
Maria De Marsico
Gabriella Sanniti di Baja
Ana Fred (Eds.)

LN
CS

 1
25

94

9th International Conference, ICPRAM 2020
Valletta, Malta, February 22–24, 2020
Revised Selected Papers

Pattern Recognition
Applications and
Methods

Lecture Notes in Computer Science 12594

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693

More information about this subseries at http://www.springer.com/series/7412

http://www.springer.com/series/7412

Maria De Marsico • Gabriella Sanniti di Baja •

Ana Fred (Eds.)

Pattern Recognition
Applications and
Methods
9th International Conference, ICPRAM 2020
Valletta, Malta, February 22–24, 2020
Revised Selected Papers

123

Editors
Maria De Marsico
Sapienza Università di Roma
Roma, Italy

Gabriella Sanniti di Baja
ICAR
Consiglio Nazionale delle Ricerche
Naples, Napoli, Italy

Ana Fred
Instituto de Telecomunicações
Lisbon, Portugal

University of Lisbon
Lisbon, Portugal

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-66124-3 ISBN 978-3-030-66125-0 (eBook)
https://doi.org/10.1007/978-3-030-66125-0

LNCS Sublibrary: SL6 – Image Processing, Computer Vision, Pattern Recognition, and Graphics

© Springer Nature Switzerland AG 2020
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-66125-0

Preface

This book includes the extended and revised versions of a set of selected papers from
the 9th International Conference on Pattern Recognition Applications and Methods
(ICPRAM 2020), held in Valletta, Malta, during February 22–24, 2020.

ICPRAM is a major point of contact between researchers, engineers, and practi-
tioners on the areas of pattern recognition and machine learning, both from theoretical
and application perspectives. Contributions describing applications of pattern recog-
nition techniques to real-world problems, interdisciplinary research, experimental,
and/or theoretical studies yielding new insights that advance pattern recognition
methods are especially encouraged.

ICPRAM 2020 received 102 paper submissions from 33 countries, of which the
seven papers in this book constitute the 7%. The seven papers were selected by the
event chairs and their selection was based on a number of criteria that include the
classifications and comments provided by the Program Committee members, the ses-
sion chairs’ assessment, and also the program chairs’ global view of all papers included
in the technical program. The authors of the selected papers were then invited to submit
a revised and extended version of their papers, having at least 30% innovative material.

The first four papers in the book are in the applications area, while the remaining
three papers are in the theory and methods area.

In the first paper, the authors face the problem of building a universal classifier for
traffic sign recognition. The classifier has to deal with large intra-class variations in the
classes and also similarities among various sign classes. Authors use attention network
for country independent classification. The new building block architecture shows
significant improvement of classification accuracy with respect to building block
architecture (VGG) used in a previous paper.

In the second paper, multi-object tracking and segmentation (MOTS) of moving
objects in traffic video datasets are considered. A novel method for tracking multiple
objects (MaskADNet) is proposed, which uses masked images as input for training
ADNet. The segmentation masks obtained after tracking using MaskADNet have a
better Jaccard index or Intersection over Union for masks.

The third paper deals with emotion recognition (ER). Authors discuss methods for
analyzing the non-linguistic component of vocalized speech and propose a method for
producing lower dimensional representations of sound spectrograms that respect their
temporal structure.

By taking into account that most modern day consumer cameras are affected by
some level of radial distortion, which must be compensated for in order to get accurate
estimates, authors of the fourth paper propose a novel polynomial solver for radially
distorted planar motion compatible homographies. The suggested algorithm is shown
to work well inside a RANSAC loop on both synthetic and real data.

In the fifth paper, data acquired in a natural mixed forest by means of an unmanned
aerial vehicle are considered. A suitable pre-processing step is introduced after which

six common clustering algorithms are used to detect tree tops and five different deep
learning architectures are employed to classify tree tops depending on the degree of
affectation due to a parasite infestation. Classification results reach error rates as low as
0.096.

The sixth paper deals with deep neural networks (DNNs) and investigates how to
reduce model complexity – without performance degradation – by pruning useless
connections. Authors try to answer the question of “how similar are representations in
pruned and unpruned models?” and show that the results depend critically on the used
similarity measure.

Finally, in the last paper, the authors analyze multiple approaches in indefinite
learning and suggest a novel, efficient preprocessing operation which widely preserves
the domain-specific information, while still providing a Mercer kernel function. In
particular, we address practical aspects like a out of sample extension and an effective
implementation of the approach. An extensive experimental work is done on various
typical data sets obtaining superior results in the field.

We would like to thank all the authors for their contributions and also the reviewers
who helped ensure the quality of this publication.

