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Abstract. It is customary for RL agents to use the same environments
for both training and testing. This causes the agents to learn specialist
policies that fail to generalise even when small changes are made to the
training environment. The generalisation problem is further compounded
in sparse reward environments. This work evaluates the efficacy of cur-
riculum learning for improving generalisation in sparse reward navigation
environments: we present a manually designed training curriculum and
use it to train agents to navigate past obstacles to distant targets, across
several hand-crafted maze environments. The curriculum is evaluated
against curiosity-driven exploration and a hybrid of the two algorithms,
in terms of both training and testing performance. Using the curriculum
resulted in better generalisation: agents were able to find targets in more
testing environments, including some with completely new environment
characteristics. It also resulted in decreased training times and elimi-
nated the need for any reward shaping. Combining the two approaches
did not provide any meaningful benefits and resulted in inferior policy
generalisation.

Keywords: Generalisation · Curriculum learning · Sparse rewards ·
Navigation

1 Introduction

A fundamental challenge in reinforcement learning (RL) is that of generalisation
[7]. It is customary for RL agents to use the same environments for both training
and testing [8], as is the case for the Arcade Learning Environment [3], the
classic RL benchmark. Agents therefore exhibit breakthrough results on very
specific tasks but fail to generalise beyond the training environment [28]. Making
small changes to the environment or task often leads to a dramatic decrease in
performance [41,42]. This is because agents tend to memorise action sequences
and therefore overfit to the training environments [7].

The generalisation problem is compounded in sparse reward environments.
RL agents learn behaviour based solely on rewards received through interactions
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with an environment [31]. However, many environments have extrinsic rewards
that are sparsely distributed, meaning that the environments does not return any
positive or negative feedback to the agent on most timesteps. These environments
are prevalent in the real-world [29] and training RL agents in them remains a
major challenge [2]. There are various novel approaches to learning in these
environments [2] but they tend to emphasise learning specialist polices that fail
to generalise to unseen testing environments [7].

This research focuses on policy generalisation in sparse reward navigation
environments. Policy generalisation refers to the extent to which a policy trans-
fers to unseen environments within the same domain [8] without any additional
training or fine-tuning. This is a difficult task since it is only possible for agents
to learn on a small subset of possible states but it is desirable that they should
be able to generalise and produce a good approximation over a larger state
space [38]. In this work, agents are required to learn to navigate to distant
targets across multiple environments, with different characteristics or obstacle
configurations.

This work focuses on two approaches. The first technique is curriculum learn-
ing. When it is difficult for an agent to learn a task directly, a training curriculum
can be designed to gradually increase an agent’s knowledge over time. The cur-
riculum imposes an order on training [14]: the agent is trained on a series of
simpler tasks that progressively gets more difficult [25]. This enables it to learn
“skills” that can be transferred to solve difficult tasks [25]. In this manner, the
curriculum can be used to bypass the sparse rewards problem [12]. Curriculum
learning has been shown to decrease training times as well as improve generali-
sation [4,12].

The second approach introduces intrinsic rewards to augment sparse extrinsic
rewards. Intrinsic rewards are generated by the agent itself, instead of relying
on feedback from the environment. Curiosity is a type of intrinsic reward that
encourages an agent to find “novel” states [29] and has been used to learn policies
that generalise to unseen environments.

In this research, we investigate the problem of generalisation in sparse reward
navigation environments by evaluating the efficacy of curriculum learning for
improving generalisation in this domain. A manually-designed curriculum for
sparse reward navigation environments is presented and used to train agents
in a suite of hand-crafted environments. Both training and testing performance
of the curriculum is empirically compared and contrasted to two baseline algo-
rithms: curiosity-driven exploration [29] and a hybrid approach that combines
the curriculum with curiosity. The policies are evaluated in multiple testing
environments that are either variations of the training environments or include
entirely new characteristics.

The task, algorithms and environments are formally defined in Sect. 3. The
benefits and limitations of the curriculum are discussed in Sect. 4: using the
curriculum resulted in polices that generalised better than curiosity as well as
decreased training times. Section 5 summarises the findings and discusses direc-
tions for future work.
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2 Related Work

Generalisation remains a fundamental RL problems since agents tend to memo-
rise trajectories from their training environments instead of learning transferable
skills [7]. Classic RL benchmarks like the Arcade Learning Environment (ALE)
[3] focus on creating specialist agents that perform well in a single environ-
ment. New benchmarks have been proposed to focus research on generalisation.
The ProcGen Benchmark [7] uses procedural generation to generate new envi-
ronments. The inherent diversity in the generated environments demands that
agents learn robust polices in order to succeed. A similar framework is presented
in [19] with larger scale three-dimensional environments.

