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Abstract. In this paper we investigate simultaneous radial distortion
calibration and motion estimation for vehicles travelling parallel to pla-
nar surfaces. This is done by estimating the inter-image homography
between two poses, as well as the distortion parameter. Radial distor-
tion correction is often performed as a pre-calibration step; however,
accurately estimating the distortion profile without special scene require-
ments may make such procedures obsolete. As many modern day con-
sumer cameras are affected by radial distortion to some degree, there is
a great potential to reduce production time, if properly implemented.

We devise two polynomial solvers, for radially distorted homographies
compatible with different models of planar motion. We show that the
algorithms are numerically stable, and sufficiently fast to be incorporated
in a real-time frameworks. Furthermore, we show on both synthetic and
real data, that the proposed solvers perform well compared to competing
methods.

Keywords: Radial distortion correction · Homography · Visual
odometry · Polynomial solvers

1 Introduction

When designing a Visual Odometry (VO) pipeline it is beneficial to integrate
any prior knowledge of the intended environment or known motion model para-
meters. One particular instance, that will be further investigated in this paper,
is the planar motion model, in which a vehicle travels on—or parallel to—a
planar surface. Such a scenario is common in man-made environments, but can
also accurately approximate outdoor scenarios under certain conditions, such
as cars travelling on a highway. In the current literature we find several papers
on planar motion models, restricted to fit particular use cases or pre-calibrated
parameters [3,6,20]. The general case, however, was first introduced in [17] which
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incorporates two unknown overhead tilt angles, which are assumed to be con-
stant throughout the trajectory of the vehicle. They assumed the floor is in the
field of view of the camera, allowing them to compute the motion parameters
through inter-image homographies. Another approach utilizing the floor to com-
pute the motions was done by [6]. More recent development was done by [26,27],
and is the first to accurately recover the complete set of motion parameters
using inter-image homographies. Other notable approaches include that of [30],
in which a planar VO pipeline using a dense matching scheme was proposed.

In the most general setting, assuming the camera is rigidly mounted on the
vehicle, the number of motion parameters are reduced to five, which should be
compared to the general homography, which has eight degrees of freedom [7].
These parameters consist of the two overhead tilt parameters, and three non-
constant parameters: one rotational angle (about the floor normal), and two
translational components.

In order to obtain a homography, keypoints are extracted and matched. These
keypoints then serve as input to the homography estimation algorithm. Since the
extraction and matching steps are imperfect for any realistic image sequence,
outliers and noise are prone to exist. Typical steps taken to resolve this issue
include the use of robust estimation frameworks, e.g. RANSAC. It is at this point
the benefit of working with fewer motion parameters come to light. Since fewer
motion parameters demand fewer point correspondences in order to be estimated,
one can select a minimal amount of points in the RANSAC framework. The fewer
points you are able to select, the greater the probability of selecting only inliers.
By doing so, one can reduce the number of RANSAC iterations.

In the general case, with four point correspondences, one may linearly extract
the homography; however, if any of the motion parameters are known or con-
strained, this may no longer be the case, as the resulting systems of equations
often are nonlinear. This poses a new type of problem—can we solve these equa-
tions sufficiently fast and accurate? Luckily, many methods from computational
algebraic geometry [4] has been used in many computer vision problems, and
certain frameworks already exist for how to proceed. One of the earliest, and
still used today, was [9].

