 i.e. the number of possible partitions of N elements in subsets of size of at least k is
more than

∑N
i=k

(
N
i

)
and is of the order of 2N .
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a k-anonymous version of a table and the new optimization strategies that we
propose to improve the quality of anonymous tables.

5 Optimization of k-anonymity, l-diversity and t-closeness

Finding an optimal partition of a table that respects an anonymization principle
is a difficult issue. Results of NP-hardness for k-anonymity, l-diversity and t-
closeness are respectively enunciated within [16,17] and [18].

To provide anonymous tables, researchers develop anonymization frame-
works: [14,19] for k-anonymity; [17] for l-diversity; [20] for t-closeness.

As a consequence of the NP-hardness of the underlying problems, to con-
duct our experiments on the three anonymization principles, we use a classical
greedy algorithm providing an anonymous version of a table. It is an extension
of Algorithm 1 in Sect. 3.3. More specifically, at each step of our process, we
locally choose the optimal merging of two equivalence classes with respect to
one or more criteria, and not only according to an information loss metric. Let
T be a table to anonymize and let C(T ) be the set of its equivalence classes. Let
P be an anonymization principle (e.g. k-anonymity, l-diversity, t-closeness). Let
Crit be a set of criteria that permit the selection of a merging of two classes
to perform in T (e.g. the data alteration of the merging is minimal). While T
does not respect the P principle, we choose one of the smallest equivalence class,
Csmall, in C(T ) that does not respect yet the P principle. Then, we look for a
class such that the merging of this class with Csmall optimizes the criteria of
Crit. We do the optimal merging in the table. To sum up, we would like to
obtain a P version of T by optimizing the criteria in Crit during the step of
classes merging. Algorithm 2 is a formalization of the anonymization process.

Algorithm 2. Greedy Anonymization Algorithm
1: procedure anonymization(T , P, Crit)
2: while T does not respect P do
3: Choose one of the smallest class Csmall in C(T ) that does not respect P
4: Find a class C in C(T )\Csmall such that Merge(Csmall, C) optimizes the

criteria in Crit
5: C(T ) ← C(T )\{Csmall, C} ∪ Merge(Csmall, C)
6: end while
7: end procedure

Considering several criteria for optimization, we can combine them in differ-
ent manners. We can choose a priority criterion on which we select classes to
merge, then order the classes by the second criterion (e.g. l-diversity first, then
metric ; metric, then t-closeness, ...). Another way to combine these objectives
is to define a cost function of the merging of two classes that takes into account
the table alteration and the second criterion: Costcrit : (C × C) → R with C
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a set of equivalence classes. To co-optimize the data alteration (minimization)
and l-diversity (maximization), we can define Costcrit as NLLMldiv(C1, C2) =
NLLM(C1,C2)

ldiv
with ldiv the l-diversity value of Merge(C1, C2) and C1, C2 ∈ C.

To co-optimize the data alteration (minimization) and t-closeness (minimiza-
tion), we define NLLMtclose(C1, C2) = NLLM(C1, C2) × tclose with tclose the
t-closeness value of Merge(C1, C2). Let the following sets:

– A(Cs, C) = {C ∈ C | NLLM(Merge(Cs, C)) = min
c∈C

(NLLM(Cs, c))}
(i.e. the set of classes ∈ C that minimize NLLM when merged with Cs)

– LDIV (Cs, C) = {C ∈ C | ldiv(Merge(Cs, C)) = max
c∈C

(ldiv(c))}
(i.e. the set of classes ∈ C that maximize ldiv when merged with Cs)

– TCLOSE(Cs, C) = {C ∈ C | tclose(Merge(Cs, C)) = min
c∈C

(tclose(c))}
(i.e. the set of classes ∈ C that minimize tclose when merged with Cs)

– Aldiv(Cs, C) = {C ∈ C | NLLMldiv(Cs, C) = min
c∈C

(NLLMldiv(Cs, c))}
(i.e. the set of classes ∈ C that minimize NLLMldiv when merged with Cs)

– Atclose(Cs, C) = {C ∈ C | NLLMtclose(Cs, C) = min
c∈C

(NLLMtclose(Cs, c))}
(i.e. the set of classes ∈ C that minimize NLLMtclose when merge with Cs)

We propose seven strategies to optimize l-diversity and t-closeness within the
k-anonymous tables:

1. A class among those that minimize the merging cost - Crit : C ∈ A(Csmall, C)
2. A class among those that maximize ldiv among those that minimize the merg-

ing cost - Crit : C ∈ LDIV (Csmall, A(Csmall, C))
3. A class among those that minimize the merging cost among those that max-

imize ldiv - Crit : C ∈ A(Csmall, LDIV (Csmall, C))
4. A class among those that minimize the merging cost divided by ldiv - Crit :

C ∈ Aldiv(Csmall, C)
5. A class among those that minimize the merging cost among those that mini-

mize tclose - Crit : C ∈ A(Csmall, TCLOSE(Csmall, C))
6. A class among those that minimize tclose among those that minimize the

merging cost - Crit : C ∈ TCLOSE(Csmall, A(Csmall, C))
7. A class among those that minimize the merging cost multiplied by tclose -

Crit : C ∈ Atclose(Csmall, C)

By maximizing the value ldiv and minimizing the value tclose, we seek to
preserve the privacy of the individuals in the table by protecting the sensitive
values. By minimizing the data alteration, we seek to conserve data utility by
keeping information in the quasi-identifier attributes.

6 Experiments

To conduct our experiments, we choose the Adult Data Set [15] as experimental
table. We conserve 9 columns: Age, Gender, Race, Marital status, Education,
Native country, Work class, Occupation and Salary. We obtain a table of 30162
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lines. To evaluate the different strategies, we perform two kind of experiments:
using existing attributes of the Adult data set as sensitive values, then using sim-
ulated attributes of different numbers of possible values and following different
distributions.

6.1 Evaluation of the Strategies Using real data

At a first step, we evaluate Algorithm 2 for P is k-anonymity using l-diversity
and t-closeness as unique optimization criteria. Figure 2 present the results of
such optimizations. For this experiment, we use the Age attribute as sensitive
value. As expected, Algorithm 2 quickly optimizes the criterion (l-diversity or
t-closeness) even for low values of k. Unfortunately, since the selection of the
classes to merge does not depend on the QID, in regard to the alteration of the
table, this process is equivalent to a random selection. We can see that the table
alteration increases very quickly, reducing the data utility, even for very small
values of k. It is then necessary to co-optimize the alteration with l-diversity and
t-closeness.

Fig. 2. Optimizing thanks to sensitive attribute

For each strategy, for every possible values of k from 2 to 15000, we measure
the alteration and the ldiv and tclose values of the k-anonymous tables obtained
when running Algorithm2. Of course, the largest values of k of these experiments
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are rarely useful (if they are) in a real application. These largest values are
tested to analyse the behavior of Algorithm 2. We evaluate our strategies using
two different attributes as sensitive value: the Age attribute: 74 different values,
maximum ldiv = 50 (Fig. 3) and the Marital status attribute: 7 different values,
maximum ldiv = 3.53 (Fig. 4).

Fig. 3. Alteration, ldiv and tclose according to k using Age as sensitive attribute

In Fig. 3 and Fig. 4, we can see that the strategies that prioritize the opti-
mization of l-diversity or t-closeness (Strategies 3 and 6) give the best results
regarding to this criterion but are the worst strategies considering the data alter-
ation. Strategy 5 reaches 100% of data alteration for a very low value of k because
it quickly leads to only one equivalence class table (all the lines of the table are
generalized in only one class ⇒ tclose = 0). Strategy 5 is not suitable to preserve
data utility. Strategies 1, 2 and 4 are equivalent considering the data alteration,
but Strategy 4 outscores Strategies 1 and 2 and is equivalent to Strategy 7 for
the l-diversity maximization. Strategy 7 alters more the table than Strategy 4
but gives better results considering t-closeness when k > 4000 when using Age
as sensitive attribute.

As a whole, when sensitive values are sufficiently numerous (the Age attribute
for example), Strategy 4 gives good results considering all the criteria and alters
less the data than Strategy 7 that is better only for the t-closeness criterion
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Fig. 4. Alteration, ldiv and tclose according to k using Marital status as sensitive
attribute

when k is large with a higher data alteration. With few possible values for the
sensitive attribute (the Marital status attribute for example), Strategy 2 is a
good compromise by preserving data utility and optimizing l-diversity and t-
closeness.

To summarize, Strategy 4, which consists in taking into account l-diversity
when minimizing the data alteration of a k-anonymous table, is efficient and can
largely improve l-diversity and t-closeness while preserving data from alteration.

A first conclusion is that the choice of an optimization strategy depends on
the primary optimization objective and on the data of the table.

6.2 Evaluation of the Strategies Using simulated data

To explore more deeply how our algorithm behaves with any kind of data, we
randomly generate data sets to be used as the sensitive values on which we opti-
mize the k-anonymization process. We add these sets as new sensitive columns
of the Adult Data Set, all the original attributes being QID. To cover many pos-
sibilities of data distribution, we create sensitive attributes using 5, 10, 20, 50,
100, 200 and 500 possible values. For each new sensitive attribute, we generate
sets of values of size 30162 following Equivalent, Normal (of parameters μ = 0
and σ = 0.5) and Geometric distributions. Figure 5 presents the distributions of
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data in the generated sets for three new sensitive attributes. Each figure presents
the number of occurrences of each possible value in the generated sets.
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Fig. 5. Sensitive values distributions

In order to analyse the global behavior of the optimization algorithm, we con-
duct experiments for a large set of k values: k is between 2 and 5000. For each
number of possible values among 5, 10, 20, 50, 100, 200 and 500, for each distri-
bution among Equivalent, Geometric and Normal distributions, we evaluate
the seven strategies by computing the alteration and the ldiv and tclose values
of the obtained k-anonymous tables (147 experiments) for k from 2 to 5000.
We then compute the area under the curves (AUC) of alteration, l-diversity
and t-closeness to rank the strategies considering these three values. Figure 6a
summarizes the results we obtain, ranking the strategies considering data alter-
ation, l-diversity and t-closeness from 1 (best) to 7 (worst). For more details,
Fig. 6b shows the deviation from the mean as a color gradient (red is far less
good than the mean, green is far better than the mean). At first look, it is
clear that Strategy 5 gives the worst results for a large majority of sensitive
data distribution and for almost all the criteria. Strategy 1, considering only
the data alteration as optimization criterion, preserves data utility better than
the other strategies but for most of the sensitive data distribution, it gives less
good results for l-diversity and t-closeness. Strategy 2, considering data alter-
ation first, then l-diversity, is among the better for minimizing data alteration
but gives few improvements considering l-diversity and t-closeness. Strategy 3,
considering l-diversity first, then data alteration is the best strategy to improve
l-diversity and t-closeness among all the strategies. But, except Strategy 5, it is
also the worst considering the data alteration. Strategy 6 alters the data almost
as much as Strategy 3 with overall lower performance considering l-diversity and
t-closeness. Strategy 4 that we identified as a good trade-off preserves data utility
as well as Strategy 2 but improves l-diversity and t-closeness. Strategy 7 gives
similar results to Strategy 4 with better l-diversity and t-closeness results for
small data sets (5 or 10 possible values), but it alters more the data than Strat-
egy 4. To conclude, Strategy 4 (we optimize with l-diversity and data alteration
in the same time) is a good trade-off to maintain an acceptable data utility in
the table while conserving a good diversity of the sensitive values, and so the pri-
vacy. Our results are consistent with the ones obtained on real data in Sect. 6.1.
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Fig. 6. Comparison of the optimization strategies for different data distributions

With these two sets of experiments, we show that we can improve the privacy
of published data preserving data utility for further analyzes.

7 Conclusion

In this paper, we looked for k-anonymous tables which are good trade-offs
between data alteration, l-diversity and t-closeness. Firstly, we detailed the opti-
mization process to obtain k-anonymous tables that limits the information loss
with respect to a metric and we justified our choice of NLLM as information
loss metric. Then, we expressed l-diversity and t-closeness as quality measures
of a k-anonymous table (thanks to the ldiv and tclose values). Next, we imple-
mented seven optimization strategies to integrate into a greedy anonymization
algorithm and that mix data alteration, l-diversity and t-closeness. By applying
these strategies to the Adult Data Set, we noticed that guiding the choice of merg-
ing with the alteration and l-diversity in the same time is a good compromise
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to keep an interesting level of l-diversity and t-closeness while limiting the data
alteration. Later in our research, we will investigate how the sensitive values’
distribution can be used to adapt the optimization of the k-anonymization pro-
cess to provide better quality of the data in the PPDP context. As future works,
we now consider the optimization process itself since our greedy algorithm does
not give guarantees on the optimality of the k-anonymous tables it produces.
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Abstract. Data breaches—mass leakage of stored information—are a
major security concern. Encryption can provide confidentiality, but
encryption depends on a key which, if compromised, allows the attacker
to decrypt everything, effectively instantly. Security of encrypted data
thus becomes a question of protecting the encryption keys. In this paper,
we propose using keyless encryption to construct a mass leakage resis-
tant archiving system, where decryption of a file is only possible after the
requester, whether an authorized user or an adversary, completes a proof
of work in the form of solving a cryptographic puzzle. This proposal is
geared towards protection of infrequently-accessed archival data, where
any one file may not require too much work to decrypt, decryption of
a large number of files—mass leakage—becomes increasingly expensive
for an attacker. We present a prototype implementation realized as a
user-space file system driver for Linux. We report experimental results
of system behaviour under different file sizes and puzzle difficulty lev-
els. Our keyless encryption technique can be added as a layer on top
of traditional encryption: together they provide strong security against
adversaries without the key and resistance against mass decryption by
an attacker.

1 Introduction

Attacks on information systems have become increasingly common. Whatever
the attack vector, a frequent outcome is a data breach, in which a large volume
of sensitive information is stolen from the victim organization. Archival data—
stored indefinitely but not regularly accessed—has been targeted in many data
breaches [4,14,18], leading to loss of privacy, loss of reputation, business setbacks,
and costly remediation.

Modern IT security protection techniques focus on defense-in-depth, one com-
ponent of which is encryption of data at rest to support confidentiality. However,
encryption, even when implemented using secure, carefully implemented algo-
rithms, is typically all-or-nothing: if the key is secure, the attacker learn virtually
c© Springer Nature Switzerland AG 2020
J. Garcia-Alfaro et al. (Eds.): DPM 2020/CBT 2020, LNCS 12484, pp. 89–107, 2020.
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nothing, and the attack cannot succeed, but once the key is compromised, the
attacker can decrypt everything, with minimal overhead.

Hardware-assisted cryptography, such as hardware security modules (HSMs),
trusted computing, or secure enclaves like Intel SGX1 or ARM TrustZone2 may
prevent keys from leaking if decryption is only ever done inside a trusted module,
but many IT systems remain software-only without use of these technologies.

Scenario and Goals. Against these types of threats, we aim develop a mass
leakage resistant archiving system with the goal of enhancing defense-in-depth
for encryption. We aim to preserve confidentiality even in the presence of an
adversary with full access to the system, including ciphertexts and decryption
keys. While no system can provide full cryptographic security in the face of
such a well-informed adversary, our goal is to increase the economic cost of
mass leakage, which for our purposes is defined as an adversary obtaining the
plaintexts of a large number of files or database records, not just one.

Unlike most applications of cryptography, we do not aim to achieve a differ-
ence in work factor between honest parties and adversaries. Rather, we assume
that honest parties and adversaries have different goals, and we aim to change
the economics of data breaches by achieving a difference in the cost of honest
parties and adversaries achieving their goals. In our scenario, honest parties need
to store a large number of files, but only access a small number of them. Consider
for example a tax agency: after processing millions of citizens’ tax returns each
year, those files must be stored for several years in case an audit or further anal-
ysis is required, but only a small fraction of those records will end up actually
being pulled for analysis. In contrast, an adversary breaching the tax agency’s
records may want to read a large number of files to identify good candidates for
identity theft or other criminal actions.

1.1 Contributions

We design a system, called ArchiveSafe, where access to a resource is only pos-
sible after the requester—whether an honest user on adversary—has expended
sufficient computational effort, in the form of solving a “moderately hard” proof-
of-work or cryptographic puzzle [10]. Since we will not rely on the access control
system nor any keys to be uncompromised, the decryption operation itself must
be tied to the cryptographic puzzle. In our approach, while a proper crypto-
graphic key is used to encrypt a file, the encryption key is not stored, even for
legitimate users. Instead, the key is wrapped in a proof-of-work-based encryption
scheme with a desired difficulty level, and all users—adversarial or honest—must
perform the proof-of-work to recover the key and then decrypt the file.

Our main technical tool for building of ArchiveSafe is a new cryptographic
primitive that we call difficulty-based keyless encryption (DBKE), which is an
encryption scheme that does not make use of a stored key. We give a generic

1 https://software.intel.com/en-us/sgx.
2 https://developer.arm.com/ip-products/security-ip/trustzone.

https://software.intel.com/en-us/sgx
https://developer.arm.com/ip-products/security-ip/trustzone
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Fig. 1. High-level overview of ArchiveSafe, showing a write followed by a read.

construction for DBKE from a standard symmetric encryption scheme and a
new tool called difficulty-based keyless key wrap, which wraps the symmetric
encryption key in an encapsulation that can only be unwrapped by performing a
sufficiently high number of operations, as in a proof-of-work scheme. Difficulty-
based keyless key wrap can be achieved from many types of cryptographic puz-
zles, and we show one example based on hash function partial pre-image finding
[11,12]. One interesting feature of using this form of hash-based puzzle, which to
our knowledge is a novel observation on hash-based puzzles, is that the puzzle
and ciphertext can be degraded—i.e., turned into a harder one—essentially for
free. We use the reductionist security methodology to formalize the syntax and
security properties of difficulty-based keyless encryption and keyless key wrap
and show that our hash-based construction achieves these properties.

Figure 1 gives a high-level overview of how an application interacts with the
ArchiveSafe system. The two main operations performed by the ArchiveSafe
system are (i) creating a puzzle and encrypting during writes, and (ii) solving
the puzzle and decrypting during reads. ArchiveSafe could be used in a variety
of data storage architectures: on a local computer; on a file server; or in a cloud
architecture. In a file server or cloud scenario, an IT system may be set up so
the file server enforces that all files are protected by ArchiveSafe during writes
by centralizing puzzle creation and encryption, but leaves puzzle solving and
decryption to clients. Since puzzle creation and encryption in our system is
cheap, this avoids bottlenecks on the file server. Individual client applications
occasionally reading a small number of files have to do a moderate, but not
prohibitive, amount of work to solve the puzzle to obtain the key to decrypt.

We build a prototype implementation showing the use of ArchiveSafe on
a local computer. Our prototype is implemented as a filesystem-in-userspace
(FUSE) driver on Linux. A FUSE driver can be used to intercept I/O operations
in certain directories (mount points) before reading/writing to disk. This allows
us to implement ArchiveSafe in a manner that is transparent to the application,
as well as transparent to the underlying storage mechanism, which could be
a local disk (with normal disk encryption enabled or not), or a network share
mounted locally. We validate the performance of our prototype implementation,
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focusing primarily on ensuring that write operations incur minimal overhead.
(Since system administrators can set policies with puzzle difficulties requiring
seconds or minutes of computational effort to solve, slow read performance is
intended, and there is little sense in performance measurements on reads, beyond
checking that they scale as intended with no unexpected overhead.) We envision
that, when used on a local computer, ArchiveSafe would be applied only to a
subset of the directories on the computer. One might use ArchiveSafe to protect
documents created by the user more than a certain number of days ago, but
would not use it on system libraries and executables.

We highlight that ArchiveSafe is meant to add defense-in-depth to confiden-
tiality: one would typically not rely on ArchiveSafe alone, but combine it with
traditional encrypted file system or database encryption. In this combination,
traditional encryption using strong algorithms and keys, provides a high level of
security if the keys are not compromised, but we still have the difficulty-based
keyless encryption of ArchiveSafe as a bulwark if the keys are compromised. To
succeed under this setup, the adversary must compromise the traditional encryp-
tion keys in addition to solving a large number of DBKE puzzles corresponding
to the files in the archive.

1.2 Related Work

Filesystem Encryption. Blaze [6] introduced the Cryptographic File System
(CFS). CFS uses a different key for each directory, and the user is required
to enter the key in every session to access the directory and its contents. Sub-
sequent proposals include the Transparent Cryptographic File System (TCFS)
[7], Cryptfs [24] and Ncryptfs [23]. In recent years, encrypted filesystems have
become widespread, and all major operating systems provide implementations,
often enabled by default (FileVault on Apple’s macOS3, BitLocker on Microsoft
Windows4, and a range of options on Linux such as Linux Unified Key Setup
(LUKS)5). The common practice in these technologies is to use a single master
key from which multiple keys are derived per-file, per-directory, or per-sector;
the master key is usually stored on the device itself, encrypted under the user’s
password. Once the user has logged in, the filesystem transparently and auto-
matically decrypts files.

Over the past decade, there has been much research on encrypted databases
(e.g., [13,15,16]) that retain some functionality for legitimate users, for example
using order-preserving encryption so that sorting a column of ciphertexts yields
approximately the same order as if the plaintexts were sorted. This increased
functionality comes at the cost of information leakage, and there is an extensive
debate in the literature about these techniques.

3 https://support.apple.com/en-ca/HT204837.
4 https://docs.microsoft.com/en-us/windows/security/information-protection/

bitlocker/bitlocker-overview.
5 https://guardianproject.info/archive/luks/.

https://support.apple.com/en-ca/HT204837
https://docs.microsoft.com/en-us/windows/security/information-protection/bitlocker/bitlocker-overview
https://docs.microsoft.com/en-us/windows/security/information-protection/bitlocker/bitlocker-overview
https://guardianproject.info/archive/luks/
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Proof-of-Work Systems. Dwork and Naor [10] introduced client puzzles to con-
trol junk email: recipients would only accept emails if the sender was able to
solve a puzzle. It should be “moderately hard” for the sender to solve the puz-
zle, but easy for recipient to check whether a solution is valid. This was the first
example of a proof-of-work system, which in general grants access to a resource
dependent on the requester being able to demonstrate proof that they have per-
formed some work, typically in the form of solving a puzzle. Client puzzles were
for many years suggested as a means to prevent denial of service attacks in a
range of contexts [2,8,12,17,20,22], but have seen renewed interest as a building
block for cryptocurrencies and blockchains. Client puzzles are generally classified
either based on their limiting factors in solving the puzzle (CPU-bound versus
memory-bound) or based on whether the operations required to solve the puzzle
is parallelizable. The simplest CPU-bound puzzles are based on cryptographic
hash functions, such as: finding a preimage of a hash given a hint (e.g., a part
of the preimage) [11,12]; or finding an input whose hash starts with a certain
number of zero bits [3]. Non-parallelizable CPU-bound puzzles often rely on a
number of theoretical approaches. For example, [19] uses repeated squaring mod-
ulo an RSA modulus. Memory-bound puzzles [1,9] use techniques for which the
best known solving algorithm involves a large number of memory accesses; it
is argued that memory access time varies less than CPU speed between small
and large computing platforms, and that building customized hardware is more
expensive for memory-bound puzzles.

Proof-of-Work Systems for Confidentiality. In [19], time-lock encryption was
proposed as a way of “sending information into the future”, and focused specif-
ically on hiding keys or data in a proof-of-work system that had a predictable
wall-clock time for solving, thus focusing on puzzles for which the best known
solving algorithm is inherently sequential. Vargas et al. [21] designed a database
encryption system called “Dragchute” based on time-lock encryption, aiming
to provide both confidentiality and the ability to demonstrate compliance with
retention laws. Each ciphertext in this system is accompanied by an authenti-
cation tag which contains a non-interactive zero-knowledge proof. Solving the
puzzle will yield a valid decryption key for the ciphertext; moreover, the proof
can be checked much more efficiently than the full work required to solve and
decrypt the ciphertext. A simpler database encryption scheme relying on hash-
based client puzzles, without any efficient verification of well-formedness, was
proposed by Moghimifar [13].

2 Requirements

In this section, we discuss the functionality and security requirements for a
mass leakage resistant archiving system, which informs our construction and
evaluation in subsequent sections.
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2.1 Design Criteria

Confidentiality in the Face of Compromised Keys. The system should achieve
some level of confidentiality even if all stored keys are compromised. This means
we assume that an adversary can learn a symmetric key or a private key corre-
sponding to a public key stored for later use in decrypting a ciphertext, even if
the key is stored in a separate key management service, trusted computing or
secure enclave environment, or separate tamper-resistant device.

Cooperation with Traditional Encryption. It should be possible to use the system
in conjunction with the traditional encryption mechanisms applied to storage
systems (folder/disk encryption, database encryption, etc.), so that strong con-
fidentiality is achieved if keys are not compromised, but some confidentiality is
retained in the face of compromised keys.

Reliance on Industry Standard Cryptographic Algorithms. Deployed IT systems
should rely only on well-vetted, standardized cryptographic algorithms. But all
such algorithms for achieving confidentiality—public key or symmetric—require
a secret key, seemingly conflicting with the first design criteria of confidentiality
in the face of compromised keys. Our construction builds a mechanism for confi-
dentiality without keys while still relying on standard cryptographic algorithms
like AES for symmetric encryption: while a proper cryptographic key is used to
encrypt data, that key is not kept, even by authorized users. Instead, the key
is wrapped in a proof-of-work-based encryption scheme with a desired difficulty
level, and users must solve the proof-of-work to recover the key and then decrypt
the data. We introduce difficulty-based keyless encryption in Sect. 3 which for-
malizes this idea and generically construct it from standard cryptographic algo-
rithms such as AES and Argon2.

Imposing a Significant Cost to Access a Large Number of Files While Maintaining
Acceptable Cost to Access One File. Since we do not have a key that gives
honest users an advantage over the adversary, we should look at things from the
viewpoint of typical honest behaviour—periodically accessing a small number of
files—versus adversary behaviour—accessing a large number of files in a data
breach. Proof-of-work and related techniques have long been used to achieve
security goals from that viewpoint, whether in password hardening or client
puzzles for denial of service resistance.

Customizing File Access Cost. It should be possible for a system administrator
or user to control the cost incurred by the adversary or honest user for accessing
a file. This may be set as a system-wide policy or a file-by-file basis, depending
on the desired access control paradigm. This is achieved in our system by varying
the difficulty level of the puzzle wrapping the decryption key.

A related design criteria is the ability to customize file access cost over time.
Demand for access to records may change over time; for example, records older
than 5 years may be accessed much less frequently than more recent records. Our
system allows the file access cost to be increased with minimal effort, through
a process we call puzzle degradation, that could be performed as part of regular
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system maintenance. This is a novel feature available from some types of puzzle
constructions but not others, and in particular not from the number-theoretic
repeated squaring non-parallelizable constructions used in time-lock puzzles [19]
and the Dragchute database encryption system [21].

2.2 Choice of Puzzle

One of the major design decisions for our system is which type of puzzles to use:
sequential versus parallelizable, and CPU-bound versus memory-bound.

As our design criteria focus on mass leakage adversaries trying to decrypt
many files, and since we think of cost in a general economic sense, we do not have
to restrict to proof-of-work mechanisms that are sequential/non-parallelizable.
Concerned with an adversary trying to decrypt many files who has parallel com-
puting resources available to them, it does not matter whether they choose to
deploy their parallel resources to sequentially decrypt each file quickly or in par-
allel decrypt many files more slowly. Overall, they will decrypt the same number
of files with the same resources. We also need not worry about the variability
of puzzle solving time for individual instances, only the expected puzzle solv-
ing time for many instances. These design choices are, for example, significantly
different from those of the Dragchute system for database confidentiality and
integrity from proof-of-work. Moreover, parallelization permits honest users to
reduce the latency in occasional access of files by taking advantage of short,
on-demand use of cloud servers (see Table 3).

Whereas sequential versus parallelizable puzzles is a qualitative choice for our
scenario, CPU-bound versus memory-bound is a quantitative choice with respect
to the economic cost. To achieve a given dollar-cost-for-adversary, it is possible
to pick appropriate parameters for both CPU-bound and memory-bound puzzles
under appropriate cost and puzzle-solving assumptions. So, a priori, either can be
used in our constructions. For our prototype we choose simple hash-based CPU-
bound puzzles because puzzle creation is cheaper (thereby achieving extremely
low overhead on write operations) and because they allow us to obtain novel
useful functionality such as puzzle degradation (Sect. 3.3), but with the hash
function being Argon2 which is designed to be resistant to GPU and ASIC
optimization. Picking appropriate difficulty levels for puzzles is something an
adopter must do as a function of the tolerable cost for honest users to access data,
the perceived risk of a data breach, and the anticipated value of the information
to an adversary. We do not aim to study such economic calculations exhaustively,
but we provide one worked example in Sect. 4.4 and Table 3.

2.3 Threat Model

ArchiveSafe is a software system with one target asset, the data files. The secu-
rity goal for the target asset is confidentiality. As shown in Fig. 1, information
flows from the user application through the ArchiveSafe driver to the underlying
storage during writes, and in the reverse direction during reads.
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Fig. 2. Security experiments for (left) indistinguishability of difficulty-based keyless
encryption scheme Δ at difficulty level d; (centre) one-time indistinguishability of sym-
metric encryption scheme Π; and (right) indistinguishability of difficulty-based keyless
key wrap scheme Σ with keyspace K and difficulty level d.

An adversary could access the system either via the same mechanism as
an honest user application (i.e., mediated by the ArchiveSafe driver), or may
have direct access to the underlying storage. We aim to achieve confidentiality
against a strong adversary that can bypass the ArchiveSafe driver during read
operations (e.g., because they are untrusted server administrators, or because
they have compromised the kernel using privilege escalation), or who can directly
read from the underlying storage (e.g., an untrusted cloud storage provider, or
physical theft of a hard drive). We do not consider in our threat model an
adversary who undermines the write operation to intercept data during a write
operation or who prevents the ArchiveSafe technique from being applied when
saving files. We assume operations by honest parties are performed on a trusted
and uncompromised system that faithfully deletes keys from memory once an
operation is completed.

3 Difficulty-Based Keyless Encryption

A difficulty-based key encryption scheme is similar to a symmetric encryption
scheme, except that no secret key is kept for use between the encryption and
decryption algorithm.

Definition 1 (Difficulty-Based Keyless Encryption). A difficulty-based
keyless encryption (DBKE) scheme Δ for a message space M with maximum
difficulty D ∈ N consists of two algorithms:

– Δ.Enc(d,m) $→ c: A (probabilistic) encryption algorithm that takes as input
difficulty level d ≤ D and message m and outputs ciphertext c.

– Δ.Dec(c) → m′: A deterministic decryption algorithm that takes as input
ciphertext c and outputs message m′ or an error ⊥ �∈ M.

A DBKE Δ is correct if, for all messages m ∈ M and all difficulty levels
d ≤ D, we have that Pr [Δ.Dec(Δ.Enc(d,m)) = m] = 1, where the probability
is taken over the randomness of Δ.Enc.
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The desired security property for a DBKE is semantic security in the form
of ciphertext indistinguishability. Since there is no persistent secret key, there
is no need to consider security notions incorporating chosen plaintext or cho-
sen ciphertext attacks: each plaintext is protected by independent random-
ness. The security experiment Expdb-ind

Δ,d (A) for an adversary A trying to break
indistinguishability of DBKE scheme Δ at difficulty level d is shown in Fig. 2.
We define the advantage of such an adversary in the security experiment as
Advdb-ind

Δ,d (A) =
∣
∣
∣2 · Pr

[

Expdb-ind
Δ,d (A) ⇒ true

]

− 1
∣
∣
∣. Useful forms of Advdb-ind

Δ,d (A)
will relate the amount of work done by the adversary, the difficulty level, and
the adversary’s success probability.

3.1 Generic Construction of DBKE

Our main construction of DBKE, as shown in Fig. 3, generically combines a
traditional symmetric encryption scheme with a “keyless key wrap”, which is
difficulty-based form of key wrapping: there is no “master key” wrapping the
session key, instead the session key is recovered via some difficulty-based opera-
tion. In this subsection we present the generic building blocks we use to construct
DBKE. In Sect. 3.2 we show how to instantiate the keyless key wrap.

Definition 2 (Symmetric encryption scheme). A symmetric encryption
scheme Π with secret key space K = {0, 1}λ and message space M consists of
two algorithms:

– Π.Enc(k,m) $→ c: A (probabilistic) encryption algorithm that takes as input
key k ∈ K and message m ∈ M and outputs ciphertext c.

– Π.Dec(k, c) → m′: A deterministic decryption algorithm that takes as input
key k ∈ K and ciphertext c and outputs message m′ ∈ M or an error ⊥ �∈ M.

Fig. 3. Architectural diagram for generic construction of a difficulty-based keyless
encryption scheme Γ = Γ [Π, Σ] from a difficulty-based keyless key wrap scheme Σ
and a symmetric encryption scheme Π.
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Fig. 4. Generic construction of a difficulty-based keyless encryption scheme Γ =
Γ [Π, Σ] from a difficulty-based keyless key wrap scheme Σ and a symmetric encryption
scheme Π.

Correctness is defined in the obvious way. For our purposes, a sufficient secu-
rity property will be one-time semantic security, in the form of ciphertext indis-
tinguishability. As above, we will not need to consider security notions incorpo-
rating chosen plaintext or chosen ciphertext attacks, since our system will use a
key only once. The security experiment Expind

Π (A) for an adversary A trying to
break indistinguishability of symmetric encryption scheme Π is shown in Fig. 2.
We define the advantage of such an adversary in the security experiment as
Advind

Π (A) =
∣
∣
∣2 · Pr

[

Expind
Π (A) ⇒ true

]

− 1
∣
∣
∣.

The second building block for our construction is a keyless key wrap scheme.

Definition 3 (Keyless key wrap scheme). A keyless key wrap scheme Σ
for a key space K = {0, 1}λ with maximum difficulty level D ∈ N consists of two
algorithms:

– Σ.Wrap(d) $→ (k,w): A (probabilistic) key wrapping algorithm that takes as
input difficulty level d ≤ D and outputs key k ∈ K and wrapped key w.

– Σ.Unwrap(w) → k′: A deterministic key unwrapping algorithm that takes as
input wrapped key w and outputs key k ∈ K or an error ⊥ �∈ K.

Correctness, again, is defined in the natural way: applying Unwrap to a
wrapped key w output by Wrap should yield, with certainty, the same key k
as originally output by Wrap.

The desirable security property for a keyless key wrap scheme will be indis-
tinguishability of keys: given the wrapped key, can the adversary learn any-
thing about the key within it? The key indistinguishability security experi-
ment Expkey-ind

Σ,d for an adversary A trying to break key indistinguishability of
a keyless key wrap scheme at difficulty level d is shown in Fig. 2. We define the
advantage of such an adversary in the security experiment as Advkey-ind

Σ,d (A) =
∣
∣
∣2 · Pr

[

Expkey-ind
Σ,d (A) ⇒ true

]

− 1
∣
∣
∣. As with DBKE security, useful forms of

Advkey-ind
Σ,d (A) will relate the amount of work done by the adversary, the diffi-

culty level, and the adversary’s success probability.
As noted above, we generically construct a difficulty-based keyless encryption

scheme by combining a traditional symmetric encryption scheme with a keyless
key wrap scheme, as outlined in Fig. 3. Let Π be a symmetric encryption scheme
with key space K = {0, 1}λ, and let Σ be a keyless key wrap scheme for key
space K with maximum difficulty level D. Construct the difficulty-based keyless
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encryption scheme Γ [Π,Σ] from Π and Σ as outlined in Fig. 3 and specified in
Fig. 4.

Our DBKE scheme Γ is secure, in the sense of Fig. 2, under the assumption
that the building blocks are secure. The proof follows from a straightforward
game-hopping argument; details are omitted due to space constraints and appear
in the full version.6

Theorem 1. If Σ is a key-indistinguishable difficulty-based keyless key wrap
scheme, and Π is a one-time indistinguishable symmetric encryption scheme,
then Γ = Γ [Π,Σ] is a secure difficulty-based keyless encryption scheme. More
precisely, let d ≤ D and let A be a probabilistic algorithm. Then there exists
algorithms B1 and B2, such that Advdb-ind

Γ,d (A) ≤ 2 ·Advkey-ind
Σ,d (BA

1 )+Advind
Π (BA

2 ).
Moreover, BA

1 and BA
2 have about the same runtime as A.

3.2 Hash-Based Construction of Difficulty-Based Keyless Key Wrap

We now show how to construct our difficulty-based keyless key wrap using a
hash-based puzzle. The idea is simple: a random seed r is chosen, and the key
and a checksum of the seed are derived from the seed using hash functions. The
wrapped key consists of the checksum of the seed and the seed with some of its
bits removed ; the number of bits removed corresponds to the difficulty of the
puzzle. This is similar to the sub-puzzle construction of Juels and Brainard [12]
or partial inversion proof of work by Jakobsson and Juels [11]. Such a puzzle is
solved by trying all possibilities for the missing bits, in any order and with or
without using parallelization.

In particular, let λ ∈ N, and let H1,H2 : {0, 1}λ → {0, 1}λ be independent
hash functions. Define keyless key wrap scheme P = P [H1,H2] as in Fig. 5 (left).
The notation r[λ − d : λ] on line 2 of P.Wrap denotes taking the substring of r
corresponding to indices λ − d up to λ, removing the first d bits of r.

Fig. 5. Left: Construction of a hash-based keyless key wrap scheme P = P [H1, H2]
from hash functions H1, H2. Right: Degradation algorithm for DBKE Γ = Γ [Π, P ]
constructed using generic construction Γ of Fig. 4 using hash-based keyless key wrap
scheme P of left.

6 https://arxiv.org/abs/2009.00086.

https://arxiv.org/abs/2009.00086
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The following theorem shows the key indistinguishability security of our hash-
based keyless key wrap scheme P in the random oracle model. The proof consists
of a query counting argument in the random oracle model; details are omitted
due to space constraints and appear in the full version.

Theorem 2. Let H1 and H2 be random oracles. Let λ ∈ N and let d ≤ λ.
Let P = P [H1,H2] be the keyless key wrap scheme from Fig. 5 (left). Let A
be an adversary in key indistinguishability experiment against P which makes
q1 and q2 distinct queries to its H1 and H2 random oracles, respectively. Then
Advkey-ind

P,d (A) ≤ q1
2d−1 + 2

2d−q1
.

Puzzle Granularity. The partial pre-image puzzle construction used in Fig. 5
does not allow for fine-grained control of difficulty: removing each additional bit
increases the expected computational cost by a factor of 2. Higher granularity
can be achieved similar to how the puzzle difficulty in Bitcoin is set, by giving a
hint that narrows the range of data from 2d to some smaller subset.

3.3 Puzzle Degradation

We now introduce an additional feature of difficulty-based keyless encryption
that emerges naturally from our hash-based keyless key wrap construction: puz-
zle degradation. Abstractly, puzzle degradation is a process that takes a DBKE
ciphertext and increases the difficulty of decrypting it, preferably without need-
ing to decrypt and then re-encrypt at a higher difficulty level.

In the context of the ArchiveSafe long-term archiving system, this may be
used to gradually increase the difficulty of files that have not been accessed for a
certain period of time. For example, a monthly maintenance process could apply
degradation to stored files to gradually increase the cost (to both an attacker
and an honest party) of accessing increasingly older files.

The DBKE system Δ from Definition 1 is augmented with the algorithm:

– Δ.Degrade(c, d′) $→ c′: A (possibly probabilistic) algorithm that takes as
input ciphertext c and target difficulty level d′ ≤ D, and outputs updated
ciphertext c′.

Correctness is extended to demand that a ciphertext output by Δ.Enc then
degraded any number of times is still correctly decrypted by Δ.Dec (although
decryption may take longer).

Security with the degraded algorithm included should mean, intuitively, that
a ciphertext degraded any number of times can be decrypted only using the
required amount of work at the new difficulty level.

We capture both correctness and security of degradation formally by demand-
ing that, for all d ≤ d′ ≤ D and all m ∈ M, we have that Δ.Enc(d′,m) ≡
Δ.Degrade(d′,Δ.Enc(d,m)); in other words: the distribution of ciphertexts pro-
duced by encrypting at difficulty d′ is identical to the distribution of ciphertexts
produced by encrypting at difficulty d and then degrading to difficulty d′.
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We can achieve degradation in DBKE Γ = Γ [Π,P ] constructed from our
hash-based keyless key wrap P in a trivial way: by removing (d′ − d) more bits
from the puzzle hint r. This clearly requires no decryption and re-encryption,
only a constant-time edit to the metadata stored containing the wrapped key.
The procedure Γ.Degrade is stated in Fig. 5 (right). Degraded ciphertexts are
identically distributed to ciphertexts freshly generated at the target difficulty
level, as removing additional bits of the partial seed r is associative. An adversary
who possess a copy of the metadata from an earlier version of the archive prior to
degradation can solve puzzles and decrypt at the earlier, non-degraded difficulty
level.

3.4 Additional Considerations

Outsourcing Puzzle Solving. The generic DBKE construction Γ of Fig. 4 allows
the key unwrapping and ciphertext decryption to be done separately, so the
expensive key unwrapping could be outsourced to a cloud server. In the example
of the hash-based keyless key wrap scheme P of Fig. 5, the user could give the
wrapped key w = (h, r) to the cloud server who unwraps and returns the key k,
which the user then locally uses to decrypt the ciphertext c.

This does mean that the cloud server learns the encryption key k. However,
this can be avoided with the following adaption to the construction P of Fig. 5.
During wrapping, the algorithm generates an additional salt value s ←$ {0, 1}λ

and computes k ← H2(r‖s); s is stored in the wrapped key w. When outsourcing
the unwrapping to the cloud server, the user only sends h and r, but not s. The
cloud server is still able to use the checksum h with the partial seed r to recover
the full seed r, but lacks the salt s and thus the cloud server alone cannot
compute the decryption key k. Theorem 2 still applies to this adaptation.

Combining Keyless and Keyed Encryption. As previously mentioned, our keyless
encryption approach can (and should) be used in conjunction with traditional
keyed encryption mechanisms using a different set of keys. Traditional keyed
encryption gives honest parties a (conjecturally exponential) work factor advan-
tage over adversaries if keys remain uncompromised, while keyless encryption
slows adversaries if the traditional encryption keys are compromised. The two
schemes can be layered in one of two ways: first applying keyless encryption
DBKE and encrypting the result using keyed symmetric encryption Sym (i.e.,
c ← Sym.Enc(k,DBKE.Enc(d,m))) or in the order, with keyless encryption on
the outer layer (i.e., c ← DBKE.Enc(d,Sym.Enc(k,m))). Either approach yields
robust confidentiality, but we recommend the latter method as it facilitates the
puzzle degradation process described in Sect. 3.3.

4 Evaluation

We evaluate ArchiveSafe by measuring its performance against other systems
through real life experiment. The goals of the experiment are to: (1) measure
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the overhead ArchiveSafe introduces on adversaries and honest users, and (2)
verify that puzzle solving difficulty scale according to the theoretical system
design.

4.1 Prototype Implementation

To run the evaluation experiment, we implemented a prototype of ArchiveSafe.7

In terms of instantiating the difficulty-based keyless encryption using the generic
construction from Sect. 3.1, our proof-of-concept uses AES-128 in CBC mode
for the symmetric encryption scheme. The hash functions H1 and H2 in the
hash-based keyless key wrap scheme are both instantiated with Argon2id [5]
with a prefix byte acting as a domain separator between H1 and H2, with the
following parameters: parallelism level: 8; memory: 102,400 KiB; iterations: 2;
output length: 128 bits. We did not parallelize puzzle solving in Unwrap to
avoid locking other system operations, but it is easily parallelized.

The ArchiveSafe prototype is implemented as a Linux Filesystem in
Userspace (FUSE) using a Python toolkit8 to simplify implementation. Our
Python FUSE driver relies on the OpenSSL library for encryption and decryp-
tion, and Ubuntu’s argon2 package. In a real deployment in the context of a
filesystem, ArchiveSafe would be implemented as a kernel module, likely written
in C, for improved performance and reliability.

Our prototype has a tuneable difficulty level, which we label in this section
as D1, D2, D3, etc. Difficulty Dx corresponds to hash-based keyless key wrap
scheme P of Fig. 5 with difficulty parameter d = 4x; in other words, D1 removes 4
bits of the seed, D2 removes 8 bits of the seed, etc. We chose a 4-bit step between
difficulty levels to focus on how system behaviour scales across difficulty levels;
finer gradations could be chosen by users.

4.2 Experimental Setup

The experiment measures ArchiveSafe’s performance at three difficulty levels
(D1, D2, D3) compared to an unencrypted file system (denoted UN) and Linux’s
built-in folder encryption using eCryptfs9 (denoted FE) and disk encryption
(denoted DE) on read and write tasks at different file sizes. When running the
ArchiveSafe experiments, the ArchiveSafe FUSE driver was writing its files to
an unencrypted file system.

Measurements. For each storage system being evaluated, we measure read and
write times for files of sizes 1 KB, 100 KB, 1 MB, 10 MB, and 100 MB. Perfor-
mance is measured at the application level, from the time the file is opened until
the time the read/write operation is completed. For folder and disk encryption,

7 Our prototype is available at https://github.com/moesabry/ArchiveSafe.
8 https://github.com/skorokithakis/python-fuse-sample.
9 https://www.ecryptfs.org/.

https://github.com/moesabry/ArchiveSafe
https://github.com/skorokithakis/python-fuse-sample
https://www.ecryptfs.org/
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this includes the filesystem’s encryption operations. For ArchiveSafe, we instru-
mented the driver to record the total time as well times for different sub-tasks
(encryption, puzzle solving, decryption, file system I/O).

Test Environment. Measurements were performed on a single-user Linux machine
with no other processes running. The computer was a MacBook Pro running
Ubuntu Linux 18.04 LTS with an 4-core Intel Core i7-4770HQ processor with
base frequency 2.2 GHz, bursting to 3.4 GHz. The computer had 16 GiB of RAM.
The hard drive was a 256 GiB solid state drive with 512-byte logical sectors and
4096-byte physical sectors. The disk encryption was done using Linux Unified
Key Setup system version 2.0, and folder encryption was done using the Enter-
prise Cryptographic Filesystem (eCryptfs) version 5.3.

Execution. For each storage system and file size, we performed many repetitions
of the following tasks. A file was created with randomly generated alphanumeric
characters using a non-cryptographic random number generator. Read and write
operations were measured as indicated above. For file sizes of 1 KB, 100 KB,
1 MB, and 10 MB, we collected data for 1000 writes and reads; for 100 MB files,
we ran 200 writes and reads, due to extensive time of operations at this size.

4.3 Results

Table 1 shows average read and write times for the file systems under consid-
eration at different file sizes. Since read operations in the ArchiveSafe system
become increasingly expensive with difficulty, we show in Table 2 the average
time of sub-tasks of ArchiveSafe read operations at different file sizes and diffi-
culties: the puzzle solving time (which should scale with puzzle difficulty), the
system file read time plus decryption time (which should scale with file size),
and the overhead from other file system driver operations (which includes puz-
zle read and system file open times). As the partial pre-image puzzle used in
ArchiveSafe leads to highly variable solving times, Fig. 6 shows the average time
and standard deviation for puzzle solving at difficulties D1, D2, and D3.

Table 1. Average read and write times in milliseconds

File system Read Write

1KB 100KB 1MB 10MB 100MB 1KB 100KB 1MB 10MB 100MB

Unencrypted
(UN)

0.526 0.550 1.70 10.1 110 0.07 0.25 0.85 6.76 97.82

Disk Encryption
(DE)

0.737 0.924 3.15 10.5 160 0.08 0.25 0.83 6.63 97.97

Folder
Encryption (FE)

0.737 0.961 3.42 10.9 190 0.12 0.50 3.31 29.07 319.88

ArchiveSafe D1 630 630 630 650 860 141.05 141.67 146.09 221.73 848.30

ArchiveSafe D2 7070 7080 7310 7180 7290 141.25 141.43 145.08 223.50 847.02

ArchiveSafe D3 112140 111760 107390 114530 107630 141.01 140.98 145.74 222.40 846.06
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Table 2. Read sub-tasks average times in millisec-
onds

Diff. 1KB 100KB 1MB 10MB 100MB

D1 Puzzle Solve 510 510 510 510 500

Decryption 5.42 5.71 7.25 20 150

Other 0.387 0.373 0.378 0.384 0.363

D2 Puzzle Solve 6960 6980 7210 7050 6930

Decryption 5.58 6.12 7.89 20 140

Other 0.357 0.373 0.376 0.374 0.335

D3 Puzzle Solve 112040 111730 107280 114410 107270

Decryption 5.56 5.94 7.96 20 140

Other 1.075 1.216 0.971 1.195 1.045

Fig. 6. Puzzle solving time in
milliseconds (average, standard
deviation)

4.4 Discussion

The results show consistent behaviour across different file sizes. The larger files
consumed more time in decrypting and reading. We also observed that the time
consumed is roughly the same for smaller file sizes (1 KB and 100 KB) where
operation cost is dominated by overhead.

As expected, the read speeds decrease with the difficulty level because the
system must solve the puzzle before reading the file and the puzzle solving effort
scales with the difficulty level. As per Table 2, puzzle solve times on average
scale by a factor of 13.6–14.1× between D1 and D2 and a factor of 14.9–16.2×
between D2 and D3, roughly in line with the theoretical scaling factor of 16×.

Evaluating the overhead added by ArchiveSafe for write operations, we see in
Table 1 that ArchiveSafe incurs a baseline overhead related to setting up the puz-
zle (which involves 2 Argon2 calls), then scales with the file size due to the cost of
AES encryption and writing. Note that ArchiveSafe uses a different encryption
library (user-space calls to OpenSSL) compared with disk and file encryption
(kernel encryption via dm-crypt), so symmetric encryption/decryption perfor-
mance is not directly comparable, but we see similar scaling.

The short summary of performance is that ArchiveSafe adds a 140–520 ms
overhead when writing a file, and a customizable overhead when reading a file,
ranging from 510 ms at difficulty D1, 7 s at D2, or 110 s at D3. But recall
that adding computational overhead at read time is exactly the purpose of
ArchiveSafe! What an acceptable difficulty level—and hence acceptable com-
putational overhead at read time for honest users—is a policy choice by the
system administrator. As noted earlier, choosing the difficulty level depends on
the tolerable cost for honest users to access data, the perceived risk of a data
breach, and the anticipated value of the information to an adversary, and is
a calculation that must be left to the adopter. Note that honest users need
not solely rely on sequential operations on their own computer: as described in
Sect. 3.4 an ArchiveSafe installation could be configured so that honest users
offload their puzzle solving tasks to private or commercial clouds which are spun
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Table 3. Dollar cost and computation time required to unlock ArchiveSafe files

D3 D4 D5 D6

Honest user decrypting 1 file

Local machine, threaded 4 cores, 2.2 GHz 0.5 min 7.3 min 2 h 31 h

Cloud server c5.metal, spot pricing �$0.01 <$0.01 $0.05 $0.73

Adversary decrypting 1 million files

Cloud server c5.metal 8 days 130 days 5.7 yrs 91.4 yrs

Cloud server c5.metal, spot pricing $178 $2,852 $45,648 $730,364

up on demand with large amounts of parallelization to reduce the wall clock
time before they can access a file.

Table 3 shows examples of costs at higher difficulty levels. To provide further
interpretation to these costs, we look not only at the computation time required
for an honest user on our test platform to decrypt a file, but also at the real-world
cost for an adversary, based on the cost of renting computation time on Amazon
Web Services (AWS) Elastic Cloud Compute (EC2) platform. EC2 has many
machine types available; Argon2 is designed to not be substantially accelerated
by more sophisticated architectures, GPUs, or ASICs. As such we choose for our
pricing example an EC2 instance that minimizes cost per core-GHz-hour; the
c5.metal EC2 instance type has 96 Intel Xeon cores running at 3.6 GHz at a
cost of USD$0.9122 per hour using Amazon’s cheapest spot pricing model.10

We can see, for example, that at difficulty D5, an honest user can unlock
an archived file with about 2 h of work on a local machine, or about 3 min of
c5.metal rental costing 4.5 cents at spot pricing (20 cents on-demand pricing).
However, an adversary trying to decrypt 1 million such files from a data breach
would need 5.7 years of c5.metal rental at a spot pricing cost of USD$45,648.

5 Conclusion

ArchiveSafe, using difficulty-based keyless encryption, can add defense-in-depth
to confidentiality of archived data and change the economics of mass leakage
attacks via data breaches. We expect that most uses of ArchiveSafe would be in
addition to, not as a replacement for, traditional keyed encryption; full crypto-
graphic security would be achieved if encryption keys are properly managed and
kept safe, but ArchiveSafe provides a residual level of protection if traditional
encryption keys are also breached. This means the key management service is
no longer a single point of failure.

One target application is IT systems which retain large amounts of archival
data, most of which will be rarely or perhaps never again accessed by legiti-
mate users. Although honest users have no advantage in difficulty-based decryp-
10 https://aws.amazon.com/ec2/instance-types/, https://aws.amazon.com/ec2/spot/

pricing/; prices as of April 23, 2020.

https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/spot/pricing/
https://aws.amazon.com/ec2/spot/pricing/
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tion compared to an adversary on a file-by-file basis, if their operational goals
are different—an honest user decrypting 1 file occasionally, versus an adversary
decrypting thousands or millions of files quickly—their costs are different.

Our approach can be applied in a variety of system architectures: local storage
and execution (as demonstrated by our prototype), local storage with private or
public cloud assistance for puzzle solving, or remote (file server/cloud) storage
with local or assisted puzzle solving. Our approach can also apply to different
storage paradigms, including file systems, cloud “blob” storage, and databases.

Puzzle difficulty can be set as a system-wide or with higher granularity based
individual records’ sensitivity. A novel features of our construction is the ability
to degrade puzzle difficulty effectively for free, which could be built into periodic
maintenance or through a heuristic system based on suspicious activity.
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Abstract. In recent years, location-based social networks (LBSNs) such
as Foursquare have emerged that enable users to share with each other,
their (geographical) locations together with the semantic information
associated with their locations. The semantic information captures the
type of a location and is usually represented by a semantic tag. Semantic
tag sharing increases the threat to users’ location privacy which is already
at risk because of location sharing. The existing solution to protect the
location privacy of users in such LBSNs is to obfuscate the location
and the semantic tag independently of each other in a so called disjoint
obfuscation approach. More precisely, in this approach, the semantic tag
is obfuscated i.e., replaced by a more general tag. Also, the location
is obfuscated i.e., replaced by a generalized area (called the cloaking
area) made of the actual location and some of its nearby locations. How-
ever, since in this approach the location obfuscation is performed in a
semantic-oblivious manner, an adversary can still increase his chance to
infer the actual location by detecting semantic incompatibility between
the locations in the cloaking area and the obfuscated semantic tag. In
this work, we address this issue by proposing a joint obfuscation app-
roach in which the location obfuscation is performed based on the result
of the semantic tag obfuscation. We also provide a formal framework for
evaluation and comparison of our joint approach with the disjoint app-
roach. By running an experimental evaluation on a dataset of real-world
user mobility traces, we show that in almost all cases (i.e., for different
values of the obfuscation parameters), the joint approach outperforms
the disjoint approach in terms of location privacy protection. We also
study how different obfuscation parameters can affect the performance
of the obfuscation approaches. In particular, we show how changing these
parameters can improve the performance of the joint approach.

Keywords: Privacy · Social networks · Location-based services ·
Semantics

1 Introduction

In location-based social networks (LBSNs) such as Foursquare and Facebook,
users can share with each other, their (geographical) locations together with the

c© Springer Nature Switzerland AG 2020
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Fig. 1. A check-in to a burger joint called “Whitmans” on Foursquare. The
location and the semantic tag of the venue are highlighted by the red bounding boxes.
(Color figure online)

semantic information associated with their locations. For instance, by checking-
in to venue “Whitmans” on Foursquare, a user implicitly accepts to share with
her friends, the address of the venue together with its type (category), which is
represented in the form of a semantic tag “burger joint” (See Fig. 1). A venue’s
semantic tag usually belongs to a predefined set of tags, where the set of tags
form a hierarchical tree in which the “burger joint” tag could be a descendant
of the “restaurant” tag and the “restaurant” tag could be a descendant of the
“food” tag, and so forth [1,5].

It is known that by disclosing their locations in LBSNs and in location-based
services (LBSs), users put their location privacy at risk. In fact, an adversary
(e.g., a curious service provider) can use a collection of users’ disclosed locations
to re-identify their pseudonymous location traces or to infer their locations at
given time instants [20,23,24]. As shown in [1], revealing semantic tags together
with locations, creates a still more powerful threat to the users’ location privacy.
Intuitively, this is because the mobility of users have some regular semantic
patterns (e.g., people usually go to the movies after dining in a restaurant),
which can be learned and exploited to better track their locations [1,5].

One way to protect the privacy of users is to build privacy-aware LBSNs in
which users only share obfuscated versions of their locations and semantic tags.
Thus, when a user checks-in to a venue on a privacy-aware LBSN, the venue’s
name, its exact location and its semantic tag are not disclosed to anyone. Instead,
an obfuscated version of the location and an obfuscated version of the semantic
tag are sent to the service provider and then shared with the user’s friends on
the LBSN. The existing solution in the literature to build such privacy-aware
LBSNs consists of obfuscating the location and the semantic tag independently of
each other in a so called disjoint semantic tag-location obfuscation approach [1].
Figure 2.a illustrates a toy example of this approach, where a geographical area
is partitioned into four square regions (locations) and each region is identified
by a number. Let us assume that a user Alice wants to check-in to venue “Super
Duper Burger” on a privacy-aware LBSN. Thus, in the semantic tag obfuscation
process, her location’s semantic tag (i.e., “burger joint”) is replaced by a more
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Fig. 2. Toy Examples of the obfuscation approaches.

general tag “restaurant”. Also, in the location obfuscation process, her location
(i.e., region 1) is replaced by a generalized area (also called a cloaking area) made
of regions 1 and 2.1 The problem with this approach is that an adversary (e.g.,
a curious service provider) who knows the semantic tags of the venues in the
map can easily filter out region 2 from the cloaking area and infers that Alice
is located in region 1. The reason is that region 2 is not semantically compatible
with the “restaurant” tag i.e., it has no venue whose semantic tag is equal to the
“restaurant” tag or is a descendant of the “restaurant” tag in the tag hierarchy.

In this work, we introduce a joint semantic tag-location obfuscation approach
for building privacy-aware LBSNs. This approach aims to overcome the draw-
backs of the disjoint approach by performing the location obfuscation based on
the result of the semantic tag obfuscation. More precisely, in the location obfus-
cation process, the cloaking area is defined so that it has the maximum number
of semantically compatible regions with the obfuscated semantic tag among the
existing potential cloaking areas. Figure 2.b illustrates a toy example of this app-
roach. Similar to the toy example of Fig. 2.a, in this example a user Alice wants
to check-in to venue “Super Duper Burger” on a privacy-aware LBSN. Thus, in
the semantic tag obfuscation process, her location’s semantic tag (i.e., “burger
joint”) is replaced by a more general tag “restaurant”. However, in the location
obfuscation process, her location (i.e., region 1) is replaced by a cloaking area
made of regions 1 and 3. The advantage of merging region 1 with region 3 instead
of merging region 1 with region 2, is that region 3 is semantically compatible
with the “restaurant” tag since it has two venues (i.e, “Joe’s Pizzeria” and “Haru
Noodle House”) whose semantic tags (i.e., “pizza place” and “noodle house”)
are descendants of the “restaurant” tag in the tag hierarchy, respectively. Hence,
the adversary cannot filter out the region 3 by knowing the “restaurant” tag.
Thus, the resulting cloaking area has two semantically compatible regions with
the “restaurant” tag, which is the maximum number of semantically compatible

1 For simplicity’s sake, in this work we consider only obfuscation by generalization,
both for locations and semantic tags.
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regions that can be achieved for the “restaurant” tag and the cloaking area size
of two regions.

Contributions. We introduce a joint semantic tag-location obfuscation app-
roach for privacy protection in LBSNs (and in LBSs, in general). We also provide
a formal framework that can be used for evaluation and comparison of our app-
roach with the disjoint obfuscation approach. Using a dataset of real-world user
mobility traces, we perform an experimental evaluation for comparison of the
joint and the disjoint approaches. The evaluation results show that in almost all
cases (i.e., for different values of the obfuscation parameters), the joint approach
outperforms the disjoint approach in terms of location privacy protection. We
also study the impact of different obfuscation parameters on the performance of
the obfuscation approaches. In particular, we show how changing these param-
eters can improve the performance of the joint approach. The most important
contribution of our work is introducing joint obfuscation as a new type of obfus-
cation, in which some private attributes of a user are obfuscated based on the
result of the obfuscation of some of her other private attributes. Accordingly,
our work can be used as a model for more advanced obfuscation schemes that
jointly obfuscate a greater number of private attributes.

Road Map. The remainder of the paper is organized as follows. In Sect. 2,
we describe the system model and introduce some definitions. In particular, we
present a privacy protection mechanism that can be defined to use one of the
joint or disjoint obfuscation approaches. We also present an adversary model
and describe the adversary’s knowledge and attack. In Sect. 3, we introduce an
implementation of the adversary’s attack based on dynamic bayesian networks.
In Sect. 4, we present the location privacy metric. In Sect. 5, we perform an
experimental evaluation to compare the joint and the disjoint approaches in
terms of location privacy protection and we discuss the results. In Sect. 6, we
discuss the related work. Finally, we conclude the paper in Sect. 7.

2 System Model

In this section, we present the system model. Our model is built upon the frame-
work proposed in [20,23,24] and its extension in [1].

Regions and Semantic Tags. We assume that the users move in a geograph-
ical area that is partitioned into a finite set R of distinct regions. We use the
terms region, geographical location and location interchangeably. Each region has
a unique identifier and contains a set of venues. A venue is characterized by its
type, which is represented in the form of a semantic tag. The semantic tag of a
venue belongs to a set S of all possible semantic tags. We assume that S can be
represented as a tree data structure where each node is a semantic tag and the
parent of a given node is a more general semantic tag with respect to a speci-
fied tag hierarchy. Below, we present some definitions that capture the semantic
characteristics of venues and regions.
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• Let v be a venue in a region in R and s be a semantic tag in S. Then, we
say v is semantically compatible with s, if v’s semantic tag is equal to s or
descendant of s in the semantic tag tree.

• Let r be a region in R and s be a semantic tag in S. Then, NVs(r) denotes
the number of venues in r whose semantic tags are equal to s. Simi-
larly, NDVs(r) denotes the number of venues in r whose semantic tags
are descendants of s in the semantic tag tree. Finally, NCVs(r) denotes
the number of venues in r that are semantically compatible with s. Thus,
NCVs(r)=NVs(r)+ NDVs(r).

• Let r be a region in R and s be a semantic tag in S. Then, we say that r
is semantically compatible with s if r contains at least one venue which is
semantically compatible with s, i.e., NCVs(r) > 0.

Time. Time is discrete and the set of time instants when the users may be
observed is T = {1, ..., T}. The set T is called the observation interval.

Users. We assume a finite set of users, where each user has a unique identi-
fier. The mobility of a user is characterized by her events and her traces. More
specifically, the fact that a user u is at location r with semantic tag s at time
t, can be represented by a tuple <u, r, s, t>. We call this tuple an event. Note
that the semantic tag of location of u at time t refers in fact to the semantic tag
of the location’s venue where u is located at time t. The location trace and the
semantic tag trace of user u can then be obtained based on the set of her events
over the entire observation interval. Thus, the location trace of u is defined as
r1:Tu � {r1u, ..., rT

u }, where rt
u with t ∈ T , denotes the location of u at time t. We

assume that rt
u is an instantiation of random variable Rt

u that takes values in
R. Moreover, the semantic tag trace of u is defined as s1:Tu � {s1u, ..., sT

u }, where
st

u with t ∈ T , denotes the semantic tag of location of u at time t. We assume
that st

u is an instantiation of random variable St
u that takes values in S.

Privacy Protection Mechanism (PPM). The privacy-protection mecha-
nism (also called PPM) obfuscates user’s locations and their corresponding
semantic tags before reporting them to the online service provider. More pre-
cisely, PPM transforms each actual event <u, r, s, t> to an obfuscated event
<u, r̃, s̃, t>, where r̃ and s̃ are the obfuscated versions of r and s, respectively.

The obfuscation of r is achieved through the location obfuscation process of
the PPM. The resulting pseudo-location r̃ is an instantiation of random variable
˜Rt

u that takes values in set ˜R, where ˜R is the power set of R. We use the
terms pseudo-location and obfuscated location interchangeably. In the literature,
there exist various types of location obfuscation (see Sect. 6). In this work, we
assume that the PPM performs a type of location obfuscation called location
generalization. Thus, r is merged with its nearby regions to form an extended
region (also called a cloaking area (CA)) that is represented by r̃. We also assume
the existence of a parameter oloc called the location obfuscation level. In this work,
oloc defines the number of regions in r̃. Thus, formally, r̃ represents a set that is
composed of r and the other merged regions and has a cardinality of oloc.
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The obfuscation of s is achieved through the semantic tag obfuscation process
of the PPM. The resulting pseudo-semantic tag s̃ is an instantiation of random
variable ˜St

u that takes values in set S. We use the terms pseudo-semantic tag
and obfuscated semantic tag interchangeably. In this work, we assume that the
PPM performs a type of semantic tag obfuscation called semantic tag general-
ization, in which s is replaced by a more general semantic tag in the semantic
tag tree. The level of generalization is defined by a parameter osem called the
semantic tag obfuscation level. Thus, formally, s̃ is the ancestor of s that is osem
level(s) above s in the semantic tag tree.

Based on what we have described, the location obfuscation and the semantic
tag obfuscation can each be modeled by a probability distribution function.
Thus, formally, a PPM is defined as a pair (f , g) where f and g are probability
distribution functions that model the semantic tag obfuscation and the location
obfuscation, respectively. By applying these functions on a user’s events over
time, the PPM creates the obfuscated traces of the user from her actual traces.
Thus, the obfuscated location trace of a user u is defined as r̃1:Tu � {r̃1u, ..., r̃T

u },
where r̃t

u with t ∈ T , denotes the pseudo-location of u at time t and is an
instantiation of ˜Rt

u. Moreover, the obfuscated semantic tag trace of user u is
defined as s̃1:Tu � {s̃1u, ..., s̃T

u }, where s̃t
u with t ∈ T , denotes the pseudo-semantic

tag of location of u at time t and is an instantiation of ˜St
u. The definition of

f and g functions depends on the obfuscation approach used by the PPM. In
the following, we introduce two obfuscation approaches and give the definition
of the probability distribution functions for each approach.

• Disjoint semantic tag-location obfuscation approach. In this approach,
the location obfuscation and the semantic tag obfuscation are performed inde-
pendently of each other. Thus, the probability distribution functions in this
approach are defined as follows [1].

fu(s, s̃) = Pr
(

˜St
u = s̃

∣

∣ St
u = s

)

(1)

gu(r, r̃) = Pr
(

˜Rt
u = r̃

∣

∣ Rt
u = r

)

(2)

• Joint semantic tag-location obfuscation approach. In this approach,
the location obfuscation is performed based on the result of the semantic tag
obfuscation. Thus, first s̃ is obtained from s by applying the semantic tag
obfuscation process. Then, in the location obfuscation process, the merging
of r with nearby locations is performed in a way that the resulting r̃ has the
maximum number of semantically compatible regions with s̃. Formally this
can be expressed as follows. Let C(r) be the set of potential cloaking areas
for region r and NCRs̃(.) denote the number of regions that are semantically
compatible with s̃ in a given cloaking area. Then, an element r̃ of C(r) has
the maximum number of semantically compatible regions with semantic tag
s̃ if NCRs̃(r̃)≥ NCRs̃(ρ̃) for ∀ρ̃ ∈ C(r). Based on what we have described,
the probability distribution functions in this approach are defined as follows.
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fu(s, s̃) = Pr
(

˜St
u = s̃

∣

∣ St
u = s

)

(3)

gu(r, r̃, s̃) = Pr
(

˜Rt
u = r̃

∣

∣ Rt
u = r, ˜St

u = s̃
)

(4)

Adversary. Typically, the adversary is a curious service provider or an observer
who observes the obfuscated traces of the users and wants to infer the locations
of users at given time instants. We model the adversary by his knowledge and
his attack.

• Adversary’s Knowledge. The adversary has full knowledge of regions
(including their venues and their semantic tags) and the semantic tag tree.
He knows which obfuscation approach is used by the PPM and also knows the
semantic tag obfuscation function (f) and the location obfuscation function
(g) of PPM in both disjoint and joint approaches. We assume that the adver-
sary performs his attack a posteriori, meaning that the adversary has access
to the obfuscated traces of the users over the complete observation interval.
In addition, he has access to some of the past semantic tag traces and past
location traces of the users. We refer to this as his prior information.

• Adversary’s Attack. The adversary performs the location-inference attack
against users. In this attack, the goal of the adversary is to find the location
of a user u at time t, given the obfuscated location trace and the obfuscated
semantic tag trace of u. The attack can be formalized as finding the following
posterior probability distribution over set R of regions:

Pr
(

Rt
u = r

∣

∣ r̃1:Tu , s̃1:Tu

)

(5)

3 Implementation of the Attack

To implement the attack, the adversary first builds a dynamic bayesian network
(DBN ) model for each user based on his knowledge. Roughly speaking, the DBN
model for a user encodes the probabilistic dependencies between the random
variables involved in the inference attack against that user. Once a DBN is built
for a user, the adversary can perform his attack against the user by applying
an existing DBN inference algorithm (such as junction tree algorithm or loopy
belief propagation algorithm [11,16,17]) on the DBN built for the user. In the
following, we discuss the DBN models.

3.1 The Dynamic Bayesian Network (DBN) Models

Based on his knowledge, the adversary builds a dynamic bayesian network
(DBN ) model for each user. A DBN is a probabilistic graphical model. It belongs
to a wider class of probabilistic graphical models known as bayesian networks
(BNs). In fact, a DBN is a BN which is used to model time series, sequential
data [11,16].

The DBN of a user u presents a joint distribution over the random variables
R1:T

u , S1:T
u , ˜R1:T

u , ˜S1:T
u , where R1:T

u � {R1
u, ..., RT

u }, S1:T
u � {S1

u, ..., ST
u }, ˜R1:T

u �
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(c) DBN for the Joint Approach
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Fig. 3. The Dynamic Bayesian Network (DBN) Models.

{ ˜R1
u, ..., ˜RT

u } and ˜S1:T
u � {˜S1

u, ..., ˜ST
u }. These random variables can be divided

into two categories: (1) Observed variables. These are the variables that are
directly observed and whose values are known by the adversary. They include
˜R1:T

u and ˜S1:T
u ; (2) Unobserved variables (also called hidden variables). These

are the variables that are not directly observed and whose values are supposed
to be inferred from the observed variables. They include R1:T

u and S1:T
u . The

graphical structure of the DBN specifies all probabilistic dependencies between
the hidden variables, between the hidden and the observed variables and between
the observed variables.

The probabilistic dependencies between the hidden and the observed vari-
ables as well as between the observed variables themselves, depend on the obfus-
cation approach used by the PPM. Thereby, the DBN of a user in the case where
the disjoint obfuscation approach is used differs from her DBN in the case where
the joint approach is used. However, in both cases the probabilistic dependencies
between the hidden variables remain the same. Thus, in the following we first
present a basic DBN for a user u that encodes only the probabilistic depen-
dencies between the hidden variables. Then, we present the DBNs of u for the
disjoint and the joint obfuscation cases. These DBN models are made by adding
the corresponding observed variables of each case to the basic DBN.

3.1.1 The Basic DBN
This model encodes the probabilistic dependencies between the hidden variables
associated to user u, namely R1:T

u , S1:T
u (see Fig. 3.a). The basic DBN models the

mobility of u. The adversary builds this model based on the following assumption
on user mobility: to move to the next location, a user first decides on the type
(i.e., semantic tag) of the next location based on the type (i.e., semantic tag)
of her current location [1]. Once the next location type is decided, the user
can choose her next (geographical) location based on her current (geographical)
location and the next location type [1]. For instance, a user is in a restaurant and
decides to go to the movies, as she usually does after going to a restaurant. Thus,
considering her current geographical location, she chooses the movie theater that
is most convenient to her (e.g., the closest movie theater to the restaurant) [1].
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Let us take a closer look at the model. Since a DBN is a type of bayesian
network (BN), the model exhibits the general properties of BNs. More precisely,
it is a directed acyclic graph in which nodes represent random variables and the
edges represent conditional dependencies between variables. In addition, each
node has a conditional probability distribution (CPD) associated to it, which is
the CPD of the variable represented by the node, given the parent variables of the
node (by parent variables of a node, we mean the variables that are represented
by the parent nodes of that node in the graph) [14]. For instance, in each time
slice t of Fig. 3.a, to represent the fact that St

u depends on St−1
u , an edge connects

the corresponding nodes and the associated CPD is Pr
(

St
u

∣

∣ St−1
u

)

. The model
has also some properties that are specific to DBNs. Firstly, it has a structure
which is repeated over time. Secondly, the model is first order Markovian, i.e., the
random variables in each time slice t are independent of all random variables from
time slices 1 to t − 2, given the random variables in time slice t − 1. Finally, the
model is time-invariant, i.e., the CPDs of the model do not change as a function
of time. As a consequence of the Markov and the time-invariance properties of
the model, R1:T

u and S1:T
u each form a time-invariant first order Markov chain.

Parameters. The model is fully specified by the following probability distribu-
tions.

• The transition distributions: Pr
(

St
u

∣

∣ St−1
u

)

and Pr
(

Rt
u

∣

∣ St
u , R

t−1
u

)

.
These are the CPDs that define the transition between any two consecutive
time slices t−1 and t in the model. According to [1], the distribution Pr

(

Rt
u

∣

∣

St
u, Rt−1

u

)

can be computed as follows:

Pr
(

Rt
u = r

∣

∣ St
u = s,Rt−1

u = r′) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

0, if NVs(r) = 0

α
Pr

(

Rt
u = r

∣

∣ Rt−1
u = r′)

∑

ρ∈E
Pr

(

Rt
u = ρ

∣

∣ Rt−1
u = r′) otherwise

+(1 − α) · Pr
(

Rt
u = r

∣

∣ St
u = s

)

,

(6)
where E = {ρ ∈ R : NVs(ρ) > 0} and α is a real-valued parameter that
is used to set the weight of each term in the equation. The distributions
Pr

(

St
u

∣

∣ St−1
u

)

and Pr
(

Rt
u

∣

∣ Rt−1
u

)

can be learned from the prior traces by
applying maximum likelihood estimation (if the traces are complete) or by
using algorithms such as Gibbs sampling (if the traces have missing locations
or if they are noisy) [6,20,23]. The distribution Pr

(

Rt
u

∣

∣ St
u

)

can also be
learned from the prior traces. More precisely, Pr

(

Rt
u = r

∣

∣ St
u = s

)

can
be estimated by counting in the user’s prior traces, the number of visits to a
region r given the semantic tag s [1]. Note that in the experimental evaluation
in [1], Ağir et al. set α = 0.5 to accord the same importance to both terms
of the equation. In this paper, we also set α = 0.5 for the experimental
evaluation.

• The initial state distributions: Pr
(

R1
u

∣

∣ S1
u

)

and Pr
(

S1
u). These are the

distributions associated to the nodes of the first time slice of the model. For
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the estimation of Pr
(

R1
u

∣

∣ S1
u

)

, we refer the reader to the previous point,
where we discuss the estimation of Pr

(

Rt
u

∣

∣ St
u

)

from the prior traces (recall
that the model is time-invariant). Moreover, we assume that Pr

(

S1
u) is equal

to the stationary distribution of the Markov chain S1:T
u . Accordingly, it can

be found based on Pr
(

St
u

∣

∣ St−1
u

)

, which is the transition distribution of
the chain. We refer the reader to the previous point where we discuss the
estimation of Pr

(

St
u

∣

∣ St−1
u

)

from the prior traces.

3.1.2 The DBNs for the Obfuscation Approaches
Figure 3.b depicts the DBN built for user u in the case where the PPM uses the
disjoint obfuscation approach. Also, Fig. 3.c depicts the DBN built for user u
in the case where the PPM uses the joint obfuscation approach. Each of these
DBNs is made by adding the observed variables ˜R1:T

u and ˜S1:T
u to the basic DBN,

where the observed variables correspond to the obfuscation approach used by
the PPM. Note that in the DBN model built for the joint approach, to represent
the fact that in the joint obfuscation, ˜Rt

u depends also on ˜St
u, an edge connects

the corresponding nodes in each time slice t of the model (See Fig. 3.c).

Parameters. Each of these models is fully specified by the parameters of the
basic DBN plus the observation distributions. The observation distributions of
a model are the CPDs that define the probabilistic dependencies between the
hidden and the observed variables in any time slice t in that model. The obser-
vation distributions of a model are defined based on the obfuscation approach
used by the PPM. So, we have:

• The observation distributions for the disjoint obfuscation case:
Pr

(

˜St
u

∣

∣ St
u

)

and Pr
(

˜Rt
u

∣

∣ Rt
u

)

. These are in fact the obfuscation functions
of the PPM in the disjoint obfuscation approach (see Eqs. 1 and 2), and hence
known by the adversary.

• The observation distributions for the joint obfuscation case:
Pr

(

˜St
u

∣

∣ St
u

)

and Pr
(

˜Rt
u

∣

∣ Rt
u,

˜St
u

)

. These are in fact the obfuscation func-
tions of the PPM in the joint obfuscation approach (see Eqs. 3 and 4), and
hence known by the adversary.

4 Location Privacy Metric

The location privacy of a user u a time t is measured by the expected error of
the adversary when performing the location-inference attack [23]. The expected
error of the adversary is computed as:

∑

r∈R
Pr

(

Rt
u = r

∣

∣ r̃1:Tu , s̃1:Tu

)

· dloc(r, rt
u) (7)

where Pr
(

Rt
u = r

∣

∣ r̃1:Tu , s̃1:Tu

)

over set R, is the output of the location-
inference attack defined in Sect. 2 and dloc(·,·) denotes a distance function on
the set R of regions. Here, we assume that dloc(·,·) is the Haversine distance
between the centers of the two regions [14].
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5 Experimental Evaluation

Using a dataset of real-world user mobility traces, we perform an experimental
evaluation to compare the performance of the joint approach with the perfor-
mance of the disjoint approach in terms of location privacy protection. We also
study the impact of different obfuscation parameters on the performance of these
approaches. More precisely, we first obfuscate the user traces under the disjoint
and the joint approaches using different combinations of the obfuscation param-
eters. Then, we perform the location-inference attack on the obfuscated traces
and measure the location privacy of users in both approaches based on the results
of the attack.

5.1 Evaluation Setup

In this section, we describe the evaluation’s setup.

5.1.1 Dataset and Space Discretization
We use the dataset that is introduced and described in [1]. It comprises the
semantically-annotated location traces of Foursquare check-ins of 1065 users dis-
tributed across six large cities in North America and Europe [1]. The location
information in the traces is presented as GPS coordinates. The dataset also con-
tains a snapshot of Foursquare category tree at the time of data collection [1].

Regarding the space discretization, we use the same space discretization
described in [1]. More precisely, within each city in the dataset, a geographi-
cal area of size ∼2.4 km × 1.6 km that contains the largest number of check-ins
is selected. Then, each selected area is partitioned into 96 locations (cells) by
using a 12 × 8 regular square grid. Each grid cell has a unique ID. Once the par-
titioning is done, the GPS coordinates in user traces are mapped to the location,
that is, the grid cell, they fall into. Moreover, for each grid cell, the Foursquare
semantic tags of the venues that are located in that cell are identified and stored
in an associative array. Thus, the associative array contains the key-value pairs,
where in each pair the key is a grid cell ID and the value is the set of the semantic
tags of the venues located in that cell.

5.1.2 Obfuscation
In the following, we first introduce the obfuscation algorithms used in our eval-
uation. We then describe the process of building the obfuscated traces from the
real traces using these algorithms. In practice, these algorithms are implemented
in Python.

Semantic Tag Obfuscation Algorithm. The semantic tag obfuscation in
both disjoint and joint obfuscation approaches is performed by the semantic tag
obfuscation algorithm described as below. The algorithm gets as input a set S
of semantic tags that form a semantic tag tree, a semantic tag s in S and a
semantic tag obfuscation level osem. It returns as output a pseudo-semantic tag
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s̃, where s̃ is the ancestor of s that is osem level(s) above s in the semantic tag
tree. In the case where the depth of semantic tag s in the semantic tag tree is
smaller than osem, the algorithm returns the root of the semantic tag tree as s̃.

Location Obfuscation Algorithm. The location obfuscation in both disjoint
and joint obfuscation approaches is performed by the location obfuscation algo-
rithm. The algorithm takes as input a grid that we call the main grid for the
sake of precision, a cell r of the main grid, a location obfuscation level oloc and
an obfuscation approach. In the case of joint obfuscation, in addition to what
has been described, the following inputs should also be provided: the semantic
tag tree that is used as input by the semantic tag obfuscation algorithm, the
pseudo-semantic tag s̃ that is output by the semantic tag obfuscation algorithm
and an associative array that contains key-value pairs where in each pair the key
is a main grid cell ID and the value is the set of the semantic tags of the venues
located in that cell. The algorithm returns as output a cloaking area r̃ for r.

The main idea behind the algorithm is to first find a set of potential cloaking
areas for r and then based on the obfuscation approach, select an area among
the potential cloaking areas and return it as r̃. The algorithm finds the potential
cloaking areas by building a set of cloaking grids. A cloaking grid is an alternative
tessellation for the same surface presented by the main grid. It has two properties:
(1) each cell of a clocking grid is made of oloc distinct cells of the main grid; (2)
the number of rows and the number of columns of a cloaking grid are factors of
the number of rows and the number of columns of the main grid, respectively.
Each cloaking grid can be used to find a potential cloaking area for r. More
precisely, the cell of a cloaking grid that contains r, is a potential clocking area
for r and can be added to the set of potential cloaking areas.

Once the potential cloaking areas are found, an area among them is selected
and returned as r̃. The selection is made based on the obfuscation approach.
More precisely, in the case of the disjoint obfuscation, the algorithm selects an
area uniformly at random among the potential cloaking areas and returns it as
r̃. In the case of the joint obfuscation, the algorithm first looks for the areas with
the maximum NCRs̃ value among the potential cloaking areas. The results are
then stored in the set CAsWithMaxNCR. If only one area with the maximum
NCRs̃ value is found (i.e., |CAsWithMaxNCR| = 1), the algorithm returns it as r̃.
Otherwise, the algorithm looks for the areas with the maximum SumNCVs̃ value
among the elements of CAsWithMaxNCR. The results are then stored in the set
CAsWithMaxSumNCV. Note that the SumNCVs̃ of an area is in fact the sum
of NCVs̃ values over all the main grid cells in that area. If only one area with
the maximum SumNCVs̃ value is found (i.e., |CAsWithMaxSumNCV| = 1), the
algorithm returns it as r̃. Otherwise, the algorithm selects an area uniformly at
random among the elements of CAsWithMaxSumNCV and returns it as r̃.

Note that, selecting the area with the maximum SumNCVs̃ value among the
areas with the maximum NCRs̃ value is an additional mechanism that we use
to enhance the resistance of the joint obfuscation against the privacy attacks.
Intuitively, by selecting the clocking area with the maximum NCRs̃ value (i.e.,
the area with the maximum number of semantically compatible locations), we
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decrease the number of locations that can be filtered out by the adversary
from the cloaking area and by selecting the cloaking area with the maximum
SumNCVs̃ value (i.e., the area with the maximum number of semantically com-
patible venues), we increase the number of locations and semantic tags that can
be guessed by the adversary as the actual location and semantic tag.

Building the Obfuscated Traces. For each city in the dataset, we choose
the location traces and the semantic tag traces of 20 randomly chosen users.
These traces are then obfuscated under the disjoint and the joint obfuscation
approaches using the obfuscation algorithms. To better capture the fact that the
users do not share their locations and their corresponding semantic tags all the
time on LBSNs, we apply the obfuscation algorithms with an additional hiding
process. Thus, we assume that at each time instant in the observation interval,
both the user’s location and its semantic tag can be hidden from the LBSN with
the hiding probability λ or shared on the LBSN (and accordingly obfuscated by
the algorithms under the disjoint and the joint approaches) with the probabil-
ity 1 − λ. The hidden locations and the hidden semantic tags are appeared in
the obfuscated traces as hidden, denoted by r⊥ and s⊥ symbols, respectively. To
build the obfuscated traces for each approach, we use all combinations of the fol-
lowing parameters: the location obfuscation level (oloc), the semantic tag obfus-
cation level (osem) and the hiding probability (λ), where oloc ∈ {1, 2, 4, 8, 16}
and osem ∈ {0, 1, 2} and λ ∈ {0, 0.2, 0.4, 0.6, 0.8}. Note that, in what follows, we
use the term the obfuscation parameters to refer to these parameters.

5.1.3 Attack and Privacy Evaluation
We implement the DBN models in Python by using the pomegranate package [19]
and the Bayesian Belief Networks library [3]. For the attack, we apply the loopy
belief propagation inference algorithm [17]. We perform the attack for the obser-
vation interval of length 3. We then use the metric defined in Sect. 4 to measure
the location privacy of the users.

5.2 Experimental Results

In this section we present the results for different values of the obfuscation
parameters. In this way, we can compare the performance of the two obfuscation
approaches in terms of location privacy under different values of these parame-
ters and also show how changing these parameters can affect the performance of
the approaches. Note that in addition to the location privacy metric presented
in Sect. 4, to discuss the results, we use the following additional metric:

• Ratio of the location privacy means (denoted by loc-priv-ratio). This is
the ratio of the location privacy mean obtained for the joint approach to the
location privacy mean obtained for the disjoint approach.

The evaluation results are depicted by Fig. 4 and Fig. 5. More precisely, Fig. 4
represents the location privacy results in the form of boxplots (i.e., first quartile,
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(a) For Different olocoloc Values (b) For Different osemosem Values (c) For Different λλ Values

disjoint approach joint approach

Fig. 4. Location privacy results.

(a) For Different olocoloc Values (b) For Different osemosem Values (c) For Different λλ Values

Fig. 5. loc-priv-ratio for different values of the obfuscation parameters.

median, third quartile and outliers). Note that the location privacy in Fig. 4 is
expressed in kilometres. Also, Fig. 5 represents the ratios of the location privacy
means in the form of scatterplots. Each figure has three subfigures (a), (b) and
(c). Each subfigure represents the aggregated results for different values of a
given obfuscation parameter, where the aggregation is performed over the results
obtained for all users, all values of the obfuscation parameters and all cities. We
have three main observations regarding these results. Thus, in the following
we first describe the observations. Then, we describe the reason behind the
observations.

1. As the values of oloc, osem and λ increase, the median location privacy for the
both obfuscation approaches increases (see subfigures (a),(b),(c) of Fig. 4).

2. Under all values of oloc, osem and λ, the median location privacy obtained for
the joint approach is higher than the median location privacy obtained for
the disjoint approach (see subfigures (a),(b),(c) of Fig. 4). The only exception
to this observation is the case where oloc = 1 (See Fig. 4.a). In this case, no
location obfuscation is performed and hence, the median location privacy is
the same for the both obfuscation approaches.

3. As the values of oloc and osem increase, the value of loc-priv-ratio also increases
(see Fig. 5.a and Fig. 5.b). However, as the value of λ increases, the value of
loc-priv-ratio decreases (see Fig. 5.c).

To explain these observations, we apply the following reasoning. As the value
of oloc increases, the number of regions (locations) in the cloaking area increases.
Thus, by increasing oloc, the median location privacy for the both approaches
increases. Also, as the value of osem increases, the number of semantic tags that
can be semantically compatible with the obfuscated semantic tag increases. This,



Joint Obfuscation for Privacy Protection in Location-Based Social Networks 125

in turn, increases the chance of having more semantically compatible regions with
the obfuscated semantic tag in every potential cloaking area. Thus, by increas-
ing osem the median location privacy for the both approaches increases. More-
over, we observe that by increasing oloc and osem, the value of loc-priv-ratio
also increases. Roughly speaking, this means that the joint approach shows a
much better performance in terms of location privacy protection compared to
the disjoint approach under higher values of oloc and osem. In fact, as the value
of oloc increases, the number of candidate regions for being in the clocking area
also increases. This, in turn, increases the chance that a greater number of the
candidate regions are semantically compatible with the obfuscated semantic tag.
Similarly, as the value of osem increases, the chance that a greater number of
candidate regions are semantically compatible with the obfuscated semantic tag
increases. The joint approach takes advantage of this increase, i.e., as the number
of semantically compatible candidate regions increases, the joint approach selects
a cloaking area with a greater number of semantically compatible regions and
semantically compatible venues, whereas the disjoint approach is oblivious to the
concept of semantic compatibility. Accordingly, the performance of the disjoint
approach does not improve as much as the performance of the joint approach
by increasing the values of oloc and osem. We also observe that as the value of λ
increases, the median location privacy for the both approaches increases. How-
ever, by increasing λ, the value of loc-priv-ratio decreases. Roughly speaking, this
means that by increasing λ, the difference between the performance of the both
approaches becomes less significant. Intuitively, this is because by increasing λ,
we increase the number of hidden locations and hidden semantic tags compared
to the number of the obfuscated locations and the obfuscated semantic tags in
the obfuscated traces. This, in turn, increases the location privacies resulting
for the both approaches but it also decreases the importance of the obfuscation
approach in defining the amount of the resulting location privacies.