Justesen et al. [20] however, highlighted limitations of procedural generation:
it is difficult to automatically scale the difficulty of the task [20] and the dis-
tribution of the procedurally generated environments is often different to that
of human-generated environments. Procedurally generating environments may
lead to overfitting to the distribution of the generated environments [20]. A
novel approach that uses reinforcement learning to learn a policy for generating
environments shows promising results in [23].

Our work is inspired by Savinov et al. [32]. The authors emphasised the need
for separate training and testing environments and investigated generalisation in
custom maze environments with random goal placements. The aims of the study
were different but the principles were incorporated into the curriculum defined
in Subsect. 3.3. Similar findings were highlighted in other studies [8,42].

Curriculum learning was shown to decrease training times and improve gen-
eralisation across multiple common datasets in [4]. The main idea is to split a
complex task into smaller, easier-to-solve sub-problems and controlling the cur-
riculum to ensure that the task is never too difficult for the agent [17]. Previous
work manually generated training curricula for various tasks [22,34]. A limita-
tion of this approach is the requirement of expert domain knowledge [39]. Various
studies attempted to alleviate this problem by presenting novel techniques for
automatically generating a curriculum [12,24,39]. Florensa et al. [12] presented
a method for automatically generating a curriculum that exhibited promising
results in sparse reward navigation environments. The maze environments from
the study have been incorporated into this study. The curriculum in this work is
manually designed though only general concepts, such as environment size and
obstacle configuration, were varied so as to ensure it did not require significant
fine-tuning or expert knowledge.

Curriculum learning is an implicit form of generalisation [4]. Closely related
to curriculum learning is hierarchical reinforcement learning. Tessler et al. [40]
presented a framework that enabled agents to transfer “skills” learnt from easy
sub-tasks to difficult tasks requiring multiple skills. Agents learnt “high-level”
actions that pertain to walking and movement and used these skills to learn
difficult navigation tasks faster in [13]. Our curriculum has been designed to
implicitly learn in this manner since there are no obstacles in the early stages of
training, thereby allowing agents to focus on locomotion.
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The sparse reward problem is well-studied in reinforcement learning. Many
novel approaches emphasise learning specialist polices and do not focus on gener-
alisation [7]. Reward shaping augments the reward signal with additional rewards
to enable learning in sparse reward environments. It can have a detrimental effect
on training if it is used incorrectly and can change the optimal policy or the def-
inition of the task [9,26,28]. Manually engineering reward functions for each
new environment is difficult [9,15]. Alternatively, reward functions were recov-
ered from demonstrations in [15,36,37]. Shaped rewards can result in specialist
policies that generalise poorly [15]. The problem was investigated in [16] where
agents learnt polices that were optimised for single training environments. A
major benefit of our curriculum is that it does not require any reward shaping.

An alternative to “shaping” an extrinsic reward is to supplement it with
intrinsic rewards [27] such as curiosity. Curiosity-Driven Exploration by Self-
Supervised Prediction [29] formally defined a framework for training curious
agents. Curiosity empowers the agent by giving it the capability of exploration,
enabling it to reach far away states that contain extrinsic rewards. A well-known
limitation of the approach is that agents often find a source of randomness in
an environment that allows it to inadvertently satiate its curiosity [5]. There are
various other novel approaches [6,33].

Curiosity has been chosen as a baseline as it has shown promising gener-
alisation capabilities in previous studies [5,29]. Agents struggled to generalise
to environments with different textures in [5,29]. This is not relevant to this
study since agents observations are vector rather than visual representations (see
Subsect. 3.1).

To our knowledge, curriculum learning has not been evaluated extensively
with regards to generalisation in sparse reward navigation environments.

3 Methodology

3.1 The Task

The goal of the agent is to navigate from its starting point to a fixed distant
target, with obstacles or walls placed along its route. The agent is required to
learn foresight: it needs to learn to move further away from the target in the
present, in order to find the target in the future. The task is a variation of the
classic point-mass navigation task in various studies [10,11]. We consider an
agent interacting with an environment in discrete time steps. At each time step
t, the agent gets an observation ot of the environment and then takes an action
at from a set of actions A.