This paper is a revised journal version of [25], where we will consider the gen-
eral planar motion model with unknown radial distortion, and devise a polyno-
mial solver that can accurately recover the motion and distortion parameters in
real-time applications. Furthermore, we propose a planar motion compatible min-
imal two point solver with radial distortion when the tilt angles are known. This
situation arises when the tilt is pre-calibrated or can be accessed using external
sensors, such as an IMU to extract the gravity direction. For indoor scenarios,
assuming that the gravity direction is aligned with the floor normal—which often
is a valid approximation—is equivalent to knowing the tilt angles. There are situa-
tions where similar assumptions can be made, without significant loss in accuracy,
e.g. aerial imagery. Regardless of the situation, radial distortion is necessary to
account for in any accurate VO pipeline, and is often done in a pre-calibration step,
where the distortion parameters are obtained. By incorporating the parameter in
the homography estimation process, we hope to eliminate this pre-processing step.
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2 Related Work

2.1 Homography Estimation

The Direct Linear Transform (DLT) equations is a linear system of equations
to extract a homography H given a number of point correspondences. In the
general setting, with eight degrees of freedom, the minimal case requires four
point correspondences. To see this, let us consider a single pair of point corre-
spondences on a common scene plane, denoted by x ↔ x̂. They are related by
a homography H as λx̂ = Hx, for some scalar λ �= 0. Equivalently, we may
express this as x̂ × Hx = 0, thus eliminating the scale parameter λ, or,

⎡
⎣

0 −ŵxT ŷxT

ŵxT 0 −x̂xT

−ŷxT x̂xT 0

⎤
⎦

⎡
⎣
h1

h2

h3

⎤
⎦ = 0, (1)

assuming homogeneous coordinates, i.e. x = [x, y, w]T and x̂ = [x̂, ŷ, ŵ]T ,
respectively. Here hT

k is the k:th row of the homography matrix H. As the cross
product introduces a linear dependence, only two of the equations are necessary,
hence explaining why four point correspondences are minimal in the general
case. Thus, using four point correspondences the problem can be transformed
into finding the one-dimensional null space h = [hT

1 hT
2 hT

3 ]T , which is typically
obtained using SVD of the coefficient matrix.

In the general planar motion model there are only five motion parameters,
hence the minimal case requires but 2.5 point correspondences. Similarly, we
may construct a system of equations, by using three point correspondences and
discard the last equation in the corresponding DLT system. This can be written
as Ch = 0 where C ∈ R5×9 is the coefficient matrix. Again, this is a problem of
finding the null space of C; however, the null space is now four-dimensional. As
an additional step, one must now find the null space coefficients which makes H
a homography compatible with the general planar motion model. It was shown
in [24,29] that there are eleven quartic constraints (as well as a sextic constraint)
in the elements of H that has to be fulfilled in order to guarantee compatibility.

2.2 Modelling Radial Distortion

In order to compensate for the radial distortion, several models have been pro-
posed. A classic method, still in use today, is the Brown–Conrady model [2],
in which also tangential distortion is corrected. The division model introduced
in [5], has gained attention as it provides accurate approximations of the dis-
tortion profile with fewer parameters. For this reason, we will only consider the
distortion model, and restrict ourselves to a single distortion parameter, as this
allows us to use fewer point correspondences.
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Let λ denote the distortion parameter. Then the distorted (or measured)
image points can be expressed as xi = [xi, yi, 1]T

xu
i = f(xi, λ) =

⎡
⎣

xi

yi

1 + λ(x2
i + y2

i )

⎤
⎦ , (2)

where xu
i are the undistorted image points, assuming the distortion center is

aligned to the center of the image. Furthermore, we select the coordinate system
such that the origin is aligned with the distortion center.

We may now modify the DLT equations (1) as the distortion parameter only
appears in the homogeneous coordinates. Consider two point correspondences
xi ↔ x̂i, then

f(x̂i, λ) × Hf(xi, λ) = 0 . (3)

This approach has been used for the general case of radially distorted homo-
graphies [11], conjugate translations with radial distortion [21], and the case
of jointly estimating lens distortion and affine rectification from coplanar fea-
tures [22]. The last two use an explicit parameterization of the motion para-
meters, instead of trying to parameterize the null space of the DLT system. In
common for all methods is that the resulting problem is a polynomial system
of equations, and is solved by further reduction to an eigenvalue problem [4].
Automatic solvers for polynomial systems have been proposed, primarily using
Gröbner bases, such as [9,12–14,16], or resultant based methods [1]. Alternative
approaches include considering the problem as a Quadratic Eigenvalue Prob-
lem (QEP) [5,8,10].