6 Related Work

The problem of protecting location privacy of users in LBSNs (and in LBSs, in
general) has been extensively studied in the literature and various protection
mechanisms are proposed. Many of the location privacy protection mechanisms
apply location obfuscation. The popularity of the location obfuscation lies in the
fact that it does not require changing the infrastructure, as it can be performed
entirely on the user’s side [25]. There exist different methods to obfuscate a loca-
tion, for instance, by hiding the location from the LBS [4,8], by perturbing the
location (e.g., by adding noise to the location coordinates) [2], by generalizing
the location (e.g., by merging the location with nearby locations using a cloak-
ing algorithm) [9,10,15,26] and by adding fake (dummy) locations to the actual
location [6,7,12,27] (See [13,21,22] for detailed surveys on location obfuscation
methods). Our work differs from these works by the fact that it considers not
only the obfuscation of location but also the obfuscation of the semantic informa-
tion to protect the location privacy. In addition, the location obfuscation in our
work is performed with respect to the obfuscated semantic information, whereas
the location obfuscation in these works is semantic-oblivious.
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The disjoint obfuscation approach discussed in this paper, was originally
introduced in [1]. Our work is close to the work presented in [1], in the sense
that it assumes a similar system model and adversary model. In fact, our work
and the work in [1] are both built upon the Shokri’s framework for quantifying
location privacy [20,23,24]) and they both rely on bayesian network models for
implementing the inference attacks. However, as already discussed, in this paper
we try to improve the work in [1], by proposing a joint obfuscation approach.
Another difference between this paper and the work presented in [1] is the fact
that, in [1], the authors study the impact of the location obfuscation and the
semantic tag obfuscation on both location privacy and the semantic location
privacy of users, whereas in this paper we only discuss the impact of the location
obfuscation and the semantic tag obfuscation on location privacy. We intend to
discuss the impact on semantic location privacy in a future work.

7 Conclusion

In this paper, we have introduced a joint semantic tag-location obfuscation app-
roach for privacy protection in LBSNs. This approach aims to overcome the
drawbacks of the existing disjoint approach, by performing the location obfusca-
tion based on the result of the semantic tag obfuscation. We provided a formal
framework for evaluation and comparison of the joint approach with the dis-
joint approach. Then, using a dataset of real-world user mobility traces, we per-
formed an experimental evaluation. The evaluation results show that in almost
all cases (i.e., for different values of the obfuscation parameters), the joint app-
roach outperforms the disjoint approach in terms of location privacy protection.
We also studied the impact of changing different obfuscation parameters on the
obfuscation approaches. In particular, we showed that compared to the disjoint
approach, the joint approach can take better advantage of higher values of loca-
tion obfuscation level and semantic tag obfuscation level and exhibits even more
satisfactory performance under higher values of these parameters.
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Abstract. We provide a model in the Isabelle Infrastructure framework
of the recently published German Corona-virus warning app (CWA). The
app supports breaking infection chains by informing users whether they
have been in close contact to an infected person. The app has a decentral-
ized architecture that supports anonymity of users. We provide a formal
model of the existing app with the Isabelle Infrastructure framework to
show up some natural attacks in a very abstract model. We then use the
security refinement process of the Isabelle Infrastructure framework to
highlight how the use of continuously changing Ephemeral Ids (EphIDs)
improves the anonymity.

1 Introduction

The German Chancellor Angela Merkel has strongly supported the publication of
the mobile phone Corona-virus warning app (CWA; [14]) by publicly proclaiming
that “this App deserves your trust” [2]. Many millions of mobile phone users in
Germany have downloaded the app with 6 million on the first day. CWA is one
amongst many similar applications that aim at the very important goal to “break
infection chains” by providing timely information to users of whether they have
been in close proximity to a person who tested positive for COVID-19.

The app was designed with great attention on privacy: a distributed archi-
tecture [15] has been adopted that is based on a very clever application design
whereby clients broadcast highly anonymized identifiers (ids) via Bluetooth and
store those ids of people in close proximity. Infected persons report their infec-
tion by uploading their ids to a central server, providing all clients the means to
assess exposure risk locally, hence, stored contact data has never to be shared.

The Isabelle Infrastructure framework [11] allows modeling and analyzing
architecture and scenarios including physical and logical entities, actors, and
policies within the interactive theorem prover Isabelle supported with temporal
logic, Kripke structures, and attack trees. It has been applied for example to
Insider analysis in airplanes [12], privacy in IoT healthcare [4], and recently also
to blockchain protocols [10].
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The technical advantage of modeling an application in the Isabelle Insider
framework lies in (a) having explicit representations of infrastructures, actors
and policies in a formal model that (b) allows additional automated verification
of security properties with CTL, Kripke structures and Attack Trees within the
interactive theorem prover Isabelle.

The app now in use in Germany has been developed based on a protocol pro-
posed by the DP-3T project [16]: A sophisticated security concept conceived by
experts in the field that has strong claims with regard to mathematical support
[17] [p2]. However, there has, as of yet, to our knowledge no formal verification
been involved. Even if a “post-production” formal specification seems point-
less, it allows revealing weak points of the architecture, show that the measures
that have been conceived are suitable to cover those weak points, or to what
extent trade-offs have to be made due to inherent vulnerabilities. The protocol
implemented by the framework CWA resembles only the most basic of the three
protocols proposed by the DP-3T project. Hence, a formal verified model that
stresses the impact or limits of certain security measures might give more weight
to appeals like [19] to adopt the more sophisticated protocols.

The contributions of this paper are (a) formal re-engineering of CWA (b)
providing an additional security and privacy analysis with interactive theorem
proving certification of a novel view on the system architecture including actors,
locations, and policies, (c) a formal definition of a security refinement process
that allows improving a system based on attacks found by the attack tree anal-
ysis and (d) an application of the refinement to improve security of the CWA
specification.

In this paper, we first provide some background in Sect. 2: we give a brief
overview of related works and the protocol of CWA (Sect. 2.1). We then introduce
the Isabelle Infrastructure framework (Sect. 2.2). Next, we present our model
(Sect. 3) and analysis of privacy and attacks (Sect. 3.4). The found attack on
the first abstract specification motivates refinement. The formal definition of
refinement for the Isabelle Infrastructure framework is introduced and illustrated
on CWA (Sect. 4) before drawing some conclusions (Sect. 5).

The formal model in the Isabelle insider framework is fully mechanized and
proved in Isabelle (sources available [8]).

2 Background and Related Work

2.1 DP-3T and PEPP-PT

We are mainly concerned with the architecture and protocols proposed by the
DP-3T (Decentralized Privacy-Preserving Proximity Tracing) project [16]. The
main reason to focus on this particular family of protocols is the Exposure Notifi-
cation Framework (ENF), jointly published by Apple and Google [1], that adopts
core principles of the DP-3T proposal. This API is not only used in CWA but
has the potential of being widely adopted in future app developments that might
emerge due to the reach of players like Apple and Google.
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There are, however, competing architectures noteworthy, namely protocols
developed under the roof of the Pan-European Privacy-Preserving Proximity
Tracing project (PEPP-PT) [21], e.g. PEPP-PT-ROBERT [22], that might be
characterized as centralized architectures.

Neither DP-3T nor PEPP-PT are synonymous for just one single protocol.
Each project endorses different protocols with unique properties in terms of
privacy and data protection.

There is a variety of noteworthy privacy and security issues. The debate
among advocates of centralized architectures and those in favor of a decentral-
ized approach in particular yields a lot of interesting material detailing different
attacks and possible mitigation strategies: [18,20,23].

In terms of attack scenarios, we focus on, what might be classified as
deanonymization attacks: Tracking a device (see [18][p9], [23][p8]) and identi-
fying infected individuals ([18][p5], [23][p9]).

Basic DP-3T Architecture. Upon installation, the app generates secret daily
seeds to derive so-called Ephemeral Ids (EphIDs) from them. EphIDs are gener-
ated locally with cryptographic methods and cannot be connected to one another
but only reconstructed from the secret seed they were derived from.

During normal operation each client broadcasts its EphIDs via Bluetooth
whilst scanning for EphIDs broadcasted by other devices in the vicinity. Col-
lected EphIDs are stored locally along with associated meta-data such as signal
attenuation and date. In DP-3T the contact information gathered is never shared
but only evaluated locally.

If patients test positive for the Corona-virus, they are entitled to upload
specific data to a central backend server. This data is aggregated by the backend
server and redistributed to all clients regularly to provide the means for local risk
scoring, i. e., determining whether collected EphIDs match those broadcasted by
now-confirmed Corona-virus patients during the last, e. g., 14, days.

In the most simple (and insecure) protocol proposed by DP-3T this basically
translates into publishing the daily seeds used to derive EphIDs from. The pro-
tocol implemented by ENF and, hence, CWA adopts this low-cost design [15].
DP-3T proposes two other, more sophisticated protocols that improve privacy
and data protection properties to different degrees but are more costly to imple-
ment. Figure 1 illustrates the basic system architecture along with some of the
mitigation measures either implemented in CWA or proposed by DP-3T.

2.2 Isabelle Infrastructure Framework

The Isabelle Infrastructure is built in the interactive generic theorem prover
Isabelle/HOL [13]. As a framework, it supports formalization and proof of sys-
tems with actors and policies. It originally emerged from verification of insider
threat scenarios but it soon became clear that the theoretical concepts, like
temporal logic combined with Kripke structures and a generic notion of state
transitions were very suitable to be combined with attack trees into a formal



Modeling and Analyzing the Corona-Virus Warning App 131

Fig. 1. Decentralized privacy-preserving proximity tracing protocol of CWA

security engineering process [3] and framework [7]. Figure 2 gives an overview
of the Isabelle Infrastructure framework with its layers of object-logics – each
level below embeds the one above showing the novel contribution of this paper
in blue on the top.

Kripke Structures, CTL, and Attack Trees. The Isabelle framework has
now after various case studies become a general framework for the state-based
security analysis of infrastructures with policies and actors. Temporal logic and
Kripke structures build the foundation. Meta-theoretical results have been estab-
lished to show equivalence between attack trees and CTL statements [4]. This
foundation provides a generic notion of state transition on which attack trees
and temporal logic can be used to express properties. The main notions used in
this paper are:

– Kripke structures and state transitions:
Using a generic state transition relation →, Kripke structures are defined as
a set of states reachable by → from an initial state set, for example,

Kripke {t. ∃ i ∈ I. i →∗ t} I

where →∗ is the reflexive transitive closure over →.
– CTL statements:

For example, we can write

K � EF s

to express that in Kripke structure K there is a path on which the property s
(a set of states) will eventually hold.
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Kripke Structures and CTL

Attack Trees

Refinement

 Infrastructures for Corona-
warning app

Corona-warning app

Fig. 2. Generic Isabelle Infrastructure framework applied to CWA.

– Attack trees:
The datatype of attack trees has three constructors: ⊕∨ creates or-trees and
⊕∧ creates and-trees. And-attack trees l⊕s

∧ and or-attack trees l⊕s
∨ consist

of a list of sub-attacks – again attack trees. The third constructor creates a
base attack as a pair of state sets written N(I,s). For example, a two step
and-attack leading from state set I via si to s is expressed as

� [N(I,si),N(si,s)]⊕(I,s)
∧

– Attack tree refinement, validity and adequacy:
Attack trees have their own refinement (not to be mixed up with the system
refinement presented in this paper as introduced in the next section). An
abstract attack tree A of type α attree over an arbitrary state type σ may
be refined by spelling out the attack steps until a valid attack is reached:
�A :: (σ:: state) attree.

The validity is defined constructively (code is generated from it) and its ade-
quacy with respect to a formal semantics in CTL is proved and can be used to
facilitate actual application verification as demonstrated here in the stepwise
system refinements.

Instantiation of Framework. The formal model of CWA uses the Isabelle
Infrastructure framework instantiating it by reusing its concept of actors for
users and smartphones whereby locations correspond to physical locations.
The Ephemeral Ids, their sending and change is added to infrastructures by
slightly adapting the basic state type of infrastructure graphs and accord-
ingly the semantic rules for the actions move, get, and put. The details of the
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newly adapted infrastructure are presented in Sect. 3. Technically, an Isabelle
theory file Infrastructure.thy builds on top of the theories for Kripke
structures and CTL (MC.thy), attack trees (AT.thy), and security refinement
(Refinement.thy). Thus all these concepts can be used to specify the formal
model for CWA, express relevant and interesting properties, and conduct inter-
active proofs (with the full support of the powerful and highly automated proof
support of Isabelle). All Isabelle sources are available online [8].

Refinement. An additional feature that has been integrated into the Isabelle
Infrastructure framework motivated by security engineering formal specifications
for IoT healthcare system is an extension of the formal specification process intro-
ducing refinement of Kripke structures [7,11]. It refines a system model based on
a formal definition of a combination of trace refinement and structural refinement
(or datatype refinement). The definition allows proving property preservation
results crucial for an iterative development process. The refinements of the sys-
tem specification can be interleaved with attack analysis while security properties
can be proved in Isabelle. In each iteration security qualities are accumulated
while continuously attack trees scrutinize the design. One of the contributions of
this paper is to explore different concepts of refinement: the formal expression of
refinement, enables to pin down (i.e. exemplify) different concepts of refinement
(data refinement, action refinement, trace refinement (aka spec refinement) and
combinations thereof with concrete attack scenarios.

3 Modeling and Analyzing CWA

3.1 Infrastructures, Policies, and Actors

The Isabelle Infrastructure framework supports the representation of infrastruc-
tures as graphs with actors and policies attached to nodes. These infrastructures
are the states of the Kripke structure.

The transition between states is triggered by non-parameterized actions get,
move, and put executed by actors. Actors are given by an abstract type actor
and a function Actor that creates elements of that type from identities (of type
string written ’’s’’ in Isabelle). Actors are contained in an infrastructure
graph type igraph constructed by its constructor Lgraph.

datatype igraph =

Lgraph (location × location)set

location ⇒ identity set

identity ⇒ (string set × string set × efid)

location ⇒ string × (dlm × data) set

location ⇒ efid set

actor ⇒ location ⇒ (identity × efid) set

In the current application of the framework to the CWA case study, this graph
contains a set of location pairs representing the topology of the infrastructure
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as a graph of nodes and a function that assigns a set of actor identities to each
node (location) in the graph. The third component of an igraph assigns the
credentials to each actor: a triple-valued function whose first range component
is a set describing the credentials in the possession of an actor and the second
component is a set defining the roles the actor can take on; most prominently the
third component is the efid assigned to the actor. This is initially just a natural
number of type nat mapped by the constructor Efid to the new datatype efid
but will be refined to actually represent lists of Ephemeral Ids later when refining
the specification.

datatype efid = Efid nat

The fourth component of the type igraph assigns security labeled data to loca-
tions, a feature not used in the current application. The second to last component
assigns the set of efids of all currently present smart phones to each location of
the graph. The last component finally denotes the knowledge set of each actor
for each location: a set of pairs of actors and potential ids.

Corresponding projection functions for each of the components of an infras-
tructure graph are provided; they are named gra for the actual set of pairs of
locations, agra for the actor map, cgra for the credentials, lgra for the data at
that location, egra for the assignment of current efids to locations, and kgra for
the knowledge set for each actor for each location.

In CWA, the initial values for the igraph components use two locations pub
and shop to define the following constants (we omit the data map component
ex locs).

ex_loc_ass ≡ (λ x. if x = pub then {’’Alice’’, ’’Bob’’, ’’Eve’’}

else (if x = shop then {’’Charly’’, ’’David’’}

else {}))

ex_creds ≡ (λ x. if x = ’’Alice’’ then ({}, {}, Efid 1) else

(if x = ’’Bob’’ then ({},{}, Efid 2) else

(if x = ’’Charly’’ then ({},{}, Efid 3) else

(if x = ’’David’’ then ({},{}, Efid 4) else

(if x = ’’Eve’’ then ({},{}, Efid 5)

else ({},{},Efid 0))))))

ex_efids ≡ (λ x. if x = pub then {Efid 1, Efid 2, Efid 5}

else (if x = shop then {Efid 3, Efid 4} else {}))

ex_knos ≡ (λ x. (if x = Actor ’’Eve’’ then (λ l. {} else (λ l. {})))

These components are wrapped up into the following igraph.

ex_graph ≡
Lgraph {(pub, shop)} ex_loc_ass ex_creds ex_locs ex_efids ex_knos

Infrastructures are given by the following datatype that contains an infrastruc-
ture graph of type igraph and a policy given by a function that assigns local
policies over a graph to all locations of the graph.

datatype infrastructure = Infrastructure igraph

[igraph, location] ⇒ policy set
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There are projection functions graphI and delta when applied to an infras-
tructure return the graph and the local policies, respectively. The function
local policies gives the policy for each location x over an infrastructure graph
G as a pair: the first element of this pair is a function specifying the actors y
that are entitled to perform the actions specified in the set which is the second
element of that pair. The local policies definition for CWA, simply permits all
actions to all actors in both locations.

local_policies G ≡
(λ x. if x = pub then {(λ y. True, {get,move,put})}

else (if x = shop then {(λ y. True, {get,move,put})} else {}))

For CWA, the initial infrastructure contains the graph ex graph with its two
locations pub and shop and is then wrapped up with the local policies into the
infrastructure Corona scenario that represents the “initial” state for the Kripke
structure.

Corona_scenario ≡ Infrastructure ex_graph local_policies

3.2 Policies, Privacy, and Behaviour

Policies specify the expected behaviour of actors of an infrastructure. They are
given by pairs of predicates (conditions) and sets of (enabled) actions. They are
defined by the enables predicate: an actor h is enabled to perform an action a
in infrastructure I, at location l if there exists a pair (p,e) in the local policy
of l (delta I l projects to the local policy) such that the action a is a member
of the action set e and the policy predicate p holds for actor h.

enables I l h a ≡ ∃ (p,e) ∈ delta I l. a ∈ e ∧ p h

The Privacy protection goal is to avoid deanonymization. That is, an attacker
should not be able to disambiguate the set of pairs of real ids and EphIDs. This
is abstractly expressed in the predicate identifiable.

identifiable eid A ≡ is_singleton{(Id,Eid). (Id, Eid) ∈ A ∧ Eid = eid}

The predicate identifiable is used to express as the global policy ‘Eve cannot
deanonymize an Ephemeral Id eid using the gathered knowledge’:

global_policy I eid ≡
¬(identifiable eid

((
⋂

(kgra(graphI I)(Actor ’’Eve’’)‘(nodes(graphI I))))

- {(x,y). x = ’’Eve’’}))
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3.3 Infrastructure State Transition

The state transition relation uses the syntactic infix notation I → I’ to denote
that infrastructures I and I’ are in this relation. We will use this state transition
to define the dynamic behaviour of the system including actors’ movements and
the evolution of their knowledge. This allows representing attacks as sequences
of state transitions leading to states in which the global policy is violated. To
give an intuitive motivating idea before the formal presentation in Sect. 3.4: the
attack will consist of the state transitions of Eve getting available EphIds at
the location pub, Alice moving to shop, Eve following her and again getting the
EphIds at shop.

So, one relevant rule for the state transition is the one for move that defines
the state transition relation expressing state changes when actors move across
the infrastructure.

move: G = graphI I =⇒ a @G l =⇒ a ∈ actors_graph(graphI I) =⇒
l ∈ nodes G =⇒ l’ ∈ nodes G =⇒ enables I l’ (Actor h) move =⇒
I’ = Infrastructure (move_graph_a a l l’ (graphI I))(delta I)

=⇒ I → I’

The semantics of this rule is embedded in the function move graph a that adapts
the infrastructure state so that the moving actor a is now associated to the target
location l’ in the actor map agra and not any more at l and also the association
of efids is updated accordingly.

move_graph_a n l l’ g ≡
Lgraph (gra g)

(if n ∈ ((agra g) l) ∧ n /∈ ((agra g) l’) then

((agra g)(l := (agra g l) - {n}))(l’ := (insert n (agra g l’)))

else (agra g))

(cgra g)(lgra g)

(if n ∈ ((agra g) l) ∧ n /∈ ((agra g) l’) then

((egra g)(l := (egra g l) - {efemid (cgra g n)}))

(l’ := (insert (efemid (cgra g n))(egra g l’)))

else egra g)

(kgra g)

Another action relevant for the deanonymization attack describes how an actor
gets information. This is defined by the rule of the state transition for the action
get. Initially, this rule expresses that an actor that resides at a location l (a @G

l) and is enabled by the local policy in this location to “get” can combine all ids
at the current location (contained in egra G l) with all actors at the current
location (contained in agra G l) and add this set of pairs to his knowledge set
kgra G using the function update f(l := n) redefining the function f for the
input l to have now the new value n.

get data: G = graphI I =⇒ a @G l =⇒ enables I l (Actor a) get =⇒
I’ = Infrastructure

(Lgraph (gra G)(agra G)(cgra G)(lgra G)(egra G)

((kgra G)((Actor a) := ((kgra G (Actor a))(l:=
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{(x,y). x ∈ agra G l ∧ y ∈ egra G l})))))

(delta I)

=⇒ I → I’

Based on this state transition and the above defined Corona scenario, we define
the first Kripke structure.

corona_Kripke ≡ Kripke { I. Corona_scenario →∗ I } {Corona_scenario}

3.4 Attack Analysis

For the analysis of attacks, we negate the security property that we want to
achieve, usually the global policy.

Since we consider a predicate transformer semantics, we use sets of states to
represent properties. The invalidated global policy is given by the set scorona.

scorona ≡ {x. ∃ n. ¬ global_policy x (Efid n)}

The attack we are interested in is to see whether for the scenario

Kripke scenario ≡ Infrastructure ex_graph local_policies

from the initial state Icorona ≡{corona scenario}, the critical state scorona
can be reached, that is, is there a valid attack (Icorona,scorona)?

For the Kripke structure corona Kripke we first derive a valid and-attack
using the attack tree proof calculus.

� [N(Icorona,Corona),N(Corona,Corona1),N(Corona1,Corona2),

N(Corona2,Corona3),N(Corona3,scorona)]⊕(Icorona,scorona)
∧

The sets Corona, Corona1, Corona2, Corona3 are the intermediate states
where Bob moves to shop and Eve follows him collecting the Ephemeral Ids
in each location. The collected information enables identifying Bob’s Ephemeral
Id.

The attack tree calculus [4] exhibits that an attack is possible.

corona_Kripke � EF scorona

We can simply apply the Correctness theorem AT EF [4,5]

� A =⇒ attack A = (I,s)

=⇒ Kripke {s . ∃ i ∈ I. (i →∗ s) } I � EF s

to immediately prove this CTL statement. This application of the meta-theorem
of Correctness of attack trees saves us proving the CTL formula tediously by
exploring the state space in Isabelle proofs. Alternatively, we could use the gen-
erated code for the function is attack tree in Scala (see [4]) to check that a
refined attack of the above is valid.
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4 Refinement

Intuitively, a refinement changes some aspect of the type of the state, for exam-
ple, replaces a data type by a richer datatype or restricts the behaviour of the
actors. The former is expressed directly by a mapping of datatypes, the latter is
incorporated into the state transition relation of the Kripke structure that cor-
responds to the transformed model. In other words, we can encode a refinement
within our framework as a relation on Kripke structures that is parameterized
additionally by a function that maps the refined type to the abstract type. The
direction “from refined to abstract” of this type mapping may seem curiously
counter-intuitive. However, the actual refinement is given by the refinement that
uses this function as an input. The refinement then refines an abstract to a more
concrete system specification. The additional layer for the refinement can be for-
malized in Isabelle as a refinement relation �E . This relation, called refinement,
is typed as a relation over triples – a function from a threefold Cartesian prod-
uct to bool, the type containing true and false only. The type variables σ and
σ′ input to the type constructor Kripke represent the abstract state type and
the concrete state type. Consequently, the middle element of the triples selected
by the relation refinement is a function of type σ′ ⇒ σ mapping elements of
the refined state to the abstract state. The expression in quotation marks after
the type is again the infix syntax in Isabelle that allows the definition of math-
ematical notation instead of writing refinement in prefix manner. This nicer
infix syntax is already used in the actual definition. Finally, the arrow =⇒ is the
implication of Isabelle’s meta-logic while −→ is the one of the object logic HOL.
They are logically equivalent but of different types: within a HOL formula, for
example, within the below ∀s’ ∈ states K’.. . . , only the implication −→ can
be used.

refinement :: (σ Kripke × (σ’ ⇒ σ) × σ’ Kripke) ⇒ bool ("_ 
( ) _")

K 
E K’ ≡ ∀ s’ ∈ states K’. ∀ s ∈ init K’.

s →∗
σ′ s’ −→ E(s) ∈ init K ∧ E(s) →∗

σ E(s’)

The definition of K �E K’ states that for any state s′ of the refined Kripke
structure that can be reached by the state transition in zero or more steps from
an initial state s of the refined Kripke structure, the mapping E from the refined
to the abstract model’s state must preserve this reachability, i.e., the image of
s must also be an initial state and from there the image of s′ under E must be
reached within 0 and n steps.

4.1 Property Preserving System Refinement

A first direct consequence of this definition is the following lemma where the
operator ‘ in E‘(init K’) represents function image, i.e., {E(x) | x ∈ init K’}.

lemma init_ref: K 
E K’ =⇒ E‘(init K’) ⊆ init K
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A more prominent consequence of the definition of refinement is that of property
preservation. Here, we show that refinement preserves the CTL property of EFs
which means that a reachability property true in the refined model K’ is already
true in the abstract model. A state set s′ represents a property in the predicate
transformer view of properties as sets of states. The additional condition on
initial states ensures that we cannot “forget” them.

theorem prop_pres:

K 
E K’ =⇒ init K ⊆ E‘(init K’) =⇒
∀ s’ ∈ Pow(states K’). K’ � EF s’ −→ K � EF (E‘(s’))

It is remarkable, that our definition of refinement by Kripke structures entails
property preservation and makes it possible to prove this as a theorem in Isabelle
once for all, i.e., as a meta-theorem. However, this is due to the fact that our
generic definition of state transition allows explicitly formalizing such sophis-
ticated concepts like reachability. For practical purposes, however, the proof
obligation of showing that a specific refinement is in fact a refinement is rather
complex justly because of the explicit use of the transitive closure of the state
transition relation. In most cases, the refinement will be simpler. Therefore, we
offer additional help by the following theorem that uses a stronger characteriza-
tion of Kripke structure refinement and shows that our refinement follows from
this.

theorem strong_mt:

E‘(init K’) ⊆ init K ∧ s →σ′ s’ −→ E(s) →σ E(s’)
=⇒ K 
E K’

This simpler characterization is in fact a stronger one: we could have s→σ′s′

in the refined Kripke structure K’ and ¬(E(s)→σE(s′)) but neither s nor s′ are
reachable from initial states in K’. For cases, where we have the simpler one-
step proviso and also reachability from initial states we provide a slightly weaker
version of strong mt.

theorem strong_mt’:

E‘(init K’) ⊆ init K ∧ (∃ s0 ∈ init K’. s0 →∗ s)

∧ s →σ′ s’ −→ E(s) →σ E(s’) =⇒ K 
E K’

This idea of property preservation coincides with the classical idea of trace refine-
ment as it is given in process algebras like CSP. In this view, the properties of a
system are given by the set of its event traces. Now, a refinement of the system
is given by another system that has a subset of the event traces of the former
one. Although the principal idea is similar, we greatly extend it since our notion
additionally incorporates data refinement. Since we include a state map σ’⇒σ
in our refinement map, we additionally allow structural refinement: the state
map generalizes the basic idea of trace refinement by traces corresponding to
each other but allows additionally an exchange of data types. As we see in the
application to the case study, the refinement steps may sometimes just specialize
the traces: in this case the state map σ’⇒σ is just identity.
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In addition, we also have a simple implicit version of action refinement. In
an action refinement, traces may be refined by combining consecutive system
events into atomic events thereby reducing traces. We can observe this kind of
refinement in the second refinement step of CWA considered next.

4.2 Refining the Specification

Clearly, fixed Ephemeral Ids are not really ephemeral. The model presented
in Sect. 3 has deliberately been designed abstractly to allow focusing on the
basic system architecture and finding an initial deanonymization attack. We
now introduce “proper” Ephemeral Ids and show how the system datatype can
be refined to a system that uses those instead of the fixed ones.

For the DP-3T Ephemeral Ids [17], for each day t a seed SKt is used to
generate a list of length n = 24 ∗ 60/L, where L is the duration for which the
Ephemeral Ids are posted by the smart phone

EphID1 || ... || EphIDn = PRG(PRF(SKt,‘‘broadcast key’’))

“where PRF is a pseudo-random function (e.g., HMAC-SHA256), “broadcast
key” is a fixed, public string, and PRG is a pseudorandom generator (e.g. AES
in counter mode)” [17].

From a cryptographic point of view, the crucial properties of the Ephemeral
Ids are that they are purely random, therefore, they cannot be guessed, but,
at the same time, if – after the actual encounter between sender and receiver
– the seed SKt is published, it is feasible to relate any of the EphIDi to SKt

for all i ∈ {1, . . . , n}. For a formalization of this crucial cryptographic property
in Isabelle it suffices to define a new type of list of Ephemeral Ids efidlist
containing the root SKt (the first efid), a current efid indicated by a list
pointer of type nat, and the actual list of efids.

datatype efidlist = Efids "efid" "nat" "efid list"

We define functions for this datatype: efidsroot returning the first of the three
constituents in an efidlist (the root SKt of type efid); efids index giv-
ing the second component of type nat, that is, the index of the current efid;
efids inc ind applied to an efidlist increments the index; efids cur return-
ing the current efid from the list and efids list for the entire list (the third
component of type efid list).

The first step of refinement replaces the simple efid in the infrastructure
type by the new type efidlist. Note, that in the new datatype igraph this
change affects only the third component, the credentials to become

identity ⇒ (string set × string set × efidlist)

The last two components, the set of currently present efids, and the knowledge
set, remain the same and still operate on the simple type efid. The refined
state transition relation implements the possibility of changing the Ephemeral
Ids by the rule for the action put that resembles very much the rule for get.
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The important change to the infrastructure state is implemented in the function
put graph efid that increases the current index in the efidlist in the cre-
dential component cgra g n for the “putting” actor identity n and inserts the
current efid from that credential component into the egra component, the set
of currently “present” Ephemeral Ids at the location l.

put_graph_efid n l g ≡
Lgraph (gra g)(agra g)

((cgra g)(n := (credentials (cgra g n), roles (cgra g n),

efids_inc_ind(efemid (cgra g n)))))

(lgra g)

((egra g)(l := insert (efids_cur(efemid (cgra g n)))(egra g l)))

(kgra g)

We can now apply the refinement by defining a datatype map from the refined
infrastructure type InfrastructureOne.infrastructure to the former one
Infrastructure.infrastructure.

definition refmap :: InfrastructureOne.infrastructure ⇒
Infrastructure.infrastructure

where refmap I =

Infrastructure.Infrastructure

(Infrastructure.Lgraph

(InfrastructureOne.gra (graphI I))

(InfrastructureOne.agra (graphI I))

(λ h. repl_efr

(InfrastructureOne.cgra (graphI I)) h)

(InfrastructureOne.lgra (graphI I))

(InfrastructureOne.egra (graphI I))

(λ a. λ l.

(λ (x,y).(x, efids_root(efemid(InfrastructureOne.cgra (graphI I) x))))

‘(InfrastructureOne.kgra (graphI I)) a l))

This is then plugged into the parameter E of the refinement operator allowing
to prove corona Kripke �refmap corona KripkeO where the latter is the refined
Kripke structure.

Surprisingly, we can still prove corona KripkeO � EF scoronaO by using the
same attack tree as in the abstract model: if Bob moves from pub to shop1, he is
vulnerable to being identifiable as long as he does not change the current efid.
So, if Eve moves to the shop as well and performs a get before Bob does a put,
then Eve’s knowledge sets permit identifying Bob’s current Ephemeral Id as his.

Second Refinement Step. The persistent attack can be abbreviated infor-
mally by the action sequence [get,move,move,get] performed by actors Eve,
Bob, Eve, and Eve again, respectively. How can a second refinement step avoid
that Eve does the last get by imposing that after the first move of Bob a put

1 That is, if he moves alone: if all others from pub go to shop with him his anonymity
remains intact.
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action must happen before Eve can do another get? A very simple remedy to
exclude this attack is to bind a put action after every move. We can implement
that change by a minimal update to the function move graph a (see Sect. 3)
by adding an increment (highlighted in the code snippet in bold letters) of the
currently used Ephemeral Id before updating the egra component of the target
location.

move graph a n l l’ g ≡ ...

(l’ := insert (efids_cur( efids inc ind(efemid (cgra g n))))(egra g l))...

This is an action refinement because the move action is changed. It is a refine-
ment, since any trace of the refined model can still be mapped to a trace in the
more abstract model just omitting a few steps (the refinement relation is defined
using the reflexive transitive closure →∗).

5 Summary and Discussion of Relevance of the Approach

We can establish in our formal framework an attack that even a system using
changing Ephemeral ids can be broken if the attacker physically follows a victim.
This is a basic attack on anonymity: a user’s connection between his Ephemeral
Ids and personal details (Iphone MAC or name) is revealed to the attacker. The
protection goal of privacy is thereby destroyed.

When establishing the attack we start from a simplistic scenario that does
not use Ephemeral Ids but fixed ids. In this (over)simplified model the attack is
established. We then define a formal refinement calculus for the Isabelle Infras-
tructure framework to refine the attack to a system with Ephemeral Ids that
change in fixed time intervals obfuscating the relationship between user and his
pseudonym2.

Now, the refinement shows that although the Ephemeral Ids change regularly
the same attack that has been identified on the very abstract level (fixed ids)
persists. The refinement allows refining the datatype (Id �→ EphID) but also
delivers the usual trace refinement (behaviours of the refined systems are a subset
of the traces of the abstract system). This persistence of the attack precisely
shows which part of the system behaviour is responsible for the attack. In a
second refinement step using action refinement based on this insight from the
(repeated) attack, we can exclude the dangerous attack trace.

Clearly, the abstract attack we establish is obvious on an informal level but
the persistence of the attack on the refined system is less obvious. The remedy
by a second refinement step is an evident restriction of the system behaviour
which gives a clear specification of a system secured against this attack. The use
of formal methods therefore lies not in the discovery of an obvious attack on a
simplified system but in showing how a formal specification including security
refinement can lead to a stepwise improvement that is accompanied by formal

2 We identify the smartphone and the user which might be also recognized by his
appearance (face).
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proof in the Isabelle Infrastructure framework. The solution to exclude the attack
in the second refinement step binds the action move together with a put action.
This shows that besides datatype refinement and trace refinement our refinement
calculus also entails action refinement. This action refinement is implemented
implicitly by changing the effects of the actions in the semantic state transition
relation. In future work, we could think about making the action refinement
more explicit by considering a relationship between semantic rules or by refining
the refinement notion to a more explicit layer of protocol steps – similar to what
has been done in previous applications of the Isabelle Infrastructure framework
for example to Auction protocols [9] or the Quantum Key Distribution [6].

The security refinement in general might seem pointless, as in the first step
of refinement the attack persists and even though the second refinement gets
rid of this specific attack, it doesn’t exclude the reachability of the attack goal
altogether (if the attacker Eve gets Bob on his own in a location she can map
all used EphIDs to him). However, the refinement makes the system relatively
more secure in that for a larger number of traces the abstract attack does not
work anymore3. It is important to emphasize that security refinement is a cyclic
process that improves security but does not usually terminate (like a loop) with
a fixed point of 100% secure system. In a refined model new detail may give rise
to new attack possibilities. These additional attacks can be identified using the
Attack Tree calculus and trigger further refinement steps.
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Abstract. The increasing presence of wireless sensor networks and the
blanket re-use of the resulting data volumes by AI-based systems raises
pressing ethical questions about the impact of these technologies on our
society. One of the commonly used technologies are Smart Phones and
similar mobile communication devices which attract people to improve
their quality of life. These devices are equipped with rich sensors that
provide an advanced and comprehensive user experience. However, it is
a well known problem that the presence of numerous sensors is of major
concern to the privacy of users and their social environment. Specifically
previous studies already revealed that motion-sensitive sensors actually
react to human speech. In this regards Deep Neural Networks (DNN)
proved very successful to model high-level abstractions in data. Our main
focus is highlighting (i) the potential risks related to these sensors leak-
ing private information about speech and (ii) the ethical implications of
advances in (deep) machine learning as a threat to privacy. In this paper
we showcase a simple attack in which collected data from accelerometer
and Vibration Energy Harvester (VEH) sensors can be used to eavesdrop
on speech. We propose a multistage stacked auto-encoder model that
learns the distinctive time and frequency characteristics independently
without user interaction. We demonstrate the efficiency of our model
with poor quality data and a very low sampling rate. We investigated
three classification tasks: gender identification (i), hotwords detection
(ii), and (iii) recognition of simple phrases selected from a previously
well investigated dataset. Our experiments demonstrate the efficiency of
our model and confirm that motion-sensitive sensors are a rich source of
personal data, from which highly sensitive and private information about
people in close proximity to the sensor emerges.

Keywords: Mobile devices · Users privacy · Deep neural networks ·
Data fusion

1 Introduction

Privacy is increasingly a concern in today’s digitally connected world. Personal
data is being collected and stored in several daily used devices such as smart-
phones, mobile devices and wearables. These devices are often equipped with
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sensors to provide services based on the according sensor readings, like loca-
tion, movement, temperature, and alike. The data from such sensors, however,
can also be used for other purposes. Meanwhile, machine learning is a field of
research that became a core component of many real-world applications in many
domains including health, transportation, energy, education, banking, biomet-
rics to cite a few. The diverse and large availability of data, coupled with rapid
technological advances in machine learning algorithms (which learn from data),
is changing society markedly. Although it enables the development of many tools
with the potential of bringing good to society, their misuse might also generate
or inflate risks that harm society and the private life of individuals [4,7,26].
In this work, we address the privacy concern raised when the combination of
unprotected data collection and advanced learning algorithms may lead to non-
transparent inferences. We mainly focus on data collected from sensors built-in
mobile and wearable devices. We investigate how data created by a movement
sensor and an energy harvesting component can be used to extract information
about human voice communication.

Sensor data has already received remarkable attention from the security
research community, as to better understand the potential impact of this data
on user privacy. Projects have investigated opportunities to identify and track
users [3,11,18,22]. This was investigated in particular with the acceleration sen-
sor [8,14,24,27,30,31,33,37]. These studies did also show that the motion sensors
included in smartphones are sufficiently sensitive to allow the identification of
acoustic information based on the readings induced by sound waves. An accord-
ing investigation of data provided by gyroscopes was performed by [23]. This
paper was inspired by works discussing such effects of acoustics on gyroscope
measurements [9,12,13]. The authors there demonstrated by a rich experimental
study that gyroscope data is sufficiently sensitive to extract information about
the original audio signal. This included the identification of the speaker’s gender
as well as an isolated hot-word. In [36] the authors investigate accelerometer
data for hot-word detection. The main motivation is to enable accurate low-
energy and low-cost implementation of voice control by using the accelerometer
instead of the microphone. The obtained accuracies were competitive with voice
control applications such as “Google Now” and “Samsung S Voice”. However,
mobile operating systems limit the sampling rate (usually 200 Hz). Low sam-
pling rates pose a hard limit on the available data and therefore are a signif-
icant challenge to speech reconstruction. To overcome this challenge, a recent
work [17] has proposed an eavesdropping attack by leveraging a distributed
form of time-interleaved analog-digital-conversion to approximate a higher sam-
pling rate. Combining the data provided by a geophone, an accelerometer, and a
gyroscope they were able to reconstruct intelligible speech. A threat analysis of
extracting speech signals from motion sensors of smartphones is provided by [1].
The authors there examined the presence of speech information in accelerometer
and gyroscope data by studying many possible attack scenarios and analysing the
behaviour of these sensors. Furthering this track of investigations a recent publi-
cation explored vibration energy harvesters (VEH) and whether they can be used
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like a sensor [19]. VEHs convert physical movement into electric energy, often to
extend battery life. Because of the high availability of vibration sources, VEHs
are considered an effective energy harvesting option for low-power mobile devices,
like for the Internet of Things (IoT). The authors there also notice that VEHs
can be sensitive enough to detect hot-words in speech. In other recent works,
the authors propose an eavesdropping attack based on accelerometer readings.
The authors in [2] studied an accelerometer-based speech recognition under the
setup that the accelerometer is on the same smartphone as the speaker. More-
over, the authors in [5] design a deep learning-based framework to recognize
and reconstruct speech signals only from accelerometer measurements.

Contributions. In this paper, we propose to use DNNs on sensor data to increase
the accuracy in recognising voice patterns. We want to determine the potential
risks related to privacy when such data is not protected. Here we focus on the
data collected from a VEH and an accelerometer while users were speaking as
collected in a preceding study by [19]. Our intentions are twofold: Firstly we
want to highlight the improved ability to extract acoustic patterns from sensors
not primarily used for acoustic information by using DNNs. Secondly, we want
to explore if the combination of data from different sensors can significantly
improve the detection rates. We perform an experiment by using a DNN based
on a stacked auto-encoder upon the collected data. Our model extracts acoustic
features by exploring both time and frequency representations. The extracted
features are then used in supervised classification to identify the speaker’s gender,
detect a simple hot-word, and distinguish it from short sample phrases. We show
how the combination of the data provided by the VEH with the data of the
acceleration sensor significantly improves the recognition rates in comparison
to [19]. To that end we train the DNN with both sources. To the best of our
knowledge the effect of speech on motion sensors has so far only been performed
using manual feature extraction techniques [1,2,17,19,23,36] or using only one-
way sensor [5]. We, therefore, assume our approach of using deep neural networks
with different types of information in this context is novel.

Threat Model. When sensor readings expose voice communication additional
threats to privacy become apparent. The threat model changes as an attacker
then only needs access to sensor readings instead of the microphone directly.
The attack vector thereby is extended to any application having access to the
readings of relevant sensors, as for example on the user’s device in Fig. 1.

The attacker here can identify acoustic patterns in the accelerometer and
VEH readings. With the sensors used in the experiment, the user needs to be
physically close to the device [19]. However, this seems very likely when using
a mobile phone or a smart watch, which also happen to be the devices where
accelerometer and VEHs are (to be) used. Furthermore, the attacker does not
necessarily require direct access to the sensor data. We assume that access to
locally cached sensor readings may be sufficient to allow offline attacks. We
consider two scenarios in our study: In the first scenario, the attacker only has
access to the data of one source. With the available data, we can compare having
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Fig. 1. Example for an attack scenario

access to only the accelerometer or only the VEH. We determine how well the
DNN identifies the speaker’s gender, detect the hot-word, and identify short
sample phrases for each of those data sets. In the second scenario, we assume
the attacker to have access to both, the accelerometer and the VEH. Here we
combine the data sets of the accelerometer and the VEH to train the DNN. We
can compare the results with those derived by using a single data source.

2 Background

This section describes the design of the investigated sensors and provides back-
ground information about the typical architecture of an auto-encoder and the
corresponding learning algorithm.

Vibration Energy Harvester (VEH). A VEH is a transducer that con-
verts kinetic energy from vibrations to electrical power. For low-power electronic
devices in specific environments, they can harvest enough energy to operate
the device [10,15,29]. A VEH can be seen as having three parts: the trans-
ducer to convert the kinetic to electrical energy, a power-electronic interface,
and some electrical energy storage, like a battery [28]. Common VEH transduc-
ers are piezoelectric, as this type has shown the highest potential for harvesting
energy [21,35]. Suitable vibration sources are diverse, as for example human
motion, waves, wind, or vibrations of machinery. A typical piezoelectric element
as used in VEHs is illustrated in Fig. 2 where one end of a cantilever beam is
fixed to the device, while the other is set free to oscillate (vibrate). When the
piezoelectric is affected by vibrations, an AC voltage is generated by the accu-
mulation of positive and negative charges on the two opposing sides. The AC
voltage generated in general is proportional to the applied stress.

Acoustic Effect. Sound waves, when emitted, are moving through air and cause
pressure on the cantilever beam. Experiments [19] have demonstrated this effect
by having a person shout three times while physically near to the piezoelectric
part. The generated signal (see Fig. 3) shows how the VEH’s voltage peaked
with each shout.
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Fig. 2. Piezoelectric transducer [19] Fig. 3. Effect of shouting on VEH
piezoelectric cantilever beam [19]

Accelerometer. Accelerometers turn acceleration into an electrical signal based
on the same operating principles as VEHs. The acceleration in different dimen-
sions can be translated to changing positions. Raw gyroscope data consist of
three values indicating the acceleration along the x-axis, y-axis, and z-axis (usu-
ally corresponding to the up-down, right-left, and front-back movement respec-
tively).

Acoustic Effect. Recent work [36] showed that accelerometers are sensitive
enough to draw conclusions about human speech. The authors there recorded
sensor output while a speaker was spelling the vowel “A”. The spectrum analysis
of the output signal shows a considerable variation of the accelerometer readings
during speech. They reported that the human voice has sufficient sound pressure
to have detectable impact on smartphone accelerometers.

Stacked Auto-encoders. An auto-encoder (AE) is a type of artificial neural
network (ANN) for unsupervised learning. The learning objective of the AE is to
map the data of the input layer to the output layer in the way it is desired. The
result is an approximation of the so-called identity function, where the output is
a representation of the input. The architecture of an AE divides the ANN into
an encoder and a decoder. The encoder takes the data at the input neurons and
creates a “restricted” representation of it at the hidden layer. Since the hidden
layer is smaller than the input layer it learns only the most relevant aspects
of the input. The decoder then tries to reconstruct the original input from the
representation in the hidden layer. This produces a higher-level representation
from the lower-level representation of the input [6].

A stacked auto-encoder (SAE) is an ANN consisting of multiple hidden lay-
ers creating a deep neural network architecture. The SAE applies the so-called
greedy layer-wise pre-training strategy which addresses the error-causing van-
ishing gradient problem. In SAEs the input layer is the encoded layer trained on
the raw input. The output then is used as input to the next AE to obtain the
next encoded layer and this process is repeated for subsequent layers. Stacking
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layers like this can then lead to deep stacked auto-encoders that carry some of
the interesting properties of deep models [6].

3 Learning Acoustic Information

Here we present an overview of our proposed approach and discuss details, before
presenting the experiments in the next chapter.

Classification Task. Classification tasks are tied into information represen-
tation. The learning process on how to represent data is a critical step that
on the one hand should preserve as much information as possible from the
input data. On the other hand this process should eliminate redundancies to
foster the extraction of structures and properties. Motion sensors are designed to
respond to movement. Their output signals originate from physical movement of
an accordingly designed part of the sensor. They are particularly used for tasks
related to motion recognition, such as identifying physical activity. Modelling
motion sensor data to perform sound recognition is an especially challenging
task, because the sensor‘s sensitivity is optimised towards such movements and
not sound.

The artificial learner requires preprocessed data in form of features to learn
from. A feature is a measurable property fed to the learning algorithm. These
are normally manually extracted relying on knowledge of a human expert. This
expertise is domain- and/or sensor-specific and is required for each new dataset
or sensor modality in order to engineer the suitable features for a specific applica-
tion. Therefore, the use of manual feature extraction is very limited. Furthermore
it cannot be generalised across different application domains. As accelerometer
and VEH sensors are of a non-acoustic nature, we do not benefit from a prior
knowledge about useful measurements to apply in order to extract the acoustic
information. To deal with this issue, we propose an unsupervised deep learn-
ing approach to automatically learn suitable features without relying on hand-
crafted features. Here features are automatically extracted from data through
layers were each successive layer acts as a feature extractor and is hypothesized
to represent the data in a more abstract way. This process is unsupervised, which
means that it is independent to a specific classification task. To this end we pro-
pose a SAE to discover relevant complex structures underlying speech and to
learn a deep and high-level representation robust to intra-class variability includ-
ing the sensor direction and the speaker speaking. An architectural overview of
our approach is illustrated in Fig. 4. It is divided into two main phases: unsu-
pervised feature learning, where we added the combination of the data-sources
as well, and supervised classification.

Feature Learning. In this step, we investigate time and frequency data sepa-
rately to train a bimodal representation from each sensor. We perform Fourier
transformations on the frequency data. Then we use the greedy layer-wise train-
ing for the SAE. Therein, the features learned in a hidden layer are used as input
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Fig. 4. The figure shows the whole network architecture. The two inputs are the fre-
quency and time representation of the VEH and the accelerometer data. Each layer
correspond to the hidden layer encoded using the autoencoder. The layers are stacked
using layer wise training strategy. The last layer represents the classifcation step per-
formed after the unsupervised features learning from previous layers.

to the next AE in order to produce a new representation of the data. By rep-
resenting the data through layers we enable learning of complex patterns across
data variations. After extracting the features separately from each source, that
is time and frequency, we combine them into a joined time-frequency represen-
tation. This joint representation leads to a shallow model, thereby making it
difficult for a single hidden layer model to directly find correlations between rep-
resentations that have been joined. We, therefore, again apply greedy layer-wise
training to improve discovery of high-level correlations across the two represen-
tations.

Data From Multiple Sources. With the assumed availability of different sen-
sors, we then have separate types of data sources about a given moment. The
machine learning community assumes potential in improved learning algorithms
to specifically exploit such multi-modal data to form a unified picture [25]. Mod-
elling speech recognition from data of non-acoustic sensors is challenging. Addi-
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tional problems to tackle are the limited sampling frequency and the interference
from the device’s original function (detecting movement, harvesting energy) with
our intended function (detecting spoken language). Our study specifically aims
to determine to what extent combining data provided by different sensors can
provide improved results. To that end, our multi-layer approach combines sepa-
rately trained models into a joint representation.

Supervised Classification. We then use supervised classification on the
extracted features. For this the fused representation functions as the input, thus
providing features across the original data sources. We repeat the three classifi-
cation tasks for the speaker’s gender identification, the hot-word detection, and
the recognition of the sample phrases.

4 Experimental Study

In this section we are describing our experiments in more detail. We start by
presenting the available data and then explain how we pre-processed it and per-
formed the feature learning and classification.

Data. The dataset we used is described in more detail in [19]. It is the only work
we are aware of that already studied the potential of detecting acoustic informa-
tion from VEH data. It contains the data for both, a VEH and an accelerometer,
while different persons performed identical tasks repeatedly. Involved were eight
individuals, four being male and four female, and the experiments were per-
formed with two different orientations of the devices (horizontal and vertical).
The devices were positioned close to the persons (3 cm) and the experiments
repeated 30 times for the hot-word “Ok Google” and at least ten times for the
phrases “Good morning”, “how are you”, and “fine thank you”. Overall the
data-set contains 1155 samples. Figure 5, represents the accelerometer and VEH
sensor outputs while a person spoke the four phrases.

Fig. 5. The VEH signal (left) and the accelerometer outputs (x axis, y-axis, z-axis on
right) while the user is speaking the four phrases (“good morning”, “okay google”,
“fine thank you” and “how are you”)
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Preprocessing. In the pre-processing we apply our domain knowledge to
address the specifics of the different data sources. As we face varying lengths
of the samples, we started by interpolating all the samples in the data to the
mean length. We separately handle the temporal and frequency representations.
To minimise the signal-to-noise ratio we filter the input signals and normalise
them. On the frequency representation we apply a fourier transformation and
calculate the magnitude of the obtained complex values, which we then also nor-
malised. For the accelerometer data, we down-sample the signal to 200 Hz. This
is the limit on sampling frequency as posed by the mobile operating systems
Android and iOS. We then interpolate the samples to their mean length and
normalize the data. After first learning features for each axis (x, y, and z), we
then compute the magnitude over the dimensions to obtain an overall feature
vector. The three acceleration channels were combined as one using square sum-
ming to obtain the magnitude acceleration, which is orientation independent.

Feature Learning and Classification. The training procedure for time and
frequency representations each is executed for 50 epochs, using a mini-batch size
of 30 and learning rate of 0.001. The RMSprop variant of the stochastic gradient
descent is used as the optimization algorithm. For the feature learning step, the
used number of hidden units for the first layer is 1200 and for the second layer is
1000. For the classification we used and compared three common learning algo-
rithms in order to select the good learner that can find out the relevant patterns
from the obtained features from the Autoencoder. Principaly, Support Vector
Machine (SVM) using the RBF kernel with γ = 0.01 and C = 100, K-nearest
neighbours (KNN) with K = 3 and Neural Network Classifier (NN) with 2 hid-
den layers containing 100 units. The optimal hyperparameters were optimized
by cross-validated grid-search over a parameter grid.

Evaluation. In the evaluation we used a k-fold cross-validation with k = 10.
For this we divided the data into k equal folds (portions). We then trained the
model on the k − 1 folds and test it against the remaining folds. That process
was repeated k = 10 times. The final performance after that corresponds to the
average of the obtained values. We used cross-validation analysis to ensure that
all data was used for both, training and test. The classification of the proposed
framework was performed using the four metrics accuracy, precision, recall, and
F-measure.

5 Results and Discussion

In this section we present the results from our experiments in detail.

Single Data-Sets. We first evaluate the results from using the data of the
accelerometer or VEH on their own, each. Tables 1, 2 present the classification
performance for each of our metrics, that is accuracy (acc), precision (prec),
recall (rec) and F-measure (f-score), as determined for each of the classifications
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Table 1. The obtained results (%) using only VEH data

Hot-word detection Gender identification Sentences recognition

alg. rep acc prec rec f-score acc prec rec f-score acc prec rec f-score

time 74 76 74 74 71 72 71 70 62 62 62 60

freq 69 69 69 69 76 77 76 76 55 55 55 53KNN

our model 75 76 75 75 79 80 79 79 64 65 64 62

time 71 72 71 71 70 71 70 69 63 64 63 61

freq 69 70 69 69 76 77 76 76 54 54 54 53SVM

our model 75 76 75 75 80 80 80 80 64 65 64 64

time 70 72 70 70 62 64 62 61 61 62 61 60

freq 65 68 65 63 72 74 72 72 54 54 54 51NN

our model 75 76 75 75 77 79 77 77 65 65 65 64

Table 2. The obtained results (%) using only accelerometer data

Hot-word detection Gender identification Sentences recognition

alg. rep acc prec rec f-score acc prec rec f-score acc prec rec f-score

time 71 72 71 71 83 83 83 83 58 59 58 56

freq 55 55 55 55 64 65 64 63 42 38 42 37KNN

our model 77 77 77 77 83 83 83 83 65 65 65 63

time 58 60 58 54 80 80 80 80 48 31 48 33

freq 58 58 58 58 71 72 71 71 41 39 41 39SVM

our model 76 76 76 76 86 86 86 86 65 65 65 64

time 53 55 53 48 61 65 61 58 47 23 47 30

freq 54 56 54 50 66 68 66 65 45 35 45 34NN

our model 68 70 68 67 80 81 80 79 54 57 54 50

(gender identification, hot-word detection, and phrase recognition) for each of
the used learning algorithms KNN, SVM, and NN (alg) for each of the data
representations time-only, frequency-only, and our model. These allow us to see
how our model compares to using only the time- or only the frequency-data. On
the hot-word classification the KNN and SVM algorithms with our model both
achieved an accuracy of 75% when used on the VEH data and 76% when used on
the accelerometer data, in all cases out-performing the use of only time- or fre-
quency representations. For gender identification results, the best classification
performance was achieved by our model in combination with SVM, having an
accuracy of 86% using the accelerometer data and near 80% using the VEH data,
again out-performing the use of only one data-representation. The accuracy of
our model in recognizing the phrases was in the range of 64–65% for all combi-
nations but using NN on the accelerometer data and once more out-performed
the use of single data representations in all combinations. The F-score shows
comparable values. Therefore, we can conclude that features learned from the
joint representation of time and frequency information leads to a considerable
improvement of the classifications. Both, frequency and time representations,
contain important information that can be combined for better results here.
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We assume that more abstract features have been learned in the process. We
highlight that sufficient information about the original activity of shouting can
already be extracted with relevant accuracy even when using only one of the
data sources.

Table 3. The obtained results (%) combining the VEH and the Accelerometer data

Hot-word detection Gender identification Sentences recognition

alg. rep acc prec rec f-score acc prec rec f-score acc prec rec f-score

time 78 79 78 78 81 81 81 81 69 69 69 67

freq 69 70 69 69 79 80 79 79 55 55 55 52KNN

our model 83 83 83 83 88 88 88 88 73 74 73 72

time 76 76 76 76 79 79 79 79 66 66 66 64

freq 73 73 73 73 81 82 81 81 59 59 59 58SVM

our model 86 86 86 86 91 92 91 91 77 78 77 77

time 68 69 68 67 73 74 73 73 61 64 61 59

freq 71 72 71 71 79 80 79 79 59 59 59 57NN

our model 81 82 81 80 88 89 88 88 74 75 74 74

Combination of Data-Sets. Next we examine if access to multiple data
sources further increases the classifications. For this we repeated the training
using both, the VEH and the accelerometer data, as described above. The results
are—formatted as the previous tables—shown in Table 3. Combining the data-
sources has significantly increased the accuracy of the classifications across the
board by around 10%. The highest F-scores of 91%, 85%, and 77% for gender
identification, hot-words detection and recognition of phrases respectively, were
achieved when using the SVM classifier with our model. The increase was higher
for our model than if using only the time or the frequency representation. In
each of its levels, the ANN must have learned additional correlations between
the data variables across frequency and time representations. Overall, the joint
representation has lead to remarkably improved accuracy.

In Table 4 we compare our model with the results from the original work
from [19] which only used the VEH data. The authors there compared results
for different positions of the VEH. Recognising the importance of positioning,
we specifically wanted the DNN to cope with this, as we hardly can influence the
positioning in the scenario of spying. This way our results should be better suited
to assess the practicality of an according attack vector. Moreover, we applied
our model to the gyroscope data used by [23] for isolated words recognition. We
compare our results with those obtained by the authors for the user independent
case. The results show that our model provided better accuracy than the state
of the art works, that were based on manual features.

The results show that our deep auto-encoder approach can improve the recog-
nition of acoustic patterns from non-acoustic sensors, here acceleration and volt-
age readings. We do not claim that the proposed approach represents a direct
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Table 4. comparison with state of the art methods

Method Accuracy

Hot-words detection using VEH in a horizontal position [19] 73%

Hot-words detection using VEH in a vertical position [19] 63%

Hot-words detection using VEH invariant to sensor orientation (our model) 75%

Hot-words detection combining VEH with accelerometer (our model) 86%

Isolated words recognition (11 words) using gyroscope with SVM (Speaker-independent) [23] 10%

Isolated words recognition (11 words) using gyroscope (our model) Speaker-independent case 25%

substantial risk to privacy, yet, as the data-set is small and was derived in a very
specific setting. However, mobile sensors beyond the obvious microphone and
camera could become targeted by attackers as they—as of today—are often less
protected. Despite the fact that the data provided by such sensors is always clut-
tered due to their main purpose, it still is possible to draw conclusions on audio
information from them by using two main approaches. The first is to combine
data from multiple sources by considering a multimodal architecture. This will
exploit the complementary between multiple modalities (information obtained
from multiple sensors) and will lead to more accurate results. The second is to
include a de-noising component in the autoencoder. In fact, de-noising data is
one of the areas where auto-encoders have been most successful [34].

Discussion. Considering that such sensors might generally not be considered
as sensitive and therefore be less protected, they could rise to become popular
attack surfaces in the future. Based on our results an attacker with access to the
readings of multiple sensors must be regarded as dangerous, even if the primary
function of the sensors seem harmless at first. With today’s mobile devices many
people already carry a multitude of sensors around and the trend seems to be
for even more.

The findings compiled show that motion data are a rich source of personal
data. The misuse of such data using learning algorithms that can extract visible
and invisible patterns and correlations from it can lead to leakage of sensitive
information such as the individual’s speech. Furthermore, by combining different
data sources we can learn more than from one source independently. Thus, more
accurate information can be inferred from a combined analysis (in the studied
case the accuracy has increased by 10%), which increases the risk of the pri-
vacy breach. Recognizing the speech does not only give information about what
a speaker says, but also its attitude toward the listener and the topic under
discussion, and the speaker own current state of mind as well. Many works
have discussed the inferences that can be drawn from human speech extracted
from audio data [20]. Therefore, the inferred speech information from motion
sensors, in turn, can be used to deduce more non-transparent insights about
individuals and manipulation about their private life [7]. Several examples of
data breaches were revealed where personal information was exploited for many
purposes, including political purposes [16], and others [32]. Therefore, the misuse
of such data can seriously affect an individual’s relationships, employability, or
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financial status, or lead to negative consequences for essential rights and social
values such as freedom of expression, respect for private life. The privacy threat
of unexpected inferences from unprotected data sources is not limited to those
discussed in this paper. The problem of undesired inferences goes far beyond
motion sensors and the deduced insights are related to the samples present in
the used dataset. Thus, a larger database will contain a variety of character-
istics from personal attributes in addition to gender and identity or age. Such
attributes may include, emotions, personality traits, sexual orientation, ethnic-
ity, religious and political views to cite a few. This diversity of data will allow
discovering other correlations and obtaining more analysis. In sum, the aim of
the paper is mainly to raise awareness about the ethical and privacy implications
of the advancement of learning algorithms coupled with the growing availability
of data. This is achieved by demonstrating how machine learning can be used
as a tool for privacy breach and manipulation. Advances in technology change
how personal information is collected and analysed, and therefore create new
privacy risks. Thus the continued debate is needed to guide the development not
only of technology but also of the policies that enable its use. And governments
need to be more serious about finding a solution to limit the power that larger
companies have over citizens.

6 Conclusions and Future Work

In this paper, we investigate the technical feasibility of speech inference from
motion data using advanced machine learning models. We explore how non-
acoustic sensor readouts can be used in uni-/multi-modal attacks. We propose
a multi-level time-frequency based deep neural network to extract acoustic pat-
terns from an accelerometer sensor and an energy harvesting component. Our
model detects gender, single hot-words and spoken phrases with an accuracy of
up to 91%, 85%, and 77% respectively. This findings show that motion sensors
data are a rich source of personal data. They can be sufficient to obtain infor-
mation about a device holder’s speech especially when used data is combined
from multiple sensors. By combining data sources we can learn more than would
be the case from analysing single source independently, and more accurate pre-
dictions may be inferred which increases issues about privacy or decreases the
privacy guarantee. An attacker with access to an accelerometer and some sensi-
tive energy harvesting module is able to eavesdrop on human speech and draw
conclusions about its content. Therefore, they could be considered private data
in the same sense as audio data. The privacy of mobile device and wearables
users, is a concern of growing importance. The zero permission nature of embed-
ded motion sensors make acquiring the data easier. The collection of such data
combined with a misuse of machine learning algorithms (which learn from data)
can lead to a serious privacy risks and leakage of sensitive inferences about the
user including his speech. The problem of undesired inferences goes far beyond
motion sensors data and needs to be addressed for other data sources as well.
Therefore, further research is required into the privacy implications of unpro-
tected data collection taking into account the evolving state of the art in machine
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learning algorithms. Furthermore, a continued debate is needed not only about
control over all sensor data, but also to guide the development of technology and
of the policies that enable its use.

We consider the contents of this article to be early work on this topic. An
interesting next step would be to examine the attack vector under real-world
conditions. For further experiments a larger annotated data-set including more
sensors as found in smartphones and a possibly large set of recorded situations
would be needed. Only then would it be possible to realistically judge the threat
that for example is posed by smartphones today, when installed applications are
allowed access to sensors without care. Many factors usually do affect sensors and
different sensors each have their specifics in how they are affected. This provides
a large variety of possible experiments from recording and annotating data to
performing analyses on that data then. Concerning the neural network it might
be beneficial to use recurrent neural networks with long-short-term-memory to
capture the temporal relationships in the data.
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20. Kröger, J.L., Lutz, O.H.-M., Raschke, P.: Privacy implications of voice and speech
analysis – information disclosure by inference. In: Friedewald, M., Önen, M.,
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Abstract. With the introduction of the EU General Data Protection
Regulation (GDPR), concerns about compliance started to arise among
software companies inside and outside Europe. In order to achieve
high compliance, software developers must consider those privacy and
data protection goals defined across the different legal provisions in the
GDPR. Prior work has introduced methods to systematically extract
taxonomies of privacy requirements out of the GDPR’s legal provisions.
That is, a hierarchy of meta-requirements that can be instantiated for
each specific software project. Particularly, ProPAn is a requirements
elicitation method which leverages such taxonomies with the aim of
achieving high levels of compliance. However, despite of its benefits, the
method presents a high documentation overhead and redundancy across
the artifacts it generates. In this work, we introduce a lightweight method
named PDP-ReqLite initially inspired from ProPAn that introduces new
artifacts for the documentation of personal data and information flows in
a system-to-be. The purpose of PDP-ReqLite is to improve usability and
applicability by reducing documentation overhead and complexity, and
by introducing means to automate tasks, e.g., automated requirements
elicitation. In particular, this improved method provides additional fea-
tures for incorporating new meta-requirements thus enlarging existing
taxonomies.

Keywords: GDPR · Privacy requirements engineering · Data
protection

1 Introduction

Nowadays, developing privacy-aware software systems has become a challenge
of public interest. Legal frameworks such as the EU General Data Protection
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Regulation (GDPR) [17] have triggered major concerns about how information
systems should implement data-protection functionalities and safeguard the pri-
vacy rights of their users. Privacy engineering is a discipline that has taken
care of these challenges through methods, techniques and tools that allow soft-
ware developers to build and incorporate privacy-related functionalities in their
projects. Particularly, there is a growing understanding that privacy must be con-
sidered as a primary aspect in every system and software development process.
That is, it must be considered right from the early stages of a systems’ design
process and throughout its whole life cycle. Therefore, under this premise, an
adequate elicitation of privacy requirements results critical for developing soft-
ware systems that guarantee the data protection rights of their end-users.

Privacy requirement engineering methods seeks to define, and document
requirements related to privacy and data protection for their later implemen-
tation. Overall, these methods define a set of privacy and data protection goals
like transparency or integrity which guide the elicitation process of such require-
ments. Furthermore, many of them introduce conceptual elements extracted from
current standards or legal provisions in order to achieve high levels of compli-
ance. Such is the case of ProPAn, a model-driven method for the elicitation of
privacy requirements that incorporates principles introduced by well-established
data protection frameworks and standards. Particularly, ProPAn comprises a
collection of meta models (or requirements taxonomies) that are systematically
extracted from the body of the EU GDPR and the ISO 29100. Such meta models
guide the elicitation process of privacy requirements taking as input a collection
of functional requirements that the system-to-be is expected to meet.

All in all, requirements engineering methods use different notations for the
specification of requirements (e.g. textual, UML, use-case diagrams), and mod-
elling languages for representing the system (or system-to-be) under consid-
eration (e.g. BPMN, data-flow diagrams). In the particular case of ProPAn,
functional requirements are specified using Jackson’s Problem Frames notation.
Such approach consists of describing the contextual elements with which the
system-to-be must interact. In principle, this approach is suitable for the sys-
tematic elicitation of functional requirements. Nevertheless, it does not provide
adequate means for a fine-grained documentation of the personal information
that the system under consideration is expected to process. Hence, the method
introduces a considerable amount of documentation overhead in order to doc-
ument and analyze the information flows of the system and, thereby, generate
the corresponding privacy and data protection requirements. Furthermore, even
when such requirements are successfully generated, a high level of compliance
cannot be ensured after their incorporation since the meta requirements used by
the method do not cover all the legal provisions stated in the GDPR.

This paper introduces PDP-ReqLite, a lightweight method for the elicitation
of privacy and data protection requirements. Particularly, PDP-ReqLite seeks to
overcome the drawbacks identified in ProPAn regarding documentation overhead
and compliance through new elicitation artifacts and requirements meta models.
Such artifacts consist of data-flow and personal information diagrams that are
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independent from the Problem Frame notation employed by ProPAn but allow
capturing the necessary information for the generation of privacy requirements.
On the other hand, PDP-ReqLite introduces the possibility of defining additional
meta requirements and models for achieving a broader scope and compliance
with legal provisions and standards. Furthermore, a protocol for the systematic
elicitation of such meta requirements is also introduced and illustrated alongside
the different steps of PDP-ReqLite.

The rest of the paper is structured as follows. Section 2 gives the related
work. The Sect. 3 introduces the theoretical background necessary to understand
the proposed approach. The PDP-ReqLite method is presented in Sect. 4. The
method applicability is demonstrated relying upon a Smart Grid case study in
Sect. 5. The conclusions and perspectives finally come in Sect. 6.

2 Related Work

So far, several methods have been proposed for the generation of privacy and data
protection requirements in software projects, each employing different notations
and modelling languages [1,3–5,8]. Generally speaking, these methods consider
privacy as a quality attribute or soft-goal that must be refined into a set of
functional requirements [12]. For example, Dennedy et al. [5] propose to model
a system-to-be through use cases and business activity diagrams enhanced with
metadata related to the actors and information being processed by such system.
In this approach, patterns (i.e. generic use cases) are used in combination with
interpretation guidelines of the OECD privacy principles to identify and instan-
tiate privacy use cases. Such instances guide the selection of Privacy Enhancing
Technologies (PETs) which are prescribed by the method for each OECD prin-
ciple. In line with this, Hoepman et al. [7] and Colesky et al. [3] elaborated a
set of privacy patterns for the development of software architectures considering
certain levels of privacy protection. Particularly, Colesky et al. [3] identified a set
of privacy protection needs from the body of the GDPR and other legal frame-
works like the Privacy Shield Agreement and refined them into a collection of
privacy design tactics. Such tactics are then linked to specific privacy patterns
(represented in natural language) and PETs for their later application in the
design of software architectures.

Privacy regulations and the obligation to comply with privacy laws are driv-
ing factors for considering privacy as a software quality [12]. Privacy principles
and goals are often introduced in requirement engineering methods to make these
obligations more accessible and comprehensible for practitioners in the computer
science domain. Furthermore, many of these approaches have been coined under
the principles and premises of model-driven software engineering [12]. This is
the case of ProPAn, a method for the systematic elicitation of privacy and data
protection requirements which is driven by legal provisions and privacy goals
related to transparency and intervenability, among others. Particularly, ProPAn
is grounded in the provisions and guidelines included in the EU GDPR [17] and
the ISO 29100 standard [9]. Nevertheless, the method exhibits extension points
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that makes it adaptable to other privacy legislations and data protection stan-
dards. Regarding data representation, text-based approaches like PRIPARE [14]
are easier to adapt in the practice since users are not required to learn a spe-
cific modelling notation or formal language. Moreover, Meis et al. [12] show in
a literature review on requirement engineering methods for privacy, that a large
number of methods rely solely on textual documentation. However, informal
notations make automation and consistency checking harder to perform, hence,
a model-driven approach is preferable for these purposes.

3 Theoretical Background

In this section, we describe the theoretical foundations upon which PDP-ReqLite
is elaborated. Particularly, a brief introduction to ProPAn and its most salient
software artifacts is given in the following subsections. Alongside, an analysis
of the benefits and drawbacks of this method is conducted in order to identify
potential areas of improvement.

3.1 The ProPAn Approach

ProPAn [1] is a systematic method that helps identifying the privacy needs of a
software system based on a set of functional requirements. Particularly, one of
the core characteristics of ProPAn is the elicitation of functional requirements
using problem diagrams. Such diagrams where introduced by Michael Jackson
[10] as an approach to describe the environment in which a system-to-be must
operate and the problem it must solve. In Jacksons’ approach, software devel-
opment consists of building a Machine (i.e. the system-to-be) that must be
integrated in a certain environment represented by a collection of Domains (e.g.
humans, technical devices, data representations, etc.) connected by interfaces
through which they exchange certain Phenomena (i.e. events, actions, messages,
and operations). Overall, the ProPAn method consists of two phases: Identifica-
tion of Privacy-Relevant Information Flows and Generation of Privacy Require-
ments. In the first phase, the functional requirements of the system-to-be are
identified and expressed through a collection of problem diagrams. In addition,
the phenomena specified in such diagrams is further analysed and described in
terms of personal information and data flows. For this, ProPAn introduces elici-
tation instruments additional to the ones proposed by Jackson with the purpose
of documenting the personal information being processed by the system along
with their corresponding data subjects (or system stakeholders) and data flows.
These Functional Requirement Artifacts (FRAs) generated during the first stage
of ProPAn become the input for the method’s second stage.

In the second stage of the method, privacy requirement candidates are gen-
erated using a set of taxonomies that reflect privacy principles included in the
GDPR and the ISO 29100 [9]. Overall, requirement candidates are generated for
different privacy goals. Particularly, ProPAn follows the privacy protection goals



A Lightweight Approach for Privacy Requirements Engineering 165

introduced by Hansen [6], namely confidentiality, integrity, availability, unlinka-
bility, transparency, and intervenability [1]. For each goal, the method provides a
taxonomy (i.e. a metamodel) of privacy requirements and a collection of semantic
templates with placeholders for their documentation. For example Fig. 1 depicts
the taxonomy corresponding to the privacy goal unlinkability and the semantic
template used to generate undetectability requirements. As it can be observed,
the information available in the taxonomy (i.e. the attribute values) is leveraged
by the semantic template to instantiate the corresponding requirement.

Fig. 1. Unlinkability requirements taxonomy (up) and semantic template for unde-
tectability requirements (down) [13]

The second stage of ProPAn consists of four steps which are Requirement
Information Deduction, Generation of Privacy Requirement Candidates, Adjust
Privacy Requirements, and Validate Privacy Requirements. In the first step, the
information necessary to instantiate the taxonomy of a particular privacy goal is
deduced from the FRAs of the first stage. For instance, to generate unlikability
requirements one must know which information from a stakeholder S should be
undetectable for a counter-stakeholder C. This can be deduced by analysing the
data flows and stakeholder information obtained during the first stage of ProPAn
[12]. Once this information is deduced, a set of requirement candidates can be
derived by instantiating the taxonomy and semantic templates of the privacy goal
under consideration (Step 2). Since requirement candidates may be incomplete or
result too strong/weak for the system-to-be under analysis, the user must review,
complete and adjust the generated requirement candidates manually (Step 3).
For instance, it may happen that an undetectability requirement must be relaxed
and replaced with a confidentiality one. Once these adjustments are done, privacy
requirement candidates are validated to check whether they remain consistent
with the flow and availability of personal data at the different domains of the
system-to-be (Step 4). Depending on the outcome of this validation activity,
some requirements will be accepted and others may need to be adjusted.
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3.2 Requirements Elicitation Artifacts

As described in Sect. 3.1, the first phase of ProPAn offers a collection of FRAs
that allow software engineers to capture and document privacy-relevant knowl-
edge of a system-to-be. More precisely, the software artifacts generated during
this phase are:

– (1) Context Diagram: Describes the domains interacting with the machine,
their corresponding interfaces, and exchanged phenomena.

– (N) Domain Knowledge Diagrams: Documents facts and assumptions about
the context in which the machine will operate.

– (N) Problem Diagrams: Represent functional requirements that must be satis-
fied by the contextual elements of the machine (i.e. domains and phenomena).

– (1) Detailed Stakeholder Information Flow Diagram (DSIFD): Describes how
different phenomena flow across the domains of the system.

– (N) Personal Information Diagrams: Identifies which data of the stakeholders
will be processed by the system and the relations between these data.

– (N) Available Information Diagrams: These diagrams consist of two views.
The first one identifies the stakeholder data available at the different domains
of the system, and the second documents their linkability nature at such
domains (e.g. simple or anonymous).

from which only the DSIFD is generated automatically and the rest must be elab-
orated manually by engineers and privacy experts. To a certain extent, many of
these artifacts are introduced to refine the information captured by the problem
diagrams into data flows. This is because the phenomena represented in such dia-
grams describe mainly events and not the information that such events enclose.
Hence, this approach can result in large amounts of documentation, particularly
in software projects of middle and large size. Consequently, the integration of
ProPAn into an Agile development process may be difficult because of its doc-
umentation overhead. Moreover, the jargon adopted by the method (i.e. words
like “domains” and “phenomena”) may alienate those who are not familiar with
it and, consequently, hinder the method’s usability.

4 PDP-ReqLite: A Lightweight Method for Privacy
Requirements Engineering

All in all, ProPAn counts on multiple artifacts for capturing and document-
ing privacy-relevant information flows in a system-to-be. Such artifacts provide
key input for conducting privacy analyses and, ultimately, for generating pri-
vacy requirements. However, their high syntactical correspondence with Jack-
son’s terminology can jeopardize their usability for average software develop-
ers. Moreover, the overall documentation overhead in ProPAn can impact the
development process of the system-to-be under analysis and eventually delay
its commissioning. Hence, we introduce PDP-ReqLite, a lightweight method for
the elicitation of privacy and data protection requirements which incorporates
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new artifacts for the documentation and analysis of privacy-relevant information
flows. Alongside, we describe a protocol for the systematic elicitation of privacy
and data protection taxonomies for achieving a broader scope and compliance
with legal provisions and privacy standards to come.

4.1 Method Overview

Figure 2 illustrates the proposed requirement elicitation method named PDP-
ReqLite. As it can be observed, this method keeps similarities with the second
phase of ProPAn. Hence, to keep compatibility, PDP-ReqLite can receive as
input either a set of software artifacts like the ones generated in the first phase of
ProPAn (i.e. problem diagrams, domain knowledge, DSIFD, etc.), or alternative
ones containing the same information. Particularly, our new lightweight method
introduces two software artifacts as an alternative to the ones from ProPAn.
The first one is a Requirements Data-Flow Diagram (RDFD) that describes
requirements related to data processing and storage and the information flows
between such requirements. Such a diagram resembles many aspects of ProPAn’s
DSIFD and AID but remains independent from the Problem Frames notation
(i.e. it is not specified in terms of phenomena or domains). The other artifact
introduced in this new approach is a Personal Information Diagram (PID). As
described in Sect. 3.2, such a diagram is already present in ProPAn and, like the
DSIFD, it its expressed through the jargon of Problem Frames. Conversely, this
new PID is expressed in terms of stakeholders, data, and the linkability relations
between them. Thereby, we look to overcome the issues related to usability and
documentation overhead of the original method.

Fig. 2. PDP4E requirement elicitation method

Another element introduced by the PDP-ReqLite corresponds to the meta-
models used to generate privacy and data protection requirements. As we
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described in Sect. 3.1, privacy requirements in ProPAn are derived using require-
ment taxonomies and semantic templates. Such taxonomies and templates are
created by conducting an analysis of the GDPR and the ISO 29100. Such analy-
sis is performed through the lens of the Hansen’s privacy goals. That is, both law
and standard are parsed into a set of taxonomies and semantic templates that
represent each of the Hansen’s goals. Nevertheless, expressing GDPR require-
ments only in terms of a limited set of principles (e.g., intervenability, unlika-
bility and transparency) introduces a risk of methodological bias related to the
choice of such principles. For this reason, we introduce two conceptual artifacts
to achieve coverage and correctness during requirements elicitation. The first
one is a protocol for extracting legal notions from the GDPR to capture in a
structured vocabulary those concepts that can help us modelling Data Protec-
tion Principles (such protocol is described in Sect. 4.2). The second one is the
possibility of adding new taxonomies or meta-requirements to the ones already
introduced by ProPAn in order to achieve full coverage and avoid any potential
bias. This is done by adding the extension point “Privacy and Data Protection
Goal” (PDP Goal) in the requirement elicitation method of Fig. 2, which con-
siders the incorporation of new data protection principles complementary to the
goals of Hansen. Therefore, we consider the new PDP-ReqLite taxonomies as
Requirement Meta-models and propose representing new data protection princi-
ples through PDP Meta-models. Such PDP Meta-models follow the same prin-
ciple of the taxonomies introduced by ProPAn but instead of being associated
with a privacy goal, they are associated to a privacy principle and defined using
the vocabulary of legal notions.

Requirements Data-Flow Diagram (RDFD). Figure 3 (left) describes the
meta-model of a Requirements Data-Flow Diagram (RDFD) which was intro-
duced to replace mainly ProPAn’s Detailed Stakeholder Information Flow Dia-
gram (DSIFD), but it also contains information originally specified inside an
Available Information Diagram (AID). This allow to generate only one global
RDFD instead of one DISFD and multiple AIDs for each component inside the
DISFD. Following, we detail the most salient components of the RDFD meta-
model:

– RDFD Element : Abstract Class. The main elements of the RDFD inherit
from this class.

– Data: A piece of data is an individual unit of information. All data in a
system-to-be has an origin which is the RDFD element in which it was
originated (i.e. created for the very first time).

– Record : A record is a piece of information which has associated a certain
retention time in a data storage. Records are composed by data.

– Data Record Requirement (DRR): It represents a requirement related to data
storage. Particularly, it represents information structures that are imple-
mented later on in a data base. A DRR is composed by a list of data records
(records list) which are pieces of information which have associated a cer-
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tain retention time. The attribute traceability is a list of the functional
requirements that the DRR contributes to.

– Data Process Requirement (DPR): Represents activities that are performed
over data records. Similar to a DRR, a DPR is also contains a list of the
data (data list) it is required to process. However, unlike DRRs, such
data does not have a specific retention time associated. That is, it will be
retained in memory during the processing time. In addition, a DPR has a
requestor list of the stakeholders that are allowed to execute it.

– Data Flow Requirement (DFR): This element represents the exchange of infor-
mation between RDFD elements. The attribute data list represents the
data flowing from one element to another.

Fig. 3. RDFD metamodel (left) and PID metamodel (right).

Personal Information Diagram (PID). As it can be observed, the RDFD
merges into one documentation artifact the information which was originally
spread across ProPAn’s DSIFD and AIDs. This improves the overall documen-
tation navigability and interpretability. Figure 3 (right) introduces the meta-
model of a Personal Information Diagram (PID) which is a simplified version of
the one from ProPAn. The purpose of this new PID is also the documentation of
the stakeholders’ personal data that the system must process. The most salient
components of the PID meta-model are:

– Stakeholder : An individual whose data is processed by the system-to-be.
– Data: An individual unit of information that has a name, linkability and
collection type. Both, linkability and collection type have the same
semantic as in ProPAn. A piece of data can be derived from or contain
other pieces of data.

The attribute linkability can adopt the values single, subgroup, or anony-
mous. The value single indicates that the data can only identify the individual
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it belongs to, subgroup when it identifies a potential subgroup of individuals, and
anonymous when it does not provide any link to the data subject. On the other
hand, collection can be direct, indirect, reused, or external. The value direct
indicates that the stakeholder provides the information herself, the value indi-
rect when the information is collected by observing the stakeholder’s behaviour,
reused when the data has been previously collected for another purpose (e.g.
another project), and external in cases where the data is gathered through third
parties.

4.2 Elicitation of Requirement Candidates

The automated elicitation of requirements is composed by two fundamental
blocks: a protocol for covering GDPR directives and an algorithm for require-
ment candidates generation.

Protocol for Covering GDPR Directives. The protocol leverages several
MDE techniques. First, a meta-model capturing fundamental GDPR notions
and privacy principles was developed. The GDPR meta-model defines a language
and syntax which is a basis to define so named meta-requirement categories. A
meta-requirement is a pattern that results from translation of plain-text GDPR
directives into predicates of the form Pre-conditions ⇒ Post-conditions. Pre and
Post-conditions define the pattern that can be instantiated according to a given
system model. As shown in the example bellow, the meta-requirements include
placeholders to be filled according to the information included in the RDFD and
PID model instance.

IF process <self.processPD.size() greater than 0> processes personal
Data of <self.processPD> THEN the Process <self> shall be lawful
<self.principles<LawFul> (self.processPD. DataSubject) ⇒ .value=true>

The protocol followed to create the set of meta-requirements and the respec-
tive categories is as follows. First, a GDPR paragraph is taken as input and
the goal is to translate it as a meta-requirement relying upon (1) the GDPR
meta-model structure and contents and (2) the Pre and Post-conditions syntax.
If the meta-model is not sufficient to do so, then it is extended by integrating the
missing GDPR terms, notions and relationships. Once extended and the respec-
tive meta-requirement created, a new GDPR paragraph or principle is targeted.
This iterative process is repeated till the coverage of GDPR articles and princi-
ples is ensured. This protocol ensures the introduction of new privacy principles
coming, for instance, from updates or new regulations. Not having any depen-
dency with existing privacy principles, the protocol prevents any bias whereas
still achieves a good balance between legal and technical jargon.

Generation of Privacy Requirements Candidates. The generation is done
by leveraging the information inside the RDFD and the PIDs. To illustrate how
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Fig. 4. Snippet for computing undetectability requirements (up) and the corresponding
textual template (down)

this can be achieved, we analyse the generation of undetectability requirements.
Basically, Pfitzmann et al. [16] define the undetectability of an information item
as an attacker’s inability to identify if such item exists or not. In other words,
if some personal information PI of a stakeholder S is not accessible to another
stakeholder C (and PI does not contain any other personal information accessible
to C), then we assume that PI is undetectable to C. Note that we consider C as a
stakeholder but also as a potential attacker. That is, as a “counter-stakeholder”.
Such analysis is described in the snippet of Fig. 4 and starts with the genera-
tion of an empty list of requirements (reqList) and another of personal data
(personalData). Additionally, it creates a list of all the personal data of S
which is kept inside the system-to-be. Such list is computed by the function
getStakeHolderData with the help of the information inside the PID. Follow-
ing, a list of all the processes in the RDFD for which C appears as requester is
computed by the function getProcesses and stored inside processList. Next,
algorithm iterates over the elements of this list, gathers all personal data involved
in each process and adds it to personalData. Then, it proceeds to compute a
list of undetectable data for C (undetectableData) by subtracting the elements
inside personalData from stakeholderData. Finally, for each element inside
undetectableData it generates a new undetectability requirement using and
adds it to reqList and returns it afterwards. The text template of Fig. 4 is used
for instantiating undetectability requirements. As one can observe, the gener-
ation of privacy requirements becomes smooth thanks to the privacy-relevant
information captured across PDP-ReqLite’s software artifacts.
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4.3 Implemented Method

The PDP-ReqLite method is implemented as summarized in the following items:

S1. Specify functional requirements. In this phase, the engineer should
specify the requirements associated to the functions to be covered by the
system (functional requirements). To do so, the engineer can rely on well-
known methods as suggested by the International Council of Systems Engi-
neering (INCOSE), e.g., consider [18]. The specification is written in natural
language, following good practices like for instance “one single sentence per
system function”. This step is a mean to simplify the next phase in the elici-
tation process. In particular, the encapsulation of functional requirements via
minimal statements eases their correct transformation into a RDFD model.

S2. Transform functional requirements into a RDFD. In this phase, each
functional requirement is transformed into a Requirement Process in the
model which includes input/output data and the respective function tasks
(i.e., the RDFD). Modelling the involved data types is an activity conducted
in parallel. The data are required not only for completing the specification
of the Requirement Process elements but also for identifying and labelling
Personal Data (i.e., the PID). This phase of the elicitation process should be
conducted manually since the expert should examine the form and contents of
the functional requirements, and refine/adapt them, prior to transform them
into the RDFD.

S3. Validation of the RDFD model and improvement. The validation
phase yields outcomes regarding the model completeness and correctness.
Model completeness is validated considering the language and syntax defined
at meta-model level and determined by mandatory/optional attributes, their
multiplicity and the associations types. Model correctness is validated by
crosschecking the contents within and between RDFD and PID and the con-
sistency between their attributes. Pre-defined rules are implemented to help
the engineer to conduct an assessment validation and infer the solutions in
case of conflicts. Indeed, the validation results essentially come as warnings
and errors including a description of the issue. Then, the engineer can fix and
improve the model so as to make it acceptable for the next phase. Since the
process is iterative, going back to previous phases may be necessary.

S4. Privacy and GDPR requirements generation. Once the RDFD and
PID model has been validated and accepted, according to the engineer evalu-
ation, the specific privacy and GDPR requirements can be automatically gen-
erated: the generation is performed at the push of a button. All the GDPR and
privacy principles instantiated either as meta-requirements or as meta-privacy
patterns are considered during the generation. The respective algorithms are
already implemented as built-in features of the PDP-ReqLite tool. They allow
to obtain one requirement per meta-pattern including a full description. The
requirements candidates should be validated by the engineer prior to follow
other phases of the development cycle.
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5 Automated Support for PDP-ReqLite Application

A tool support has been developed in the scope of the PDP4E project [15]. The
PDP-ReqLite tool is developed on top of Papyrus [2] and covers the different
modeling and analysis phases of the method as specified in Sect. 4.3. The tool
addresses different aspects regarding the need for automation during require-
ments generation, usability and re-usability of industry-size models. The main
features of the tool are demonstrated in the analysis of a Smart Grid case study.