The observation set O comprises the coordinates of the agent’s current posi-
tion, the coordinates of the target, the distance to the goal and rays that extend
in 8 directions, at 45◦ intervals. These short rays provide essential feedback to
the agent by enabling it to detect walls and targets that are in its vicinity and
therefore adapt its policy accordingly.

The rays take on additional importance when agents are placed in previously
unseen environments since they enable the agents to learn robust policies: when
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an agent detects an obstacle in its vicinity, it needs to learn to move away from
the obstacle, in the direction of an open path. If an agent executes memorised
actions, it will move directly into walls and never reach its destination.

The ray length was tuned to balance the difficulty of the task: if the rays are
too long, the agent unrealistically detects objects that are far away but if it is too
short, the agent is unable to detect anything except that which is immediately in
front of it. This is analogous to the field of view. The observations were stacked
to equip the agents with a small memory of the immediate past. The previous
ten observations were stored at any given time.

The action set at allows the agent to move in eight directions: forwards, back-
wards, sideways as well as diagonally, unlike the standard Gridworld task [42].

By default, before any training modifications are made, the environments
are all sparse reward environments since the agent only receives a +1 reward
for finding the target. The starting positions of the agent and the target are far
away from each other, on different ends of the environment. The agents do not
receive any intermediate rewards and incur a small penalty on every timestep,
to encourage them to find the target in the shortest possible time.

3.2 Environments

There are multiple environments and each varies in terms of the configuration of
walls and obstacles (see Fig. 1). This is to deter agents from learning an optimal
policy in one single environment, rather learning the “skill” of finding a target
in an arbitrary navigation environment. The predefined environments were care-
fully designed to represent high-level features or environment characteristics that
include dead-ends and multiple paths to the target. We theorise that introduc-
ing agents to numerous environment features in training enables them to learn a
flexible policy that enables them to find targets when similar features are found
in new environments. The environments were divided into a set of training and
testing environments. The generalisability of the agents was evaluated in the
testing environments.

The training environments were further divided into three categories: Obsta-
cle environments (see Fig. 1a) contain only a single obstacle that varies in terms
of size and orientation. The sizes range from a scale of 0 to 3 and the orientation
is defined as any angle from 0◦, in 45◦ increments. The size of the agent and ray
length are also depicted in Fig. 1a to illustrate the scale of the task.

Maze environments have multiple obstacles and were subdivided based on
difficulty. There are Standard mazes in Fig. 1b and Difficult mazes in Fig. 1c.
Difficult mazes have multiple obstacles that span more than half the width of
the entire environment. They also include more complex versions of some of the
Standard mazes, by manipulating the size of each obstacle in an environment.
The “u-maze” from [11] was also incorporated into this group. The difficult
mazes were deliberately designed to test the boundaries of the algorithms and
to identify limitations.
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(a) Obstacle

(b) Standard Mazes (c) Difficult Mazes

Fig. 1. Training environments

The testing environments were divided into two categories: Orientation and
New. Orientation testing environments were created by rotating the training
mazes by 90◦ and without changing the overall structure of the obstacles. New
testing environments have different obstacle configurations to the training envi-
ronments. New features or environment characteristics, such as bottlenecks or
repeated obstacles, were incorporated into this group. This allowed us to anal-
yse whether the agents were able to learn advanced skills and further assess the
extent of the generalisation. Both these categories were further subdivided into
Standard and Difficult subcategories, as per the definition used for the train-
ing environments. An illustration of the Orientation environments are shown
in Fig. 2a. Both the Standard New and Difficult New groups, depicted in Fig. 2b
and c respectively, contain three mazes each. The “spiral-maze”, a commonly
used maze seen in [11], was incorporated into the difficult category.

(a) Orientation (b) Standard New (c) Difficult New

Fig. 2. Testing environments

3.3 Algorithms

Curriculum Learning. A curriculum was manually designed to enable agents
to learn the task of finding distant targets across multiple sparse reward naviga-
tion environments (see Algorithm 1). This is difficult since agents cannot optimise
a policy for any specific environments and when the environments are large, with
multiple obstacles (the most difficult version of the task), the reward feedback
is sparse.