3 The General Planar Motion Model

Consider a camera mounted rigidly on a vehicle travelling on a planar surface.
We model this scenario by assuming that the camera moves in the plane z =
0, parallel to the surface on which the vehicle moves, located in z = 1. This
parameterization also fixes the scale of the global coordinate system.

Consider two consecutive views, A and B, with the corresponding camera
matrices

PA = Rψθ[I | 0],
PB = RψθRφ[I | − t],

(4)

where the constant overhead tilt is modeled by Rψθ, and consists of a rotation θ
about the y-axis followed by a rotation of ψ about the x-axis. Furthermore, we
allow the vehicle to rotate an angle φ about the z-axis, which may vary. As the
camera is assumed to be mounted rigidly on the vehicle, the height above the
floor is constant, hence we may assume that it travels in the plane z = 0, leaving
two translation components tx and ty, see Fig. 1. From this, one may derive the
corresponding inter-image homography

H = λRψθRφTtR
T
ψθ, (5)
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z = 1

n

z = 0

Fig. 1. Illustration of the problem geometry considered in the paper. The camera is
mounted rigidly on a mobile platform, thus travelling parallel to the ground floor
in the plane z = 0. We allow a constant, but generally unknown, overhead tilt to be
present, which is modelled by the angles psi (about the x-axis and θ (about the y-axis).
Furthermore, the camera can rotate about the z-axis (by an angle φ) and translate in
the plane z = 0, i.e. there are in total five degrees of freedom—three rotations and two
translations. Figure reproduced from [25].

where Tt = I − tnT is a translation matrix, for the translation t = [tx, ty, 0]T ,
relative the plane normal n = [0, 0, 1]T . The homography matrix can be made
unique by e.g. imposing det(H) = 1.

In addition to the DLT constraints, the elements of a homography compat-
ible with the general planar motion model must satisfy a number of polynomial
constraints. Such constraints were numerically derived in [29], where it was shown
that that there are at least eleven quartic constraints. The novel theoretical frame-
work used in [24], showed that these constraints were necessary, but not sufficient;
however, by adding a sextic constraint, it was shown that they are sufficient.

4 Polynomial Solvers

4.1 A Non-minimal Relaxation (4 Point)

In theory, one would be able to construct a minimal solver with three point cor-
respondences, as there are six degrees of freedom—the five motion parameters
discussed in Sect. 3, and the distortion parameter. In practice, however, this
problem is hard, and we have yet to find a tractable solution which is numeri-
cally stable and sufficiently fast for real-time applications. Consequently, we have
opted for a non-minimal four point relaxation. We do believe this is an accept-
able compromise, as a general homography with a single distortion parameter
requires 4.5 point correspondences for the minimal configuration. This effectively
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means one has to sample five point pairs to estimate a hypothesis. This section
is largely reproduced from [25].
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Fig. 2. Error histogram of the estimated distortion parameter λ (left) and the homo-
graphy H for 100,000 random instances, for both of the proposed methods.

Similarly, to the approach in [11] we expand the third row of (3); however,
we consider using only four point correspondences. This results in the following
equation

(−ŷih11 + x̂ih21)xi + (−ŷih12 + x̂ih22)yi + (−ŷih13 + x̂ih23)wi = 0, (6)

where wi = 1 + λ(x2
i + y2

i ) and ŵi = 1 + λ(x̂2
i + ŷ2

i ) are functions of the radial
distortion parameter λ. There are eight monomials involved in this expression,
namely

v1 =
[
h11 h12 h13 h21 h22 h23 λh13 λh23

]T
. (7)

Using four point correspondences results in a system of equations, which can be
written as

M1v1 = 0, (8)

where M1 is a 4 × 8 matrix. For non-degenerate configurations the null space
of M1 is four-dimensional. Consequently, we may parameterize v1 as

v1 =
4∑

i=1

γini, (9)

where γi are unknown basis coefficients. Since the last two monomials of v1

depend on the previous elements, this relation has to be enforced when comput-
ing the basis coefficients γi. These give rise to two equations

v8 = λv6 and v7 = λv3 . (10)

Furthermore, we proceed to fix the scale by letting γ4 = 1.