5.1 Application to a Smart Grid Case Study

To illustrate the PDP-ReqLite implementation described in Sect. 4.3, we apply
it to analyze a Smart Grid case study. As shown in Fig. 5, the Smart Grid
design is described by a model composed by seven functions. The GDPR and
privacy requirements analysis mainly targets the Billing function. The result-
ing functional path includes the following dependencies. The Measurement of
Consumption function samples and provides electricity measures which are later
gathered by the Grid Management including the meter ID and client ID. Overall
electricity consumption over time per client are then computed and stored by
the Consumption Data Processing function. The information are finally accessed
by the Billing function to generate and submit an invoice relying upon personal
data of consumers. Further details of the Smart Grid architecture are provided
in this paper [11]. The model in Fig. 5 is used to specify the functional require-
ments the system should satisfy (Step 1, Sect. 4.3). The PDP-ReqLite modeling
features support the engineer to map the functional requirements into a RDFD
as shown in Fig. 6 (Step 2, Sect. 4.3). The model covers the functional path in
the Smart Grid system going from consumption measuring up to generation
of the customer bill. The rounded rectangles represent ProcessRequirements
whereas the normal rectangles represent the DataStores. These elements are
connected by directed edges representing data flows. The ports attached to the
ProcessRequirements are typed with conveyed data. Referred types are mod-
elled and structured in a dedicated PID view. The Fig. 7 shows an overview of the
PID used to model the data involved in the Billing processing. The PID includes

Fig. 5. Reference functions of the Smart Grid System
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Fig. 6. RDFD model of the billing process within the Smart Grid System

Fig. 7. Model view showing the PID of the Smart Grid System

composite structures that contain information about the electricity measure-
ments (meter ID, consumption), the computed price per customer, and the final
bill. More importantly, the PDP-ReqLite tool comes with dedicated types that
can be used to identify personal information what is crucial to correctly elicit
GDPR and privacy requirements. Once a first version of the RDFD and PID
model was achieved, a round of validation and debugging was conducted (Step
3, Sect. 4.3). The resulting warnings and errors contain plain text messages that
rely upon the syntax and rules defined in the GDPR meta-model. They indicate
model discrepancies thus pointing out concerned elements by name and details
on the specific issue. So, the completeness and correctness of the model were thus
accordingly ensured. The final step in the method application generates the set
of GDPR and privacy requirements (Step 4, Sect. 4.3). The requirements are
automatically generated since the GDPR meta-requirement categories and the
generation algorithm introduced in Sect. 4.2 have been implemented as built-in
features of the PDP-ReqLite tool. As shown in Fig. 8, the generated requirements
become part of the model and can be reused in other phases of the system devel-
opment cycle. For instance, during the design phase, requirements are supposed
to be satisfied by elements within the design model and validated through tests
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Fig. 8. Overview of the GDPR generated requirements

or similar validation instances. Last yet note the least, since there is no hard
link between generated requirements and the RDFD and PID model, an update
of the later may demand an iteration in order to obtain an updated version of
requirements.

6 Conclusions and Perspectives

In this paper we have introduced a lightweight method named PDP-ReqLite to
guide and support engineers during the elicitation of GDPR and privacy require-
ments in systems and software projects. The method has been proposed given
that existing approaches impose certain restrictions mainly regarding the cov-
erage of the GDPR regulation and certain biases potentially introduced during
requirements elicitation. In this context, we have considered ProPAn as a refer-
ence method. By doing so, its main salient features and limitations have been
assessed. So far, it has been concluded that ProPAn presents a high documen-
tation overhead, complexity and redundancy across the artifacts it generates.
It has been also identified a potential risk of bias since the method relies upon
a limited set of principles (e.g., intervenability, unlikability and transparency)
what reduces the choices the engineer has during the interpretation of GDPR
directives. Overall, certain key ProPAn features, like the usage of privacy tax-
onomies and a generation algorithm, have been considered to develop exten-
sion points in the new method. As novelties of PDP-ReqLite, we can mention
the following. The method only requires two modeling artifacts as inputs, the
RDFD and PID, what significantly reduces overhead and complexity. The PDP-
ReqLite method also introduces and implements a protocol that ensures full
coverage of GDPR directives whereas still avoids the need for mapping them
into existing privacy principles. The protocol produces GDPR taxonomies com-
posed by meta-requirements which are predicate patterns defined in terms of
GDPR directives and principles. The meta-requirements are instantiated during
the requirements elicitation process. These feature also facilitates the integra-
tion of updates or even forthcoming privacy regulations. A tool support for the
PDP-ReqLite method has been also implemented. The tool leverages several
model-driven engineering techniques thus supporting RDFD and PID modelling
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and also automatic generation of candidate requirements. The method an tool
features were finally demonstrated by analyzing a Smart Grid case study.

As work perspectives, we need to improve the automation of GDPR texts
processing during the creation of meta-requirements since this task is for now
human-based and highly time consuming. Since a high number of requirements
can be obtained, even for simple system models, we should consider methods to
structure, prioritize and treat them. To consolidate the approach, other privacy
regulations can be targeted. Since the PDP-ReqLite method is positioned within
a development life cycle, the interfaces with other cycle phases, like design, still
need to be developed and consolidated.

Acknowledgements. This work was supported by the H2020 European Project No.
787034 “PDP4E: Privacy and Data Protection Methods for Engineering”.
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Abstract. For a Complex Event Processing (CEP) system to be widely
accepted, mitigating leaks of private information is paramount. In CEP
systems, often private information are revealed through patterns instead
of single events. There are very few mechanisms that protect privacy at
the level of patterns. However these mechanisms consider only sequential
patterns, one of the common pattern types in CEP. But this is highly
confined since there are other common pattern types like conjunction,
negation etc. So as a first step towards multiple pattern type privacy pro-
tection, in this paper we present a hybrid pattern level privacy protection
mechanism that considers three common pattern types: sequence, con-
junction and negation. Our approach is based on three event obfuscation
strategies: event reordering, event suppression and introduction of fake
events to conceal private patterns on the one hand, while minimizing
impact on useful non-sensitive information required by IoT services to
provide a certain Quality of Service (QoS) on the other hand. Our eval-
uations over real-world datasets show that our algorithms are effective
in maximizing QoS while preserving privacy.

Keywords: Privacy · Complex event processing · Event obfuscation

1 Introduction

The Internet of Things (IoT) envisions a world with billions of networked sensors
connected to the internet. Studies show that over 2.5 quintillion bytes of data
are produced every day from these sensors[14]. These data are often raw sensor
values and need to be processed into meaningful information in order to be useful
for IoT applications like smart homes, e-health etc. Complex Event Processing
(CEP) is a famous state-of-the-art paradigm for processing streams of such raw
basic events into meaningful information (called “complex events”) using a set of
processing rules [11]. For example, a fitness tracker can infer the activity “doing
sports” via basic events: speed > 10 km/h and heart rate > 100 bpm.

The challenges while inferring meaningful information is a double-edged
sword. On one side meaningful information is required to offer a certain Qual-
ity of Service (QoS). There is loss in QoS if a CEP system does not detect
c© Springer Nature Switzerland AG 2020
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some events that originally existed (false negatives) or detects some non-existing
events (false positives). On the other side some complex events might be privacy-
sensitive. Though a user needs complex events to be detected accurately, he/she
might not want to share any privacy-sensitive events. Thus a privacy protection
mechanism is necessary for users to conceal private events while preserving QoS.

Access control is one prominent technique for privacy protection in CEP.
However, most access control mechanisms protect privacy only at the level of sin-
gle attributes of data [2,16]. But sensitive information is often revealed through
complex data patterns that usually span several attributes. For example, heart
rate and blood pressure might not reveal any useful information when analysed
separately, but might reveal a disease when combined. We call these privacy-
sensitive patterns in the event stream that a user or data owner wants to protect
private patterns, while those patterns that are necessary for CEP applications to
offer services and are not privacy-sensitive public patterns. Hence a pattern-level
access control mechanism is required with which private patterns can be obfus-
cated while preserving as many public patterns as possible (maximum QoS).

Pattern-based access control strategy for CEP systems were proposed in
[13,18]. However both these mechanisms only deal with patterns defined as a
sequence of events. Although a sequence operator is one of the most common
operator types in CEP, there are other common types like conjunction, negation
etc.[5]. Also there can be more than one type of private pattern appearing at
the same time which a user wants to conceal. For instance, on a weekday a user
has taken a day off from work and is shopping. In the area of location privacy,
this scenario can be viewed as two private patterns: a) “shopping” deduced by a
series of location events [17] which is a sequence pattern; b) “not at work” which
is a negation pattern. A user might want both these patterns to be concealed.

So as a first step towards multiple operator privacy protection in this paper,
we introduce Multi-Operator Privacy Protection component (MOP) based on
Integer Linear Programming (ILP) that considers all three commonly used CEP
operator types namely sequence, conjunction and negation. Our MOP is based
on three event obfuscation strategies: event suppression, event reordering and
introduction of fake events, to conceal private patterns while maximizing QoS.

Overall, we make the following contributions in this paper: (1) We propose
a baseline event obfuscation approach MOP, to maximize the utility of obfus-
cated event stream. (2) We introduce two extensions of the baseline approach
working against two different adversary models. (3) For the evaluation of these
approaches, we define the two adversary models that consider background knowl-
edge of event distributions etc. gained from event histories.

The rest of this paper is organized as follows. In Sec. 2 we discuss related
works followed by system model and problem statement in Sec. 3. In Sec. 4, we
present our event obfuscation approaches that strive to maximize the utility of
obfuscated event streams. In Sec. 5, we describe how an adversary uses obser-
vations learned from history data to reveal event obfuscations and describe our
evaluation results, before concluding the paper in Sec. 6.
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2 Related Works

Various access control mechanisms have been proposed to ensure privacy in
event processing systems. However most of these works protect privacy at the
level of attributes, ensuring that certain attributes in the event stream are only
accessible to authorized parties [2,10]. However this is highly confined, since
some attributes are either accessible or not at all, irrespective of whether it is
part of a private or public pattern.

Another branch of privacy protection in event processing systems is differ-
ential privacy [4,8] and zero-knowledge privacy guarantees [15]. Though these
mechanisms promise provable privacy guarantees, these works either protect pri-
vacy at the level of individual events/attributes or they protect privacy for indi-
vidual users whose data are part of a dataset from a large population of users.
The goal of our work is different in the sense that we try to achieve pattern-level
privacy, considering data from a single user rather than a population of users.

Very few works [7,18] have been published that protect privacy at the level
of patterns for CEP systems. Wang et al. [18] proposed a pattern-based access
control strategy based on event suppression for sequence patterns. This approach
conceals patterns by suppressing events that are part of private patterns while
maximizing utility. In [13], Palanisamy et al. proposed an approach based on
event reordering rather than suppression, but again only for sequence patterns.
To the best of our knowledge there are not any research works that ensure
pattern level privacy for CEP systems that consider multiple pattern types.

3 System Model and Problem Statement

In this section, we introduce our system model, which also includes our assump-
tions about the adversary who tries to detect private patterns. Moreover, we use
the utility metric defined in [13] that defines the utility of an obfuscated event
stream, which is then used as an objective in our problem statement.

3.1 System Model

Our system consists of the following components (cf. Figure 1): producers, con-
sumers, CEP middleware in addition to Multi-Operator Privacy protection.

EVENT DEFINITION 
RULES

PRODUCERS
Mul�-Operator

Privacy Protec�on
(MOP)

CONSUMERS
O1

O2

O3

CEP MIDDLEWARE
TRUSTED ENVIRONMENT

Fig. 1. CEP System + Multi-operator privacy protection component
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Like in a typical CEP system [11], Producers generate basic events as input
to the system. A CEP system could have multiple producers, but for this paper
we assume that event streams from different producers are merged together into
a single event stream in the order of timestamps like in [18]. Of course it is
not possible for the users to know the exact event patterns that reveal sensitive
information. Thus a separate system to translate the privacy requirements of
a user into event patterns is necessary and this is a separate area of research
[12]. For our work we assume that the user uses such a system to provide the
necessary event patterns to be concealed. The CEP middleware extracts high
level information (complex events) from basic events which are then forwarded
to the consumers (e.g. an IoT service provider). We use a standard CEP middle-
ware [6] which is a set of interconnected operators (Ox in Fig. 1). Operators are
computing nodes that transforms input event stream into one or more outgoing
event streams based on a set of predefined rules. The cooperative processing of
several such operators result in a complex event. Generally, operators do not
consider the complete (theoretically infinite length) event stream, instead pro-
cess the event stream in smaller frames within a limited time or length called
windows.

In this paper we consider three common operator types: sequence, negation,
and conjunction [5]. A sequence operator captures a pattern in which a set of
events arrive in a specific order in a window. An example sequence pattern denot-
ing unhealthy behaviour of a diabetes patient (i.e., a private pattern) that should
be hidden to an untrusted party (say health insurance company of the user)
could be: SEQ(Eating Sugar,High Blood Sugar Level, Insulin Intake). A
conjunction operator queries the occurrence of a set of events within a win-
dow in any order and an example private pattern for the same user could
be: AND(Eating Sugar,No Insulin Intake). A negation operator queries the
absence of a particular event within a specified window and an example private
pattern could be: NOT (Insulin Intake).

Like in [13,18], we also assume that the CEP middleware and the consumers
are untrusted and are operated by another party other than the user (e.g., an IoT
service provider). So private patterns from producers should be concealed before
they are forwarded to the CEP or consumer. Thus we place our Multi-Operator
Privacy Protection component (MOP) between producers and CEP and forward
all producer events via MOP as shown in Fig. 1. The MOP performs three obfus-
cation strategies namely event reordering, event suppression and introduction of
fake events to hide sequence, conjunction and negation type private patterns
respectively. Both, producers and MOP, run in a trusted execution environment
(e.g. smart phone of a user, private fog node etc.).

It is also important to specify the assumptions about the adversary that tries
to compromise the privacy of users by detecting private patterns. We assume a
“honest-but-curious” adversary which is a common model in privacy. In other
words, one of the non-trusted components (CEP middleware or consumer) might
be the adversary. In this case, the adversary is not able to observe the original
event stream, but can observe the whole obfuscated event stream as sent by the
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MOP. We also assume that the adversary has some background knowledge about
the original event stream learned from external sources (say publicly available
event streams).

3.2 Problem Statement

Informally, the problem solved by our approach is to preserve privacy by perform-
ing the three obfuscations while maximizing QoS. This is not a trivial problem,
since there might be different combinations of obfuscations each having vary-
ing impact on QoS. We measure QoS in terms of false positive patterns (public
patterns introduced by obfuscations that never happened) and false negative
patterns (actual public patterns destroyed by obfuscations). In order to define
the impact of obfuscations more precisely, we use the utility metric proposed
in [13] as given in Equ. 1. However for our work the three terms of this utility
metric now include all three pattern types as opposed to only sequence type
patterns in case of [13]. The utility metric (U) is given as follows:

U = Σ# of matched true public Patterns
i=1 wi − Σ# of matched false positives

j=1 wj

−Σ# of matched private patterns
k=1 wk (1)

The second term in the equation is to introduce a negative penalty for each
false positive. Negative penalties for false negatives are deducted already, since
they are not included in matched public patterns thus reducing the actual utility
metric. Thus, the first two terms increase the utility for each true positive match
of a public pattern and decrease the utility for each false positive or false negative
match. The weights wi and wj shown in Equ. 1 show the relative importance
of different public patterns onto QoS. Matched private patterns are considered
in the third term. Including private patterns in the utility metric rather than
making it a hard constraint (no private pattern matches) enables us to obtain a
trade-off between privacy and QoS, i.e., revealing some private information for
more public pattern matches. Here, weight wk of a private pattern k is given as:

wk = (Σwi + 1) ∗ cpk (2)

Tuning parameter cpk enables to leverage privacy for QoS by specifying a crit-
icality percentage for private pattern k. If we set the private pattern criticality
to 100%, i.e., cpk = 1, then a single match of that private pattern k would
outweigh the effect of all public pattern matches such that, no private patterns
of that type will be revealed (100% privacy). For cpk = 0 that type of private
pattern is always revealed. The problem now is to find a strategy that performs
the three obfuscations and maximizes utility while making it (ideally) impossi-
ble for the adversary to detect concealed private patterns. Solving this problem
requires some assumptions about the background knowledge of the adversary
to understand what possibilities the adversary has to detect event obfuscations.
We consider two kinds of adversary model: deterministic and probabilistic.
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Deterministic Adversary model: This type of adversary requires 100% “con-
fidence” that a private pattern is concealed. One example for such an adversary
could be a car manufacturer who is curious to detect a concealed private pattern
(say bad driving behaviour of the user) that caused damage to the vehicle, with
100% confidence to deny a warranty claim. The adversary in this case employs
three attacks one for each obfuscation mechanism.

Causal order constraint attacks rely on knowledge about causal relationship
between events. We say the order of two events e1 and e2 is causally constrained
if e2 must never happen before e1. Reordering e1 and e2 could immediately be
detected as a violation of this constraint known to the adversary.

Periodic event constraint attacks rely on knowledge about periodic events. For
instance, in a e-health scenario the event “blood sugar level” is recorded every
30 mins. Suppressing such events could be detected immediately as a violation
of this constraint.

Infeasible event constraint attacks are based on knowledge about events that are
impossible to happen in a window. For example, the location event “at mall”
is infeasible after closing hours. Introducing such fake events could be detected
immediately as a constraint violation.

Probabilistic Adversary model: Here, it is sufficient for the adversary to
detect a concealed private pattern with a confidence (γ) < 100%. An exam-
ple adversary could be a car insurance company who might increase the insur-
ance premium, even if a concealed private pattern about the user’s bad driving
behaviour is revealed with 80% confidence. The adversary in this model employs
statistical attacks, in addition to those from the deterministic adversary.

Statistical attacks consider the inter-arrival time distribution of events, either
between same or different types of events. For instance, by analysing a publicly
available data set, an adversary might know that, in 90% of all cases the time
between two insulin injections for patients is around 2 h. Suppressing an “insulin
injection” event would lead to a difference of 4 h between two injections indi-
cating the adversary that an event has been suppressed with 90% confidence.
Thus, besides maximizing utility, obfuscations are to be performed such that
it is unlikely to detect event obfuscations performed with 100% confidence for
deterministic adversaries and below a certain confidence threshold (γ) for prob-
abilistic adversaries.

4 Event Obfuscation Approaches

In this section, we present our two event obfuscation approaches: Counter Deter-
ministic Attack (CDA) and Counter Probabilistic Attack (CPA) obfuscation
strategies that conceals private patterns against deterministic and probabilistic
adversaries respectively. Both the approaches are extensions of a baseline app-
roach based on Integer Linear Programming (ILP) which we will present first in
the next sub-section followed by the two extensions.
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4.1 Baseline ILP Approach

The primary goal of this ILP approach is to find an optimal combination of the
three event obfuscation strategies that maximizes utility as defined by Equ. 1.
The ILP is invoked on a full window of events, whenever this window contains at
least one private pattern of any type. Of course, those windows without private
patterns can be forwarded as it is. The problem of finding an optimal combina-
tion of the event obfuscation strategies is translated as an ILP with the utility
metric as objective.

ILP Formulation:- Parameters: We now derive the parameters to formulate
our ILP.

Table 1. ILP parameters

Parameters Parameter description

N Number of events in the window

TN Set of timestamps of event instances in
the window

NS
TQ, NC

TQ, NN
TQ, NS

FQ, NC
FQ, NN

FQ Set of true and false positives for
sequence, conjunction and negation
type public patterns

NS
TP , NC

TP , NN
TP , NS

FP , NC
FP , NN

FP Set of true and false positives for
sequence, conjunction and negation
type private patterns

WS
TQ, NC

TQ, NN
TQ, WS

FQ, NC
FQ, NN

FQ Set of weights for true and false pos-
itives for sequence, conjunction and
negation type public patterns

WS
TP , NC

TP , NN
TP , WS

FP , NC
FP , NN

FP Set of weights for true and false pos-
itives for sequence, conjunction and
negation type private patterns

We define N as number of events in the window on which our ILP is invoked.
We introduce another parameter set TN of size N representing arrival times-
tamps of event instances in that window. N S

TQ, N C
TQ, and N N

TQ represent list
of matched sequence, conjunction, and negation type true positive public pat-
terns in the window before obfuscation. N S

FQ, N C
FQ, and N N

FQ represent list
of sequence, conjunction and negation type false positive public patterns. Here
TQ and FQ represent true and false positive public patterns. Similar to pub-
lic patterns, we have N S

TP , N C
TP , N N

TP , N S
FP , N C

FP , and N N
FP representing list

of true and false positive private patterns for the three operator types. Here,
TP and FP represent true and false positive private patterns. The above 12
parameters are collectively called pattern parameters. As described in Equ. 1, we
require positive weights signifying relative importance between public patterns
and negative weights for false positives and private patterns. Thus we define 12
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Table 2. ILP variables

Variables Variable description

VS
TQ, VC

TQ, VN
TQ, VS

FQ, VC
FQ, VN

FQ Set of decision variables for true and
false positives for sequence,
conjunction and negation type public
patterns

VS
TP , VC

TP , VN
TP , VS

FP , VC
FP , VN

FP Set of decision variables for true and
false positives for sequence,
conjunction and negation type private
patterns

ONN Matrix for all N ×N ordered pairs in
the window

XN Set of variables representing change in
timestamps

EN Set of decision variables representing
event suppressions

II Set of decision variables representing
event introductions

sets of parameters representing weights (WY
XX) for all three pattern types that

correspond to each of the pattern parameters as shown in the last two rows of
Table 1. These weights are the objective coefficients of our ILP.

Variables: We now define variables required for our ILP formulation
(cf. Table 2). We define 3 sets of binary decision variables: VS

TQ, VC
TQ, and

VN
TQ, one for each pattern type and each variable in a set represent a match for

a true positive public pattern of that type. Similarly VS
TP , VC

TP , and VN
TP rep-

resent match for true positive private patterns. Similarly for false positives, we
introduce another 6 sets of decision variables representing matched false positive
public and private patterns for each operator type: VS

FQ, VC
FQ, VN

FQ and VS
FP ,

VC
FP , VN

FP . Among the false positive variables, those that represent sequence
and conjunction patterns are positive integer variables. This is because there
might be multiple false positive matches for the same pattern after obfuscation
(since there can be multiple instances of the same event type) which is not known
a priori in case of sequence and conjunction patterns which in turn should be
considered for determining the optimal solution. However it is sufficient to define
binary variables for false positive negation type patterns since there cannot be
multiple false positive matches for the same negation type pattern in a window.
The sizes of these 12 variable sets are determined by the cardinality of their
corresponding pattern parameters as given in Table 1.



186 S. M. Palanisamy

All the binary decision variables mentioned above have a common interpreta-
tion and a sample interpretation is given as: VS

TQ[i] = 1 if ith pattern is matched
in that window and 0 otherwise (Here i ∈ {1, 2, ...|N S

TQ|}). Similarly all inte-
ger decision variables have the same interpretation and a sample interpretation is
given as VS

FQ[j] is ≥ 1, one for every match of that pattern and 0 if that pattern
has no match at all in that window (Here j ∈ {1, 2, ...|N S

FQ|}).
The linear combination of the weights and above mentioned decision variables

form the utility function and is also the objective function of our ILP. For clarity,
we group these 12 decision variable sets into 4 sets VTQ, VFQ, VTP , VFP

representing true positive public & private and false positive public & private
patterns by grouping variables of all three pattern types together into one. The
weight parameters are also similarly grouped: WTQ, WFQ, WTP , WFP . Now the
objective function is written as:

maximize

|NTQ|∑

i=1

WTQ ∗ VTQ +
|NFQ|∑

j=1

WFQ ∗ VFQ+

|NTP |∑

k=1

WTP ∗ VTP +
|NFP |∑

m=1

WFP ∗ VFP (3)

We will now describe the auxiliary variables necessary for our ILP. For a sequence
pattern (say SEQ(A,B,C)) to be matched in a window, all ordered event pairs
[SEQ(A,B), SEQ(B,C)] of that pattern should be matched. An ordered event
pair is said to be matched if the two events occur in the same sequence after
obfuscation. Thus we introduce a binary variable matrix ONN ∈ {0, 1}N×N

that represent whether the ordered pairs are matched in the window, and a set
of bounded integer variables XN of size N that represents the change in arrival
timestamps after obfuscation for all event instances in that window. The relation
between these two variables is written as a constraint given by:

ONN [i][j] =

{
1 → if TN [j] + XN [j] > TN [i] + XN [i]
0 → otherwise

(4)

where i, j ∈ {1, 2, ...N}. This means that if an event instance ei happens before
ej , then ONN [i][j] = 1.

For a conjunction pattern to be matched in a window, all instances of event
types that constitute a conjunction pattern should occur in that window. Thus,
we define a set of binary variables EN of size N such that E[i] = 0 if ith event
instance in that window is suppressed and is 1 otherwise (Here i ∈ {1, 2, ...N}).
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For a negation pattern to match, no event instance of that event type in
the negation pattern should occur in the window. To conceal a negation private
pattern, it is necessary to introduce a fake event instance of the event type that
constitutes the pattern. Thus we define another binary decision variable set II

of size |N N
TP | for each negation type private pattern in addition to EN defined

above. II is interpreted as II [i] = 1 if that ith event is introduced fake and 0
otherwise here i ∈ {1, 2, ...|N N

TP |}. This means that additional events might be
introduced in the window and so we extend ONN to O∗

NN , whose size will then
be (N + |N N

TP |) × (N + |N N
TP |). Also TN and XN are changed to T ∗

N and X∗
N

whose sizes are now changed to N + |N N
TP |.

Constraints: Now, we will explain the constraints, that translate the require-
ment for the event obfuscation problem. We classify these constraints into three
categories: sequence, conjunction, and negation constraints.

Sequence constraints ensure that a sequence pattern is matched only if all ordered
pairs of that pattern are matched. Here, all true positive sequence patterns (both
public & private) have similar constraints and a sample constraint is given by

∀N S
TQ : IF (AND(MS

TQ[i])) THEN (VS
TQ[i] = True) (5)

where M
S
TQ[i] ⊂ ONN consists set of all ordered pairs that correspond to ith

sequence pattern in N S
TQ. For false positive sequence patterns (both public and

private), since we do not know a priori the number of matches, it is necessary to
consider all possible combinations of ordered pairs that might lead to a match.
A sample constraint for a false positive sequence pattern is given as:

∀N S
FQ : VS

FQ[i] =
|MS

FQ[i]|∑

j=1

AND(MS
FQ[i][j]) (6)

where MS
FQ[i] contains list of all ordered pair combination sets of the ith sequence

pattern in N S
FQ and M

S
FQ[i][j] ⊂ O∗

NN . The above two constraints ensure
correctness of sequence pattern matches in terms of ordered pairs. Since we
might also perform suppression, when a suppressed event is part of a sequence
pattern, that sequence pattern is also suppressed. Thus to ensure correctness of
a sequence pattern match in terms of suppressed events, we add another set of
constraints for all sequence patterns, and a sample constraint is given as:

∀N S
TQ : IF (AND(US

TQ[i]) THEN (VS
TQ[i] = True) (7)

where U
S
TQ[i] ⊂ (EN ∪ II) consists set of all events that are part of sequence

pattern i. U contains set of all events for every true positive sequence pattern
and list of all sets of event combinations for every false positive sequence pattern.
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Conjunction constraints ensure that a conjunction pattern is matched only if all
event instances of that conjunction pattern are not suppressed. For true positive
conjunction patterns a sample constraint is given by:

∀N C
TQ : IF (AND(UC

TQ[i])) THEN (VC
TQ[i] = True) (8)

where U
C
TQ[i] ⊂ EN contains set of all events that are part of the conjunction

pattern i. This constraint is common for all true positive conjunction patterns
(both private and public). For false positive conjunction patterns (both public
and private) a sample constraint is given by:

∀N C
FQ : VC

FQ[i] =
|UC

FQ[i]|∑

j=1

AND(UC
FQ[i][j]) (9)

where U
C
FQ[i] contains list of all event combination sets that correspond to the

ith conjunction pattern in N C
FQ and U

C
FQ[i][j] ⊂ (EN ∪ II).

Negation constraints ensure that a negation pattern is matched only if an event
instance of a particular event type does not occur in that window. It is not
necessary for any additional constraints for true positive negation type public
patterns since those events will not be introduced. Only those events that are
part of true positive negation type private patterns might be introduced. Thus
the constraint for negation type private patterns is given by:

∀N N
TP : IF (II [i] == True) THEN (VN

TP [i] = False) (10)

Event suppression might introduce a false positive negation pattern. Formally
for a false positive negation pattern to be true, it is necessary that all event
instances of that event type that define the negation pattern are suppressed. A
sample constraint for a negation type false positive pattern is given as:

∀N N
FQ : IF (NOT (OR(UN

FQ[i]))) THEN (VN
FQ[i] = True) (11)

where U
N
FQ[i] ⊂ EN contains set of all event instances of that event type that

constitute ith negation pattern. The above constraint is common for all false
positive negation patterns (both public and private).

The baseline approach described above aims at maximizing utility but does
not consider all adversarial impacts. In the next subsections we will describe how
this baseline approach is extended to the CDA and CPA obfuscation strategies
that protect against deterministic and probabilistic adversaries respectively.
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4.2 Counter Deterministic Attack Obfuscation (CDA)

To ensure protection against the deterministic adversary, it is sufficient if the
approach does not perform any impossible obfuscations. So in this approach we
introduce constraints such that our ILP neither reorders causally ordered pairs
nor suppresses periodic events nor introduces fake infeasible events.

4.3 Counter Probabilistic Attack Obfuscation (CPA)

Probabilistic adversaries consider statistical attacks in addition to attacks of
deterministic adversaries. Thus it is necessary to reduce the confidence level of
the adversary below a certain confidence (γ) as described in Sect. 3. We propose
such an approach that reduces adversary confidence by introducing fake event-
obfuscations analogous to real ones such that obfuscations performed for con-
cealing private patterns become indistinguishable from the pseudo-obfuscations.
To achieve this, it is necessary to consider three factors:

1. Introduce pseudo-obfuscations: To introduce pseudo-obfuscations, we define
pseudo-private patterns similar (but not exactly the same) to real private
patterns. This is done by defining pseudo-private patterns with a combina-
tion of events that are predominantly part of real private patterns. We add
these pseudo-patterns to the list of private patterns to conceal in addition to
actual private patterns. The ILP, thus treats both pseudo and real private
patterns in the same manner and hence the output obfuscations introduced
are indistinguishable and thus the confidence of the adversary is reduced.

2. Number of pseudo-obfuscations to be introduced : To reduce the confidence of
the adversary below γ, by proportionality principle it is necessary to introduce
atleast κ = ((ρ/γ) − 1)% obfuscations where ρ is the prior probability the
adversary has, before we introduce pseudo-obfuscations. If ρ is below the
confidence threshold, it is not necessary to introduce any pseudo-obfuscations.

3. Selection of windows for pseudo-obfuscations: For selecting windows to intro-
duce pseudo-obfuscations one simple way is to uniformly distribute the
pseudo-private patterns over all the windows. But utility of those windows
that already contain private patterns might get affected. This is because
higher the number of private patterns to be concealed, higher the proba-
bility that concealing a private pattern would also affect a public pattern. So
those windows that do not have any private pattern matches are selected for
introducing pseudo-private patterns.

Overall, the idea is to introduce pseudo-private patterns along with real private
patterns only to selected windows such that the obfuscations are revealed with
less than γ% confidence.

5 Evaluation Results

In this section, we evaluate our two obfuscation approaches with respect to their
ability to achieve indistinguishability against adversaries with minimum impact
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onto public patterns (preserving QoS). As all state-of-the-art approaches are
based on single operator types, it is not fair to compare our approach in terms
of either privacy or utility for our evaluations. This is because utility and privacy
are no longer the same between single and multi operator approaches even for
the same window of events. Moreover, obfuscating one operator type pattern
might introduce false positives or negatives of a different pattern type. Such
interdependencies do not exist in case of single operator approaches.

5.1 Evaluation Setup

For the performance evaluation, we used a commodity server with AMD Ryzen
5-2500U processor (6 cores at 2.0GHz) and 16GB RAM. We implemented our
obfuscation algorithms in Python using Gurobi as the ILP solver.

Datasets: To evaluate our approach we used two publicly available real-world
datasets. The first dataset is an online retail dataset [3] that contains all transac-
tions between 01/12/2010 and 09/12/2011 of a UK based online retailer selling
all-occasion gifts. It includes 20,000 transactions and 500,000 purchased items
from among 3,200 different products with timestamps and customer ids. We
selected 50 most popular sequence, conjunction (of length 2 to 4) and negation
patterns altogether as public and private patterns of varying length (e.g. A user
hosting a Christmas Party deduced by the pattern: AND(Party Cone Christ-
mas Decoration, Traditional Christmas Ribbons, Party invites Christmas)). The
window size for these patterns vary from 5–800 events.

The second dataset is a msbnc web page visit dataset [1]. The dataset includes
anonymous web page visits of users who visited msnbc.com in September 1999.
Each window in the dataset corresponds to page views of a user during that day.
Each event in the window corresponds to a user’s request for a web page. We use
the page visits of 20000 users. Similar to the e-commerce dataset, we searched
and selected 25 most popular sequence, conjunction and negation patterns of
varying length. Window size is the number of page visits of a user in a day
and it varies between 3 and 400 pages. Such a dataset might reveal private
information about the user like travel destinations, favourite TV-shows etc.

5.2 Adversary Model

To evaluate the effectiveness of our approaches in protecting privacy, we first
need to elaborate on the two adversary models. In our system model (Sec. 3),
we have assumed that the deterministic adversary has information about causal,
periodic and infeasible event constraints. We also assumed that the probabilistic
adversary has background knowledge about statistical information about true
(typical) inter-arrival time distribution of events on the modified event stream.
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Fig. 2. Evaluations results

Statistical attacks: We assume that from publicly available data the adversary
knows the true mean value μ(A) and true standard deviation σ(A) of the inter-
arrival time distribution for events of event types say A, B, C, etc. So now from
observing the obfuscated event stream, for an event instance say Ai, the adver-
sary can calculate the so-called z-score [9] z(Ai−1, Ai) = t(Ai)−t(Ai−1)−μ((A))

σ((A)) ,
i.e., the number of standard deviations by which the observed inter-arrival time
is below or above the true mean inter-arrival time. When the adversary observes
a potentially suppressed event say Ai in the event stream, he calculates the
Suppression Indicator (SI) = 1 − pz(Ai−1, Ai+1) where pz is the probabil-
ity value corresponding to the z-score of that event instance (z(Ai−1, Ai+1)).
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pz values corresponding to z-scores vary based on arrival-time distribution of
events. Besides it is sufficient to calculate SI for each event of a conjunction
pattern separately and then combine them, since event suppression is also done
at the level of single events. If SI is above the confidence threshold (γ), then the
adversary assumes that a private pattern is concealed in that window. Similar
calculation is employed when the adversary observes a potential fake introduced
event where the z-scores would be negative instead.

Statistical attacks for Sequence patterns : To this end, we assume that for each
ordered pair of event types (A,B), the adversary has knowledge about the true
mean value μ((A,B)) and standard deviation σ((A,B)) of the inter-arrival time
distribution of pairs of event types. Then similar to the calculation of SI, the
Reorder Indicator (RI) is calculated as 1 − pz(Ai, Bj) where pz(Ai, Bj) is cal-
culated from the corresponding z-score. If RI is above a pre-defined threshold,
then the adversary assumes that the event pair has been reordered.

5.3 QoS Preservation

QoS Preservation for CDA: We begin our evaluation by evaluating the negative
impact of concealing private patterns onto QoS. As performance metric, we use
the utility metric defined in Eq. 1. We configure the utility metric such that a)
no private patterns are revealed (privacy takes strict precedence over QoS i.e.,
cp = 1); b) all public patterns are assigned uniformly random weights between
1 and 10 to express the impact of different types of public patterns onto QoS; c)
consequently false positive and false negative public patterns get same weights
in negative. We first evaluate the capability of our approach to conceal private
patterns for different combination of pattern types (sequence, conjunction and
negation). For this evaluation we use the CDA obfuscation strategy. Figure 2a
show the results from both the datasets for all combinations. It can be seen that
the impact of our event obfuscation approach onto utility (QoS) is very small.
The utility value shown here is represented as percentage of maximum theoretical
utility (utility considering only public patterns). The number of public patterns
for the msnbc dataset is lesser compared to e-commerce dataset which in turn
results in lesser false positives and false negatives and hence better utility.

Privacy-QoS trade-off : With increase in number of public patterns, there is a
higher chance that an obfuscation to conceal a private pattern might also impact
public patterns. In this respect we show the impact of our event obfuscation
approaches with increase in the number of public patterns. Figure 2b shows the
result for increasing number of public patterns with the number of private pat-
terns unchanged for both the datasets. It can be seen that the number of public
patterns indeed influence QoS. Besides we show the impact of increasing public
patterns on the number of false positives and false negatives with the same setup
for the two datasets. in Fig. 2c.

CPA Approach: The pseudo-obfuscations introduced by our CPA approach might
affect some public patterns and hence there is a drop in utility at the expense
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of making our obfuscations indistinguishable. Here we compare the drop in util-
ity with and without pseudo-obfuscations. We again use the setting such that
the approaches do not reveal any private patterns. To evaluate the reduction in
confidence achieved by our CPA approach, the required reduction in confidence
ρ−γ is set to 20%. Also we introduce pseudo-obfuscations only in windows that
do not have any private pattern matches. Now for CPA approach, we calculate
κ (cf. Sect. 4), generate 10 pseudo-private patterns for each operator type, dis-
tribute these 10 pseudo patterns κ times uniformly over the selected windows.
Figure 2d shows that the utility comparison between CDA and CPA obfuscation
strategies with decrease in size of selected windows for introducing pseudo-event
reorderings for the e-commerce database and it can be seen that the drop in
utility is negligible to achieve reduction in confidence of the adversary.

Robustness to probabilistic attacks: The confidence of the adversary is evalu-
ated by his precision (correctly identified private patterns divided by the overall
number of correctly or incorrectly identified private patterns). Figure 2e shows
the achieved reduction in adversary precision using CPA approach compared
to CDA approach with decrease in the number of selected windows for pseudo-
obfuscations in case of reordering for both the datasets. We select those windows
with no private patterns to introduce pseudo-private patterns for this evalua-
tion. It can be seen from the figure that, if the number of selected windows
for pseudo-obfuscations decreases, then the achieved reduction in confidence of
adversary also decreases. Figure 2f and Fig. 2g shows the drop in adversary pre-
cision achieved using the CPA approach with the same setup with respect to
suppression and introduction of fake events respectively for both datasets.

Till now, we only evaluated with a setup where privacy took precedence over
QoS, i.e., with 0% revealed private patterns. Now, we evaluate the privacy-QoS
trade-off. In order to realize this trade-off we tune the criticality percentage cpk

in Equ. 5. Figure 2h and Fig. 2i shows number of private patterns and number
of false positives and false negatives over cpk respectively. The figures show that
increase in values of cp increase privacy while decreasing QoS.

6 Summary and Future Works

In this paper, we proposed a hybrid pattern-level access control component for
three most commonly used CEP operators namely sequence, conjunction and
negation. The approach conceals private patterns using three obfuscation strate-
gies: event reordering, event suppression and introduction of fake events. The
approach besides protecting privacy by concealing private patterns, also maxi-
mizes quality of service by preserving as many public patterns as possible. We
presented two approaches that maximize utility while protecting against deter-
ministic and probabilistic adversaries. For future work, the approach could be
extended to include privacy protection for other CEP operators.
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13. Palanisamy, S.M., Dürr, F., Tariq, M.A., Rothermel, K.: Preserving privacy and
quality of service in complex event processing through event reordering. In: Pro-
ceedings of the 12th ACM International Conference on Distributed and Event-
based Systems - DEBS 2018, ACM Press (2018)

14. Petrov, C.: 25+ impressive big data statistics for 2020 (July 2020). https://
techjury.net/blog/big-data-statistics/#gref

15. Quoc, D.L., Beck, M., Bhatotia, P., Chen, R., Fetzer, C., Strufe, T.: Privacy pre-
serving stream analytics: The marriage of randomized response and approximate
computing. CoRR abs/1701.05403 (2017)

16. Schilling, B., Koldehofe, B., Rothermel, K., Ramachandran, U.: Access policy con-
solidation for event processing systems. In: 2013 Conference on Networked Systems.
IEEE (March 2013)

17. der Spek, S.V., Schaick, J.V., Bois, P.D., Haan, R.D.: Sensing human activity: GPS
tracking. Sensors 9(4), 3033–3055 (2009). https://doi.org/10.3390/s90403033

18. Wang, D., He, Y., Rundensteiner, E., Naughton, J.F.: Utility-maximizing event
stream suppression. In: Proceedings of the 2013 International Conference on Man-
agement of data - SIGMOD 2013, ACM Press (2013)

https://doi.org/10.1007/s00607-012-0217-9
https://doi.org/10.1007/s00607-012-0217-9
https://doi.org/10.1007/978-3-540-88808-6_2
https://techjury.net/blog/big-data-statistics/#gref
https://techjury.net/blog/big-data-statistics/#gref
https://doi.org/10.3390/s90403033


GPS-Based Behavioral Authentication
Utilizing Distance Coherence

Tran Phuong Thao(B) and Rie Shigetomi Yamaguchi

Graduate School of Information Science and Technology, University of Tokyo,
Tokyo, Japan

tpthao@yamagula.ic.i.u-tokyo.ac.jp, yamaguchi.rie@i.u-tokyo.ac.jp

Abstract. Current user authentication systems are based on PIN code,
password, or biometrics traits, which can have some limitations in usage
and security. Lifestyle authentication has become a new research app-
roach in which the promising idea is to use the location history since
it is relatively unique. Even when people live in the same area or have
occasional travel, it does not vary from day to day. For Global Position-
ing System (GPS) data, previous work used the longitude, latitude, and
timestamp as the classification features. In this paper, we investigate a
new approach utilizing distance coherence, which can be extracted from
the GPS itself without the need to require other information. We applied
three ensemble classifications, including RandomForest, ExtraTrees, and
Bagging algorithms. The experimental result showed that our approach
could achieve 99.42%, 99.12%, and 99.25% of accuracy, respectively.

Keywords: Smartphone location-based authentication · Lifestyle
authentication · Global Positioning System (GPS) · Biometrics
authentication

1 Introduction

“Society 5.0” [4] has become a well-known buzzword which was introduced by
the Japanese government in 20111. Society 5.0 focuses on two critical keywords,
human-centered and smart society with the support of Artificial Intelligent
(AI), Internet of Things (IoT), big data, and cutting-edge technologies.

Let’s consider an example of the electronic payment system. In 1871, West-
ern Union debuted the electronic fund transfer (EFT), allowing people to send
money to pay for goods and services without necessarily having to be physically
present at the point-of-sale. In 1946, John Biggins invented the first bank-issued
credit card to replace paper money (the concept of using a card for purchases
and the term credit card was described in 1887 by Edward Bellamy). In 2011,
Google launched a mobile wallet project to replace physical cash and credit cards.

1 Society 5.0 follows Society 1.0 (the hunting society), Society 2.0 (agricultural soci-
ety), Society 3.0 (industrial society), and Society 4.0 (information society).
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Nowadays, the cashless payment system has become a new trend. Many digital
wallet services appeared, such as Apple Pay (from 2014), Google Pay (from 2015
as Android Pay and 2018 as Google Pay), Rakuten Pay (from 2016), etc. The
biggest challenge is how to authenticate the users. The current approach relies
on the mobile phones’ authentication using PIN code, password, biometrics (i.e.,
fingerprinting, iris, face, etc.), or multi-factor method, which combines more than
one form of authentication from independent categories of credentials.

Attacks and Vulnerabilities in Current Smartphone Authentication.
Many sophisticated attacks in smartphone authentication have appeared. First,
PIN code/password-guessing attack [15,16] tries to recover the password plain-
text from its hashed form using a brute force search, which systematically checks
every combination of letters, symbols, numbers and dictionary attack which uses
a dictionary of common words. Second, biometric spoofing tries to generate syn-
thetic or fake biometric traits of legal users to fool the capture sensors including
facial spoofing which utilizes printed facial photographs and digital video [21] or
a 3D mask [22], fingerprinting spoofing [23] which utilizes artificial replicas with
different materials such as gelatin, latex, play-doh or silicone, and iris spoof-
ing [17] which utilizes an image forging natural iridal texture characteristics [18]
or even cosmetic contact lenses [19,20], and the combination of all these three
spoofing types [24]. Third, smudge attack tries to guess the graphical password
pattern in touch screen phones by analyzing the epidermal oils and smears left on
the device’s screen by the user’s fingers [25]. Fourth, shoulder-surfing attack [26]
uses social engineering techniques to steal the victim’s personal information such
as PIN code and password by looking over the victim’s shoulder or by eavesdrop-
ping on sensitive information being spoken and heard or keystrokes on a device.
Finally, a large number of users themselves do not lock their smartphones. [11]
analyzed over 150 smartphone users and showed that 33% of the users do not use
any screen lock. [12] conducted face-to-face qualitative interviews with 28 par-
ticipants. 29% of the users responded that they did not lock their devices with
three common reasons, including emergency personnel not identifying them, not
having the devices returned if lost, and not believing they worth data. [13] run
an online survey with 260 participants and a field study with 52 participants
to analyze smartphone users’ risk perception and behaviors. They showed that
40.9% of users use slide-to-unlock, and 16.2% of users do not use any screen lock.

Location-Based Behavioral Authentication. There are some research ques-
tions in constructing a smarter and securer mobile-based authentication. First,
for mitigating the attacks above, is there an additional mobile-based authentica-
tion for supporting the conventional authentication using PIN code, password,
and biometric traits (i.e., fingerprints, face, iris)? Second, imaging the scenario
that a user is on the way to going to a coffee shop. Before he arrives, the coffee
shop can predict that he will arrive 15 min later with a high probability, pre-
pare in advance his usual order, and automatically subtract the charge from his
account. The user then does not need to wait for the order and payment process.
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So, the question is: is it possible to authenticate and predict the location (for
example, the coffee shop) that the users are likely going to? Last but not least, in
the situation of the COVID-19, the current smartphone-based cashless payment
can reduce the chance of using cash or card, but still, the user needs to touch
the smartphone screen to show the bar code to the cashier. The final question is
whether the user can pay for goods when only bringing the smartphone without
touching the screen?

An idea to answer the questions is using behavioral-based information. This
new research’s main challenge is how to decide useful behavioral information
for authentication. Inspirited from L. Fridman (MIT) et al. [5], just in 2016,
GPS location history is a promising approach because “It is relatively unique to
each individual even for people living in the same area of a city. Also, outside of
occasional travel, it does not vary significantly from day to day. Human beings
are creatures of habit, and in as much as location is a measure of habit”. At
this time, single behavioral authentication is used as an additional method to
support the conventional authentication or to combine with other behavioral
authentications. In the future, if we can construct a payment system such that
(i) the users do not need to bring devices, (ii) the security and privacy are
ensured, and (iii) the conventional biometrics authentication can be replaced
entirely, it is a step closer to Society 5.0.

Motivation. A system can achieve a high authentication accuracy when it can
collect multiple factors as much as possible. However, in the users’ viewpoint,
a convenient system should not bring strong privacy concerns to the users by
requiring too much information. From the GPS, most of the previous work uti-
lized the longitude, latitude, and timestamp as the features for the user authen-
tication. Given the limited information, if we can obtain metadata that carries
extra independent information from the GPS itself, we can improve the accu-
racy. An example of GPS-based self-enhancement is [7] in which they extracted
the address from the pair of longitude and latitude using a reverse geocoding.

Contribution. In this paper, we propose an idea to extract the distance coher-
ence features from the GPS itself without any other information besides the GPS.
The locations at close time clocks may have some closer correlation in physical dis-
tance than the locations at far time clocks for each user. The idea is inspired by the
fact that a human needs time to move from one location to another. Since this con-
cept can reflect a movement “lifestyle” of the users, we hypothesized that it might
improve the accuracy. Although it may be not 100% correct when the user goes
forward and then backward within the considered period of time, we combine the
proposeddistance coherence featureswith the previous ones.To evaluate how feasi-
ble the approach is, we collected 107,637 GPS records from 348 users. We applied
three ensemble machine learning classification (RandomForest, ExtraTrees, and
Bagging) on a total of 13 features, including the distance coherences features. The
experimental result showed that our approach outperforms the approach without
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the distance coherence features with the accuracy of 99.42% (for RandomForest),
99.12% (for ExtraTrees), 99.25% (for Bagging).

Considering its reasonability, it may raise a question. Since we infer the
distance coherence from the GPS and timestamp, whether the distance coher-
ence’s entropy is the same as that of the GPS and timestamp? In other words,
whether the distance coherence gives no additional information to the GPS and
timestamp. However, for each sample, the corresponding distance coherence is
computed from a sample and other samples with a close timestamp with the
considered sample. Therefore, the GPS, timestamp, and distance coherence are
independent variables. Of course, we can improve the model if we combine the
GPS and timestamp with other factors such as Wifi information, web browser
log, etc. However, this paper aims to clarify whether the distance coherence
extracted from the GPS and the timestamp can improve the classification model.
We thus excluded other factors to make the comparison clean.

Roadmap. The rest of this paper is organized as follows. The related work is
introduced in Sect. 2. The proposed method is described in Sect. 3. The experi-
ment is presented in Sect. 4. The threat model is presented in Sect. 5. The dis-
cussion about future work is shown in Sect. 6. Finally, the conclusion is drawn
in Sect. 7.

2 Related Work

This section presents related work focusing on multimodal authentication using
human-smartphone interactions and other factors. The term multimodal (not
multimodel) is used to indicate the biometrics authentication using multiple bio-
metric data. It is the opposite with unimodal, which uses only a single biometric
data.

2.1 Multimodal Authentication for Smartphone

L. Fridman et al. [5] analyzed four modal behavioral data from active mobile
devices, including text stylometry typed on a soft keyboard, application usage
patterns, web browsing behavior, and physical location of the device from GPS
(outdoor) and Wifi (indoor). They collected the data from 200 users in more
than 30 d. The authors proposed a parallel binary decision-level fusion architec-
ture for classifiers based on four biometric modalities. A. Alejandro et al. [8]
analyzed multimodal data from four biometric data channels (including touch
gestures, keystroking, accelerometer, and gyroscope) and three behavior profil-
ing (including WiFi, GPS location, and app usage). They obtained the data
during the natural human-smartphone interaction of 48 users, on average, ten
days per user. They proposed two authentication models named the one-time
approach that uses all the channel information available during one session, and
an active approach that uses behavioral data from multiple sessions by updat-
ing a confidence score. W. Shi et al. [6] proposed an authentication framework
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that enables continuous and implicit user identification service for a smartphone.
They collected the data from four sensor modalities, including voice, GPS loca-
tion, multitouch, and locomotion. They conducted a preliminary empirical study
with a small set of users (seven). The result showed that the four modalities are
enough for mobile user identification. R. Valentin et al. [10] analyzed multimodal
sensing modalities with mobile devices when the GPS, accelerometer, and audio
signals are utilized for human recognition. They collected the data from four
existing datasets which consist of 491 users. They applied four variants of deep
learning for interpreting user activity and context as captured by multi-sensor
systems. M. Upal et al. [14] investigated user authentication methods using the
first non-commercial multimodal data, which focuses on three smartphone sen-
sors (front camera, touch sensor, and location service). They collected the data
from 48 users for two months. Their benchmark results for face detection, face
verification, touch-based user identification, and location-based next place pre-
diction showed that more robust methods fine-tuned to the mobile platform are
needed to achieve satisfactory verification accuracy. T. Thao et al. [7] extracted
the addresses given the longitudes and latitudes from the GPS records. They
then applied the text mining on the addresses. They collected the data from 50
users for about four months. Their experimental result showed that the combina-
tion between the text features and the GPS data could improve the classification
accuracy. B. Aaron et al. [9] proposed a wallet repository that can store biomet-
ric data using multiple layers: a biometric layer, a genomic layer, a health layer,
a privacy layer, and a processing layer. They used the processing layer to deter-
mine and track the user location, the speed when the user is moving using GPS
data.

2.2 Other Multimodal Authentication

Besides using human-smartphone interactions, multimodal authentication also
uses other factors. T. Kaczmarek et al. [27] investigated a new hybrid biomet-
ric based on a human user’s seated posture pattern in an average office chair
throughout a typical workday. Their experimental results on a population of 30
users showed that the posture pattern biometric could capture a unique com-
bination of physiological and behavioral traits and can authenticate the users
with 91% of accuracy. M. Ivan et al. [28] proposed an approach which combines
the PIN code and the pulse-response. For the experiment process, they collected
biometric information from 10 users. The result showed that each human body
exhibits a unique response to a signal pulse applied at the palm of one hand and
measured at the other’s palm. The experimental result for user authentication
achieved 88% of accuracy when taking the records weeks apart. W. Louis et
al. [30] and R. Alejandro et al. [32] constructed a continuous authentication sys-
tem based on electrocardiogram (ECG) and electroencephalogram (EEG). Their
approaches achieved 1.57% and 0.82% of the false-negative rate, respectively.
E. Simon et al. [29] extracted distinct patterns from eye movement (it is differ-
ent from iris) with 21 features for user authentication. The data was collected
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from 30 users in 2 weeks with three scenarios (no prior knowledge, the knowl-
edge gained through description, and knowledge gain through observation). The
experimental result achieved 3.98% of equal error rate.

3 Proposed Approach

This section describes our proposed method, including data collection, feature
extraction and selection, and our learning method.

3.1 Data Collection

We created a navigation application named MITHRA (Multi-factor Identifica-
tion/auTHentication ReseArch) in the project of the University of Tokyo to
collect the users’ GPS information. The application is available on both iOS and
Android smartphones. We developed the application run in the background. We
collected the data from 348 users with 107,637 GPS records, including pairs of
longitude and latitude for four months from January 11 to April 26 in 20172.
Compared to the existing works (see Sect. 2), the number of users in our dataset
is higher than most of the papers and is only lower than [10], which could collect
the information from 491 users. We recruited the participants randomly. The
users live and work in random areas. The GPS data was measured every minute.
The value of the longitudes and latitudes were collected with the precision up to
6 decimal places (e.g., 36.xxxxxx) corresponding to 0.1 m.

Privacy Consent. The privacy consent is shown to the users during the instal-
lation process. The installation can only be done if the users accept the terms and
conditions agreement. Even after successfully installing the application, the users
can choose to start or stop using the application anytime. Any personal informa-
tion of the users such as name, age, gender, race, ethnicity, income, education,
etc. is not collected. We collected only the email addresses the user identity used
to distinguish the users from each other. Although the application collects the
GPS information, the users do not need to disclose their home location, office
location, etc. Our project was reviewed by the Ethics Review Committee of
the Graduate School of Information Science and Technology, the University of
Tokyo. Finally, all the users who installed the application agreed to participate
in our project.

3.2 Feature Extraction and Selection

We categorized the features into two groups: (i) the features extracted from the
GPS and the timestamp, and (ii) the features using the distance coherence score.

2 Although we collected the GPS from smartphones in this project, we can also collect
the GPS from many smaller devices such as smartwatches or smartbands nowadays.
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GPS and Datetime. There are seven features in this group. Two features were
extracted from the GPS, including the latitudes and the longitudes represented
by float numbers. The valid ranges for the latitudes and the longitudes are the
continuous range [−90,+90] and [−180,+180], respectively. Five features were
extracted from the timestamp, including month, day, hour, minute, and day of a
week (i.e., seven days from Monday to Sunday) represented by integer numbers.
The valid ranges for these features are the intervals [1, 12], [1, 31], [0, 23], [0, 59],
and [1, 7], respectively. We did not extract the year as a feature because all the
data samples were collected in the same year (2017).

Distance Coherence. There are α features in this group (we will soon explain
how to choose α). Each z-th feature (z ∈ [1, α]) represents the distance coherence
(similarity score) between each data sample with the average of all the other
samples in the dataset that belong to the same user and that occur before or
after p hours for every p ∈ [0, z] with the considered sample. p = 0 is when the
other samples occur in the same hour with the considered sample.

More concretely, the features are computed as follows (see Fig. 1). Let {dcz}
denote the set of α features where z ∈ [1, α]. Let si denote each sample in the
dataset where i ∈ [1, n] and n denotes the number of samples (in our dataset,
n = 107, 637). For each feature dcz, let Kz = {s′

j} (where j ∈ [1, n] and j �= i)
denotes the set of all the other samples such that si and s′

j belong to the same
user Ut (where t ∈ [1, 348]). State differently, si and s′

j have the same label Ut.
Let lat(si) and lat(s′

j), lon(si) and lon(s′
j), and hour(si) and hour(s′

j) denote
the latitude, the longitude, and the hour features for si and s′

j , respectively. For
each dcz, Kz is chosen such that:

hour(si) = hour(s′
j) ± p for ∀p ∈ [1, z] (1)

The average coordinate s′′
j is determined from all the samples s′

j in Kz such as:

lat(s′′
j ) = average(lat(s′

j)) ∀s′
j ∈ Kz (2)

lon(s′′
j ) = average(lon(s′

j)) ∀s′
j ∈ Kz (3)

The features are finally calculated as the distance between si and s′′
j :

dcz(si) = 2

√
(lat(si) − lat(s′′

j ))2 + (lon(si) − lon(s′′
j ))2 (4)

From Eq. 1, we can observe that Kz chosen for dcz is a subset of Kz′ chosen for
dcz′ for all z, z′ ∈ [1, α] such that z′ > z. It may raise the question that whether
all the α features have a correlation. However, the averages from even correlated
sets are completely different (for example, average(1, 2, 3) = 2 which is different
from average(1, 2, 3, 4) = 5). All the features dcz are thus independent variables.
A numeric example for how to calculate the distance coherence features will be
given in Appendix A.
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Fig. 1. Distance coherence (similarity score)

We now explain how the concrete value for α is. In our approach, we use
three advanced classification machine learning algorithms, which are Random-
Forest, ExtraTrees, and Bagging (explained in more detail in Sect. 3.3). We
experimented with every α from 1 and increased it gradually. We found that
the best α for RandomForest, ExtraTrees, and Bagging is 3, 4, and 5, respec-
tively, at which the algorithms reach the peak performance (Sect. 4.3). Since
α reflects the movement lifestyle of the users, it is reasonable for α to be not
large. For instance, the GPS (latitude, longitude) of a user Ut at 15:00 may have
some physical distance coherence with the GPS records at 14:00 and 16:00 than
the GPS records at 13:00 and 17:00. In the rest of this paper, we use α-DC
to denote the approach in which α distance coherence features are used, and
{lat, lon, mon, day, hour, min, weekday, dc1, dc2, · · · , dc6} to denote the set of
the thirteen features related to both the GPS and timestamp and the distance
coherence.

Feature Distribution. We describe the distribution statistics for the features
in Table 1, including the mean, standard error, median, standard deviation, Kur-
tosis score, skewness score, min value, and max value. A normal distribution
check for the features is not necessary [31]. The negative and positive values in
the latitude and the longitude in the “Min” and “Max” columns indicate that
the users who used to commute in Japan might travel abroad during the data
collection. This kind of data can create noises during the training and testing
processes. However, we did not remove it because the data reflects the users’ nat-
ural behavior. Although the noises may lower the accuracy, we want to measure
how practical the approach is when using real data without being manipulated.
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Table 1. Feature distribution

Feature Mean SE Median SD Kurtosis Skewness Min Max

lat 35.262 0.014 35.376 4.554 151.722 −10.935 −36.858 43.907

lon 136.783 0.034 137.846 11.165 248.09 −15.101 −121.979 174.799

month 3.321 0.002 3.000 0.753 −0.260 −0.777 1.000 4.000

day 17.328 0.026 19.000 8.600 −1.075 −0.285 1.000 31.000

hour 13.421 0.019 14.000 6.388 −0.820 −0.417 0.000 23.000

min 28.919 0.053 29.000 17.357 −1.186 0.038 0.000 59.000

weekday 3.986 0.006 4.000 1.966 −1.215 −0.016 1.000 7.000

dc1 4,104.198 137.84 191.318 45,214.683 976.703 27.756 0.000 2,545,473.711

dc2 4,359.489 137.598 239.163 45,140.323 988.797 27.801 0.000 2,548,301.562

dc3 4,586.805 140.910 259.640 46,228.488 995.124 27.895 0.000 2,549,190.471

dc4 4,678.671 140.658 272.654 46,147.07 978.139 27.653 0.004 2,554,832.383

dc5 4,781.704 141.784 276.978 46,516.486 1,002.699 28.001 0.048 2,567,773.385

dc6 4,822.694 143.361 284.604 47,033.864 1,013.685 28.284 0.017 2,568,234.888

SE (Standard Error), SD (Standard Deviation), DC: Distance Coherence

3.3 Learning

This section explains the machine learning algorithms chosen for our model and
the evaluation method. In the dataset, each user has a different label. Each label
has a different set of records.

Average Ensemble Classifications. The dataset contains 107,637 samples
with a large number of labels (348 users). Instead of using the traditional algo-
rithms, we use average ensemble classifications to get better performance. The
average ensemble algorithms build several base estimators independently and
produce one optimal predictive estimator by averaging all the base estimators’
predictions. The combined estimator is better than any single base estimator by
reducing the variance to control over-fitting. The common algorithms include:

– RandomForest [1]: implements a meta estimator that fits some decision tree
classifiers on various randomized sub-samples and uses averaging to create the
best predictive estimator. When each estimator is built, a bootstrap is cre-
ated by randomly sampling the dataset with replacement. The sub-samples’
size is set to be the same as the size of the original input sample. A deci-
sion tree is usually trained by recursively splitting the data (converting the
non-homogeneous parent into the two most homogeneous child nodes). The
algorithm selects an optimal split on the features selected at every node.

– ExtraTrees [2]: produces the best predictive estimator in a way like Random-
Forest. However, there are some differences. While RandomForest uses the
optimal split, ExtraTrees uses the random split. While RandomForest sets
the bootstrap = True by default, ExtraTrees sets the bootstrap = False by
default. It means that while RandomForest supports drawing sampling with
replacement, ExtraTrees supports drawing sampling without replacement.
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– Bagging (Bootstrap Aggregating) [3]: uses all the features for splitting a node
while RandomForest and ExtraTrees select only a subset of randomized fea-
tures for splitting a node.

Stratified K-Fold. We shuffled the data at first and then used a k-fold cross
validation. Since the numbers of samples of the users are imbalanced, using the
normal k-fold cross validation can lead to the following problem. There may exist
a class ck (k ∈ {1, 2, · · · , 348}) in which all the samples belong to the test set; and
the training set does not contain any samples. The classifier, therefore, cannot
learn about the class ck. To solve this problem, we used Stratified k-fold cross-
validation object, which is a variation of k-fold and can deal with imbalanced
data in each class. As presented in Fig. 2, it splits the data in the train and the
test sets. It returns stratified folds made by preserving the percentage of samples
for each class.

Fold 1

Fold 2

Fold 3

Fold 1

Fold 2

Fold 3

Normal KFold

Stratified KFold

Test set Train set

Fig. 2. A stratified KFold

Evaluation Metrics. To evaluate our approach, we measure the following met-
rics:

accuracy =
tp + tn

tp + fp + fn + tn
, precision =

tp

tp + fp
, recall =

tp

tp + fn
(5)

F1 = 2 × recall × precision

recall + precision
, FPR =

fp

fp + tn
, FNR =

fn

fn + tp
(6)
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where tp, tn, fp, fn denote the true positive, true negative, false positive, and
false negative values, respectively. FPR and FNR denote the false positive rate
and false-negative rate, respectively. The accuracy is a good metric when the
distribution for each label is almost similar. However, for an imbalanced dataset,
F1-score is the better metric.

4 Experiment

This section presents the experimental setup, the results obtained after applying
the classification, and how to find the best α for each algorithm.

4.1 Experimental Setup

We implemented the program using Python 3.7.4 on a computer MacBook Pro
2.8 GHz Intel Core i7, RAM 16 GB. The machine learning algorithms are exe-
cuted using scikit-learn3 library version 0.22.

For each ensemble algorithm, the number of base estimators n estimators is
set to 100. The k value in the stratified k-fold cross validation is set to k = 10.
Since the categorical labels are represented in text strings (such as ‘user001’,
‘user002’, etc.), the labels are transformed to numerical values using the label
encoding. While the ordinal encoding encodes a label to an integer array and
the one-hot encoding encodes it to a one-hot numeric array, the label encoding
encodes it to the values between 0 and q − 1 where q is the number of distinct
labels of all the classes. The label encoding is the most lightweight method and
uses less disk space. Since the data is imbalanced, to avoid the situation that
F1 is not between precision and recall, we calculate the three metrics (precision,
recall, and F1 score) for each label and find their average weight by the number
of true instances of each class. This process can be done by setting the parameter
average = weighted in the sklearn.metrics. For the accuracy, this parameter
is not necessary. Since the values of the distance coherence features are small,
we scaled them up to ×104. For each of the three algorithms (RandomForest,
ExtraTrees, and Bagging), we experimented with different α’s. We applied the
classification 107,637 samples with 348 labels, which correspond to 348 users.

4.2 Main Result

The main result is presented in Table 2. In the table, NoDC represents the app-
roach not using distance coherence features, while α-DC represents the approach
using α distance coherence features. As proved later in Sect. 4.3, RandomForest,
ExtraTrees, and Bagging reach the best performance at α = 3, α = 4 and α = 5,
respectively. Thus, we chose 3-DC, 4-DC, and 5-DC to compare with NoDC in
this table (although only 1-DC can already beat NoDC (see Sect. 4.3)).

The result shows that our approach α-DC outperforms NoDC in all the
cases. Comparing all the algorithms using NoDC only with each other, Bagging
3 https://scikit-learn.org/stable/.

https://scikit-learn.org/stable/
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gives the best result with 98.69% of F1 score with 0.02% of false-negative rate.
Comparing all the algorithms using our approach with each other, RandomForest
gives the best result with 99.42% of F1 score and merely 0.01% of false-negative
rate even though RandomForest just reaches α = 3 (which is less than α = 4 for
ExtraTrees and α = 5 for Bagging). Comparing the improvement between α-DC
and NoDC, ExtraTrees gives the best result when 2.34% of F1 score is increased
(� = +2.34) and 0.04% of false-negative rate is reduced (� = −0.04).

Table 2. Result for distance coherent with different ensemble algorithms

Measure RandomForest ExtraTrees Bagging

NoDC 3-DC � NoDC 4-DC � NoDC 5-DC �
F1 97.95 99.42 +1.47 96.77 99.11 +2.34 98.69 99.24 +0.55

Accuracy 97.97 99.42 +1.45 96.80 99.12 +2.32 98.69 99.25 +0.56

Precision 98.05 99.45 +1.40 96.90 99.15 +2.25 98.75 99.28 +0.53

Recall 97.97 99.42 +1.45 96.80 99.12 +2.32 98.69 99.25 +0.56

FPR 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

FNR 0.03 0.01 −0.02 0.05 0.01 −0.04 0.02 0.01 −0.01

NoDC: the approach without distance coherence features,

α-DC (α = 3, 4, 5): the approach using distance coherence features,

�: the improved score between α-DC and NoDC.

4.3 Best Alpha (α) for Each Algorithm

This section explains the experiment to find the best α for each algorithm. First,
α is set to 1 and is then gradually increased until the performance becomes
convergent or reduced after reaching the peak. The result and its graphs are
presented in Table 3 and Fig. 3. The proposed approach using RandomForest,
ExtraTrees, and Bagging got the best performance at α = 3, α = 4, and α = 5,
respectively. Figure 3 shows that in all the algorithms, the graph almost has the
cone shape (the result is gradually increased, gets the peak, and then is reduced
or becomes convergent), not a zigzag shape (in which we cannot predict where
is the peak). The result also shows that by even just using 1-DC (α = 1), our
approach can already beat NoDC.

4.4 Computation Time

For the best algorithms (5-DC using Bagging, 4-DC using ExtraTrees, and 3-
DC using RandomForest), the average computational time for the training and
cross-validation processes from 5 execution times is 2,272 s (38 min), merely 270 s
(4.5 min), and 596 s (10 min) respectively. It is not a big deal for the server.
When the number of users is much more increased (e.g., to thousands), it is not
complicated to transform the current model from the one-class classification to
a multi-class classification where each user has a different classifier with binary
labels representing whether or not a sample belongs to that user.
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Table 3. Result for each alpha

1-DC 2-DC 3-DC 4-DC 5-DC 6-DC

RandomForest F1 99.11 99.41 99.42 99.38 99.36 99.31

Accuracy 99.11 99.42 99.42 99.38 99.37 99.31

Precision 99.15 99.44 99.45 99.41 99.39 99.35

Recall 99.11 99.42 99.42 99.38 99.37 99.31

FPR 0.00 0.00 0.00 0.00 0.00 0.00

FNR 0.01 0.01 0.01 0.01 0.01 0.01

ExtraTrees F1 97.27 98.90 98.98 99.11 99.11 99.11

Accuracy 97.30 98.91 98.99 99.12 99.12 99.11

Precision 97.40 98.95 99.03 99.15 99.15 99.15

Recall 97.30 98.91 98.99 99.12 99.12 99.11

FPR 0.00 0.00 0.00 0.00 0.00 0.00

FNR 0.04 0.02 0.02 0.01 0.01 0.01

Bagging F1 99.03 99.07 99.10 99.14 99.24 99.23

Accuracy 99.04 99.07 99.10 99.14 99.25 99.23

Precision 99.07 99.11 99.14 99.18 99.28 99.26

Recall 99.04 99.07 99.10 99.14 99.25 99.23

FPR 0.00 0.00 0.00 0.00 0.00 0.00

FNR 0.01 0.01 0.01 0.01 0.01 0.01

5 Threat Model

This section presents the threat model, including the focused attack, the adver-
sary’s probability, and the assumptions.

5.1 Targeted Attack

Most of such authentication systems, not just our approach but other previous
biometrics-based authentication, focus on protecting against insider threats in
which the adversary tries to impersonate the authentication of an authorized
user in the system. As mentioned in Sect. 1, at this time, the behavioral-based
authentication should be used as an additional approach to support the conven-
tional PIN code, password, or biometric authentications. So let’s run an example
in which our approach is combined with PIN code-based authentication. Let PrA
denote the probability that the adversary A can break the system. PrA is defined
as:

PrA = Prguess · Prforge (7)

where Prguess and Prforge denote the probability that A can correctly guess
the PIN code and the average probability that A can fool the classifier, respec-
tively. Prforge is the false-negative rate which is the percentage of identification
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Fig. 3. Different alpha’s for distance coherence

instances in which the unauthorized users are incorrectly accepted. Table 2 shows
that all the 3-DC, 4-DC, and 5-DC approaches corresponding to the three differ-
ent algorithms have the same 0.01% of false-negative rate. Thus, Prforge = 10−4.
Let τ and σ denote the number of digits in the PIN code and the number of
guessing candidates for each PIN code digit. If A has nt tries before the device
is locked with many wrong PIN codes, we have Prguess = nt

στ . Therefore:

PrA = 10−4 · nt

στ
(8)

Most of the new smartphone operation systems nowadays require six digits for
PIN code. Typically, there are ten digits of candidates from 0 to 9 for each digit.
The users often have 4 to 6 PIN code tries for Android and iOS before the device
is locked. Therefore, PrA � 4 · 10−10 to 6 · 10−10.

Suppose the attacker can guess the PIN code after shoulder surfing and then
robs the user’s smartphone. Since the application is designed such that every
GPS record is sent to the server in realtime and the GPS history is not stored in
the user smartphone, the attacker cannot see the log from the robbed phone to
imitate the user’s behavior. Also, there is no function of downloading the GPS
log from the server to the smartphone because it is a doubtable action from a
(suspicious) user. The only action that the attacker can manipulate on the GPS
tracking application is to turn it on/off or uninstall it. If the attacker continues
to use the smartphone without being able to search for the history log from
the smartphone application), the probability for the attacker PrA is now 0.01%.
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Even though it is not 0% for the best case, it is still much better than 100% for
A to break the system without our approach. Similarly, if the collusion attack in
which an authorized user shares his/her PIN code to others occurs, PrA is also
0.01%. If the colluded user tells others his/her personal location history, every
single continuous GPS record cannot be imitated. It is why we investigated the
idea of using behaviors (especially long-term and continuous).

The model assumes that the server storing the GPS cannot be accessed or
corrupted by the adversary. The data is encrypted, and only the trusted server
can decrypt it. The data is transmitted via a secure network. Each smartphone
is used by only a unique user. The smartphone and the server are protected
against the side-channel attack collecting the user data via timing information,
power consumption, electromagnetic leaks, or sound. Finally, we assumed that
the users are honest in sending their data to the server, which performs the
classification.

5.2 Security Scenario Discussion

In this section, we discuss other security scenarios from using smartphones.

What if Two Users Live and Work in the Same Areas? As mentioned
in Sect. 3.1, since our project recruited the users randomly, the users live and
work in random areas. Even if in the rare case, when two users live and work
in the same area, they cannot have the same GPS tracking for every single
hour. Each user has many activities at different timestamps, not just at home
and office (such as shopping, outdoor exercising, picking children at schools,
etc.). Furthermore, we can collect indoor positioning inside the home and the
office building besides the GPS such as WiFi or Bluetooth beacons. Since this
paper aims to investigate the benefit of the extra information (i.e., the distance
coherence) from the GPS itself, we do not consider to collect indoor location
information. However, it is entirely possible since we can collect the GPS and
the indoor location information independently. Let’s consider the case when
legal users have the same trajectory within a period of time (e.g., older people
in a senior home have daily activities confined to the surroundings). Since the
longitude and latitude values have 6 decimal places (see Sect. 3.1), the precision
is 0.1 m. With this precision, two users cannot have the same movement log in
a long period.

How Does the System Work When Individuals Are Outside Their
Routine or When the Attacker Follows (imitates) the User’s Behav-
ior? Since these questions are not just for the GPS-based location authentication
but the general behavioral-based authentication, we discuss from the general to
specific perspectives. We emphasize that a single-factor behavioral-based authen-
tication is used to support (not to replace) the conventional approaches such as
password or biometrics; or it is combined with other behavioral factors to build
up a multi-factor behavioral-based authentication. Suppose a user is outside
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his/her routine or the attacker tries to imitate the user’s behavior. In that case,
the password/biometric or other routines are used to lower the false rejection
and false acceptance rates. Although behavioral-based authentication has not yet
been commonly used, researchers proved that this new but promising research
is possible for real applications. For instance, Google has launched the Project
Abacus [33] in 2016 to collect smartphone sensor signals (i.e., front-facing cam-
era, touchscreen and keyboard, gyroscope, accelerometer, magnetometer, ambi-
ent light sensor, etc.). They demonstrated that human kinematics could convey
important information about user identity and serve as a valuable component
of multi-modal authentication systems. Among many behaviors, location is a
typical factor in identifying users. Human beings are creatures of habit, and in
as much as location is a measure of habit [5]. Also, the location is easy to collect
since it is available in most modern smartphones.

Is It a Problem When a User Gets a New Phone? It has no problem
since the smartphone is just the device/tool, not the method. The user can reg-
ister a location-based authentication system with an account and its application
installed in his smartphones. As long as the user does not share his account with
others and an account can only log in one smartphone at a specific timestamp,
his unique GPS data can be collected regardless of how many smartphones are
used and whether the user shares his smartphones with others.

6 Future Work

This section describes an idea for future work based on the separation of daily
and weekly distance coherences. In our current approach, for each sample si, the
distance coherence features are calculated by grouping the other samples, which
have the corresponding clock hours close to the clock hour of si regardless of
the dates. We thus call it daily distance coherence. An example is given in the
first chart of Fig. 4. We can calculate the features chosen for the sample si at
the timestamp 7:00 April 10, 2020 (Friday) using the samples at 7:00±α on any
date of the same user.

However, another promising method may improve the accuracy or F1 score.
For each sample si, we can calculate the distance coherence features by grouping
the other samples, which have the clock hours close to the clock hour of si on
only the days with the same day of the week. We thus call it weekly distance
coherence. We consider the example in the second chart of Fig. 4. Suppose si

occurred at 7:00 April 10, 2020 (Friday); we can calculate the featured chosen
for si from the samples at 7:00 ±α on every Friday such as April 03, 2020, or
April 17, 2020, etc. These features may reflect the lifestyle of the users that we
are aiming for in this paper. For example, a worker goes to work every weekday
but goes to the usual supermarket every Saturday around 10:00; a student has
a training course at a usual stadium every Thursday around 15:00. The weekly
distance coherence can measure these habits. Remark that the weekly distance
coherence features are not covered in the daily ones. Each feature is computed
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Fig. 4. Daily and weekly distance coherence

from the average of all the samples chosen for the main sample. Even though
the set of the samples selected for the weekly case is a subset of the set, their
averages are different in the daily case.

7 Conclusion

This paper has shown that using the distance coherence score as the additional
features can improve user authentication. We collected 107,637 GPS records,
including longitude, latitude, and timestamp from 348 users in Japan. The three
average ensemble algorithms, including RandomForest, ExtraTrees, and Bag-
ging, are applied to the classification and are evaluated using stratified k-fold.
The experimental result showed that our approach outperforms the approach
without the distance coherence in all the cases. The accuracy can reach up to
99.42%, 99.12%, and 99.25% using RandomForest, ExtraTrees, and Bagging,
respectively. The F1 score can be improved even 2.34%, and the false-negative
rate can be reduced by 0.04% using ExtraTrees.

Appendix

A Numeric Example (for Distance Coherence Extraction)

In this section, we give a numeric example for the distance coherence extraction
in Sect. 3.2. Suppose the data consists of 7 samples {s1, s2, · · · , s7} from 2 users
{user1, user2} as showed in Table 4. We explain how to calculate the distance
coherence for each sample {dc11, dc12, dc13, dc21, dc22, dc23, dc24}. Suppose α
(the number of distance coherence feature) is set to α = 1.
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Table 4. Numeric example for calculating distance coherence

Sample ID User/class Timestamp Longitude Latitude Distance coherence

1 User1 2020/01/16 10:55 lon11 lat11 dc11

2 User1 2020/01/17 11:55 lon12 lat12 dc12

3 User1 2020/01/17 12:50 lon13 lat13 dc13

4 User2 2020/01/16 21:30 lon21 lat21 dc21

5 User2 2020/01/17 22:10 lon22 lat22 dc22

6 User2 2020/01/18 21:45 lon23 lat23 dc23

7 User2 2020/01/19 20:10 lon24 lat24 dc25

– For s1, the hour extracted from the timestamp is hour(s1) = 10. We find all
the samples si that belong to the same class (user1) and have hour(si) such
that (hour(s1) − α) ≤ hour(si) ≤ (hour(s1) + α) regardless of the date and
the second. Only s2 satisfies the conditions (i.e., hour(s2) = 11). Thus:

dc11 = 2
√

(lon11 − lon12)2 + (lat11 − lat12)2 (9)

– For s2, hour(s2) = 11. si from user1 that satisfy (hour(s2)−α) ≤ hour(si) ≤
(hour(s2) + α) are s1 and s3 (hour(s1) = 10, hour(s3) = 12). Thus:

dc12 = 2

√
(lon12 − lon11 + lon13

2
)2 + (lat12 − lat11 + lat13

2
)2 (10)

– For s3, hour(s3) = 12. si from user1 that satisfies (hour(s3) − α) ≤
hour(si) ≤ hour(s3) + α) is only s2 (hour(s2) = 11). Thus:

dc13 = 2
√

(lon13 − lon12)2 + (lat13 − lat12)2 (11)

– For s4, hour(s4) = 21. si from user2 that satisfy (hour(s4)−α) ≤ hour(si) ≤
(hour(s4) + α) are s5, s6, and s7 (hour(s5) = 22, hour(s6) = 21, hour(s7) =
20). Thus:

dc21 = 2

√
(lon21 − lon22 + lon23 + lon24

3
)2 + (lat21 − lat22 + lat23 + lat24

3
)2

(12)
– For s5, hour(s5) = 22. si from user2 that satisfy (hour(s5)−α) ≤ hour(si) ≤

(hour(s5) + α) are s4 and s6 (hour(s4) = hour(s6) = 21). Thus:

dc22 = 2

√
(lon22 − lon21 + lon23

2
)2 + (lat22 − lat21 + lat23

2
)2 (13)

– For s6, hour(s6) = 21. si from user2 that satisfy (hour(s6)−α) ≤ hour(si) ≤
(hour(s6) + α) are s4, s5, and s7 (hour(s4) = 21, hour(s5) = 22, hour(s7) =
20). Thus:

dc23 = 2

√
(lon23 − lon21 + lon22 + lon24

3
)2 + (lat23 − lat21 + lat22 + lat24

3
)2

(14)
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– For s7, hour(s7) = 20. si from user2 that satisfy (hour(s7)−α) ≤ hour(si) ≤
(hour(s7) + α) are s4 and s6 (hour(s4) = hour(s6) = 21). Thus:

dc24 = 2

√
(lon24 − lon21 + lon23

2
)2 + (lat24 − lat21 + lat23

2
)2 (15)
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Abstract. Recent years have seen many privacy violations that have
cost both the users of software systems and the businesses that run them
in a variety of ways. One potential cause of these violations may be the
ad hoc nature of the implementation of privacy measures within software
systems, which may stem from the poor representation of privacy within
many Software Development LifeCycle (SDLC) processes. We propose
to give privacy a higher priority within the SDLC through the creation
of a confederated Privacy-Aware SDLC (PASDLC) which incorporates
the Data Protection Impact Assessment (DPIA) lifecycle. The PASDLC
brings stakeholders of the software system closer together through the
implementation of multiple interception points, whilst prompting the
stakeholders to consider privacy within the software system. We consider
many challenges to the creation of the PASDLC, including potential
communication issues from confederating the processes of a SDLC and
the effective measurement of privacy as an attribute of a software system.

Keywords: Privacy · Software architecture · Software engineering
lifecycle · Data protection impact assessment

1 Introduction

Recent years have seen several privacy breaches and violations. For example,
on the 5th of March 2020, Virgin Media admitted a database, containing the
personal details of 900,000 people, was left unsecured and accessible online for
10 months, during which this data was accessed “on at least one location” [4]. In
2019 a major breach was reported by Capital One impacting 106 million people
which compromised social security numbers and bank accounts [3]. Other exam-
ples include Google ignoring user privacy preferences [23] and recent concerns
that Zoom has been sharing user data with Facebook without user consent [12].
These privacy breaches and violations are all described as accidental or avoid-
able [3,4], which suggests there is a procedural issue with privacy in software
development.
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At the time of writing, the NHS COVID-19 contact-tracing app is under
investigation regarding a lack of consideration of privacy [8] and deploying the
system without an approved Data Protection Impact Assessment (DPIA) [24].
The DPIA is a legal requirement under the European Union General Data Pro-
tection Regulation (EU GDPR) [10, Article 35] and the UK’s Data Protection
Act (2018)(DPA) [33]. A recent survey on DPIAs, performed by the European
Unions Protection Supervisor, revealed that data protection officers who took
part in the surveyed DPIAs believed that the DPIA processes would benefit
from greater awareness and more internal support, additionally the process itself
could be simpler. A recent survey of Data Protection Officers found that DPIA
processes were promising, but would benefit from greater awareness, internal
support and a simplification of the process itself [11].

One potential cause of a privacy breach or violation is the ad hoc nature of
implementing privacy measures into software systems [17,25] due to the poor rep-
resentation of privacy within the Software development LifeCycle (SDLC) [5,25].
We aim to bring clarity to the SDLC by prompting stakeholders to consider
privacy as an attribute of the software system before, during and after imple-
mentation. To achieve this aim, we propose a Privacy-Aware SDLC (PASDLC)
that combines the DPIA Lifecycle1 with the SDLC.

The PASDLC takes into consideration legal requirements, such as those set
out in the GDPR and the DPA, by regularly prompting consideration and review
of the data processing that occurs within the software system being designed.
To achieve this, the normally loosely related stages of a SDLC are confederated
into a single governing structure where each lifecycle or process will intercept
others at multiple stages, bringing the stakeholders of the software system closer
together. This structure brings together both the law and computing; it has
often been argued that such a multidisciplinary approach is required to address
the potential harm from technology, for instance through Lessig’s “pathetic dot”
[21, ch. 7]. Bringing multiple disciplines together, however, may also cause com-
munication and consistency issues impacting the overall quality of the imple-
mented software system [19]. We discuss these challenges and how we approach
them in the initial design of the PASDLC which revolves around the early
processes of the SDLC, namely requirements engineering, software architecture
design and implementation.

2 Background

2.1 Software Development Lifecycle

Software engineering is governed by various lifecycles and processes which guide
stakeholders in developing a software system that satisfies requirements and
constraints. These processes allow multiple teams of stakeholders to work on the
same software system with minimal disruption [31, ch. 2]. A generic SDLC can
be found in Fig. 1. Each stage within a SDLC consists of processes and lifecycles
such as requirements engineering or software engineering methodologies.
1 As developed by the Information Commissioner’s Office [14].
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Fig. 1. A graphical representation of a software development lifecycle.

2.2 Software Architecture

Software architecture is a high level model capturing significant design deci-
sions relating to the structure and behaviour of a software system and providing
guidance to developers on how to implement and maintain the system, includ-
ing details such as software components and the interactions among them [32].
Software architecture is created using design processes such as Attribute-Driven
Development (ADD) [35] and evaluation processes such as the Architecture-
Tradeoff Analysis Method (ATAM) [18]. Privacy is not well represented within
these processes, except from using Unified Modelling Language (UML) dia-
grams to document privacy requirements as stated in the requirements speci-
fication [26].

2.3 Data Protection Impact Assessment

Software systems that involve the processing of personal data of EU residents
are governed by the GDPR2. More specifically, some systems, for instance those
that use automated processing that cause legal effects, or systematically monitor
publicly accessible areas at a large scale, must preform a DPIA. To aid in this
process, the Information Commissioner’s Office (ICO) has created a suggested
lifecycle for completing and updating a DPIA (Fig. 2) [14].

To be an effective impact assessment tool, the DPIA must be completed
before any processing of sensitive data by the software system or any future
iterations of the software system which change how data is processed.

From a software engineering perspective, the most interesting stages of the
DPIA lifecycle are 7, 8 and 9. Stages 1 to 6 involve stakeholders with techni-
cal expertise from multiple disciplines who compile the DPIA document which
is then signed off by the Data Protection Officer (DPO), who may be a non-
engineer, in stage 7. Once the DPIA has been approved, the technical stakehold-
ers will execute stages 8 and 9. Without a pre-established common vocabulary,
2 We focus on the GDPR, but other similar regulations are appearing in other juris-

dictions such as the California Consumer Privacy Act.
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Fig. 2. A graphical representation of a data protection impact assessment lifecycle

the DPO may not fully understand the content of the DPIA leading to privacy
measures being approved or rejected incorrectly.

2.4 Related Work

Privacy engineering aims to create techniques that decrease privacy risks and
increase effective privacy controls within software systems [9], integrating Privacy
Enhancing Technologies (PETs) such as anonymisation. Software engineers who
use the PASDLC will be able to use Privacy Engineering techniques to implement
the planned privacy measures during the implementation and design stages of
the PASDLC.

Privacy by Design (PbD) [7] and Data Protection by Design (DPbD)3 serve
as principles to guide the development activities of software engineers towards
creating software systems with increased privacy awareness. Hadar et al. find that
developers may be actively discouraged from PbD processes due to organisational
norms or lack of knowledge [13]. We propose to integrate the DPIA (and DPbD)
into the organisation through the PASDLC.

Some PbD/DPbD activities encourage stakeholders to integrate privacy into
the architectural specification [29]. This is done either by integrating specific pri-
vacy enhancing methods into the architectural specification [20] or the creation
of specific software architectural privacy views. Sion proposed that DPbD should

3 Data Protection by Design is specific to GDPR (Article 25).
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have a dedicated architectural view supported by data flow diagrams to instruct
engineers how to model the flow of data between software components [30].

To test whether the PASDLC improves privacy within a software system, we
need to be able to measure privacy. There are multiple privacy metrics available
which measure different data ranging from the estimated effort required for a
third party to breach a database to the gain the third party would receive for
completing the breach [34]. Each metric is individually useful to the stakeholders,
however, there is no overall measurement of privacy within a software system.
Zhao and Wagner recommend combining metrics into a metric suite, which is
specific to the software system, as a method of measuring overall privacy of the
software system [36].

Sedano et al. and Sievi-Korte et al. note communication issues have been
amplified by the rising level of outsourcing in the software engineering industry,
resulting in increased design deviations [27,28]. Current solutions revolve around
categorising the causes of the communication issues – such as time zones and
response delays – and then creating a mitigation strategy for each category.
These strategies often rely on the use of third party instant messaging, video
conferencing and organisation tools [16], which, as the Berlin data protection
authority outlines, may themselves introduce data protection risks [6].