February 2020 Maria De Marsico
Gabriella Sanniti di Baja

Ana Fred

vi Preface

Organization

Conference Chair

Ana Fred Instituto de Telecomunicações and University
of Lisbon, Portugal

Program Co-chairs

Maria De Marsico Sapienza Università di Roma, Italy
Gabriella Sanniti di Baja CNR, Italy

Program Committee

Andrea Abate University of Salerno, Italy
Ashraf AbdelRaouf Misr International University (MIU), Egypt
Rahib Abiyev Near East University, Turkey
Lale Akarun Bogazici University, Turkey
Mayer Aladjem Ben-Gurion University of the Negev, Israel
Rocío Alaiz-Rodríguez Universidad de León, Spain
Mahmood Azimi-Sadjadi Colorado State University, USA
Silvio Barra University of Cagliari, Italy
Stefano Berretti University of Florence, Italy
Monica Bianchini University of Siena, Italy
Isabelle Bloch Télécom ParisTech, Université Paris-Saclay, France
Andrea Bottino Politecnico di Torino, Italy
Paula Brito Universidade do Porto, Portugal
Fabian Bürger Valeo Vision, France
Marinella Cadoni Università degli Studi di Sassari, Italy
Javier Calpe Universitat de València, Spain
Virginio Cantoni Università degli Studi di Pavia, Italy
Guillaume Caron Université de Picardie Jules Verne, France
Rama Chellappa University of Maryland, USA
Sergio Cruces Universidad de Sevilla, Spain
Rozenn Dahyot Trinity College Dublin, Ireland
Luiza de Macedo Mourelle State University of Rio de Janeiro, Brazil
Yago Diez Yamagata University, Japan
Jean-Louis Dillenseger Université de Rennes 1, France
Duane Edgington Monterey Bay Aquarium Research Institue, USA
Kjersti Engan University of Stavanger, Norway
Haluk Eren Firat University, Turkey
Giorgio Fumera University of Cagliari, Italy
Vicente Garcia Autonomous University of Ciudad Juárez, Mexico

Angelo Genovese Università degli Studi di Milano, Italy
Markus Goldstein Ulm University of Applied Sciences, Germany
Petra Gomez-Krämer La Rochelle University, France
Rocio Gonzalez-Diaz University of Seville, Spain
Bernard Gosselin University of Mons, Belgium
Marco Granato Università degli Studi di Milano, Italy
Michal Haindl Institute of Information Theory and Automation,

Czech Republic
Lawrence Hall University of South Florida, USA
Kouichi Hirata Kyushu Institute of Technology, Japan
Sean Holden University of Cambridge, UK
Yi-zeng Hsieh National Taiwan Ocean University, Taiwan, China
Su-Yun Huang Academia Sinica, Taiwan, China
Akinori Ito Tohoku University, Japan
Yuji Iwahori Chubu University, Japan
Sarangapani Jagannathan Missouri University of Science and Technology, USA
Xiaoyi Jiang University of Münster, Germany
Bertrand Kerautret Université Lumière Lyon 2, LIRIS, France
Lisimachos Kondi University of Ioannina, Greece
Mario Köppen Kyushu Institute of Technology, Japan
Constantine Kotropoulos Aristotle University of Thessaloniki, Greece
Sotiris Kotsiantis University of Patras, Greece
Kidiyo Kpalma INSA Rennes, France
Malgorzata Kretowska Bialystok University of Technology, Poland
Marek Kretowski Bialystok University of Technology, Poland
Marco La Cascia Università degli Studi di Palermo, Italy
Shang-Hong Lai National Tsing Hua University, Taiwan, China
Shi-wook Lee National Institute of Advanced Industrial Science

and Technology, Japan
Young-Koo Lee Kyung Hee University, South Korea
Nicolas Lermé Université Paris-Sud, France
Chang-Tsun Li Deakin University, Australia
Aristidis Likas University of Ioannina, Greece
Laurence Likforman Télécom Paris, France
Josep Llados Universitat Autònoma de Barcelona, Spain
Eduardo Lleida Universidad de Zaragoza, Spain
Luca Lombardi University of Pavia, Italy
Yonggang Lu Lanzhou University, China
Teresa Ludermir Universidade Federal de Pernambuco, Brazil
Alessandra Lumini Università di Bologna, Italy
Juan Luo George Mason University, USA
Marco Maggini University of Siena, Italy
Juan Manuel Corchado University of Salamanca, Spain
Elena Marchiori Radboud University, The Netherlands
Gian Marcialis Università degli Studi di Cagliari, Italy

viii Organization

Urszula
Markowska-Kaczmar

Wroclaw University of Technology, Poland

Francisco Martínez Álvarez Pablo de Olavide University of Seville, Spain
J. Martínez-Trinidad Instituto Nacional de Astrofísica, Óptica y Electrónica,

Mexico
Pascal Matsakis University of Guelph, Canada
Erzsébet Merényi Rice University, USA
Alessio Micheli University of Pisa, Italy
Delia Mitrea Technical University of Cluj-Napoca, Romania
Ramón Mollineda Cárdenas Universitat Jaume I, Spain
Muhammad Marwan