The curriculum has been designed to act as a means of bypassing the sparse
rewards problem. It also improves generalisation by exposing agents to a diverse
set of environments during training.
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Algorithm 1. Manually-Designed Curriculum
Input: Obstacle Environments O, Obstacle Max Scale Sobstacle, Maze Environments

M , Environment Max Scale Senvironment, Reward Threshold Rthreshold, Number
Consecutive Episodes nconsecutive

for i ← 1 to Senvironment do
Reset episode count
raverage = 0
repeat (for each episode)

raverage ← average episodic reward from previous nconsecutive episodes
Sample an obstacle environment from O
Sample scale from {0, 1, 2, . . . , Sobstacle}
Sample angle from {0◦, 45◦, 90◦, 135◦, . . . , 315◦}
Sample agent and target starting positions

until raverage < Rthreshold

Reset episode count
raverage = 0
repeat (for each episode)

raverage ← average episodic reward from previous nconsecutive episodes
Sample a maze environment from M
Sample agent and target starting positions

until raverage < Rthreshold

end for

Environment parameters are varied over time to control the difficulty of the
task to ensure that the current task is never too difficult for the agent. The first
parameter is the environment size: decreasing the size, while keeping the agent
size and speed the same, decreases the sparsity of rewards since the goal and
target are closer to each other in smaller environments. The second parameter is
the obstacle configuration, which is varied through changing the number and size
of obstacles: either single obstacles or multiple obstacles in a maze-like structure.

In the early stages of training, the environments are small and contain a
single obstacle or none at all. This was achieved by assigning O, in Algorithm1,
to the obstacle environments in Fig. 1a. Agents are able to learn how to con-
trol themselves by navigating around the environment to nearby targets. When
the average reward (over the past 5000 consecutive episodes) reaches a prede-
fined threshold, the difficulty is increased. The first adjustment is to increase the
size and number of obstacles, through randomly sampling maze environments
from Fig. 1b and in Fig. 1c. When the agent reaches the same predefined reward
threshold, the environment size is increased. This two-fold difficulty adjustment
keeps occurring until the agent progresses to large maze environments with mul-
tiple obstacles. This ensures that the curriculum only progresses when the agent
has succeeded in its current task.

Randomly sampling environments is an important aspect of the curriculum.
It is also essential that the set of training environments is diverse and incorpo-
rates a wide array of obstacle configurations [7]. This deters agents from memo-
rising the dynamics of any particular training environment, instead learning how
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to navigate past arbitrary obstacles to find distant targets. This is analogous to
supervised learning i.e. training on a diverse training set al.lows for a more gener-
alised model that does not overfit to training data. Specifically, overfitting means
memorising a policy that is optimised for the training environments, resulting
in poor performance in the testing environments. Similarly, policy memorisa-
tion refers to a policy that optimises the dynamics of a particular environment
by memorising actions that lead to success, resulting in poor performance even
when subtle changes are made to the environment [41].

The maximum environment size (Senvironment in Algorithm 1) was carefully
tuned to ensure that the task is a sparse rewards problem. This was verified by
running an agent trained with policy gradient on the sparse reward function (+1
for finding the target), with no exploration strategy, and observing that it was
not possible for it to find the target, after a large number of training steps [16].

Inspired by various other work [21,32,42], the last aspect of the curriculum
attempts to bypass the sparse rewards problem by “densifying” the training
environment. The starting locations of both the agent and target are randomised
at the start of every episode. This means that the target is often close to the
agent, resulting in frequent feedback that enables meaningful learning. This also
encourages the agent to explore different parts of the environments.

Baseline Algorithms. We compare the performance of the curriculum to
curiosity-driven exploration defined by Pathak et al. in [29]. This equips the
agent with an intrinsic reward that allows it to explore the training environ-
ments by seeking “novel” states, thereby gaining an understand of the dynamics
of the various environments. A reward is generated through a prediction error:
agents are trained to predict the next state as well as actions taken in between
states. In this way, the reward only captures surprising states that have come
about directly as a result of the agents actions. Curiosity has shown promising
generalisation capabilities in previous studies [5,29].

In the curiosity setting, the curriculum defined in Subsect. 3.3 is omitted i.e.
the size of the environment is fixed at the largest configuration and a training
maze is randomly sampled from Fig. 1b and c on each episode. Training also
occurs under the dense reward setting with random target and agent starting
locations.