Whilst this research is concerned with the ICO’s methodology for generating
and maintaining a DPIA, we note that other methods may be used, such as the
model-based approach proposed by Ahmadian in [1].

3 Approach

We hypothesise that a confederated PASDLC which combines the SDLC and
the DPIA lifecycles, as discussed in Sect. 2, can improve privacy within the
developed software system. The PASDLC goes beyond integrating the DPIA
lifecycle into regular procedure, providing multiple intersection points between
each of the stages within the PASDLC that allow stakeholders of the software
system to address concerns mid-iteration.

At this point our focus is on the initial stages of developing the PASDLC:
requirements engineering, software architecture design & evaluation and imple-
mentation to act as a proof of concept. See Fig. 3 for a high level view of the
PASDLC.

Using the NHS COVID-19 contact-tracing app as a case study (see Sect. 1)
we discuss the PASDLC further. The requirements will be agreed with the
clients, the NHS and the UK Government, and the need for a DPIA is estab-
lished due to the sensitive health and location data processed by the app
[10, Article 35]. The stakeholders will describe in detail the processing necessary
for the app to function. At this point external consultants may be employed,
such as data protection lawyers, to assist with the DPIA risk assessment later
in the process. Once the requirements engineering processes have ended, the
necessity and proportionality of the processing is assessed to ensure it is vital to
the functionality of the software system. For the contact-tracing app, processing
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Fig. 3. A high level view of the PASDLC; the steps of the DPIA are in grey ovals,
and the steps of the SDLC are in white rectangles, with suggested processes for the
design step in rectangles with rounded corners. The arrows signify the order in which
processes should be carried out by stakeholders.

sensitive data is vital to the functionality, therefore the DPIA process moves on
to the risk assessment stages.

During the design stage of the PASDLC a variety of methodologies to develop
(ADD) and evaluate (ATAM) a software architecture can be used. Regardless
of the methodology used, as part of the DPIA, a privacy risk assessment will
be performed by the stakeholders of the software system. An example risk for
the app may be an unauthorised access to the NHS patient records which could
affect millions of people. Risk mitigation methods are then integrated into the
requirements and software architecture specifications, for example, limiting the
data access to the NHS patient records to only COVID-19 related data.

The software system is implemented using the approved requirements and
architecture specifications controlled by the software engineering methodology
the stakeholders choose. A primary goal when testing the software system will
be to ensure that the software system adheres to the approved DPIA by checking
that all implementable privacy measures have been implemented. After passing
the testing processes, the software system is deployed and remains in the mainte-
nance stage of the PASDLC until new features are added. Requiring the approval
of the DPO before the implementation stage of the PASDLC reduces the risk of
deploying a software system or integrating a new feature into an existing software
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system without an approved DPIA, as was the case for the contact-tracing app.
By integrating both and making it clear that this is an ongoing and repeated
lifecycle, we also hope to prevent a mismatch between DPIA and released sys-
tem, as was also the case for the NHS app, with a DPIA only being released for
an initial pilot test and not for the final system.

In lower level views of the PASDLC, specific processes, such as scrum or
waterfall (for the S.D. 4), ADD and ATAM (for S.D. 3) and requirements engi-
neering (for S.D. 1 and 2), will be inserted into the corresponding stage of the
PASDLC. Each activity within these processes will be mapped to the appro-
priate DPIA activities, providing an easy to use framework for engineers and
non-engineers alike to follow the development of a Privacy-Aware software sys-
tem.

The PASDLC will become an engineering privacy tool box which will not
only be compatible with PETs, PbD/DPbD and standards such as ISO/IEC
29110 [15,22] or the generally accepted privacy principles [2], it will prompt to
the user to consider the inclusion of relevant standards, processes or technologies
at the appropriate points. The PASDLC will not prescribe to the user any one
given standard, technology or processes and will encourage the user to research
the best standard, technology or process for the software system being developed.

This research will address three main challenges: measuring privacy, man-
aging communication issues and evaluating the PASDLC proof of concept. As
discussed in Sect. 2.4, Metric suites may be the solution to measuring privacy
within software systems and evaluating the effectiveness of the PASDLC.

Requiring stakeholders from different disciplines to work closer together
through the non-linear nature of the PASDLC may exacerbate existing com-
munication issues – such as the DPO not understanding technical terminology
within the DPIA – or create new ones. Part of this research will investigate
the potential for communication issues and explore mitigation techniques, such
as establishing a common vocabulary or defining system documentation, that
can be utilised by stakeholders to counter their adverse effects on the software
system. Successful mitigation techniques will be incorporated into the PASDLC
either as a step (such as in the case of establishing a common dictionary) or
highlighting existing steps to encourage users of the PASDLC to deploy the
appropriate mitigation technique.

The final challenge is the evaluation of the PASDLC proof of concept. Case
studies will have their software architecture redeveloped using the PASDLC pro-
cesses. The amount of privacy in both the original and redeveloped architectures
will be measured where we expect to see an increase in privacy within the rede-
veloped architecture.

4 Conclusion

This work aims to address the insufficient privacy measures implemented into
software systems, potentially caused by the poor representation of privacy within
many SDLC processes. We hypothesise that this problem can be addressed by
integrating the DPIA lifecycle with the SDLC creating the PASDLC.
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We will evaluate the developed PASDLC proof of concept by redeveloping
the software architectures of case studies using the PASDLC where we expect to
see an increase in privacy in the redeveloped architecture as measured by privacy
metrics. We will further investigate the PASDLC for potential communication
issues. Strategies to mitigate these issues will be developed to reduce consistency
problems across multiple artefacts and stakeholders of the software system.

The next steps are the development and evaluation of the proof of concept
PASDLC which will expand into the creation of an engineering privacy toolbox
which is both compatible and promotes the use of privacy standards, practices
and technologies.

Through the creation of an effective PASDLC we hope to see a reduction in
privacy breaches and violations that can cause financial and reputational harm
to the stakeholders of software systems which process sensitive data.
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Abstract. Data are the infrastructure of science, and for some scientific
studies, a vast amount of data might be needed. One way to obtain such
data is through Citizen Science (CS), a research technique that enlists the
public in gathering data. Although citizens themselves can be the source
of such data, most of the citizens’ participation in CS so far focused on
providing data concerning almost everything except themselves. In par-
ticular, citizens can participate as data donors (Citizens as Data Donors
(CaDD)), where they allow professionals to have access to their personal
data for the purposes of the public good. However, personal data cannot
be used without citizens’ consent as such data are protected by various
privacy laws. In this paper, a method for maximizing citizens’ partic-
ipation as data donors by understanding and addressing their privacy
requirements taking into consideration the perceived benefits and ease
of the donation behavior is proposed. The method is illustrated with an
example concerning an Ambient-Assisted Living (AAL) System.

Keywords: Data donation · CaDD · Privacy requirements ·
Behavioral change · Citizen Science

1 Introduction

Citizen Science (CS) is a research technique that enlists the general public (cit-
izens) in collecting and/or processing data as part of a scientific inquiry [1].
CS has been successfully used to provide solutions to real-world problems in
several different domains such as climate, medicine, computer science, genetics,
engineering, etc. [1,2]. Although citizens’ personal data might be of great impor-
tance for CS, most of the citizens’ participation in CS so far did not target such
data. In other words, citizens can participate as data donors (e.g., Citizens as
Data Donors (CaDD)), where they allow professionals to collect and/or have
access to their personal data for the public good (e.g., research).

Personal data can be of great value for research especially in the medical
domain, where such data can be used for improving health and social care on a
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large scale [3]. However, most developed countries enacted various laws and reg-
ulations to govern the use of personal data (e.g., GDPR in the EU [4], HIPAA [5]
for the healthcare domain in the USA, etc.). Failing to comply with privacy laws
may result in huge direct costs as well as indirect consequences such as damaging
customers’ trust, loyalty, etc. [6]. Accordingly, privacy became a main concern
when collecting, storing, and managing personal data [7], since personal data
cannot be used without citizens’ (legal owners/data subject) consent/approval.

According to Skatova et al. [8], we know very little about citizens’ motivations
to share their personal data freely for the purposes of the public good. Yet a
considerable number of citizens donate their blood, organs, stem cells, etc., and
they may donate their organs or their whole body after death [3]. Although
donating personal data is not like donating blood or organs because it might
endanger citizens’ privacy, understanding and tackling citizens’ privacy needs
and concerns shall increase their participation as data donors.

On the other hand, several behavioral change theories have been proposed
with a main objective of understanding, explaining, and/or predicting why and
how humans’ behavior changes (e.g., [9,10]). Usually, these theories rely on envi-
ronmental, personal, behavioral characteristics, ability, motivations, etc. as the
main factors that derive behavioral change. Behavioral change theories have been
successfully applied in several domains, e.g., medical, criminology, education to
mention a few. However, applying these theories to a novel behavior such as the
donation of personal data for the purposes of public good has not been deeply
investigated yet. To this end, a method for maximizing citizens’ participation
as data donors by understanding and tackling their privacy requirements taking
into consideration the perceived benefits and ease of the donation behavior is
proposed. Such a method shall advances research in different areas that rely on
personal data by making such data available for researchers.

The rest of the paper is organized as follows; Sect. 2 outlines the foundations
of this research, and Sect. 3 presents an example to illustrate this work. Section 4
presents the problem statement and research challenges, and the method is pre-
sented in Sect. 5. Section 6 discusses the advantages of this work, and Sect. 7
concludes the paper and discusses future work.

2 Research Baseline

2.1 Citizen Science

Haklay [11] classified CS projects based on the level/type of citizens’ partici-
pation into four levels (shown in Fig. 1): Level 1. (L1) Crowdsourcing: par-
ticipation is limited to the provision of data [11]. L2. Distributed intelligence:
participation focuses on collecting data and performing some basic activities [11].
L3. Participatory science: participants might be involved in the definition of the
problem and data collection method besides their role in data collection and
analysis [11]. L4. Extreme science: participants heavily participate in problem
definition, data collection and analysis.
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Citizens as Data Donors (CaDD) may occur at any of the previously men-
tioned levels, i.e., citizens’ participation can range from data provision to heavily
involved in problem definition. Unlike other forms of CS, citizens need to allow
professionals/scientists to collect and/or have access to their personal data for
the purposes of the public good. Therefore, understanding and addressing citi-
zens’ privacy requirements is essential for the success of CaDD projects.

Fig. 1. Venn diagram showing the levels of citizens’ participation in CS projects

2.2 Behavioral Change Theories

Several behavioral change theories have been developed with the main objective
of understanding, explaining, and predicting why and how humans’ behavior
changes (e.g., Theory of Planned Behavior (TPB) [9], Transtheoretical model
[10]). In particular, most of these theories try to analyze a specific behav-
ioral change by identifying key constructs that might influence human attitude
toward such behavioral change, i.e., accepting and/or participating in a specific
behavior.

The TPB has been adopted since it has been proven to be a useful tool in
explaining, predicting and changing many health behaviors [12]. Figure 2 shows a
representation of the TPB, where a human intention is driven by three factors: 1-
attitudes toward the behavior refer to the degree that a person has a favorable or
unfavorable evaluation of the behavior, 2- subjective norms refer to the perceived
social pressure to perform or not to perform the behavior, and 3- perceived
behavioral control refers to the perceived ease or difficulty of performing the
behavior. These three factors can be analyzed relying on behavioral, normative
and control beliefs respectively. Then, intentions is formulated based on these
three factors, and given a sufficient degree of actual control over the behavior ;
people are expected to carry out their intentions.

It worth mentioning that the TPB was a foundation for the Technology
Acceptance Model (TAM) [13] that models how individuals come to accept and
use a certain new technology. In this context, the TBP matches well the indi-
vidual nature of CaDD as it has to do with perceived usefulness, ease of use and
subjective norms.
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2.3 Privacy Requirements

Privacy is a vague concept to grasp, and numerous attempts have been made
to clarify this concept by linking it to more refined concepts. In [6], an exten-
sive ontology for privacy requirements has been proposed, which has been mined
through a systematic literature review1. This ontology provides the required con-
cepts and relationships for analyzing five main privacy requirements, namely: 1-
Confidentiality, means personal data should be kept secure from any poten-
tial leaks and improper access, 2- Anonymity, means the identity of data owner
should not be disclosed unless it is strictly required, 3- Notice, means data owner
should be notified when its data is being collected, 4- Transparency, means the
owner should be able to know who is using her/his data and for what purposes,
and 5- Accountability, means information owners should have a mechanism avail-
able to them to hold data users accountable for their actions concerning data.

This ontology can be used to facilitate and improve the design of CaDD
projects since it can reduce the vagueness and terminological confusion between
project designers and citizens by providing a shared understanding of privacy
requirements, which facilitate capturing and addressing such requirements.

Fig. 2. The diagram of the theory of planned behavior [9]

3 Illustrative Example: Ambient-Assisted Living (AAL)
System

AAL systems have been proposed as a solution to decrease the costs of health
care services as well as the workload of medical practitioners especially in the
case of chronic diseases (e.g., diabetes, obesity, cancer, etc.).

Our example concerns a person called Jack that suffers from diabetes. Jack
lives in a home that is equipped with an AAL system, which depends on several
sensors to collect Jack’s vital signs, insulin levels, location, activities, etc. Such
data is transmitted to a nearby caring center, where a nurse can monitor the
data, detect unusual situations and react accordingly. The nurse may also share
Jack’s data with a medical professional depending on Jack’s situation. The exact
same data that is being collected and processed for assessing and supporting

1 A detailed information about the systematic literature review can be found at [7].
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Jack’s life can be used for the purposes of the public good, i.e., advancing a
wide spectrum of medical research concerning diabetes. However, most of these
data are personal and cannot be used without Jack’s concern. Therefore, Jack’s
privacy requirements are key factors that need to be understood and tackled to
facilitate his participation as a data donor.

4 Problem Statement and Research Challenges

Considering the previous example, Jack’s data cannot be collected nor processed
without his consent. Therefore, we need to investigate how we can maximize the
acceptance of citizens for donating their personal data. Applying the TPB can
solve this problem, but it has not deeply investigated for such behavior yet. To
tackle this problem, we need to tackle the following Research Challenges (RCs):

RC1: How can we capture citizens’ privacy concerns/requirements for donating
their personal data for the purpose of public good?

RC2: How can we capture the main constructs of the TPB (attitudes, subjective
norms, perceived behavioral control, and intentions) with respect to citizens’
privacy requirements?

RC3: How significant is the impact of citizens’ attitudes, subjective norms, per-
ceived behavioral control on their intentions for donating their personal data?

RC4: How citizens’ actual behavior concerning the donation of their personal
data can be captured?

RC5: How well do citizens’ intentions for the donation of their personal data
conform to their actual behavior?

RC6: How can we derive citizens’ requirements for the donation of their personal
data?

5 Towards a Method for Deriving Citizens’ Requirements
for Donating Their Personal Data

The process underlying the method (shown in Fig. 3) has been developed based
on the TPB with special emphasis on privacy requirements. The process aims
at assisting CaDD project designers while deriving citizens’ requirements for
donating their personal data, and it is composed of eight steps that aim at
tackling the research challenges:

Step 1. Defining the behavior of interest: the behavior should be clearly
defined in terms of its actions, context, and time frame. Concerning our exam-
ple, the citizens’ behavior of interest is allowing the collection and processing
of their medical and activities related data. Moreover, we need to identify a
list of citizens’ personal data that are subject to the behavior, which includes:
her/his vital signs, insulin levels, physical activities and treatment data.
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Fig. 3. A process for deriving citizens’ requirements for donating their personal data

Step 2. Specifying the research target population: the target population
of this research can be any individual that suffers from diabetes. In case of a
minor, their legal guardian can provide the consent on behalf of them. Note
that some techniques form crowdsourcing can be adopted for specifying the
diversity, largeness and suitability of the research target population. More-
over, the population demographics should be captured at this step since it
will be used in Step 4.2.

Step 3. Identifying main related privacy requirements: based on the
list of personal data that have been identified in step one, a set of privacy
requirements can be formulated at this step taking into consideration the
privacy requirements presented in Sect. 2. More specifically, we identify all
privacy requirements (e.g., confidentiality, anonymity, transparency, notice,
accountability) that can be applied to tackle privacy concerns related to the
identified personal data.

Step 4. Formulating items for measure: at this step, we formulate items
to be used for assessing the main constructs of the TPB: attitudes, subjec-
tive norms, perceived behavioral control, and intentions. Basically, this step is
composed of two sub-steps:
Step 4.1 Eliciting salient beliefs: three types of salient beliefs (also called

accessible beliefs) should be elicited: behavioral, normative, and control to
formulate items for direct measure of attitudes, subjective norms, and per-
ceived behavioral control respectively. This can be done by conducting an
elicitation study by providing open-ended questions about the behavior of
interest to sample participants, and the most frequently mentioned beliefs
are used as salient beliefs. Following [9,14], examples of how such beliefs
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can be elicited are provided as follows:
Salient behavioral beliefs can be elicited by asking the participants ques-
tions like What do you believe are the advantages/disadvantages of donat-
ing your personal data for the purpose of the public good? We can be more
specific by asking directly about the potential disadvantages of donat-
ing personal data with respect to the privacy concerns/requirements pre-
sented in Sect. 2. For instance, we can list these privacy concerns (e.g.,
confidentiality, anonymity, transparency, etc.) along with their definitions
and ask participants questions like What do you believe are the disadvan-
tages of donating your personal data for the purpose of research with
respect to the list of privacy concerns? To assure a more complete set
of privacy concerns and their corresponding disadvantages, we can ask
questions like Do you believe there are other privacy concerns for donat-
ing your personal data that is not covered by the provided list?, If yes,
please list privacy concerns as well as any disadvantages of donating your
personal data with respect to them.
Concerning salient normative beliefs, first we identify relevant referent
individuals/groups (e.g., family, friends) that might influence the partici-
pants’ decision. Then, we capture the participant’s motivation to comply
with what their referent thinks by asking questions like How much do you
want to do what your referent thinks you should do? Also, we can be more
specific by asking direct questions like Are there any referent who would
approve/disapprove your decision for donating your personal data for the
purpose of research if the confidentiality, anonymity, transparency, etc.
of such data was assured/not assured?
Salient control beliefs can be elicited with respect to privacy concerns by
asking questions like What kind of privacy concerns might demotivate you
for donating your personal data? Or we can make these questions more
specific by including examples of potential privacy concerns and asking
participants whether such concerns might negatively influence their deci-
sions. Moreover, we need to understand whether addressing such concerns
will facilitate the donation behavior by asking questions like What kind of
privacy protection mechanisms might motivate you for donating your per-
sonal data for the purpose of the public good? Similarly, we can make such
questions more specific by including examples of the potential privacy
protection mechanisms and asking participants whether such protection
mechanisms might positively influence their decisions.

Step 4.2 Formulating items for direct measure: this can be done
through a pilot questionnaire that includes items to measure each of the
obtained salient beliefs on optimal scaling (e.g., 7 points Likert scale) to
select reliable and valid items for the direct measure. Following [9,14],
examples on how to formulate potential direct measures are provided:
Consider that one of the identified advantages of donating personal data
is improving research in your chronic disease domain; a measure of atti-
tude toward this behavior could take the following form: On a scale of
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1 o 7, where 7 is the highest, donating your personal data for advancing
research in the area of your chronic disease can be:

Worthless 1 2 3 4 5 6 7 Valuable

Consider that the identified referent is family and one of the normative
beliefs is complying with what my family believes; a potential direct mea-
sure of subjective norms toward the behavior could take the following
form:
My family whose opinion I value would:

Approve/Encourage 1 2 3 4 5 6 7 Disapprove/Discourage

my decision for donating my personal data for advancing research.
Consider that one of the identified control beliefs (e.g., a privacy concern)
of donating personal data is losing confidentiality; a potential direct mea-
sure of perceived behavioral control could be formulated as follows: Donat-
ing my personal data for research without protecting my confidentiality
would be:

Impossible 1 2 3 4 5 6 7 Possible

Finally, a potential direct measure of Intentions can be formulated based
on [9] as follows:

I intend/plan to donate my personal data for the purpose of research?

Extremely unlikely 1 2 3 4 5 6 7 Extremely likely

Based on the result of the pilot questionnaire, we can formulate direct
measures for the constructs of the TPB.

Step 5. Preparing and performing the standard questionnaire: after
formulating the items for the direct measure, we can prepare the questionnaire
to be used in the study. Moreover, we need to define the procedure to be
followed including how the questionnaire will be available for participants
and for how long. When the questionnaire procedure is consolidated, the
questionnaire can be performed.

Step 6. Measuring the actual behavior: clear criteria for measuring the
actual behavior should be defined. Concerning our example, the actual behav-
ior can be easily measured by contacting the participants after a specific
period of time (e.g., two/three months) and asking them whether they had
agreed to donate their personal data for research.

Step 7. Analyzing results: we analyze the results of the questionnaire and
the actual behavior trying to identify significant correlations between the
variables of the study. The TPB model can be revised based on the result of
the analysis by removing variables that do not have significant relationships
(e.g., path analysis). We also identify the control variables that are signifi-
cantly correlated with at least one of the main constructs of the TPB.



Citizens as Data Donors 237

Step 8. Deriving citizens’ requirements for donating their personal
data: based on the result of the analysis, we will have the final TPB model
that contain the main TPB constructs, which can be used to predict/explain
citizens’ intentions as well as how such intentions might maximize the behav-
ior. This knowledge can be used to derive citizens’ requirements for donating
their personal data. For instance, we may find that assuring the anonymity
(one of the privacy requirements) of citizens’ data may positively contribute
to their attitudes, which contributes to their intentions and in turn to their
actual behavior. Similarly, we may find that assuring the notice concern may
positively contribute to citizens’ perceived behavioral control that contributes
to their intentions and in turn to their actual behavior.

6 Discussion

The main objective of this paper is to highlight the importance of citizens’
participation as data donors, and it is intended to be a starting point for under-
standing and tackling citizens’ requirements for donating their personal data for
the public good concerning their privacy concerns. Such requirements can be
derived from our TPB based method, after identifying which are the main con-
structs that can be used to maximize citizens’ intentions to participate as data
donors and in turn their actual participation. This would constitute a great step
forward in improving research in vast areas by making personal data available to
be used by researchers. The method also captures beliefs that influence the main
TPB constructs, which can be used to gain a better understanding of how we
can influence citizens’ decisions starting from their beliefs. Although the method
focused on the medical domain, it can be applied to other domains.

CaDD may solve several existing problems in other forms of CS such as
the quality and trustworthiness of collected data [15], since data is collected
and managed only by professionals, who can apply appropriate protocols for
ensuring the quality and trustworthiness of collected data. Moreover, collected
data can be used for various projects if the purpose of such projects is complaint
with the citizens’ privacy requirements, i.e., researchers can avoid the burden of
collecting the data they require for their work, they only need to be compliant
with the specified privacy requirements. This can save the time and effort of
many researchers by allowing them to focus on their scientific contributions
rather than on collecting data and paperwork.

7 Conclusion and Future Work

In this paper, the importance of citizens’ participation as data donors for research
was discussed. Several research challenges to be tackled in order to identify
citizens’ participation requirements were listed and discussed. Then, a method
to be followed for deriving citizens’ participation requirements was presented.
The method has been developed based on the TPB with special emphasis on
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privacy requirements, and examples from the medical domain to illustrate its
usability and usefulness were used.

This is still a research-in-progress, which provide opportunities for future
research. In particular, the proposed method is yet to be refined aiming to have
a consolidated version of it, which can be reliably used for CaDD projects. The
method will be validated by deploying it to real CaDD studies from different
domains. Also, investigating how influencing some of the citizens’ beliefs to
increase their participation as data donors is on the agenda for future work.
Additionally, it is planned to develop a Goal-Oriented Requirements Engineer-
ing (GORE) framework [16] that allows for modeling and analyzing citizens’
requirements for the donation of their personal, which may facilitate the adop-
tion of our proposed method. GORE can accommodate well the main constructs
of the TPB as well as their main interrelationships since it allows for capturing
citizens’ requirements in their social and organizational context.
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Abstract. Today, tracking and controlling the spread of a virus is a
crucial need for almost all countries. Doing this early would save mil-
lions of lives and help countries keep a stable economy. The easiest way
to control the spread of a virus is to immediately inform the individ-
uals who recently had close contact with the diagnosed patients. How-
ever, to achieve this, a centralized authority (e.g., a health authority)
needs detailed location information from both healthy individuals and
diagnosed patients. Thus, such an approach, although beneficial to con-
trol the spread of a virus, results in serious privacy concerns, and hence
privacy-preserving solutions are required to solve this problem. Previ-
ous works on this topic either (i) compromise privacy (especially privacy
of diagnosed patients) to have better efficiency or (ii) provide unscal-
able solutions. In this work, we propose a technique based on private
set intersection between physical contact histories of individuals (that
are recorded using smart phones) and a centralized database (run by a
health authority) that keeps the identities of the positively diagnosed
patients for the disease. Proposed solution protects the location privacy
of both healthy individuals and diagnosed patients and it guarantees that
the identities of the diagnosed patients remain hidden from other indi-
viduals. Notably, proposed scheme allows individuals to receive warning
messages indicating their previous contacts with a positively diagnosed
patient. Such warning messages will help them realize the risk and isolate
themselves from other people. We make sure that the warning messages
are only observed by the corresponding individuals and not by the health
authority. We also implement the proposed scheme and show its efficiency
and scalability via simulations.

1 Introduction

A pandemic, which typically occurs due to uncontrollable spread of a virus, is
a major threat for the mankind. It may have serious consequences including

An extended version of this work is available at: https://arxiv.org/pdf/2003.13073v2.
pdf.
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people losing their lives and economical devastation for countries. To decrease
the severity of such consequences, it is crucial for countries to track the spread
of a virus before it becomes widespread.

Main threat during such a spread is the individuals that had close contact
with the carriers of the disease (i.e., people carrying the virus before they are
diagnosed with the disease or before they start showing symptoms). Thus, it is
very beneficial to identify and warn individuals that were in close contact with
a carrier right after the carrier is diagnosed. If a country can identify who had
close contact with the already diagnosed patients, by sending warnings to its
citizens and telling them to self-quarantine themselves, the spread of the virus
can be controlled. By doing so, individuals that receive such warnings (that they
had close contact with one or more diagnosed patients) can take self-measures
immediately. This is also economically preferred instead of completely shutting
down a country.

However, implementing such an approach is not trivial due to privacy reasons.
First of all, due to patient confidentiality, identities of diagnosed patients cannot
be shared with other individuals. Similarly, healthy individuals do not want to
share sensitive information about themselves (e.g., their whereabouts) with the
authorities of the country.

In this work, we propose a privacy-preserving technique that allows individ-
uals receive warnings if they have been in close proximity of diagnosed patients
in the past few weeks (that is determined based on the incubation period of
the virus). We propose keeping the (physical) contact histories of individuals by
using communication protocols in their smart phones. These contact histories
are then used to determine if an individual was in close contact with a diagnosed
patient in the past few weeks, and if so, the individual receives a warning. In
order to do this in a privacy-preserving way, the proposed system uses private
set intersection (PSI) on the background as the cryptographic building block
(between the local contact histories of the individuals and database keeping the
identities of the diagnosed patients). Even though PSI consumes more resources,
it provides more privacy for the involving parties. By utilizing PSI, we aim to
mitigate the privacy vulnerabilities of existing schemes.

The proposed scheme guarantees that (i) identities or the whereabouts of the
diagnosed patients are not revealed to any other individuals, (ii) contact histories
of the individuals are not shared with any other parties, (iii) warning received by
an individual (saying that they were in close proximity of a diagnosed patient)
is only observed by the corresponding individual and no one else, and (iv) the
individual that receives a warning can anonymously share their demographics
with the healthcare officials only if they want to. Furthermore, we also propose
an extension of the proposed scheme against malicious individuals that may try
to tamper their local contact histories in order to learn the diagnosis of some
target individuals. We also implement and evaluate the proposed technique to
show its efficiency and practicality.

The rest of the paper is organized as follows. In the next section, we sum-
marize the related work. In Sect. 3, we describe the proposed solution in detail.
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In Sect. 4, we implement and evaluate the proposed scheme. Finally, in Sect. 5,
we conclude the paper.

2 Related Work

The importance of disease surveillance (without considering the privacy) has
been studied by [4,5]. Privacy considerations in existing contact tracing mobile
apps for COVID-19 are addressed in [6]. Authors show that none of the existing
apps and schemes (except for private messaging systems which lack scalability)
can protect the privacy of diagnosed patients and other exposed individuals at
the same time.

Most of the current proposed systems are Bluetooth-based. Covid Watch
[2] is an open source project that relies on Bluetooth for contact tracing and
also uses anonymized GPS data to detect high-risk areas. Furthermore, Epione
[13] is a PSI-CA based system, where a new semi-honest PSI-CA primitive for
asymmetric sets is used. While Epione is very similar to our proposed work, we
published our initial idea [8] on arxiv simultaneously with Epione.

A privacy-preserving Bluetooth protocol for contact tracing is proposed in [3].
Users receive the information about diagnosed people from a diagnosis server and
the matching is done locally on the user’s device. In a similar system proposed
in [14], users keep their local contact histories by broadcasting their ephemeral,
pseudo-random IDs from their smart phones and recording the IDs of other users
that are in close proximity. The risk of a person for contracting the disease is
computed locally on their phone. However, this system is not robust against a
malicious user that may try to identify the infected individuals by observing (or
modifying) their contact history.

Some apps, including [10,11] track individuals’ location and save it in a local
database. However, such an approach compromises location privacy of diagnosed
patients as location information is gathered by the health authorities. As opposed
to these approaches, in this work, we propose a scheme that protects the privacy
of diagnosed individuals as well as the healthy ones.

Some other works incorporate different building blocks as well. In [12], a
secure multiparty computation-based approach is proposed. Another solution
utilizes trusted execution environment (TEE) [1]. Here, users share encrypted
location history and also the test status. The system uses private computation
to determine the people who were in contact with a diagnosed person. Finally,
in [15], authors introduce BeepTrace, which is a blockchain-enabled approach.

3 Proposed Solution

In this section, we first introduce our system and threat models and then, we
describe the proposed solution in detail.
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3.1 System Model

The proposed system includes healthy (or not yet diagnosed) individuals with
smart phones, diagnosed patients for the disease, and a health authority (e.g.,
ministry of health or NIH). Individuals interact with the database of the health
authority. In the following, we will describe the proposed scheme assuming a
single database for the health authority. For the sake of generality, one can also
assume multiple local databases for the health authority (e.g., located in different
geographical regions).

The health authority keeps the identities of the diagnosed patients and it
does not want this information to be learnt by other parties. Individuals keep
their local (physical) contact histories in their smart phones and they do not
want this information to be observed by other parties (including the health
authority). Also, when an individual receives a warning about a contact with a
diagnosed patient, the individual wants to make sure that no other party can
observe this warning.

3.2 Threat Model

We consider a semi-honest attacker model for the parties that involve in the
protocol. That is, each party in the system follows the protocol honestly but
they may be curious to learn sensitive information of the other parties. On the
other hand, individuals may try to learn the identities of diagnosed patients or
the health authority may try to learn the contact histories of the individuals. As
we will discuss in detail later, the proposed algorithm protects the parties against
these threats. Finally, we assume all communications between parties (between
smart phones of two individuals or between an individual and the database of
the health authority) are encrypted, and hence robust against eavesdroppers.

In the following, we provide a list of possible attacks against the proposed
system.

1. A curious user trying to infer contact information or diagnosis belonging to
a target user.

2. A curious user trying to introduce fake contacts in the contact list,
3. The server colluding with a curious user to infer contact information or diag-

nosis belonging to another target user.

3.3 Keeping the Contact History at Local Devices

Each individual keeps a vector in their local smart phone for their physical
contact history. When an individual A spends some amount of time within the
close proximity of an individual B, their phone records the ID of person B. For
IDs of the individuals, we propose using the hash of their User ID (UID), which is
generated by the application. To measure the proximity between the individuals,
we propose using the Bluetooth signals on their devices. Thus, to add individual
A as a contact, B needs to spend at least t seconds within r radius of A. This
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process is also illustrated in Fig. 1. As a result of this interaction, the new record
in the contact history of A is the ID of B. Each individual may also separately
keep the time and the duration of the contact (to have more insight about their
risk, as will be discussed later).

Fig. 1. Keeping and updating local contact histories of the individuals.

It has been shown that the strengths of Bluetooth signals can be used to
approximate the distance between two devices [9,16]. Alternatively, one can also
use (i) just the Bluetooth coverage (e.g., when two devices are in the range of
each other for more than t seconds, they can update their local contact histories
with each others’ IDs), (ii) GPS information (when two devices are within their
Bluetooth coverage, they can exchange GPS information to measure their dis-
tance more accurately and update their local contacts if they spend more than t
seconds within a close range of each other), or (iii) NFC signal coverage (when
the devices are within NFC signal coverage of each other, which is about 3 feet
maximum, for more than t seconds, they can update their local contact histories
with each others’ IDs). Since this part is not the main contribution of the paper,
we do not go into the details of establishing the contact histories.

It is important to make sure that an individual cannot add a contact in their
contact list aiming to learn whether a target person has positive diagnosis or not.
For instance, knowing the UID of a target person, an attacker may construct its
local contact list only from the ID of that target, and hence learn the diagnosis
of the target. To prevent such an attack, we consider two options: (i) make
sure the local contact histories of individuals are stored in such a way that
data cannot be accessed or modified by the individuals (e.g., the local contact
history can be encrypted in the device by the key of the health authority or
the contact history can be stored in a storage for which the individual does not
have read/write permission). Or, (ii) each new contact B of an individual A also
includes a digital signature that is signed by a centralized authority (e.g., the
telecom operator). To do so, if individuals A and B spend a certain amount of
time within close proximity of each other (measured as discussed before), they
both send the contact request to the operator, the operator signs and sends
back the signed contact record to both parties, and each party keeps the contact
records and the corresponding signature together. This way, an attacker cannot
fake new contacts in its local contact history. The validity of these signatures are
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then verified when the local contact history of an individual is compared with
the diagnosed patients in the health authority’s database.

Using either of these techniques, the developed algorithm makes sure that the
contact history cannot be tampered by the individual. Note that if the storage
of the local contact list would be an overhead, it is also possible to store the local
contacts of an individual at a cloud server (encrypted by individual’s key) and
update the local contacts periodically. Current Bluetooth based solutions, such
as [3] do not let the users access their contact histories (that is stored on their
mobile devices). Even if the user can access their contact history, tampering with
this list can be avoided by using digital signatures and encryption, as explained
in this section.

3.4 Keeping the IDs of Diagnosed Patients at a Centralized
Database

When an individual is diagnosed (e.g., by a hospital) with the disease, the User
ID (UID) of the positively diagnosed patient is stored in the database of the
health authority (e.g., ministry of health), as shown in Fig. 2. It is important
to note that only the hospital and the health authority know the ID of the
diagnosed individual.

Alice diagnosed 
posi�ve for the disease

Alice’s ID is stored by 
the database 

Fig. 2. Updating the database of the health authority with the IDs of the diagnosed
patients.

3.5 Private Set Intersection to Identify the Individuals at Risk

The application on an individual’s smart phone sends queries to the health
authority’s database following a random schedule. This schedule can be deter-
mined by the system to avoid an overload to the database. It is also important
not to allow the individual to send queries at any time in order to control the
system’s bandwidth.

An individual A uses their contact history to query the database of the health
authority and the goal is to identify whether there is an intersection between
the local contact history of the individual and the IDs of the diagnosed patients
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in the authority’s database (as shown in Fig. 3). Size of this intersection reveals
the number of diagnosed people with whom A had been in close proximity in
the previous a few weeks. As the size of the intersection increases, the risk of
individual A being infected also increases. The proposed algorithm provides the
result of this intersection to individual A as a warning message. Using the warn-
ing, the individual may take early precautions (e.g., have a test or quarantine
themselves).

a b c

Bob

Bob’s contact history

Bob queries the database

Bob learns if he has contact 
with any diagnosed pa�ents

Fig. 3. Privacy-preserving interaction between an individual and the database of the
health authority.

To compute this intersection in a privacy-preserving way, we use the private
set intersection cardinality (PSI-CA) protocol, in which parties that are involved
in the protocol obfuscate their inputs (sensitive information) and compute the
result of this intersection. Eventually, only individual A learns the result of the
intersection and the health authority does not learn any information about the
contact history of individual A or the result of the intersection. We also make
sure that individual A does not learn anything about the database content of
the health authority (e.g., IDs of diagnosed patients).

Here, we explain the details of the proposed PSI-CA based protocol between
an individual (client) and the health authority (server). As input to the protocol,
client has its local contact list and server has the list of positively diagnosed
patients.

Client masks its input with the random exponent R
′
c and obtains the list of

ai-s and computes X = gRc (X is similar to an ElGamal public key). Client
sends the list of ai values and X to the server.

Server permutes its input list and applies H(.) on the list. Server masks ai

values with its random exponent R
′
s, shuffles the resulting list, and computes Y =

gRs , which is a public-key like value. Server creates the list of tsj-s by applying
the one-way function H(.) over the multiplication of XRs and exponentiation of
hsj-s to random value R

′
s. Server sends shuffled and masked ai values, Y , and

tsj-s to the client.
As the last step, client does the matching between the list of tsj-s that it

received from the server and its own list of tci-s. tci-s are obtained by applying
the one-way function H(.) over the multiplication of Y Rs and the shuffled ai-s,
which are stripped of the random value R

′
c. At the end of the protocol, client
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only learns the cardinality of the intersection. At the last step, a notification is
generated based on the output of PSI-CA.

3.6 Further Steps to Track the Spread

Once an individual receives a warning as a result of the proposed algorithm, they
can choose to (i) provide (anonymous) information back to the health authority
to help the authority to track the spread and/or (ii) share their local contact
history with the health authority to get further information about their risk.

In (i), the individual shares their demographics, the size of intersection they
obtain as a result of the proposed algorithm, and their location with the health
authority. Using such information received from different individuals, the health
authority can have a clear idea about how the virus spreads in the population.
In (ii), the health authority, using the local contact history of the individual
and further details about the contacts of individual (duration and location of
each contact), can provide a more detailed risk information to the individual
(e.g., if the duration of the contact with a diagnosed patient is long, then the
risk of individual also increases). As discussed before, such contact details (i.e.,
duration or location) are not used in the proposed privacy-preserving algorithm;
they can be collected and kept by the individual and may be shared with the
health authority to get more insight about the risk.

4 Evaluation

We implemented and evaluated the proposed privacy-preserving search algo-
rithm. We ran our experiments on macOS High Sierra, 2.3 GHz Intel Core i5,
8 GB RAM, and 256 GB hard disk. We used MD5 as the hash function to hash
the UIDs of individuals in the local contact lists and in the health authority’s
database. We used the implementation of PSI-CA in [7], in which q and p are 160
and 1024 bits, respectively. We ran each experiment for 20 times and reported
the average.

We show the results of the evaluation of PSI-based solution in Tables 1 and 2.
In Table 1, we set the size of client’s local contact list to 1, 000 and vary the size
of server’s database. In Table 2, we set the size of server’s database to 100, 000
and vary the size of client’s local contact list. Our results show that the online
phase of the protocol can be efficiently completed by the parties even when the
input sizes of both parties are significantly large. Note that the server does not
need to run the offline part of the algorithm for each client separately. Instead,
the server can use the same offline computation during its interaction with every
client. Also, a client can conduct its offline steps as it generates its local contact
list.

Complexity of the proposed algorithm is linear in the size of the two sets.
Let the cardinality of server’s set be w and client’s set be v. Client performs
2(v + 1) exponentiations with |q|-bit (short) exponents modulo |p|-bit and v
modular multiplications. Server performs (v +w) modular exponentiations with
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Table 1. Offline and online run-times
for PSI-based protocol (in millisec-
onds) at the client (individual) and
server (health authority) with vary-
ing size for server’s database. Size of
client’s contact list is set to 1, 000.

Size of server’s

database

Offline

time (ms)

Online time

(ms)

1,000 Client: 210.6 Client: 100.85

Server: 388.05 Server: 107.5

10,000 Client: 201.2 Client: 978.7

Server: 2213.5 Server: 1003.8

100,000 Client: 202.95 Client: 9766.1

Server: 20054.1 Server: 9925.6

1,000,000 Client: 202.4 Client: 96685.8

Server: 194289.6 Server: 98631.1

Table 2. Offline and online run-times
for PSI-based protocol (in millisec-
onds) at the client (individual) and
server (health authority) with varying
size for client’s local contact list. Size
of server’s database is set to 100, 000.

Size of client’s

contact list

Offline

time (ms)

Online time

(ms)

10 Client: 2.7 Client: 9852.95

Server: 20012.75 Server: 9560.8

100 Client: 22.6 Client: 9854.2

Server: 20218.1 Server: 9968.65

1,000 Client: 202.3 Client: 9817.5

Server: 20448 Server: 9979.75

10,000 Client: 1990.4 Client: 9787.45

Server: 20246.45 Server: 9970.65

short exponents and w modular multiplications. The resulting communication
overhead is 2(v+1) |p|-bit and w κ-bit values, where κ is the security parameter.
It can be deduced from these results that the protocol does not incur a significant
overhead for a smart phone. Security and correctness of the proposed algorithm
depends on the security and correctness of the original PSI-CA algorithm. We
refer to [7] for details.

5 Conclusion

In this paper, we have proposed a privacy-preserving technique to control the
spread of a virus in a population. The proposed technique is based on private set
intersection between physical contact histories of individuals (that are recorded
using smart phones) and a centralized database (run by a health authority) that
keeps the identities of the positively diagnosed patients for the disease. We have
shown that individuals can receive warning messages indicating their previous
contacts with a positively diagnosed patient as a result of the proposed technique.
While doing so, neither of the parties that involve in the protocol obtain any
sensitive information about each other. We believe that the proposed scheme can
efficiently help countries control the spread of a virus in a privacy-preserving way,
without violating privacy of their citizens.
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Abstract. Popularization of privacy policies has become an attractive
subject of research in recent years, notably after General Data Protec-
tion Regulation came into force in the European Union. While GDPR
gives Data Subjects more rights and control over the use of their per-
sonal data, length and complexity of privacy policies can still prevent
them from exercising those rights. An accepted way to improve the inter-
pretability of privacy policies is through assigning understandable cate-
gories to every paragraph or segment in said documents. Current state
of the art in privacy policy analysis has established a baseline in multi-
label classification on the dataset containing 115 privacy policies, using
BERT Transformers. In this paper, we propose a new classification model
based on the XLNet. Trained on the same dataset, our model improves
the baseline F1 macro and micro averages by 1–3% for both majority vote
and union-based gold standards. Moreover, the results reported by our
XLNet-based model have been achieved without fine-tuning on domain-
specific data, which reduces the training time and complexity, compared
to the BERT-based model. To make our method reproducible, we report
our hyper-parameters and provide access to all used resources, including
code. This work may therefore be considered as a first step to establishing
a new baseline for privacy policy classification.

Keywords: Privacy policy · Multi-label classification · Deep learning

1 Introduction

Despite the rising importance of how personal data is managed and protected,
people still routinely skip privacy policy contracts, due to their complexity and
length. A simple word count on privacy policies of the biggest digital companies
shows that after GDPR came into force in 2018, the length of privacy policy
contracts has increased by over 25% on average, peaking at 94% for Wikipedia
[13]. With the increase of number of digital services we use, it became less and
less enticing to try to understand what is seemingly an endless block of text.

The recent research works have made a considerable progress in helping sci-
entists and end users make sense of the conditions described in privacy policies,
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by classifying their segments into understandable pre-defined categories, that
users can refer to and compare between policies. These efforts resulted in the
creation of several datasets of various detail level, containing diverse categories
describing the policies from different aspects, depending on the objective.

This work is developed within the ASGARD project1, in particular, its RUNE
track, whose objective is supporting the automation of privacy by design. One of
the primary tasks of the track is translation of privacy policies, data processing
agreements and contracts into a machine-readable format. Such task requires
a trustworthy dataset for extraction of policy attributes. We experiment with
the OPP-115 dataset [16], which is an accepted gold-standard containing 115
annotated privacy policies. To the best of our knowledge, this is the most detailed
and widely used privacy policy dataset in the research community, despite being
somewhat outdated and incomplete for usage in the GDPR-specific context [6].

In this paper, we present a privacy policy classification model based on XLNet
[17] and showcase its performance in comparison to the baseline, established by
Najmeh Mousavi Nejad et al.2 [10] using BERT on OPP-115 dataset with two
gold standards: majority vote and union-based. Our goal is to strengthen the
baseline results using the latest advancements in Deep Learning and Natural
Language Processing, as well as to demonstrate the performance of pre-trained
XLNet in legal domain. Our approach of applying XLNet for privacy policy
classification outperforms the state of the art in terms of macro/micro average
F1-scores by 2%/1% for the majority vote and 3%/3% for the union-based gold
standard. This result has been achieved without fine-tuning our XLNet-based
model on domain-specific data, comparing to the fine-tuned BERT-based model
in [10]. We make sure to guarantee reproducibility of our results through keeping
the same splits as the baseline [10] and sharing the hyperparameters and code3.
This work may therefore be considered as a first step to establishing a new
baseline for privacy policy classification with OPP-115 dataset.

The paper is structured as follows: in Sect. 2 we lay out the research efforts in
privacy policy analysis; in Sect. 3 we describe the model and how it differs from
the BERT-based baseline model; Sect. 4 reports our results in privacy policy
classification; we discuss our findings in Sect. 5; finally, Sect. 6 concludes the
paper and outlines our plans for the future work.

2 Related Work

After GDPR has been enforced EU-wide, interest towards privacy policy analysis
has increased significantly, which is evident by the great number of privacy and
GDPR-related research projects in the EU and worldwide. Among the most
prominent of them, the Usable Privacy Policy Project4, started long before the

1 Supported and funded by the Walloon region, Belgium.
2 To be published in the proceedings of The 35th International Conference on ICT
Systems Security and Privacy Protection (2020).

3 https://github.com/euranova/privacy-policy-classification-xlnet.
4 https://usableprivacy.org/.
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GDPR, aims to benefit users through demystifying privacy policies. OPP-115
dataset [16] has been created in the context of the project, and became the
first of its kind, with fine-grained annotations on paragraph level. Several other
useful datasets have also been released for the same project [12,18]. In our work
we make use of OPP-115, as it is the most used dataset in the privacy policy
research, due to its detail level and rigorous annotation procedure.

Another outstanding project in the field of improving interpretability of pri-
vacy policies is Polisis [7] – a framework that categorizes, visualizes, and explains
the contents of a policy to an end user in an interactive manner. The authors
have trained their classification model on OPP-115, and reported their results.
In this paper we do not compare our model to Polisis’ CNN-based model, since
the current BERT-based state of the art already outperforms it.

Beyond the research community, we can note “Terms of Service; Didn’t Read”
(ToS;DR)5 project, which utilizes crowd-sourcing efforts to evaluate and classify
terms of service and privacy policy documents in the context of their fairness to
the users and how much concern they raise for data privacy and security. The
ratings given to various services and websites help end users grasp the overall
meaning and important notions in the policies, though the categories are less
detailed than the ones the OPP-115 dataset presents.

When it comes to classification of textual data, until very recently, state of the
art relied mostly on the variations of Recurrent Neural Networks [3,8]. However,
the inherent sequential nature of recurrent models is what limits their ability to
process long sentences and stands in the way of faster parallel training. Atten-
tion mechanism [2] confronted the problem by modeling dependencies regardless
of the distance between the sequence elements. Consequently, Transformers [14]
were designed to speed up the training for neural machine translation, through
reducing sequential computation with multiple self-attention heads. The Bidirec-
tional Encoder Representations from Transformers (BERT) [5] improved upon
the limitations of existing work in pre-trained contextual representations [9,11]
by using deeply bidirectional contextualization. BERT was the first generic rep-
resentation model that achieved state-of-the-art performance on a large array
of sentence-level and token-level tasks, outperforming many task-specific models
[5]. In the context of our work, the latest and best reported performance on the
OPP-115 dataset until now has been achieved by Najmeh Mousavi Nejad et al.
[10] with a model based on fine-tuned BERT, which we adopt as a baseline.

3 XLNet Privacy Policy Classification Model

In order to compare fairly to the state of the art, we use the OPP-115 datatset
with the same splits as in [10], on which we train our classifier, consisting of a
pre-trained XLNet6,7 and a dense layer for classification. In this Section, we lay

5 https://tosdr.org/about.html.
6 https://github.com/huggingface/transformers.
7 https://github.com/kaushaltrivedi/fast-bert.
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out the background and justify the decisions made for our classification model,
by discussing the differences between XLNet and BERT.

3.1 Transformer-XL and XLNet

A limitation of vanilla Transformers is in stateless computations that put an
upper limit on the distance of relationships they can model [1]. The Transformer-
XL [4] is an extension of the Transformer that overcomes this shortcoming
by caching the hidden states of the previous sequence and passing them as
keys/values when processing the current sequence. It also introduces relative
positional embeddings that encode relative distances between words and allow
the model to compute the attention score for words that are before and after
the current word.

XLNet [17] changed the way a language modeling problem is approached.
It is an auto-regressive language model that outputs the joint probability of
a sequence of tokens with recurrence. It calculates the probability of a word,
conditioned on all possible permutations of words in a sentence, as opposed to
just those to the left or the right of the target word. The model achieves state-
of-the-art performance on the GLUE benchmark [15], trained on a large corpus.

3.2 XLNet vs BERT

Despite its strong performance across the multitude of tasks, BERT has attracted
criticism due to the following flaws [17]:

– In the Transformer architecture the model can acquire context information
exclusively within the boundaries of the maximum input sequence length, so
a longer document would be divided into independently processed segments.

– BERT suffers a discrepancy between fine-tuning and pre-training, when it
comes to predicting masked tokens: during pre-training, tokens are replaced
with the [MASK] symbol, though, it never appears in downstream tasks.

– When predicting masked tokens, BERT disregards the dependencies between
them, thus reducing the number of dependencies it can learn at once.

The sequence length constraint is tackled by XLNet due to the features of
Transformer-XL, whose Recurrence Mechanism and Relative Positional Encod-
ing help capture long-term dependencies for longer documents. The model caches
the hidden state sequence, computed from the previous segment, and reuses it as
an extended context, when processing the next segment. This additional input
allows the network to exploit historical information, and still keep the gradient
within a segment. While BERT encodes context positions statically, Relative
Positional Encoding of Transformer-XL allows for the encoding of positions in a
relative distance from the current token at each attention module. The aim is to
accommodate the Recurrence Mechanism and avoid having tokens from different
positions with the same positional encoding.

Transformer-XL only holds unidirectional context, predicting current token
based on sequential context on its left or its right. However, it solves the issue by
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introducing the Permutation Language Modeling objective: instead of predicting
tokens in sequential order, it follows a random permutation order. Only the last
tokens in a factorization order are chosen for training to reduce optimization
difficulty that comes from working with permutations.

Building on the information above, we believe that applying XLNet to the
downstream task of privacy policy classification holds the potential of improving
the current baseline results achieved with the BERT-based model in [10].

4 Evaluation

To evaluate our approach, we follow Najmeh Mousavi Nejad et al. [10] and train
our XLNet-based classifier on the Online Privacy Policies (OPP-115) dataset. A
comprehensive description of the dataset and its categories can be found in [16],
and the gold standards with their label distributions are presented in [10]. Thus,
here we briefly mention the key aspects of the dataset that are necessary for the
interpretation of the results.

OPP-115 consists of 115 privacy policies, manually annotated on a para-
graph level, resulting in 3 792 paragraphs, 10 high-level classes and 22 distinct
attributes. Like the majority of previous works, we are only considering the
high-level categories for classification, 12 exactly8. Therefore, we have a 12-class
multi-label classification task at hand. In order to establish a firm comparison to
the state-of-the-art results, we apply the same splits used by Najmeh Mousavi
Nejad et al. [10]: the authors reported that they randomly partitioned splits,
according to Machine Learning best practices, into a ratio of 3:1:1 for train,
validation and test, respectively. For the same purpose, we also evaluate on the
two gold standards, considered by the baseline model: the majority vote and
union-based. We report the resulting F1 values of our XLNet-based model in
Table 1, in comparison to BERT-based model performance reported in [10].

Table 1 shows that XLNet improves both baselines - BERT and BERT fine-
tuned - without the need of fine-tuning on the domain-specific data. These
improvements can be explained by the architectural differences between XLNet
and BERT, mentioned in Sect. 3, and additionally, by the fact that XLNet has
been trained on a bigger corpus, that includes the training data of BERT. There-
fore, it works with bigger vocabulary and moreover, it generalizes better. Another
factor that we believe affected the performance for the better, is Transformer-
XL’s Recurrence Mechanism and Relative Positional Encoding, that help capture
long-term dependencies for long documents and sentences. This feature is espe-
cially important in analysis of legal documents, such as privacy policies, which
tend to have long and complicated sentence and paragraph structure. As evident
from Table 1, in total, our XLNet-based model outperforms the state of the art
by 2%/1% for the majority vote gold standard and 3%/3% for the union-based
gold standard, for macro/micro F1 average scores, respectively, while keeping
the tendency for micro- to outperform macro-averages, mentioned also in [10].
8 We follow the baseline [10], where the Other category was broken down into its 3
underlying attributes.
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Table 1. F1 values in % for 2 baseline models from [10] models and our model (in
bold) on the two gold standards with a threshold=0.5 (V - validation; T - test)

Labels Majority-vote gold standard Union-based gold standard

BERT BERT FT XLNET BERT BERT FT XLNET

V T V T V T V T V T V T

First Party Collection & Use 87 88 88 91 89 90 83 84 87 86 85 87

Third Party Sharing & Collection 86 85 87 90 89 88 79 82 83 86 83 89

User Access, Edit and Deletion 82 63 77 73 81 76 54 49 56 65 70 73

Data Retention 40 33 54 56 62 64 36 68 62 71 75 73

Data Security 87 82 54 56 89 81 71 80 73 76 76 78

International/Specific Audiences 94 81 87 80 95 84 87 93 92 92 90 90

Do Not Track 80 100 95 83 80 100 80 60 100 92 80 93

Policy Change 80 88 80 100 89 89 75 78 77 80 70 84

User Choice/Control 75 81 85 90 81 77 64 63 66 65 64 69

Introductory/Generic 75 76 78 79 82 81 74 68 73 67 67 74

Practice Not Covered 18 32 35 35 56 42 44 46 45 48 45 56

Privacy Contact Information 79 80 79 78 84 80 75 71 83 78 80 83

Macro Averages 74 74 77 79 81 81 68 70 75 76 77 79

Micro Averages 81 82 83 85 86 86 73 74 77 77 78 80

If we compare to base BERT, the difference is more remarkable, encoding the
performance gap between “pure” BERT and XLNet: 7%/5% for the majority
vote and 9%/6% for union-based gold standard (macro/micro F1).

5 Discussion

Looking at the F1 values per label, we can note that XLNet outperforms both
BERT and BERT fine-tuned on most of the categories, with an impressive
increase in certain cases. A good example is Data Retention class, whose F1
metric improved greatly (from 56% to 64%) for majority-vote gold standard,
but not so much for the union-based, where we had more than twice as much
training examples9. Another category that exhibited poor performance for the
BERT-based models is Practice Not Covered : as noticed by the authors, this
class covers broad range of topics and vocabulary, which makes it harder for the
classification model to learn. Interestingly, XLNet improves F1 values on this
class significantly in both gold standards, while still demonstrating better per-
formance on union-based label set. From these examples we can conclude that
XLNet has the potential of improving classification results for the underrepre-
sented or “tough to learn” classes, even with small amount of examples to learn
from.

As we noted before, for this paper we did not consider fine-tuning XLNet
(which would take considerable time and resources in preparation and training)
as the pre-trained version has already given us the desired improved performance,
comparing even to fine-tuned BERT, let alone the base one. However, we have

9 For the label distribution in the two gold standards see [10].
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reasons to believe that, just like with BERT, fine-tuning XLNet on the domain-
specific data (a big set of privacy policies) should result in even higher F1 values.
Currently, we leave this step for the future work.

Additionally, we would like to point out that the training of our model did
not require any significant resources or time, in fact, the training configuration is
the same as for the BERT-based model, for the most part. Hence, the improved
results have been achieved without a sacrifice in training resources.

6 Conclusion and Future Work

In this paper, we demonstrated the performance of recently released XLNet
model in legal/privacy domain, where this kind of model has not been applied,
to the best of our knowledge. We evaluated an XLNet-based multi-label clas-
sification model on the OPP-115 dataset, with the goal of establishing a new
baseline for privacy policy analysis. Our experiments with a pre-trained XLNet
showed that it outperforms BERT on this particular domain-specific task, and
moreover, it does so without the need to be fine-tuned on the domain-specific
data.

In terms of the future work, we plan to experiment with fine-tuning XLNet
on a large set of privacy policies, and we expect this step to further improve
the results. As for the next phases in terms of the ASGARD project, we intend
to use the model and the classification results to translate privacy policies into
a machine-readable representation, to be used in the downstream applications,
such as compliance checking and access control for business requests. For this
purpose, the dataset and annotations will need to be enriched with missing con-
cepts, including GDPR-specific attributes, such as various legal basis terms. It
becomes increasingly important to be able to extract legal basis, as the major-
ity of new and updated policies mention it for the purpose of being GDPR-
compliant, yet the current version of the dataset contains only a subset of the
legal bases mentioned in the GDPR. Therefore, our future work will focus on
improving both the classification model and the dataset, in order to obtain the
high quality representations of policies and contracts.
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Abstract. An exploratory data analysis is an essential step for every
data analyst to gain insights, evaluate data quality and (if required)
select a machine learning model for further processing. While privacy-
preserving machine learning is on the rise, more often than not this initial
analysis is not counted towards the privacy budget. In this paper, we
quantify the privacy loss for basic statistical functions and highlight the
importance of taking it into account when calculating the privacy-loss
budget of a machine learning approach.

1 Introduction

One of the most prevalent barriers of machine learning involve data management
in general and information security and privacy in particular. This is especially
relevant for sensitive data sets that, for example, include medical and financial
data items. In order to overcome the barriers, the area of privacy-preserving
machine learning (PPML) gained attention [2,11]. It is concerned with providing
an infrastructure for secure and privacy-preserving data access as well as privacy-
preserving model generation.

While PPML reduces the risk of data leaks, particularly the risk of model
inversion attacks, one aspect is often overlooked: In order to decide which type
of model should be trained and how it should be parametrized, a data analyst
performs a preceding exploratory data analysis (EDA). The EDA consists of
querying the data for a number of statistics and metrics. The goal is to gain
insights on the data quality, as well as the relationships between the variables to
initiate data preprocessing before a model is created. To do so, the data analyst
has typically full data access and is not restricted in her queries.

In this paper, we evaluate the privacy loss of performing an EDA. To this end,
we assume that an analyst obtains differentially-private answers [4] to preserve
information privacy. We quantify the privacy loss for basic analysis steps, which
can be used to make decisions on how to clean the data, select features, and
to select a model. Based on our evaluation, we discuss the implications of the
c© Springer Nature Switzerland AG 2020
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Fig. 1. System model.

resulting privacy loss and conclude that an interactive EDA is not feasible in a
privacy-preserving setting.

At the same time, we compare the accuracy of an interactive approach with
the generation of differentially-private synthetic data. Our results underline that
the privacy loss can be mitigated by determining which functions are needed such
that they can be answered as correlated queries. The generation of synthetic
data is a generalization of this approach. Accordingly, we recommend to develop
standardized sets of EDA functions to reduce the privacy loss and/or increase
accuracy. In all cases, however, the privacy loss inevitably increases with the
amount of information requested and should be considered for EDAs in general.

This paper is organized as follows. In Sect. 2 and Sect. 3, we describe our
system model and introduce a basic set of EDA functions, respectively. In Sect. 4,
we evaluate the privacy loss and discuss the feasibility of a differentially-private
interactive EDA, before concluding this paper in Sect. 5.

2 Background

2.1 System and Adversary Model

An EDA is typically performed before a machine learning model is created in
order to obtain a basic understanding of variable distributions, data quality, and
the relationship between variables. By querying this information, a data analyst
can determine the necessary steps for data cleaning and a suitable model.

In this paper, we consider the data analyst as an adversary, who should not be
able to reveal information about individuals. That is, we assume an interactive
query-response setting, which is visualized in Fig. 1. The analyst (internal or
external) is allowed to query a data set and request aggregated data to perform
the EDA and afterwards train a model. In order to mitigate re-identification
attacks, noise is added to the results, which satisfy the definition of differential
privacy (see below). A privacy budget tracks the privacy loss generated by the
queries. It decreases with each query until it is spent and no further queries are
answered. The system model captures the privacy-utility trade-off inherent to
the notion of information privacy. We believe that the requirement of an EDA
is often overlooked when it comes to creating privacy-preserving models.
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2.2 Differential Privacy

Differential privacy quantifies the privacy loss [4] regardless of an adversary’s
knowledge. It determines the risk of being identified in a database by comparing
results of querying the database with and without the individual concerned. The
intuition is that the absence/existence of a data subject should have a small
impact on the results, which in turn implies that an adversary cannot identify
individuals from the result. More formally, a mechanism K provides ε-differential
privacy if for all data sets D1 and D2, differing on at most one data subject, and
all S ⊆ Range(K) satisfy

P [K(D1) ∈ S] ≤ eε · P [K(D2) ∈ S]. (1)

Differential privacy ensures that the result of an analysis changes by at most
a multiplicative factor eε when a record is included in the data set or not. For
ε = 0, the result of an analysis is exactly the same whether a record is included
or not and thus provides perfect privacy. With ε = 0, however, we cannot obtain
meaningful results. In contrast, higher ε provide lower privacy guarantee. It is
therefore necessary to find a balance between ε and the accuracy of the results.

Any mechanism guaranteeing differential privacy is robust under composi-
tion [10]. If we apply the mechanisms Ki, each providing εi-differential privacy,
several times to the same data, the sequence of queries gives ε-differential pri-
vacy with ε =

∑
i εi. In other words, the maximum privacy loss is bounded by

the privacy budget ε, which in turn is reduced by εi for each query. As soon as
the budget is spent, no further queries are answered. The parallel application of
mechanisms Ki for Di, an arbitrary disjoint subset of the input domain D, each
providing εi-differential privacy, gives ε-differential privacy with ε = max(εi).

In an EDA, a data analyst queries interactively. Wile a query might depend
on the results of previous queries, they are yet unknown in advance. We therefore
simply assume random queries. Consequentially, we apply the differential privacy
mechanism for each query and calculate the required privacy budget ε according
the composition theorems.

To satisfy differential privacy for numeric queries, commonly random noise
drawn from a Laplace distribution is added to the numerical output f(X) [4].
The magnitude of noise is calibrated according to the sensitivity of a function.
The sensitivity Δf is the maximum difference that an output can change by
removing or adding a record. For example, a simple counting query, i.e., how
many rows have a specific variable value, has Δf = 1. Differential privacy is
then provided by f(X) + Lap(Δf / ε).

3 Exploratory Data Analysis

An EDA is an essential step in any data science application. Generally, an EDA
includes different methods and can be an exhaustive analysis within itself. More-
over, the process is not standardized and depends on the objective of the analysis.
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Table 1. Privacy loss for statistical functions of a basic EDA.

Statistical function
Information Numerical (NUM) Categorical (CAT) Privacy loss

Distribution (DIST) Range, Q1, Q2, Q3 Value counts εi · (5 · n + c)

Missing values (MISS) Count Value counts εi · n
Outliers (OUTL) Count outside cut-off Value counts εi · n
Correlation (CORR) Spearman’s correlation Cramer’s V εi ·

((
n
2

)
+

(
c
2

))

In the following, we select some basic statistical functions that serve as mini-
mum set of queries, which we derived from literature as well as our own practice
in the field. The selected statistical functions for this basic EDA are listed in
Table 1. Even if we limit our EDA to certain functions, we still assume that the
queries performed by the analyst are not known in advance and are sent inter-
actively depending on the results. Since some analyses depend on the data type,
we differentiate functions between categorical and numerical variables.

Distribution. The distribution of the data is important to understand the data.
For numerical variables, the range and quantiles provide information about the
validity of the data and a sense of the range of the data. For categorical vari-
ables, a data analyst retrieves the unique variable values, especially the number
of observations of each variable value. Variables with a discrete uniform distri-
bution, for example, are not suitable to identify meaningful patterns. Variables
that show this behavior need to be cleaned or removed for the training process.

Missing Values. The number of missing values indicates whether steps for data
cleaning are necessary. There are different options such as case deletions or impu-
tation with a vast body of literature discussing these options and their implica-
tions for later analysis steps [1].

Outliers. Machine learning models can be influenced by outliers, thus an analyst
should be aware of their presence in the data set. There are many sophisticated
tools to detect outliers, that mostly come with a high degree of privacy loss.
Therefore, we resort to a simple box plot approach, where the cutoff point for
outliers is defined as the upper and lower quantiles (Q1 and Q3) and a tolerance
of 1.5 · (Q3 −Q1) [6]. We then count all values that lie above or below that cutoff
point. In this univariate outlier detection context, categorical variables are not
covered, as rare values have already become visible from the distribution.

Correlation. The results of the correlation between variables mainly contribute
to feature selection, where certain variables may be excluded from the model
or combined with each other. Correlated variables are problematic for the inter-
pretation of a model [14]. Furthermore, the relationship between independent
variables may imply that dimensionality reduction methods can be applied to
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the data set to improve model performance. Based on this motivation, we include
Spearman’s correlation matrix for numerical data and a Cramer’s V for categor-
ical variables in our basic set of EDA functions.

4 Privacy Loss and Accuracy Impact Assessment

In Table 1, we quantify the privacy loss of the functions of our basic EDA. The
privacy budget required to compute the respective functions is cumulated by
the privacy loss of each query. It depends on the privacy loss per query εi, the
number of categorical variables c, and the number of numerical variables n.

For the numerical distribution a data analyst queries the min, max, Q1, Q2,
and Q3. In other words, to obtain the information an analyst needs to query
the data five times. Since each record is contained in each variable, an analyst
spends 5 · εi · n of its privacy budget for this statistical function. The categorical
distribution can be investigated by the counts per variable value that are queried
only once per variable and the required budget increases by εi and c.

The missing values as well as the outliers of categorical variables are visi-
ble from the value counts. Therefore, the privacy budget only increases by the
numerical variables for both the missing values and the outliers.

We quantify the relationship between two variables using Spearman’s correla-
tion for numerical and Cramer’s V for categorical variables. Since both measures
are symmetrical, the privacy budget increases by the number of permutations

4.1 Privacy Loss

We determine the privacy budget for some data sets from the UCI Machine
Learning Repository1. The data sets differ in size and number of variables. Com-
mon values for ε comprise 0.01, 0.1, 1, ln(2), or ln(3) [5]. Therefore we fixed the
privacy guarantee for each query to εi = 0.01, as this is the smallest value.

Figure 2 shows the cumulative privacy loss by conducting all statistical func-
tions from our basic EDA. We observe an increasing and high privacy loss. For
computing all functions, the adult data set requires the smallest privacy bud-
get. The prime cause of this difference is the small number of variables in total.
Indeed, the magic04 data set has less variables in total but more numerical
variables. Since an analyst sends an additional query for numerical variables to
determine the missing values or outliers, the privacy loss increases and is thus
higher than for categorical variables.

The correlation leads to the highest privacy loss, since the budget increases
by the binomial coefficient

(
n
2

)
and

(
c
2

)
.

Note that the privacy budget increases linearly with the number of queries.
With a lower privacy guarantee, i.e., εi > 0.01, the total privacy budget would
exceed the privacy budget of ε = 3, which yields a 20 times higher chance (e3) to
be compromised. With a smaller εi, we can reduce the privacy loss and therefore
the total required privacy budget. However, this leads to an accuracy loss.
1 http://archive.ics.uci.edu/ml.

http://archive.ics.uci.edu/ml
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Fig. 2. Cumulative privacy loss with εi = 0.01 for different datasets.

4.2 Accuracy

Due to the order of queried information the answers of our queries cannot be
re-used. In order to reduce the privacy budget, numerous approaches aggregate
queries and determine correlations between queries [7–9,12,13]. This allows esti-
mating results from other noisy answers without spending its privacy budget.
The results of these mechanisms can also be treated as differentially-private
synthetic data that support the original working method of a data analyst.

In this section, we evaluate the accuracy of a differentially-private EDA and
compare the interactive setting with differentially-private synthetic data sets.
For data sets with numeric variables, we remove some values from a variable to
have a numerical variable with 10% missing values.

We apply the Laplace mechanism for each query and generate differentially
private synthetic data sets using the correlated mode of DataSynthesizer2 that
learns a Bayesian network with a degree of four. For comparison, we generate
synthetic data with the same privacy budget that is required to investigate the
correlation in an interactive setting. For example for the adult synthetic data set,
with an εi = 0.01 per query in an interactive setting, we set ε = 51 · 0.01 = 0.51.

We measure the accuracy of our basic EDA using the relative error of each
query. Figure 3 reports the relative error for each statistical function visualized
as box plot containing the relative error for each query. Overall, the synthetic
data sets have a smaller relative error compared to the interactive setting. How-
ever, the relative error of the synthetic data sets for the numerical correlation is
higher compared to the interactive setting. For the data set magic04 (Fig. 3c),
we observe a similar effect for the outliers. The high error occurs in the syn-
thetic data sets due to the high range of some numerical variables. Remarkably,
we obtain a high error for outliers for the interactive setting. This demonstrates
that the relative error for the variables varies.
2 Available for download at https://github.com/DataResponsibly/DataSynthesizer.

https://github.com/DataResponsibly/DataSynthesizer
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Fig. 3. Accuracy of statistical functions given by the relative error.

4.3 Discussion

The results show that even basic investigations of an EDA require a high privacy
budget in an interactive setting. Therefore, an interactive analysis with both
acceptable accuracy and an acceptable privacy guarantee seems not possible.

Non-interactive mechanisms, such as differentially-private synthetic data sets,
can be used to increase accuracy and/or reduce the privacy budget. Notably, the
synthetic data set can be used directly to train a model without dividing the
privacy budget among EDA and model generation. However, the expressiveness
of non-interactive mechanisms is limited to the correlations used for generating
the output. Therefore, these mechanisms are not applicable for an interactive
setting with random or unknown queries [3].

In an EDA, information is queried interactively, where one query depends
on the results of previous queries. Grouping or limiting the queries to certain
statistics, a differentially-private EDA might become feasible, though. We there-
fore appeal to data analysts to agree on widely applicable statistics that show
the information necessary for model generation. With our basic EDA, we made
a first attempt to create such a collection of statistics.

Please note however that further research is necessary. In particular, evalu-
ating the utility loss, i.e., the usability of the results for inferring information
(in contrast to the accuracy of individual queries) requires more attention in the
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future. We however believe that a standardized set of statistical functions used
in an EDA could be optimized to balance the privacy-utility trade-off.

5 Conclusion

In this paper we demonstrate the increase of the privacy loss and thus the
required budget for an interactive differentially-private analysis. We argue that
the EDA should be considered in privacy-preserving models, as it is an essential
step in machine learning. In order to address the privacy-utility trade-off, we
propose to agree on standardized sets of EDA functions and use the remaining
privacy budget for model creation.

Acknowledgement. This work was supported by the Federal Ministry of Education
and Research of Germany (project number 16KIS0909).
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Abstract. Cryptocurrency light- or simplified payment verification
(SPV) clients allow nodes with limited resources to efficiently verify exe-
cution of payments. Instead of downloading the entire blockchain, only
block headers and selected transactions are stored. Still, the storage and
bandwidth cost, linear in blockchain size, remain non-negligible, espe-
cially for smart contracts and mobile devices: as of April 2020, these
amount to 50 MB in Bitcoin and 5 GB in Ethereum.

Recently, two improved sublinear light clients were proposed: to vali-
date the blockchain, NIPoPoWs and FlyClient only download a polyloga-
rithmic number of block headers, sampled at random. The actual verifica-
tion of payments, however, remains costly: for each verified transaction,
the corresponding block must too be downloaded. This yields NIPoPoWs
and FlyClient only effective under low transaction volumes.

We present TxChain, a novel mechanism to maintain efficiency of
light clients even under high transaction volumes. Specifically, we intro-
duce the concept of contingent transaction aggregation, where proving
inclusion of a single contingent transaction implicitly proves that n other
transactions exist in the blockchain. To verify n payments, TxChain
requires a only single transaction in the best (n ≤ c), and �n

c
+ logc(n)�

transactions in the worst case (n > c), where c is a blockchain con-
stant. We deploy TxChain on Bitcoin without consensus changes and
implement a hard fork for Ethereum. To demonstrate effectiveness in
the cross-chain setting, we implement TxChain as a smart contract on
Ethereum to efficiently verify Bitcoin payments.

1 Introduction

With decentralized cryptocurrencies finding more and more applications in
industry, the need to deliver digital payments on resource-constrained devices,
such as mobile phones, wearable- and Internet-of-things (IoT) devices, is steadily
increasing. Even within the cryptocurrency ecosystem, the need for efficient pay-
ment verification is becoming imminent. One example are multi-currency wal-
lets, which track the state of multiple cryptocurrencies and hence face high
c© Springer Nature Switzerland AG 2020
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storage and bandwidth requirements. Another are the growing number of cross-
cryptocurrency applications [1,11,12]. Here, verification of correct payments
happens cross-chain and is often executed by smart contracts, where storage
and bandwidth is priced by the byte.

In this paper, we present TxChain, a novel scheme to improve the efficiency
of transaction verification, which improves upon recent work on optimized light
clients [2,7]. Thereby, we do not rely on complex cryptographic schemes, but
rather leverage the security properties offered by the consensus of decentralized
cryptocurrencies – making TxChain compatible with the majority of existing
systems.

Blockchain and Light Clients (SPV). Most widely-used cryptocurrencies,
such as Bitcoin and Ethereum, maintain an append-only transaction ledger, the
blockchain. The blockchain consists of a sequence of blocks chained together
via cryptographic hashes. Each block thereby consists of a block header and a
batch of valid transactions. The block header contains a pointer to the previous
block, (ii) a vector commitment over all included transactions, and (iii) additional
metadata (e.g. timestamp, version, etc.). Each block is uniquely identifier by a
hash over its block header.

Vector commitments are employed by users to verify transactions without
downloading the entire blockchain. For example, Simplified Payment Verification
(SPV) clients in Bitcoin [9] only maintain a copy of the block headers of the
longest (valid) proof-of-work chain, where each header includes the root of a
Merkle tree that contains the identifier’s of the block’s transactions as leaves. To
verify a transaction is included in a block, an SPV client requires (i) the block
header of the block that contains the transaction (to extract the Merkle root),
and (ii) the Merkle tree path to the leaf containing the transaction identifier
(given the Merkle root). The size of the Merkle path, i.e., the number of hashes,
is thereby logarithmic to the number of transactions in the block.

Sublinear Light Clients. Recently, two proposals for so-called sublinear light
clients were made: non-interactive proofs of proof-of-work (NIPoPoW) [7] and
FlyClient [2]. In contrast to naïve SPV clients, NIPoPoWs and FlyClient only
require to download a fraction of the block headers to verify that a given chain
is the valid chain1. Both mechanisms sample a subset of block headers at ran-
dom, such that a fake chain produced by an adversary corrupting at most 33%
of consensus participants or total computational power will be detected with
overwhelming probability – and hence rejected.

NIPoPoWs [7] sample block headers which exceed the minimum Proof-of-
Work target – the so-called superblocks. Due to the design of PoW, statistically,
1/2 of the generated blocks will exceed the minimum target (level-1 superblocks),
1/4 will exceed the target by a higher number (level-2 superblocks), etc. By
only sampling superblocks, the number of block headers NIPoPoW clients need
to download is polylogarithmic in the blockchain size. Unless deployed as a
non-backward compatible hard fork [13], NIPoPoWs require block headers to

1 The chain with the most accumulated Proof-of-Work in PoW blockchains.
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contain an additional interlink data structure (pointers to previous superblocks)
for secure verification of the valid chain.

FlyClient [2] samples block headers based on an optimized heuristic, which
takes as input a random number, e.g. generated using the latest PoW block hash.
Similarly to NIPoPoWs, a backward compatible deployment of FlyClient requires
additional data to be stored in block headers: the root of a Merkle Mountain
Range commitment – an efficiently-updatable Merkle tree variant which supports
logarithmic subtree proofs. The leaves of the MMR contain block hashes of all
blocks generated so far.

Both protocols also provide mechanisms to verify that a block header, not
sampled as part of the (poly)logarithmic valid chain proof, is indeed part of the
valid chain. In NIPoPoWs, this is achieved via so-called infix proofs, which link
the blocks in question to the sampled superblocks via the interlink structure. In
FlyClient, this is achieved by a Merkle tree path from the MMR root to the leaf
containing the hash of the block in question. Note that additional block inclusion
checks are not necessary in naïve SPV clients, since all block headers are already
downloaded.

Probabilistic Sampling Dilemma. To the best of our knowledge, all sublinear
light client verification protocols only reduce the block-header data submitted
to the client, i.e., the protocols provide efficient valid chain proofs. The ulti-
mate goal of light clients, however, is not only to efficiently determine the valid
(or “main”) chain, but to verify the inclusion of transactions in the latter. As
such, to prove the inclusion of n transactions in the blockchain, both super-block
NIPoPoWs and FlyClient require n block headers and n Merkle tree membership
proofs to be submitted to the client – on top of the valid chain proof. Therefore,
for large n, transaction inclusion verification becomes the performance bottle-
neck of sublinear light clients. Considering the additional data stored in block
headers, performance may even be worse than that of naïve SPV clients for high
transaction volumes. We term this problem the Probabilistic Sampling Dilemma.

Our Contribution. In summary, this paper makes the following contributions:
– Probabilistic Sampling Dilemma. We introduce the Probabilistic Sam-

pling Di-lemma and provide a formal analysis, deriving the expected overhead
of payment verification in sublinear light clients (Sect. 3).

– Aggregated Transaction Verification. We introduce TxChain as a new
technique for compressing transaction inclusion proofs, leveraging the secu-
rity assumptions of the underlying blockchain (Sect. 4). In particular, to prove
the inclusion of n transactions, TxChain creates �n

c � contingent (on-chain)
transactions, where c is a constant dependent on the block/transaction size
of the blockchain. Contingent transactions are only valid if each of the ref-
erenced n transactions exist in the blockchain. Proving the inclusion of a
contingent transaction hence proves inclusion of the n referenced transac-
tions. To circumvent block size limitations, we further show how to construct
hierarchies of contingent transactions. As a result, to prove the existence of
n transactions, TxChain requires a single contingent transaction in the best
case (n ≤ c) and �n

c + logc(n)� in the worst case (n > c).
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– Formal analysis. We prove TxChain’s security and formally analyze it’s
efficiency (Sect. 5). Under high transaction volumes, TxChain reduces the
number of downloaded block headers by up to a factor of 977x for FlyClient,
and 973x for NIPoPoWs, for c = 1000 as in Bitcoin. In terms of transaction
inclusion proofs, TxChain achieves an improvement of up to 1190x across
all types of light clients.

– Light Client Implementations. We show how TxChain can be deployed
(i) in Bitcoin without requiring changes to the underlying protocol and as
a soft fork, (ii) and as a hard fork in Ethereum. We show TxChain’s per-
formance improvement when added as an extension to NIPoPoWs, FlyClient
and even naïve (linear) SPV clients (Sect. 6.1 and 6.2).

– Cross-Chain Deployment. To demonstrate effectiveness in resource con-
strained environments, we implement TxChain as a smart contract on
Ethereum which efficiently verifies Bitcoin payments (Sect. 6.3)2.

2 Model and Definitions

2.1 System Model

Our setting consists of three types of users: miners, full nodes, and light clients.

Miners participate in the consensus protocol that orders the blocks, e.g., in
Proof-of-Work blockchains the miners are the users that create the blocks by
solving the computationally difficult puzzles. The miners essentially determine
which is the valid chain.

Full nodes verify and store a copy of the entire valid (honest) chain3. Since a
blockchain is a distributed system, the valid chain is the one agreed by the honest
miners. To verify that a blockchain is the valid chain, a user can download a copy
of the entire chain from one full node (or miner, ideally multiple), and verify all
blocks. However, this is quite costly, both in terms of space and computation.

Light clients allow for fast synchronization and transaction verification, under
the assumption that the valid chain follows the rules of the network. Specifically,
light clients only maintain the following: (i) the necessary data to verify chain
validity, i.e., for SPV clients all block headers, while for sublinear light clients a
(random) sample of block headers with cardinality polylogarithmic to the length
of the valid chain, (ii) for each transaction to-be-verified, the corresponding block
header to extract the vector commitment (and optionally a proof that this block
header is indeed part of the valid chain), and an inclusion proof, e.g., for Bitcoin
the Merkle tree root and path.

Assumptions. We make the usual cryptographic assumptions: all users are com-
putationally bounded; cryptographically-secure communication channels, hash

2 Full paper version and open source code available at https://github.com/txchain/
txchain.

3 Miners are also full nodes, while full nodes are miners with zero “voting power”.

https://github.com/txchain/txchain
https://github.com/txchain/txchain
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functions, signatures, and encryption schemes exist. Further, we assume the
underlying blockchain maintains a distributed transaction ledger that has the
properties of persistence and liveness as defined in [4]. Persistence states that
once a transaction is included “deep” enough in an honest miner’s valid chain it
will be included in every honest miners’ valid chain in the same block, i.e., the
transaction will be “stable”. We assume persistence is parametrized by a “depth”
parameter k, meaning that we assume finality of transaction after k blocks. Live-
ness states that a transaction given as input to all honest miners for a “long”
enough period will eventually become stable. Lastly, we note that TxChain
does not require any synchrony assumptions since it is a non-interactive proof
scheme. Hence, we assume the same network model of the underlying blockchain
system. We note, however, that each client is assumed to be connected to at
least one honest full node or miner and is hence not prone to eclipse attacks [6].

Threat Model. We assume a rushing and fully adaptive adversary, meaning
that the adversary can reorder the delivery of messages, but cannot modify or
drop them, and corrupt users on-the-fly. However, the proportion of corrupted
miners (consensus participants) is bounded by the threshold necessary to ensure
safety and liveness for the underlying system [3]. For Nakamoto consensus, we
bound the fraction of computational power α

1+α controlled by the adversary at
any moment by α

1+α ≤ 1/3 [4], where α is a security parameter. In Byzantine
fault tolerant settings, e.g. Proof-of-Stake such as [8], the fraction of corrupted
consensus participants f is bounded by f < 1/3.

Blockchain Notation. We denote a block header, i.e., a block without the
included transactions, at position i in chain C as Ci. The genesis block header
is, therefore, C0, while Ch denotes the block header at the tip of the chain, where
h is the current “length” (or height) of chain C. Each block header includes (at
least) a vector commitment over the set of transactions included in block, and the
hash of the previous block header in chain C. This hash acts as a reference to the
previous block and thus the hash-chain is formed. The vector commitment, on the
other hand, is a cryptographic accumulator over an ordered list of transactions
or a position binding commitment, which can be opened at any position with a
proof sublinear in the length of the vector.

We use tid to refer to a transaction with identifier id. Furthermore, we denote
by γ(·,·) the inclusion proof of a transaction in a block. Specifically, γ(i,id) denotes
an inclusion proof of transaction tid in the block at position i of the chain. If
there exists a proof γ(i,id), we write tid ∈ Ci Typically, the transaction inclusion
proof employs the vector commitment on the block header. We define as β(Ci,C)

the inclusion proof of the block header Ci in chain C. A naïve block inclusion
proof is the entire hash chain C: the hash-chain that includes the block Ci

points back correctly to the genesis block C0 (ground truth). Lastly, we denote
as π(C,Ch) a chain validity proof: a proof that a chain C at some round ending
in a specific block Ch at position h (the tip of the chain) is the valid chain, i.e,
the chain agreed by the honest miners. We denote by |S| the cardinality of a set
S. Further, we abuse the block header notation Ci to also refer to the block.
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2.2 Protocol Goals

We use the prover–verifier model from [7]. In TxChain, the prover (full node)
wants to convince the verifier (client) that a set of transactions T are included
in the valid chain C. To do so, the prover(s) must provide three types of proofs
to the verifier:

1. Chain validity proof π(·,·): A proof that chain C is the valid chain. Both
NIPoPoW and FlyClient provide succinct proofs that the given chain is valid.

2. Transaction inclusion proofs Γ : For each transaction in T , a proof of inclusion
in a specific block γ(·,·).

3. Block inclusion proofs B: For each block that contains a transaction of T , a
proof of inclusion β(·,·) that the block is in the valid chain C. The structure
of this proof is specific to the protocol used to verify that chain C is the valid
chain.

These proofs are not necessarily distinct, meaning that the data the prover
sends to the verifier for all three proofs may overlap. For instance, in an SPV
client, the proof of block inclusion (3) requires no additional data since all block
headers are stored and verified as part of the verification process of the chain
validity. Therefore, if the block inclusion proof is already part of the chain validity
proof, we do not send the data twice.

Desired Properties. Our goal is to design a protocol that is secure and
efficient :

– Security in TxChain encapsulates the correctness of the protocol, meaning
that a verifier only accept the proofs, i.e., terminates correctly, if the prover is
honest and knows the valid chain. In other words, the verifier will terminate
correctly if all transactions in T are included in the valid chain C.

– Efficiency captures the storage cost of the protocol, i.e., how much data must
be sent to the verifier as part of the verification steps (1–3). To evaluate
the efficiency of TxChain, we calculate these storage costs and compare
them against existing solutions for different sets of transactions (increasing
cardinality).

3 Probabilistic Sampling: Cure or Curse?

In this section, we highlight practical challenges of light clients based on prob-
abilistic sampling. We demonstrate that these light clients offer only optimistic
performance improvements when the transactions to-be-verified are many, and
in the worst case, can perform worse than naïve SPV clients. We term this prob-
lem the Probabilistic Sampling Dilemma. We first provide an intuition, and then
a formal analysis to measure efficiency.
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3.1 Probabilistic Sampling Dilemma

Chain Validity Proof. Existing sublinear light clients, such as superblock
NIPoPoWs [7] and FlyClient [2] use probabilistic sampling to reduce the number
of block headers necessary to prove knowledge of the valid chain (chain validity
proof). FlyClient relies on a pre-defined heuristic for sampling blocks, while
superblock NIPoPoWs sample headers of blocks which exceed the minimum PoW
difficulty. Due to the nature of Proof-of-Work (and specifically hash functions
modeled as random oracles), the appearance of such blocks is considered random.
In both cases, the prover cannot predict upfront which blocks to provide to the
verifier as part of the requested chain validity proof. This property yields the
probability of the prover defrauding the verifier with respect to the chain validity
proof negligible, within our model as described in Sect. 2.

Block Inclusion Proof. In naïve SPV clients, the block inclusion proof is
trivial, as the verifier already has the hash-chain for the chain validity proof.
However, this is not the case in sublinear light clients that use probabilistic
sampling: For a given set of transactions, the prover must provide to the verifier
(a) the block headers and block inclusion proofs for the chain validity proof
((poly)logarithmic in cardinality), and (b) for any block including a transaction
of the input set that is not sampled for the chain validity proof, the corresponding
block header and block inclusion proof.

The reason for the additional block headers is that the probabilistic sample of
block headers is independent of the transactions the client wants to verify. There-
fore, in addition to the chain validity proof (e.g., NIPoPoW) and the transaction
inclusion proof for every transaction, the prover must also persuade the verifier
that the block header that corresponds to the transaction inclusion proof of each
transaction is part of the valid chain. This implies that the cost of the proba-
bilistic NIPoPoWs is also dependent on the number of transactions to-be-verified
and how they are distributed in the blockchain.

Probabilistic Sampling Dilemma. An additional overhead of probabilistic
NIPoPoW is the increase of the block header size – especially if deployed in the
blockchain without major modification to the underlying consensus rules. This
results in the following phenomenon: the storage and bandwidth cost of both
superblock NIPoPoWs and FlyClient can exceed that of naïve SPV clients for
high transaction volumes (as shown in the experimental evaluations in Sect. 6.1).
In particular, in probabilistic sampling clients the cost is proportional to the
number of different block headers (and block inclusion proofs) that are given to
the verifier, multiplied by the block header size. If transactions are distributed
across many different blocks of the chain, which are not sampled in the chain
validity proof, the cost, i.e., the additive data for the three proofs (c.f. Section 2.2)
sent to the verifier/light client, increases.

As a result, a dilemma arises for clients with constrained resources: Clients
can either (a) anticipate a high transaction volume and use a naïve SPV client,
accepting a higher cost for chain validity proofs, or (b) rely on a probabilis-
tic sampling (NIPoPoWs, FlyClient), saving costs on downloaded block headers
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under low transaction volumes, but under high transaction volumes end up with
overall higher storage and bandwidth costs. We call this the Probabilistic Sam-
pling Dilemma.