52 M. Valtonen Örnhag

We will now use the second row of (3). Similarly, we may write this as

M2v2 = 0, (11)

where M2 ∈ R4×16. Here the null space vector v2 consists of seven variables,
and 16 monomials: h31, h32, h33, λh33 and λ2γi, λγi, γi for i = 1, 2, 3 and
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Fig. 3. Distribution of estimation error in the distortion parameter λ, and the homo-
graphy H (measured in the Frobenius norm) for different noise levels σ and unknown
tilt. The proposed solver is compared to the five point solver [5]. Figure and caption
reproduced from [25].

λ2, λ, 1. We may now proceed to eliminate the first three variables—h31, h32

and h33—as they are only present in four monomials. As we are using four point
correspondences, yielding four equations, Gauss–Jordan elimination can be used.
We obtain the following upon performing the elimination

M̂2 =

⎡
⎢⎢⎣

h31 h32 λh33 h33 λ2γ1 λγ1 γ1 λ2 λ 1
1 • • • · · · • • •

1 • • • · · · • • •
1 • • • · · · • • •

1 • • • · · · • • •

⎤
⎥⎥⎦ . (12)

It turns out that the columns of the right 4 × 12 submatrix are not indepen-
dent. In order to generate a correct solver, it is important to generate integer
instances satisfying these dependencies.

From the eliminated system M̂2v2 = 0 we get the four equations

h31 + f1(γ1, γ2, γ3, λ) = 0,
h32 + f2(γ1, γ2, γ3, λ) = 0,

λh33 + f3(γ1, γ2, γ3, λ) = 0,
h33 + f4(γ1, γ2, γ3, λ) = 0,

(13)

where fi(γ1, γ2, γ3, λ) are polynomials in the variables γ1, γ2, γ3, λ. Exploiting
the relations between the last two equations of (13), an additional constraint is
obtained

λf4(γ1, γ2, γ3, λ) = f3(γ1, γ2, γ3, λ) . (14)
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The eliminated variables h31, h32 and h33 are polynomials of degree three, thus
making (14) of degree four. Together with (10) we have three equations in four
unknowns. Since we are able to express all elements of the homography H as
a function of four variables, we can enforce one of the 11 quartic constraints
originally found in [29]. Evaluating these constraints using H it turns out that
ten of the constraints are of degree 12 and one of degree 10 due to cancellation of
higher order terms. We choose the smallest one to build the polynomial solver.

Using the automatic generator [12] we find that there are 18 solutions to the
problem in general, and by sampling a basis based on the heuristic presented
in [15] an elimination template of size 177 × 195 could be created.
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Fig. 4. Distribution of estimation error in the distortion parameter λ, and the homo-
graphy H (measured in the Frobenius norm) for different noise levels σ and known tilt
(assumed to be compensated for). The proposed two point solver is compared to the
four point and five point solver [5]. Distribution of estimation error in the distortion
parameter λ, and the homography H (measured in the Frobenius norm) for different
noise levels σ and known tilt (assumed to be compensated for). The proposed two point
solver is compared to the four point and five point solver [5].