The final approach combines the curiosity reward with the hand-crafted
curriculum which we term “Hybrid”: Agents are trained using the curriculum
from Subsect. 3.3 and the reward function is augmented with a curiosity sig-
nal. Both algorithms have been shown to improve generalisation individually
[5,6,12] and it was therefore necessary to investigate if there were any merits to
combining them.

3.4 Experimental Design

We evaluated the performance of the curriculum by comparing it to curiosity-
driven exploration [29] and a hybrid “curiosity-curriculum” approach. All policies
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are represented by neural networks with Proximal Policy Optimisation (PPO)
[35] being used as an optimiser. PPO is robust [35] and requires lesser hyper-
parameter tuning when compared to similar methods [5]. However, an arbitrary
policy gradient method could have been: the focus of this work is rather on
the comparison of different training methods so consistency in the optimisation
method is more important.

We defined baseline hyperparameters for each algorithm by training agents
in the easiest version of the tasks. The hyperparameters were then carefully
tuned and optimised by observing the training process and then tweaking the
relevant parameters as required. The networks have two hidden layers, each
with 256 units. The swish activation function [30] was used. The learning rate
and entropy coefficient were fixed at 3.0 × 10−4 and 0.01 respectively, along
with a batch size of 256 and a buffer size of 5120. All agents were trained for
20 million training steps. This was carefully tuned to ensure that the agents
had sufficient time to learn. However, it was observed that agents tended to
overfit to the training environments when the steps were too high [42]. After
tuning the hyperparameters independently for each algorithm, the agents were
trained on a cluster of machines on the Centre for High Performance Computing
[1], using the Unity ML-Agents platform [18]. The polices for each algorithm
were then evaluated against each other. The codebase and further details are
available at https://github.com/AsadJeewa/Learning-to-Generalise-in-Sparse-
Reward-Navigation-Environments.

4 Results and Discussion

Analysis is performed in three stages: the first stage compares the training per-
formance of each algorithm. Since the agents were trained under a dense rewards
setting, with randomised agent and target starting positions for each episode,
it is necessary to evaluate the algorithms under a sparse reward setting. This
was achieved by positioning the agent and target at distant locations in every
training environment, fixed at points that make the task as difficult as possible.

We perform a critical evaluation of the generalisability of each algorithm in
the unseen testing environments. The last stage performs trajectory analysis to
understand the strengths and limitations of each algorithm. It provides insight
into the intricacies of how agents move within different environments.

4.1 Training Performance

The training curves are depicted in Fig. 3a i.e. the average episodic reward of
the agents over time, with a smoothing factor of 0.2. For each algorithm, we
performed five independent runs and computed the mean learning curve and
standard deviation. Twenty independent instances of the environment were used
for more efficient data collection during training.

The dashed line depicts the point at which both the curriculum and hybrid
agents progressed to the final lesson, which corresponds to the training environ-
ments of the curiosity-driven agent.

https://github.com/AsadJeewa/Learning-to-Generalise-in-Sparse-Reward-Navigation-Environments
https://github.com/AsadJeewa/Learning-to-Generalise-in-Sparse-Reward-Navigation-Environments
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(a) Learning curves during training
(b) Average rewards (sparse setting)

Fig. 3. Training performance for all algorithms

Figure 3 highlights the benefits of using the curriculum. The learning curve
never drops significantly since the agents’ task is never too difficult. The curricu-
lum advances quickly in the early stages of training when the task is easier. The
sudden drops in reward are indicative of points at which the task is made more
difficult but the fact that the curve peaks very quickly thereafter, indicates that
knowledge is being transferred between tasks. In all runs, it was noted that the
curriculum agent converged significantly faster than the curiosity agent.

A major benefit of the curriculum is that there is no reward shaping nec-
essary. This is due to the manner in which the curriculum was designed that
ensures that the agents always receive sufficient reward feedback during training.
We performed an empirical investigation into various different shaped rewards
and found no performance improvements. Rather, the motivations of the agents
became polluted [9,26]. For example, when an agent was rewarded for mov-
ing closer to the target, it lacked the foresight to move past obstacles. Shaping
rewards also resulted in more specialist policies that work well in some environ-
ments, but poorly in others. Reward shaping also requires additional information
which may not be available in the real-world.