3.2 Analysis

In this section, we show that given a set of transactions to-be-verified T , the
cost of probabilistic sampling light clients grows proportionally to the number
of transactions n = |T | and sublinear to the length of the chain. As such, when
the number of transactions is large, the costs of the protocol is dominated by
the cost of the block inclusion proofs, instead of the chain validity proof.

To that end, suppose C1, . . . , Cσ is the set of blocks sampled for the chain
validity proof. The selected set is expressed via a random variable X which
follows the probability distribution defined in the light client protocol – e.g.
uniformly-random distribution with respect to the length of the chain in Fly-
Client. This means, that Xi = 1 if the block header Ci is chosen to be part of the
chain validity proof. Now, suppose σ is the size of the probabilistic sample and h
the length of the valid chain, then if X follows a discrete uniform distribution, it
holds that Pr[Xi = 1] = σ

h , for all i ∈ {0, 1, . . . , h − 1}. As mentioned in Sect. 3,
we assume the prover cannot influence or bias this random variable for security
reasons.

On the other hand, we define the discrete random variable Yi,j = 1 if trans-
action tj ∈ T is included in block Ci. For the purpose of our analysis, we assume
Yi,j follows a discrete uniform distribution on the length of the chain h as well.
Thus, Pr[Yi,j = 1] = 1

h , for all i ∈ {0, 1, . . . , h−1} and j ∈ {1, 2, . . . , n}. We fur-
ther define the discrete random variable Yi to express if a block contains at least
one of the transactions in T ; Yi = 1 if for any j ∈ {1, 2, . . . , n}, Yi,j = 1. Each
trial is independent as a transaction’s inclusion in a block has no influence on
which block will contain another transaction (for block size large enough) There-
fore, Pr[Yi = 1] = 1− Pr[Yi,1 = 0] · Pr[Yi,2 = 0] . . . P r[Yi,n = 0] = 1− (

1− 1
h

)n.
For every block that includes at least one transaction from T , the prover must
provide to the verifier the block header and a block inclusion proof, even if this
block is not sampled for the chain validity proof. To determine the overhead
on the cost, we have to count the number of blocks that include at least one
transaction and are not sampled for the chain validity proof. To that end, we
define Zi = 1 if Yi = 1 ∧ Xi = 0. Since Yi and Xi are independent random
variables, Pr[Zi = 1] = Pr[Yi = 1] ·Pr[Xi = 0] =

(
1− (1− 1

h )
n
) · (1− σ

h

)
. Thus,

the expected number of additional block headers are

E(Z) = E
( h−1∑

i=0

Zi

)
= h · Pr[Zi = 1] = (h − σ) ·

(
1 − (1 − 1

h
)n

)
≥

(
1 − σ

h

)
· n

We observe that the smaller the sample for the chain validity proof, the larger
the expected number of additional transactions. Furthermore, we notice that for
a given chain length and sample size, the expected number of additional blocks
grows with the number of transactions to-be-verified.
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4 TxChain Design

In this section we present the design of TxChain. We first define the concept
of contingent transactions and then present how this mechanism can be used to
circumvent the Probabilistic Sampling Dilemma.

Fig. 1. Visualization of TxChain: a contingent transaction ta is only valid and can
hence be included in the valid chain C at index i if all referenced transactions t1, . . . ,tn

are included in C, and hence are valid. The inclusion proof γ(i,a) for ta is hence also
proves inclusion of t1, . . . ,tn.

4.1 Contingent Transactions

Smart contracts in blockchains allow us to define under which conditions a trans-
action can be included in the underlying ledger, i.e., specify when the transaction
becomes valid under the blockchain’s consensus rules. In TxChain, we leverage
a fairly simple type of smart contracts: contingent payments (or transactions).
Thereby, a transaction ta is constructed such that it becomes valid – and hence
can be included in the underlying ledger – if and only if a set of transactions
T = t1, . . . ,tn was already included in the underlying ledger. Formally,

Definition 1 (Contingent Transaction). A transaction ta is contingent on
a set of transactions T = t1, . . . ,tn if ta can only be included in Ci if C
already contains t1, . . . ,tn. Formally: ta ∈ Ci =⇒ ∀j ∈ {1, 2, . . . , n} ∃m ∈
{0, . . . , i}s.t.tj ∈ Cm.

When checking validity of a contingent transaction ta, full nodes look up the
referenced transactions t1, . . . ,tn in their local copy of the full valid chain, and
only accept ta if all transactions were indeed found, as illustrated in Fig. 1.

4.2 TxChain: Contingent Transaction Aggregation

We now apply the concept of contingent transactions to reduce the storage and
bandwidth requirements of light clients when verifying n transaction inclusion
proofs. Consider the following setting: A prover wants to convince a verifier
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that a set of transactions T = t1, . . . ,tn was included in the valid chain C.
The transactions are thereby distributed across h different blocks, h <= n. In
TxChain, the prover creates a contingent transaction ta, referencing transac-
tions t1, . . . ,tn and includes it in the blockchain at position i, i.e., ta ∈ Ci.
Following Definition 1, by convincing the verifier that ta ∈ Ci the prover also
proves that for every t1, . . . ,tn there is a block Cm (m ∈ {0, . . . , h}) that
includes the transaction, and all these blocks are part of the valid chain C (i.e.,
∀m ∈ {0, . . . , h} ∃β(Cm,C)).

Specifically, the prover has a valid chain of h+1 blocks C0, . . . , Ch and receives
a query for a set of transactions T = t1, . . . ,tn from the verifier. The prover
creates transaction ta, contingent on T and includes it in the valid chain in block
Ci (i > h). Once included, the prover computes the valid chain proof π(C,Ci+k),
the block inclusion proof β(Ci,C) and the transaction inclusion proof γ(i,c) and
sends these proofs to the verifier, alongside ta. The verifier checks the provided
proofs and that ta is indeed contingent on T . Once ta has k confirmations, the
verifier accepts ta as proof that transactions T are in the valid chain.

4.3 Hierarchical TxChain

So far, we have assumed that a single transaction ta can be contingent on an
arbitrary number n of pre-existing transactions. Including references to T =
{t1, . . . ,tn} in ta, however, comes at a cost: each additional reference means
additional data must be attached to ta. However, blockchains typically exhibit
block or transaction size limits due to network latency concerns: the larger a
transaction, the slower it will be propagated across the network, and the more
susceptible it is to double-spending attacks [5].

Depending on the size of these identifiers, which in turn depends on the design
of the underlying blockchain as well as the means of deployment of TxChain
(c.f. Section 6), the number of transactions referenced by a single contingent
transaction ta can be limited. We capture this by a constant c > 1. As long as
n ≤ c, verifying n transactions requires only a single contingent transaction.

Consider, however, a scenario where n > c, i.e., a prover wants to con-
vince the verifier that a large number of transactions are included, but can-
not reference them all within a single contingent transaction. To circumvent
this problem, the prover splits transactions t1, . . . ,tn across multiple contin-
gent transactions ta(1), . . . ,ta(n/c). Next, the prover constructs an hierarchical
dependency across the “first-layer” contingent transactions by creating transac-
tions ta(n/c), . . .ta(n/c2). In simple terms, the prover creates a N-arry tree of
contingent transactions, where each node is a contingent transaction acting as
inclusion proof for c nodes (transactions) in that branch.

As a result, the prover can apply TxChain to an arbitrary number of trans-
actions, at the cost of including in the blockchain and sending to the verifier
n
c + �logc(n)� contingent transactions. For example, for n = 1000 and c = 100,
the number of contingent transactions would be 11. This yields a 91x reduction
in the required transaction and block inclusion proofs. If c ≥ n (e.g. c = 1000),
the reduction in the example is 1000x. That is, the number of transactions c that
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can be referenced by a contingent transactions directly impacts the improvement
offered by TxChain.

5 Security and Efficiency Analysis

In this section we show how TxChain achieves the two protocol goals: security
and efficiency (see Sect. 2.2).

5.1 Security Analysis

TxChain achieves security when the verifier terminates correctly if and only if
the prover is honest.

[⇒] If the prover is honest then, all transactions are included in the valid
chain C, and the proofs are generated according to the protocol specifications.
Therefore, the verification of all proofs will be successful by the verifier and
thus will terminate correctly.
[⇐] For the opposite direction, we will prove the statement by contradiction.
Let us assume the verifier terminates correctly but the prover is malicious.
This implies that the prover deviated from the protocol specification. Given
that the verifier terminated, the verifier received the corresponding proofs
from the prover. Since the security of the generation of the proofs is guaran-
teed by the underlying light client verification protocol, the prover must have
deviated from the protocol during the creation of the contingent transaction.
However, the verifier has the block inclusion proof for the contingent trans-
action and also the last k blocks headers of the chain; therefore, the prover
can only deviate during the creation of the contingent transaction. However,
during the verification of the transaction inclusion proof the verifier ensures
that all requested transaction identifiers are tied to this transaction. Thus,
the prover cannot create an incorrect contingent transaction. Contradiction.
We conclude that TxChain achieves security.

Hierarchical TxChain. The security of the hierarchical TxChain construc-
tion follows from recursively applying the security analysis of TxChain. See full
paper version for detailed discussion (See footnote 2).

5.2 Efficiency Analysis

We now discuss how TxChain achieves efficiency by comparing the storage costs
of naïve (SPV) and sublinear (NIPoPoWs and FlyClient) light clients with and
without applying TxChain. We assume a secure hash function H and denote
its size |H|. We analyze the cost of each proof (see Sect. 2) below.

Valid Chain Proofs: The size of the valid chain proof in naïve SPV is linear in
h. The size of the valid chain proof in sublinear light clients depends on two
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parameters: (i) λ which defines the probability 2−λ of a verifier terminating cor-
rectly on an invalid proof, (ii) α which defines the strength of the adversary
α/(1 + α), e.g. the hash rate in PoW blockchains , and (iii) the “depth” param-
eter k. The NIPoPoW π(C,Ch) size [2,7] is given by log1/α(2)λ · ((log2(h) + 1) ·
C + log2(h) · �log2(log2(h))� · |H|). The FlyClient π(C,Ch) size [2] is given by
λlog1/α(2)ln(h) · (C + |H|). Note the increased block header size due to addi-
tionally required number of hashes |H| in NIPoPoWs (interlink structure) and
FlyClient (MMR root).

Block Inclusion Proofs (B): Since naïve SPV clients store all block headers, no
extra block inclusion proofs β(·,·) are required. Both NIPoPoW and FlyClient
require block inclusion proofs for blocks not sampled as part of π(C,Ch) – for
both mechanisms, the size of β(·,·) is log(h) · |H| per block header.

Transaction Inclusion Proofs (Γ ): A transaction inclusion proof γ(i, id) is a list
of hashes (Merkle tree path), logarithmic in the number of transactions contained
in block Ci. Hence, the size of each proof is log(t)·|H|, where t is the total number
of transactions included in the block containing a transaction of T .

TxChain Efficiency. In Sect. 3, we determined the expected number of addi-
tional block headers and block inclusion proofs E(|B|) required in NIPoPoW and
FlyClient to verify the inclusion of n transactions for any given blockchain size h:
E(|B|) = (h−σ) ·(1−(1− 1

h )
n), where σ is the number of blocks sampled for the

chain validity proof. When applying TxChain to such probabilistic sampling
clients, this number decreases to: E(|B′|) = E(|B|)

c + logc(E(|B|)). We observe
that the improvement achieved by TxChain is most significant for large c, since
limc→∞E(|B′|) = 1.

To evaluate the theoretical improvement we can achieve in TxChain, we
apply TxChain as an extension to both NIPoPoW and FlyClient. Figure 2
overviews the expected number of (a) additional block inclusion proofs (and
hence block headers) and (b) required transaction inclusion proofs, before and
after applying TxChain, for blockchain size h = 100000 and c = 1000. A more
detailed cost breakdown is provided in the full paper version2. We observe that as
expected, TxChain becomes more effective as n increases, up until n = |T | = h.
Statistically, given a blockchain size of 100000 and 50000 to-be-verified trans-
actions, FlyClient on average requires the submission of 39120 block inclusion
proofs and block headers, on top of the blocks sampled as part of the chain valid-
ity proof. NIPoPoWs, which sample 40% more blocks as part of the chain validity
proof [2], require 39000 additional block headers. If we apply TxChain’s contin-
gent transaction aggregation to FlyClient and NIPoPoWs, assuming a realistic
c = 1000 (e.g. corresponds to a transaction with 1000 inputs in Bitcoin), we only
need to download 42 additional block headers, achieving an improvement factor
of 931x over FlyClient and 928x over NIPoPoWs.

TxChain achieves even higher improvement factors for higher values of
Γ = n in FlyClient and NIPoPoW, since E(|B|) ≤ n. For 50000 to-be-verified
transactions and a blockchain size of 100000, the use of TxChain improves over
both “Vanilla” FlyClient and NIPoPoW by a factor of 1190x: instead of 50000, we
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require only 42 transaction inclusion proofs. It is worth mentioning that the same
improvement identically applies to naïve SPV clients, as visualized in Fig. 2(b).

We note the actual improvement in terms of storage and bandwidth costs
depends on how TxChain, and specifically contingent transactions, are imple-
mented in the underlying blockchain, as we discuss in Sect. 6.

Fig. 2. Effects of applying TxChain to FlyClient and NIPoPoWs. (a) Total number of
block headers required for verification of n transactions (π(C,Ch)+E(|B|)). (b) Number
of transaction inclusion proofs Γ in light clients before and after applying TxChain
(logarithmic y-axis). Numbers h = 100000 and c = 1000.

Limitations. While the design of TxChain is simple and avoids complex cryp-
tographic schemes, making it compatible with the majority of existing blockchain
systems, it also exhibits limitations. The requirement of including additional
transactions in the blockchain results in additional transaction fees for the prover
(c.f. Section 6.1). Further, TxChain may not be applicable in times of high net-
work congestion, i.e., if a prover is unable to reliably include a contingent trans-
action in the blockchain. This in turn, in the worst case, may yield TxChain not
applicable to instant or day-to-day payments. Summarizing, TxChain is most
effective in settings where the storage and especially bandwidth requirements of
the verifier are the main bottleneck of a protocol, or even priced by byte – as is
the case when verification is performed in on-chain smart contracts, as we show
in Sect. 6.3.

6 Deploying TxChain in Practice

In this section we discuss how TxChain can be added to light clients of the two
major blockchains Bitcoin and Ethereum and evaluate the achieved improve-
ments. Note: we evaluate both NIPoPoW and FlyClient under constant difficulty,
since NIPoPoW currently does not support variable difficulty [2,7].
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6.1 Fork Free Deployment

We first discuss how TxChain can be deployed in a fully backward compatible
manner without requiring forks in Bitcoin (and similar systems). In blockchains
like Ethereum, which rely on an account-based model, TxChain requires a soft
or hard fork.

Bitcoin: Dust Output Spending. Bitcoin operates a so-called Unspent Trans-
action Output model (UTXO). Each new transaction consists of inputs and out-
puts, where inputs spend outputs of existing transactions. Outputs specify rules
for how the coins locked in the unspent output (UTXO) can be spent, i.e. via
smart contracts. In Bitcoin, these contracts are written in Script, a stack-based
scripting language. UTXOs can only be spent as a whole. As of this writing,
the only way to create conditional relation across transactions in Bitcoin is by
creating spending relationships.

Table 1. Storage and bandwidth costs of naïve SPV, Flyclient and NIPoPoWs, without
(“Vanilla”) and with a fork-free deployment of TxChain, for different numbers of to-be-
verified transactions n, for blockchain size h = 630000 (as of 5 May 2020) and c = 1000.
FlyClient/NIPoPoW numbers provided for soft and hard fork deployment.

n
naïve SPV

FlyClient Superblock NIPoPoWs

Soft Fork Hard Fork Soft Fork Hard Fork

Vanilla
in mB

TxChain
in mB

Impr.
factor

Vanilla
in mB

TxChain
in mB

Impr.
factor

Vanilla
in mB

TxChain
in mB

Impr.
factor

Vanilla
in mB

TxChain
in mB

Impr.
factor

Vanilla
in mB

TxChain
in mB

Impr.
factor

1 50.4 50.4 1.0 0.51 0.51 1.0 0.1 0.1 1.0 0.77 0.77 1.0 0.15 0.15 1.0

10 50.41 50.4 1.0 0.52 0.51 1.02 0.1 0.1 1.04 0.78 0.77 1.01 0.15 0.15 1.03

100 50.49 50.4 1.0 0.62 0.51 1.21 0.15 0.1 1.5 0.88 0.77 1.14 0.2 0.15 1.33

1000 51.32 50.4 1.02 1.61 0.51 3.16 0.59 0.1 6.03 1.88 0.77 2.43 0.64 0.15 4.33

10000 59.58 50.42 1.18 11.51 0.53 21.58 5.05 0.11 44.04 11.77 0.8 14.81 5.1 0.16 30.97

50000 96.3 50.66 1.9 54.42 0.8 68.11 24.67 0.36 69.17 54.67 1.06 51.56 24.72 0.41 60.8

100000 142.2 51.39 2.77 105.69 1.5 70.68 48.84 1.03 47.61 105.92 1.76 60.31 48.89 1.08 45.46

To deploy TxChain in Bitcoin without consensus changes we can use dust
output spending for the creation of contingent transactions. When creating trans-
actions t1, . . . ,tn the prover includes an additional output in each transac-
tion, containing at least the minimum possible value transferable in Bitcoin
(54.60 · 10−6 BTC which is approx. USD 0.4 as of 5 May 2020). The contingent
transaction ta then spends outputs of t1, . . . ,tn and, due to Bitcoin’s consensus
rules, can hence only be included in the blockchain if all spent UTXOs already
exist.

A practical limitation is that the prover must be able to spend from the out-
puts of transactions t1, . . . ,tn when creating ta. In the simplest case, the prover
is the author of t1, . . . ,tn (i.e., controls the signing keys), and can hence spend
from the corresponding outputs. For the case where t1, . . . ,tn are authored by
different users, we outline two simple coordination schemes. A straightforward
approach is for the prover to publicly announce his public key, e.g. on a public

https://en.bitcoin.it/wiki/Script
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bulletin board (can also be Bitcoin or Ethereum), such that users can create
dust outputs spendable via the prover’s signing key. The value accumulated
from the dust outputs can thereby serve as means to cover the prover’s costs for
broadcasting ta. An approach without additional communication overhead is to
use anyone-can-spend outputs and allow miners to aggregate t1, . . . ,tn when
claiming the dust outputs as fees. In both cases, the dust outputs of t1, . . . ,tn

can be supplemented with pre-defined timelocks, allowing transaction aggrega-
tion, e.g. only once every 6 h. This contributes to provers/miners aggregating
multiple transactions, rather than spending from each t1, . . . ,tn as they are
broadcast by users. Other, more complex and costly designs involving HTLCs
and zero-knowledge contingent payments are left to future work.

Evaluation. In our evaluation, we use Bitcoin P2WPKH transactions. In Bit-
coin, C = 80 bytes and |H| = 32 bytes. The average transaction size in 2019
was 534 bytes, while the average size of the coinbase transaction was 259 bytes,
the average depth of the transaction Merkle tree was 12. The coinbase trans-
action is the first transaction of every block and is used by NIPoPoWs and
FlyClient to include the interlink data / MMR root required for block inclu-
sion proofs, when deployed as a backward-compatible soft or velvet instead of a
hard fork [13]. Summarizing, each block inclusion proof in NIPoPoW and Fly-
Client requires additionally 259 + 12 · |H| = 643 bytes, and each transaction
inclusion proof 384 bytes - avoidable when applying TxChain. However, multi-
input Bitcoin transactions using by TxChain come at a cost: 93 bytes per
input and 45 bytes flat per contingent transaction (assuming one P2WPKH
output). Thereby, Bitcoin full nodes will relay transactions of up to 100kb
(github.com/bitcoin/bitcoin/blob/eb7daf4/src/policy/policy.h#L24), thus c ≈
1000.

We overview the storage and bandwidth costs of naïve SPV, FlyClient and
NIPoPoWs with and without TxChain in Table 1, for a Bitcoin block height
h = 630000 (as of 5 May 2020) and c = 1000. We observe that with TxChain
the storage and verification costs under remain nearly constant, offering a signif-
icant improvement over “Vanilla” light client implementations, e.g. achieving an
improvement factor of 71x for FlyClient and 60x for NiPoPoWs for n = 100000.
However, fork-free deployment comes at a cost: dust outputs increase the size
of contingent transactions by 93 bytes per referenced input - hence, prevent-
ing TxChain from achieving the theoretical improvements outlined in Sect. 5.2.
The costs for including a transaction with c = 1000 inputs in Bitcoin, at a fee
of 3 · 10−6 BTC per byte, amount to USD 21.2 (as of 5 May 2020).

6.2 Deployment via Soft or Hard Forks

Considering both FlyClient and NIPoPoWs require a soft or hard fork to be
deployed in Bitcoin and Ethereum, the minor modifications to transaction
validity rules necessary for TxChain could arguably be added in parallel – if
FlyClient or NIPoPoW are indeed deployed in practice. In both Bitcoin and
Ethereum, TxChain can be deployed as a hard fork by introducing a new

https://en.bitcoin.it/wiki/Hash_Time_Locked_Contracts
https://en.bitcoin.it/wiki/Zero_Knowledge_Contingent_Payment
https://github.com/libbitcoin/libbitcoin-system/wiki/P2WPKH-Transactions
https://github.com/bitcoin/bitcoin/blob/eb7daf4/src/policy/policy.h#L24
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TXEXISTS instruction with the following semantics: (i) Pop one argument, repre-
senting the hash of a transaction, from the stack, (ii) push 1 to the stack if the
transaction was found or 0 otherwise. Interestingly, Bitcoin allows re-purposing
of unused instructions (“OpCodes”), enabling deployment via a soft fork.

Bitcoin: Soft Fork by Re-purposing OP_NOP. Bitcoin allows to introduce new
instructions by re-purposing “reserved” OpCodes, e.g. OP_NOP10. These OpCodes
are currently ignored during execution, allowing to add additional rules with-
out causing conflicts between upgraded and non-upgraded nodes. Specifically
TXEXISTS can be implemented using the following sequence: OP_PUSHDATA1 20
<TXID> OP_NOP10 OP_VERIFY.

On non-upgraded nodes, OP_NOP10 will be ignored and OP_VERIFY will eval-
uate to true, as the top element of the stack will be non-empty/non-zero (the
transaction ID). On upgraded nodes, OP_NOP10 will be interpreted as TXEXISTS,
popping the transaction ID from the stack and pushing back 1 if the transaction
exist or 0 otherwise. Therefore, OP_VERIFY will fail if and only if the node has
been upgraded and the transaction ID does not exist, which enables a soft fork
deployment.

A soft fork deployment in Bitcoin avoids the requirement to actually spend
UTXOs in contingent transactions. This not only simplifies coordination for
provers (no construction needed for the prover to spend from UTXOs), but also
reduce the costs per referenced transaction / UTXO from 93 bytes (per input) to
32 bytes per transaction identifier (SHA256 hash) plus 4 bytes for the OpCode
flags. This results in an expected 2.8x improvement over the fork-free deployment
of TxChain (detailed numbers provided in the full paper version2). However,
considering the simple deployment of TxChain in Bitcoin without consensus
changes, we defer the implementation of TXEXISTS to future work.

Ethereum: New Instruction (Hard Fork). Unlike Bitcoin which uses the
UTXO model, Ethereum does not provide a native way of implementing trans-
action dependencies. Furthermore, the ID of a transaction cannot be accessed
from within smart contracts, making it impossible to implement TXEXISTS purely
as a smart contract. To deploy TxChain on Ethereum, we hence propose a hard
fork introducing TXEXISTS as a new instruction. We implement TXEXISTS in Geth
(v1.9.15), the most commonly used Ethereum implementation, using Go 1.14.4
and construct a Solidity (v0.6.7) smart contract to perform TxChain transac-
tion verification using the newly added instruction: the contract takes as input
n transaction identifiers and returns true if all are in the valid chain, and reverts
otherwise. This way, the (contingent) transaction calling the contract will only
succeed, if the n to-be-verified transactions are indeed in the main chain. In Geth,
Ethereum transactions are already indexed by hash: checking the existence of a
transaction does not require any further indexing, but only a single random read
in the underlying LevelDB database. This is equivalent to EXCODESIZE or BALANCE
in terms of IO access [10]. However, given that the total number of transac-
tions is vastly higher than the number of addresses, chances of cache miss are
higher with TXEXISTS than with BALANCE. Therefore, we assign a conservative
price of 2000 gas to the instruction, i.e., more than twice as expensive as the 900
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gas of EXCODESIZE and BALANCE. Finding an optimal pricing would require further
benchmarking and is left to future work.

Evaluation. Using the our Geth client, we measure the cost of a transaction
contingent on c = 1147 other transactions - deriving a conservative value for
c by assuming a block gas limit of 5 million [10], i.e., 50% of the block gas
limit. Given the 168.01 USD/ETH exchange rate as per 24 April 2020 and a
5 Gwei gas, this results in an upper limit of ≈ USD 12.6 per (full) contingent
transaction. In more detail, the base costs for the contingent transaction amount
to 26,633 gas (0.022 USD) and every additional referenced transaction adds 4,333
gas (0.0036 USD) to the cost. To measure the overall storage and bandwidth
improvements when applied to NiPoPoWs and FlyClient, we assume the 2019
average Ethereum transaction size of 499 bytes. We note that storing a single
hash in a smart contract on Ethereum, necessary to include the interlink data
(NIPoPoW) or MMR root (FlyClient) in a block, requires a 167 byte transaction.
Given Ethereum’s block height h = 10000000 (as of 4 May 2020), n = 100000
transactions and c = 1147, TxChain achieves a 24x improvement over a soft
fork deployment of FlyClient (28x for a hard fork) and a 17x improvement over a
soft fork deployment of NIPoPoWs (20x for a hard fork). We provide a detailed
breakdown of the storage and bandwidth costs in the full paper version (See
footnote 2).

6.3 Case-Study: TxChain for Cross-Chain Transactions

Reducing the number of downloaded block headers and transaction inclusion
proofs can be especially useful in the cross-chain setting, where storage and band-
width costs are priced by the byte. To showcase the applicability of TxChain,
we use contingent transactions to verify Bitcoin transactions on Ethereum, e.g.
useful in protocols such as XCLAIM [12]. Specifically, we extend BTC-Relay4, a
Bitcoin SPV client implemented as an Ethereum Solidity smart contract, with
the TxChain functionality as described in Sect. 4.2 using the fork-free deploy-
ment in Bitcoin as presented in Sect. 6.1.

We compare the gas costs when verifying multiple transactions using BTC-
Relay before and after applying TxChain: we are able to save up to 66.94% on
the Ethereum gas costs. A detailed breakdown of the costs and improvements
over the naïve SPV BTC Relay are given in the full paper version; the code
is available as open source (See footnote 2). The measured cost improvements
are thereby limited by Ethereum’s memory pricing function: the costs are linear
only up to 724 bytes (equiv. to ta with n = 16 contingent transactions), after
which polynomial pricing is applied. Also, we are only able to parse ta with
up to 90 contingent transactions in the smart contract due to Ethereum’s block
gas limit. As such, the savings achieved by TxChain can be even higher on
blockchain platforms with alternative memory pricing models and better support
for Bitcoin primitives5. Furthermore, applying TxChain to cross-chain SPV
4 github.com/interlay/BTC-Relay-Solidity.
5 e.g. Polkadot (polkadot.network), RSK (rsk.co) or Liquid (blockstream.com/liquid/).

http://github.com/interlay/BTC-Relay-Solidity
http://polkadot.network
https://rsk.co
https://blockstream.com/liquid/
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clients supporting FlyClient or NIPoPoWs - which, at the time of writing, do
not yet exist - would further increase the cost savings, as discussed in Sect. 5.
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Abstract. This paper introduces VRF-based mining, a simple and effec-
tive way of making pooled mining impossible. Instead of using hash func-
tions, VRF-based mining uses Verifiable Random Functions (VRFs) for
Proof-of-work (PoW)-based consensus. As VRF binds an output with a
secret key, a pool operator should reveal its secret key to outsource the
mining process to miners, and miners can anonymously steal cryptocur-
rency in the pool operator’s wallet.

We revisit the definition of non-outsourceability in existing research,
and identify two properties, namely punish-mining-reward and stealing-
unlinkability. Punish-mining-reward specifies that if a pool operator out-
sources mining to a miner, then the miner can steal mining reward.
Stealing-unlinkability specifies that the pool operator cannot identify
miners stealing mining reward. We show that VRF-based mining sat-
isfies punish-mining-reward, but not stealing-unlinkability. Nevertheless,
the pool operator should take extra effort – which makes maintaining
mining pools expensive – to identify mining reward stealers and transfer
mining reward before being stolen. In addition, we discuss several con-
siderations on instantiating VRFs for VRF-based mining. Moreover, we
experimentally show that VRF-based mining is simple to implement and
introduces negligible overhead compared to hash-based mining.

1 Introduction

Bitcoin [27] started the era of cryptocurrency. In Bitcoin, each participant main-
tains its own ledger. The ledger is structured as a blockchain, i.e., a chain of
blocks of transactions. Participants keep executing Proof-of-Work (PoW)-based
consensus to agree on blocks and append them to the blockchain. In PoW-based
consensus, each participant keeps trying to solve a computationally hard PoW
puzzle [16]. Once solving the puzzle, the participant appends its block to the
blockchain and gets some coins as reward. By adaptively adjusting the difficulty
of PoW puzzles, PoW-based consensus can ensure only one participant solves

c© Springer Nature Switzerland AG 2020
J. Garcia-Alfaro et al. (Eds.): DPM 2020/CBT 2020, LNCS 12484, pp. 287–304, 2020.
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the puzzle for each time period with high probability. Participants of PoW-based
consensus are also known as miners, the process of solving PoW puzzles is known
as mining, and the computation power used for mining is known as mining power.

Due to the limited rate of producing blocks, a miner’s reward can be highly
volatile if it chooses to mine by himself. To stabilise mining rewards, miners
usually choose to join mining pools. A mining pool allows miners to mine on
blockchain in the name of the pool operator, and the pool operator distributes
the mining reward to solo miners in a fine-grained way. While miners are will-
ing to participate in mining pools, mining pools lead to mining power cen-
tralisation. Nowadays, four largest mining pools control more than 51% Bit-
coin mining power [5], which can be a lurking threat to blockchain ecosystem.
However, mining power centralisation contradicts Bitcoin’s design objective –
decentralisation, and weakens PoW-based consensus’ security [17,27]. To avoid
this, researchers have been working on re-decentralising mining power, mainly
by non-outsourceable mining [21,26] and decentralised mining pools [15,24,33].
However, existing approaches are either inefficient or ineffective, which will be
discussed in Sect. 9 later.

This paper introduces VRF-based mining, a surprisingly simple but effec-
tive approach to make pooled mining impossible. VRF-based mining replaces
hash functions in PoW-based consensus with Verifiable Random Functions
(VRFs) [25]. VRF requires a miner to input its secret key to compute the output,
so a pool operator should reveal its secret key to miners in order to outsource
mining. Thus, any miner can steal mining reward of a block owned by the pool
operator anonymously. Our contributions are as follows.

We Analyse the Non-outsourceability of VRF-Based Mining. Miller
et al. [26] first formalises the non-outsourceability of mining in PoW-based
consensus. We find non-outsourceability consists of two orthogonal properties,
namely punish-mining-reward and stealing-unlinkability. Punish-mining-reward
specifies that miners can steal mining reward if the pool operator outsources
mining. Stealing-unlinkability specifies that the pool operator cannot know who
steals mining reward. We then show that VRF-based mining achieves punish-
mining-reward, but not stealing-unlinkability. Nevertheless, the pool operator
should take extra effort – which makes maintaining mining pools expensive – to
identify mining reward stealers and transfer mining reward before being stolen.

We Discuss Considerations for Instantiating VRF-Based Mining. VRF
has four customisable components, namely the elliptic curve, two hash functions
between strings and elliptic curve elements, and a normal hash function. We
discuss considerations on choosing them for VRF-based mining.

We Evaluate Feasibility of VRF-Based Mining. We implement Elliptic
curve-based VRF specified in [19] using Go programming language, and compare
its performance with three mainstream mining algorithms SHA256D, Scrypt and
CryptoNight. Our results show that VRF-based mining is easy to implement and
introduces negligible overhead compared to hash-based mining.
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We Show that Partial Outsourcing is Unrealistic. Partial outsourcing is
that, a pool operator interactively outsources computation that does not need
the secret key to miners. We show that partial outsourcing is unprofitable, as
it’s both computation-intensive and I/O-intensive.

This paper is organised as follows. Section 2 and Sect. 3 describes prelimi-
naries and the construction of VRF-based mining, respectively. Section 4 revis-
its the definition of non-outsourceability, and shows VRF-based mining achieves
better non-outsourceability than existing proposals. Section 5 discusses concerns
of instantiating VRFs for VRF-based mining. Section 6 provides an experimental
analysis on the practicality of VRF-based mining. Section 7 discusses why partial
outsourcing in VRF-based mining is unprofitable. Section 8 discusses potential
problems in VRF-based mining and their solutions. Section 9 summaries related
work, and Sect. 10 concludes this paper. We attach the pseudocode of the stan-
dardised EC-VRF construction [19] in Appendix.

2 Preliminaries

2.1 PoW-Based Consensus and Mining

Miners participate in PoW-based consensus by mining, which works as follows.
Given the blockchain’s latest view, the miner creates a block template t, which
consists of transactions to include, hash of the last block, and other metadata.
The miner then tries to solve a PoW puzzle that, the miner should find a nonce
n such that H(t||n) is smaller than a difficulty parameter T . Note that H(·) is a
one-way hash function, and the miner can only try different nonces until finding
a valid one. Once the miner find a valid nonce, it can assemble this nonce and
t to a block, and append this block to the blockchain. The miner will get some
coins as the reward of mining. By adaptively adjusting T , the rate of new blocks
remains stable. If miners mine too many blocks in a previous time period, the
protocol will increase T so that miners will mine slower. Otherwise, the protocol
will decrease T .

2.2 Mining Pools

As the rate of new blocks is limited, the mining reward of miners is highly
volatile, especially for miners with less powerful hardware. To stabilise mining
reward, miners usually participate in mining pools. Mining pools enable miners
to mine collaboratively and distribute reward in a fine-grained way. A mining
pool usually relies on a centralised pool operator. All miners mine in the name
of the pool operator, and the pool operator distributes rewards in proportion to
miners’ contribution.

Concretely, a mining pool works as follows. First, a pool operator specifies
the pool difficulty PT—a difficulty lower than the blockchain network—and
a search interval [n1, nm] of nonces. Then, the pool operator sends the block
template t, PT , n1 and nm to the miner, and the miner starts to find a nonce in
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[n1, nm] which satisfies PT . Once finding a valid nonce nk, the miner sends nk

back to the pool operator. The pool operator then verifies whether nk produces a
hash satisfying PT , and records the miner’s contribution (a.k.a. a share) if valid.
After a time period (say 24 h), the pool operator calculates the total contribution
of each miner, and distributes the mining reward to miners according to their
submitted shares. As PT is easier to solve, calculating the mining power of a
miner using shares is more fine-grained than using blocks. In this way, each miner
is rewarded in a more fine-grained way, so more stably.

2.3 Verifiable Random Functions

Verifiable Random Function (VRF) [25] is a public-key version of cryptographic
hash function. In addition to the input string, VRF requires a pair of a secret
key and a public key. Given an input string and a secret key, one can compute
an output. Anyone knowing the associated public key can verify the correctness
of the output, and can also verify the output is generated by the owner of the
secret key. Formally, a VRF consists of four algorithms: VRFKeyGen, VRFHash,
VRFProve and VRFVerify.

– VRFKeyGen(1λ) → (sk, pk): On input security parameter 1λ, outputs a
secret/public key pair (sk, pk).

– VRFHash(sk, α) → β: On input sk and an arbitrary-length string α, outputs
a fixed-length output β.

– VRFProve(sk, α) → π: On input sk and α, outputs the proof of correctness π
for β.

– VRFVerify(pk, α, β, π) → {True, False}: On input pk, α, β, π, outputs the
verification result True or False.

Informally, VRF should preserve the following three security properties [19]:

– Uniqueness: Given a secret key sk and an input α, VRFHash(sk, α) produces
a unique valid output.

– Collision Resistance: It is computationally hard to find two inputs α and α′

that VRFHash(sk, α) = VRFHash(sk, α′).
– Pseudorandomness: It is computationally hard to distinguish the output of
VRFHash(sk, α) from a random string if not knowing the corresponding public
key pk and proof π.

Algorithm 3 in Appendix A describes the Elliptic-curve-based VRF (EC-
VRF) construction standardised in draft-goldbe-vrf [19].

3 VRF-Based Mining

Instead of using a hash function, VRF-based mining uses a VRF to produce
outputs that satisfy the difficulty requirement. VRF takes both an input and
a secret key to produce an output. The owner of this secret key can produce a
proof proving the ownership of its output. Thus, to outsource the mining process,
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Algorithm 1: Work(sk, pk, tpl, T ).
while nonce+ = 1 do � Refresh the nonce

blk ← ConstructBlock(tpl, nonce) � Assemble block

out ← VRFHash(sk, blk) � Produce VRF output

if out < T then � If meeting difficulty

break � Mining successful

end

end
π ← VRFProve(sk, blk) � Produce the proof

B ← (blk, pk, out, π) � Assemble the complete block

return B

Algorithm 2: Verify(B, T )
(blk, pk, out, pi) ← B � Disassemble block

Require B’s coinbase tx is binding to pk
require(out < T ) � Check if satisfying diff

/* Here VRFVerify(·) ensures: */

/* 1. out is generated by the owner of sk */

/* 2. out is a valid output of VRFHash(sk, blk) */

require(VRFVerify(pk, blk, out, π))
. . . � Verify other fields

. . . � Verify transactions

the pool operator has to reveal its secret key to miners. However, with the secret
key, any miner in the mining pool can steal all mining rewards.

Cryptocurrency mining consists of two components, namely mining blocks
and verifying blocks. We call the process of mining a block Work(·), and the
process of verifying a block Verify(·). Algorithm 1 and 2 describe Work(·) and
Verify(·) of VRF-based mining, respectively.

Work. In Work(·), the miner - with secret key sk and block template tpl - keeps
searching for a nonce that can make the VRF output out of the block blk to
meet the blockchain difficulty T . Once finding a valid nonce that makes out < T ,
the miner produces proof π, assembles blk, pk, out, π to the complete block B.
The miner then broadcasts B to the network.

Verify. Upon a new block B, the verifier runs Verify(·) to verify B’s validity. In
addition to verification rules in hash-based mining, Verify(·) specifies three extra
rules. First, the VRF output out should be smaller than the difficulty parameter
T . Second, B’s coinbase transaction should be binding to pk. If the transaction’s
output stores the public key, then it should equal to pk. If the transaction’s
output stores the address – which is usually a digest of the public key, then it
should equal to the digest of pk. Last, the verifier should run VRFVerify(·) to
check if 1) out is produced by the owner of pk, and 2) out is a valid VRF output
of blk.



292 R. Han et al.

4 Non-outsourceability Analysis

In this section, we revisit existing definitions on non-outsourceability, and show
that VRF-based mining achieves strong non-outsourceability.

4.1 Revised Definitions

Miller et al. [26] first formalise cryptocurrency mining as scratch-off puz-
zles, and formally define two levels of non-outsourceability, namely weak non-
outsourceability and strong non-outsourceability.

– Weak non-outsourcability : If the pool operator outsources the mining process,
miners can always steal the reward of mining.

– Strong non-outsourcability : In addition to weak non-outsourcability, the pool
operator cannot link the stolen mining reward with the miner who steals it.

Weak non-outsourceability defines the punishment of outsourcing, while
strong non-outsourceability covers both the punishment and the anonymity of
the stealer. We call the property defining the punishment of outsourcing punish-
mining-reward. The anonymity of stealers defined in [26] is a special case of
transaction unlinkability [32]: Given two arbitrary transactions, it is hard to
know whether their outputs belong to the same secret key. To steal the mining
reward in [26], the miner should create a transaction, of which the input is the
mining reward and the output points to its address. Finding out who steals the
mining reward is equivalent to finding out the address holding the output, and
we call the property making such attempt infeasible stealing-unlinkability.

4.2 Non-outsourceability of VRF-Based Mining

VRF-based mining achieves punish-mining-reward, but not stealing-unlinkability.
To outsource mining to a miner, the pool operator should share a secret key
with it. This enables the miner to steal the mining reward, so VRF-based min-
ing achieves punish-mining-reward. The pool operator can give a new secret key
and a block template to each miner at every height. If a miner steals mining
reward, the pool operator can identify the stealer by the secret key in the trans-
action stealing the reward. Thus, VRF-based mining does not satisfy stealing-
unlinkability.

Nevertheless, VRF-based mining makes maintaining mining pools quite
expensive. First, the pool operator should monitor stealing behaviours by exam-
ining new blocks’ coinbase transactions all the time. In addition, every time the
pool operator’s miners mine a block, the pool operator should transfer mining
reward to its own wallet before a miner steals it.

5 Instantiating VRF

In order to implement VRF-based mining, one needs to first instantiate the VRF.
VRF in Algorithm 3 has four configurable components, including the elliptic
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curve and three hash functions. Three hash functions are: H1(·) mapping an
arbitrary-length string into an elliptic curve element, H2(·) mapping an elliptic
curve element into a fixed-length string, and H3(·) mapping an arbitrary-length
string into a fixed-length string. We discuss considerations on choosing these
four components for VRF-based mining.

5.1 Elliptic Curve

As neither blockchains and VRF limits the choice of elliptic curves, any ellip-
tic curve can be adapted. For example, among prominent elliptic curves,
Edwards25519 [10] can be a promising choice. First, Edwards25519 works on
a prime field with the prime number 2255 − 19, which provides sufficient enu-
meration space for VRF. Second, Edwards25519 supports Ed25519, a fast
and secure digital signature algorithm. Last, Edwards25519 is compatible with
existing blockchains, as numerous blockchains and projects using VRF adapt
Edwards25519 as their underlying elliptic curve [3,4,6].

5.2 Hashing a String to an Elliptic Curve Point H1(·)
The first hash function H1(·) hashes a string to an elliptic curve point. A stan-
dardisation document [28] specifies several hash-to-curve functions [11,14,20,31]
that fit into different elliptic curves and satisfy our requirements. Within these
functions, Elligator2 [11] is the recommended one for Edwards25519.

5.3 Hashing an Elliptic Curve Point to a String H2(·)
The second hash function H2(·) hashes an elliptic curve point to a fixed-length
string. It can be divided to two steps: 1) encoding an elliptic curve point to a
string, and 2) hashing the string using a normal hash function. The encoding
step can be bidirectional and unencrypted, so can be done simply by converting
a big integer to a string. The hashing step should be cryptographically secure,
so can adapt any existing cryptographically secure hash functions.

5.4 Normal Hash Function H3(·)
The third hash function H3(·) hashes an arbitrary string to a fixed-length string.
It is only used in VRFProve(·) and VRFVerify(·) i.e., producing and verifying
proofs of VRF outputs. The overhead of proving and verification should be min-
imised, so fast and cryptographically secure hash functions such as Keccak [12]
and BLAKE [9] are suitable for H3(·).

5.5 Memory-Hard Mining

Some PoW-based blockchains—such as Ethereum [36] and Monero [4]—employ
memory-hard hash functions in order to minimise advantage of specialised
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mining hardware and achieve better decentralisation. Different from normal
hash functions, the performance of computing memory-hard hash functions is
bounded by memory access rather than arithmetic operations in processors. As
memory access is much harder to optimise compared to arithmetic operations
in processors, high-end hardware cannot outperform low-end hardware greatly
in terms of memory-hard functions.

To make VRF-based mining memory-hard, VRFHash(·) should be memory-
hard. VRFHash(·) of the standardised VRF consists of one H1(·) hashing, one
scalar-point multiplication and one H2(·) hashing. By making H1(·) or H2(·)
memory-hard, VRF-based mining will be memory-hard. This can be achieved
by embedding a memory-hard hash function such as Ethash [35] and Cryp-
toNight [29] in H1(·) or H2(·).

6 Practicality of VRF-Based Mining

In this section, we benchmark VRFs and compare their performance with exist-
ing hash functions for mining. The experimental results show that VRF-based
mining is easy to implement and introduces negligible overhead compared to
hash-based mining.

6.1 Experimental Setting

We implement the standardised EC-VRF in Algorithm 3 using Go program-
ming language, without any optimisation. We use Edwards25519 [10] as the
underlying elliptic curve, Elligator2 [11] as H1(·), SHA-3 as the hash func-
tion. Edwards25519, SHA-3 and the encoding of points on Edwards25519 are
supported by Go’s standard library. We use open-source implementations of
SHA256D1, Scrypt2, and CryptoNight3. All experiments run on a MacBook Pro
with a 2.2 GHz Intel Core i7 Processor and a 16 GB DDR4 RAM. Each group
of experiments consists of ten runs, and we take the average value of ten values
as the result.

6.2 VRF v.s. Existing Mining Algorithms

We compare the performance of VRF with existing mining algorithms. Figure 1a
shows the runtime of VRF and other algorithms. SHA256D is much faster than
other algorithms, as SHA256D is simply executing SHA256 twice. In addition,
VRFVerify(·) is slightly slower than VRFProve(·), and VRFProve(·) is slightly
slower than VRFHash(·). Last, although without optimisation, all functions of
VRF are much faster than Scrypt and CryptoNight.

1 https://github.com/seehuhn/sha256d.
2 https://github.com/elithrar/simple-scrypt.
3 https://github.com/Equim-chan/cryptonight.

https://github.com/seehuhn/sha256d
https://github.com/elithrar/simple-scrypt
https://github.com/Equim-chan/cryptonight
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(a) Comparing the runtime of VRF and
other mining algorithms.

(b) Runtime breakdown of VRFHash(·).

Fig. 1. Evaluation of VRF.

6.3 Runtime Breakdown of VRF

We profile VRFHash(·) by evaluating its runtime of each step. Figure 1b
shows that, the elliptic curve scalar multiplication γ ← hsk(·) takes 88% of
VRFHash(·)’s running time. This is because we use SHA-3 as the hash function
in H1(·) and H2(·), and SHA-3 is designed to be fast. Meanwhile, we calculate
the elliptic curve scalar multiplication using the trivial double-and-add method
without any optimisation, thus is much slower than H1(·) and H2(·). There have
been optimisation techniques for elliptic curve scalar multiplication, and some
miners may exploit them for accelerating mining. This may be unfair to other
miners. To avoid this, we suggest to replace H1(·) and/or H2(·) with slow hash
functions such as Scrypt and CryptoNight.

7 Profitability of Partial Outsourcing

The pool operator may still have opportunity to partially outsource mining.
The mining function VRFHash consists of three steps: 1) h ← H1(α), 2) γ ←
hsk and 3) β ← H2(γ). Non-outsourceability is from the second step γ = hsk,
as it requires the knowledge of the pool operator’s secret key sk. The pool
operator can outsource the first step h = H1(α) and the last step β = H2(γ)
by distributing different αs and γs to miners, respectively. However, we show
that such partial outsourcing is very inefficient and unprofitable compared to
outsourcing in hash-based mining, due to the computing and I/O overhead.

7.1 Partial Outsourcing

In VRF-based mining, the pool operator can outsource H1(·) or H2(·). To out-
source H1(·), the pool operator generates a series of nonces {n1, . . . , nm}, then
sends the series and the block template t to a miner. Then, the miner com-
putes H1(ni) for each i ∈ [1,m], then sends back all hi = H1(·) hashes to the
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pool operator. The pool operator should verify {h1, . . . , hm} before starting the
second step—multiplying each of {h1, . . . , hm} with its secret key sk.

After the second step, the pool operator obtains a series of {γ1, . . . , γm}.
To outsource H2(·), the pool operator first sends {γ1, . . . , γm} as well as the
pool difficulty PT to the miner. Then, the miner calculates H2(γi) for each
i ∈ [1,m], compare the hashes with PT , and sends back γs that satisfy the
difficulty (denoted as Γ). Upon receiving these γs, the pool operator verifies their
correctness and accumulates the mined shares to the miner’s total contribution.

7.2 First Obstacle: Overhead of Verification

The first obstacle of partial outsourcing is verifying hashes from miners. For out-
sourcing H1(·), the pool operator should verify all of {h1, . . . , hm}. For outsourc-
ing H2(·), The pool operator should verify σs satisfying PT . Such verification
overhead is even more than the pool operator mining by himself. Thus, partial
outsourcing unprofitable.

7.3 Second Obstacle: Overhead of I/O

To bypass the first obstacle, the pool operator and the miners can trust each
other and omit the verification. This is possible as pooled mining is beneficial
for them: the pool operator can earn some fees from the miners, while miners
can stabilise their mining reward.

However, partial outsourcing can still be unprofitable even without the ver-
ification. VRF-based mining is extremely I/O intensive, and the network band-
width of the pool operator’s server is limited. To outsource a single H1(·), the
pool operator should at least receive a H1(·) hash from the miner. To outsource
a single H2(·), the pool operator should at least send a σ to the miner.

Assume a pool operator with bandwidth BW (in bytes/s), and the pool
operator can achieve optimal bandwidth utilisation on mining. Assume each the
pool operator should transfer N bytes for outsourcing each mining attempt.
Then, the maximum hashrate that the pool operator can achieve is

Maximum hashrate =
BW

N

Either a H1(·) hash or a γ (a point on the elliptic curve) is at least 32 bytes.
If outsourcing both H1(·) and H2(·), the maximum hashrate the pool operator
can support is Maximum Hashrate = BW

64 (h/s). If outsourcing only one of them,
the maximum hashrate is Maximum Hashrate = BW

32 (h/s).
Figure 2 shows relationship between the server’s network bandwidth and

the maximum hashrate the server can achieve. The result shows that, existing
servers can only achieve limited hashrate on partial outsourcing. On AWS [1],
I3EN Metal is the server with most bandwidth, which is 3,500 MB/s. However,
I3EN Metal can support hashrate less than 1

10 of Monero’s total mining power.
Within those mainstream cryptocurrencies, Monero’s hashrate is the least. Even
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Fig. 2. Server bandwidth v.s. maximum hashrate. Data of server bandwidth and
hashrate were fetc.hed from AWS [1] and CoinWarz [2] at 01/03/2020, respectively.

if the pool operator rents a cluster of I3EN Metal machines for more bandwidth,
I3EN Metal is quite expensive (10.848 USD per hour), leading to high expense of
maintaining a mining pool. Therefore, partial outsourcing in VRF-based mining
is costly and unrealistic.

8 Discussions

While eliminating mining pools can improve decentralisation, it also introduces
new problems. We discuss two problems and their possible solutions, namely 1)
high reward variance and 2) secret key leakage in memory.

8.1 Weaker Security Guarantee of PoW-Based Consensus

The reason of miners joining mining pools is that, miners may not obtain stable
income via solo mining. Miners may be discouraged to mine if their rewards
are highly volatile. With weaker incentive of mining, fewer miners will join the
blockchain. The blockchain will then attract less mining power, which weakens
the security of PoW-based consensus.

This problem can be addressed by making the mining reward fine-grained.
Miller et al. [26] proposes the multi-tier reward scheme. In multi-tier reward
scheme, the mining difficulty is divided into different levels, and miners can
mine blocks satisfying different difficulty levels arbitrarily. In this way, min-
ing reward is distributed in a fine-grained way, so lowers the reward variance.



298 R. Han et al.

StrongChain [30] introduces the notion of Collaborative PoW, where miners are
encouraged to mine blocks together and the mining reward is distributed in pro-
portion to miners’ contributions. Bobtail [13] and HotPoW [22] further explore
the Collaborative PoW approach.

Another solution is to increase the rate of mining blocks. With more blocks
mined in a time unit, the mining reward can also be more stable. For exam-
ple, although of independent interest, protocols for scaling blockchains such as
sharding [34] and DAG [23] can also stabilise the mining reward variance.

8.2 Secret Key Leakage in Memory

VRF-mining requires the secret key, so a miner should keep its secret key in
plaintext in memory all the time. This gives adversaries opportunity to steal the
secret key from the memory. For example, if the mining software has a bug that
enables hackers to access the memory space of the mining software, then the
hacker can easily steal the secret key.

For VRF-based mining, keeping secret keys in memory is inevitable. To
achieve non-outsourceability, the secret key should be combined to the mining
process. As long as mining does not stop, the secret key should be kept in plain-
text in memory. This applies to all protocols that execute frequently and require
secret keys, such as TLS.

There have been several different ways to protect in-memory secret keys.
First, the miner can isolate the scalar multiplication to a software or hardware
enclave. Note that the encalves are unnecessary to be general-purpose. Second,
the process of the mining software can destroy itself once detecting anoma-
lous memory access attempts. Third, the miner can isolate mining from the
blockchain node. For example, it can run the mining process independently with
its blockchain node process. In this way, if an adversary compromises its node
but not the operating system, the adversary still cannot read the secret key in
another process. Fourth, it can run the mining process in an offline machine
that can only communicate with its blockchain node. Fifth, Oblivious RAM
(ORAM) is a promising primitive to protect sensitive data in memory. ORAM
allows CPUs to access data in memory while the data in memory is encrypted
and the access pattern is hidden. Last, the miner can use a new secret key for
each block, so that leaking a secret key only affects the reward of a single block.

9 Related Work

We review related research on preventing mining pools, and compare them with
VRF-based mining. We classify related research to two types, namely pooled-
mining-unfriendly mining protocols and decentralised mining pools.

9.1 Mining Protocols

There are two mining protocols aiming at discouraging or breaking mining pools:
the non-outsourceable scratch-off puzzle [26] and the Two Phase Proof-of-Work
(2P-PoW ) [21]. Table 1 summarises our comparisons.
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Table 1. Comparison between mining protocols. NSP is short for non-outsourceable
scratch-off puzzle.

VRF-based mining NSP-1 NSP-2 2P-PoW

Punish-mining-reward ✓ ✓ ✓ ✓

Stealing-unlinkability ✗† ✗ ✓ ✗

No partial outsourcing ✓ ✓ ✓ ✗

Support randomised signatures ✓ ✓ ✓ ✗

No complex cryptography ✓ ✓ ✗ ✓

†The pool operator should take non-negligible effort to deanonymise stealing
behaviours.

Table 2. Comparison with decentralised mining pools.

VRF-based mining P2Pool SmartPool BetterHash

Complexity - Blockchain Smart contract -

Decentralisation Mining Mining Mining Select txs

Non-outsourceable Scratch-Off Puzzle. Miller et al. [26] formalises min-
ing as scratch-off puzzles, defines non-outsourceability, and proposes two non-
outsourceable scratch-off puzzles. One achieves weak non-outsourceability—miners
can steal the mining reward, and the other achieves strong non-outsourceability—
miners can steal the mining reward anonymously.

The weak non-outsourceable scratch-off puzzle works as follows. First, the
miner randomly generates a Merkle tree. Second, the miner randomly chooses a
nonce, samples some leaves of the Merkle tree according to the nonce, and hashes
their Merkle proofs together to a single hash. If this hash meets the difficulty
requirement, then the nonce is valid. Last, the miner binds the valid nonce and
its block template together to a valid block.

In order to outsource the mining process, the mining pool should distribute
the search space of nonces to miners. A miner can steal the mining reward by
binding valid nonces it finds with its own block template. However, this stealing
process is not anonymous. Unlike existing PoW-based consensus where min-
ers can choose both nonces and block templates, the weak non-outsourceable
scratch-off puzzle only allows miners to choose nonces, so all miners share the
same search space of nonces. Thus, the pool operator can link the nonce in
the stolen block with the miner who is assigned with the search space covering
this nonce. To achieve strong non-outsourceability, the strong non-outsourceable
scratch-off puzzle replaces the plaintext nonce in the block with a Zero Knowl-
edge Proof proving the statement “I know a valid nonce”.
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As discussed in Sect. 4, while being simpler and more efficient than non-
outsourceable scratch-off puzzle, our VRF-based mining achieves strong non-
outsourceability.

2P-PoW. Eyal and Sirer proposes 2P-PoW [21], a mining protocol that discour-
ages pooled mining. In 2P-PoW, mining consists of two phases, and each phase
has a difficulty parameter. A miner should find a nonce that makes the block to
pass two phases: 1) the SHA256D hash of the block meets the first difficulty, 2)
the SHA256 hash of the signature of the block meets the second difficulty. As
the second requirement requires the secret key, pool operators cannot outsource
the second phase.

Compared to VRF-based mining that makes pooled mining impossible, 2P-
PoW is partially outsourceable by outsourcing the first phase. In addition, 2P-
PoW requires the digital signature algorithm to be deterministic, while com-
monly used digital signatures such as ECDSA rely on randomisation. If the
signature is randomised, the pool operator can make use of all nonces from min-
ers that meet the first phase but fail the second phase. Given a nonce meeting
the first difficulty, the pool operator repetitively generates signatures to meet
the second requirement. Moreover, how to adjust two difficulties still remains
unknown and requires some simulations.

9.2 Decentralised Mining Pools

Decentralised mining pool is a type of mining pools that work in a decentralised
way: miners mine in the name of themselves and share reward in a fine-grained
way. In this way, miners are rewarded stably while mining power is not controlled
by pool operators. Table 2 summarises the comparison between VRF-based min-
ing with decentralised mining pools.

P2Pool [33] is a decentralised mining pool for Bitcoin. Instead of using a
centralised server, P2Pool uses a blockchain called share-chain to receive shares
from miners. All miners in P2Pool participate in the PoW-based consensus of
share-chain. Once a miner finds a share on Bitcoin, it appends a block to the
share-chain. The block consists of the share and a coinbase transaction that
rewards miners in proportion to their shares. Once a miner mines a block that
also satisfies Bitcoin’s difficulty, it submits this block to the Bitcoin blockchain,
and miners are rewarded according to the coinbase transaction. P2Pool suffers
from several limitations. First, handling the difficulty of mining shares is hard. If
the difficulty is high, miners’ reward will still be volatile. If the difficulty is low,
there will be numerous low-difficulty shares, which introduces huge overhead
on broadcasting and receiving shares. Second, shares on share-chain are much
more frequent than blocks on Bitcoin blockchain, and the share-chain suffers
from high orphan rate. Last, existing research shows that P2Pool is vulnerable
to temporary dishonest majority [37].
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SmartPool [24] is another decentralised mining pool. Instead of using a
blockchain, SmartPool employs smart contracts to track shares from miners.
This implies that SmartPool cannot work on blockchains without smart con-
tracts. In addition, as blockchains achieve limited throughput, blockchains can
only handle a limited number of shares for each time unit. In this way, distribut-
ing mining reward may also be delayed, especially when a large number of miners
participate in the SmartPool. Moreover, as the SmartPool smart contract should
verify the validity of blocks, miners should submit the entire block—including
transactions—to the SmartPool. Verifying blocks introduces non-negligible com-
puting overhead and transaction fee, and storing blocks in smart contracts also
introduces non-negligible overhead on storage.

BetterHash [15] is another decentralised mining protocol, which has been
integrated into Stratum V2 [8], the next generation of the Stratum [7] pooled
mining protocol. In BetterHash, the block operator allows miners to choose trans-
actions and construct blocks in its name, rather than constructing block tem-
plates by himself. Thus, BetterHash only contributes to the decentralisation of
constructing blocks, but does not improve the decentralisation of mining power.

10 Conclusion and Future Work

In this paper, we propose VRF-based mining, that can make pooled mining
in Proof-of-work-based consensus impossible. VRF-based mining is simple and
intuitive: miners produce digests of blocks using VRFs rather than hash func-
tions, so that a pool operator should reveal its secret key to outsource the mining
process to other miners. We show that VRF-based mining achieves good non-
outsourceability guarantee. In addition, we discuss considerations of instantiating
VRF-based mining. Moreover, we experimentally proves that VRF-based mining
is simple to implement and introduces negligible overhead.

Adding stealing-unlinkability to VRF-based mining remains as an open prob-
lem. The key – as discussed by Miller et al. [26] – is to exclude everything that the
pool operator can exploit to track miners from mining. A possible construction
can be excluding Merkle root from mining and replacing VRF with Anonymous
VRF [18] – a VRF variant where VRF outputs cannot be linked to any secret
key. We consider concrete construction as future work.

Acknowledgement. We thank Mikerah, Omer Shlomovits, Silur, John Trump, Cheng
Wang and anonymous reviewers for insightful discussion and feedback.

A The Standardised Elliptic-Curve-Based VRF

Algorithm 3 describes the Elliptic-curve-based VRF (EC-VRF) construction
standardised in draft-goldbe-vrf [19].
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Algorithm 3: The Elliptic-curve-based VRF (EC-VRF) construction
standardised in draft-goldbe-vrf [19].

Preliminaries:
– G is a cyclic group of prime order q with generator g.
– H1(·) hashes an arbitrary-length string into an element in G.
– H2(·) hashes an element in G into a fixed-length string.
– H3(·) hashes an arbitrary-length string into a fixed-length string.
– random([x, y]) uniformly and randomly picks a number in [x, y].

Algorithm VRFKeyGen(1λ):
sk = random([0, q − 1])

pk = gsk

return (sk, pk)

Algorithm VRFHash(sk, α):
h = H1(α)

γ = hsk

β = H2(γ)
return β

Algorithm VRFProve(sk, α):
h = H1(α)

γ = hsk

k = random([0, q − 1])

c = H3(g, h, gsk, hsk, gk, hk)
s = k − c · sk (mod q)
π = (γ, c, s)
return π

Algorithm VRFVerify(pk, α, β, π):
u = pkc · gs

h = H1(α)
if γ /∈ G then return 0
v = γc · hs

if c �= H3(g, h, pk, γ, u, v) then return 0
return 1
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Abstract. The Lightning Network (LN) is a payment network deployed
on top of Bitcoin. In the LN, the payer and the payee do not need to have
an open direct channel to transact: they can transact through channels
by means of other users of the network, that act as intermediaries for the
payments. The parameters of the contracts being used in these multihop
payments determine the level of security offered, but also the usefulness
of the LN as a payment network. In this paper, we evaluate the impact of
tuning the parameters of the contracts for the security and performance
of the payment network, and provide recommendations on the values
for those parameters, taking into account the trade-off between network
utility and security.

Keywords: Lightning network · Payment channel networks · Bitcoin ·
Blockchain · Security

1 Introduction

The Lightning Network is a P2P network built on top of Bitcoin protocol. Its
main feature is to allow two users to transact with each other with all the
benefits that payment channels offer, but without having to open a direct channel
between themselves. The mechanism implemented is by creating multihop routes,
that carry payments through other LN users.

Multihop payments in the LN are performed in two stages: on the first stage,
a set of contracts (HTLCs) are created, and the funds to satisfy these contracts
are locked; on the second stage, either the payment becomes effective or the
contracts are cancelled. In either way, funds are unlocked, and become available
again in the LN.

Users pay fees to nodes in the middle of multihop payments, to compensate
for their work. However, if a multihop payment is cancelled in the second stage,
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such fees are not paid. This introduces a vector of attack: an attacker can lock
users’ funds in the network by performing the first stage of the payment, and
then cancelling the payment. Moreover, attackers can try to hold payments in the
first stage for a long time, increasing the economical damage to the participants.

Previous studies [13] show that the cost of this attack is low when LN nodes
use default configuration values for several key parameters. The cost of the attack
can be increased by adjusting the parameters of HTLCs negotiation. However,
such parameters also impact on the performance of the payment network, since
the same values that can mitigate the attack can also reduce the performance
in terms of multihop payment availability.

In this paper, we tune two different parameters of the LN implementations:
cltv expiry delta and locktime max. The goal is to define a proper value for
those parameters that maximizes the performance of the LN in terms of payment
success rate while minimizing the damages of an attack.

The rest of the paper is organized as follows. Section 2 provides the required
background of the LN to understand the performed analysis. In Sect. 3, we define
the two sets of metrics used to evaluate the parameters, regarding both the
performance of the LN (in terms of payment success) and resilience to security
attacks. Section 4 describes how we setup the experiment scenario and Sect. 5
provides the results of our findings. Finally, Sect. 6 concludes the paper and
provides some guidelines for further research.

2 Background

After its initial proposal in 2016 and its first stable release in 2018, the research
community laid down its attention on LN. The reason lies on that LN’s solution
overcomes the scaling and instant payment issues that deter to Bitcoin as a viable
payment method. The exchange of Bitcoins on this peer-to-peer (P2P) network
takes place outside of the blockchain by means of payment channels created
by nodes that deploy any version of a LN client [5], being either: LND [16],
c-lightning [7] or eclair [6]. A node that runs any of those clients can connect to
other LN nodes as well as to a node in the Bitcoin P2P network. This connectivity
structure is essential to exchange Bitcoin transactions without setting them down
on the blockchain, i.e. payment channels are the fundamental element of LN.

To open the aforementioned payment channel, a peer sends a funding trans-
action to the blockchain to create the channel with a fixed capacity. On the con-
trary, to close it, the peer sends a settlement transaction. Once peers establish
the channel, they can exchange transactions, which last a fraction of time because
of its non-essential update on the blockchain. Any single transaction, between a
couple of peers, shifts the balance when processing the mutually signed commit-
ment transaction. The commitment transaction contains the payment amount
and the fee charged.

However, to provide a more extended service, the LN allows multihop app-
roach, in which a node can perform a payment from a source to a target that
does not share a direct payment channel. Hence, a payment route is a bond by
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which a transaction traverses a defined path through nodes with sufficient funds
charging a nominal fee.

On most LN implementations, the source node, which performs the pay-
ment, constructs a path using a route discovery through the maintenance of an
up-to-date topology structure of the LN network. Although, a LN implemen-
tation can provide to source node a suitable route, with the number of hops
and their charged fees, toward a certain target node, that source node might
compute a payment route as needed with the information available on this P2P
environment.

Hashed Timelock Contracts (HTLC) [3] enforces an atomic exchange among
the nodes on the route, i.e. all the hop payments succeed or none will proceed to
redeem the funds. HTLC creates a bond between a pair of nodes, sender A and
receiver B, to perform payments, in which B can redeem the bitcoins deposited
by A only if B provides both a preimage of hash value and a digital signature.
As a conceptualization of a contract, the sender A settles an expiration date to
the deposit performed in the payment. In case, the receiver B does not commit
a preimage on time, A can provide a digital signature to retrieve the deposit.
On a route payment, with two or more hops, the target node sends to the source
node a computed hash value h(x), in which x is a generated random value. For
instance, let us assume that node A performs a payment to node B through node
C, i.e. A ↔ B ↔ C. Node A, which receives h(x) from C, generates a HTLC to
route the payment to B, which later routes a generated HTLC with the same
h(x) to C. Then, C, which generated x, reveals the preimage to B to redeem
the transaction. Likewise, B reveals x to A to redeem the payment.

Under the basic concepts described above and following the categorization
on [2], payment channels maintain an operational cycle with the following steps:

– channel funding: a node sends a funding transaction to the blockchain at
the time it opens a payment channel.

– payment execution: channel peers reflect the new balance when a node
sent a commitment transaction.

– channel closing: a node sends the last commitment transaction to the
blockchain when any of the channel peers wants to close it.

– unbalancing results at the moment when either a node reaches a zero balance
or performs payments on the channel following a single direction.

– multihop payment is essential when a direct channel does not exist between
peers. HTLC enforces a via to achieve a payment from a source node to a
target node. However, the contract may incur on any of the following states:
a source node creates a HTLC that has to reach to the target node through
intermediate nodes (HTLC Establishment); a target node forwards a revealed
preimage through the intermediate nodes, which will redeem their correspond-
ing payment, to the source node (HTLC Fulfillment); and a source node or
intermediate nodes do not receive the revealed preimage and the timelock in
the contract expires (HTLC Failure).

Even though the LN exhibits the properties of a P2P network, its connec-
tivity could fall upon against target attacks [1,11]. Therefore, it is important to
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analyse the robustness of the LN. On [10], authors simulated attacks, such as
the case an attacker destroys nodes with the high degree of connectivity, and
possible countermeasures, as a defender that re-establish connectivity by adding
nodes to the network. Furthermore, proposals such as [19] aim to enhance rout-
ing throughput by leaving the payment channel balanced after performing a
transaction.

2.1 Parameters that Define Multihop Routes

Let us consider the next scenario, A1 → A2 → · · · → Ai → · · · → An, in
which node Ai may not proceed with the payment due to an unknown reason.
In that case, locks will arise among the hops performed between nodes A1 and
Ai. The reason comes from the policy taken by A1 that sets a time that bounds
the total locking time, known as the absolute expiration block height θ. On the
event of an unsuccessful payment, θ sets the time to release the amount involved
on a locked payment route. Therefore, as nodes route the payment to their
subsequent nodes, the value of θ decreases after each hop. The value by which
the total timelock is decreased at each hop is advertised by each node of LN,
and is known as cltv expiry delta [18] (δ), i.e. δ defines the tolerated difference
in blocks specified by each node along the route. It is worth to mention that
the value of δ may differ depending on the direction that a transfer traverses
the same channel, because each node sets that value. With regard to the target
node, the min final cltv expiry [17] value comes into play instead of δ.

On the other hand, the public data released by each node allows to create a
route from a source node to a target node. The source node provides the initial
θ value, that is decreased at each hop on the route. For a payment path to be
valid, the last hop must still be able to set a timelock he agrees to, that is, at
least (θ0 − ∑n

i=2 δi) > 0. Although, this mechanism allows to source node to
limit the duration of a locktime over a payment, a malicious node could try to
lock indefinitely the funds of intermediate nodes by setting an initial large θ.
Moreover, among the LN implementations, the δ value can be set by default to
either 40 blocks or 144 blocks.

Moreover, to avoid long timeouts, nodes set their locktime max (Tmax), the
maximum time they allow for HTLC expiration values in outgoing payments
on the channel. In consequence, the relation θ < Tmax must always hold, to
provide a node the option to accept a payment as an intermediate node on that
route. Otherwise, the intermediate node must refuse to route the payment and
the source node must compute a different path. Besides the maximum hop limit
(set to at most 20 hops), δ and Tmax form part of the parametric consideration
taken by a source node to create a payment route.

Despite the parameters explained above, an intermediate node goal is to
make a profit from routing payments. Whence, at the time a source node con-
structs a route, it must gather specific information about fees or minimum pay-
ment amount that each intermediate node will charge or agree to transfer dur-
ing using its channel. As part of that information, nodes propagate the min-
imum amount payment, in millisatoshi, that will agree to transfer, known as
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htlc minimum msat [18]. Additionally, a node reveals a couple of values related
to fees: fee base msat [17], fee comprised on each HTLC as the constant amount
charged by a node that performs a transfer, and fee proportional millionths
[17], fee that increases proportionally per amount transferred.

This paper is focused on multihop payments. We intend to provide recom-
mendations on the optimum values of cltv expiry delta and Tmax configuration
parameters, to provide the best trade-off between the efficiency of the network
and its resilience to attacks.

Detailed explanations of the main concepts about the LN can be found in the
literature [4,12,14]. The BOLTs [15] also provide a more technical description
of LN specifications.

3 Metrics

In order to determine the most appropriate values for the parameters that we
want to assess, we define two different sets of metrics. Such metrics are somehow
opposite since the extreme values for one of the sets produce poor results in the
other one, so a trade-off between both values has to be achieved.

3.1 Metrics to Evaluate Performance

Lightning Network (LN) is meant to perform payments between users. With this
general objective in mind, we could measure the performance of the LN based on
the possibility that two different users of the network would be able to perform
a payment between them. However, as we point out in Sect. 2, not all pairs of
nodes in the LN share a channel so the majority of payments between nodes are
performed through multihop routes. A may perform a payment to B if there is
a path between both users with enough funds, and the configuration parameters
of the implementations allow to do so.

We measure the performance by repeatedly picking two random nodes in
the lightning network and trying to perform a payment between them. For each
chosen pair, payments of different amounts are attempted, from 1 to 4294967
satoshis (the maximum payment commonly allowed in the LN implementations),
tacking as intermediate amounts all base 2 possible values between those lim-
its. Performance is measured, for each amount, as the percentage of successful
payments from the total number of attempts.

Notice that path availability is a feature that depends on different parame-
ters. First of all, it depends on the topology of the LN, defined by each of the
channels created in the network. A path must exist between A and B to allow
a payment between them. However, such basic requirement is not the only one
needed. Capacity of each channel that the payment traverses must be bigger that
the payment amount itself. In fact, even this condition is not enough since the
channel capacity must be properly distributed and the balance of each member
of each channel has to be greater than the payment (in the right direction of the
payment).
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Nevertheless, none of the above requirements to perform a payment between
two users depends on the parameters that we want to evaluate. An intermediate
node in a path may refuse to route a payment if the proposed HTLC expiration
time does to meet his requirements, either because it is to high (higher than his
Tmax) or because it is too low (and thus can not ensure a difference of δ with the
next hop’s HTLC expiration time). For his reason, lowering Tmax or increasing δ
configuration values in the LN clients may reduce the probability that a random
payment can be successfully performed in the network.

3.2 Metrics to Evaluate Security

Recently, security of the LN has been analyzed in different research papers and
some attacks have been presented. One of those attacks [13] may lock the funds
of a victim by performing payments through that node that take longer to finish
than needed. The attack takes advantage of the multihop ability and the possi-
bility to loop a single route multiple times through a single user. The severity of
the attack can be measured with two different parameters (as defined in [13]):
the Attack Effort Ratio (AER) and the Δ(b) function.

Definition 1. The Attack Effort Ratio (AER) is the ratio between the capac-
ity needed to perform the attack and the capacity that the attack blocks, i.e.,

AER =
Cattack

Cblocked

AER measures the profitability of the attack. The lower the AER, the more
efficient the attack is in economic terms, and thus the higher the incentive for
the adversary to perform such attack.

To measure the time during which the balance is locked, the Δ function can
be defined.

Definition 2. The Δ(b) function is a time based decreasing function that mea-
sures the total capacity blocked w.r.t. the time during which the attack has been
conducted. The block generation count, b, is used as the time unit for this func-
tion.

For instance, Δ(0) = Cblocked since it provides the total capacity blocked at
the initial time of the attack, when no new block is yet generated. Eventually,
Δ(b) = 0 for a large b, since the blocking effectiveness of the attack decreases
when more blocks are generated.

Since the attack is performed through multiple payments, the Δ(b) function is
computed taking into account the expiration values of each payment that forms
the attack1. If we define Δi(b) as the capacity blocked by payment i during b
blocks, then Δ(b) =

∑
i Δi(b),∀i ∈ attack.

For comparison purposes, we define two single value metrics that compress
the Δ(b) function: Total Blocked Time and Normalized Total Blocked Time.
1 See [13] for further details.



On the Selection of the LN Client Implementation Parameters 311

Total Blocked Time, TBT , of the attack is the sum of the Δ(b) values:

TBT =
∞∑

b=0

Δ(b)

The normalized TBT , ˜TBT , is defined as:

˜TBT =
TBT

Cblocked · max{Tmax} ,

where max{Tmax} is the maximum default value of Tmax used in all the experi-
ments. Therefore, 0 < ˜TBT ≤ 1, and the ideal attack with ˜TBT = 1 would be
blocking Cblocked capacity during 5000 blocks, that is, more than 34 days.

4 Experiment Setup

The goal of the experiments is to evaluate the impact the values of δ and Tmax

have on both the security of the network and its performance, using the metrics
defined in Sect. 3.

The experiments consist on a set of simulations where the parameters δ and
Tmax are adjusted for all the nodes in the network. Then, on the one hand,
performance is evaluated over the resulting graph (as described in Sect. 3.1)
and, on the other hand, a lockdown attack [13] is simulated over the network
and the effectiveness and cost of the attack are also evaluated (using the metrics
described in Sect. 3.2).

Specifically, each of the experiments is performed in the following way:

1. A LN mainnet graph describing nodes and the existing channels is obtained
from a lightning client.

2. Balances are assigned randomly using different probability distributions, and
taking into account the capacity of each channel as described in the LN graph.

3. All nodes of the network are configured to simulate their behaviour assuming
a certain pair of (δ, Tmax) values.

4. Evaluation of the performance of the payment network (enforcing the restric-
tions given by δ and Tmax values, and taking into account existing channels
and their balances).

5. A lockdown attack is simulated over the network.
6. The cost and effectiveness of the attack is evaluated using the AER and

normalized TBT metrics.

The following sections describe the LN graph, the balances assignation pro-
cedure, and the tested values of the (δ, Tmax) pair.
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4.1 LN Payment Channel Graph and Balances

Our simulations will assess the effectiveness of the attack given the actual topol-
ogy of the network. We base our simulations on the attack algorithm described
in [13]. The simulations are made on a snapshot of the LN running on top of the
bitcoin mainnet and taken on the 12nd of January, 2020.

Both to execute an attack on the network and to evaluate its performance,
we need to complement the information of the LN graph with additional data,
specifically, the balance of each channel in the network.

The LN does not publicly disclose channels’ balances: each user only knows
the balances of the channels he participates into them. One alternative to retrieve
such balances will be to execute an attack on the network (as described in [9]).
However, instead of performing such attack, we have assigned the balances of
each channel using different statistical distributions, trying to reproduce the
different scenarios that could be found in the network. In order to assign balances
to channels, we proceed in the following way: for each channel, first the balance of
one of the nodes is randomly selected using one of the selected distributions, and
taking the capacity of the channel as the maximum possible value to generate.
Then, the balance of the other node in the channel is set as the remaining balance
(that is, the capacity minus the balance). Five different distributions are used
to assign balances to channels: deterministic, uniform, normal, exponential, and
beta. The deterministic distribution always assigns half of the capacity of the
channel to each of the nodes; the normal distribution is used with μ = 0.5
and σ = 0.2; the exponential distribution uses λ = 1; and the beta distribution
α = β = 0.25.

4.2 δ and Tmax Values

We have simulated the network with 16 combinations of δ and Tmax values. In
particular, we have tested all combinations of Tmax ∈ {432, 1008, 2016, 5000}
and δ ∈ {14, 40, 144, 288}.

The tested values include the ones found in the most popular LN client
implementations (see Table 1), as well as one additional value for each parameter:
a value of 432 (three times 144) for Tmax and a value of 288 for δ (the double of
the maximum default value in any implementation) are also tested. This allows
us to test scenarios for which the Tmax/δ ratio is less than 2, and thus restricts
multihop payments.

Table 1. δ and Tmax values found in the most popular LN clients.

lnd (old) lnd (new) c-lightning eclair

Tmax 5000 5000 2016 1008

δ 144 40 14 144
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5 Experiment Results

This section summarizes the results of the experiments. For each of the proba-
bility distributions, the same experiment is repeated 10 times, and the averages
of the results are presented here.

5.1 Performance

Figure 1 shows the performance results when using a normal distribution to
generate channel balances. Each of the individual heatmaps shows the percentage
of random payments for which there are valid multihop paths for a specific
amount of satoshis.

To understand these results it is important to note that the diameter of the
graph is 7. Moreover, regardless of any restrictions imposed by the configuration
parameters of the nodes (δ and Tmax), only 21% of the payments between any
two random nodes on the graph can be executed (due to the structure of the
graph itself). For the payments that can indeed be done, the median number of
hops is between 3 and 4 (depending on the specific configuration of balances),
with an average around 3.75.

Configurations for (δ, Tmax) with values (288, 432), (288, 1008) and (144, 432)
have a Tmax/δ ratio lower than the graph’s diameter. Therefore, their results
differ significantly from all the other configurations.

– Regardless of the amount, payments with (δ, Tmax) = (288, 432) always fail.
This is because this configuration of parameters does not allow any multihop
route, and thus payments may succeed only if two randomly selected nodes
have a direct channel.

– Configurations (288, 1008) and (144, 432) have a Tmax/δ ratio of 3.5 and 3,
respectively. These values are close to the median of the paths found. This is
why there is a performance decay when using these two configurations (with
respect to those that have a ratio higher than the graph’s diameter). As
expected, the percentage of successful payments decreases with the increase
of the payment amount, since available balances limit payments.

– All other configurations have similar performance, regardless of the specific
(δ, Tmax) values. Again, the percentage of successful payments decreases with
the increase of the payment amount, going from 21% for lower amounts, down
to 1.9% for payments of the maximum amount.

For space constraints, we have not included the results for the other four
distributions. However, the results are very similar, and the same conclusions
can be extrapolated to them.

5.2 Security

Table 2 shows the values of the metrics used to evaluate security (AER and the
normalized TBT, ˜TBT ) again for instances where balances were assigned using
a normal distribution.
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The general trend that can be observed is that increasing δ and/or decreasing
Tmax makes the attack more difficult for the attacker. Specifically, increasing δ
and/or decreasing Tmax results in:

– higher (or, on some specific configurations, equal) AER values. This implies
the attacker needs to be in possession of more bitcoins in order to perform the
attack, because more capacity in the channels the attacker creates for the attack
is needed. The bitcoins spent in capacity can be recovered once the attack is fin-
ished, but the attacker must have them as long as the attack lasts.

– more (or, on some specific configurations, equal) channels needed. This implies
a higher economic cost for the attacker which needs to pay more bitcoins in
fees to open those channels. The attacker needs to spend these bitcoins (that
is, he does not get the bitcoins back once the attack has finished).

– lower (or, on some specific configurations, equal) ˜TBT values, which means
the attacker is able to block the victim during shorter amounts of time.

There are a couple of exceptions to the previous tendencies. On the one hand,
for the configuration (δ, Tmax) = (288, 432) the attacker is not able to block
the victim, because no multihop payments can be done with these parameters.
Therefore, the attack has no cost for the attacker (since no capacity is blocked).
On the other hand, for (δ, Tmax) = (144, 2016) the tendency for ˜TBT deviates
from the rest. The reason is that the higher amount of resources spent by the
attacker (more channels and capacity) allow for longer blocking times.

Table 2. Attack metrics results for different tested parameters with a normal distri-
bution balance.

Tmax δ EAR Blocked capacity Channels needed ˜TBT

432 14 0.138 95.92% 34.2 0.04

432 40 0.274 95.84% 66.9 0.02

432 144 0.840 75.88% 179.0 0.02

432 288 0.000 0.00% 0.0 0

1008 14 0.138 95.92% 34.2 0.15

1008 40 0.138 95.92% 34.2 0.07

1008 144 0.528 95.88% 127.9 0.08

1008 288 0.890 85.34% 201.5 0.07

2016 14 0.138 95.92% 34.2 0.34

2016 40 0.138 95.92% 34.2 0.26

2016 144 0.187 95.98% 46.4 0.06

2016 288 0.528 95.88% 127.9 0.15

5000 14 0.138 95.92% 34.2 0.92

5000 40 0.138 95.92% 34.2 0.83

5000 144 0.138 95.92% 34.2 0.51

5000 288 0.154 95.92% 38.1 0.17
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Fig. 1. Payment performance for different (δ, Tmax) pairs

5.3 Discussion

From the perspective of the performance of the payment network, any (δ, Tmax)
configuration except for the three most restrictive ones ((288, 432), (288, 1008)
and (144, 432)) offers similar results. Therefore, we should focus on the security
properties offered by these similar configurations in order to choose the best pair
of values without affecting the performance of the payment network.

Depending on the security metric chosen to evaluate the success of the attack,
different pairs of values could be chosen.

If the focus is on minimizing the time the attacker is able to lock funds, then
(40, 432) and (144, 432) are the best choices, since they both minimize ˜TBT .
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(144, 432) makes the attack more expensive for the attacker (higher AER and
number of channels needed) and less successful (less capacity blocked), however,
such configuration results in a poor performance as we show in Fig. 1.

However, attacks with low ˜TBT are not much of a burdensome for the
attacker, since a new attack can be launched again once the funds are released
from a previous attack.

Therefore, one may want to hinder the attacker by increasing the economical
cost of the attack, both in terms of fees paid to open channels and capacity
available in his channels that has to be used to perform the attack. Then, if the
focus is on maximizing the cost of the attack, setting Tmax = 1008 and δ = 288
is the best choice: it provides the highest AER and number of channels needed
for the attack, while blocking 85% of the victim’s capacity and keeping a low
˜TBT (0.07). Setting Tmax = 432 and δ = 144 is also a good choice, since with
a slight decrease in AER, the capacity blocked decreases by 10 percent points
and the ˜TBT decreases to the minimum, 0.02.

6 Conclusion

LN implementations follow the BOLT specifications to ensure interoperativity
between different clients. However, BOLT does not specify the exact values of
multiple parameters that need to be set when a LN client is executed. Such
parameter setup is often not proper defined for the different implementations
and their selection is difficult to justify.

In this paper we provide the first analytical approach to define two of the LN
parameters: cltv expiry delta and locktime max. Our experiments show that
the parameters defined in the main implementations of the LN client that are
currently in use are not the optimal, taking into account the performance of the
payments and the security of the network.

We found that the combination of Tmax = 432 and δ = 40 is one of the best
to choose. With these parameters, the payment success rate of the network is the
same than the main LN implementations, but the metrics related to the attacks
reflect a worse scenario for the attacker: the total time that an attacker can lock
the funds of a victim ( ˜TBT ) is reduced, at least, by a factor of 4 with respect to
the parameters used by other implementations, maintaining at the same time,
the funds needed to perform the attack (EAR) in a moderate level.

This paper has focused on the impact of two parameters, that affect the
timeout of HTLCs, in both the security and the performance of the network.
Regarding security, we have focused on protecting the network from lockdown
attacks, that attempt to freeze the LN funds of the victims. Further work could
try to assess how the network responds to other kinds of attacks, for instance,
attacks trying to flood the blockchain by closing multiple channels at the same
time [8]; or to consider other metrics when evaluating network performance, for
instance, not only the ability to make payments but also their cost in fees.
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2. Conoscenti, M., Vetrò, A., De Martin, J.C.: Hubs, rebalancing and service providers
in the lightning network. IEEE Access 7, 132828–132840 (2019)

3. Decker, C., Wattenhofer, R.: A fast and scalable payment network with bitcoin
duplex micropayment channels. In: Pelc, A., Schwarzmann, A.A. (eds.) SSS 2015.
LNCS, vol. 9212, pp. 3–18. Springer, Cham (2015). https://doi.org/10.1007/978-
3-319-21741-3 1

4. Di Stasi, G., Avallone, S., Canonico, R., Ventre, G.: Routing payments on the
lightning network. In: 2018 IEEE International Conference on Internet of Things
(iThings) and IEEE Green Computing and Communications (GreenCom) and
IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data
(SmartData), pp. 1161–1170. IEEE (2018)
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12. McCorry, P., Möser, M., Shahandasti, S.F., Hao, F.: Towards bitcoin payment
networks. In: Liu, J.K.K., Steinfeld, R. (eds.) ACISP 2016. LNCS, vol. 9722, pp.
57–76. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40253-6 4
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Abstract. Banks transfer money and securities instantaneously on a
gross basis by utilizing Real-Time Gross Settlement (RTGS) systems.
Central banks are in charge of managing and operating RTGS systems,
and they require each local inter-bank payment instruction to be pro-
cessed by them. Accordingly, contemporary RTGS systems face many
challenges including unconditional trust and privileges given to the cen-
tral banks, and the inherent single point of failure vulnerability associ-
ated with centralized systems. To address these challenges, some finan-
cial institutions are starting to embrace blockchain technology. Project
Jasper and Project Ubin are two successful preliminary attempts. How-
ever, these projects do not preserve participants’ privacy, and more
importantly, they lack liquidity saving mechanisms to resolve the fre-
quently occurring gridlock state. An efficient way to resolve gridlock is
to settle payment instructions on a netting basis. In this paper, we pro-
pose a decentralized netting protocol that ensures the correctness of the
netting result, while hiding the transferred amounts and preserving recip-
ients’ privacy. We evaluate the protocol’s performance on Ethereum and
show that the proposed protocol achieves its desired security properties
while being feasible to deploy in practice.

Keywords: Netting · zkSNARK · Ethereum · Smart contract

1 Introduction

Traditionally, banks use Real-Time Gross Settlement (RTGS) systems [1] to
settle inter-bank payment instructions. The country’s central bank is the sole
operator of its RTGS system. It enforces each bank to have a local account
with liquidity above a certain limit. To settle a payment instruction, the central
bank debits the instruction’s amount from the sender account while crediting
the same amount to the recipient atomically. The settlement process is instan-
taneous (i.e., in real-time) if the sender has sufficient liquidity. Otherwise, the
payment instruction is pushed to an outgoing queue associated with the sender’s
account. The outgoing queue is a priority queue where higher priority payment
instructions are pushed ahead of lower ones. Moreover, payment instructions
that have the same priority level are settled according to a “First In First Out”
c© Springer Nature Switzerland AG 2020
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(FIFO) policy. Once the sender’s liquidity becomes sufficient, the highest priority
pending outgoing payment instructions are settled automatically.