4.2 Minimal Solver with Known Tilt (2 Point)

If the tilt angles are known, we can treat the planar motion case with radial
distortion. In this case there are four degrees of freedom, and thus the minimal
configuration requires two point correspondences. In this section, we will derive
a novel solver for this case. Using a different approach than in the previous
section, we may explicitly parameterize the homography. Let us use the following
parameterization for the rotation matrix

Rz =

⎡
⎣

c −s 0
s c 0
0 0 1

⎤
⎦ , (15)

where c2 + s2 = 1, hence the sought homography is given by H ∼ Rz + tnT ,
where t = [tx, ty, 0]T is a translation vector and n = [0, 0, 1]T is a floor normal.
Let us consider the modified DLT equations (3) again, but this time using two
point correspondences. Using the first and third rows, we note that there are
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in total five unknowns—c, s, tx, ty and the radial distortion parameter λ—and
in total eleven monomials, hence we may write the system as Mv = 0, where M
is a 4 × 11 matrix and v is the vector of monomials. Furthermore, of these eleven
monomials, we find only four which contain the variables c and s. Therefore, it
is possible to use Gauss–Jordan elimination to eliminate these variables. The
corresponding system, after elimination, is on the form

M̂ =

⎡
⎢⎢⎣

λc c λs s λtx tx λ2ty λty ty λ 1
1 • • • • • • •

1 • • 0 • • 0 0
1 • • • • • • •

1 • • 0 • • 0 0

⎤
⎥⎥⎦ . (16)

Notice the pattern of zeros emerging in the eliminated system. This, and other
more intricate relations, between the coefficients are necessary to account for in
order to create an accurate polynomial solver.

From the above system we may introduce the functions gi, such that

λc + g1(tx, ty, λ) = 0,
c + g2(tx, ty, λ) = 0,

λs + g3(tx, ty, λ) = 0,
s + g4(tx, ty, λ) = 0 .

(17)

where gi(tx, ty, λ) are polynomials in the variables tx, ty and λ. Furthermore, we
utilize the two relations

g1(tx, ty, λ) = λg2(tx, ty, λ),
g3(tx, ty, λ) = λg4(tx, ty, λ) .

(18)

The constraint c2 + s2 = 1 translates into

g22(tx, ty, λ) + g24(tx, ty, λ) = 1 . (19)

Now, we have a reduced system with three unknowns—tx, ty and λ—given
by (18) and (19). It turns out that (18) are cubic and (19) are quartic, and
by analyzing the dimension of the corresponding quotient ring, we find that the
system has six solutions in total (it can be verified that the original system has
six solutions as well). Using [15] an elimination template of size 18 × 24 was
constructed.

5 Experiments

5.1 Synthetic Data

In this section we investigate the numerical stability and noise sensitivity of
the proposed solver. We generate synthetic homographies, compatible with the
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general planar motion model (with and without tilt), as well as distortion para-
meters. Random scene points are generated using the homography and subse-
quently distorted using the division model.

The polynomial solvers were generated according to Sect. 4 in C++, and the
mean runtime for the 4 point solver is 730 µs and for the 2 point solver 13 µs
(measured over 100,000 instances on a standard desktop computer).

5.2 Numerical Stability

By using the described method, we generate noise-free problem instances. Sim-
ilarly to [11], we use physically reasonable parameters, and cover a wide range
of distortions by allowing the distortion parameter λ to be chosen at random in
the interval [−0.7, 0]. In Fig. 2 we show the error histogram for 100,000 random
problem instances. When measuring the Frobenius norm error, the homographies
have been normalized to h33 = 1.

Input Output

Fig. 5. Two radially distorted images (left) and the rectified and stitched panorama.
The distortion parameter and homography was obtained using the proposed solver
in a RANSAC framework. Blue border added for visualization. Figure and caption
reproduced from [25]. (Color figure online)

From the histogram of the four point solver, we conclude that most para-
meters are estimated accurately, with an error in the range of 10−10. Such
an error is acceptable for most applications; however, some errors are higher,
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reaching an error around 10−2. After careful analysis, we attribute this to the
ten degree polynomial, which was added to conform with one of the original
quartic constraints necessary for making the proposed solver compatible with
the general planar motion model. Luckily, errors of the higher magnitude is less
frequently occurring, and can be efficiently discarded in a robust framework,
such as RANSAC. We will show that this is the case in the coming sections.