The curiosity curve shows rewards slowly increasing as training progresses.
The hybrid training curve is very similar to the curriculum agent. When the
curiosity strength was varied, the curves still followed a similar pattern. This
indicates that the curiosity rewards had little effect on the training process when
coupled with the curriculum.

Figure 3b illustrates that, for all algorithms, the agents were able to efficiently
find the target in all training environments, under the sparse reward setting. All
algorithms have an average reward that approaches a maximum possible reward
of +1. These results act as a validation of each algorithm since it indicates that all
agents have obtained sufficient knowledge of the task and are able to find targets
across a diverse set of mazes. This allowed us to perform a fair comparison of the
generalisation capabilities of each algorithm in the testing environments. Error
bars are depicted with a confidence interval of 95%.
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4.2 Generalisability

The best performing training run from Subsect. 4.1 was selected for each algo-
rithm. The average reward was then analysed for each of the different groups of
testing environments. Each algorithm was run for 1000 episodes, with a random
testing environment being sampled at the start of the episode, from the corre-
sponding testing group. This is necessary due to the stochastic nature of the
polices: the agents sometimes succeed and fail in the same testing environment.
This results in vastly different episodic rewards and a large number of episodes
is therefore necessary to stabilise the average rewards.

When analysing the results, there are certain important considerations that
need to be made. The performance of each algorithm is often different i.e. agents
succeed and fail in different testing environments. There are instances when one
algorithm enabled agents to navigate to the target in a short time, but another
resulted in agents only finding the target after a large number of episode steps
or never at all. We wish to investigate this phenomenon further in future work.

The task is not trivial since it as analogous to placing a human or vehicle in
a new environment and only equipping them with information about its current
location, destination and the ability to “see” what’s around it. It does not have
any knowledge of the dynamics of the environment that it is placed in. This
means that some “exploration” is necessary and it is expected that agents will
move into obstacles as they try to advance towards the goal. It is not possible to
solve the generalisation problem completely: it was not expected that the agents
would obtain expert performance in the testing environments. The goal is rather
to transfer some knowledge that can be reused in the environments.

The policies are used “as-is” and there is no fine-tuning for any of the testing
environments, as is the case in other studies [29]. It is definitely possible to
improve the results in each testing environment by fine-tuning the policy though
that is not the aim of this study. This work rather investigated the extent to
which the learned policy generalised.

Lastly, the sample size in the testing environment groups is fairly small.
There are only three environments in some groups. In future work, we wish to
investigate whether the results hold when increasing the size of the groups.

(a) Standard Mazes (b) Difficult Mazes

Fig. 4. Generalisability in the maze testing environments
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The average episodic rewards are in the range [−1, 1). A successful run is one
in which agents are able to navigate to the target. The faster an agent finds the
target, the higher the reward it receives. An average reward approaching one
therefore indicates that the agents successfully found the targets on all runs. A
score below one indicates that on most runs, the agents were unable to find the
target, across all environments, with zero representing an inflection point.

The results highlight an expected gap between training and testing perfor-
mance. However, they also indicate that some generalisation has taken place.

Standard Mazes. The experiments that we conducted indicate good perfor-
mance for all algorithms in the standard mazes. Figure 4a illustrates that the
algorithms preformed similarly in the Standard New environments. Notably, all
the agents were able to consistently navigate to the target in all three environ-
ments. This is promising since the obstacle configurations are completely differ-
ent to the training environments. This indicates that the policy is robust and
generalises well (in these environments). On average, the hybrid agents found
the targets marginally faster.

The Standard Variation results depict that all algorithms are able to succeed
on most runs. The curriculum agent was marginally the most successful across
the six environments but the performance is once again similar for all algorithms.
It is encouraging that the agents succeed in some environments however, we
theorise that the results can be improved by fine-tuning the set of training and
testing environments, or procedurally generating training mazes to improve the
robustness of the policies.

Difficult Mazes. While the results of the algorithms in the standard mazes
showed similar performance, the agents trained using the curriculum performed
best in the difficult mazes.