Gridlock refers to the state when pending payment instructions cannot be
settled on a gross basis due to insufficient liquidity. Therefore, to resolve the
gridlock state, RTGS systems utilize a Liquidity Saving Mechanism (LSM) [2]
to settle payment instructions on a netting basis. To illustrate the gridlock reso-
lution, consider the scenario shown in Fig. 1 where the RTGS system is initially
in a gridlock state because none of the banks has sufficient liquidity to settle
its outgoing payment instruction. Although banks can borrow some funds from
the central bank to resolve gridlock, the available credit may still be insufficient
to settle payment instructions. Therefore, banks prefer to utilize LSM before
resorting to credit. Central banks perform LSM since they have a global view
on all pending payment instructions.

$60M

$70M$80M

Gridlock

B: $20M C: $40M

A: $30M

$60M

$70M$80M

Ne�ng

B: $40M=20M+80M-60M C: $30M=40M+60M-70M

A: $20M=30+70-80

Fig. 1. An example for resolving gridlock state in RTGS

With the growing volume of inter-bank payments, contemporary RTGS sys-
tems face many security challenges. Most importantly, central banks have privi-
leges on all payment instructions, and they require unconditional trust to main-
tain the ledgers in RTGS. Moreover, RTGS as centralized systems are vulnerable
to the inherent single point of failure problem. To face these challenges, some
RTGS operators are beginning to embrace the blockchain technology. Project
Jasper [3] and Project Ubin [4] are some of such successful attempts to utilize
blockchain. Blockchain alone is not a silver bullet to solve all of the above prob-
lems, however, one can build cryptographic protocols utilizing it to provide the
required functionality in a trustless manner while preserving participants’ pri-
vacy (e.g., see [5–7]). More specifically, the migration of traditional RTGS to the
blockchain requires an efficient decentralized netting method to resolve gridlock
while delivering better privacy for participants.

Contributions. The contributions of this paper are two-fold:

1. We design a decentralized netting protocol that provides confidential pay-
ments while preserving recipients’ privacy.

2. We evaluate the protocol’s performance on Ethereum.
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The rest of this paper is organized as follows. Section 2 presents a brief review
of some related work on utilizing blockchain in RTGS systems. Section 3 presents
the cryptographic primitives utilized in our protocol. In Sect. 4, we describe the
netting problem and show a decentralized protocol to solve it. Section 5 provides
the design of the proposed protocol. In Sect. 6, we evaluate the performance
of our protocol when implemented on top of Ethereum. Finally, in Sect. 7, we
present our conclusions.

2 Related Work

Project Jasper [3] and Project Ubin [4] are two successful deployed projects that
investigate the advantages of migrating traditional RTGS to the blockchain.
They managed to resolve the single point of failure issue while achieving an
immediate gross settlement. However, they do not include LSM functionality,
which is an important requirement in RTGS systems.

Wang et al. [8] introduced an end-to-end prototype based on Hyperledger
Fabric enterprise blockchain platform [9]. The prototype supports gross set-
tlement, gridlock resolution, and reconciliation for inter-bank payment busi-
ness. Gridlocks are resolved through a timestamp-based algorithm, which shares
enough information among participants without the risk of privacy violation. The
prototype relies on a central party to check the correctness of the netting result.
Furthermore, while it hides the amounts in payment instructions, it reveals the
net amounts.

Cao et al. [10] proposed a decentralized netting protocol that guarantees
netting correctness. The participants submit their local settlements to a smart
contract. The protocol hides payment amounts using Pedersen commitments and
utilizes extensive zero-knowledge range proofs. Furthermore, to obfuscate the
links between senders and recipients, participants can send payment instructions
with empty amounts. Obviously, these empty instructions are also associated
with zero-knowledge proofs, which add extra overhead to the protocol.

3 Preliminaries

3.1 Notations

Let G denote an elliptic curve group with a generator G of prime order q defined
over a field Fp. We assume the Decisional Diffie Hellman (DDH) holds in G.
Let λ denote a security parameter. We denote lists by bold symbols such as
x = [x1, . . . , xn] = [xi]n1 of size n = |x|. Let [N ] denote the list of integers
{1, . . . , N}. Let r ←$Zq denote randomly and uniformally sampling a value r in
Zq. We denote a zero-knowledge proof of knowledge statement by PoK{(x;w) :
R(x,w)}, where x is a public input, w is a witness, and R(x,w) is a binary
decidable relation. Let H be a cryptographic collision resistant hash function,
and the symbol || denote the concatenation operator.

3.2 ElGamal Encryption over Elliptic Curve

We utilize ElGamal encryption scheme over the elliptic curve [11] group G. Let
f : Zq → G be an efficient bijective function that maps message values in Zq to
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points in group G. The encryption scheme consists of the following a probabilistic
polynomial-time (PPT) algorithms:

• (x,Y) ← K(1λ). It generates a secret key x ←$Zq and a public key Y ← xG.
• C = (C1, C2) ← E(m,Y). It encrypts a message m ∈ Zq using the public key

Y, and outputs a ciphertext C = (rG, f(m) + rY), where r ←$Zq.
• m ← D(C, x). It decrypts the ciphertext C using the secret key x, and outputs

m ← f−1(C2 − xC1).

Note that we assume the function f : Zq → G is additively homomorphic
such that f(m1) + f(m2) = f(m1 + m2). Accordingly, the encryption scheme
becomes additively homomorphic as well. For example, given two ciphertext
Ca = (raG, f(ma) + raY) and Cb = (rbG, f(mb) + rbY) encrypted by the
same public key, we can get a ciphertext for ma + mb as C′ = Ca + Cb =
(raG +rbG, f(ma)+f(mb)+raY +rbY) = ((ra +rb)G, f(ma +mb)+(ra +rb)Y).

3.3 zkSNARK

Let R = (x,w) be a polynomial-time decidable binary relation where x refers
to a statement instance, and w refers to a witness. Let L be the NP language
corresponding to the relation R. We say that Ψ is a publicly verifiable zero-
knowledge Succinct Non-interactive Argument of Knowledge (zkSNARK) [12]
for L if Ψ contains the following three PPT algorithms:

1. crs ← K(1λ). It take the security parameter λ as input, and runs a setup
routine to generate a Common Reference String (CRS) crs = (pk, vk) along
with a trapdoor td, where pk and vk denote the proving key and vk verification
key, respectively.

2. π ← P(pk, x, w). It generates a proof π to prove that R(x,w) holds.
3. {0, 1} ← V(vk, x, π). It verifies the proof π for the instance x and returns

either 0 (reject) or 1 (accept).

If the trapdoor td is leaked, then the prover can generate fraudulent proof that
will be accepted by the verifier. Similarly, the verifier can exploit td to extract
information about the witness. Therefore, the common reference string genera-
tion algorithm K is either run by a trusted third party, or by utilizing a Multi-
Party Computation (MPC) protocol [13] when the former option is not viable.

In this paper, we utilize one of the most efficient construction [14] as it gener-
ates the smallest proof (i.e., two elements in G1 and one element in G2, where G1

and G2 are asymmetric bilinear groups). To verify a proof, the verifier needs to
perform three pairing operations before deciding whether to accept or reject the
proof. It is worth mentioning that the proof verification operation has to take
into account the public inputs and performs some operations on them before
checking the zkSNARK proof. More precisely, for each public input encoded as
Fp element, the verifier performs two operations: scalar point multiplication and
point addition.
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4 The Netting Problem

We follow the notations defined in [10] to illustrate the netting problem. Let N
denote the number of participants and Pi refer to the ith participant. Let Q
denote the list of all outgoing payment queues, which is defined as:

Q = [Q1, . . . ,QN ]
Qi = [Qi,1, . . . , Qi,ni

] where ni = |Qi|
Qi,k = (Reci,k, Vi,k) where Vi,k > 0

Reci,k ∈ {Pj}N
j=1, j �=i

A payment instruction Qi,k consists of two fields: a recipient denoted by Reci,k

and an outgoing amount denoted by Vi,k. Note that, if there are multiple payment
instructions to the same recipient, then they are aggregated in a single payment
instruction Qi,k, where Vi,k is the total amount. Furthermore, for each payment
queue Qi, we define a settlement indicator xi as:

x = [x1, . . . ,xN ]

xi = [xi,1, . . . , xi,ni
], where xi,k =

{
1 if payment Qi,k will be settled
0 otherwise

Given x, we define the following functions for a participant Pi:

Ti(x) =
∑ni

k=1 xi,k

Si(x) =
∑ni

k=1 xi,kVi,k

Ri(x) =
∑N

j=1

∑ni

k=1 xj,kVi,k where Recj,k = Pi

where Ti(x) denotes the number of payment instructions that will be settled,
Si(x) denotes the total outgoing amount, and Ri(x) denotes the total incoming
amount. Let B̂i and B̃i denote the ex-ante and ex-post balances of participant
Pi (i.e., balance before and after netting, respectively). The balance relationship
is defined as:

B̃i = B̂i − Si(x) + Ri(x) (1)
The netting problem is to find the solution that satisfies the following constraints:
1. The liquidity constraint which dictates that the ex-post balance of each

participant after netting must be non-negative.

∀ i ∈ [N ] B̃i ≥ 0

2. The sequence constraint which requires payment instructions to be settled
according to their priority order [15].

∀ i ∈ [N ], k ∈ [ni − 1] xi,k+1 ≤ xi,k

Let h(xi) denote the index of lowest priority payment instruction in Qi that
will be settled, which is defined as:

h(xi) =

{
0 if ∀ k ∈ [ni] xi,k = 0
max(k) where xi,k = 1

3. The optimality constraint which ensures settling the highest possible num-
ber of payment instructions by maximizing

∑N
i=1 Ti(x).
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4.1 Decentralized Netting Protocol

We describe the decentralized netting protocol introduced in [10] to resolve the
gridlock over a variable number of rounds. The protocol assumes transparent
communication between participants. In other words, this protocol does not pro-
vide any privacy, and participants have a global view on all payment instructions
Q and settlement indicators x.

The protocol starts with the initial assumption that all payment instructions
will be settled where

∀ i ∈ [N ], k ∈ [ni] xi,k = 1,

Certainly, this assumption may be invalid, (i.e., some but not all payment
instructions will be actually settled). Accordingly, for each round t, participants
run Algorithm1 to update their settlement indicators xt. Eventually, the proto-
col stops when there are no further updates in the settlement indicators.

Algorithm 1. Updates the settlement indicator queue xt
i for round t [10]

1: function UpdateIndicator(xt−1, Q)
2: xt

i ← xt−1
i � Set the current indicator to the indicator of previous round

3: k ← h(xt
i) � Set k as the index of lowest priority payment

4: while k ≥ 0 do � Iterate from lowest priority payment to highest
5: B̃i ← B̂i − Si(x

t−1) + Ri(x
t−1) � Compute ex-post balance based on xt−1

6: if B̃i < 0 then � If B̃i is negative, unsettle the lowest priority payment
7: xt

i,k ← 0
8: k ← k − 1
9: else

10: break
11: end if
12: end while
13: return (xt

i, B̃i)
14: end function

The main objective of Algorithm 1 is to iteratively unsettle lowest priority
payment instructions until the three constraints are satisfied. In Line 6, the
algorithm checks for non-negative ex-post balance, thus, enforcing the liquid-
ity constraint. Furthermore, in Line 4, it enforces the sequence constraint by
iterating over payment instructions from lowest to highest priority. Finally, the
optimality constraint is satisfied in Line 10 by stopping the algorithm on the
highest possible number of payment instructions that meet the liquidity and
sequence constraints.

Eventually, the protocol halts when there is no further change in settlement
indicators in the final round (i.e., xt = xt−1). The end result is either learning
the netting solution or reaching a deadlock where the settlement indicator of each
participant is xt

i = [0]ni
1 (i.e., no participant can settle any payment instruction

on a netting basis). In the former, participants can update their ex-post balance
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B̃i of participants. Conversely, in the latter, participants have to inject more
liquidity to resolve the deadlock and reset the protocol.

5 Privacy Preserving Netting Protocol Design

To protect the privacy of participants, we modify the decentralized netting pro-
tocol to (i) conceal payment amounts and (ii) hide links between senders and
recipients. It is worth mentioning that participants in our context refer to banks
not individuals. In particular, inter-bank payments are aggregates of individ-
uals transactions. Hence, our protocol is designed to preserve the privacy of
involved banks in inter-bank payments transactions. Our approach to fulfilling
the first objective is to utilize ElGamal encryption. We did not use Pedersen
commitments as followed in [10], mainly because the sender would have to open
a communication link with the recipient to send the opening values, which can be
leaked and compromise the recipient’s privacy. When a participant sends a pay-
ment instruction to the smart contract, it sends an encrypted payment amount
without including the recipient’s identity. Subsequently, other participants will
individually try to decrypt it locally using their own private keys. Certainly,
only the intended recipient will successfully decrypt it. Consequently, no link is
publicly established on the smart contract between senders and recipients, which
fulfills our second objective.

Later on, after resolving the gridlock, each participant will send a zero-
knowledge proof to the smart contract to prove the correctness of its ex-post
balance based on ex-ante balance, outgoing amounts, and incoming amounts.
However, since we removed recipients’ identities from payment instructions, the
smart contract cannot determine the incoming payment instruction for any par-
ticipant. Nonetheless, we must ensure that participants do not use arbitrary
ciphertext as their incoming amounts. In other words, each participant must
prove that its incoming payment instructions are part of the list containing all
payment instructions sent to the smart contract. To solve this challenge, the
smart contract utilizes a Merkle tree to accumulate all payment instructions.
Given the public state of the smart contract, participants can clearly see the
paths in that tree. As a result, each participant can prove that it knows the
Merkle tree paths for its incoming payment instructions without revealing them,
which in turn effectively enforces the recipient’s privacy (more detail in Sect. 5.6).

5.1 Overview of the Protocol

We briefly describe our protocol as follows:

1. The protocol starts with a Setup phase where an MPC protocol is used to
generate the CRS for the zkSNARK proof system, and a smart contract is
deployed on the blockchain.

2. Participants initialize their encrypted ex-ante balance on the smart contract.
3. Each participant submits its payment instructions to the smart contract and

utilize zkSNARK to prove their correctness.
4. Participants scan the smart contract to learn their incoming amounts based

on their success in decrypting the submitted payment instructions.
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5. Participants begin to resolve the gridlock over a number of variable rounds
as follows:
(a) In the first round, they assume all payment instructions will be settled

and set their settlement indicator xt=1
i = [1]ni .

(b) In subsequent round t, each participant Pi locally runs Algorithm 1 to
update its settlement indicator from xt−1

i to xt
i, and send xt

i to the smart
contract.

(c) If there are no changes (i.e., xt = xt−1), the smart contract builds a
Merkle tree over payment instructions that will be settled; otherwise,
participants repeat the above step again for the new round t := t + 1.

6. Participants send transactions to the smart contract containing their
encrypted ex-post balance and a zkSNARK proof to prove its correctness.

7. Upon successful verification, the smart contract accepts the ex-post balance.

5.2 Setup

To promote a modular design, the protocol utilizes several smart contracts that
are deployed on the blockchain.

1. Registry: It contains ElGamal public encryption keys of all participants.
2. Serials: The sole purpose of this smart contract is to prevent double-

spending of incoming payment instructions by tracking the serial numbers
(also known as nullifiers [16]) of the settled ones (more detail in Sect. 5.6).

3. MerkleTreepk: It accumulates the public keys of all participants.
4. MerkleTrees: It accumulates all payment instructions that will be settled

after gridlock resolution.
5. Verifier: It verifies zkSNARK proofs submitted by participants, and it con-

tains the verification key vk generated by zkSNARK setup algorithm.
6. Main: This is the main smart contract which handles the deposit of funds

(i.e., ex-ante balance), controls the transitions between phases and rounds,
and utilize the above smart contracts.

The security of this protocol depends mainly on the setup process of the
zkSNARK proof system Ψ . Obviously, utilizing a trusted third party to gen-
erate the CRS is not acceptable in this context. Thus, we propose to run an
MPC protocol [13] between participants to generate the CRS. As long as there
is at least a single honest participant, then we can consider Ψ to be secure.

5.3 Initializing Ex-Ante Balance

To join the protocol, a participant Pi deposits its ex-ante balance Bi in Main
as shown in Fig. 2. Initially, Registry checks whether the transaction sender is
authorized based on its address and returns its public key on success. If this is
the first deposit by the sender, then the sender’s ex-ante balance is set to the
encryption of the msg.value by the sender’s public key and randomness r = 0.
Otherwise, the deposit is to inject more liquidity into the sender’s balance by
utilizing the additively homomorphic property of ElGamal encryption.

Generally, in blockchains with a public state such as Ethereum, we cannot
hide the deposit value of ex-ante balance. However, after resolving gridlock,
participants will send their ex-post balances in encrypted form to Main.
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Fig. 2. Pseudocode for deposit function.

5.4 Submitting Payment Instructions

To submit payment instructions while hiding amounts and preserving recipient’s
privacy, a participant Pi sends a transaction to Main containing its outgoing
payment queue Qi without indicating recipients’ identities (i.e., their public
keys).

Qi ← [Ci,1, . . . , Ci,ni
]

Ci,k ← E(vi,k,Yi,k)
Yi,k ∈ [Yj ]Nj=1, j �=i

Pi utilizes the zkSNARK proof system Ψ to prove that (i) the amounts
encrypted in Qi fall in range [0, 2l − 1] for a system parameter l, and (ii) the
ciphertext are generated using public keys from the list Y , which are accumu-
lated in MerkleTreepk with rootpk as its root. Technically speaking, Pi utilize
zkSNARK proof system Ψ to generate a proof πi for the following statement:

PoK{(Qi, rootpk;ψ,vi) : ∀ Ck ∈ Qi Ck = E(vk,Yk) ∧ vi,j ∈ [0, 2l − 1]
∧ Merkle.V(rootpk,Yk, ψk) = 1}

where ψ is the list of Merkle proof of membership for each public key Yk used
to encrypt payment instruction Ck.

Main handles this transaction as shown in Fig. 3. It checks that the sender
is one of the authorized participants. Subsequently, if it successfully verifies the
proof πi, then it stores Qi in the list Out and initializes the settlement indicator
by setting 1 in all indices (see Sect. 4.1) which gives the assumption that all
payment amounts will be settled. Otherwise, it reverts the transaction.

Once the transaction is accepted by Main, each participant Pj , where j 	=
i ∧ j ∈ [N ], will scan payment instructions in Main.Out[Pi.Address] and try to
decrypt them locally using its private key. Accordingly, Pj will learn if it is the
intended recipient based on successful decryption.
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Fig. 3. Pseudocode for submit function.

5.5 Updating Settlement Indicators

In this phase, participants utilize decentralized netting protocol to resolve grid-
lock over a variable number of rounds before converging to the netting solution.
Main implements the transitions of rounds as shown in Fig. 4. An important
caveat here is that smart contracts do not execute code unless they are instructed
to do so via transactions. Hence, we require one of the participants P ′ to send
transactions to Main to transit between rounds and states. The gridlock resolu-
tion proceeds as follow:

1. Participant P ′ submits a Start transaction to initiate the first round of decen-
tralized netting protocol.

2. Each participant Pi runs Algorithm 1 to update its settlement indicator xi

and submits a Receive transaction within its predefined time-window.
3. Participant P ′ submits a Final transaction to determine the next state of

this phase. More precisely, if there are changes in settlement indicators, then
participants proceed to the next round and repeat Step 2. Otherwise, the
protocol has either reached a deadlock state or it has successfully resolved
the gridlock. In the former case, participants have to inject more liquidity
by submitting Deposit transactions, then reset the current round in Step 2.
Conversely, in the latter case, Main initializes MerkleTrees to accumulate all
payment instructions that will be settled according to the current indicators,
and sets the flag Resolved to transit to next phase.

5.6 Updating Ex-Post Balance

After resolving the gridlock, each participant Pi utilizes the zkSNARK proof sys-
tem Ψ to generate a proof π about the correctness of its encrypted ex-post balance
B̃. Then, Pi submits an Update transaction containing the parameters π and B̃ as
shown in Fig. 5. Informally speaking, the proof π shows that given the public input:

– roots of the MerkleTrees.
– Y as the public key of Pi.
– S as the list of settled payment instructions according to indicator xi.
– U as the highest priority unsettled payment instruction based on xi.
– B̂ and B̃ as the encryption of ex-ante and ex-post balances by the public key

Y, respectively.
– sn as the list containing serial numbers of incoming payment instructions.
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Fig. 4. Pseudocode for updating indicators in Main

and the witnesses:

– x as the secret key corresponding to the public key Y.
– R as the list of incoming payments instructions accumulated in MerkleTrees.
– ψ as the list of Merkle proofs of membership for R in MerkleTrees.
– r as the list of decrypted incoming payment amounts from R.
– s as the list of outgoing payment amounts encrypted in S.
– Ys as the list of public keys for recipients of payment instructions in S.
– u as the decrypted payment amount from U .
– Yu as the public key of the recipient of U .
– b̂ and b̃ as the ex-ante and ex-post balances encrypted in B̃ and B̂

that the conjunction of the following relations holds:

1. Y = xG
2. ∀Rk ∈ R r = [rk = D(Rk, x)]
3. ∀Rk ∈ R sn = [snk = H(x||Rk)]
4. ∀ψk ∈ ψ Merkle.V(roots, Rk, ψk) = 1
5. ∀ sj ∈ s,Yj ∈ Ys S = [Sj = E(sj ,Yj)]
6. U = E(u,Yu) ∧ B̂ = E(b̂,Y) ∧ B̃ = E(b̃,Y)
7. b̃ = b̂ − ∑

s +
∑

r ≥ 0
8. b̃ − u < 0
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The first relation indicates that the participant Pi knows the secret key x cor-
responding to the public key Y. The second relation proves that r contains the
incoming payment amounts decrypted from R by its secret key x. The third rela-
tion proves that the serial numbers in sn correspond to the hash of incoming
payment instructions with the secret encryption key x. Accordingly, valid incom-
ing payment instructions must have unique serial numbers to prevent double-
spending. The fourth relation shows that Pi knows valid membership proofs ψ
to prove that the payment instructions in R are accumulated in MerkleTrees.
The fifth relation shows that the outgoing payment amounts in s are encrypted
to ciphertext in S by the public keys in Ys. Note that in previous Submit transac-
tion, the smart contract verifies that the public keys used to encrypt outgoing pay-
ment instructions are valid registered public keys of participants. Hence, there is
no need to verify the correctness of public keys inYs once again. The sixth relation
shows that U, B̂, and B̃ are the ciphertext corresponding to u, b̂, and B̃, respec-
tively. The seventh relation ensure that the liquidity constraint holds. Finally, the
last relation proves optimality constraints is satisfied by showing that the high-
est priority unsettled payment will result in negative ex-post balance. Thus, the
optimal netting solution is to settle the outgoing payments in S.

Fig. 5. Pseudocode for updating ex-post balance in Main

6 Performance Evaluation

We evaluate the protocol’s performance on Ethereum. The results show that the
protocol is feasible and practical to deploy. Recently, Ethereum has gone through
multiple planned hard-forks to upgrade its virtual machine (EVM) with new
op-codes and features that will help Ethereum transit to Proof-of-Stake (PoS).
One of these features is the support for running EC operations inside smart
contracts. More specifically, the fork Byzantium [17] introduced two pre-compiled
contracts: EIP-196 to perform point addition and multiplication operations, and
EIP-197 for pairing checks on the curve BN128. Accordingly, smart contracts can
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efficiently verify many cryptographic proofs including zkSNARK [12]. However,
the gas cost incurred by EC operations were relatively high which limited the
feasibility of some cryptographic protocols on Ethereum. Therefore, the fork
code-named Istanbul [18] made adjustments to the cost of EC operations. Strictly
speaking, the gas cost of point addition, multiplication, and k pairing check got
reduced from 500; 40000; 100000+k×80000 down to 150; 6000; 45000+k×34000,
respectively.

6.1 Evaluations

We utilize the zkSNARK construction proposed in [14]. The major advantage
of this construction is the small proof size 128-bytes and efficient verifier which
requires three pairing checks. Using the gas adjustments brought by Istanbul
fork in Ethereum, pairing checks cost 45000 gas in addition to 34000 gas for
each check. Thus, the verification cost of zkSNARK proof is 147000 = 45000 +
3 × 34000 gas. Moreover, the verifier performs EC operations on the public
input before verifying the proof. Specifically, for each public input encoded as
Fp element, the verifier invokes two operations: point multiplication and point
addition. Consequently, for a proof π with public input of size m elements in
Fp, the verification gas cost is 6150m + 147000. The encoding of an ElGamal
ciphertext, a public key, and a hash value are four, two, and one Fp elements,
respectively.

To evaluate our protocol, we estimate the gas cost associated with the elliptic
curve operations performed during zkSNARK proofs verification. Generally, par-
ticipants send zkSNARK proofs in Submit and Update transactions. In Fig. 6, we
report the gas cost for these transactions with respect the numbers of outgoing
and incoming payment instructions ni and mi, respectively.
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Fig. 6. Gas cost of zkSNARK proof verification for Submit and Update transactions

In the Submit transaction, the public input consists of a list of ni ciphertext
for payment instructions in Qi, and a hash value for the root of MerkleTreepk.
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Accordingly, we can estimate the gas cost for proof verification as 6150(4ni +
1)+147000 gas. Similarly, in the Update transaction, the public input consists of
seven parameters: three ciphertext (B̃, B̂, U), a list of ni ciphertext for payment
instructions in S, a public key Y, a hash value for the root of MerkleTrees,
and a list of mi serial numbers. Consequently, we can estimate the gas cost as
6150(15 + 4ni + mi) + 147000.

Table 1 shows the size and cost in USD for Submit and Update transactions in
the setting where ni = mi = 10. At the time of writing in August 2020, one Ether
coin costs ≈$400 USD, and the average gas price is ≈ 200 Gwei = 200 × 10−9

Ether. The gas cost of a transaction is computed as the incurred gas times gas
price in Ether times Ether price in USD.

Table 1. Size and cost in USD for Submit and Update transactions

Transaction Size (bytes) Gas Cost (USD)

Submit 1408 399150 $32

Update 2080 546750 $43.75

Based on the evaluation results, we believe the protocol is practical to deploy
on Ethereum. For example, with the current block gas limit ≈ 10M gas on
Ethereum, we find that the proof verification for Submit and Update transactions
cost 3.9% and 5.4% of the block limit when the number of outgoing and incoming
payment instructions ni = mi = 10, respectively. Furthermore, the protocol will
perform much better on permissioned blockchain preferred by banks such as
Corda [19] or Hyperledger [20] since there are neither lengthy block mining time
nor block gas limit.

6.2 Limitations of Decentralized Netting Protocol

In this section, we discuss some limitations that apply to the decentralized net-
ting protocol in [10], and naturally extend to our implementation. First, the
protocol in [10] requires all participants to be online at the time of resolving
gridlock. However, we argue that participants do not resolve gridlocks imme-
diately once they occur, rather they keep aggregating individuals’ transactions
during the day. In fact, given the slow settlement of inter-bank payments in
practice which takes roughly couple of days, banks can setup a specific time at
the end of a business day to resolve gridlock. Therefore, we can safely assume
that the online requirement is practically relaxed and does not cause in severe
liveness issues. Furthermore, to improve the speed of gridlock resolution, par-
ticipants can run the decentralized netting protocol off-chain to resolve gridlock
without being controlled by the Main smart contract. Then, participants can
submit correctness proofs and utilize Main for settlement only.

The second issue is that the protocol leaks some information about recipients
that can be exploited in an extreme case to successfully break their anonymity.
In particular, we are concerned with how updates to the settlement indicators



Privacy Preserving Netting Protocol for Inter-bank Payments 333

in subsequent rounds can affect recipients’ anonymity. Suppose, in rounds k
and k + 1, s and r, that participants update their indicators, respectively. An
observer can infer that the r participants are recipients to payments from the s
senders since they updated their indicators in response to changes in s indicators.
Consequently, as s increases, it becomes harder to link the r recipients. On the
other hand, an extreme case, which is the major limitation of decentralized
netting protocol, is when s = 1, then the observer can successfully link all r
participants as recipients to the participant in previous round. One can solve
this problem by requiring all participants to submit encrypted indicators with
different randomness in each round, regardless of any changes in the underlying
values. Note that, each individual element xi,j in indicator vector xi is encrypted
by the public key Yj of the recipient Pj . Accordingly, the observer neither can
determine whether individual values at xi,j have changed, nor can link recipients
to senders since all participants are submitting encrypted indicators in each
round. Therefore, the size of anonymity set for recipients becomes N , which is
the total number of participants. Certainly, this requires modifying the zero-
knowledge proof in the Update transaction which we leave for future work.

7 Conclusions

Financial institutions are embracing blockchain technology to address challenges
in traditional RTGS. We designed a privacy preserving decentralized protocol
that resolves gridlock in RTGS. Furthermore, we enhanced the privacy of par-
ticipants by hiding the links between senders and recipients while providing
confidentiality to payment amounts. To assess the feasibility and performance
of our protocol, we estimate the proof verification gas cost when deployed on
Ethereum which yielded promising results. For future work, we will investigate
other proof systems with better proving time and transparent setup.
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Abstract. Ring signatures are a common construction used to provide
signer ambiguity among a non-interactive set of public keys specified at
the time of signing. Unlike early approaches where signature size is linear
in the size of the signer anonymity set, current optimal solutions either
require centralized trusted setups or produce signatures logarithmic in
size. However, few also provide linkability, a property used to determine
whether the signer of a message has signed any previous message, pos-
sibly with restrictions on the anonymity set choice. Here we introduce
Triptych, a family of linkable ring signatures without trusted setup that
is based on generalizations of zero-knowledge proofs of knowledge of com-
mitment openings to zero. We demonstrate applications of Triptych in
signer-ambiguous transaction protocols by extending the construction to
openings of parallel commitments in independent anonymity sets. Sig-
natures are logarithmic in the anonymity set size and, while verifica-
tion complexity is linear, collections of proofs can be efficiently verified
in batches. We show that for anonymity set sizes practical for use in
distributed protocols, Triptych offers competitive performance with a
straightforward construction.

1 Introduction

First introduced in [21] with respect to RSA groups, ring signatures permit the
signing of messages using public key sets not fixed in advance, without the need of
a trusted group manager. Earlier constructions lacked such flexibility, requiring
either centralized key setup or the establishment of fixed signing sets. Later work
[2] established more robust security models for unforgeability and anonymity,
capturing realistic threat models where an adversary is permitted to corrupt
keys, convince honest signers to include malicious anonymity set members, or
obtain signatures in advance.

Since a ring signature has an anonymity set of public keys, one of which is
the true signer, the detection of signing by the same key requires an additional
property, linkability. A linkable ring signature [16] enables verifiers to determine
whether the (unknown) signer of a message has signed other messages. Such
a construction was proposed for election applications, where it is necessary to
ensure that votes are anonymous, but voters are permitted to vote only once on a
particular issue. The construction in [16], with a hash-trapdoor structure similar
to that of [22], is of particular interest due to potential flexibility in linking; while
c© Springer Nature Switzerland AG 2020
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its linking is limited to signer-selected but unchanging signer anonymity sets, it
permits linking on a per-issue basis. Additional recent work in [1] introduces the
property of linkable anonymity, using sets of signatures and establishing restric-
tions on key corruption. Other related interesting properties like traceability
[8,9] imply stronger capabilities, where an attempt to sign two messages with
the same key permits verifiers to identify the signer.

Linkable ring signatures have seen particularly useful applications in signer-
ambiguous transaction protocols. In such an application, transactions are autho-
rized by a ring signature whose signing anonymity set consists of previously-
generated transaction outputs. A signature demonstrates that the signer controls
the private key of one such output without revealing which is the signer, and
linkability is used to assure verifiers that output has not been used in another
signature (signifying a double-spend attempt).

A practical consideration for the use of linkable ring signatures in transac-
tion protocols is how signature size and verification time scale with the size of
the anonymity set. In common applied constructions like [10,19], signature size
and verification time scale linearly with the size of the signing ambiguity set;
since such signatures are typically included in a public distributed data struc-
ture like a blockchain, there is a balance between the size of the anonymity set
and the requirements for storage and verification. Recent protocol work in this
area mitigates the size restriction. For example, in [24], the authors introduce
a confidential transaction protocol based on a proving system whose size scales
logarithmically with the anonymity set size, and which includes a method for
demonstrating amount balance; amount commitment range proving is offloaded
to other constructions like [4]. In [15], the authors use a more general prov-
ing technique to accomplish a similar goal; however, the protocol offers further
size benefits by integrating commitment range proofs into the proof structure
directly, taking advantage of the logarithmic proof size.

Other signer-ambiguous transaction protocols not based on linkable ring sig-
natures offer more competitive performance. For example, protocols like [13]
produce maximal theoretical signer ambiguity through the use of zero-knowledge
Merkle proofs (among others) that offer extremely small proofs with low verifi-
cation time, but at the cost of a trusted structured setup process that arises from
the underlying proving system [11]. Like this work, [14] is a transaction protocol
also based on [12]; however, it is intended to operate on commitments similar
to those used in [18] but with the inclusion of amounts, and has limitations on
addressing and sender tracing.

1.1 Our Contribution

We produce a family of linkable ring signatures, which we call Triptych. The con-
structions are a linkable generalization of Groth’s one-of-many commitment-to-
zero proving system [12], with optimizations from Bootle [3] applied for improve-
ments to proof size and verification complexity. In the simplest version of Trip-
tych, the prover shows that it knows the opening of a commitment to zero
within a commitment set, and also that it has constructed a linking tag using
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the same opening, producing a linkable ring signature construction. We then
modify Groth’s ring signature definitions to include linkability and a related
property, non-frameability.

In an extension of Triptych, we include multiple independent sets of commit-
ments. Here, the prover proceeds as before to show its knowledge of an opening
to a commitment in one set, as well as the construction of the linking tag. How-
ever, the proof also shows that the prover knows an opening of a commitment at
the same position in all other sets. This construction has immediate application;
in some signer-ambiguous confidential transaction protocols, transaction inputs
are commitments to zero, for which the signer shows it knows the opening. Each
commitment comes equipped with another commitment to the amount of the
input; by offsetting these commitments homomorphically and carefully choos-
ing commitment randomness, the prover can show that a particular transaction
balances.

We show that Triptych produces signatures with competitive performance to
other modern linkable ring signatures for limited anonymity set sizes. We note
that similar constructions also require linear verification time, meaning that the
size of anonymity set used in practice is likely to be limited for performance
reasons.

2 Preliminaries

2.1 Public Parameters

Let G be a cyclic group in which the discrete logarithm problem is hard, and
let F be the scalar field of G. Let H : {0, 1}∗ → F be a cryptographic hash
function. Let G and H be generators of G with unknown discrete logarithm
relationship. Let N = nm be a size parameter, where n > 1 and m > 1. Let
{Gj,i}m−1,n−1

j,i=0 be a set of generators of G with unknown discrete logarithm
relationship to each other, to G, and to H. Let U be a generator of G. Note
that all generators may be produced using public randomness; for example, the
use of a suitable hash function with domain separation may be appropriate. All
such public parameters are assumed to comprise a global reference string known
to all players; in particular, we exclude them from algorithm definitions and
Fiat-Shamir transcript hashes for readability.

2.2 Pedersen Commitment

Let Com be a homomorphic commitment scheme that is perfectly hiding and
computationally binding. In this work, we assume use of the Pedersen commit-
ment scheme: for x, r ∈ F, define , (x, r) ≡ xG + rH to be the commitment of
the value x with randomness r. This can be trivially extended to support matrix
values; for {xj,i}, r ∈ F, define , (x, r) ≡ rH +

∑
j,i xj,iGj,i. Note in particular

that Pedersen matrix commitments are similarly homomorphic.



340 S. Noether and B. Goodell

2.3 Other Notation

For integers or field elements i, j, the Kronecker delta function δ(i, j) evaluates
to 1 if i = j and 0 otherwise, where the output is taken to be in the appropriate
set.

We sometimes use index subscript notation of the form ij to indicate the j digit
of i, where such a decomposition of i is taken base n with padded length m:

m∑

j=0

ijn
j = i

This notation will be specified explicitly where confusion may occur.

3 Protocol: Linkable One-of-many Commitment

We wish to build a linkable ring signature construction, where a signer who
knows the opening of a commitment may sign messages using an anonymity
set containing other commitments for which the signer does not know openings.
Included with the proof of knowledge, the signer also provides a linking tag that is
the image of the signing commitment’s opening under a verifiable pseudorandom
function, using the method of [6] that has previously appeared in [15,24]. Part
of the soundness of the proving system relies on the proper construction of
this linking tag. Upon receipt, a verifier can check whether the linking tag has
previously appeared in any other valid proof; if it has not, injectivity assures the
verifier that no other signature has been produced by the (unknown) signer.

More specifically, we modify the construction of Bootle [3], which itself is a
generalization of a construction by Groth [12]. We produce a sigma protocol for
the following relation:

Rlink =
{{Mi}N−1

i=0 ⊂ G, J ∈ G; (l ∈ Z, r ∈ F) : Ml = rG and U = rJ
}

Figs. 1 and 2 describe the protocol.
Observe that this protocol can be made non-interactive using the Fiat-Shamir

heuristic, where the verifier challenge is produced using a collision-resistant hash
function (modeling a random oracle) and the proof transcript [7].

We will show that the sigma protocol is complete, sound, and zero-knowledge,
the precise definitions of which are common and found in [12]. Informally, we
require the protocol be:

– Perfectly complete: Given knowledge of a witness to a statement in the proof
relation, an honest prover can always convince an honest verifier of the validity
of the witness.

– Special sound : Given a statement in the proof relation, if a prover can answer
multiple verifier challenges correctly, then it is possible to extract a witness
for this statement.
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Fig. 1. Sigma protocol for Rlink
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Fig. 2. Sigma protocol for Rlink (continued)

– Special honest-verifier zero knowledge: Given any statement and verifier chal-
lenge, it is possible to simulate a transcript that is accepted by an honest
verifier without knowledge of a corresponding witness.

Theorem 1. The protocol listed in Figs. 1 and 2 is perfectly complete, special
honest-verifier zero knowledge, and (m + 1)-special sound.

Proof. The proof follows similarly to that of [3].
We first show perfect completeness. Suppose the verifier receives a proof

generated by an honest prover. Equation 1 holds using the identity
∑n−1

i=0 σj,i = 1
for all 0 ≤ j < m. Equation 2 follows similarly, using the identity (σj,i)

2 = σj,i

for all 0 ≤ j < m. To show Eq. 3 holds:

N−1∑

k=0

Mk

⎛

⎝
m−1∏

j=0

fj,kj

⎞

⎠ −
m−1∑

j=0

ξjXj − zG

=
N−1∑

k=0

Mkpk(ξ) −
m−1∑

j=0

ξj

(
N−1∑

k=0

pk,jMk + ρjG

)

− zG

=
N−1∑

k=0

Mk

⎛

⎝pk(ξ) −
m−1∑

j=0

ξjpk,j

⎞

⎠ −
m−1∑

j=0

ξjρjG − zG

=
N−1∑

k=0

Mkξmδ(l, k) −
m−1∑

j=0

ξjρjG −
⎛

⎝rξm −
m−1∑

j=0

ρjξ
j

⎞

⎠ G

= ξmrG −
m−1∑

j=0

ξjρjG − ξmrG +
m−1∑

j=0

ξjρjG

= 0



Triptych: Logarithmic-Sized Linkable Ring Signatures with Applications 343

Eq. 4 follows similarly:

U

N−1∑

k=0

⎛

⎝
m−1∏

j=0

fj,kj

⎞

⎠ −
m−1∑

j=0

ξjYj − zJ

= U
N−1∑

k=0

pk(ξ) −
m−1∑

j=0

ξj

(

U
N−1∑

k=0

pk,j + ρjJ

)

− zJ

= U

N−1∑

k=0

⎛

⎝pk(ξ) −
m−1∑

j=0

ξjpk,j

⎞

⎠ −
m−1∑

j=0

ξjρjJ − zJ

= U

N−1∑

k=0

ξmδ(l, k) −
m−1∑

j=0

ξjρjJ −
⎛

⎝rξm −
m−1∑

j=0

ρjξ
j

⎞

⎠ J

= ξmU −
m−1∑

j=0

ξjρjG − ξmrJ +
m−1∑

j=0

ξjρjG

= 0

since J = r−1U in a valid proof. Hence the protocol is perfectly complete.
We next show that the protocol is special honest-verifier zero knowledge. To

do so, we construct a simulator that, given a random verifier challenge ξ, can
construct a proof transcript with identical distribution to a valid proof.

First, observe that the simulator presented in the proof of Lemma 1 in [3]
translates identically to our setting. If the simulator chooses B ∈ G uniformly
at random, the cited lemma assures us a valid simulation of the proof elements
A,C,D, zA, zC , {f

(u)
j,i�=0}; we may compute each f

(u)
j,0 from this. Further, in a valid

proof, B is independent and uniformly distributed as well.
The proof elements {Xj}m−1

j=1 and {Yj}m−1
j=1 are independent and uniformly

distributed in a valid proof since the set {ρj} is random and the discrete log-
arithm problem in G is hard, so the simulator may choose these uniformly at
random. The verification checks require that X0 and Y0 be uniquely determined
by the other elements in the corresponding sets in both real proofs and by the
simulator.

Finally, z is uniformly distributed in valid proofs given random ξ, so the
simulator may choose it uniformly at random. Hence the construction is special
honest verifier zero-knowledge.

It remains to show that the protocol is (m + 1)-special sound, where m > 1.
To show this, we construct an extractor that, given m + 1 valid responses to
m+1 distinct verifier challenges for the same initial statement, produces a valid
witness.

Suppose that for a given statement, we have a set of m + 1 distinct verifier
challenges {ξe}m

e=0 corresponding to unique valid responses of this form:
{

{f
(e)
j,i }, {ze}

}m

e=0
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From the 3-special soundness in [3] and m > 1 we have valid witness extractions
{σj,i}m−1,n−1

j,i=0 and {aj,i}m−1,n−1
j,i=0 , and the Pedersen binding property ensures

that (with high probability) we have:

f
(e)
j,i = σj,iξe + aj,i

for all e ∈ [0,m]. Using the extracted values, compute

pk(ξ) ≡
m−1∏

j=0

(σj,kξ + aj,k)

for all k ∈ [0, N). Extraction of {σj,i}m−1,n−1
j,i=0 immediately yields the signing

index l.
We have seen that pk is of degree m only when k = l. Hence there exist

coefficients {Xj , Y j}m−1
j=0 , computed uniquely from the statement and extracted

values, such that Eqs. 3 and 4 are of the following form:

ξmMl +
m−1∑

j=0

ξjXj = zG

ξmU +
m−1∑

j=0

ξjY j = zJ

Construct a Vandermonde matrix V where the e row is (1, ξe, . . . , ξ
m
e ). Since

all ξe are distinct, the rows of V span F
m+1; hence there exist weights {θe}m

e=0

such that the resulting row linear combination produces the vector (0, . . . , 0, 1).
That is,

∑m
e=0 θeξ

j
e = δ(j,m).

For each of the previous two equations, we can therefore build a linear com-
bination over e. For the first:

Ml =
m∑

e=0

θeξ
m
e Ml +

m∑

e=0

θe

⎛

⎝
m−1∑

j=0

ξj
eXj

⎞

⎠ =

(
m∑

e=0

θeze

)

G

Hence we extract r ≡ ∑m
e=0 θeze. For the second:

U =
m∑

e=0

θeξ
m
e U +

m∑

e=0

θe

⎛

⎝
m−1∑

j=0

ξj
eXj

⎞

⎠ =

(
m∑

e=0

θeze

)

J

This implies that rJ = U , as required. Hence the protocol is (m + 1)-special
sound, which completes the proof.

4 Security: Linkable Ring Signature

Informally, a linkable ring signature is a construction permitting signatures on
messages using a signer-selected anonymity set (called a ring) of possible signers.
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A valid signature convinces a verifier that the signer knows (at least) one of the
private keys to a ring member. The construction is linkable if it is possible to
determine whether two signatures were generated using the same private key,
regardless of the ring members used.

We use the security definitions in [12] as a starting point, directly adopting
definitions for correctness and unforgeability that also appear in more recent
work like [1]. However, we modify the definition of anonymity to account for
linking tags, such that the adversary is required to differentiate between at least
two possible honest signers that the adversary has not corrupted. To account for
the linking properties desired in our construction, we use the clever linkability
definition from [1], which uses a set-theoretic approach. We use a straightforward
definition for non-frameability, where the adversary produces a target signature
on an honest key after receiving signing and corruption oracle access, and must
then produce a new signature that links.

More formally, a linkable ring signature (LRS) construction is a set of algo-
rithms KeyGen, Sign, Verify, and Link satisfying certain properties. A set of
public parameters is assumed to be available to each algorithm.

– KeyGen(r) → (x,X): Generates a secret key x and corresponding public key
X, optionally using randomness r; if not specified, the secret key is sampled
uniformly at random.

– Sign(x,M,R) → σ: Generates a signature σ on a message M ∈ {0, 1}∗ with
respect to the ring R = {X1, . . . , Xn}, provided that x is a secret key corre-
sponding to some Xi ∈ R generated by KeyGen.

– Verify(σ,M,R) → {0, 1}: Verifies a signature σ on a message M with respect
to the ring R. Outputs 0 is the signature is rejected, and 1 if accepted.

– Link(σ, σ′) → {0, 1}: Determines if signatures σ and σ′ were signed using
the same private key. Outputs 0 if the signatures were signed using different
private keys, and 1 if they were signed using the same private key.

We require that an LRS have the properties of correctness, anonymity,
unforgeability, linkability, and non-frameability.

Correctness requires that a signature generated honestly will always verify.

Definition 1 (Correctness). Consider the following game between a chal-
lenger and a probabilistic polynomial-time adversary A:

– The challenger runs KeyGen → (x,X) and supplies the keys to A.
– The adversary A chooses a ring such that X ∈ R and a message M ∈ {0, 1}∗,

and sends them to the challenger.
– The challenger signs the message with Sign(x,M,R) → σ.

If Pr[Verify(σ,M,R) = 1] = 1, we say that the LRS is perfectly correct.

Note that we do not require any ring members (except for X) to have been
generated by KeyGen. However, distributed applications may in practice place
additional restrictions on public keys used in anonymity sets. This allows for the
possibility that A maliciously chooses ring members.



346 S. Noether and B. Goodell

Unforgeability requires that an adversary who does not control the private
key to a ring member cannot generate a valid signature on any message using
that ring.

Definition 2 (Unforgeability). Consider the following game between a chal-
lenger and a probabilistic polynomial-time adversary A:

– The adversary A is granted access to a public-key oracle GenOracle that (on
the ith invocation) runs KeyGen → (xi,Xi) and returns Xi to A.

– The adversary A is granted access to a corruption oracle CorruptOracle(i)
that returns xi if it corresponds to a query to GenOracle.

– The adversary A is granted access to a signing oracle SignOracle(X,M,R)
that performs the query Sign(x,M,R) → σ and returns σ to A, provided that
X corresponds to a query to GenOracle and X ∈ R.

– Then, A outputs (σ,M,R) such that SignOracle was not queried with input
(−,M,R), all keys in R were generated by queries to GenOracle, and no key
in R was corrupted by CorruptOracle.

If Pr[Verify(σ,M,R) = 1] ≈ 0, then we say that the LRS is unforgeable with
respect to insider corruption.

Anonymity requires that as long as a ring contains at least two members
that have not been corrupted, an adversary can do no better than guessing at
determining the signer of an honest signature.

Definition 3 (Anonymity). Consider the following game between a challenger
and a probabilistic polynomial-time adversary A:

– The adversary A is granted access to the public-key oracle GenOracle and the
corruption oracle CorruptOracle.

– The adversary A chooses a message M ∈ {0, 1}∗, a ring R, and indices i0
and i1, and sends them to the challenger. We require that Xi0 ,Xi1 ∈ R such
that both keys were generated by queries to GenOracle, and neither key was
queried to CorruptOracle.

– The challenger selects a uniformly random bit b ∈ {0, 1}, generates a signature
Sign(xib ,M,R) → σ, and sends it to A.

– The adversary A chooses a bit b′ ∈ {0, 1}.
If Pr[b′ = b] ≈ 1/2 and A did not make any corruption queries after receiving
the challenge bit, we say that the LRS is anonymous.

We observe that this definition permits the adversary to have corrupted or mali-
ciously generated all but two keys in the ring. Some definitions allow the adver-
sary to corrupt more keys, but we will see that this is inconsistent with our
linkability construction, where an adversary in control of a ring member’s pri-
vate key can trivially determine if it was the signer by examining the linking tag
associated to a signature.

Linkability requires that an adversary be unable to produce k +1 non-linked
signatures on a combined anonymity set of k public keys.
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Definition 4 (Linkability). Consider the following game between a challenger
and a probabilistic polynomial-time adversary A:

– For i ∈ [0, k−1], the adversary A produces a public key Xi, message Mi, ring
Ri, and signature σi.

– The adversary A produces another message M, ring R, and signature σ.
– All tuples (Xi,Mi, Ri, σi) and (M,R, σ) are sent to the challenger.
– The challenger checks the following:

• |V | = k, where V ≡ ⋃k−1
i=0 Ri.

• Each Xi ∈ V .
• Each Ri ⊂ V .
• Verify(σi,Mi, Ri) = 1 for all i.
• Verify(σ,M,R) = 1.
• For all i �= j, we have Link(σi, σj) = Link(σi, σ) = 0.

– If all checks pass, A wins.

If A wins with only negligible probability for all k, we say the LRS is linkable.

Non-frameability requires that an adversary be unable to generate a signature
that links with an honest signature.

Definition 5 (Non-frameability). Consider also the following game between
a challenger and a probabilistic polynomial-time adversary A:

– The adversary A is granted access to the public-key oracle GenOracle.
– The adversary A is granted access to the corruption oracle CorruptOracle.
– The adversary A is granted access to the signing oracle SignOracle.
– The adversary A chooses a public key X that was generated by a query

to GenOracle, but was not presented as a query to CorruptOracle. It
selects a message M ∈ {0, 1}∗ and ring R such that X ∈ R. It queries
SignOracle(X,M,R) → σ.

– The adversary A then produces a tuple (M ′, R′, σ′) and sends (M ′, R′, σ′) to
the challenger, along with (X,M,R, σ).

– If Verify(σ′,M ′, R′) = 0 or if σ′ was produced using a query to SignOracle,
the challenger aborts.

If Pr[Link(σ, σ′) = 1 ≈ 0, we say that the LRS is non-frameable.

5 Application: Linkable Ring Signature

The constructions in [3,12] describe how to use a similar sigma protocol to
construct a simple ring signature scheme. Using our modifications, we can easily
extend this to account for linkability and non-frameability. We briefly show how
to do so.

Theorem 2. The protocol in Fig. 3 is a linkable ring signature construction.
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Fig. 3. Linkable ring signature using Rlink

Proof. Perfect correctness follows immediately from the perfect completeness of
the proving system for Rlink.

Similarly, anonymity follows since the proving system is special honest-
verifier zero knowledge, and therefore witness indistinguishable [5]. Any adver-
sarial advantage in breaking anonymity must therefore arise from distinguishing
either input commitments or linking tags in signatures. Since honestly-generated
input Pedersen commitments are perfectly hiding, they are indistinguishable
from elements of G selected uniformly at random; we assume by definition that
at least two such commitments are present in such a signature. Further, honestly-
generated linking tags are generated from a one-way pseudorandom function, and
therefore in the random oracle model are independently uniformly distributed
from other proof elements and input commitments.

The proof for unforgeability in [12] relies on the (special) soundness of the
underlying sigma protocol; it applies directly to our modification for Rlink, and
is not repeated here.

To show linkability, observe first that Link simply compares linking tags, so
two signatures link if and only if they share a common linking tag. Suppose
an adversary can win the linkability game with non-negligible probability for
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some k > 1. Since all provided signatures verify, soundness implies extraction
of a witness xi from signature σi for all i, and of a witness x from σ. Note
that all {xi} and x are distinct. If xi = xj for i �= j, then the corresponding
linking tags Ji and Jj are such that xiJi = xjJj = U ; then Ji = Jj , which
contradicts Link(σi, σj) = 0. The same reasoning holds to show x is similarly
distinct. Soundness also implies that for all i, there exists Xi ∈ Ri such that
xiG = Xi; similarly, there exists X ∈ R such that xG = X. By assumption we
have

{X0, . . . , Xk−1,X} ⊂
(

k−1⋃

i=0

Ri

)

∪ R ⊂ V.

However, note that |{X0, . . . , Xk−1,X}| = k + 1, but that |V | = k, a contradic-
tion.

Finally, we show non-frameability and assume that an adversary has a non-
negligible advantage in breaking this property. Because Verify(σ′,M ′, R′) = 1,
soundness implies extraction of a witness x′ ∈ F such that x′G ∈ R′; we also have
a witness x such that xG ∈ R from the known signature σ. Since Link(σ, σ′) =
1, the corresponding linking tags J and J ′ are equal by definition; hence by
soundness xJ = x′J ′ = U , giving x = x′. However, the adversary did not query
CorruptOracle with X, meaning it breaks the discrete logarithm problem non-
negligibly.

6 Protocol: Parallel Linkable One-of-many Commitment

In this section, we describe a modification of the sigma protocol for Rlink that
permits us to prove knowledge of multiple commitments in d > 1 separate sets
at the same index position, while retaining the linking property in the first com-
mitment set only. This forms a version of Triptych with the same functionality
as the d-linkable ring signature construction in [10], although the precise security
model is a bit different. We later show how to apply such a construction to a signer-
ambiguous transaction protocol that can demonstrate balance preservation.

We wish to produce a sigma protocol for the following relation, for some
given vector dimension d > 1.

Rpar =
{

{Mi,α}N−1,d−1
i,α=0 ⊂ G

d, J ∈ G;
(
l, {rα}d−1

α=0

)
:

{Ml,α = rαG}d−1
α=0 and U = r0J

}

This requires only minor modifications to the protocol for Rlink, so we document
only the modified proof elements constructed and verified in Fig. 4. All other
proof elements are generated and verified identically.

Theorem 3. The protocol in Fig. 4 is perfectly complete, special honest-verifier
zero knowledge, and (m + 1)-special sound.
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Proof. In the random oracle model, extraction of a witness of the form r0 +∑
α μαrα implies knowledge of all {rα} such that rαG = Ml,α, similarly to the

key-aggregation arguments in [17]. The same extraction gives
(

r0 +
∑

α

μαrα

)

J = U +
∑

α

μαKα,

which implies in particular that r0J = U , as required.
The rest of the proof follows with only trivial modifications from the proof

for Rlink.

7 Application: Signer-Ambiguous Transaction Protocol

The parallel construction described in Fig. 4 can be used with d = 2 in a signer-
ambiguous transaction protocol.

Suppose a user wishes to generate a transaction consuming W previously-
generated outputs and generating T fresh outputs. The user shuffles the con-
sumed outputs within a larger list of N outputs {Mk,0}N−1

k=0 , such that there
exist indices {lu}W−1

u=0 where each Mlu,0 = ru for some known private key ru.
Further, assume each Mlu,0 comes equipped with an amount commitment of the
form Mlu,1 ≡, (au, su) for amount au and mask su. (All other Mk,0 also come
equipped with a corresponding Mk,1, but the structure of these points is not
relevant here.)

The user generates W auxiliary commitments P ′
u ≡, (au, s′

u) to the same
amounts, but with different masks {s′

u} chosen uniformly at random from F.
Then, the user generates W spend proofs, each using the following prover inputs
for u ∈ [0,W ):

Ppar({Mk,0}N−1
k=0 , {Mk,1 − P ′

u}N−1
k=0 , r−1

u U ; (lu, ru, su − s′
u))

For j ∈ [0, T ), the user generates a fresh output of the form Qj ≡, (bj , tj) for
amount bj and mask tj . The masks are chosen such that for j ∈ [1, T ), we have
tj chosen uniformly at random from F. We then choose

t0 ≡
W−1∑

u=0

s′
u −

T−1∑

j=1

tj

and include all {P ′
u} auxiliary commitments in the transaction.

To verify such a transaction, the verifier first performs verification on each
spend proof to ensure it is valid. Then, the verifier ensures that

W−1∑

u=0

P ′
u −

T−1∑

j=0

Qj = 0

such that the transaction balances. This succeeds since the commitments sum
to zero if and only if the difference of input and output amounts is zero, which
holds since the Pedersen commitment construction is computationally binding.
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8 Efficiency

Triptych proofs scale logarithmically with the size of the input anonymity set;
this is the best asymptotic scaling known for ring signatures that do not require
a trusted setup process over non-pairing groups. Related protocols based on the
inner-product compression method of [4] include Omniring [15] and RingCT 3.0
[15]. However, it is challenging to directly compare these protocols’ efficiency.
Omniring includes all transaction input signatures, output range proofs, and
balance within a single proof structure; however, it is not possible to verify a
batch of proofs more efficiently by combining common generators. While an
early version of RingCT 3.0 used separate input, range, and balance proofs, the
most recent version merges all input and balance proofs together but outsources
the range proofs to an efficient construction like [4]; this comes at the cost of
requiring that the number of inputs be a power of two or otherwise carefully
padded (affecting verification time). Therefore, for the purpose of comparison we
modify slightly the earlier version of RingCT 3.0 with a soundness fix applied
from the updated version, ignoring the size and verification cost of non-proof
elements. Another more direct comparison is to CLSAG, a linear-sized linkable
ring signature construction [10].

We now show size and verification comparisons of the parallel instantiation of
Triptych with d = 2, the earlier (modified) version of RingCT 3.0, and 2-CLSAG.
For verification scaling, we also account for the use of batching in Triptych and
RingCT 3.0, where generators common to multiple proofs are used only once
in verification. Further, since verification in both of these constructions reduces
to checking whether several multiscalar multiplications are zero, we may apply
random weighting such that verifying a batch of multiple proofs reduces to a
single multiscalar multiplication. The use of efficient multiscalar multiplication
algorithms like [20,23] means that an n-multiscalar multiplication evaluates as
O(n/ log n). This form of batching does not apply to CLSAG, where verification
consists of a sequence of hash function evaluations.

Table 1 compares proof/signature sizes and verification complexity for these
constructions as a function of the anonymity set size N and batch size B. Verifi-
cation complexity is separated into the number of hash-to-F operations (denoted
H), hash-to-G operations (denoted H), and i-multiscalar multiplication opera-
tions of size k(i). We note that although RingCT 3.0 proofs are slightly smaller
for large N , Triptych proofs are smaller for N < 512, a limited but reasonable
range given practical verification times. We also note that the application of
Triptych in a complete transaction protocol is not directly compared to RingCT
3.0 here, as the use of non-proof/signature auxiliary data in such a protocol may
differ based on particular implementations.
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Fig. 4. Sigma protocol (abbreviated) for Rpar

Table 1. Proof sizes and verification complexity, for anonymity set size N and batch
size B

Size (G) Size (F) Verification (batch total)

CLSAG [10] 2 N + 1 B(N + 2)H + BNH + 2BNk(3)

RingCT 3.0 [24] 2 lg(N) + 9 9 k(B[2N + 2 lg(N) + 9] + 2N + 5)

Triptych (this work) 2 lg(N) + 6 lg(N) + 3 k(B[2N + 2 lg(N) + 2] + 2 lg(N) + 3)
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1. Backes, M., Döttling, N., Hanzlik, L., Kluczniak, K., Schneider, J.: Ring signatures:
logarithmic-size, no setup—from standard assumptions. In: Ishai, Y., Rijmen, V.
(eds.) EUROCRYPT 2019. LNCS, vol. 11478, pp. 281–311. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-17659-4 10

2. Bender, A., Katz, J., Morselli, R.: Ring signatures: stronger definitions, and con-
structions without random oracles. In: Halevi, S., Rabin, T. (eds.) TCC 2006.
LNCS, vol. 3876, pp. 60–79. Springer, Heidelberg (2006). https://doi.org/10.1007/
11681878 4

3. Bootle, J., Cerulli, A., Chaidos, P., Ghadafi, E., Groth, J., Petit, C.: Short account-
able ring signatures based on DDH. In: Pernul, G., Ryan, P.Y.A., Weippl, E. (eds.)
ESORICS 2015. LNCS, vol. 9326, pp. 243–265. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-24174-6 13

4. Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bulletproofs:
short proofs for confidential transactions and more. In: 2018 IEEE Symposium on
Security and Privacy (SP), pp. 315–334. IEEE (2018)

5. Cramer, R., Damg̊ard, I., Schoenmakers, B.: Proofs of partial knowledge and sim-
plified design of witness hiding protocols. In: Desmedt, Y.G. (ed.) CRYPTO 1994.
LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994). https://doi.org/10.1007/
3-540-48658-5 19

6. Dodis, Y., Yampolskiy, A.: A verifiable random function with short proofs and
keys. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386, pp. 416–431. Springer,
Heidelberg (2005). https://doi.org/10.1007/978-3-540-30580-4 28

7. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 12

8. Fujisaki, E.: Sub-linear Size Traceable Ring Signatures without Random Oracles.
In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 393–415. Springer, Hei-
delberg (2011). https://doi.org/10.1007/978-3-642-19074-2 25

9. Fujisaki, E., Suzuki, K.: Traceable ring signature. In: Okamoto, T., Wang, X. (eds.)
PKC 2007. LNCS, vol. 4450, pp. 181–200. Springer, Heidelberg (2007). https://
doi.org/10.1007/978-3-540-71677-8 13

10. Goodell, B., Noether, S., Blue, A.: Compact linkable ring signatures and appli-
cations. Cryptology ePrint Archive, Report 2019/654 (2019). https://eprint.iacr.
org/2019/654

11. Groth, J.: On the size of pairing-based non-interactive arguments. In: Fischlin, M.,
Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 305–326. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5 11

12. Groth, J., Kohlweiss, M.: One-out-of-many proofs: or how to leak a secret and
spend a coin. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol.
9057, pp. 253–280. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-46803-6 9

13. Hopwood, D., Bowe, S., Hornby, T., Wilcox, N.: Zcash protocol specification. Tech-
nical Report 2016–1.10. Zerocoin Electric Coin Company, Technical Report (2016)

14. Jivanyan, A.: Lelantus: Towards confidentiality and anonymity of blockchain trans-
actions from standard assumptions. Cryptology ePrint Archive, Report 2019/373
(2019). https://eprint.iacr.org/2019/373

https://doi.org/10.1007/978-3-030-17659-4_10
https://doi.org/10.1007/11681878_4
https://doi.org/10.1007/11681878_4
https://doi.org/10.1007/978-3-319-24174-6_13
https://doi.org/10.1007/978-3-319-24174-6_13
https://doi.org/10.1007/3-540-48658-5_19
https://doi.org/10.1007/3-540-48658-5_19
https://doi.org/10.1007/978-3-540-30580-4_28
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/978-3-642-19074-2_25
https://doi.org/10.1007/978-3-540-71677-8_13
https://doi.org/10.1007/978-3-540-71677-8_13
https://eprint.iacr.org/2019/654
https://eprint.iacr.org/2019/654
https://doi.org/10.1007/978-3-662-49896-5_11
https://doi.org/10.1007/978-3-662-46803-6_9
https://doi.org/10.1007/978-3-662-46803-6_9
https://eprint.iacr.org/2019/373


354 S. Noether and B. Goodell

15. Lai, R.W.F., Ronge, V., Ruffing, T., Schröder, D., Thyagarajan, S.A.K., Wang, J.:
Omniring: Scaling up private payments without trusted setup-formal foundations
and constructions of ring confidential transactions with log-size proofs. Cryptology
ePrint Archive, Report 2019/580 (2019). https://eprint.iacr.org/2019/580

16. Liu, J.K., Wei, V.K., Wong, D.S.: Linkable spontaneous anonymous group signa-
ture for Ad Hoc groups. In: Wang, H., Pieprzyk, J., Varadharajan, V. (eds.) ACISP
2004. LNCS, vol. 3108, pp. 325–335. Springer, Heidelberg (2004). https://doi.org/
10.1007/978-3-540-27800-9 28

17. Maxwell, G., Poelstra, A., Seurin, Y., Wuille, P.: Simple Schnorr multi-signatures
with applications to Bitcoin. Des. Codes Cryptogr. 87(9), 2139–2164 (2019).
https://doi.org/10.1007/s10623-019-00608-x

18. Miers, I., Garman, C., Green, M., Rubin, A.D.: Zerocoin: anonymous distributed e-
cash from bitcoin. In: 2013 IEEE Symposium on Security and Privacy, pp. 397–411.
IEEE (2013)

19. Noether, S., Mackenzie, A.: The Monero Research Lab. Ring confidential transac-
tions. Ledger, vol. 1(0), pp. 1–18 (2016)

20. Pippenger, N.: On the evaluation of powers and monomials. SIAM J. Comput.
9(2), 230–250 (1980)

21. Rivest, R.L., Shamir, A., Tauman, Y.: How to leak a secret. In: Boyd, C. (ed.)
ASIACRYPT 2001. LNCS, vol. 2248, pp. 552–565. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-45682-1 32

22. Schnorr, C.P.: Efficient signature generation by smart cards. J. Cryptol. 4(3), 161–
174 (1991). https://doi.org/10.1007/BF00196725

23. Straus, E.G.: Addition chains of vectors (problem 5125). Am. Math. Mon. 70(806–
808), 16 (1964)

24. Yuen, T.H., et al.: RingCT 3.0 for blockchain confidential transaction: Shorter
size and stronger security. Cryptology ePrint Archive, Report 2019/508 (2019).
https://eprint.iacr.org/2019/508

https://eprint.iacr.org/2019/580
https://doi.org/10.1007/978-3-540-27800-9_28
https://doi.org/10.1007/978-3-540-27800-9_28
https://doi.org/10.1007/s10623-019-00608-x
https://doi.org/10.1007/3-540-45682-1_32
https://doi.org/10.1007/BF00196725
https://eprint.iacr.org/2019/508


Moderated Redactable Blockchains: A
Definitional Framework with an Efficient

Construct

Mohammad Sadeq Dousti1(B) and Alptekin Küpçü2
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Abstract. Blockchain is a multiparty protocol to reach agreement on
the order of events, and to record them consistently and immutably with-
out centralized trust. In some cases, however, the blockchain can bene-
fit from some controlled mutability. Examples include removing private
information or unlawful content, and correcting protocol vulnerabilities
which would otherwise require a hard fork. Two approaches to control
the mutability are: moderation, where one or more designated admin-
istrators can use their private keys to approve a redaction, and voting,
where miners can vote to endorse a suggested redaction. In this paper, we
first present several attacks against existing redactable blockchain solu-
tions. Next, we provide a definitional framework for moderated redact-
able blockchains. Finally, we propose a provable and efficient construct,
which applies a single digital signature per redaction, achieving a much
simpler and secure result compared to the prior art in the moderated
setting.

Keywords: Blockchain · Bitcoin · Moderated redactable blockchain ·
Formal threat model · Signature scheme

1 Introduction

The concept of blockchain was pioneered by Bitcoin [16]. It is a distributed pro-
tocol that allows all honest parties to keep a ledger of event logs in a consistent
manner and without any trust assumption. There are various incarnations of
blockchains, which may relax or strengthen some of the conditions. The original
blockchain is permissionless, meaning any party can participate in the protocol.
Permissioned blockchains operate in an authenticated environment, where join-
ing the network is subject to an administrative decision. A private blockchain is
a specific type of permissioned blockchain, where every participant can view the
ledger, but only an authorized set of entities can append. For further discussion,
see [13].
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One of the most important properties of blockchain is the immutability of the
ledger. After all, cryptocurrencies require that once a transaction is recorded, it
cannot be undone. However, this desirable property has its downsides. Criminals
have occasionally appended arbitrary contents to the ledger that is forbidden by
national or international laws—such as child abuse [11,12] and malware [18].
Another use case is where some information about a user is stored in the ledger,
and later the user requests them to be removed [15], exercising the “right to be
forgotten” under privacy laws such as the General Data Protection Regulation
(GDPR) [4]. A third case is when a massive fraud has been made possible due
to a flaw in the blockchain protocol. In immutable blockchains, the only way
to invalidate such fraudulent transactions is by updating the protocol and the
software—a process known as a hard fork. The DAO Attack [3] is an exam-
ple, which resulted in a hard fork in Ethereum [20] back in 2016. For further
discussion, see [1].

To overcome the limitations associated with immutability, several researchers
proposed solutions for controlled mutability. The literature has two approaches
for controlling the mutability: Moderated [1,5,10], where redactions can only
be applied by a designated set of users (known as the administrators), and
unmoderated (or voting-based) [7,19] where suggested redactions are voted on,
and applied only if they receive a quorum of votes within a specific period.
Notice that the terms permissioned and moderated are orthogonal: In permis-
sioned blockchains, users need administrative permission to join the network. In
moderated blockchains, administrators must approve redactions (changes to the
blocks in the ledger). Even in a blockchain that is both moderated and permis-
sioned, the administrators in charge of admitting users can be different from the
administrators in charge of approving redactions.

In this paper, four novel attacks are presented against existing redactable
blockchains: Two attacks against moderated constructs, and two against the
unmoderated ones. Learning from the attacks, we suggest the goals for a defi-
nitional framework for redactable blockchains, and put forward an adversarial
model and a security definition satisfying those goals. Finally, two constructs
of redactable blockchains are presented: The former serves as an instrumental
example, and is proven incorrect and insecure. The latter resolves the issues, and
we prove it both correct and secure in our definitional framework.

2 Previous Work

Moderated Redactable Blockchains. In their seminal work, Ateniese
et al. [1] constructed the first redactable blockchain. They proposed a special
primitive called an enhanced chameleon hash function. A chameleon hash func-
tion is a collision-resistant hash function, such that finding collisions is easy
given a private (trapdoor) key. The enhanced version satisfies the additional
property that finding collisions (without the private key) is hard, even if the
adversary can get collisions for inputs of her choice from an oracle. The prim-
itive is rather complex and involved: In the standard model, it requires a wit-
ness whose size is 18 group elements under the SXDH assumption, or 39 group
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elements under the DLIN assumption [1]. Derler et al. [6] extended the above
idea above to attribute-based chameleon hashes. Instead of applying redactions
freely at the block level, the administrators are bound by a fine-grained policy on
what attributes they can change. They employ ciphertext-policy attribute-based
encryptions and chameleon hashes with ephemeral trapdoors. Recently, Grigoriev
and Shpilrain [10] proposed a simple construct based on textbook RSA. However,
Sect. 4 shows that it is insecure.

Interestingly, none of the work listed above provides a security
model/definition tailored specifically for redactable blockchains, and therefore
their constructs have no security proofs: While [1,6] focus on proving the secu-
rity of the underlying cryptographic primitives (e.g., the enhanced chameleon
hash function), [10] has no rigorous proof of security. We also show that all
constructs succumb to reversion attacks.

Unmoderated (Voting-based) Redactable Blockchains. Puddu et al. [19]
defined an idea called μchain for enabling mutability for proof-of-work block-
chains. The mutability is controlled by fiat, imposed by consensus, and is pub-
licly verifiable. It can be used in both moderated and unmoderated settings:
In the moderated setting, the sender can create multiple mutations of a trans-
action, and encrypt all but one (the active transaction). The decryption key
is distributed between miners using a secret-sharing scheme. The sender also
proposes a policy as to how other mutations can be activated, and by whom.
If a mutation request is approved by this policy, miners decrypt the intended
mutation by a multi-party decryption protocol. In the unmoderated setting, the
mutation to be activated is voted on. Deuber et al. [7] discuss various issues
with μchain. They also propose a distributed consensus protocol for redaction.
Their protocol does not require heavy cryptographic operations or trusting a
set of administrators. It starts when a participant proposes a redaction. If the
proposed block satisfies the verification algorithm, it enters a voting phase. If
enough miners vote for it within a certain period of time, the change is applied
to the ledger.

In Sect. 4, we show that care must be taken when dealing with votes. In
particular, if not properly designed and implemented, it is possible to redact
a block containing a vote for some previous block, which may render the cor-
responding redactions invalid. Furthermore, we explore possible ways where a
minority group can prevent a policy to be applied, or even go against the policy.

3 Preliminaries

Assignment Notation. Assignments are denoted as x ← 2. To say something
holds by definition, we use x

def= y. The symbol x = y is used for checking or
asserting equality.

List Manipulation. Let L def= [B0, . . . , B�] be a list. The elements of the list
can be addressed by their index: Bi

def= L[i] for 0 ≤ i ≤ �. We use the following
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1. GenSig(1λ) is run to obtain pk and sk.
2. The adversary A is given pk and access to the signing oracle Signsk(·), and she

returns a pair (m, σ). Let t be the number of queries A asks its oracle, and

Q
def
= {(mi, σi)}t

i=1 be the set of query-response pairs. That is, mi is the ith

query, and σi is the corresponding response from the oracle.
3. The adversary is said to win if VerifySig(pk, m, σ) = 1 and (m, σ) �= Q. In this

case, the experiment outputs 1. Otherwise, it outputs 0.

Experiment 1. The strong signature forgery experiment SSig-forgecma
A,Π(λ), where the

adversary can mount a chosen-message attack.

notation to address sublists: For integers i, j with 0 ≤ i ≤ j ≤ len(L), define
L[i : j] def= [Bi, . . . , Bj ]. If j < i, the sublist is empty. If L1 and L2 are two list,
their concatenation is denoted by L1 + L2.

Blocks. A block B is denoted by a tuple, such as (P,C, V,W ), containing various
components. Each component can be set to a default value, such as the empty
string ε. Blockchains may add other or remove components of their choice to
the block structure. Here is the description of the most common components:
P is the prefix of the block. It is often a function of previous blocks in the
ledger. C is the content of the block (in cryptocurrency nomenclature, it is
the set of transactions). V is the version of the block. W is the witness of the
block. It is used in redactions. We assume the existence of efficient algorithms
Prefix(B), Content(B), Version(B), and Witness(W ), which efficiently extract the
relevant component from block B. If we are interested in a block except one of
its components, we denote it by striking through that component: BW is block
B except its W component.

sUF-CMA Secure Signatures. The main primitive used in our construct is
a signature schemes strongly unforgeable under adaptive chosen-message attack
(sUF-CMA). Let us define the syntax and security for this primitive.

Definition 1 (Syntax of Signature Schemes). A signature scheme consists
of three efficient algorithms Π def= (GenSig,Sign,VerifySig), satisfying the follow-
ing:

– On input the security parameter 1λ, the key generation algorithm GenSig cre-
ates a pair of keys (pk, sk). We assume that |pk|, |sk| ≥ λ, and λ can be
inferred from each key.

– On input any message m in the message space, the signing algorithm generates
a signature: σ ← Sign(sk,m).

– On input any message m in the message space, and any signature σ created
on m by the signing algorithm, the (deterministic) verification algorithm must
return 1: VerifySig(pk,m,Sign(sk,m)) = 1.
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Wi

Ci

Pi

Wi+1

Ci+1

Pi+1

ei := f(Pi, Ci)

Pi+1 := Wi
ei (mod n)

Fig. 1. The relationship between two consecutive blocks in the GS Construct. Ci is
the content. Wi is the witness, which is picked uniformly from Zn such that it does
not to have order 2. The prefix Pi+1 depends on all parts of block Bi via the relation
Pi+1 ← W

f(Pi,Ci)
i (mod n), where n is an RSA modulus and f is an efficient integer-

valued function.

The strong security of signature schemes is defined as follows:

Definition 2 (Strong Unforgeability of Signature Schemes). A signa-
ture scheme Π def= (GenSig,Sign,VerifySig) is strongly unforgeable under adaptive
chosen-message attack (sUF-CMA) if for every efficient adversary A taking part
in Experiment 1, there exists a negligible function negl, such that

Pr[SSig-forgecma
A,Π(λ) = 1] ≤ negl(λ) .

The main assumption of this section is the existence of sUF-CMA secure
signature schemes. There are efficient transformations that convert any UF-CMA
secure signature to an sUF-CMA secure one [14]. Boneh et al. [2, p. 230] provide
a list of many constructions of efficient sUF-CMA signatures in the literature,
both in the standard and the random oracle models.

4 Novel Attacks on Previous Constructs

In this section, we explain several attacks against certain previous constructs,
which carry over their desired security properties from immutable blockchain
models [9,17], to the redactable setting. We stress that most attacks can be easily
prevented by small modifications in the corresponding construct. However, the
mere existence of the attacks in the face of security proofs shows that one should
consider an adversarial model tailored for the redactable blockchains. Due to a
lack of space, we only provide an overview of the attacks. The interested reader
may refer to the full version of this paper [8] for further details.

Moderator Circumvention Attack: The attack is specific to the GS Con-
struct [10], whose block relationship is depicted in Fig. 1. The attacker can craft
two blocks B and B′, append B to the ledger, and at any point in time replace
it with B′. It works without administrator involvement, since the witness verifi-
cation simply holds for both blocks. It works as follows:

1. Pick Z from Zn uniformly at random. Retry this step if Z has order 2.
2. Let e ← f(P,C) and e′ ← f(P,C ′).
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3. Let W ← Ze′
(mod n) and W ′ ← Ze (mod n).

4. Output B ← (P,C,W ) and B′ ← (P,C ′,W ′).

It can be verified that Pnext = W e = W ′e′
= Ze·e′

(mod n). Thus, replacing B
with B′ does not affect the prefix of the next block.

Reversion Attack: The attack can be applied to both the GS [10] and the
AMVA [1] constructs, both of which are in the moderated settings. Consider a
block B, which was later redacted to B′ with the help of the administrators. An
adversary can simply revert a redacted block B′ to its previous state B: Since
no versioning scheme is in place, all versions of a block are valid.

Vote Erasure Attack: The vote erasure is a special kind of attack where a
series of valid actions on the ledger puts it in an inconsistent state, meaning
that at least one block is no longer valid. Erasing votes already collected for a
redaction is only applicable to the voting (unmoderated) settings, like the DMTS
Construct [7]. In this construct, a redaction B∗

i is suggested by a participant.
After validating this block, a voting period starts. It comprises the next t blocks
appended to the ledger. If at least a ρ fraction of these t blocks endorse this
redaction, it is considered approved, and every (honest) participant applies the
redaction. Miners who want to endorse this redaction must include the hash
H(B∗

i ) in the content of blocks they mine. The authors use t = 4 and ρ = 3/4.
This means that in the next four mined blocks, at least three must include
H(B∗

i ), as illustrated below:

· · · → Bi
︸︷︷︸

redact to B∗
i

→ · · · → B�
︸︷︷︸

last block

→ B�+1 → B�+2 → B�+3 → B�+4
︸ ︷︷ ︸

voting period

→ · · ·

When the redaction B∗
i is suggested, the last block was B�. In the voting period,

four blocks B�+1, . . . , B�+4 are mined. If at least three of them include the hash
H(B∗

i ) in their content, then the redaction is approved, and every honest par-
ticipant updates its local ledger to include B∗

i instead of Bi.
For concreteness, assume that except for B�+4, all other blocks in the voting

period endorsed this redaction. An adversary can now propose a redaction B∗
�+1,

which is identical to B�+1, but does not include the hash H(B∗
i ). This suggestion

goes through the voting period, and since nothing in the DMTS Construct for-
bids redacting “ballot blocks” it might be approved. However, removing the vote
results in the ledger being in an inconsistent state: On the one hand, the ledger
of honest participants includes B∗

i . On the other hand, the ledger now has only
two votes for it, which means the redaction is not approved. Any joining party
who receives a copy of the ledger and verifies it can observe this discrepancy.

It is easy to prevent this attack by designating the blocks including votes as
special “ballot blocks.” It must be required that ballot blocks are not redactable,
or at least their redaction cannot remove the vote from the block.

Miner Corruption Attack: The attack is applicable to the DMTS Con-
struct [7]. Let the approval quorum be ρ

def= 3
4 , as suggested by the paper: When

a redaction is proposed, at least three out of the next four mined blocks should
carry a vote approving the redaction. Consider an adversary who controls 49%
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of the miners, all of whom abstain from endorsing any redactions. A simple com-
binatorial analysis shows that even if all honest miners vote in favor of all redac-
tions, only

(
4
3

)

(0.51)3(0.49)+(0.51)4 ≈ 33% of them are approved. Furthermore,
for an adversarially suggested redaction, even if all honest miners refrain from
voting, there is a

(
4
3

)

(0.49)3(0.51) + (0.49)4 ≈ 30% chance of approval. Increas-
ing ρ decreases the chance of honest redactions, while decreasing it increases the
chance of adversarial redactions.

5 Defining Moderated Redactable Blockchain

5.1 Design Goals

Section 4 demonstrates that adapting existing models and definitions of
immutable blockchains to the redactable setting is challenging, as mutability
opens a variety of ways for an adversary to attack the blockchain. We propose
decoupling the two notions: A challenger is introduced, who enforces most of the
restrictions imposed by an immutable blockchain. On the other hand, we allow
the adversary to control the participants in the network, receive an arbitrary
number of redactions, and install an arbitrary number of blocks in the ledger.
In designing our definitional framework, we pursued the following goals:

– Bitcoin independence: The framework should not impose Bitcoin protocol
or data structures. For instance, the blockchain designer might opt not to
include the hash of the previous block in the current block.

– Consensus independence: The framework should not impose a specific
consensus mechanism, such as the proof of work (PoW) or the proof of stake
(PoS). Rather, it should depend on an abstraction that provides consensus.

– General content: The framework should not assume that the content of
each block includes a set of transactions. Rather, the content must be treated
as an arbitrary bit string.

– Simplicity: The framework should be as simple as possible. With this aim, we
abstract out the distributed nature of the network by a centralizing challenger.

– Moderation: The framework should support the moderated setting. This
is by choice rather than merit, meaning a framework for the unmoderated
setting is equally important, but is left as future work.

– Operation segregation: The framework should not combine operations
which are semantically different. For instance, consider redaction and instal-
lation: When an administrator is asked for a redaction, he should merely
return a redacted block, rather than installing the block in the ledger. The
installation must be performed separately.

– Allowing adversarial transformation: The framework should allow the
adversary to append any valid block at the end of the ledger. Also, she must
be able to receive the redaction of as many blocks as she wants. Finally, she
must be able to install any valid redaction.
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Fig. 2. The proposed adversarial model. The challenger creates a key pair and the
ledger. It gives the public key pk to the adversary, and provides her with read-only
access to the ledger. All write operations (installations) should go through the chal-
lenger’s INST interface, by specifying the location i pointing to a valid block index in
the ledger, and the block B to be installed. The challenger returns 1 if the installation
is successful, and 0 otherwise. The adversary can also request redactions via the chal-
lenger’s REDC interface. She provides the redaction location i, as well as the new block’s
content C. If the operation is successful, the challenger returns a redacted block B,
which can then be installed using its INST interface. Otherwise, the challenger returns
an empty block ε. The adversary is deemed successful if she installs a redacted block
which is not obtained via the REDC interface.

– Ledger consistency: The ledger must remain consistent at all times. That
is, there should not be a valid transformation that invalidates one or more
blocks already installed in the ledger (cf. Sect. 4).

5.2 Informal Model

Figure 2 illustrates our definitional framework informally. Notice that it resem-
bles a game between a challenger and a single adversary. It is as if she has total
control over the participants in the blockchain: As long as she plays by the rules,
she can append any valid block to the ledger, request any block content to be
redacted to an arbitrary yet valid value, and install any valid redacted block.
Furthermore, no modification is made to the chain without the adversary saying
so. In fact, the challenger is an abstraction of an ideal consensus protocol. The
goal of the adversary is to create a redacted block which is not provided by the
administrators controlled by the challenger, and install it in the ledger.

Observe the similarity with the way signature schemes are modeled: Obtain-
ing redactions for arbitrary content are akin to acquiring a signature on arbi-
trary messages (the adaptive chosen message attack). Furthermore, the security
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definition is similar: Any new redaction constitutes an attack, which is akin to
existential forgery in signature schemes. In fact, as shown in Sect. 6, a strongly
unforgeable signature scheme can be used to construct a secure redactable block-
chain in our model.

In what follows, we abstract out a redactable blockchain as a tuple of efficient
algorithms. The abstraction pertains to a centralized setting, where there is a
challenger with a private key, playing against an adversary with the public key
and read-only access to the ledger. The adversary can install blocks by asking the
challenger, who accepts the request as long as the adversary abides by the rules.
The verification algorithm distinguishes valid blocks from invalid ones. Contrary
to previous work such as [1,7], which explicitly use the proof-of-work verification
in their model, we let each construct decide on its own verification algorithm. For
instance, a construct may use separate verification algorithms for normal and
redacted blocks. This simplifies and generalizes the scheme. The adversary can
also ask the challenger to redact block contents, in hope that she learns how to
redact a block without the challenger’s help. The adversary is deemed successful
if she can generate a new redaction.

We realize that block versioning is useful, and therefore incorporate it into
our formalization below. If a solution does not employ versioning, those parts in
the definition may be ignored.

5.3 Definition

The blockchain storage (the ledger) is modeled as a list of blocks L def=
[B0, B1, . . . , B�]. The list starts at index 0, and the block at L[0] is called the
genesis block. This block is generated initially, and it helps in simplifying the
presentation. We assume that the variable � always keeps the number of real
(non-genesis) blocks: �

def= len(L) − 1. Initially, � ← 0, as there is only one block
in the ledger (the genesis block) Upon appending each new block, � is incre-
mented. The value � is not an upper bound: L can grow to include any poly-
nomial number of blocks. The ledger is published as a read-only list. The only
way an adversary can modify L is via a call to the challenger’s INST interface,
as depicted by Fig. 2.

Definition 3 defines five efficient algorithms that constitute a moderated
redactable blockchain scheme. We then express two syntactical requirements:
Every block created correctly must be verifiable, and so is every block redacted
correctly. Throughout, the following transformation is used: It expresses the
effect of installing a block B at position i of ledger L, where 1 ≤ i ≤ � + 1:

Transform(L, i, B) def= L[0 : i − 1] + [B] + L[i + 1 : �] . (1)

Notice that Transform returns a new ledger, rather than changing L. By list
manipulation rules defined in Sect. 3, if i+1 > �, the rightmost sublist L[i+1 : �]
is empty. The resulting ledger has the same length as L if 1 ≤ i ≤ �, and is longer
than L by one block if i = � + 1.
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Definition 3. A moderated redactable blockchain scheme is a tuple of proba-
bilistic polynomial-time algorithms RBC def= (Gen,Create,Verify,Redact, Install)
satisfying the following:

1. The key-generation algorithm Gen(1λ): Takes as input a unary security
parameter 1λ and outputs (pk, sk,L), where pk is the public key, sk is the
private key, and L is the ledger. We assume that |pk| , |sk| are polynomial in
λ, and λ can be inferred from pk or sk.

2. The block-creator algorithm Create(pk,L, C): Takes as input the public
key pk, the ledger L, and a content C. It generates and returns a block B
containing C, to be appended at the end of L.

3. The block-verifier algorithm Verify(pk,L, i, B): Takes as input the public
key pk, the ledger L, a positive integer i ≤ �+1, and a block B. It performs two
verifications, denoted Φ and Ψ, which are specified as part of Verify description
by the blockchain designer. Let:

V ← Version(B), (2)

V ← [

Version(L[0]), . . . ,Version(L[�])
]

, (3)
L∗ ← Transform(L, i, B). (4)

Verify returns 1 if and only if both Φ(V , i, V ) and Ψ(pk,L∗) return 1. Algo-
rithm Φ prevents reversion attacks by comparing the version of B with (pos-
sibly all) existing block versions. Algorithm Ψ checks the the consistency of
the ledger for L∗ that results from installing B at position i of L.

4. The redaction algorithm Redact(sk,L, i, C): Takes as input the private key
sk, the ledger L, a positive integer i ≤ �, and a content C. It returns a block
B containing C, to replace L[i].

5. The block-installer algorithm Install(pk,L, i, B): Takes as input the pub-
lic key pk, the ledger L, a positive integer i ≤ � + 1, and a block B. If
Verify(pk,L, i, B) is 0, it returns 0. Otherwise, it installs B at index i of
L (replacing an existing block in case i ≤ �), and returns 1. Formally, a suc-
cessful installation of B at index i is denoted by L ← Transform(L, i, B), as
defined by Eq. (1).

For any moderated redactable blockchain scheme RBC, the following correct-
ness requirements must be satisfied.

Definition 4 (Correctness). It is required that for every λ, every (pk, sk,L)
output by Gen(1λ), and any valid content C:

(a) Anyone can create a valid block to be appended to the ledger: Let
B ← Create(pk,L, C). Then

Content(B) = C ∧ Verify(pk,L, � + 1, B) = 1 .

(b) The administrator can change any block of the ledger to con-
tain any valid content: For any positive integer i < �, let B ←
Redact(sk,L, i, C). Then

Content(B) = C ∧ Verify(pk,L, i, B) = 1 .
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1. Gen(1λ) is run to obtain (pk, sk, L). The set Hist ← ∅ is set to empty.
2. Adversary A is given pk, a read-only view of L, and access to oracles REDCsk,L(·, ·)

and INSTpk,L(·, ·).
– The REDC oracle responds to queries of the form (i, C) by returning a redacted

block B ← Redact(sk, L, i, C). It also adds (i, B) to the set Hist, i.e., Hist ←
Hist∪{(i, B)}.