For the two point solver the errors are negligible for most computer vision
applications, and is also a strong candidate for a robust framework, given that
the assumptions of known tilt are met.

5.3 Noise Sensitivity

Similar to the previous section we generate synthetic problem instances, but cor-
rupt the radially distorted image coordinates with Gaussian noise with a vari-
ance σ2. The noise is varied from mild to severe and at every noise level 10,000
problem instances were generated and the corresponding error measured. As a
comparison, the five point method based on the QEP approach [5] was used.

The result is shown in Fig. 3. Note that the mean error for both quantities
are lower for the proposed method compared to the five point method, for all
noise levels. Analogously, but with known overhead tilt, we compare the two
point solver to the other methods, see Fig. 4. Here we see a clear benefit over the
other, more general, methods.

Fig. 6. Setup used in the panorama stitching experiment. Figure and caption repro-
duced from [25].
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5.4 Image Stitching

In this section, we use the proposed four point solver in a classic stitching pipeline
based on a standard approach for estimating a homography. The pipeline consists
of first detecting and extracting SURF keypoints, followed by nearest neighbor
matching. From all matched keypoints we select four at random and feed to the
proposed solver in a RANSAC framework. The input images are taken using a
digital camera with a fish-eye lens mounted on a tripod, overlooking a textured
floor, see Fig. 6. The camera tilt was fixed during the experiment, and only the
tripod itself was moved, hence generating a motion compatible with the general
planar motion model.

The output from the experiment is shown in Fig. 5. Bundle adjustment or
other non-linear refinements of the obtained homography was not performed.
Apart from being aligned with the correct edges we also note that lines that are
straight in reality also appear straight in the final panorama, thus indicating
that the radial distortion parameter was correctly estimated.

In terms of the efficiency of the robust framework, we use the same input
images and compare the five point solver [5] with the proposed solver. This is
done by recording the number of inliers as a function of the number of RANSAC
iterations. We repeat the experiment 500 times, and show the average result in
Fig. 7, which shows that the proposed method consistently has a higher number
of inliers.

Fig. 7. Number of inliers vs. number of RANSAC iterations for the images in Fig. 5.
The data has been averaged over 500 test instances. Figure and caption reproduced
from [25].

5.5 Application to Visual Odometry

In this section we use real data from a mobile robot of model Fraunhofer IPA
rob@work. The sequence was originally used in [28], but the radial distortion
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profile was pre-calibrated. On the mobile robot a camera is mounted rigidly, with
an unknown overhead tilt, which excludes the application of the two point solver.
The distortion is clearly noticeable and the field of view is almost entirely of the
textured floor upon which the robot travels. Furthermore, the robot is equipped
with omni-directional wheels, which allows for pure rotations. A reference system
with an absolute accuracy of 100 μm tracks the robot as it moves about, and
the resulting data is used as ground truth.

We consider three sequences:

Line. Forward motion in a straight line with a constant orientation (320 images),
Turn. Forward motion while rotating, resulting in a slight turn (344 images),
Parallel Parking. Forward motion followed by a sharp turn, while keeping

constant rotation (325 images).
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Fig. 8. (Left) Histogram of estimated distortion parameters for the proposed method
evaluating during the parallel parking sequence. The selected parameter λ

∗
is marked

with a dashed line. (Middle) Undistorted image of a calibration chart, not part of
the sequence. (Right) Rectified image using the estimated parameter λ

∗
. Figure and

caption reproduced from [25].