The Difficult Orientation results in Fig. 4b indicate that the agents weindi-
cate that the agents were re unable to find the target on most runs. However,
some transfer has taken place. The curriculum obtained the highest average
reward: the result is statistically significant under a 95% confidence interval.
Interestingly, both the curriculum and hybrid agents succeeded in two of the
five environments but the hybrid agent took significantly longer to find the tar-
gets. The hybrid agent is the worst performing algorithm; this indicates that
generalisability decreases significantly as the difficulty of the environments are
increased. The performance of the curiosity-driven agent showed limited transfer
to the testing environments with agents only succeeding in one environment.

Difficult New experiments show the least transfer, as expected. The curricu-
lum agent is once again the most successful. The nature of the environments
mean that agents are able to find the targets on some runs, though not consis-
tently. The most promising result was that the curriculum agent was the only
algorithm that succeeded in the “spiral-maze” [11] depicted in Fig. 2c.
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4.3 Trajectory Analysis

(a) Path Comparison (b) Path Analysis (c) Memory Issue

(d) Local Optimum (e) Spiral Mazes

Fig. 5. Walkthrough trajectories

We performed trajectory analysis by analysing the movement patterns of the
trained agents across the different environments, as per [32]. It was often
observed that the curriculum agents tended to move in a more directed manner
than the curiosity-driven agents. The curriculum agents also tended to “stick”
to the walls for a longer time, using them to guide it to the target. An example
of this is depicted in Fig. 5a. The trail of a curiosity-driven agent is shown in red,
on the left, and that of the curriculum agent is in blue. There is further proof of
this in Fig. 5b. This figure also highlights common behaviour of the curriculum
agents: they initially attempted to move directly towards the goal, along the
shortest possible path, but when the agents detected an obstacle, they adapted
to move around it. The highlights the robustness of the policy.

A limitation of all the algorithms is that it was sometimes observed that the
agents repeatedly move along a similar path and only make slight advancements
towards the target, over a long period of time. However, the agents often still
find their way to the target, as shown in Fig. 5c. In an attempt to alleviate
this problem, we would like to look into different methods for increasing the
“memory” of the agents. The number of stacked observations could be increased,
so that agents can “remember” more of their previous failures, or recurrent
architectures could be used.

Figure 5d shows an example of an environment in which the curriculum agent
failed to find the target. The agent was progressing towards the target but then
got stuck in a local optimum and kept repeating the same actions, until the max-
imum episode steps was reached. It is possible that the agents would eventually
have found its way to the target. This result points to some memorisation in the
policy. We theorise that improving the memory of the agent would also alleviate
this problem.

The most promising result is shown in Fig. 5e. The spiral maze is difficult
because the agent needs to learn a very specific trajectory in order to find the
target. The curriculum agent was the only agent that succeeded in this envi-
ronment. This further highlights the robustness of the curriculum: it was able
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to continuously adapt its actions as it observed the environment. The curiosity
agents, depicted on the left in Fig. 5e and the hybrid agents (on the far right)
both got stuck in local optima and failed to reach the target.

5 Conclusions and Future Work

We have designed a training curriculum that improves generalisation in sparse
reward navigation environments. It was evaluated against a curiosity-based agent
[29] and a hybrid of the two algorithms, in a suite of manually-designed naviga-
tion environments.

The curriculum agents showed the most promising generalisation results.
Agents were able to find targets in more testing environments, including some
with completely new environment characteristics. There are certain environ-
ments when curiosity performed better than the curriculum agent but the perfor-
mance of the agents were more erratic i.e. they sometimes performed excellently
and sometimes very poorly within the same environments. Curriculum learning
proved to be more a robust approach. It also resulted in decreased training times
and eliminated the need for any reward shaping.

Combining curiosity with the curriculum provided no meaningful benefits.
The training performance was very similar to the curriculum agent and it exhib-
ited inferior policy generalisation in the difficult maze testing environments.

There are limitations to the curriculum, as indicated by the generalisation
gap between the training and testing environments. Agents sometimes get stuck
in local optimums and also repeated the same movement patterns in an episode.
There is some memorisation occurring since the agents perform excellently in
the training environments and struggle in some testing environments. However,
the results are promising, since it shows clear evidence of knowledge transfer to
unseen environments.

In future work, we propose further increasing the diversity in the training
environments and fine-tuning the curriculum to further improve the results. We
also wish to investigate the effects of increasing the memory of agents to deter
them from repeating trajectories in testing environment. Another interesting
direction is to perform further large scale analysis of the algorithms by increas-
ing the number of testing environments, either manually or by procedurally
generating them [7].
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