– The INST oracle responds to queries of the form (i, B) by returning a bit
b ← Install(pk, L, i, B).

3. Finally, A outputs (i∗, B∗). She succeeds, and the experiment returns 1, if and
only if all of the following conditions hold:

(a) 0 < i∗ < �, (b) Verify(pk, L, i∗, B∗) = 1, (c) (i∗, B∗) /∈ Hist .

Experiment 2. The redaction experiment RedactA,RBC(λ). The success conditions can
be explained as: (a) The index i points to an internal block of the ledger (as otherwise
it is not an attack), (b) The block B∗ is valid for position i∗, and (c) The pair (i∗, B∗)
is new, meaning that B∗ is not received from the redaction oracle in response to a
query for index i∗. A particular observation is that the adversary wins if B∗ is received
from REDC, but for another location i′ �= i∗.

Let RBC be a moderated redactable blockchain scheme per Definition 3, and
consider Experiment 2 for an adversary A and security parameter λ.

Definition 5. A redactable blockchain scheme RBC is existentially unredactable
under chosen-redaction attacks, or just secure, if for all probabilistic polynomial-
time adversaries A taking part in Experiment 2, there is a negligible function
negl such that Pr

[

RedactA,RBC(λ) = 1
] ≤ negl(λ).

6 A Construct Based on Signature Schemes

In this section, we present Construct 1 which, based on a simpled assumption
explained below, is proven secure under Definition 5. The interested reader may
read Appendix A beforehand, which contains a simple construct which is proven
both incorrect and insecure. It is not a prerequisite to the rest of this paper, but
serves an illustrative purpose in explaining the inner working of the adversarial
model.

The adversarial model completely delegates the blockchain functionality to
the challenger of Fig. 2: Any write operation must go through the challenger.
We are therefore not worried about keeping an immutable total ordering of the
blocks. It is similar in nature to the ideal functionality in a hybrid multi-party
setting, except that our model is game-based rather than simulation-based.

This construct uses the block structure B
def= (C, V,W ), where each block

contains content C, version V , and witness W . The blocks do not have a prefix
whatsoever, in which the hash of the previous block is included. This is because,
as explained above, our adversarial model idealizes the total ordering of blocks
in the ledger by preventing direct write access from the adversary.
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The block content C is arbitrary, but the version V and witness W must
follow some rules that might not seem obvious at first. Appendix A shows that
a careless choice of protocol for determining these fields can lead to correctness
and security issues.

Each block must have a unique version number: The jth block to be installed
(be it appended or redacted) should carry version j. This guarantees the unique-
ness of each block in the ledger.

The witness W is the empty string ε when the block is being appended.
However, when the block is being redacted, the administrator uses the private
key of the blockchain (which is also the private key of an sUF-CMA secure
signature scheme) to sign the concatenation of three fields: The content of this
block, the version of this block, and the version of the next block in the ledger.

If the next block is redacted later, its version number will change, effec-
tively rendering any signature in the current block invalid. To prevent correct-
ness issues, the signature is verified only when its block is newer than the next
block. This check is easily conducted due to the unique versioning that we intro-
duced: For any two consecutive blocks B

def= (C, V,W ) and B′ def= (C ′, V ′,W ′) in
the ledger, define:

ψ(pk,B,B′) def=

{

1 if V ′ > V ,
VerifySig(pk,C || V || V ′,W ) if V ′ < V .

(5)

As we will see, the algorithm Ψ calls ψ for each pair of blocks in the ledger, and
returns the logical AND of their results.

Construction 1 (Secure). The redactable blockchain RBCgood is defined as
follows. The block structure is B

def= (C, V,W ), where each block contains content
C, version V, and witness W .

– Gen(1λ) simply calls the generator for the underlying signature scheme to
obtain the public and private keys: (pk, sk) ← GenSig(1λ). It sets L ← [B0],
where B0 ← (ε, 1, ε).

– Create(pk,L, C) returns B ← (C, V, ε), where V is larger than any version
in the ledger (and is thus unique). Symbolically, V ← MaxV(V ), where V is
defined as in Eq. (3), and

MaxV(V ) def= 1 + max
0≤i≤�

V [i] . (6)

– Verify(pk,L, i, B) returns 1 if and only if all conditions below are satisfied:
• B has correct structure, and 0 < i ≤ � + 1.
• Φ(V , i, V ) returns 1: This happens if and only if V = MaxV(V ).
• Ψ(pk,L∗) returns 1: This happens if and only if for every pair (B,B′)
of subsequent blocks in L∗, it holds that ψ(pk,B,B′) = 1, as per Eq. (5).

– Redact(sk,L, i, C): If i points to an internal block (i.e., 0 < i < �), it creates
a block B ← (C, V,W ) using content C, where V ← MaxV(V ) and

W ← Sign
(

sk, C || V || Version(L[i + 1])
)

.
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– Install(pk,L, i, B): Works exactly as specified in Definition 3.

Notice that for redacting the block at i = �, the private key is not required.
For any C, replacing the existing block L[�] with B ← (C,MaxV(V ), ε) is valid.
This is because there is no next block B′ for which ψ(pk,B,B′) = 1 must hold.
However, the ability to redact the last block without the private key does not
constitute an attack. In our model (Experiment 2), the adversary succeeds only
if she redacts a block inside the ledger (i.e., 0 < i < �).

Theorem 1. RBCgood is correct per Definition 4.

Proof. There are two conditions to check.

Condition (a): Create(pk,L, C) returns B ← (C,MaxV(V ), ε). Clearly, the con-
tent of this block is C. Furthermore, if L is already a valid chain, so is
L∗ ← L + [B]. This is because the version of B is correctly computed as
required by Φ. Moreover, ψ returns 1 on all pairs of blocks in L∗ prior to the
last pair (due to the validity of L). Finally, for the last pair (L[�], B), since
Version(L[�]) < Version(B), the return value of ψ is trivially 1. As a result,
all block pairs verify, and Ψ returns 1 as well.

Condition (b): Redact(sk,L, i, C) returns B ← (C,MaxV(V ),W ). Clearly, the
content of this block is C. Furthermore, if L is already a valid chain, so
is L∗ ← Transform(L, i, B). This is because the version of B is correctly
computed as required by Φ. Moreover, ψ returns 1 on all pairs of blocks in
L∗, except perhaps the two special pairs involving B (the validity of other
pairs is due to the validity of L). We show that ψ also returns 1 on those
special pairs, which involve B:

– The first special pair is (L[i−1], B). Since Version(L[i−1]) < Version(B),
the return value of ψ is trivially 1.

– The second special pair is (B,L[i + 1]). Since Version(L[i + 1]) <
Version(B), algorithm ψ requires the block B to hold a proper witness.
This holds due to the correctness of the underlying signature scheme.

As a result, all block pairs verify, and Ψ returns 1 as well. �	
Theorem 2. If the signature scheme (GenSig,Sign,VerifySig) is strongly
unforgeable under chosen-message attack (sUF-CMA), then RBCgood is secure
per Definition 5.

Proof. Let A be an adversary who, for infinitely many λ values, succeeds in the
experiment RedactA,RBCgood(λ) with probability at least ε

def= ε(λ). We construct
a forger algorithm F which, for infinitely many λ values, forges a signature with
probability ε.

The forger F receives as input the public key pk of the signature scheme, as
well as oracle access to the signing oracle Signsk(·). It sets Hist ← ∅, generates
L ← [B0] as in Construct 1, runs A(pk,L), and answers its queries as follows:

– Installation queries INST(i, B): The forger F simply calls b ←
Install(pk,L, i, B), and returns b.



368 M. S. Dousti and A. Küpçü

– Redaction queries REDC(i, C): If i ≤ 0 or i ≥ �, the forger F returns ε.
Otherwise, F creates block B ← (C, V,W ), where V ← MaxV(V ), and W is
computed by querying the signature oracle on

(

C || V || Version(L[i + 1])
)

. It
then adds (i, B) to Hist, and returns B.

If the adversary stops but does not succeed in outputting (i, B) as required
in Experiment 2, the forger F outputs ⊥ and halts. Otherwise, parse B

def=
(C, V,W ). Since B is verified, W is a valid signature on m ← (C || V || Vi+1),
where Vi+1

def= Version(L[i + 1]). Subsequently, F outputs (m,W ) as a forgery.
To show that the forgery is new, we must prove that W was never returned

by the signing oracle in response to query m. Since (i, B) /∈ Hist, we consider
the two remaining possibilities:

– (i′, B) ∈ Hist for some i′ = i: Impossible because Version(L[i + 1]), which
constitutes a part of m, is unique due to the uniqueness of version numbers
in our solution. Therefore, no other position i′ may correspond to the same
m.

– (i, B′) ∈ Hist for some B′ = B, where B can be efficiently computed from
B′ def= (C ′, V ′,W ′), and W ′ is valid on m: For this to happen, it must be the
case that B and B′ are identical except in their witnesses. Then, both W
and W ′ are valid signatures on m. This constitutes a strong forgery on the
signature scheme, and F can output (m,W ) as a valid forgery.

We conclude that the success probability of F in producing a valid forgery
is the same as the success probability of A in producing a valid redaction. �	

7 Conclusion and Future Work

In this paper, we discussed two settings for redactable blockchains: The moder-
ated setting, where redactions are handled by administrators, and the unmod-
erated setting, where redactions are voted on. Four novel attacks were discussed
against previous constructs in both settings. We argued the attacks are the result
of the lack of a definitional framework for redactable blockchains. We suggested
the first attempt at such a framework, and explained our design decisions. A
simple constructs based on signature schemes was proposed, and proven to be
correct and secure.

The simple definitional framework of Sect. 5 can be extended in many ways,
some of which are explored below.

Privacy. A desirable property is to make it impossible to show that a block was
once in the ledger. For instance, consider Construct 1, where a redacted block
B contains a signature on itself and the next block. Assume B is redacted to
B′. While B no longer belongs to the ledger, anyone can verify its witness and
conclude that it once belonged to the ledger, potentially violating users’ privacy.

Distributed Administration. Currently, the model supports a single adminis-
trator. As in [1], one can conceive of a model where the key pair of the blockchain
is jointly generated by several administrators, where each administrator receives
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a share of the private key. Redactions are applied by running a multiparty com-
putation between the administrators. For instance, in our construct, a threshold
signature can be used. An idea (novel in the context of redactable blockchains)
is to allow the set of administrators to grow or shrink over time. The policies
governing joining and leaving an administrator, as well as the redistribution of
private key shares, are of particular interest.

Accountability. It might be beneficial to hold administrators accountable for
redactions. That is, when a block is last redacted, how many times has it been
redacted, and which subset of administrators approved the redaction (in the case
of distributed administration).

Supporting Block Removals and Insertions. Currently, our model only
supports block modifications. Ateniese et al. [1] show how block removals can
be supported, by modifying the block before the one being removed. Removing
blocks is beneficial in that it can shrink the ledger. It is also possible to add sup-
port block insertions. We extended our definitional framework to support both
operations, and constructed a blockchain satisfying the corresponding security
requirements. It will appear in the full version of this paper.

Multiparty Setting. In our model, a single adversary plays a game against
a challenger. We think the model is elegant in its simplicity, which allowed us
to find various attacks against [1,7,10] (as well as Construct 2 presented in
Appendix A). It also idealizes modifications to the ledger by regulating writes
through the challenger, effectively separating redactability from other proper-
ties of a blockchain. Furthermore, the model does not care about the underly-
ing consensus mechanism, while prior models (for the immutable blockchains)
are bound to the specific consensus protocol such as proof-of-work [9,17]. We
stipulate that our model is good for quickly proofread a particular moderated
redactable blockchain, but it is only a first step. Since there is no composition
theorem for the game-based security proofs, one cannot simply replace the ideal
functionality in the hybrid model with a real one, and hope the proof carries
over to the real model. Furthermore, the simplified model might be unable to
capture some attacks in the real world. For these reasons, we propose extending
the ideas in this paper to the multiparty setting, where various parties are join-
ing and leaving the network (as well as an adversary who can corrupt a minority
of them).

Acknowledgment. The second author acknowledges support from TÜBİTAK, the
Scientific and Technological Research Council of Turkey, under project number
119E088.

A An Incorrect and Insecure Construct

In this appendix, we present a construct that is both incorrect and insecure,
but helps in understanding the way our definitional framework works. Normal
blocks do not include any information about each other (such as the hash of
the previous block). Such information, necessary for the secure operation of an
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ordinary blockchain, is abstracted via the ideal functionality in the model: The
adversary is not allowed to make any direct writes to the ledger, and therefore
the challenger can keep the ledger blocks in their total order. The redactability
is achieved with a signature scheme strongly unforgeable under adaptive chosen-
message attack (sUF-CMA), denoted (GenSig,Sign,VerifySig): The challenger
installs a redacted block only if its witness holds the signature of itself and the
next block. The reversion attack (Sect. 4) is prevented by introducing version
numbers in the block structure: Initially, each block carries version 1. Upon each
redaction, the version number is incremented. The verification function of the
blockchain checks whether the version of a redacted block is strictly greater than
the version of the block being replaced. This way, the adversary cannot reinstall
a previously valid block again.

Construction 2 (Insecure and Incorrect). The redactable blockchain
RBCbad is defined as follows. The block structure is B

def= (C, V,W ), where each
block contains content C, version V, and witness W .

– Gen(1λ) simply calls the generator for the underlying signature scheme to
obtain the public and private keys: (pk, sk) ← GenSig(1λ). It sets L ← [B0],
where B0 ← (ε, 1, ε).

– Create(pk,L, C) returns B ← (C, 1, ε).
– Verify(pk,L, i, B) returns 1 if and only if all of the following conditions hold:

• B has correct structure, and i ≤ � + 1 is a positive integer.
• Φ(V , i, V ) returns 1: This happens if and only if (i = � + 1) ∧ (V = 1)
(the block is being appended and has version 1), or (i ≤ �) ∧ (V [i] < V )
(an existing block is being redacted, and the new version is greater than
the existing one to foil reversion attacks).
• Ψ(pk,L∗) returns 1: This happens if and only if for every pair (B,B′)
of subsequent blocks in L∗, if Version(B) > 1 (i.e., if B is redacted), then

VerifySig(pk,BW || B′,W ) = 1 , (7)

where W
def= Witness(B), and BW def= (C, V ) (i.e., block B except W ). Put

simply, this means that W is a valid signature on C || V || C ′ || V ′ || W ′.
– Redact(sk,L, i, C): Creates B ← (C, V,W ) using content C, where V ←

Version(L[i]) + 1 and W is a signature on the current block except W itself
(denoted BW ), as well as the next block L[i + 1]:

W ← Sign(sk,BW || L[i + 1]).

Notice that incrementing the version number, as well as the computation of
witness by signing the current and next blocks, are consistent with the require-
ments of Verify.

– Install(pk,L, i, B): Works exactly as specified in Definition 3.
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Correctness Issues. A series of valid actions can put the ledger in a state that
block creation for appending is no longer possible, violating the first requirement
of Definition 4. For instance, let C1, C ′

1 and C2 be any valid contents, and
consider the following actions, following (pk, sk,L) ← Gen(1λ):

B1 ← Create(pk,L, C1), Install(pk,L, 1, B1)
B′

1 ← Redact(sk,L, 1, C ′
1), Install(pk,L, 1, B′

1)
B2 ← Create(pk,L, C2), Install(pk,L, 2, B2)

The first line creates and appends a block, the second line redacts it, and the
third line tries to append a new block. The last Install fails as it calls Verify,
which in turn calls Ψ: Since the version of B′

1 is greater than 1, Ψ requires it
to hold a signature containing information about the next block, as per Eq. (7),
which is not the case.

The underlying reason is that, in this particular construct, it is meaningless
for the last block of the ledger to be redacted, as there is no next block to sign.
It is possible not to increase version number for redacting the last block, or
disallow such redaction by requiring i = � in designing Redact.

One can violate the second requirement of Definition 4 as well, by following a
series of valid actions that put the ledger in a state where redaction of some blocks
are impossible. Let L ← [B0, B1, B2, B3] be a ledger constructed by appending
three blocks, and C ′

1 and C ′
2 be valid contents. Consider the following actions:

B′
1 ← Redact(sk,L, 1, C ′

1), Install(pk,L, 1, B′
1)

B′
2 ← Redact(sk,L, 1, C ′

2), Install(pk,L, 1, B′
2)

Again, the last install fails: For the pair (B′
1, B

′
2), algorithm Ψ requires B′

1 to
hold a signature on B′W

1 ||B′
2 (see Eq. (7)). However, B′

1 is redacted prior to B′
2:

As a result, B′
1 holds a signature on BW

1 ||B2, which becomes invalid after B2 is
redacted. Consequently, the second requirement of Definition 4 is violated.

The underlying reason is the indifference in the verification algorithms as to
which block is newer. The next section shows how using unique versions can
resolve this issue.

Security Issues. On the surface, it seems that the adversary cannot succeed
in Experiment 2. An informal (and false) argument is as follows: We use an
adversary who succeeds in the game as a subroutine, to forge a valid signature
on an arbitrary message. The forger simulates the challenger. It gives the public
key of the signature scheme to the adversary, and answers all redaction queries
by using the signing oracle. When the adversary outputs a successful redaction
(i, B), the witness W is a valid signature on the message m ← BW || L[i + 1].
The forger outputs (m,W ) as a valid message-signature pair.

The fallacy in the above argument is that the forger must output a new pair
(m,W ), as required by sUF-CMA signature forgery. However, the informal proof
does not show that this pair is new. In fact, as is explained below, it is easy for
an adversary to succeed in the game without forging any signature.
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Adversary A proceeds as follows: It creates a block B ← ("original", 1, ε),
and appends it three times by calling the INST interface of the challenger on
queries (1, B), (2, B) and (3, B), respectively. At this point, L = [B0, B,B,B].

Next, A queries the REDC interface of the challenger on (1, "modified"), and
receives B′ ← ("modified", 2,W ), where W is a signature on m ← B′W || B,
where B′W is "modified" || 2.

While the redaction was requested for position 1, the adversary uses position
2: She outputs (2, B′), and halts.

At this point, Hist = {(1, B′)}, and therefore (2, B′) is new. Furthermore,
B′ is a valid redaction for position 2, since L[3] = L[2] = B. We conclude that
the adversary breaks the security by outputting a successful reduction, without
forging a new signature. The underlying reason for this attack is duplicate blocks
in the ledger. Construct 1 in Sect. 6 resolved this issue by incorporating unique
versioning.
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Abstract. Most PoW blockchain protocols operate with a simple mech-
anism whereby a threshold is set for each block and miners generate
block hashes until one of those values falls below the threshold. Although
largely effective, this mechanism produces blocks at a highly variable rate
and also leaves a blockchain susceptible to chain death, i.e. abandonment
in the event that the threshold is set too high to attract any miners. A
recent innovation called real-time block rate targeting, or RTT, fixes
these problems by reducing the target throughout the mining interval.
RTT exhibits much less variable block times and even features the ability
to fully adjust the target after each block. However, as we show in this
paper, RTT also suffers from a critical vulnerability whereby miners devi-
ate from the protocol to increase their profits. We introduce the Radium
protocol, which mitigates this vulnerability in RTT while retaining lower
variance block times, responsive target adjustment, and lowering the risk
of chain death. We also show that Radium’s susceptibility to the dou-
blespend attack and orphaned blocks remains similar to Bitcoin.

Keywords: Proof-of-work · Dynamic difficulty · Block time

1 Introduction

To date, the most popular consensus mechanism for public blockchains is proof-
of-work (PoW) [7]. Under PoW, a blockchain (or simply chain) is secured by
compelling participants to provide evidence of wasted computation or work.
Every unit of work boosts a participant’s odds of deciding the content of the
next block. If any one individual or group controls the majority of work, then
they are capable of deciding the majority of blocks, and it is possible for them to
rewrite an arbitrarily long portion of the chain and censor future transactions.
Indeed, even if one mining group produces only a significant fraction of the work,
then it is still possible for them to rewrite short portions of the blockchain with
relatively high probability. This allows for the group to reverse transactions, an
activity known as doublespending [7,11]. For this reason, blockchain security is
intimately tied to the aggregate work required to produce a block. The most
popular PoW blockchains have attracted a large number of participants, who
collectively expend a great deal of work. Maintaining a consistent level of work
is critical both to maintaining attack protection as well as a stable block time.
c© Springer Nature Switzerland AG 2020
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A specific kind of work is required for each blockchain, which we call its
PoW algorithm. Typically, specialized hardware called an application specific
integrated circuit (ASIC) is required for producing work relevant to a given PoW
algorithm. As a result, it is common for multiple Blockchains to occupy the same
PoW market where they compete for security. In order to attract participants to
expend work, blockchains offer a subsidy for blocks produced. Recent research
(Kwon et al. [5] and Bissias et al. [3]) has shown that the relative fiat exchange
value of these subsidies, across blockchains in the same market, determines the
distribution of work. The end result is that participants will frequently shift
their work from one chain to another as the value of rewards fluctuate. These
fluctuations can be devastating to minority work chains that can experience huge
changes in aggregate work in relative terms. In the worst case, a drastic drop in
the fiat exchange value for a minority work chain can remove all incentive for
miners to allocate it any work. This causes what is called a chain death spiral [9].

In this paper, we analyze a recently introduced protocol called real-time block
rate targeting, or RTT [4], whose intended purpose is improve responsiveness to
changes in hash rate. We show that RTT currently suffers from a vulnerability
due to misaligned miner incentives. We then describe a modification to the RTT
protocol, which we call Radium, which fixes this problem. Radium retains the
benefits of RTT including lower variance block times, a more responsive difficulty
adjustment algorithm (DAA), and prevention of chain death. Not previously
studied in the RTT paper, we also show that Radium maintains orphan rate
and doublespend attack prevention similar to Bitcoin.

2 Background and Related Work

Under PoW, miners repeatedly perturb and hash the block header with fre-
quency h, which is called the hash rate. Miners hope to hash a value that falls
below a protocol-defined target G. When such a value is found, the block is added
to the blockchain and the miner receives coins as a reward. Thus coin issuance
is tied to block discovery, and so the protocol must adjust G periodically in
order to maintain a steady rate of inflation. Closely related to the target and
hash rate is difficulty D, which was shown by Ozisik et al. [8] to be equivalent
to the expected number of hashes required to mine a single block whose hash
falls below G. The authors further showed that D = S/G where S is the size of
the hash space. Accordingly, one can equivalently adjust the target by creating
an inverse change in difficulty. Indeed, all of the most popular PoW blockchains
employ some form of difficulty adjustment algorithm or DAA.

2.1 Difficulty Adjustment

Currently, all DAAs that we are aware of implement a feedback controller, which
first forms a statistical estimate of recent hash rates by observing previous block
times and then adjusts the difficulty so as to achieve a target block time T .
When the difficulty is tuned so that the target block time is achieved, we say
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that the DAA is at rest. For example, every 2016 blocks, Bitcoin (BTC) scales
the current difficulty according to

D′ = DT /T , (1)

where T is the average actual block time over the previous 2016 blocks. This
simple DAA works fairly well for BTC primarily because the blockchain enjoys
more than 90% of the total available SHA256 hash rate. However, for blockchains
with a small fraction of the available hash rate, such as Bitcoin Cash (BCH),
simple feedback controllers is inadequate [12].

2.2 Conventional PoW Mining

The distribution of block inter-arrival time under conventional PoW is Expon(λ)
where 1

λ = T , the target block time (see Rizun [10] and Ozisik et al. [8]). And,
as described above,

D = S/G, (2)

where D is the expected number of hashes required to mine a block, G is the
target, and S is the size of the hash space. For fixed hash rate h we have by
definition

H = hE[T ], (3)

where T and H are the actual block time and hashes per block, respectively. In
particular, this implies that

D = hT , (4)

when the DAA is at rest.

2.3 RTT Mining

Stone [12] was perhaps the first to suggest the notion of increasing the mining
target during a single block interval in order to compensate for statistical tail
events or a sudden loss of hash rate. Recently, Harding [4] introduced a new PoW
consensus mechanism called RTT that leverages this idea. When mining a given
block, instead of using a fixed target G, RTT varies the target as a function of
the time since the last block. This small change is significant because it alters
the statistics of the mining process.

Define the instantaneous mining rate, or expected blocks mined per second,
for RTT as

λ(t) = atk−1, (5)

with security constant k and tuning constant a. Variable t represents the elapsed
time since the last block. Let T be a random variable corresponding to the block
inter-arrival time. Harding shows that, given instantaneous mining rate λ(t),

T ∼ Weibull(k, a), (6)
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where T has density function

f(t; k, a) = atk−1e−atk/k, (7)

distribution function
F (t; k, a) = 1 − e−atk/k, (8)

and expected value

E[T ] =
(

k

a

)1/k

Γ

(
1 +

1
k

)
. (9)

From Eq. 9, it is evident that, when targeting a block in expected time T , the
constant a should be defined as

a = k

[
Γ

(
1 + 1

k

)
T

]k

(10)

RTT is designed to maintain compatibility with Bitcoin, which requires RTT
to maintain conventional mining targets on the blockchain: Gi for each block i.
This has the primary benefit of maintaining blockchain continuity before and
after upgrade and the ancillary benefit of allowing for conventional difficulty
adjustment. From conventional target Gi and instantaneous mining rate λi(t),
RTT requires a subtarget gn(t) such that the expected mining time for RTT
under gn(t) is equal to target mining time T . To mine block i, miners must find
a block at some elapsed time t whose hash falls below gi(t).

Under conventional PoW, Gi implies an instantaneous block mining rate of

λ = 1/T (11)

blocks per second. Accordingly, the sub-target gi(t) is defined as

gi(t) = Gi
λi(t)

λ
, (12)

which can be interpreted as normalizing Gn according to the variable block
production rate of RTT.

3 Future Mining Attack on RTT

In this section we describe a future mining attack on RTT. Miner A, having
fraction q of the total hash rate, chooses a future time t∗ and allocates all of
his hash rate to finding a block that meets sub-target g(t∗) until t∗ has expired.
There are three mutually exclusive outcomes: (i) A mines a block prior to t∗;
(ii) the remaining miners M , having fraction 1−q of the hash rate, mine a block
prior t∗; or (iii) a block is first mined after t∗. For outcome (iii), we assume
that A will revert to protocol-compliant mining, i.e. A will mine to actual time
t provided that t ≥ t∗. In this section we identify a value of t∗ such that the
probability of A mining a block before M exceeds q, which is his fair share.
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3.1 Attacker Expected Block Time

Let TA and TM denote statistics corresponding to the time required for A and
M , respectively, to mine their next blocks. And let p(t∗) denote the probability
that A mines a block before M when his future mining time is t∗. Note that

p(t∗) ≥ P (TA < t∗, TM > t∗) = P (TA < t∗)P (TM > t∗). (13)

Because A mines with a fixed target g(t∗) for each block, TA is exponentially
distributed (as described in Sect. 2).

It is apparent from Eqs. 2–4 that if D is initially tuned for hash rate h and
target G, but all miners instead mine according to the sub-target at time t∗,
then they would expect a block to arrive in time

E[T ] =
S

hg(t∗)
=

G

g(t∗)
S

hG
=

G

g(t∗)
T . (14)

For miner A, the expected block time is scaled by his fraction of the total
hash rate q. Therefore, the expected block time for A is given by

E[TA] =
S

qhg(t∗)
=

G

qg(t∗)
S

hG
=

G

qg(t∗)
T . (15)

3.2 Compliant Expected Block Time

Fig. 1. Probability of successful future mining attack for various attacker shares of
total hash rate (each curve) and future mining times (independent axis). Solid curves
indicate theoretical probabilities and dashed curves indicate the results of a mining
simulation with 500 trials per point, per curve.

From the discussion in Sect. 2.3, it is clear that TM has Weibull distribution
since miners M are assumed to be compliant. But they are missing fraction q of
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the hash rate, which we must account for in determining their expected mining
time. It is difficult to reason directly about how Weibull mining time changes
with a loss of hash rate, but straightforward to reason about the effect of such
a change under conventional PoW.

Let T ′
M be a random variable representing the mining time for miners M

having fraction p = 1 − q of the total hash rate under the assumption that they
use conventional PoW, i.e. mining to fixed target G for each block. Reasoning
similarly to Eq. 15, we have

E[T ′
M ] =

S

phG
=

1
p

S

hG
=

T
p

. (16)

Target G is a conventional PoW target, so we reason that mining in RTT with
fraction p of the total hash rate is equivalent to all miners mining against initial
target pG. The sub-target is related to G by g(t) = Gλ(t)/λ. This implies that
a sub-target adjusted for hash rate p would be

gM (t) = pG
λ(t)
λ

= G
pλ(t)

λ
= G

patk−1

λ
= G

λM (t)
λ

, (17)

where λM (t) = patk−1. Thus, according to Eqs. 5 and 6,

TM ∼ Weibull(k, pa). (18)

Finally, we can produce the bound for p(t∗) in Eq. 13 by multiplying the CDF
for TA, evaluated at t∗ by the inverse-CDF for TM , evaluated at t∗.

Figure 1 shows the associated probability of mining a block when future
mining for many possible future times t∗. Each curve corresponds to a different
fraction of the total hash rate for A. Solid lines are those predicted by the bound
in Eq. 13 and dashed lines are the results of a mining simulation. The plot shows
that for each hash rate, there exists a regime of values for t∗ where the probability
of mining a block is greater than the fair probability (equivalent to A’s share of
the hash rate).

4 Defacto Future Mining in RTT

In Sect. 3 we showed that the RTT protocol is vulnerable to future mining. This
attack arises because miners are incentivized to mine to a fixed target in the
future rather than adhere to the dynamic target established by the protocol.
Therefore it seems that future mining is inevitable in RTT. Yet it seems possible
that RTT could still be fair for all miners if they all future mine so as to maximize
their individual profit. In this section, we show that there is a unique Nash
equilibrium future mining time τ , depending on the chain’s profitability relative
to other chains, to which all miners will mine. Once this time expires, the Nash
equilibrium behavior is to mine according to the compliant RTT sub-target.
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4.1 Block Preemption

Future mining involves mining to a target g(t∗) corresponding to a future time
t∗. Because it is a probabilistic process, the miner will fail to mine a block in
time t∗ with some frequency. At this point, he must choose a new time t∗|t, given
that t seconds have passed. This process continues until a block is mined.

There exists a risk/reward tradeoff in future mining related to the fact that
a miner cannot release a block mined at a future time until that time arrives.
Thus, if miner M mines to future time t∗, then the remaining miners M− can
mine to time t∗ − ε, ε > 0, and all blocks mined by M can be preempted by any
block mined by M− prior to t∗. We call this process block preemption.

4.2 Game Theoretical Results

Assumptions. In our game theoretical model, we assume all miners follow a
strategy where they will future mine whenever it is possible to do so without
being preempted.

Miners typically have a choice where they direct their hash rate. Let ρ denote
the (fixed) prevailing reward rate, which is the amount of fiat that can be gained
per hash when miners mine on a competing blockchain. Furthermore, let R(t∗)
denote the reward rate when future mining to time t∗ on the RTT chain. We
assume that a rational miner will choose to direct all of his hash rate to a
competing chain whenever R(t∗) < ρ. Thus, we imagine that miners choose t∗

so as to maximize R(t∗). We begin with the following result showing that the
Nash equilibrium for t∗ as a function of ρ.

Theorem 1. There exists a unique Nash equilibrium for initial future mining
time t∗ = τ , where R(τ) = ρ.

Proof. Consider the best response t∗(M) for miner M given a known choice
for t∗(M−) > τ for the remaining miners M−. By choosing t∗(M) = t(M−)∗ −
ε, for an infinitesimally small ε > 0, M can be certain that his blocks will
preempt those of M− (ignoring block propagation delay). Moreover, M mines
at effectively the same difficulty as M− for each t(M)∗. Therefore, the expected
profit per hash for M is strictly superior to that of M−. Now consider the best
response for M when M− chooses t(M−)∗ = τ . If M chooses to mine to time
τ −ε, then he will be mining at a loss relative to prevailing reward rate ρ. On the
other hand, if M mines to future time τ + ε, then his blocks will be preempted
by any blocks mined by M−. Therefore, the best response for M is also to future
mine to time τ . It follows that τ is a Nash equilibrium for t∗. ��

Having established an equilibrium for the first future mining time, we turn
now to subsequent times, which will be targeted in the event that no block is
found by time t∗ = τ . Somewhat surprisingly, the Nash equilibrium for t∗|t turns
out to be equal to the current time t itself.
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Theorem 2. For any t > τ , t∗|t = t is a unique Nash equilibrium.

Proof. Consider the best response for miner M given that M− is mining to
time t∗(M−)|t = t, when t > τ . M certainly wishes to mine on the RTT chain
since R(t) > ρ for t > τ . But because t is not in the future, it is not possible for
M to mine to a slightly earlier time. And if M was to mine to a future time t+ε,
for ε > 0, then it would be possible for his blocks to be preempted. Therefore,
the best response for M is to also mine to t∗(M)|t = t. It follows that t∗|t = t is
a Nash equilibrium. ��

Together, Theorems 1 and 2 show that all RTT miners will future mine
to time τ until the actual time t exceeds τ at which point they will revert to
(compliant) mining against target g(t). There are three major issues with this
behavior. First, at time τ , there is a significant chance that multiple miners
will have already future mined a block, creating a block race and, inevitably,
a higher block orphan rate. Second, suppose that on average fraction α of the
total hash rate is devoted by all miners to future mining to τ , with the remaining
1 − α being devoted to mining via dynamic target after τ . By future mining to
τ − ε, attacker A can preempt any block future mined by other miners. So at
arbitrarily small cost, A eliminates orphan risk for fraction α of his blocks. This
makes both censoring and doublespending transactions easier for the attacker. A
third drawback to defacto future mining is that target G no longer quantifies the
actual security applied to the chain. Under conventional PoW, Eq. 2 can be used
to determine D, which is equivalent to the expected number of hashes performed
per block, a proxy for blockchain security. However, given defacto future mining
on RTT, the target overshoots the actual hashes per block because miners never
mine to a target greater than g(τ) < G.

5 Radium Protocol

In this section we present the Radium protocol, which is an extension of RTT.
The primary difference is that, in Radium, block reward is also scaled with inter-
block time. This causes the reward per hash to remain uniform for a given block
(much like conventional PoW), eliminating the profitability of future mining.

5.1 Mining

Radium targets a 600 s average block time like bitcoin, i.e. T = 600. Like RTT,
the mining target at each second t after the last block is given by sub-target
gk(t) where k = 2. For a given target G, and combining Eqs. 10–12, we have

gk(t) = G
λ(t)
λ

= G
atk−1

1/T = GT tk−1k

[
Γ (1 + 1

k )
T

]k

= kGΓ

(
1 +

1
k

)k
tk−1

T k−1
.

(19)



382 G. Bissias

Radium can use any PoW algorithm, for example SHA256. Mined blocks are
rapidly propagated header-first to all other miners. If the timestamp of the block
is drastically different than the time on the recipient’s machine, then it is dis-
carded. In practice the time difference can be as little as the maximum expected
header propagation delay if miners use NTP to coordinate clocks. The use of
NTP in the Bitcoin network has been discussed as a possibility in the past [1].
Note that NTP synchronized clocks are to aid compliant miners. Radium does
not rely on dishonest miners reporting accurate time.

5.2 Rewards

Let d(t) = S/gk(t) be the sub-difficulty, where S is the size of the hash space.
And define reward function r(t) = C d(t)

d(T ) for a block mined at elapsed time t,
where C is nominal reward including conventional block subsidy and fees. By
construction, r(t) will pay out exactly C coins when a block is mined in target
time, T seconds. And, by manipulating the block subsidy, it will pay out more
or less than that if the block is mined, respectively, sooner or later. The appeal
of using r(t) is that the expected reward-per-hash for mining at any given sub-
target gk(t∗) is constant: C

d(T ) , which disincentivizes future mining.
One of the features of the RTT protocol is that the risk of entering a chain

death spiral is eliminated because the difficulty will eventually approach zero as
time progresses. The same is true for Radium, except that the reward payout
also approaches zero. Thus, in relative terms, the reward per hash never increases
in Radium. However, chain death remains highly unlikely because the difficulty
will eventually drop so that a block can be mined quickly on a single CPU.

5.3 Difficulty Adjustment

Radium uses feedback control to adjust its difficulty in much the same way as
conventional PoW protocols. In particular, it adopts the same mechanism used
by RTT, which we describe and refine presently.

Mining amounts to successive draws of random variable T (representing block
time) from a given distribution, while difficulty adjustment involves estimating
the current scale of the block time distribution from T and moving that scale
closer to the ideal. Therefore, difficulty adjustment is essentially parameter esti-
mation from sample T . Rather than directly estimating the scale of Weibull
distributed T , Harding [4] opts to transform T to an exponentially distributed
random variable T ′ and estimate its scale instead. Because this transformation
amplifies distortions due to hash rate fluctuations, he finds that a single sample
is often sufficient to accurately update the difficulty.

Theorem 3. A block with inter-arrival time T mined under the Radium pro-
tocol with target G would have inter-arrival time T ′ = aTkT

k if mined under
conventional PoW with target G.
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Fig. 2. Median block times for Bitcoin (red) and Radium (blue) across 1000 trials of a
30-block simulation (5th and 95th percentiles shown as dashed lines). After each block
in the simulation, the difficulty is adjusted according to Eq. 1 for Bitcoin and Eq. 23 for
Radium, with T being the mean of the previous two block times. (Color figure online)

Proof. Let T be a random variable drawn from Weibull(k, a) and having CDF
F (t; k, a) as defined in Eq. 8. The probability integral transform (PIT) dictates
that random variable U = F (T ; k, a) has distribution Uniform(0, 1). Now define
H(x;λ) = 1− e−λx, the CDF of the distribution Expon(λ), where λ is defined in
Eq. 11. We recover T ′ ∼ Expon(λ) by applying the PIT in reverse using H−1:

T ′ = H−1(U ;λ)
= − ln(1−U)

λ

= − ln(1−F (T ;k,a))
λ

= − ln(1−1−eaTk/k)
λ

= aTkT
k .

(20)

��

Suppose that miners currently operate with hash rate h and that for block
i, it happens that T ′

i �= T . Being exponential, the actual inter-arrival time for
block i, T ′

i , is an unbiased estimator of its expected value, i.e. T ′
i ≈ E[T ′

i ] = 1
λi

.
Now suppose that T ′

i �= T . We seek to adjust Gi+1 so that T ′
i+1 = T . Note that,

because Di represents the expected number of hashes required to mine a block,
T ′

i ≈ 1/λi = Di/h. And, according to Eqs. 11 and 4,

1
λi

= T =
Di

h
=

S

Gih
(21)
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when the DAA is at rest, which implies that it is necessary to revise Gi+1 so
that T = S/(Gi+1h). We have,

T ′
i ≈ Di

h

⇒ atk

k T ≈ Di

h .
⇒ T ≈ k

atk
Di

h

= Di

(atk/k)h
.

(22)

It follows that an update for the difficulty, based on the mean of the previous n
block inter-arrival times T , is given by

Di+1 =
k

aT
k
Di. (23)

Table 1. Block time statistics for simulations of both Bitcoin and Radium when the
difficulty is adjusted every block based on the previous two block times. Statistics of
the distribution Expon(T ), representing the best possible variability for Bitcoin, are
provided for comparison. Each statistic reported is itself the result of the median over
the 30-block simulation, with 1000 trials performed per block.

Statistic 5th percentile Median 95th percentile

Two-sample Bitcoin 18 s 410 s 4994 s
Bitcoin Ideal 31 s 416 s 1797 s
Two-sample Radium 129 s 599 s 2114 s

5.4 Block Time Simulation

We ran a mining simulation in both Bitcoin and Radium that updated the diffi-
culty in each according to Eq. 1 and Eq. 23, respectively, where T was the mean
of the last two block times. Each trial of the simulation ran for 30 consecutive
blocks for 1000 trials total. On a log scale, Fig. 2 shows the median and 5th
and 95th percentiles for Bitcoin and Radium. Not surprisingly, Bitcoin block
times (red) show large variability. However, Radium (blue) shows much better
concentration of block times around the target of 600 s.

Table 1 quantifies the median (across the 30 blocks) of medians and 5th
and 95th percentiles (each across the 1000 trials). It includes the same statistics
for distribution Expon(T ), which corresponds to the best possible variability for
Bitcoin, when the ideal difficulty is known. The table shows that the median
block time for Radium is much closer to the target time of 600 s than either
two-sample Bitcoin or the ideal. Also, the 5th percentile for two-sample Radium
avoids producing extremely early blocks. Finally, the 95th percentile of block
times for Radium stays within 18% of the 95th percentile of Bitcoin Ideal. In
contrast, two-sample Bitcoin adjustment is almost 3 times the ideal. Overall, we
find that two-sample Radium difficulty adjustment performs nearly as well as the
best possible Bitcoin difficulty adjustment algorithm.
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5.5 Reduction in Block Time Variance

A major feature of RTT is that its Weibull distributed block times have lower
variance than exponentially distributed block times under conventional PoW.
This affords RTT, and Radium by proxy, with more reliable block inter-arrival
times. In this section, we calculate the variances of the Radium block time and
compare it to that of the Bitcoin protocol.

We compare the variance in block time for Radium relative to the Bitcoin
protocol when the expected block times are both equal to T . To that end, let
X and Yk be random variables representing the block times for Bitcoin and
Radium (for given k), respectively. Section 2.2 explains that X is exponentially
distributed with mean T = 1/λ. It is well known that the variance of the expo-
nential distribution is equal to the square of its mean, i.e. V arT [X] = T 2. On the
other hand, Sect. 2.3 explained that block times have distribution Weibull(k, a),
with a is defined in Eq. 10. For the mean of the Weibull distribution we have
E[Yk] = γΓ (1 + 1/k), where

γ =
(

k

a

)1/k

=
T

Γ (1 + 1/k)
. (24)

Note that, by construction, E[Yk] = T . Next, the variance of Y is given by

V ar[Yk] = γ2
[
Γ (1 + 2/k) − Γ (1 + 1/k)2

]
. (25)

Thus, when blocks are expected every T seconds, the variance is

V ar[Yk] =
(

T
Γ (1 + 1/k)

)2 [
Γ (1 + 2/k) − Γ (1 + 1/k)2

]
. (26)

Finally, the improvement in variance when adopting Radium over Bitcoin is
equal to

V ar[Yk]
V ar[X]

=
(

1
Γ (1 + 1/k)

)2 [
Γ (1 + 2/k) − Γ (1 + 1/k)2

]
=

Γ (1 + 2/k)
Γ (1 + 1/k)2

− 1.

(27)
In particular, the improvement for k = 2 becomes

V ar[Y2]
V ar[X]

=
Γ (2)

Γ (3/2)2
− 1 =

4
π

− 1 ≈ 0.27. (28)

5.6 Orphan Rate

Perhaps the only drawback of more reliable block times is an increase in the rate
that orphan blocks are produced. An orphan occurs when two viable blocks are
produced at roughly the same time. Miners will ultimately settle on one to form
the tip of the blockchain, while the other will be discarded.
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Fortunately, the orphan rate observed under the Radium protocol is not
expected to be much worse than the orphan rate observed for Bitcoin. To demon-
strate this, we ran a mining simulation of both the Bitcoin and Radium protocols
for more than 850,000 blocks each. Any time two blocks were generated within
the same three second time period, we incremented the orphan counter. A three
second interval was chosen because it represents a realistic delay in today’s Bit-
coin network [6]. Our simulation showed that Bitcoin is expected to experience
orphans approximately 0.22% of the time while Radium is expected to experience
orphans about 0.36% of the time. Thus, Radium’s orphan rate is approximately
63% greater than that of Bitcoin; yet the absolute rate remains low.

6 Radium Security Analysis

In this section, we analyze various aspects of Radium protocol security. Our
primary focus is on incentivizing protocol compliance as well as mitigating the
effects of common attacks on PoW blockchains.

6.1 Reward Function Exploitation

A major concern with using dynamic reward function r(t) (defined in Sect. 5.2)
over a constant reward function is that a miner with a large amount of hash
rate might suddenly switch from one blockchain (say BTC) over to the Radium
chain and mine a block at a very high difficulty so as to gain excessive reward.
We call this behavior switch-mining. The following argument attempts to show
the conditions under which miners can and cannot profit in this fashion. We find
that when k ≤ 2, there exists no advantage to switch-mining between Radium
and another chain.

Suppose that for block 1, a miner from chain X suddenly increases the hash
rate on the Radium chain by multiple x > 1. Equation 18 shows that the resulting
block time distribution is Weibull (k, xa). Combining Eqs. 10 and 9 it follows
that the expected block time E[T1] will be

E[T1] = Γ (1 + 1/k)
(

k

xa

)1/k

= T x−1/k. (29)

Thus, the expected reward E[R1] amounts to

E[R1] = C
d(T x−1/k)

d(T )
= C

g(T )
g(T x−1/k)

= C
T k−1

(T x−1/k)k−1
= Cx(k−1)/k. (30)

Of course, the DAA will respond by adjusting the target so that the increased
hash rate yields a block in time T . Next, suppose that, for block 2, the miners
withdraw their hash rate. The affect of this withdrawal is inverse-symmetric to
the affect of the increase; it follows by substituting y = 1/x in the equations
above. We have E[T2] = T x1/k and E[R2] = Cx−(k−1)/k.
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Fig. 3. Expected reward per second for a network of miners who switch-mine between
Radium and another coin such as Bitcoin. Each curve corresponds to a different value
of k from Eq. 10. The dashed line indicates reward per second if miners do not switch.

Figure 3 shows the reward-per-second as a function of hash rate increase
multiples x for various values of k where C = 12.5. Because the attack takes
two blocks to carry out, we measure aggregate reward over both blocks. The
results are compared to baseline, where hash rate does not fluctuate. We can see
from the figure that it is indeed possible for miners to profit, per-unit-hash, for
values of k exceeding 2. However, when k = 1, miners actually lose profit, and
for k = 2, there is no change in profitability.

6.2 Doublespend Attack Susceptibility

Bissias and Levine [2] argue that high variance is at the core of two of the
most fundamental attacks on PoW blockchains: the doublespend and selfish
mining. Their Bobtail protocol demonstrates that a lower variance block time
can substantially mitigate both attacks. We can compare Radium’s improvement
in variance over Bitcoin (see Sect. 5.5) to that of Bobtail over Bitcoin.

Let Zj be a random variable representing the block time using Bobtail with
parameter j; i.e., there are j proofs per block. It has been shown [2] that the
improvement in variance relative to Bitcoin is given by

V ar[Zj ]
V ar[X]

=
8j + 4

6(j2 + j)
. (31)

Finally, we can determine the value of j for which Bobtail’s improvement in
variance is equivalent to RTT with k = 2 by solving

4
π

− 1 =
8j + 4

6(j2 + j)
. (32)
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Fig. 4. Probability (dependent axis) that an attacker, having fraction q of the total
hash rate (individual lines), succeeds in a doublespend attack when merchants impose
an embargo period (independent axis) of z blocks. The solid and dashed lines indi-
cate success probability in the Bitcoin and Radium protocols, respectively. Each point
represents the success frequency over 1000 trials.

Solving for j we have

j =
7π − 12 +

√
144 − 72π + 25π2

6(4 − π)
> 4. (33)

Yet despite the fact that the reduction in variance for Radium is roughly
equivalent to Bobtail with j = 4, it turns out that Radium has the same suscep-
tibility to doublespend attacks as does Bitcoin. Figure 4 shows the result of a
mining simulator that we ran for both Bitcoin (solid lines) and Radium (dashed
lines). Each curve represents a different attacker hash power, ranging from 10%
up to 40% of the total. Points along each curve correspond to the embargo period
imposed by the coin receiver, a merchant for example. For an embargo period
of length z, the merchant will not release goods purchased with a transaction
in block i until z additional blocks have been mined after it. The figure shows
that there are negligible differences between attacker success probability when
comparing Bitcoin to Radium.

The results of our simulation suggest that there might be something funda-
mental about the doublespend protection afforded by protocols that use just one
PoW sample per block. We formalize this conjecture below, but leave investiga-
tion to future work.

Conjecture 1. Mining a block under PoW amounts to sampling a sufficiently
low statistic from a known distribution. For example, in Bitcoin, the statistic is
a single exponential random variable. Let K be any mining statistic on a single
sample per block, i.e. a single random variable is sampled once. And assume that
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K is fair in the sense that a miner with fraction x of the hash rate receives fraction
x of the rewards in expectation. Then the doublespend protection offered by a
protocol using K is no better than that offered by a protocol using an exponential
random variable for its statistic.

7 Conclusion

We have identified and analyzed a critical vulnerability in the real-time block rate
targeting protocol (RTT). To mitigate this vulnerability, we introduced Radium,
a refinement of RTT. Like RTT, Radium offers less variable block times, a more
responsive DAA, and thwarts the chain death spiral that threatens minority
hash rate blockchains. We have also shown that Radium maintains Bitcoin’s
robustness to the doublespend attack as well as its low orphan rate.
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Abstract. The recent pandemic of novel coronavirus introduces a new
challenge to balancing social welfare, the economy, and privacy while
reducing contact among individuals. To reduce the reproduction rate
without spoiling our economy, we need good incentive mechanisms to
reduce the possibility of spreading the virus as well as good privacy
enhancing techniques. Unfortunately, some of the recent approaches in
contact tracing are not successful due to privacy concerns and a lack of
sufficient incentive mechanisms to guide behavior instead of simply track-
ing infections. In this paper, we provide a design using smart contracts as
an incentive mechanism with enhanced privacy of user location informa-
tion. We utilize encrypted data calculated from a set of network routing
information, and a plaintext equality test of a public key cryptosystem
to estimate the duration one is present at the same location. By staying
at the same location longer, a user can obtain greater rewards. We have
implemented a proof concept of this scheme to evaluate its efficiency. We
also discuss financial regulation and economic viewpoints.

Keywords: Smart contract · Blockchain · Incentive mechanism ·
Privacy protection

1 Introduction

1.1 Background

In the long history of computer science it has helped humans to make their lives
and society more predictable, inclusive, and collaborative. It automates a multi-
tude of business processes and communications, provides a high degree of future
analysis, and realizes dynamic, border-less, multi-lateral and permissionless com-
munications. These benefits provided by computer science dramatically enhance
the social nature of human. COVID-19, which presents a tremendous challenge
to our social nature, forces us to find new styles of human society. The good
news is we already maintain a combination of Internet technologies and strong
logistics; we are already holding online meetings and conducting everyday life
by using the Internet amid the COVID-19 pandemic. Though we know staying
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at home and social distancing are a strong measures to reduce the reproduction
rate of this disease, it is difficult to keep people following strict regulations with
the reality of powerful economic pressures to maintain traditional life.

An existing attempt to reduce the reproduction rate is “contact tracing”,
which utilizes GPS and Bluetooth interaction data of citizens and notifies users
of the system the possibility of contact with a person who is infected [6]. This
may reduce the reproduction rate only when the individuals adequately distance
themselves at home for enough time (e.g. 14 days). However, this idea has two
major problems. The first is privacy issue that some organization may obtain
the history of GPS data of a person. To solve this privacy concern, Apple and
Google implement a privacy enhancing technique [9]. But, this attempt raises a
debate on centralized solution versus decentralized solution to gather personal
data used for social welfare. The second problem is it does not provide much
incentive to use over the privacy concern. At the time of writing this paper, the
number of installs is much lower than expected. For example, the rate of partic-
ipation among citizens is about 30% in Singapore and 9% in Japan. A research
study claims that a minimum 60% of participation rate is needed to make this
technology effective to reduce the reproduction rate [8]. That is, unfortunately,
this trial is currently unsuccessful due to the lack of enough incentive mecha-
nisms. Because the nature of COVID-19 - low death rate, low incidence rate and
long incubation period - it is needed to implement some incentive mechanism to
staying at home or at the same place as long as possible, even for asymptomatic
persons. Stimulus check may heal the loss caused by staying at home for a brief
period, however, this does not incentivize individuals to stay at home for an
extension amount of time. From the above, we need a new mechanism which
can incentivize individuals staying at home as long as possible, while protecting
personal data against some centralized organization.

1.2 Related Works

Apple and Google provides a platform for contact tracing with utilizes GPS
data of smartphones [9]. Some country apply this platform to contact tracing
application, and the other group of countries try to implement its own similar
application like Tracetogether in Singapore [1] according to the nation’s privacy
policy. However, at the time of writing this paper, this direction has not been
successful. This policy and realized application don’t provide enough incentive to
citizens to use it. There are many debates on this type of application regarding
its governance model: centralized vs. decentralized [2,4,10]. There are many pros.
and cons. for both, and there exist many statements on this topic.

Originally, the mathematics of Bitcoin is a great example of creating incen-
tive mechanisms to maintain the public ledger. Likewise, smart contracts are also
a platform to provide incentive to maintain some system/ecosystem sustainable.
However, there is not so many research on the social sustainable incentive mecha-
nisms based on permissionless blockchain and smart contract. [12] is an example
to incentivize people to keep networked device secure to reduce the cost of cyber
insurance.
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1.3 Our Contribution

In this paper, we propose a scheme to provide rewards according to the time
staying at the same place. To estimate the duration of time that a given person
stays at the same location, we utilize a time-wise difference generated in part
by the common traceroute utility. This data is encrypted on blockchain by an
encryption scheme which permits plain-text equality tests. The data is recorded
over a public blockchain as a publicly verifiable time-stamped “IP fingerprint”.
This construction keeps the actual IP address of a device secret to decentralized
nodes, but anyone can calculate the duration of time the device keeps the same
physical location. We discuss potential attack scenarios to fake the result of
traceroute utility, and provide countermeasures. We also implemented the smart
contract scheme over Ethereum platform and shows the result of implementation.
We also discuss the security and privacy of our proposal, effectiveness of our
proposal from economic point of view, and analysis from regulation viewpoints.

2 Stakeholders and Goals of Proposed Scheme

We consider three kinds of stakeholders in this system:

User. These are the individuals participating in the system for their own benefit
and the benefit of the infection susceptible community. Users are those who
are being incentivized to stay home/work whenever possible and to avoid social
contact. Through passing time-wise location checks and engagement checks, each
user can earn reward tokens that are associated with their individual UUID
within the network and accessible from the mobile application. This process
acts to go beyond contract tracing of infected individuals and reduce contact
between individuals in the first place. We assume that users behave as follows:

– (Good) They are motivated to get rewards by staying home.
– (Bad) They want to get more reward than they are eligible.

Reward Organizations. These are the organizations that are offering rewards
for those individuals willing to take action to combat the spread of infections.
These organizations can be real-world organizations such as supermarkets, gas
stations, and other similar establishments. We assume that the reward organi-
zations have incentives as follows:

– (Good) Some retail stores, such as grocery stores, may want to offer discount
to rewarded customers because they can hedge the infection risk in their
stores.

– (Bad) They want to provide less reward due to their budget constraint.

Hosts. These are the organizations that operate host servers, run full node of
blockchain, and provide client application in this system. The hosts can be both
public and private entities and each function can be run by multiple organizations
such as health authority and Internet service provider (ISP). Incentives structure
is as below.
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– (Good) Public entity such as public health authorities or NPO would have
an incentive to run the hosts or provide financial supports to the hosts run
by private companies because this system could serve for social benefits by
preventing users from contracting the virus.

– (Bad) ISP offering home wifi service is considered a suitable operator of the
host servers. But the ISP can be disincentivized by the operating costs.

The goals of the proposed scheme are as follows:

– Correctness: If a user stays at the same location, an appropriate reward is
given to the user.

– Security: A user cannot obtain more reward than predefined amount by the
rule. A reward organization is not allowed to pay less than predefined amount.

– Good incentive mechanism: The amount of reward provides enough incen-
tive to a user to staying at the same location.

– Privacy: Any pair of location data and time for each user is kept secret.
– Decentralized governance: If the data and logic is controlled by a single

organization, the organization could be a single point of failure and locking-
in to the organization happens. This situation implies centralization of gov-
ernance and spoils check and balance mechanism among stakeholders.

3 Design of Smart Contract for Incentives

3.1 System Model

The primary components and stakeholders of the system are illustrated in Fig. 1.
The application component is an application installed on a user’s device Mi

which generates location proofs using their Wi-Fi connection information. Here,
a mobile phone’s local IP address is given by a home WiFi router Wj which has
both internal local IP address range and global IP address IPWj

. Wj transmits
them to the system endpoint. Our construction is influenced by the assumption

Fig. 1. System model of social distancing reward system
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that Mi and Wj for all i, j have a Trusted Execution Environment (TEE) [11]
to protect code and cryptographic keys loaded inside regarding to authenticity
of data input to blockchain1. The endpoint is a set of 1 to n host servers that
are responsible for user location checking and run full nodes in the blockchain
network. The blockchain component is used to store validated location proofs of
users and works together with smart contract to automate rewarding process.

3.2 Primary Processes

The proposed scheme consists of five key phases: register, check-engagement,
check-route, calculate rewards, and redemption. The register phase only runs
once per user who is participating in the system. The next two phases run in
continual loops after the user has registered. The payout phase can take place
at any interval and is event driven. Organizations who opt to take part in the
system will have the ability to receive tokens and are expected to exchange them
for some real life service, coupon, or reward.

Register: This phase consists of the process of initializing the user’s device to
take part in the system. The user will enroll themselves with the required
information such as email address and password.

Check engagement: This phase is to ensure the user has their personal device
with them and is not cheating by leaving the device at home or otherwise.

Check route: This phase is the application runs the custom traceroute con-
figuration several times to obtain IP routes between the user and appointed
host servers to estimate if the user stays at the same location across time.
The application will store data used in the checking process on blockchain.

Calculate rewards: This phase is using result from check route phase to cal-
culate rewards user should receive. Updated rewards balance of user will be
stored on blockchain.

Payout: This process is where the user can exchange their accumulated tokens
for real world coupons or prizes from the reward organizations.

3.3 Calculating Rewards - How to Provide Incentive

In order to adequately incentivize the behaviors that are known to be lower risk,
we need a way to measure compliance with the system’s goals. Most basically,
this can be thought of as a measurement of how stationary someone is, and since
one is unlikely to be able to spend a majority duration of their time at a location
they do not live nor work, a way to measure how much socially isolated distanced
behavior one is undertaking. There are several ways to calculate compliance with
the system based on user location records, however effectively all techniques will
be based around ideas of variability and the distribution of locations. We will
discuss two rewards calculation protocols in this section.

1 Usage of TEE at user device is not for operation of blockchain nodes.
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3.3.1 A Scheme Using Shannon Entropy
A preferred calculation methodology makes use of Shannon Entropy and has
several useful side effects. Namely, this method is simple with only one formula,
is time independent, produces a single output value, possesses a well defined
meaning, and places all scores on a bounded interval in which they can be
directly compared. The minimum value of the interval will be S = 0, repre-
senting “entropy” of zero in the circumstance where all inputs are the same.
Likewise, the maximum value of the interval will be S = Smax, a value deter-
mined by the total count of measurements in the interval (which is presumable
fixed) that occurs when all inputs are distinct. Such a capacity for direct com-
parisons between individuals/groups or one’s own performance over time also
provides a useful measure for the gamification of the system.

Input:

– Location information (transformed IP address) as ciphertext
– NIST Randomness Beacon validated timestamp
– UUID of user: This is not used by any operation, but this process is done for

one UUID at a time.

Parameters:

– I: Interval of interest Time interval that contains all of the proofs we care
to be observing during this check. Should cover all of a user’s typical routine
“cycle” as well as backwards and forwards into the previous intervals. To check
for consistency with the previous interval. I.e. 24 h of Wednesday, + final 12h
of Tuesday, + first 12h of Thursday makes a 48 h interval of interest

– C: uniformity check frequency Should be more frequent and shorter in
duration than the I. I.e. checks of a 48 h interval above could take place every
12 or 24 h. With the interval of interest shifting forward by C each time.

– Smax: Maximum Valid Entropy We can determine this empirically by
creating example “intervals” and calculating what their entropy would be
for acceptable and unacceptable examples. Theoretically S ranges from 0 to
infinity. In this circumstance, S ranges from 0 to a finite max that is defined
by every location in our interval being unique.

– X: the collection of all location ciphertexts from the interval I These
ciphertexts will be sorted into categories Xi based on comparisons of plaintext
equality.

– Payout duration Separately from deriving our entropy measure from the
location information, we maintain another parameter for how often the system
would execute payouts. This parameter is unrelated to the entropy calculation
but will inform the systems reward procedure.
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Process:

1. Use comparisons (equality) to sort the locations of each check into categories
to count frequencies, that is make a histogram.2

2. Calculate the Shannon Entropy S given the these Xi using the formula, where
P (Xi) is the probability of apparent location i within all samples of X:

S(X) = −
n∑

i=1

P (Xi)log2P (Xi) (1)

Steps:

1. Each Xi is defined by the unique categories determined as follows:
(a) Using the plaintext equality comparison operation (will be discussed in

Sect. 4) bin each sample in X into the relevant Xi by comparing each
item with the existing bins.

(b) If an item is equal to an example from a given bin, put it in that bin and
move to the next sample.

(c) If an item is not equal to an example from a given bin, try the next bin
until all bins have been exhausted. If no existing bins match, create a new
bin for this location.

(d) When each sample has been binned, each location bin Xi will represent
the frequency with which the user was at the given location. These fre-
quencies will be used to calculate entropy in step 2.

2. Evaluate (1) to get S, make decisions based on choice of threshold:
(a) If S ≤ Smax, there is an acceptable level of variability in user locations.

Therefore, the check passes and the user can be granted tokens for this
interval.

(b) The user is issued a payout using when their a token count surpasses a
payout threshold. Done.

(c) If S < Smax, there is an unacceptable level of variability in user locations.
Therefore, the check fails and the user is not granted any validation.

(d) The user is not issued tokens and receives no payout.

It is worth noting that there are a few assumptions required to use this
scheme. For example, two long stretches (a qualitatively positive behavior)
within an interval can appear with the same measure as a “tick-tock” behav-
ior of switching between two locations (a qualitatively negative behavior) for
the duration of the interval. Aside from this most extreme example, it is not
difficult to generate other examples with the same derived measure. Generally,
we do not find these collisions to be of particular concern as the adversarial
option represents complex, tedious movements that are unlikely to be actualized
physically. Nevertheless, we find that the benefits in simplicity and utility of
2 One could very well stop after creating a histogram of the location distribution, but

a user’s performance is less clear when viewed categorically and hence we prefer to
have a derived metric that greatly simplifies the act of comparing user performance.
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this entropy measure to out-weight the required assumptions. Notably, if these
assumptions are deemed unsatisfactory, one could easily apply additional heuris-
tics to the input data such as only considering location checks with continuity
of location between the point previous check and the subsequent check (effec-
tively making the minimum viable location be “3 checks” long) and recording
non-conforming measurements as distinct from all others.

3.3.2 A Scheme Using Tracking Duration at Location - Streaks
Another simple way to encourage users to get involved in social isolation is to
reward users when they stay at the same place for a specific time duration (e.g.
5 h). To achieve this, we first count the intervals of time that a user continuously
stays at a place. Every time when we get a validated proof, we compare it
with the last proof (or set of proofs) recorded. We will increase N by 1 for
each interval that the user stays in the same place if the fingerprints are equal.
Repeating these steps, we know the time length of each place a user continuously
stays. To calculate rewards a user will receive, we simply multiply the number of
times duration of time satisfies predefined time duration condition and rewards
received per time. This mechanism is both easy to compute and simpler for a
user to understand, so in some ways it may be considered preferable to the more
complex entropy measure. Considering that users may be at different places such
as grocery stores and workplace, and they are not able to stay at a place all the
time. Total rewards R a user received in a day is defined as

N = count(T ≥ C) (2)

for each streak of duration T in a day.

R = r × N (3)

where r is reward per valid interval, N is number of intervals of T ≥ C, T is
duration of each fixed location, and C minimum duration for reward threshold.

4 Proposed Scheme

4.1 Design of Privacy Protection

4.1.1 Privacy Goals
In contrast to many existing systems which require somewhat liberal data shar-
ing, we’re looking to exercise a minimalist approach with what information will
be shared in this system. Systems oriented toward contact tracing such as Trace-
together or the Apple/Google contact tracing API are susceptible to accumulat-
ing excessive and reveling levels of person information even when done correctly
[4]. Instead we look to share only what is absolutely necessary to encourage and
incentivize individuals to take precautionary measures. In this way we strive to
provide a system that prioritizes individual privacy while still creating a positive
influence on
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– Limit on-chain data to only what is strictly necessary: Following our mini-
malist system design we only want to share the minimum data necessary for
operability and verification of the system. Instead of collecting a wealth of
data and paring down to what is useful to track a user, we are only looking
to record what is explicitly necessary and sufficient for the system to operate
in its intended capacity.

– Limit size and weight of on-chain data for computational efficiency: To have
a scalable system without ballooning computational requirements, we want
to ensure computational complexity is not needless increased by any factor.
High time complexity encryption schemes or work-based puzzles are therefore
easily out of the question.

– Sufficiently protect on-chain data: Even the minimal data we are choosing
to record to the blockchain must be protected in such a way that individual
identities or institutional affiliations are not leaked.

– Limit off-chain data to reduce risk profile and increase inclusively: Beyond
from the requirements of the blockchain and data privacy, it is also key to
consider the information a user must divulge to enroll and participate. While
limited information will be sorted in a mobile application off-chain, we also
want to limit any personal information stored here. This will act to decrease
the risk profile of the information stored on a user’s device and also may
increase user’s willingness to participate if personal information need not be
shared to join.

4.1.2 Fingerprinting Scheme with Public Plaintext-Equality Testing
Fingerprinting scheme enables parties to evaluate the equality of fingerprint or
encrypted data without revealing any information about plaintext. It provides
semantic security and prevents low-entropy messages from brute-force attack.
The generation of fingerprints and the testing algorithm require keys can be
either private or public. In our prototype system, we use secret fingerprinting
and public testing of plaintext-equality. It prevents leakage of user private infor-
mation such as their traceroute output and enables every entity in the blockchain
network to evaluate the equality of user IP fingerprints at different time inter-
vals. The protocol was first introduced in [3] and consists of four algorithms:
KeyGen, LFingerprint, RFingerprint, and Test. KeyGen creates the left and right
fingerprinting keys lk and rk as well as the public parameter pp. LFingerprint
takes a left-fingerprinting key lk and a message m and outputs a left-fingerprint
fL. RFingerprint takes right-fingerprinting key rk and a message m′ and outputs
a right-fingerprint fR. Test takes a left-fingerprint fL and right-fingerprint fR
and reveals whether they correspond to the same message or not. Let H be a
random oracle. Let e : G1 × G2 → GT be a type-3 pairing with G1,G2,GT of
prime order p.

1. KeyGen: randomly draw (g, g̃, x, y) ← G1 × G2 × Z
2
p, set (X, X̃, Y, Ỹ ) ←

(gx, g̃x, gy, g̃y), return lk = X, rk = X̃, and public parameter pp =
(g, Y, g̃, Ỹ ).

2. LFingerprint(lk,m): draw u ← Z
∗
p, return fL = (gu, (XY H(m))u).
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3. RFingerprint(rk,m′): draw u ← Z
∗
p, return fR = (g̃u, (X̃Ỹ H(m′))u).

4. Test(fL, fR): return 1 if fL,1, fR,1 �= 1G1 and e(fL,1, fR,2) = e(fL,2, fR,1),
else 0.

4.1.3 Data Management
– On-chain data

• Quantity of Tokens associated with UUID: A measure of the current
“credit” the user has earned in the system.

• Verified timestamps of each proof operation: These timestamps can be
drawn from a source that provides unpredictable nonce information such
as the NIST Randomness Beacon.

• Encrypted location fingerprints corresponding to each proof: These finger-
prints are derived from information including the IP address of the user,
a trace-route to given host servers, and possibly other factors that may
increase the uniqueness and difficulty of spoofing. These fingerprints are
encrypted using an scheme that preserves the plaintext equality operation
such as that described in.

– Off-chain data (stored locally in mobile application only)
• User’s name: This is never shared on the blockchain and only required for

redemption. However, it is locked into the application during registration
to limit the ability to share with others, and remove the ability to be able
to redeem someone else’s work.

• User’s UUID: This is used to include with proofs, but of course is not
private as the rest of the proof contents. This user’s mobile device will
maintain the only association between the given user and their UUID.

Derived measures such as the Shannon Entropy “performance index” of the
user (i.e. the user’s score in compliance with the system) during a given interval
can be maintained either on-chain or off-chain depending on efficiency concerns
and computational/storage capabilities of the network. The reward granting
functionalities will derive and make use of these measures when determining user
payouts using the information which is available on-chain. As such, no additional
information is divulged by incorporating previous computations or intermediate
values on-chain and there may be desirable performance benefits to be had from
such a process.

4.2 Security Design

In this section, we discuss security requirements of our system. We assume that
underlying permissionless blockchain is secure, that is, common prefix, chain
quality, persistence and liveness [7] are assured. Hence, we concentrate on the
oracle problem to assure the correctness of the input to blockchain. Two types
of attacks we need to consider are as follows.

Security against malicious user: The malicious incentive of a user is obtain-
ing more reward than the amount which is calculated from the actual time
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to stay at the same location. To prevent this kind of attack, the following
characteristics are needed for each fingerprint’s data.
1. Each fingerprint is bound to behavior of the user (authenticity)
2. Each fingerprint is bound to physical location of the user
3. Valid fingerprint is random and unpredictable from past valid fingerprint
Malicious activities could be conducted before and during the check-route
phase and during the transmission of data from user’s device to host server.
User pretends staying at same place overtime by leaving registered device at a
place to complete system protocols and goes to other places without keeping
that device with him/her. To prevent this malicious activity, we implement
asymmetric key based authentication protocol associated with a registered
device per user. It is a way to achieve the first characteristics.
Even if the first is achieved, the authenticated device can output fingerprints
with fixed routes regardless of physical location by using VPN services. To
assure we meet the second requirement, we involve the global IP address of
the WiFi router which provides local IP address with the data included into
blockchain. A digital signature by the WiFi router is given to the data.
The third characteristics is associated with replay attack during the trans-
mission of data from user’s device to host server. The consequence of such
attack could be victims receive less rewards even they follow the rewarding
protocol and attackers receive rewards without doing any work. To prevent
such an attack, a challenge and response protocol with randomness beacon
is implemented. We use randomness beacon and EUF-CMA digital signature
scheme and store randomness beacon and verification key on blockchain for
public verification.

Security against malicious reward organization:
The reward organization might have an incentive to provide less reward than
the amount which is calculated from the actual time to stay at the same
location. How ever, we assume that records on reward over blockchain are
not compromised. Thus, we can prevent and publicly verify such an malicious
activity.

4.3 Protocol Description

Location proofs will be generated locally on the user’s mobile device using infor-
mation collected by the device itself. Only once the location fingerprints are
generated and possibly revealing location information has be protected are proof
contents written on chain. In general this process is as follows:

Registration: During registration, a secured communication channel between
user’s device and a host server will be set up first. A key pair signing key
ski /verification key vki of Mi and a key pair lki/rki following the KeyGen
in fingerprinting scheme are generated. These keys are managed by making
use of TEE. When user signs up, the application will send user account
information provided by user to the host server. Host server will verify user’s
account information then securely store them.
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Check engagement: To involve a user interaction, user’s cellphone will receive
a notification which asks user to complete a verification on the application
to prove that the user has registered device and does not simply leave the
device somewhere while the user is elsewhere. If engagement check fails,
user’s current location will be determined as invalid.

Check route: This phase consists two steps. First, the application generates
left and right fingerprints of user’s current routes then signs the fingerprints
and current time t using ski and a randomness beacon based on EUF-CMA
digital signature scheme such as ECDSA.
Step 1: lfi,t = LFingerprint (lki, pp, IP ): Application generates left-

fingerprint fL of user IP routes with lk and sends it to appointed host
server.

Step 2: rfi,t = RFingerprint (rki, pp, IP ): Application generates right-
fingerprint fR of user IP routes with rk and sends it to appointed host
server.

Step 3: Sigi,t = Sigski
{lfi,t, rfi,t, t}

Then the application sends fingerprints with signature to Wj . Wj signs the
data with IPj,t for time t by its singing key skj , then send a host server
them.
Step 4: Sigj,t = Sigskj

{Sigi,t, IPj,t}
The host server verifies the information received with vki and vkj and con-
duct Test.
Step 5: Test(f ′

L, fR): Given f ′
L = LFingerprint(lk, IP ′) which is the left-

fingerprint of user’s last IP routes from the blockchain and fR which is
right-fingerprint of user’s current IP routes, host server tests whether they
correspond to the same IP routes.

When host server finishes above equality testing, it sends the test result
to smart contract for reward calculation. UUID, fL, fR, time stamp and
signatures are also stored on blockchain via smart contract.

Calculate reward: At this phase, smart contract will calculate reward the user
should receive using the calculation scheme described in Sect. 3.3.

Payout: The user exchanges their accumulated tokens for real world
coupons/prizes from the reward organizations. The reward organization
authenticates user for redeeming. If their identity is valid, the user will com-
municate to the organization which of their offered rewards they would like
to take. In spending the reward, the amount will be adjusted at ledger on
blockchain. To comply financial regulations, users cannot trade them with
each other and are only able to redeem/spend the tokens in the ecosystem’s
preconfigured outlets.

5 Implementation

The priority of implementation is to develop key functionalities of the prototype
system so we could evaluate security and efficiency of prototype system. These
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Table 1. List of Java and Solidity files and their function

File Function

FPScheme.java Logic for fingerprinting scheme

Server.java Logic for fingerprint generation of user IP information, equality test,
updating duration of time at each location and store data to blockchain

CalculateReward.sol Logic for reward calculation using duration of time at same location

CalculateReward.java Same logic as CalculateReward.sol but a java wrapper of it

Table 2. Examples of user data on blockchain

UUID IP_LFingerprint IP_RFingerprint Timestamp Time duration Rewards balance

1 JTB9BIcKcq BaOwrtQKTH 06:00 0 0

1 rw1NGur2ME WoK5d0sZ3C 07:00 1 0

1 xR7hpP2CIr 2yomU1icB8 08:00 2 0

1 HMJ3f1J97r zpSMF6TDMK 09:00 0 0

2 j6LOQhHyos NzhGph9omX 06:00 0 0

2 0w1Gu9wE+o vnQ4f3NeCu 07:00 1 0

2 WfuM61rsVg RFWpAjchj+ 08:00 2 0

2 OvFO+75iAV GmxhjyxLiq 09:00 3 5

key functionalities are equality test of user IP fingerprints and reward calculation.
For equality test functionality, we first implemented fingerprint generation from
user location info before it is stored on blockchain. Meanwhile, an equality test
is offered to compare any two fingerprints stored on the blockchain. For reward
calculation, we implemented two proposed calculation schemes.

Several Java classes which contain functions of fingerprint scheme and func-
tions of reward calculation of Shannon entropy are developed. A smart contract
is implemented in Solidity, which has functions for reward calculation as well as
storing and retrieving data on blockchain. Table 1 lists the Java and Solidity files
and their function. We also set up a private Ethereum blockchain to deploy the
smart contract for use in our experiments. Table 2 shows examples of user data
on blockchain. Rewards balance in this table is calculated based on an example
protocol that user is rewarded for 5 tokens for staying at same place for 3 h. Note
that each IP_LFingerprint and each IP_RFingerprint is 172 bytes but we only
list 10 bytes for display in the table.

6 Evaluation

6.1 Privacy and Security

6.1.1 Privacy
The fingerprint is encrypted by using a public key encryption scheme with plain-
text equality test. The only information obtainable from any set of encrypted
fingerprints is if the plaintexts are the same or not. Even if the result of test algo-
rithm of two different fingerprints is negative, the comparison does not reveal



Proof of No-Work: How to Incentivize Individuals to Stay at Home 403

information about either plaintext. Thus, by comparing pairs of fingerprints, any
party can compute users’ behavior over time without access to individual points.

6.1.2 Security
Security against malicious user: For the first characteristic, the fingerprint

is singed by signing key stored in TPM/TEE of the mobile device, which
requires periodical authorization by the user
For the second characteristic, the source IP address of the user device is
assigned by the WiFi router provided by ISP. For the case that, the user uses
VPN to obtain the same IP address from different locations, the fingerprint
contains the global IP address assigned to the WIFI router, then anyone can
verify if the user connects via VPN.
For the third characteristic, the fingerprint is calculated by using randomness
beacon and EUF-CMA digital signature scheme.

Security against malicious reward organization: The smart contract pro-
cess and the result is public verifiable, thus, the reward organization cannot
fake the time of staying at the same place and resulting amount of reward.

6.2 Efficiency

Let us consider practical efficiency of the system during widespread usage. Here
we consider the scenario in which the application works from 12:00 h (noon)
on Monday until to 12:00 h on Wednesday in order to generate an overlapping
range of measurements (centered on Tuesday). Host servers permit the client
to generate a location proof twice per hour. This time span accounts for 48 h
of measurements or 96 individual proofs. While, in this configuration, each user
generates 48 location proofs which are stored on blockchain each day, we intend
to consider our derived scoring measurements as being centered in the 48 h inter-
val covering half of the previous and subsequent days.

6.2.1 Space
Each location proof with attributes listed in Table 2 is 273 bytes. Without
explicit consideration for the blockchain overhead, this is 13,104 bytes per user
per day. While this is markedly more data than simply recording SHA256 or
SHA512 hashes (32 bytes and 64 bytes respectively), we believe that the use of
these fingerprints provides greater functionality in being user-decryptable when
necessary and thus justifies retaining more information than either hash func-
tion would. In general, we consider this to be an acceptable growth rate (not
particularly wasteful) that aligns with our interest in minimal data collection.

6.2.2 Time
The average running time for each plaintext equality check between ciphertexts
off-chain is 0.08298 s.3 Using location proofs from the blockchain were observed to
3 The experiment was run on a mid-tier personal computer. This figure can likely be

greatly reduced on higher end hardware.
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take longer depending on network connectivity and server load on the blockchain
testnet; however, by far, the bottleneck in this computation is the equality check-
ing operation. The number of equality checking operations required to gener-
ate our scoring measures (such as the histogram required for the aforemen-
tioned entropy measure) will vary depending on the user behavior. This count is
bounded above and below by the extremes of user behavior. If each fingerprint
is identical (all equal) it will take p operations to fully sort them, where p is the
number of proofs being considered. If each fingerprint is distinct (none equal)
it will take

∑p
i=1 i = 1 + 2 + ... + p = p ∗ (p + 1)/2 ≈ p2 operations. For the

96 fingerprints being considered, this equates to between 7.9661 s to 764.7437 s
(12.75min) of computation per user, per day. Clearly some heuristic is required
to terminate computation for instances toward the latter case, however this can
easily be done by running the much lighter computation of Eq. 1 intermittently
and terminating early if Smax is already exceeded.

For the “streak” scoring measure, the calculation is much less variable and
can simply be R = t×n where t is the time per operation and n is the number of
proofs considered. This method is effectively constant time for very small n but
then must be run much more frequently to completely score a user’s behavior: run
after every new proof instead of once a day. We note that in a practical setting
with large number of users our protocol uses reasonable amounts of storage
and has not quite ideal performance, but performance which may be considered
acceptable given the low frequency of operations necessary per user per day.

6.3 Consideration of Regulations

The reward token should be structured so as not to be subject to financial
regulation to avoid stringent compliance obligation. In the U.S., a token transfer
can be deemed as money transmission and need to comply with anti-money
laundering regulations if the issuance, acceptance and transmission of the token
evidence the ownership of a certain amount of commodity, security or futures
contract [5]. Our reward token will not fall under such regulations because the
token does not represent any ownership and is not transferable to other users.

6.4 Discussion on Incentive Mechanism

Our method can contribute more than contact tracing because this system moti-
vates people to stay home longer, which proactively prevents the spread of
COVID-19. In contact tracing, all that can be done is follow up potential trans-
mission with records given by interviews and likely encounters. As discussed,
economic or public health incentives are put in place for each stakeholder to act
otherwise. With our proposal, participants of the system can expect to earn the
rewards. As for hosts, they will require economic compensations for providing
the client application and hosting servers if private companies take the roles.
While it is possible that reward organizations are to pay such fees to hosts, it
is possible that public entities provide subsidies to the hosts as a public pol-
icy initiative. Private companies have realized that the pandemic impacts their
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economic well-being. They may join such a program to protect their business.
A level of corporate social responsibility also motivates some to participate in
this scheme. It is also expected that public entities such as governments will be
motivated to join such a program to maintain public health and safety. Because
essential workers are force to go outside and take risks to earn necessary income,
we need tailored rewarding calculation to maximize the social benefit. Hence,
further work is needed to determine how this system works quantitatively.

7 Conclusion

In this paper, we proposed an application of smart contracts to provide incentive
to stay at the same location with maintaining the location privacy of each user.
The reward calculation function should be tuned by using real situation of pan-
demic and its locality. This tuning needs actual data of operating this scheme.
Conducting experiments in our real system and tuning the reward calculation
function is future work to refine the incentive mechanism.
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Abstract. Payment channel networks are a highly discussed approach
for improving scalability of cryptocurrencies such as Bitcoin. As they
allow processing transactions off-chain, payment channel networks are
referred to as second layer technology, while the blockchain is the first
layer. We uncouple payment channel networks from blockchains and look
at them as first-class citizens. This brings up the question what model
payment channel networks require as first layer. In response, we formalize
a model (called RFL model) for a first layer below a payment channel
network. While transactions are globally made available by a blockchain,
the RFL model only provides the reduced property that a transaction is
delivered to the users being affected by a transaction. We show that the
reduced model’s properties still suffice to implement payment channels.
By showing that the RFL model can not only be instantiated by the
Bitcoin blockchain but also by trusted third parties like banks, we show
that the reduction widens the design space for the first layer. Further,
we show that the stronger property provided by blockchains allows for
optimizations that can be used to reduce the time for locking collateral
during payments over multiple hops in a payment channel network.

1 Introduction

Payment channel networks (PCNs) became popular as an approach for improving
the scalability of blockchain based cryptocurrencies such as Bitcoin [12]. While
Bitcoin scales well in the amount of coins that can be transferred by a trans-
action, it can only process a limited number of transactions per second. PCNs,
e.g., the Lightning Network [14] for Bitcoin, perform transactions off-chain in a
second layer and they do not require global consensus for every transaction as
long as all participants are honest.

PCNs have mostly been looked at as second layer on top of a blockchain.
While the idea to use banks as a first layer has already been mentioned in 2015
by Tremback and Hess [17], to the best of our knowledge it has not been analyzed
which properties PCNs require for the layer below. We look at PCNs as first-
class citizen independent from the specific first layer and analyze whether PCNs
can be used on top of models that are different from a blockchain (with the term
blockchain, we refer to a public permissionless blockchain such as Bitcoin). As
an affirmative answer, we present a reduced model for the first layer which
c© Springer Nature Switzerland AG 2020
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we call RFL model (Reduced First Layer) whose properties give reduced
guarantees compared to a blockchain but yet suffice to implement a protocol
for a PCN on top. The reduced property of the RFL model in comparison to a
blockchain is that a blockchain delivers each transaction to all peers participating
in the network while in the RFL model a transaction is only guaranteed to be
visible for a transaction’s affected users. A transaction’s affected users are the
users who receive the transferred coins and the users who were able to spend the
same coins that the transaction transfers. To show that a PCN can still securely
be implemented using the RFL model as underlying first layer, we show the
following property: A payment channel between two users can be closed within
a given time so that each user u receives at least their correct balance if u is
honest and checks the first layer regularly for new transactions. We will refer
to this property as the security property and formally define it. We prove this
security property for a PCN protocol that is executed on a first layer that
implements the properties defined by the RFL model: liveness, affected user
synchrony, persistence, and transaction validity.

Our analysis of the relationship between the RFL model and a blockchain
shows that a blockchain instantiates the RFL model under typical assumptions
for blockchains such as Bitcoin. Having shown that a PCN can be implemented
on a reduced model compared to a blockchain, we show that the RFL model
can not only be instantiated by blockchains but there is a wider design space
for the first layer, e.g., using trusted third parties like banks. Implementation of
PCNs on different first layers allows for a range of design opportunities, e.g., with
respect to trust, privacy, liquidity, online requirements, and currencies. Having
seen the advantages of a model for the first layer that is reduced compared to a
blockchain, we also look at the advantages of using a blockchain that guarantees
more than the RFL model: A blockchain’s property to deliver a transaction to
everyone can be used to optimize payments in PCNs so that collateral is
locked for a shorter amount of time [11]. We show that this requires stronger
assumptions than the basic construction of PCNs.

For readers, being not familiar with payment channels and PCNs, we provide
a section on fundamentals in the extended version of this paper [6]. In the follow-
ing section, we put our work in the context of related work. In Sect. 3, we present
the RFL model. We show in Sect. 4 that a simplified version of the Lightning
Network’s protocol fulfills the security property if it is used on a first layer that
instantiates the RFL model. Section 5 presents and compares instances of the
RFL model using a blockchain and trusted banks. In Sect. 6, we show how the
stronger properties fulfilled by a blockchain can be used to optimize payments
in a PCN. Finally, we conclude in Sect. 7.

2 Related Work

Kiayias and Litos provide in [10] a formalization and security analysis of the
Lightning Network using a global ledger functionality modeled in [2]. The global
ledger fulfills a global synchrony property: An honest user that is connected to
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the required resources is being synchronized (receives the latest state) within
a bounded time. Their work is orthogonal to our work because it appears that
their proof would still work with the assumptions of the RFL model. We leave it
for future work to provide a security proof for the Lightning Network that uses
the RFL model instead of the global ledger functionality provided by Bitcoin.

Credit networks as proposed in [3] are a concept that is related to that of
PCNs. A credit network, however, does not have an underlying layer. In a credit
network, users are connected through credit links (IOUs) which represent the
amount one user owes another user. This construction requires users to trust
each other to an extent that is quantified by the size of the credit link. In a
PCN, users are instead required to trust the first layer and not each other.

Recently, Avarikioti et al. proposed Cerberus channels, [1] a protocol for
payment channels that includes watchtowers watching for outdated commitment
transactions on the first layer. They also define a security property and show
that Cerberus channels fulfill this property. The security property we define
is inspired by the security property used in [1]; however, our definition does
explicitly consider the timeouts and includes HTLCs which are required for
payments over intermediaries.

3 RFL Model of First Layer

In this section, we present the RFL model, a model for the first layer that
guarantees a reduced set of properties compared to a blockchain. The main
difference of the RFL model to a blockchain is that, when using a blockchain, a
transaction is delivered to all users. In this section, we define the affected user
synchrony property which only requires the first layer to deliver a transaction
to the users being affected by a transaction.

In the RFL model, we have a set of users U who can create transactions.
Each user u ∈ U has an asymmetric key pair with private key su and the public
key pu. A transaction t consists of an amount of coins and is associated with a set
of receivers ΩR

t ⊆ U that the coins are transferred to. The set of users who were
able to spend the coins that are spent by t is referred to as the potential senders
ΩS

t ⊆ U . We denote as affected users of the transaction t the set Ωt = ΩS
t ∪ΩR

t .
For a transaction to be valid, it needs to fulfill conditions depending on the coins
that are spent (e.g., a signature using a specified key or some timeout having
passed). In general, it is possible that not all potential senders need to sign a
transaction and thus some potential senders and receivers might not have seen
the transaction before it has been published on the first layer.

We model the first layer as a (logically) single party L that is connected to all
other parties via secure and reliable channels. Users can send transactions t to
the first layer L. We refer to this action as publishing t. L can send a confirmation
that the transaction t has been executed, i.e. the coins have been transferred, and
users can query L whether a transaction has been confirmed. The time a user has
to wait for the confirmation is determined by the liveness property parametrized
below by the waiting time Δlconf . The first layer L can send transactions from
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other users and confirmations to users. Users can check the first layer L for
the confirmation of a transaction. Whether the first layer’s response about the
confirmation is consistent among different users, is determined by the affected
user synchrony property below parametrized by the time Δlsync.

The first layer L has to have these essential properties:

– Liveness: If a user sends a valid transaction t to the first layer L, then L will
confirm the transaction after at most Δlconf .

– Affected User Synchrony : If a user has received a confirmation from L for a
transaction t with affected users Ωt, then L makes t and the confirmation
visible to all affected users u ∈ Ωt within at most Δlsync.

– Persistence: If a user has received a confirmation for transaction t from L,
then L will always report t as confirmed.

– Transaction Validity: A transaction t will only be confirmed by L if t is valid.

Note that instead of the affected user synchrony, a blockchain implements an
unrestricted synchrony property: If a transaction is confirmed by the blockchain,
the transaction will be seen as confirmed by all users within a given time. We
will look deeper into the relationship between the RFL model and blockchains
in Sect. 5.