We consider a standard VO pipeline, including an initial solution via homo-
graphy estimation, from which the initial camera poses are estimated (both
intrinsic and extrinsic parameters) and finally a non-linear refinement step using
bundle adjustment. Both the proposed method and the five point method [5] are
capable of producing an initial estimation through inter-image homographies.
Given a pair of consecutive images we may estimate the distortion parameter as
well as the homography, using either solver, in a RANSAC framework. To extract
the full set of motion parameters, we use the method in [27], hence establish-
ing the initial poses. The estimated robot trajectory can then be extracted and
compared to the ground truth. Note that in a complete VO pipeline, the initial
position is important in order to avoid excessive amounts of bundle adjustment
iterations, as these typically become large-scale optimization problems. There-
fore, it is of interest to decrease the number of necessary iterations, by supplying
a good initial guess.
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The methods are comparable in terms of accuracy, as can be seen in Fig. 9,
with a slight preference for the proposed method. As noted in [23,24], there is no
significant boost in performance by pre-optimizing early on in the VO pipeline.
One of the main issues is that the constant overhead tilt, due to the camera
being rigidly mounted onto the robot, is not enforced throughout the entire
trajectory by only considering a single homography. For consistency, one must
consider an entire sequence of homographies. Nevertheless, the proposed method
benefits from the same performance gain as was noted in Sect. 5.4; namely, that
the number of RANSAC iterations required are fewer than for the five point
method.

The problem with considering only a single homography also affects the esti-
mation of the radial distortion coefficient. In return, every pair of consecutive
images yields a new estimate; however, we know a priori that it is constant
through the trajectory. We propose using histogram voting as a robust way to
obtain an initial guess. To evaluate the performance we use previously unseen
images of calibration charts, that were acquired during the creation of the robot
test sequences. We proceed by considering the parallel parking test sequence, and
use the estimated parameters as a basis for the histogram voting experiment,
see Fig. 8. As can be seen, the chosen parameter λ∗, yields an acceptable initial
solution, to be refined in a bundle adjustment framework.

5.6 Application to Aerial Imagery

In this final section we test the novel two point solver for aerial imagery. We
use the TNT Aerial VideoTestset (TAVT) [19]. In this dataset, video sequences
from a UAV have been recorded, at varying flight heights. The onboard global
shutter camera is recording in full HDTV resolution at 30 fps, and suffers from
mild radial distortion. Although the distortion is not severe, it was shown in [18]
that failure to compensate for it results in severely distorted mosaicing attempts.

We use the sequences recorded at higher altitudes, in this case 1000 m and
1500 m above ground, as these are not affected as much by potential non-zero and
non-constant tilt, making the two point solver suitable. The solver is incorpo-
rated in a RANSAC framework, and the pipeline is identical to previous setups
for real images. The sequences are subsampled to include every tenth image
of the original sequences, hence contain 117 and 158 images each. The resulting
mosaics are shown in Fig. 10. Note that no non-linear optimization has been per-
formed, nor histogram voting to determine the distortion profile. Yet, even for
this simple pipeline, we manage to produce visually acceptable results, similar
to those of the original articles [18,19]. Perhaps the only noticeable difference is
the lack of blending, seam-finding and other processing involved; however, these
artifacts do not stem from the solver.
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Fig. 9. Estimated trajectories for line, turn and parallel parking of the VO experiment
in Sect. 5.5. Images to the left show the entire trajectory, and the ones to the right are
zoomed in on a region of interest. Figure and caption reproduced from [25].
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Fig. 10. Mosaics from the 1000m sequence (top) and 1500m sequence of the TAVT
dataset [19] obtained using the proposed two point solver.

6 Conclusions

In this paper, we studied simultaneous radial distortion correction and motion
estimation for planar motion. We proposed two polynomial solvers for estimating
the homography and distortion parameter, and showed that they are sufficiently
numerically robust and fast to be incorporated in a real-time VO pipeline. The
proposed solvers were tested rigorously on both synthetic and real data, and
were shown to be on par or superior to competing methods.
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26. Wadenbäck, M., Heyden, A.: Planar motion and hand-eye calibration using inter-
image homographies from a planar scene. In: International Conference on Com-
puter Vision Theory and Applications (VISAPP), pp. 164–168 (2013)
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