For the RFL model, we use a UTXO (unspent transaction output) model for
transactions which is also used by Bitcoin. In the UTXO model, a transaction
consists of multiple inputs and multiple outputs. Each input spends an output
of a previous transaction. An output specifies a condition that an input needs to
meet to spend the output. An example for a condition is the signature of a public
key that is specified in the output and the signature needs to be provided in the
input. If a transaction is processed by the first layer, the first layer checks whether
the transaction is valid. For a transaction to be valid, all inputs have to spend
transaction outputs that are unspent and the conditions of the UTXOs need to
be met. For a PCN as defined later, we require the following types of conditions:
signature corresponding to a given public key, preimage for a given image of a
hash function, time since confirmation of UTXO spent, and combinations thereof
using logical operators OR and AND. The set of receivers ΩR

t contains all users
whose signature is required by at least one condition to spend an output of t.
Analogously, the set of potential senders ΩS

t of a transaction t is comprised of all
users whose signature is required by at least one condition to spend an output
that is spent by t.

4 Security Property for a Payment Channel Network
Protocol Based on the RFL Model

In this section, we show that the RFL model suffices as a first layer to securely
implement a PCN. To this end, we make use of a slightly simplified version of
the Lightning Network’s protocol, define a security property, and then show that
the protocol fulfills this security property when it uses the RFL model as first
layer. A more detailed description of the protocol can be found in the extended
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version of our paper [6]. Here, we only introduce the notation and explain some
differences that we assume in comparison to the Lightning Network’s protocol
specification on Github1 as a basis for the proof.

The current specification of the Lightning Network’s protocol is only for
single-funded channels, i.e. a channel is created by putting funds of only one
participant in the channel. Payments are executed using HTLCs even if they are
direct payments over just one channel. We use Alice and Bob as names for two
users participating in the protocol. Alice has a secret key sA associated with
the public key pA that she uses for commitment transactions and HTLCs. This
is a simplification; the Lightning Network specification uses different keys to
sign HTLCs and commitment transactions to allow for separating keys in cold
and hot storage2. We count the states of a channel using n ≥ 1 and denote
the commitment transaction held by Alice for state n as tCnA (tCnB for Bob).
For revocation, Alice creates a new revocation key sRnA for each commitment
transaction tCnA. Each output of Alice’s commitment transaction tCnA is spend-
able using the revocation key sRnA and Bob’s public key, i.e. Bob can spend all
outputs of tCnA if Alice publishes tCnA after she has revoked tCnA by send-
ing sRnA to Bob. This is another simplification. The Lightning Network uses a
construction that generates a revocation key for tCnA from a long term secret
created by Bob and the per-commitment secrets created by Alice and, to revoke
a transaction, Alice shares the corresponding per-commitment secret with Bob.

Each commitment transaction tCnA held by Alice for state n of the chan-
nel between Alice and Bob is built in the following way (tCnB held by Bob is
constructed analogously): The commitment transaction’s input spends the chan-
nel’s funding transaction’s output which requires Alice’s and Bob’s signatures.
We use the term stable balance for a user’s balance that is not part of an HTLC.
The HTLC outputs of tCnA cannot directly be spent by Alice but only using the
HTLC timeout transaction tTnyA and the HTLC success transaction tSnyA which
will be explained below. Outputs spendable by Alice are locked for Δtcomm time
to give Bob time to spend the output in case Alice publishes tCnA after it has
been outdated. Alice’s commitment transaction tCnA has the following outputs:

– An output for Alice’s stable balance that is spendable
• by Bob using Alice’s revocation key sRnA for state n or
• by Alice after delay Δtcomm; aka ‘to self delay’.

– An output for Bob’s stable balance that is spendable by Bob.
– For each outgoing HTLC an output for the HTLC’s balance that is spendable

• by Bob if he provides a preimage for a given y, or
• by Bob using Alice’s revocation key for state n, or
• by the HTLC-timeout transaction tTnyA after point in time THTLC

y .
– For each incoming HTLC an output for the HTLC’s balance that is spendable

• by Bob after point in time THTLC
y , or

1 https://github.com/lightningnetwork/lightning-rfc/blob/master/00-introduction.
md.

2 https://github.com/lightningnetwork/lightning-rfc/blob/master/02-peer-protocol.
md#rationale.

https://github.com/lightningnetwork/lightning-rfc/blob/master/00-introduction.md
https://github.com/lightningnetwork/lightning-rfc/blob/master/00-introduction.md
https://github.com/lightningnetwork/lightning-rfc/blob/master/02-peer-protocol.md#rationale
https://github.com/lightningnetwork/lightning-rfc/blob/master/02-peer-protocol.md#rationale
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• by Bob using Alice’s revocation key for state n, or
• by the HTLC-success transaction tSnyA using preimage for a given y.

There are two HTLC transactions per HTLC with preimage y that depend
on tCnA: An HTLC timeout transaction tTnyA and an HTLC success transaction
tSnyA. The inputs for the HTLC transactions are the outputs indicated above
for the commitment transaction tCnA and need to be signed by Alice and Bob.
Both HTLC transactions held by Alice have one output that is spendable

• by Alice after delay Δtcomm, or
• by Bob using Alice’s revocation key for state n.

We define the forwarding timeout delta Δforw as a global value. This simpli-
fies the Lightning Network’s specification which uses values that are chosen by
the users of each channel. Lastly, the closing of channels can be cooperative in
the Lightning Network specification to allow both parties to access their funds
immediately. However, we assume that users simply send their latest commit-
ment transaction to the first layer.

Security Property for the Payment Channel Network Protocol Based
on the RFL Model. We now show that the protocol described above fulfills
the security property as defined in Lemma 1 when used with a first layer that
implements the RFL model. We start by defining the term correct balance:

Definition 1. The correct balance of a user Alice is the sum of Alice’s stable
balance and the amounts of outgoing HTLCs that she has not received the secret
for and the amounts of incoming HTLCs that she has received the secret for.

To facilitate understanding of the following lemma we give a brief review of
the most important relative and absolute timings that are used: The first layer
L confirms a valid transaction within Δlconf , other users will see a confirmed
transaction within Δlsync, a user can spend their own commitment transaction’s
outputs after Δtcomm, and an HTLC with condition y times out at time THTLC

y .

Lemma 1. The protocol as defined above fulfills the property security: At each
point in time Tnow, Alice can close the payment channel between Alice and Bob so
that she has received at least her correct balance at time T = max(THTLC

max , Tnow)+
2 ·Δlconf +Δtcomm if she is honest and checks the first layer L for transactions at
least once every Δuser and 0 < Δuser < Δtcomm − Δlsync − Δlconf , where THTLC

max

denotes the maximal timeout of all HTLCs in the channel.

Lemma 1 follows from the following arguments. We first look at the case that
Alice initiates the closing of the channel and then at the case that Bob closes
the channel and Alice did not want to close the channel. Let n be the number of
the latest state. To close the channel, Alice sends her latest commitment trans-
action tCnA and the associated HTLC transactions to L at Tnow. Alice has Bob’s
signature for tCnA because she receives Bob’s signature for the initial commit-
ment transaction tC1A during the opening of the channel (n = 1) and during
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each update of the channel (n > 1), Alice receives Bob’s signature for the latest
commitment transaction tCnA and the associated HTLC transactions. If there
are no conflicting transactions, tCnA will be confirmed within Δlconf according
to the liveness property of L. The funding transaction can only be spent by
Alice and Bob and thus a transaction conflicting with tCnA can only be sent to
L by Bob until tCnA is confirmed by L. At time Tnow + Δlconf one commitment
transaction will be confirmed – either Alice’s transaction or a transaction sent
by Bob. Thus, we need to distinguish three scenarios:

Bob Does Not Publish a Commitment Transaction: The first layer L
will confirm Alice’s commitment transaction tCnA within Δlconf according to
the liveness property. Alice can spend her stable balance after an additional
Δtcomm. The associated output cannot be spent by Bob because Bob does not
have the revocation key sRnA for the latest commitment transaction. For the
incoming HTLCs in tCnA that Alice has the secret for, she publishes the success
transactions tSnyA together with tCnA and the success transactions’ outputs can
be spent by Alice after Δtcomm. Bob cannot spend the HTLC output because
the associated time THTLC

y has not come (else, Alice would have removed the
HTLC or timely gone on-chain) and Bob does not have the revocation keys.
Thus, Alice can spend her stable balance and her balance of incoming HTLCs at
Tnow+Δlconf+Δtcomm. Her transaction to spend these outputs will be confirmed
within Δlconf . For the outgoing HTLCs in tCnA that Alice does not have the
secret for, she can spend the output using the timeout transaction tTnyA after
THTLC
y . The timeout transaction is confirmed by L and its output is spendable

after THTLC
y + Δlconf + Δtcomm. If Bob spends the HTLC using the preimage,

Alice receives the preimage because of the affected user synchrony property of L
because Alice is a potential sender of the HTLC output, so the HTLC’s amount is
not taken into account for this channel’s correct balance. Thus, Alice has received
her correct balance after at most max(Tnow, THTLC

max ) + 2 · Δlconf + Δtcomm = T .

Bob has Published his Latest Commitment Transaction tCnB: In this
case, the affected user synchrony property of the first layer asserts that Alice
can see Bob’s commitment transaction tCnB because she is a potential sender.
Alice can instantly spend her stable balance in the channel once she sees the
transaction tCnB at time Tnow + Δlconf + Δlsync. Alice’s transaction spending
her stable balance will be confirmed within Δlconf . For each outgoing HTLC,
Alice can spend the HTLC output after THTLC

y . If Bob spends the HTLC output
using tSnyB by providing a preimage for the given y, Alice receives the preimage
because of the affected user synchrony property of L. For each incoming HTLC,
Alice must publish a transaction to redeem the HTLC if she has the preimage
for the given y which takes Δlconf to be confirmed. Thus, Alice has received her
correct balance within max(Tnow + Δlconf + Δlsync, T

HTLC
max ) + Δlconf ≤ T .

Bob has Published an Outdated Commitment Transaction: For each
update to state number i + 1, Alice receives Bob’s revocation key sRiB. Say,
Bob has published an outdated commitment transaction tCoB with o < n. Alice
can see the transaction after Tnow + Δlconf + Δlsync. Bob can only spend his



416 M. Grundmann and H. Hartenstein

stable output of tCoB after an additional Δtcomm. In case Bob publishes an
HTLC success or timeout transaction, Alice also sees Bob’s HTLC transaction
because of the affected user synchrony property of L and Bob can only spend
its output after Δtcomm. Thus, Alice must use her key sA and Bob’s revocation
key sRoB to create a revocation transaction that spends the whole balance in the
channel (output for Alice, output for Bob, and all HTLC outputs). After Δlconf
this revocation transaction has been confirmed. Because Δlconf < Δtcomm (see
Lemma 1), Bob cannot have spent his outputs before Alice. Thus, Alice has
received her correct balance within Tnow + 2 · Δlconf + Δlsync ≤ T .

In case Bob closes the channel by sending tCiB, i ≤ n to L at Tnow and
Alice did not want to close the channel, too, Alice receives tCiB from L within
TrecvA = Tnow + Δlconf + Δlsync + Δuser because Alice is an affected user of
the transaction and the affected user synchrony property of L asserts that she
can see the transaction within Δlsync and Alice checks the first layer L at least
every Δuser for new transactions. Bob’s stable output and HTLC transaction
outputs cannot be spent by him until TspendB = Tnow + Δlconf + Δtcomm. If
i < n, Alice must use her key sA and Bob’s revocation key sRiB to spend
the whole balance in the channel using a revocation transaction when she sees
Bob’s transaction at time TrecvA. This revocation transaction will be confirmed
by the first layer after TrecvA + Δlconf . Bob cannot have spent his outputs at
this time because TrecvA + Δlconf = Tnow + Δlconf + Δlsync + Δuser + Δlconf <
Tnow+Δlconf +Δtcomm = TspendB because Δuser < Δtcomm−Δlsync−Δlconf =⇒
Δlconf + Δlsync + Δuser < Δtcomm. Thus, Alice has received her correct balance
after Tnow + Δlconf + Δlsync + Δuser + Δlconf < Tnow + Δlconf + Δtcomm ≤ T .
If i = n, Alice reacts analogously to the case above that Bob has published his
latest commitment transaction but the times are postponed by Δuser (see [6]).

5 Instances and Options of the RFL model

The RFL model describes an ideal first layer that guarantees the properties
required by a PCN. In this section, we show that, under certain assumptions, a
blockchain instantiates such a first layer. We also sketch the idea of an instance
of a first layer using a bank or a network of banks and provide a comparative
exploration of design options.

Using a Blockchain. Garay et al. show in various works (e.g., [4,5]) that the
Bitcoin protocol satisfies consistency and liveness with high probability under
the assumption of a bounded-delay network model and an honest majority of
computing power [5]. In comparison to our definition in Sect. 3, their definition
of liveness assumes that a transaction is provided to all honest parties. This is
implemented in Bitcoin by flooding transactions in the peer-to-peer network.
The definition of consistency used in [5] implies our definition of persistence and
affected user synchrony. It is even stronger and implies synchrony for all honest
peers, i.e. the first layer L makes a transaction t and the confirmation visible to
all honest peers. Assuming an honest majority of computing power and using a
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bounded-delay network model, the results of Garay et al. show that a blockchain
similar to Bitcoin instantiates the RFL model with high probability.

Note that for a blockchain, liveness is not guaranteed because the blocksize
is limited and there can be times during which the blockchain is congested so
that users have to compete for publishing their transactions on the blockchain.
Recent work [7,9,18] has shown attacks against payment channels that attack
the liveness of a blockchain, e.g. by bribing miners to censor transactions. These
works show the importance of considering the properties of the first layer when
building second layer architectures.

Using a Single or Multiple Banks. Having an abstract model of the first
layer allows for developing architectures that instantiate a first layer without
a blockchain. For example, a network of banks can be used to instantiate a
first layer under the assumption of trust in the banks. We assume the common
features of banks as described in the following but the bank does not necessar-
ily need to be a classical bank and can also be a payment service provider. A
contemporary bank offers to their consumers an interface that implements live-
ness, transaction validity, and persistence. The usual visibility for a transaction
matches the visibility required by affected user synchrony: A bank makes a trans-
action visible (only) to the potential senders and receivers of transferred funds.
A transaction has multiple potential senders if it is sent from a joint account.
Using banks as first layer, their customers could perform transactions using a
PCN. While this requires trust into the bank to implement the RFL model, the
transactions are hidden from the bank which improves privacy because the bank
gains less information. So the PCN could be used for decentralized digital cash.

Comparative Exploration of Design Options. We now discuss differences
between using a blockchain and trusted banks as different ways to instantiate
the RFL model.

Trust. While banks have to be fully trusted, trust into a blockchain is more
distributed (e.g., honest miners have the largest share of computation power).

Privacy. While PCNs do not categorically improve privacy [8,15,16], the privacy
properties of the first layer are crucial for privacy in the PCN. While users are
identified by pseudonyms on a blockchain, a bank is required to implement meth-
ods for customer identification. This reduces privacy for the users because the
bank learns about their transactions. However, it allows the bank to implement
access control on the transactions and to make a transaction only visible to the
affected users of the transaction which, in turn, improves privacy. By facilitating
tracing of money laundering, customer identification can be a way to increase
chances of mainstream adoption of a digital payment system.

Liquidity. Payment channels require users to deposit funds by locking them on
the first layer while the channel is open. On a blockchain, users can only use coins
in their channel that they own on the blockchain. Using banks to implement a
first layer allows for letting users open channels using credit they receive from
their bank. This can improve the liquidity within the network because more
users are able to forward payments if they have channels with higher capacity.
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Online Requirement. While the first layer needs to provide affected user syn-
chrony to make transactions visible, the corresponding part for the user is to
check the first layer regularly for new transactions to react to outdated commit-
ment transactions. With a blockchain as a first layer, this task requires a user
to stay connected and analyze new blocks or to outsource this task to a watch-
tower. With a centralized system of banks as first layer, the bank needs to be
trusted to run a system that provides affected user synchrony. Because the bank
knows their customers, they could even contact them to inform about relevant
transactions and, thus, include watchtower functionality in the first layer.

Currencies. The two different ways for instantiating the RFL model also differ in
the type of currencies they can support. While a blockchain can provide a decen-
tralized currency, a system of banks can make traditional currencies managed
by central banks available for use in PCNs.

6 Optimization of HTLCs Using a Blockchain

The basic construction of PCNs leaves room for optimizations. One issue is that
the amount of collateral that needs to be locked for one transaction allows for
balance availability attacks [13] which lock the balance so that it cannot be used
by honest parties. Recent research [11] has found ways to reduce the required
collateral during one transaction over multiple hops assuming a blockchain as
first layer that offers (global) synchrony instead of the reduced affected user
synchrony. The Sprites protocol [11] uses a (logically) central “preimage man-
ager” that can be read and written to by any party of the PCN. All channel
updates on the route of a payment depend on the condition that the secret x
has been published before a specific timeout that is the same across all channels.
By using it as a “global synchronization gadget”, the preimage manager is used
to synchronize the timeouts so that all parts of the route timeout at the same
time in contrast to increasing timeouts from the receiver’s end in the Lightning
Network. As all participants have the same view on the blockchain, either all
updates that depend on the publication of the secret before a given timeout fail
or all are valid. For a first layer instantiated by banks, a bank or another trusted
party could implement such a preimage manager. However, this would add a
central entity as dependency for the payments and thus, payments would not
be decentralized anymore. This shows that, while the RFL model allows for a
PCN to be implemented as second layer, the stronger properties fulfilled by a
blockchain enable optimizations for HTLCs. The solution of Sprites can improve
the PCN protocol because it makes use of the gap between the properties of the
RFL model and a blockchain’s properties.

7 Conclusion

For a PCN, a first layer can be used that delivers only a reduced set of proper-
ties compared to a blockchain. We defined these properties in the RFL model
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and showed that this model suffices to implement a secure protocol for PCNs.
Furthermore, the RFL model can be instantiated by blockchains. We examined
how the difference between the properties that blockchains have in comparison
to the RFL model can be used to improve payments over HTLCs and we have
shown that this difference has already been used by improvements that have
been proposed in previous works. We also showed that banks can instantiate the
RFL model. Implementing a first layer might be a role banks play in the future.
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Abstract. We present Zerojoin, a privacy-enhancing protocol for
UTXO blockchains. Like Zerocoin, our protocol uses zero-knowledge
proofs and a pool of participants. However, unlike Zerocoin, our pool
size is not monotonically increasing. Thus, our protocol overcomes the
major drawback of Zerocoin. Our approach can also be considered a
non-interactive variant of CoinJoin, where the interaction is replaced by
a public transaction on the blockchain. The security of Zerojoin relies
on the decisional-Diffie-Hellman (DDH) assumption. We also present
ErgoMix, a practical implementation of Zerojoin on top of Ergo, a smart
contract platform based on Sigma protocols. While Zerojoin contains
the key ideas, it leaves open the practical issue of handling fees. The key
contribution of ErgoMix is a novel approach to handle fee in Zerojoin.

1 Introduction

Privacy enhancing techniques in blockchains generally fall into two categories.
The first is hiding the amounts being transferred, such as in Confidential Trans-
actions [1]. The second is obscuring the input-output relationships such as in
Zerocoin [2] and CoinJoin [3]. Some solutions such as Zcash [4,5] combine both.

In this work, we describe Zerojoin, yet another privacy enhancing protocol
based on the latter approach of obscuring input-output relationships. This allows
us to avoid expensive range proofs necessary for the first approach. Our protocol
is motivated from Zerocoin and CoinJoin to overcome some of their limitations.

In particular, the protocol is designed to address two key problems with Zero-
coin [2] and CoinJoin [3], namely the need for a monotonically increasing pool
in Zerocoin and the need for off-chain interaction in CoinJoin. A monotonically
increasing pool makes the protocol unusable in the long term because this pool
has to be kept in memory to verify transactions. Many privacy oriented protocols
including Zerocoin and Monero [6] suffer from this problem. On the other hand,
CoinJoin, which does not have this weakness, has the problem of off-chain inter-
action, which again reduces its usability. Zerojoin aims to address this by creating
a combined protocol that solves both these problems. Quisquis [7] is another pro-
tocol similar to Zerojoin. However, its proofs use generic NIZKs that are much
larger than Zerojoin’s proofs. The following table summarizes the various pro-
tocols. Note that unlike the other protocols, CoinJoin supports a covert mode,
c© Springer Nature Switzerland AG 2020
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where it is not possible to identify if the protocol is in use. Some approaches,
such as MW, CoinJoin and CS are vulnerable to eavesdropping attacks where
an attacker has connectivity to a large part of the network. Hence they need
additional off-chain mechanisms (such as “joiners” [8]) to counter such attacks
before broadcasting transactions to the network.

Monotonic
pool

Generic
NIZKs

Interaction
needed

Eavesdropping
attacks

Example
implementation

CoinJoin [3] No No Yes Yes JoinMarket [9]

Zerocoin [2] Yes Yes No No Zcoin [10]

Monero Yes Yes No No Monero [6]

Quisquis [7] No Yes No No –

Zerojoin No No No No ErgoMixer [11]

An interesting problem in CoinJoin-type protocols such as uis and Zerojoin
is that of fee. Since the protocol requires multiple rounds where a box’s value is
preserved across rounds. If the fee is paid from an external source then privacy
is broken. Thus, any fee must come from the boxes being mixed. However, then
the value cannot be preserved. Our solution to the fee problem is ErgoMix, an
implementation of Zerojoin on the Ergo blockchain. ErgoMix uses mixing tokens,
a Ergo-specific approach to handle fee.

2 Background

Blockchain platforms such as Bitcoin [12], Zerocoin [2], Zcash [4] and Ergo [13]
use short-lived immutable data structures called “coins” or UTXOs (short for
unspent transaction outputs). In such blockchains, every node maintains an in-
memory database of all current UTXOs, called the UTXO-set. A transaction
consumes (destroys) some UTXOs and creates new ones. When a node receives
a block, it updates its UTXO-set based on the transactions in that block. A
UTXO is a single-use object, and its simplest form contains a public key (in
which case, the UTXO can be “spent” using the corresponding private key).
Spending a UTXO essentially involves executing any embedded code inside it
and removing it from the UTXO-set. The alternative to UTXOs is the account-
based model of Ethereum [14] or NXT [15]. Unlike UTXOs, accounts are mutable.
While a UTXO must be completely spent (i.e., its balance cannot be changed),
an account at the bare minimum allows changing the balance. Most privacy
techniques including CoinJoin and Zerocoin are designed for UTXOs and cannot
be easily adapted for accounts. Our protocol also works in the UTXO model only.

2.1 CoinJoin

CoinJoin [3] is a privacy enhancing protocol where multiple parties provide
inputs and create outputs in a single transaction computed interactively such
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Fig. 1. Canonical multi-stage CoinJoin

that the original inputs and outputs are unlinked. The optimal use of CoinJoin
is when two inputs of equal value are joined to generate two outputs of equal
value, and the process is repeated, as depicted in Fig. 1.

In this model, each CoinJoin transaction has exactly two inputs (the boxes
at the tail of the arrows) and two outputs (the boxes at the head of the arrows).
Creating such a transaction requires a private off-chain interaction between the
two parties supplying the inputs, which is denoted by the dashed line. We will
ignore fee for now and revisit this issue in Sect. 4. The key idea of CoinJoin is
that the two output boxes are indistinguishable in the following sense.

1. The owner of each input box controls exactly one output box.
2. An outsider has no idea which output corresponds to which input.

Thus, each CoinJoin transaction provides 50% unlinkability. The output box
can be used as input to further CoinJoin transactions and the process repeated
to increase the unlinkability to any desired level. We will use the same concept
in Zerojoin. CoinJoin requires off-chain interaction and this interactive nature
is the primary drawback of CoinJoin, which Zerojoin aims to overcome.

2.2 Zerocoin

Zerocoin is a privacy enhancing protocol depicted in Fig. 2. The protocol uses a
pool of coins called the unspent pool (U-pool). A coin is added to the U-pool as a
public commitment c = Comm(s, r) of secrets s, r and later removed in a way that
does not reveal c of the coin being removed. Instead, the removing transaction
only reveals secret s, the “serial number”, along with a zero-knowledge proof
that one of the c’s in the U-pool is of the form Comm(s, r) for some r that is
never revealed. Note that c is stored in the U-pool permanently. Additionally, to
prevent double spending, the value s is also stored permanently in another pool
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Fig. 2. Zerocoin protocol

called the spent pool (S-pool). A coin can be spent from the U-pool only if the
corresponding serial number does not exist in the S-pool.

One consequence of this is that both the U-pool (the set of commitments) and
the S-pool (the set of spent serial numbers) must be maintained in memory for
verifying every transaction. Another consequence is that the sizes of the these
two sets increase monotonically. This is the main drawback of Zerocoin (also
Zcash [4]), which Zerojoin tries to address. In Zerojoin, once a box is spent,
no information about it is kept in memory, and in particular no data sets of
monotonically increasing sizes are maintained.

Considering the addition of a coin to the mix as a deposit and removal as a
withdraw, the in-memory storage in Zerojoin is proportional to the number of
deposits minus the number of withdraws, while that in ZeroCash is proportional
to the number of deposits plus the number of withdraws.

2.3 Quisquis

One of the protocols closest in design to Zerojoin is Quisquis [7], since they
both aim to prevent monotonic UTXO sets. At a conceptual level, both have
the same fundamental CoinJoin-type primitive: a mix transaction consumes two
1-Erg boxes and creates two indistinguishable 1-Erg boxes. Similar to Zerojoin,
Quisquis does this in a non-interactive manner, thereby overcoming the main
drawback of CoinJoin. Both Zerojoin and Quisquis have the following structure:

1. Alice adds a box A to the pool and waits for someone (say Bob) to use it.
2. Bob selects a secret bit b and spends A along with some of his own boxes to

create two identical looking boxes O0, O1 such that Ob is spendable by Alice
and O1−b by Bob. The boxes are indistinguishable to outsiders.

3. The protocol enforces Bob to create two identical looking boxes. However, it
cannot be publicly verified if the boxes are created correctly. Thus, while the
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protocol works if Bob is honest, a cheating Bob may create identical looking
boxes containing invalid values, thereby rendering both unspendable.

4. The remaining part of the protocol enforces Bob’s correct behavior using zero-
knowledge proofs that the boxes were indeed created correctly. The difference
is that Quisquis uses generic NIZKs, while Zerojoin uses sigma protocols: it
only takes 8 exponentiations to verify a Zerojoin mix transaction and the
proof size is around 200 bytes compared to several kilobytes.

2.4 Sigma Protocols

Let G be a cyclic multiplicative group where decisional Diffie-Hellman (DDH)
problem is hard. Zerojoin uses two interactive proofs in this setting.

The first, a variation of Schnorr signatures [16], is a proof of knowledge of
discrete logarithm of some u to base g, where the prover proves knowledge of x
such that u = gx. This is called proveDlog(g, u) and implemented as follows:

1. The prover, P, picks r
R← Zq and sends t = gr to the verifier, V.

2. V picks c
R← Zq and sends c to P.

3. P sends z = r + cx to V, who accepts iff gz = t · uc.

A protocol with this structure (P t→ V,P c← V,P z→ V) is called a sigma
protocol if it satisfies special soundness and honest-verifier zero-knowledge [17].

The statement to be proved (example “I know the discrete logarithm of u to
base g”) is denoted by τ . Any sigma protocol can be made non-interactive via
the Fiat-Shamir transform [18] by setting c = H(t) where H is a hash function.

As shown in [19], any two sigma protocols for arbitrary statements τ0, τ1
can be efficiently composed to a single sigma protocol that proves knowledge
of one of the witnesses without revealing which. Let b ∈ {0, 1} be such that P
knows the witness of τb but not τ1−b. P simulates the proof of τ1−b to get an
accepting transcript (t1−b, c1−b, z1−b) and generates tb properly. P sends (t0, t1)
to V. On receiving c, P computes cb = c ⊕ c1−b and then uses tb, cb to compute
the response zb properly. Finally P sends (z0, z1, c0, c1) to V, who accepts iff
both (t0, c0, z0) and (t1, c1, z1) are accepting transcripts and c = c0 ⊕ c1. We call
such a construction the OR operator.

The second primitive we need is a proof of knowledge of a Diffie-Hellman
tuple, where the prover proves knowledge of x such that u = gx and v = hx for
generators g, h. This is called proveDHTuple(g, h, u, v) and implemented using
two parallel runs of the first protocol:

1. P picks r
R← Zq and sends t = (gr, hr) to V.

2. V picks c
R← Zq and sends c to P.

3. P sends z = r + cx to V who accepts iff gz = t0 · uc and hz = t1 · vc.

Swapping h and u, we obtain proveDHTuple(g, u, h, v), where P proves
knowledge of y such that h = gy and v = uy. This is the dual of the origi-
nal protocol.
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3 Zerojoin Protocol

Zerojoin uses a pool of Half-Mix boxes. The set of all unspent Half-Mix boxes is
called the H-pool. To mix an arbitrary box B, one of the following is done:

1. Pool: Add B to the H-pool and wait for someone to mix it.
2. Mix: Pick any box A from the H-pool and a secret bit b. Spend A,B to

output two boxes Ob and O1−b spendable by A’s and B’s owners respectively.

Privacy comes from the fact that boxes Ob and O1−b are indistinguishable
so any outsider can only guess b with probability 1

2 . Thus, the probability of
guessing the original box after n mixes is 1

2n . The protocol is depicted in Fig. 3.

Fig. 3. Multi-round Zerojoin

3.1 One Zerojoin Round

Each individual Zerojoin round consists of two stages, the pool followed by the
mix stage. Let g be some generator of G that is fixed beforehand. Each box has
optional registers α, β that can store elements of G. Without loss of generality,
Alice will pool and Bob will mix.

1. Pool: To add a coin to the H-pool, Alice picks a secret x ∈ Z and creates a
box A containing u = gx. The box is now considered added to the pool.

2. Mix: Bob picks secrets (b, y) ∈ Z2 ×Z and a box, say A, uniformly from the
pool ensuring that u /∈ {g, g−1, g0}. He spends A with some of his own boxes
to create two output boxes O0, O1 having the same value as A such that:
(a) Registers (α, β) of Ob and O1−b store (gy, uy) and (uy, gy) respectively.
(b) Ob, O1−b are protected by the sigma statement given below:

proveDHTuple(g, α, u, β) OR proveDlog(g, β) (1)
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Ob and Ob−1 can be spent by Alice and Bob respectively using their secrets.
Alice can identify her box as the one with β = αx. Assuming that the DDH
problem is hard, no outsider can guess b with probability better than 1

2 .
The above protocol works assuming Bob behaves correctly. The protocol can

enforce Bob to create two outputs with the same value as A and registers α, β
swapped. However, since the DDH problem is hard, we cannot test whether the
values in the registers are of the correct form (i.e., one is gy and other is uy).
This is where the dual of proveDHTuple for secret y will come to our rescue.
Concretely, Bob must adhere to the below rules when spending A:

1. Bob must create two outputs O0, O1 with the same value as A.
2. Both O0, O1 must be protected by the sigma statement of Eq. 1.
3. Let ij be register i of Oj . Then the following must hold:

(α0, β0) = (β1, α1) (2)

4. Bob must prove (via the dual) that one of {(g, u, α0, β0), (g, u, β0, α0)} is of
the form (g, gx, gy, gxy). In other words, Bob must prove the sigma statement:

proveDHTuple(g, u, α0, β0) OR proveDHTuple(g, u, β0, α0) (3)

3.2 Analysis

For correctness, Alice requires that no one should be able to spend A in a manner
that makes the resulting output(s) unspendable by her.

First note that due to Eqs. 2 and 3, Bob has no choice but to create two
outputs O0, O1 such that the registers (α, β) of Ob and O1−b contain (gy, gxy) and
(gxy, gy) respectively for some integer y and bit b. Then the spending condition
of Alice’s Full-Mix box, Ob, reduces via Eq. 1 to:

proveDHTuple(g, gy, gx, gxy) OR proveDlog(g, gxy).

The above statement can be proven by anyone who knows at least one of x
or xy. Thus, Alice can spend this because she knows x.

For Alice’s soundness, no one else apart from her should have the ability to
spend Ob. Assume that there exists such a spender. Since only Alice knows x
and the only other way to spend the box is via proveDlog(g, gxy), that other
spender must know xy. Such a spender cannot know y and so cannot spend
O1−b. We can model this spender as a black-box taking as input (g, gx) and
outputting (gy, xy) for some y �= 0. Since such a black-box can be used to solve
the Computational Diffie-Hellman (CDH) problem in G, we can rule this out.

From Bob’s point of view, the spending condition of O1−b reduces to

proveDHTuple(g, gxy, gx, gy) OR proveDlog(g, gy).

Since Bob knows y, he can spend the box using the right part of the statement.
Finally, if someone apart from Bob spends O1−b then they must have used the
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left part of the statement because using the right part would require knowledge
of y. However, using the left part is not possible because (g, gxy, gx, gy) is not a
valid Diffie-Hellman tuple. Hence, no one else apart from Bob can spend O1−b.
Note that despite the left being an invalid tuple, the simulator must generate a
valid proof for it, otherwise we could use the simulator to solve DDH.

For privacy, the only difference between Ob and O1−b is that registers (α, β)
are of the form (gy, gxy) and (gxy, gy) respectively. Assuming that the Decision
Diffie-Hellman (DDH) problem in G is hard, no outsider has the ability to dis-
tinguish the boxes before they are spent. Since each box is spent using a sigma
OR proof that is zero-knowledge [17], this applies even after they are spent.

Comparing with CoinJoin and Zerocoin: Both CoinJoin and Zerojoin use two
indistinguishable outputs that provide the privacy (see Sect. 2.1). However, each
CoinJoin transaction requires an off-chain interaction over a private channel. In
Zerojoin, this interaction is replaced by a public transaction on the blockchain.

Both Zerocoin and Zerojoin add boxes to a pool and later spend them via
zero-knowledge proofs (see Sect. 2.2). The difference is that the privacy in Zero-
coin depends on the size of the pool, while that in Zerojoin depends on the
number of rounds. Thirdly, Zerocoin’s pool increases monotonically in size, while
that of Zerojoin does not. Finally, the NIZK proofs in Zerocoin are much larger
compared to the non-interactive sigma proofs of Zerojoin.

3.3 Implementing Zerojoin in ErgoScript

One way to implement Zerojoin would be to create a specialized privacy oriented
blockchain with the protocol hardwired (such as Zcash [4]). A more pragmatic
approach is to encode the protocol at the smart contract layer using a language
that allows us to specify predicates on the entire transaction (i.e., one operating
at context level C2 or higher using the terminology of [20]). We can then use
the approach of [21] to encode the protocol into the smart contract of A, that
is, by encoding Zerojoin as a two-stage protocol with the ‘fingerprint’ of the
second stage embedded within a the first stage. One platform that supports
such features is Ergo [13] and the following sections describe how to implement
Zerojoin in ErgoScript, the programming language of Ergo. Note that ErgoScript
is a strict subset of the Scala programming language [22,23].

For brevity, assume that alpha, beta, gamma are aliases for the registers
α, β, γ of a box that contain elements of G. We already saw the first two used
earlier. The third is to store u. We give some more notation below.

1. script refers to the guard script (in binary format) of the box.
2. value refers to the quantity of Ergo’s primary token stored in the box.
3. id refers to the globally unique identifier of the box.
4. SELF is omitted, so id on its own, for example, must be read as SELF.id.

Let x be Alice’s secret and let u = gx. To create the Half-Mix box with u,
first compile the following script of the second stage to get fullMixScript:
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1 proveDHTuple(g, alpha , gamma , beta) || proveDlog(g, beta)

Contract 1. Full mix script

Next create a script, halfMixScript, with the following code:
1 val alpha0 = OUTPUTS (0).alpha
2 val alpha1 = OUTPUTS (1).alpha
3 val beta0 = OUTPUTS (0).beta
4 val beta1 = OUTPUTS (1).beta
5 val gamma0 = OUTPUTS (0).gamma
6 val gamma1 = OUTPUTS (1).gamma
7 val value0 = OUTPUTS (0).value
8 val value1 = OUTPUTS (1).value
9 val script0 = OUTPUTS (0).script

10 val script1 = OUTPUTS (1).script
11

12 INPUTS (0).id == id && // ensure this is the first box in transaction
13 alpha0 == beta1 && beta0 == alpha1 && gamma0 = gamma && gamma1 == gamma &&
14 value0 == value && value1 == value &&
15 script0 == fullMixScript && script1 == fullMixScript &&
16 alpha0 != beta0 && // to prevent Bob from setting y = 0
17 (proveDHTuple(g, gamma , alpha0 , beta0) ||
18 proveDHTuple(g, gamma , beta0 , alpha0))

Contract 2. Half mix script

Note that OUTPUTS(0) is the first output of the transaction, OUTPUTS(1) is
the second output, and so on. Alice’s box A is protected by halfMixScript.
Alice must store u in register gamma of that box.

4 ErgoMix: Zerojoin with Fee

Similar to Zerocoin and CoinJoin (Fig. 1), each Half-Mix and Full-Mix box in
Zerojoin must hold the same fixed value, which is carried over to the next stage.
This implies zero-fee transactions because any fee must either be paid from the
Full/Half-mix boxes (which breaks the fixed value requirement) or from a non-
Zerojoin box (which breaks privacy). Zero-fee transactions are not practical.

Here we describe how to handle fee on the Ergo blockchain. To differentiate
the generic protocol (Zerojoin) from the underlying implementation using Ergo,
we give the name ErgoMix to any of the various extensions in this section that
are largely specific to Ergo. We classify Zerojoin transactions into the following:

1. Alice entry: When someone plays the role of Alice to create a Half-Mix
box and add to the H-pool. The inputs to the transaction are one or more
non-ErgoMix boxes (external boxes) and the output is one Half-Mix box.

2. Bob entry: When someone plays the role of Bob to spend a Half-Mix box
and remove from the H-pool. The other inputs of the transaction are one or
more non-ErgoMix boxes and the outputs are two Full-Mix boxes.

3. Alice or Bob exit: When someone plays the role of Alice or Bob to spend
a Full-Mix box and send the funds to a non-ErgoMix box.

4. Alice or Bob reentry as Alice: When someone plays the role of Alice or
Bob to spend a Full-Mix box and create a Half-Mix box (i.e., send the coin
back to the H-pool). The input is a Full-Mix box and the output is a Half-Mix
box of the same amount.
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5. Alice or Bob reentry as Bob: When someone plays the role of Alice or
Bob to spend a Full-Mix box along with another Half-Mix box and create two
new Full-Mix boxes. The input is a Half-Mix box and a Full-Mix box and the
outputs are two new Full-Mix boxes.

Clearly, for both Alice and Bob entries, fee is not an issue because both
parties can fund the fee component of the transaction from a known source.
Similarly for case 3, when exiting the system, part of the amount in the Full-
Mix box can be used to pay fee. The only time we need to hide the source of fee
is when we spend a Full-Mix box and want to reenter as either Alice or Bob.

4.1 An Altruistic Approach

In this approach, fee is paid by a sponsor when spending a Full-Mix box for
reentry. We use a variation of Fee-Emission boxes presented in [24].

Fee-Emission Box: A sponsor creates several Fee-Emission boxes to pay reentry
fee. Such a box can be spent under the following conditions:

1. There is exactly one Fee-Emission box as input.
2. There is exactly one Full-Mix box as input.
3. Either exactly one input or exactly one output is a Half-Mix box.
4. The updated balance is stored in a new Fee-Emission box.

This is encoded in ErgoScript as follows:
1 def isFull(b:Box) = hash(b.script) == fullMixScriptHash
2 def isHalf(b:Box) = hash(b.script) == halfMixScriptHash
3 def isFee(b:Box) = hash(b.script) == feeScriptHash
4 def isCopy(b:Box) = b.script == script &&
5 b.value == value - fee
6 val asAlice = INPUTS.size == 2 && OUTPUTS.size == 3 &&
7 isFull(INPUTS (0)) && isHalf(OUTPUTS (0)) &&
8 isCopy(OUTPUTS (1)) && isFee(OUTPUTS (2)
9 val asBob = INPUTS.size == 3 && OUTPUTS.size == 4 &&

10 isHalf(INPUTS (0)) && isFull(INPUTS (1)) &&
11 isCopy(OUTPUTS (2)) && isFee(OUTPUTS (3))
12 asAlice || asBob

Contract 3. Fee emission script

The condition asAlice encodes the rules of spending a Full-Mix box to emu-
late Alice for the next mix and create a Half-Mix box. Similarly, the condition
asBob has the rules for spending a Full-Mix box as Bob’s contribution in a mix.

The sponsor pays the fee whenever a Full-Mix box is remixed. However, there
is no guarantee that some given Full-Mix box was actually created in a mix
transaction. The only way to determine this is to examine the transaction that
created the box. However, this is not yet possible in ErgoScript. Thus, the above
approach is susceptible to freeloaders who store their funds in a Full-Mix box.
However, such freeloaders must either create a Half-Mix box or spend another
Half-Mix box, thereby forcing them participate in the protocol. This gives no
advantage to freeloaders who still need to pay fee to create a fake full-mix box.
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4.2 Mixing Tokens

Ergo’s primary token is known as Erg, which is necessary to pay for transaction
fees and storage rent [25]. An Ergo transaction conserves primary tokens (they
can neither be created nor destroyed) and any box must have a positive quantity
of primary tokens. Each box can optionally have secondary tokens which are
uniquely identified by an id. Unlike primary tokens, an Ergo transaction can
destroy secondary tokens. Additionally, each transaction can also create (i.e.,
issue) at most one new token in arbitrary quantity, whose id is the globally
unique id of the first input box of that transaction.

In this approach, we will still use a Fee-Emission box (as in Sect. 4.1) to pay
the fee in Ergs. However, we will also use secondary tokens issued by the creator
of the Fee-Emission box, which we call mixing tokens (identified by tokenId).
The Fee-Emission box can only be used by destroying a mixing token.

Approximate Fairness: We use the approximate fairness strategy described
in [26]. At a high level the idea is as follows. Each mix transaction consumes
one mixing token, which must be supplied by the inputs. Thus, there must be
at least one mixing token among the inputs. Additionally, to keep the outputs
indistinguishable, each must have the same number of tokens.

The approximate fairness strategy says that Bob must supply half the token,
and is allowed to supply less tokens than Alice as long as both started with the
same amount and Bob lost them in sequential mixes. The approximate-fairness
strategy works only if two conditions are satisfied. The first is that mixing tokens
are confined within the system by restricting their transfer to only those boxes
that participate in a remix. The second is to ensure that tokens always enter the
system in a fixed quantity, and that too in one of the two ErgoMix boxes.

4.3 Token Confinement

In this section we enforce the first requirement of approximate fairness, that of
confining the tokens within the system. Recall that the Half-Mix box’s script
refers to the Full-Mix box’s script via the constant fullMixScriptHash. Our
approach additionally requires the Full-Mix box’s script to refer back to the
Half-Mix box’s script. We do this by storing the hash of the Half-Mix script in
one of the registers of the Full-Mix box. Let delta be an alias for this register
that stores an array of bytes. The scripts are also modified.

Fee-Emission Box: We modify isFull method of the Fee-Emission box contract:
1 def isFull(b:Box) = hash(b.script) == fullMixScriptHash &&
2 b.delta == halfMixScriptHash
3 (... remaining code same as Contract #3)

Contract 4. Fee emission script with confinement

Recall that the rule for spending the Fee-Emission box is to destroy one mix-
ing token. While the above contract does not directly enforce this requirement,
it does so indirectly via the Full-Mix and Half-Mix scripts discussed below.
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Full-Mix Box: Modify fullMixScript, the contract of a Full-Mix box as well:
1 def isHalf(b:Box) = hash(b.script) == delta &&
2 b.value == value
3 def isFull(b:Box) = b.script == script &&
4 b.delta == delta && b.value == value
5 def noToken(b:Box) = b.tokens(tokenId) == 0
6 val nextAlice = isHalf(OUTPUTS (0)) && INPUTS (0).id == id
7 val nextBob = isHalf(INPUTS (0)) && INPUTS (1).id == id
8 val destroyToken = OUTPUTS.forall(noToken)
9 val nextAliceLogic = OUTPUTS (0).tokens(tokenId) ==

10 INPUTS (0).tokens(tokenId) - 1 &&
11 OUTPUTS (0).tokens(tokenId) > 0
12

13 (( nextAlice && nextAliceLogic) || nextBob || destroyToken)
14 && (... earlier condition from Contract #1)

Contract 5. Full mix script with confinement

The script enforces the transfer of mixing tokens when spending the Full-Mix
box to create a Half-Mix box. In particular, the tokens can only be transferred
if the transaction either outputs a Half-Mix box (i.e., the spender takes the role
of Alice in the next mix step, in which case one mixing token is destroyed) or
participates in a mix transaction as Bob and spends a Half-Mix box along with
this Full-Mix box (in which case, the transfer of mixing tokens is governed by
the contract in the Half-Mix box).

Half-Mix Box: Next, the Half-Mix contract (halfMixScript) is also modified:
1 val alice = INPUTS (0).tokens(tokenId)
2 val bob = INPUTS (1).tokens(tokenId)
3 val out0 = OUTPUTS (0).tokens(tokenId)
4 val out1 = OUTPUTS (1).tokens(tokenId)
5 val tLogic = alice + bob == out0 + out1 + 1 && bob > 0 && alice > 0
6

7 OUTPUTS (0).delta == hash(script) &&
8 OUTPUTS (1).delta == hash(script) && out0 == out1 && tLogic &&
9 && (... earlier condition from Contract #2)

Contract 6. Half mix script with confinement

The above contract assumes that the boxes already have some quantity of
mixing tokens and enforces how these must be used. Each mix transaction is
assumed to consume one such token, and to maintain privacy, the token balance
must be equally distributed between the two outputs. The contract follows the
approximate-fairness strategy where Alice requires Bob to contribute at least
one mixing token [26]. For perfect fairness add the condition alice == bob.

4.4 Token Entry

Token-Emission Box: A Token-Emission box is used to get mixing tokens for
entry into the system as either Alice or Bob. It contains the following contract.
1 def isCopy(b:Box) = b.script == script && b.value == value &&
2 b.tokens(tokenId) == tokens(tokenId) - amt
3 def isFull(b:Box) = hash(b.script) == fullMixScriptHash &&
4 b.delta == halfMixScriptHash
5 def isHalf(b:Box) = hash(b.script) == halfMixScriptHash
6 def isFee(b:Box) = hash(b.script) == feeScriptHash &&
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7 b.value == fee
8 def isEntry(b:Box) = (isFull(b) || isHalf(b)) &&
9 b.tokens(tokenId) == amt

10 def isZero(b:Box) = b.tokens(tokenId) == 0
11

12 INPUTS (0).id == id && isZero(INPUTS (1)) && INPUTS.size == 2 &&
13 isEntry(OUTPUTS (0)) && isCopy(OUTPUTS (1)) && isFee(OUTPUTS (2))

Contract 7. Token emission script

Anyone can spend the Token-Emission box to send a fixed amount amt of
mixing tokens to either a Half-Mix box or a (fake) Full-Mix box, which should
be the first output of the transaction. The other outputs are a copy of the token-
emission box with the balance tokens and the fee paying output. The transaction
must have exactly two inputs, with the token-emission box being the first and
the second containing zero mixing tokens.

We can use mixing tokens to verify that a given Full-Mix box was indeed
created in a mix transaction, and a given Half-Mix box was indeed created by
spending a Full-Mix box. In particular, this is true if and only if the box contains
less than amt and more than 0 mixing tokens.

While the above Token-Emission box gives the mixing tokens for free, it is
trivial to modify the contract to sell the tokens at some given rate. The only
change required is in the isCopy method:
1 def isCopy(b:Box) = b.script == script &&
2 b.value == value + amt * rate &&
3 b.tokens(tokenId) == tokens(tokenId) - amt
4 (... remaining code same as Contract #7)

Contract 8. Token emission script with sell capability

We also want the token issuer to be able to withdraw any Ergs deposited by
token buyers. To achieve this, the token-emission box is again modified:
1 (... earlier condition from Contract #8) ||
2 (issuerPubKey && INPUTS.size == 1 &&
3 OUTPUTS (0).script == script && OUTPUTS (0).value > minErgs &&
4 OUTPUTS (0).tokens(tokenId) == tokens(tokenId))

Contract 9. Token emission script with withdraw capability

It is necessary to keep a certain amount of Ergs, minErgs inside each Token-
Emission box, otherwise the box may be destroyed when miners collect storage
rent. This value should be large enough to ensure sustenance for several years.
In order to allow several people to buy tokens in the same block and to avoid
collisions when multiple people try to spend the same token-emission box, there
must be several token-emission boxes.

Analysis: Because of the condition bob > 0 in tLogic of the Half-Mix box, a
mix transaction requires Bob to supply at least one token, and since these tokens
can only be stored in either Full or Half-Mix boxes, the second input of a mix
transaction must be a Full-Mix box (as opposed to any box). That Full-Mix box
can either be the output of a mix transaction (a real Full-Mix box) or the output
of a token purchase transaction (a fake Full-Mix box).
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Another consequence of bob > 0 is that at least one token must exist in
order to spend Alice’s box. In the case that mixing tokens become unavailable,
Alice’s box is rendered unspendable. In order to handle this, we need to ensure
that mixing tokens are always available. One way would be to have each token-
emission box store a large number of tokens, much more than what can be
purchased with all the available Ergs. Before storing any funds in a Half-Mix
box, it must be ascertained that there are a large number of mixing tokens stored
in at least one token-emission box.

An alternate way to ensure that Alice’s Half-Mix box does not get stuck due
to non-availability of tokens would be to allow Alice to spend the box using her
secret. This requires modifying the Half-Mix box as follows:
1 def noToken(b:Box) = b.tokens(tokenId) == 0
2

3 (proveDlog(g, alpha) && INPUTS.size == 1 && OUTPUTS.forall(noToken)) ||
4 (... earlier condition from Contract #6)

Contract 10. Half script with withdraw capability

The above modification allows Alice to spend the Half-Mix box using her
secret but she must destroy all mixing tokens in doing so.

Figure 4 gives an example flow with the above contracts in place. To avoid
clutter, we skipped the fee output in the above flow. However, each transaction
is implicitly assumed to have an additional box for paying fee.

Fig. 4. Multi-round ErgoMix with Mixing Tokens to handle fee
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A mix transaction is always a reentry as Bob and both Alice and Bob’s entry
is through a token purchase transaction.

The predicate alice > 0 also requires that the Half-Mix box have at least
one token, implying that the only way to create the Half-Mix box would be in a
token purchase transaction or transaction for reentry as Alice. In particular, it
is impossible to create a Half-Mix box in an other manner.
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Abstract. Over the past two decades, group signature schemes have
been developed and used to enable authenticated and anonymous peer-
to-peer communications. Initial protocols rely on two main authorities,
Issuer and Opener, which are given substantial capabilities compared to
(regular) participants, such as the ability to arbitrarily identify users.
Building efficient, fast, and short group signature schemes has been the
focus of a large number of research contributions. However, only a few
dealt with the major privacy-preservation challenge of group signatures;
this consists in providing user anonymity and action traceability while
not necessarily relying on a central and fully trusted authority. In this
paper, we present DOGS, a privacy-preserving Blockchain-supported
group signature scheme with a distributed Opening functionality. In
DOGS, participants no longer depend on the Opener entity to identify
the signer of a potentially fraudulent message; they instead collaborate
and perform this auditing process themselves. We provide a high-level
description of the DOGS scheme and show that it provides both user
anonymity and action traceability. Additionally, we prove how DOGS is
secure against message forgery and anonymity attacks.

1 Introduction

Developed in the 70’s, digital signatures are one of themost important primitives in
public key cryptographyandprovideauthentication, integrity andnon-repudiation
to various applications. However, they do not provide privacy of the signer [12].
Our focus is on signature schemes that provide bothuser anonymity and action
traceability , which fall in the realm of group signature schemes.

Introduced by Chaum and van Heyst [5], group signature schemes enable
members of a group to sign messages on behalf of the group without revealing
their identity. The signature can be verified by the recipient as a valid signature
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from the group, but cannot identify the member who generated the signature.
However, signing members remain accountable for their messages as the group
manager, a third-party managing the group, can open their signatures and hence
identify them.

In [2], Bellare et al. presented some fundamental security notions for dynamic
group signatures. A key feature of their scheme is that the group manager is split
into two distinct entities: the Issuer which interacts with users to authenticate
their credentials, and the Opener which is called when a signature needs to be
opened.

Role of the Opener. The opener acts as the tracing authority in charge of
linking a signed message to its origin, namely the signer. By definition, the role
of the Opener entails no privacy preservation. Existing literature [9,10] usu-
ally considers a unique entity to be playing the role of the Opener, inducing
strong assumptions of the level of trust in such an entity as well as its resilience.
In Vehicular Ad-hoc Networks (VANETs) for instance, vehicles use group sig-
natures to sign the (location and time-dependent) road-safety messages they
broadcast. A vehicle’s identity is protected by the scheme unless the Opener is
compromised, in which case signatures may be opened which then breaches user
privacy. An alternative way to relax these strong assumptions in the Opener is
to implement a distributed tracing authority instead.

Related Work on Distributed Traceability. Studies that propose a dis-
tributed traceability functionality for group signature schemes (e.g., [3,6]) often
leverage Shamir’s Secret Sharing (SSS) scheme to generate shares of the Opener
secret key and then distribute one share per user. This approach however presents
a clear limitation: the computation of these shares is again centralized which still
represents a single point of failure from an adversary perspective.

Our Contribution. In this paper, we propose the Distributed Opening Group
Signature DOGS scheme, a BSZ group signature scheme [2] enhanced with the
Distributed Key Generation (DKG) protocol from [11] (later denoted ETHDKG)
for the distribution of the Opener secret key. The advantage of our DKG-
enhanced group signature over SSS-based approaches is that the key generation
is not entrusted to a third party. Instead, it is the result of the collaboration of
a group of users. Hence, none of them knows all the shares, making the scheme
strong against a more powerful adversary.

Structure of the Paper. Section 2 provides a description of the system model,
desirable security features and the primitives used. Section 3 gives a generic
presentation of the DOGS construction. Section 4 presents the security analysis
of DOGS. Section 5 concludes the paper.
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2 Preliminaries

In this section, we present the adversary model and corresponding security fea-
tures of DOGS. We describe the system, giving a real-world use case, and intro-
duce our solution for the distribution of the Opener.

2.1 Adversary Model and Desirable Features

In DOGS, we consider an adversary that wants to break the underlying group
signature scheme. Therefore it can perform de-anonymization attacks (i.e. inter-
cept a message and identify the signer), key recovery attacks or forgery attacks
(i.e. create a signature that would defeat the opening procedure or frame a legit-
imate user). All these scenarios are captured in Bellare et al. [2].

Desirable Features. Our main objectives are for our DOGS scheme to be cor-
rect and to provide anonymity, traceability and non-frameability. Let λ denotes
the security parameter.
Correctness. The correctness property guarantees that signatures issued by
honest users:
i) should pass the verification,
ii) should trace to the correct issuer if opened with the Opening key, and
iii) the proof output by the Open process should verify the Judge algorithm.��

Anonymity. Let U0 and U1 be two honest registered users, and σ a valid signa-
ture issued by Ub for some b ∈ {0, 1}. The anonymity property requires that no
probabilistic polynomial-time (PPT) adversary A can guess b with non negligible
(in λ) advantage. ��
Traceability. An adversary breaks the traceability property if she succeeds in
creating a valid signature σ such that either:
i) no registered (or revoked) user can be identified when σ is legitimately opened,

or
ii) the proof, produced by a honest opening, revealing that σ belongs to user U ,

does not convince the Judge algorithm. ��

Non-frameability. Finally, the non-frameability property requires that no PPT
adversary A can create a valid signature that would trace to an honest user if
opened, unless this user has effectively issued it. ��

We prove that DOGS is compliant with these security goals in Sect. 4.

2.2 System Model

Involved in our DOGS scheme are: an authority called the Issuer Iss for the
generation of initial cryptographic information, and a body of users, each with a
unique identity i (e.g. i ∈ N). We assume over half of the participants are honest.
Iss is public and has its own secret key. It interacts with users to issue them an
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authenticated signing key. We consider a Region of Interest (RoI), which users
can join and leave and in which they can communicate. One Issuer is responsible
for one RoI.

Use Case. In VANETs, we can assimilate the RoI to a neighbourhood. Vehicles
are the users. They can enter, leave and move in the area, communicate with
each other and broadcast road information. The Roadside unit acts as the Issuer.

2.3 Distributed Key Generation for DOGS
Distributed Key Generation (DKG) protocols are fundamental building blocks
for a variety of cryptographic schemes [8]. They enable a group of users to collab-
orate in order to obtain a common public key. The strength of DKG lies in that
the public key can be computed by any honest participant, while the correspond-
ing secret key cannot. Instead, it requires a threshold number of collaborating
honest parties to derive it.

In this paper, we draw from Schindler et al.’s DKG implementation [11]
(ETHDKG). The authors present a fully functioning DKG protocol for thresh-
old signature generation, based on Ethereum smart contracts. In the following
section, we explain how we combine this DKG proposition with BSZ group signa-
ture to produce a new Group Signature scheme with Distributed Opener called
DOGS.

3 Protocol Description

There are three phases in DOGS:
phase 1 “Distributed Generation of an Opening Keys”,
phase 2 “Inter Communications and App-related event logging” and
phase 3 “Auditing and Identification”.

We transpose them into five distinct modules (Fig. 1) namely Bootstrapping,
Registration and Opening Keys (OK) Generation (phase 1), Application
(phase 2) and Audit (phase 3).

Fig. 1. DOGS Workflow diagram
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Table 1. Description of the transaction (Tx) types and corresponding published data.

Module Algorithm Type Comments

Bootstrap GKg Bootstrap Publication of the group public

key gpk, and the Issuer public key

ipk

Registration UKg None Ui generates local identity

upk[i],usk[i]

Join Joining Request By Ui, sends personal data to

Issuer

Iss Issuing Reply 2 issues: accept/reject. If accept,

the Issuer records the link

between upk[i],usk[i] and

(i, pki, sigi)

Opening Keys

Generation

sharing Opening Keys (OK)

Generation

Request

Ui generates and distributes

commitments (Cij), encrypted

shares sij and value hsi , for

k = 0..t, j = 1..n

share verification Claim A user U issues a claim

=< status, data, key, proof >

claim verification Claim Verification All U check the validity of the

claim; 2 issues: accept/reject

key derivation Key Publication The Issuer determines and

publishes the resulting Opening

public key opk

Application GSig Signature User U produces a group

signature σ under opk

GVf Verification User U verifies a group signature

σ under opk. 2 issues:

accept/reject

Audit Request Open Request User U requests the opening of a

group signature σ under opk

Collaborate Secret Key

Publication

One of the authorized users

publishes the re-constructed

Opening secret key osk

Open Open The signature σ is opened and the

result is published by the

requester

Judge Judge A user - not the requester -

asserts and publishes the validity

of the requester’s opening

Algorithms and their Usage. Users can become group members by join-
ing the Region of Interest and interacting with the Issuer. They become sub-
opener authorities and participate to the opening process if they own a share of
an Opening secret key. The group of sub-openers therefore replaces the Opener.
The scheme is specified as a tuple DOGS =(GKg, dOKg, UKg, Join, Iss, GSig,
GVf, Request, Collaborate, Open, Judge) of PPT algorithms, whose intended
usage and functionalities are presented in this section. This protocol heavily
relies on previous works [2,11] and we advice the readers to briefly review them
before they proceed. Indeed, (GKg, UKg, Join, Iss, GSig, GVf, Open, Judge)
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are inherited from [2], and dOKg invokes (sharing, share verification,
claim verification, key derivation) formalized from [11].

Usage of the Public Ledger. Throughout these phases, we assume the exis-
tence of a trusted message delivery service. To do so, we make use of a public
ledger to record relevant information, i.e. any public data that can be used to
assert the validity and integrity of the shared cryptographic parameters.

We leverage a classic blockchain implementation with the usual functionali-
ties related to block addition, linkage and forking issues. In DOGS protocol, the
transaction types and corresponding published data are summarized in Table 1,
which includes the definition of: seven transaction types for Phase 1 (e.g. the
bootstrap transaction corresponds to the publication of bootstrapping informa-
tion); two transaction types for Phase 2, which illustrate the signing action of
a user and verifying process of other members of the group; and finally, four
transaction types for Phase 3.

Since the information published does not hold private or sensitive informa-
tion, the public ledger is readable by anyone. However, we restrict the writing
permissions to authenticated users only.

3.1 Phase 1: Distributed Generation of the Opening Keys

In the following paragraphs, we will explain each step of Phase 1.

Bootstrap. The scheme starts with the bootstrapping of the system. It con-
sists in the Issuer executing the GKg algorithm and results in the publication of
both the group public key gpk and the the Issuer’s public key ipk (Bootstrap
transaction).

Registration. User Ui enters the RoI. First, Ui executes the UKg algorithm
to obtain a personal public/private key pair, referring to its local identity
(usk[i],upk[i]). Then, Ui starts the Join,Iss interactive protocols. It executes
the Join function and triggers the Join Request transaction. The genera-
tion and publication of related information (Table 1) is compliant with Bellare
et al.’s GS Join algorithm, but enhanced with logging functionalities for trace-
ability purposes. The Issuer receives encrypted data from Ui, including identify-
ing information such as the public key pki used to verify Ui’s signed messages. It
compares it to the public record for data integrity checks; then executes the Iss
function, triggering the publication of resulting data and the Issuing Reply
transaction. The Registration step has two issues: the first ends up in Ui’s
request being rejected due to faulty data; the second grants Ui with a certificate
certi and allows it to perform subsequent actions such as Opening Keys (OK)
Generation Request, make a Claim, or a Claim Verification. If so, the
Issuer records, in its local database, the relationship between the user’s local
identity given by UKg, and the authenticated identity (i, pki, sigi) used in the
RoI.
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Opening Keys (OK) Generation. Since the Opener is no longer a single
entity, from now on, we will use the wording “Opening” to designate the func-
tionality it was in charge of. We now consider an authenticated user Ui and
explain how it can request the generation of Opening keys to protect its future
communications (see GSig [2]).

Ui executes the sharing function inherited from [11]. This function triggers
the Opening Keys (OK) Generation Request transaction. Subsequently,
Ui generates and publishes the required information (commitments (Cik), shares
(sij) and value hsi according to [11]) for the computation of an Opening public
key.

The broadcasting of this new transaction triggers an update of the local
ledgers of the users. They individually execute the share verification function
to check the correctness of the share that has been sent to them by Ui (note: each
share sij is encrypted with a symmetric encryption scheme of key kij = gskiskj =
pk

skj

i = pkski
j ). The execution of this function triggers a Claim transaction and

publishes the result as < status, data, key, proof >. Depending on status, there
are two different results: if status contains the value “no claim” or Uj does not
reveal kij or its proof π(kij), then the share is accepted and Uj in turn has to
broadcast its own shares (see Case 1). Else if, status value is equal to “claim”,
then the protocol holds as others check the claim (see Case 2).

Case 1. Therefore, Uj in turn executes the sharing function, distributes the
resulting shares and publishes related data. Again, share verification func-
tion is used to check the validity of the shares but this time either the peers
{Uk}k �=j∈N accepts Uj ’s share and it ends there, or it rejects it.

Case 2. In this case, a share has been rejected and a claim has been broadcast.
Hence, users execute claim verification function to check its validity. Doing
so, they trigger a Claim Verification transaction which results in either the
claim being denied or accepted.

Once all the shares and claim have been verified, the Issuer can execute
key derivation function. It browses the public records and determines which
shares are usable to compute the final Opening public key. It finally publishes
this key opk and R the list of authenticated local identities which participated
to the establishment of this Opening key.

In the following sub-section, we explain how anyone in the RoI can use opk in
GSig to encrypt its signature, ensuring its anonymity in communications while
still providing action traceability.

3.2 Phase 2: Inter Communications and Application-Related Event
Logging

Application. Our DOGS scheme has been initially thought to be applied in
the context of local logging of events, especially for VANETs. Let us consider
Ui has a road-safety information to share with vehicles in the neighbourhood,
for instance an alert about a car accident. However, Ui does not want to reveal
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its identity nor its position at this particular time (to prevent location-based
identity inference [7]). If Ui applies GSig function on the alert message, it is
able to produce a signature that refers to the group but protects its identity.
It additionally triggers the Signature transaction. The use of [2]’s GSig along
with the DKG-computed Opening public key ensures that no single sub-opener
can open this signature, hence identify Ui. However, users in the neighbourood
can still individually execute GVf [2] to assert the correctness of the received sig-
nature and trust Ui’s alert. The result gets published along with Verification
transaction.

That is how user anonymity is provided in DOGS. In the following sub-
section, we consequently explain how DOGS also provides action traceability.

3.3 Phase 3: Auditing and De-anonymization

Audit. This module regroups the required functionalities implemented in DOGS
for providing action traceability.

With Request, the requester Ui triggers the Open Request transaction,
hence summoning users in the RoI to collaborate in order to reconstruct an
Opening secret key. Ui therefore communicates the signature σ it wants to open,
the message m it signs and the corresponding Opening public key opk. For
traceability guarantees, this request gets published on to the public ledger.

Then, the Collaborate function is executed. All Uj in the set R related to
opk will collaborate to reconstruct the Opening secret key osk (by consecutively
summing their shares to previous partial results). The last peer to add its own
secret st+1 also publishes the result while triggering the Secret Key Publi-
cation transaction. It includes the initial data <m, opk, σ>, the set R, and the
result of their work osk.

Finally, by retrieving osk, the requester Ui can identify the origin of σ and
publishes the result via the Open function (Open transaction). Other peers in the
RoI can consequently check this identification by executing the Judge function
(Judge transaction).

4 Security Analysis

In this section, we show that the use of ETHDKG functionalities is compatible
with the security environment related to group signature schemes as presented
in [2], hence that DOGS presents all the security properties we aimed for. Due
to space restrictions, the security proofs are only sketc.hed, but most of them
are directly inherited from the BSZ construction and the ETHDKG protocol.
Only the anonymity property requires a careful treatment. We refer the reader to
BSZ [2] for a complete description of the experiments for each security feature.

Let λ be λ = 100 bits of security provided by the instantiation of the
ETHDKG with the elliptic curve BN254 [1].
Correctness. Properties i) and iii) are directly satisfied using BSZ. Assuming
the Opening key is correctly reconstructed, which is the case with overwhelming
probability (in λ) thanks to ETHDKG, then ii) is also satisfied. ��
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Anonymity. In the original experiment [2], A does not have access to the open-
ing oracle. In DOGS, we weaken this assumption to “A has access to at most t
shares of the Opening secret key (including her own, if she is a registered user)”.
Then A has negligible advantage in λ in recovering osk [11] and our anonymity
feature boils down to the original one, which is fulfilled by using BSZ. ��
Traceability. Similarly, in [2], A is granted access to the Opening secret key osk.
Therefore, A learns nothing more by corrupting users and DOGS traceability is
inherited from BSZ. ��
Non-frameability. Here again, since A has already access to osk in the original
experiment, she obtains no additional advantage by exploiting the shares of the
Opening secret key, and DOGS satisfies non-frameability as BSZ. ��

Discussion. Most of the security features are directly inherited from the BSZ
and ETHDKG constructions. However, the anonymity experiment as described
in [2] needs to be slightly modified. Indeed, an adversary A against the original
property could create and corrupt sufficiently many (more than t) users to obtain
their respective shares of the Opening secret key osk, and hence reconstruct it.
Using osk, A could trivially break the original anonymity property. Therefore,
an upper bound has to be integrated to compensate for the extra knowledge A
gets by corrupting users.

5 Conclusion

In this work, we present DOGS, a Blockchain-supported group signature scheme
which implements a distributed Opening functionality.

It would be meaningful, in future works, to include additional materials
notably regarding the algorithms and their explicit definitions, ways to contact
users from the group of sub-openers that are no longer in the Region of Interest or
potential solutions to redistribute their shares to newcomers, an implementation
of the scheme with performance analysis to compare to real-world scenarios (e.g.
VANETs), and the establishment of more formal security proofs. Also, it would
be interesting to complete the current scheme with the addition of a distributed
Issuing functionality hence proposing a fully distributed Blockchain-supported
group signature scheme. Camenisch et al. [4] recently came up with their own
proposition and it might be interesting to analyse and compare both to some
extent.

Nonetheless, being the combination of a BSZ group signature scheme and
the ETHDKG protocol, we already succeed in formulating DOGS and show
that, only by distributing the Opener among a group of users, we preserve the
traceability feature of group signatures while enhancing their anonymity feature.
Indeed, our scheme is proven stronger than BSZ’s in terms of anonymity due to
the use of DKG. Furthermore, the scheme brings an additional novelty as it
enables the dynamic definition of the set of sub-opener authorities which makes
it more practical to applications with variable topologies such as VANETs.
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Abstract. Mixer services purportedly remove all connections between
the input (deposited) Bitcoins and the output (withdrawn) mixed Bit-
coins, seemingly rendering taint analysis tracking ineffectual. In this
paper, we introduce and explore a novel tracking strategy, called Address
Taint Analysis, that adapts from existing transaction-based taint anal-
ysis techniques for tracking Bitcoins that have passed through a mixer
service. We also investigate the potential of combining address taint anal-
ysis with address clustering and backward tainting. We further introduce
a set of filtering criteria that reduce the number of false-positive results
based on the characteristics of withdrawn transactions and evaluate our
solution with verifiable mixing transactions of nine mixer services from
previous reverse-engineering studies. Our findings show that it is possible
to track the mixed Bitcoins from the deposited Bitcoins using address
taint analysis and the number of potential transaction outputs can be
significantly reduced with the filtering criteria.

1 Introduction

A Bitcoin mixer service (also commonly known as tumbler or laundering service)
is a cryptocurrency service that allows users to “anonymise” their Bitcoins by
eliminating any possible connection between their original deposited Bitcoins
and the mixed Bitcoins that they withdraw later from the service [12]. This
mixing process can make the tracking of Bitcoin movements between addresses
challenging, such as when using techniques like taint analysis [7]. Mixer services
are also frequently used as one of the core components in transaction obscuring
for illicit activities, such as theft, ransomware, and dark market trade [11,13].

In a normal Bitcoin transaction, address A would send Bitcoins directly to
address B. However, this interaction establishes a connection between the two
addresses in the blockchain, allowing anyone to observe the movement of Bit-
coins [9]. Mixer services attempt to prevent this traceability by serving as an
intermediary between the two addresses where address A deposits Bitcoins to a
mixer service address (named the receiver address) for mixing purposes. Next,
the mixer service uses another address(es) (named the delivery address) to deliver
completely unrelated Bitcoins to address B in withdrawn transactions.
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As a result, the interaction between address A and B is obscured in the
blockchain, as there is no direct connection or transaction between the two end-
point addresses. Furthermore, simple transaction tracking methods are incapable
of tracking the actual exchange of Bitcoins between the two addresses. One
method used to track the mixed Bitcoins is to calculate every possible combi-
nation on every transaction within the mixing time for the potential withdrawn
transaction outputs [15], which requires significant computational resources.

Few studies have investigated reverse-engineered mixer services to discover
their mixing pattern [2,7,14]. We are aware of only one study that proposed
a tracking method for mixed Bitcoins, which adapted from the aforementioned
approach, and evaluated their method on a single mixer service [15]. In par-
ticular, we are not aware of any proposed tracking method to overcome the
transaction obscuring feature of mixer services.

Hence, in this paper we introduce a novel tracking method called address
taint analysis that focuses on tainting at the address level, whereas previous
taint analysis approaches have focused on tainting at the transaction level. We
investigate this method, both on its own and in combination with other tracking
methods such as address clustering and backward tainting. We also introduce
a set of filtering criteria in an attempt to reduce the number of false-positive
results, and we evaluate our solutions with verifiable mixing transactions of nine
mixer services used in previous reverse-engineering studies.

2 Related Work

2.1 Taint Analysis

Taint analysis is a transaction tracking method that determines the relationship
or connection of addresses based on exchanges of specific Bitcoins in transac-
tions [7]. It is often adapted to track the movement of specific Bitcoins (e.g.,
stolen Bitcoins) by classifying the tracked Bitcoins as tainted or clean and cal-
culating the distribution of tainted Bitcoins used in subsequent transactions.

One taint analysis method, the Poison method, considers all of the resulting
transaction outputs as fully tainted [8]. There are other tainting strategies that
utilise different approaches of tracking and distributing Bitcoins, such as the
Haircut method [8] and FIFO method (First In, First Out) [1]. Taint analysis
can also be performed backwards, where instead of tainting forward to the next
transaction, the algorithm taints backwards following previous transactions [1].

Aside from transaction tracking, taint analysis is utilized to measure the effec-
tiveness of transaction obscuring methods where results with tainted connections
indicate that the obscuring method is ineffective and can still be tracked [5,10].
We hereafter refer to the original transaction-based taint analysis as transaction
taint analysis to distinguish it from the address-based taint analysis we define
in this paper (see Sect. 3.1).
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2.2 Address Clustering

Address clustering is a method that operates by grouping addresses into a cluster
based on specific transaction behaviours. Address clustering methods are utilised
in de-anonymisation which attempts to classify Bitcoin addresses likely to belong
to the same user for tackling illegal activities [6].

One address clustering method, called input-sharing clustering or multi-input
heuristic, is based on the assumption that all the addresses that share inputs
in the same transaction belong to the same entity because every input address
must sign a digital signature with its private key for the transaction to be valid.
As such, if there are two or more input addresses in the same transaction, these
addresses are being controlled by the same user [3].

Another clustering approach, change address clustering, operates by clus-
tering the input addresses with the output addresses that are likely to be the
change addresses – this is an address that is owned by the transaction’s sender
and which receives the remaining change Bitcoins in the transaction [6].

3 Methodology

In this section, we describe the address taint analysis method and its combina-
tion with other tracking methods (address clustering and backward tainting).
Subsequently, we discuss the filtering criteria we developed and the rationale
behind them.

3.1 Address Taint Analysis

The majority of mixer services usually utilise either a group of central addresses
in order to combine and mix deposited Bitcoins from their users [2,7,14]. We
assume that the receiver and delivery addresses within the mixer services are
both likely to interact with the central addresses at some point in time. Our taint
analysis method, address taint analysis, shown in Fig. 1, operates at the address
connection level, where any address that receives Bitcoins from tainted addresses
will be considered as a tainted address including every Bitcoin it possesses at
any point in time. Existing taint analysis methods operate at the transaction
level, where the tainted Bitcoins of a received address do not affect other Bitcoins
belonging to that address, unless they are used together in the same transactions.

The assumption for address taint analysis is that any transaction and address
that can be connected to the receiver addresses at any point in time, whether
directly or indirectly, may be related to the mixer service in some way. Therefore
the objective of address taint analysis is not only to track the mixed Bitcoins,
but also to map the network of address clusters and their transactions that may
involve the mixer service operation, as in Bitcoin network analysis [4].

The tainting methods used in our experiment are shown in Table 1. The
Baseline method considers all outputs of every transaction recorded in the
blockchain within the tainting time frame for a given sample case to be poten-
tially the targeted withdrawn outputs; therefore these are considered tainted [15].
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Fig. 1. Transaction taint analysis and address taint analysis. The figure depicts the
difference between the transaction taint analysis and address taint analysis methods
on an example mixing case that shows the deposited transaction from address A and the
withdrawn transaction to address B. A darker arrow and circle indicate a transaction
and address that involves tainted Bitcoins, while a lighter one indicate it being clean.

Table 1. Tainting methods implemented in this investigation.

Method 0 (or Baseline method) All outputs of every transaction recorded in the
blockchain within the tainting time frame of a given sample case

Method 1 Address taint analysis

Method 2 Address taint analysis with input-sharing clustering

Method 3 Address taint analysis with input-sharing and output-sharing clustering

Method 4 Perform Method 3 on the results of backward address taint analysis on the
known pre-existing withdrawn transactions from the same mixer service

Method 1 employs only address taint analysis. For Method 2 and Method 3, we
investigate the potential of incorporating address clustering methods into the
address taint analysis in order to improve the address cluster tracking results.

Due to the fact that the address taint analysis method operates with the
assumption that the deposited and withdrawn mixer addresses may have a con-
nection with each other via the central addresses, the analysis will not connect
deposited inputs to the withdrawn outputs if there is no connection between
the addresses involved, as shown in Fig. 2. We therefore introduce Method 4
by combining backward tainting with address taint analysis to create another
tracking method called backward address taint analysis. This method operates
by tainting any address that sends Bitcoins to a tainted address. The idea is
that these addresses could subsequently be used to find the targeted withdrawn
transaction outputs. Thus, this method operates in two steps, as presented next.

Using the example from Fig. 2, Method 4 starts by performing the backward
address taint analysis variation from the withdrawn transactions of a case from
the same mixer service (B K) for three days to trace the mixed Bitcoins back
to the central address clusters. Next, we use the results of the backward address
taint analysis to perform address taint analysis at the time of the deposited
transactions of the targeted sample case (A).
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Fig. 2. Address taint analysis and backward address taint analysis. The figure depicts
a mixer service with two separate central groups tainted without and with backward
address taint analysis. Notice the lack of any interaction between the address A and B
groups. B K represents the withdrawn output(s) from a known case used for backward
address tainting in Method 4. The lighter grey colour circles represent tainting results
of backward address taint analysis and the darker grey colour circles represent tainting
results of address taint analysis performed after backward address taint analysis.

3.2 Filtering Criteria

To further reduce the number of false-positive results, we define five filtering
criteria based on the information of the withdrawn transactions obtained from
reverse-engineering experiments used in previous studies [2,7,14].

Table 2. Filtering criteria.

Criteria 1 (Value of withdrawn bitcoins) The transaction output value of the
targeted withdrawn transaction outputs cannot be higher than the
deposited input value minus the mixing fee

Criteria 2 (Withdrawn transaction’s shape) The number of transaction inputs
and outputs of the targeted withdrawn transactions must be in the
same pattern as the other withdrawn transactions used by the same
mixer service

Criteria 3 (Withdrawn transaction chain’s shape) If the mixing algorithm follows
a continuous withdrawn transaction chain pattern, either the
transaction prior or after the targeted withdrawn transactions must
have the same number of transaction inputs and outputs as the
common pattern

Criteria 4 (Reused input address) The input address in the targeted withdrawn
transactions is not used as transaction input more than once in its
lifetime

Criteria 5 (Withdrawn transaction fee) The transaction fee value of the targeted
withdrawn transactions must be the same as in other withdrawn
transactions in the same time period
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As mixer services typically subtract a specific mixer service fee from the initial
deposited Bitcoins, the amount of the withdrawn Bitcoins would be lower than
the original deposited amount (Criteria 1). Depending on the mixer service, the
mixing fee can vary in a specific range, such as between 1–2% of the deposited
Bitcoins. For this experiment, we use a minimum mixing fee for this criterion.

Reverse-engineering examples used in the literature [2,7,14] show that the
mixer services usually perform withdrawn transactions in a specific pattern. For
example, one of the most common shapes of withdrawn transaction is in the
form of a one-to-two addresses transaction where a single transaction output
is sent to two addresses, one belonging to the user and the other to the mixer
service. The number of transaction inputs and outputs of the targeted withdrawn
transactions must be in the same pattern as the other withdrawn transactions
by the same mixer service (Criteria 2).

Reverse-engineering results of the mixing sample cases indicate that multiple
mixer services usually perform the withdrawn transactions in a continuous peel-
ing chain, where a single transaction input with a large amount of Bitcoins is
continuously peeled into two transaction outputs with one typically much smaller
than the other [2]. As such, either the previous or next transaction of the tar-
geted withdrawn transactions must also follow a similar pattern, accounting for
the possibility that the targeted withdrawn transactions can be at the start or
at the end of the withdrawn transaction chain (Criteria 3).

Our analysis of the verifiable mixing transactions from previous studies shows
that the majority of the mixer services never reuse their delivery addresses before
and after the withdrawn transaction. We therefore exclude any transaction with
reused input addresses (Criteria 4).

In our analysis, we also detect a specific pattern in the transaction fee values
of the withdrawn transactions. In particular, the transaction fee values are of
the same specific amount even with a different transaction fee per byte ratio,
while also considering a different time and day. This suggests that mixer services
generally do not automatically adjust the transaction fee setting in real-time but
after a specific amount of time has passed. As such, if the transaction fee always
remains constant for the withdrawn transactions over a similar time period. We
can exclude those transactions that do not conform to our transaction fee criteria
(Criteria 5).

The criteria can be applied for mixed Bitcoins in general, with appropriate
calibration to the service’s mixing algorithm – the specific calibration parameters
for our evaluation are shown in Table 3. The criteria parameters can also be
specified to be stricter in order to reduce the false-positive results even further
but this can increase the risk of missing the targeted withdrawn outputs.

3.3 Sample Cases

We use 15 mixing transaction samples from previous studies [2,7,14] which have
shown that transaction taint analysis could not taint the withdrawn Bitcoins
from the deposited Bitcoins. These studies perform reverse engineering on promi-
nent mixer services shown in Table 3. As one study [14] chose to not publicly
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Table 3. Sample mixer services and calibration of the filtering criteria.

Service Criteria 1 Criteria 2 Criteria 3 Criteria 4 Criteria 5

Blockchain.info 0.5% one-to-one one-to-two Y 10,000 Sat

Bitcoin Fog 1% one-to-two one-to-two Y 50,000 Sat

BitLaundry 2.49% one-to-two one-to-two Y 50,000 Sat

Unnamed 1 1.5% one-to-two one-to-two Y 10,000 Sat

Unnamed 2 1% one-to-two one-to-two Y 10,000 Sat

Bitlaunder 2% N N Y N

Darklaunder 2% N N Y N

Alphabay 10,000 Sat one-to-two N N N

Helix Light 2% one-to-many N Y 50,000 Sat

The letter Y/N indicates that the criteria can/cannot be applied to the mixer
services.

name their tested mixer services, we exclude any identifiable information of the
services and transactions, and refer to the mixer services from that study as
“Unnamed”.

4 Results and Discussion

4.1 Address Taint Analysis

As mixer services typically perform the mixing operation continuously, it is pos-
sible for the service to deliver Bitcoins that are already mixed prior to the time
of the deposited transactions. We set the time limit for the address taint analy-
sis operation to begin tainting from five days before the deposited transactions
until the maximum amount of mixing time allowed by the mixer service (e.g.,
BitLaundry allows up to maximum 10 days mixing time). If the mixer service
did not have a mixing time setting, we set the time limit to three days.

As shown in Table 4, the results of our experiment demonstrate that even
mixed Bitcoins are not always perfectly immune to tracking as the new tracking
methods were able to connect the deposited and withdrawn Bitcoins together.
The majority of the sample cases show successful results overall except for
the Blockchain.info and Bitcoin Fog cases. For the majority of sample cases,
Method 1 yields the lowest number of transaction outputs compared to the
other three methods and the Baseline method, followed by Method 2 and lastly
Method 3. The number of transaction outputs for Method 1 is considerably lower
than those of the Baseline method at roughly 20%. For example, Method 1 has
21% fewer transactions than the Baseline method results for Case 9, and 17%
fewer transactions for Case 4.
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Table 4. Address tainting results with and without filtering criteria.

Case & service Baseline Method (%) Baseline
criteria

Method
criteria (%)

1 2 3 4 1 2 3 4

1 Blockchain.info 485,155 — — 93 n/a 87 — — 96 —

2 Bitcoin Fog 713,899 — — — 95 9,804 — — — 96

3 Bitcoin Fog 1,525,276 — — — 98 12,945 — — — 99

4 BitLaundry 1,013,374 83 83 96 97 24,885 95 95 99 99

5 BitLaundry 1,016,043 82 83 96 45 22,712 96 96 98 45

6 Unnamed 1 1,337,727 83 84 92 n/a 51,099 73 74 75 —

7 Unnamed 2 1,264,966 84 85 92 n/a 48,626 78 79 80 —

8 Bitlaunder 1,867,536 80 81 93 89 385,811 87 87 96 90

9 Bitlaunder 2,156,487 79 80 93 89 428,042 86 86 96 89

10 Darklaunder 1,712,521 82 83 94 95 333,400 84 86 96 96

11 Darklaunder 1,845,130 81 83 93 94 367,516 81 85 96 96

12 Alphabay 1,949,670 81 83 93 96 181,512 85 86 96 96

13 Alphabay 2,175,263 81 83 94 94 227,718 78 79 94 94

14 Helix Light 1,858,540 75 77 93 94 6,329 91 91 97 97

15 Helix Light 1,777,542 74 76 94 94 6,160 93 94 97 97

We indicate with — that the method’s experiment for the sample case was
unsuccessful and with n/a the absence of an experiment. The percentage
result represents the method’s transaction output number compared to the
baseline before and after applying the filtering criteria. The lower percentage,
the less false positive results.

The results of Method 2 are generally similar to those of Method 1. For
example, Method 2 has only 1% more transactions than Method 1 for Case 7,
and 2% more for Case 12. Meanwhile, Method 3 produces a greater number
of transaction outputs compared to the first two methods and is much closer
to the results of the Baseline method. For example, Method 3 has 12% more
transaction output than Method 1 for Case 10, and 6% fewer than the results
of the Baseline method. As such, our results suggest that the incorporation of
address clustering and backward tainting methods is not always necessary for
the tracking of mixer services though a few cases, Bitcoin.info’s Shared Send and
Bitcoin Fog are notable exceptions.

Method 1, 2 and 3 for the Bitcoin Fog cases (2 and 3) produce unsuccessful
results. This is because the mixer service keeps the deposited Bitcoins idle for
as long as 6 months, which is outside the time period verification for our experi-
ments. This is similar to the situation for Case 3. This type of scenario indicates
that the central address clusters used for deposited and withdrawn transactions
are separate and cannot be connected.
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Method 4 shows successful results for all sample cases as shown in Table 4.
Although, aside from the Bitcoin Fog cases, the Method 4 tainting results (and
the results after applying filtering criteria – see Sect. 4.2) generally do not provide
improved results compared to the other three methods. In particular, the number
of transaction outputs resulting from Method 4 is higher than those of Method 3
for most cases. However, there are some exceptions where Method 4 performs
better than Method 3 such as in Cases 5 and 9, where the number of transaction
outputs are 53% and 5% lower than those of Method 3, respectively.

Nevertheless, the results of the backward address tainting of Method 4 show
that it is possible to defeat the mixer service operation with separate central
address clusters. If one can initiate the mixing transactions at the same time as
the targeted mixing transactions so as to perform backward address tainting,
one also can discover the central address clusters that are being used for the
withdrawal of targeted mixed Bitcoins.

4.2 Filtering Criteria

After performing address taint analysis on each sample case, we applied the
filtering criteria listed in Sect. 3.2 on each method’s results for every case, as
shown in Table 3. The address tainting results show significant improvement in
terms of the number of transaction outputs for all of the methods including
the Baseline method after applying the filtering criteria, as can be seen in the
extensive reduction in the transaction outputs number shown in Table 4.

For the sample cases for which we can apply more filtering criteria, namely
Cases 1 to 7, 14 and 15, the number of false-positive transaction outputs is
reduced by 90% to as high as 99%. However, the transaction output number
after applying filtering criteria for the first three methods is closer to the Base-
line method outputs at around 10% lower. While the sample cases that have
less applicable filtering criteria, which are Cases 8 to 13, generally have lower
reduction number of transaction outputs at around 80%. When compared to
the results of the Baseline method, the number of transaction outputs show an
increased reduction than for the other cases at around 20% lower.

However, there are cases where the results yield different patterns. For exam-
ple, for Cases 7 and 8, the number of transaction outputs is much lower for the
three methods compared to those of the baseline method. Interestingly, the Helix
light cases (Case 14 and 15) show the largest reductions in the number of trans-
action outputs. We hypothesise this is due to the constant 50,000 Satoshis trans-
action fee used in the one-to-many transaction type that makes the withdrawn
transactions extremely unusual compared to other transactions.

The differences in the results may be because the exploitable transaction
patterns of mixer services have exceedingly unique patterns that make their
transactions have characteristics that are considerably different from other trans-
actions. Thus, this makes them less difficult to distinguish. Nevertheless, the
significant reduction in transaction outputs suggests that the filtering criteria
can be adopted for other tracking methods of mixer services in general.
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5 Conclusion

The address taint analysis methods we propose in this paper have the potential
for reconnecting the original deposited Bitcoins to the mixed Bitcoins – this has
not been possible with earlier taint analysis methods. We also illustrate that
address taint analysis can be incorporated into other tracking methods such as
address clustering and backward tainting methods for mixer services that utilise
an irregular mixing algorithm. Although the number of false-positive results is
still not substantially different between the Baseline and the other methods,
by exploiting the transaction pattern of the withdrawn transactions to create
filtering criteria, the number of false-positive results can be reduced further.

With further improvement, our approach could possibly be used to assist
cryptocurrency crime forensics in clearing the mystery of past illegal activi-
ties, such as exchange service thefts. Nevertheless, more mixing samples from
other mixer services are still required for evaluating and improving the tracking
method further, considering that mixer services are constantly evolving as new
transaction obscuring techniques are introduced.
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