Muhammad Fuad
Coventry University, UK

Marco Muselli CNR, Italy
Mohamed Nait-Meziane Université de Tours, France
Jakub Nalepa Silesian University of Technology, Poland
Mita Nasipuri Jadavpur University, India
Mikael Nilsson Lund University, Sweden
Lawrence O’Gorman Nokia Bell Labs, USA
Il-Seok Oh Chonbuk National University, South Korea
Simon O’Keefe University of York, UK
Yoshito Otake Nara Institute of Science and Technology, Japan
Guenther Palm University of Ulm, Germany
Pornntiwa Pawara University of Groningen, The Netherlands
Petra Perner Institute of Computer Vision and Applied

Computer Sciences, Germany
Mikhail Petrovskiy Lomonosov Moscow State University, Russia
Dara Pir Guttman Community College, USA
Vincenzo Piuri Università degli Studi di Milano, Italy
Stephen Pollard HP Labs, UK
Lionel Prevost ESIEA, France
Wei Quan University of Central Lancashire, UK
Jagath Rajapakse Nanyang Technological University, Singapore
Oriol Ramos Terrades Universitat Autònoma de Barcelona, Spain
Daniel Riccio University of Naples Federico II, Italy
Marcos Rodrigues Sheffield Hallam University, UK
Fernando Rubio Universidad Complutense de Madrid, Spain
Rafel Rumi University of Almería, Spain
José Saavedra Orand S.A, Chile
Lorenza Saitta Università degli Studi del Piemonte Orientale, Italy
J. Salvador Sánchez Universitat Jaume I, Spain
Antonio-José

Sánchez-Salmerón
Universitat Politecnica de Valencia, Spain

Carlo Sansone University of Naples Federico II, Italy
K. C. Santosh University of South Dakota, USA
Simone Scardapane Sapienza University of Rome, Italy
Michele Scarpiniti Sapienza University of Rome, Italy

Organization ix

Friedhelm Schwenker University of Ulm, Germany
Humberto Sossa Instituto Politécnico Nacional-CIC, Mexico
Tania Stathaki Imperial College London, UK
Mu-Chun Su National Central University, Taiwan, China
Eulalia Szmidt Systems Research Institute, Polish Academy

of Sciences, Poland
Monique Thonnat Inria, France
Ricardo Torres Norwegian University of Science and Technology

(NTNU), Norway
Genny Tortora Università degli Studi di Salerno, Italy
Edmondo Trentin Università degli Studi di Siena, Italy
Rosa Valdovinos Rosas Universidad Autonoma del Estado de Mexico, Mexico
Ernest Valveny Universitat Autònoma de Barcelona, Spain
Sebastiano Vascon Ca’Foscari University, Italy
Sebastian Ventura University of Cordoba, Spain
Antanas Verikas Halmstad University, Sweden
Panayiotis Vlamos Ionian University, Greece
Asmir Vodencarevic Siemens Healthcare GmbH, Germany
Laurent Wendling LIPADE, France
Slawomir Wierzchon Polish Academy of Sciences, Poland
Richard Wilson University of York, UK
Shengkun Xie Ryerson University, Canada
Jing-Hao Xue University College London, UK
Chan-Yun Yang National Taipei University, Taiwan, China
Yusuf Yaslan Istanbul Technical University, Turkey
Slawomir Zadrozny Polish Academy of Sciences, Poland
Pavel Zemcik Brno University of Technology, Czech Republic
Bob Zhang University of Macau, Macau, China
Reyer Zwiggelaar Aberystwyth University, UK

Additional Reviewers

Qiqi Bao Tsinghua University, China
As Mansur Kyushu University, Japan
Eduardo Pérez University of Cordoba, Spain
Lorenzo Putzu University of Cagliari, Italy

Invited Speakers

Andrea Cavallaro Queen Mary University of London, UK
Cristina Conati University of British Columbia, Canada
Max Welling University of Amsterdam, The Netherlands

x Organization

Contents

End to End Deep Neural Network Classifier Design for Universal
Sign Recognition . 1

Vartika Sengar, Renu M. Rameshan, and Senthil Ponkumar

MaskADNet: MOTS Based on ADNet. 13
Anusha Aswath and Renu M. Rameshan

Dimensionality Reduction and Attention Mechanisms for Extracting
Affective State from Sound Spectrograms . 27

George Pikramenos, Konstantinos Kechagias, Theodoros Psallidas,
Georgios Smyrnis, Evaggelos Spyrou, and Stavros Perantonis

Efficient Radial Distortion Correction for Planar Motion 46
Marcus Valtonen Örnhag

A Preliminary Study on Tree-Top Detection and Deep Learning
Classification Using Drone Image Mosaics of Japanese Mixed Forests. 64

Yago Diez, Sarah Kentsch, Maximo Larry Lopez Caceres,
Koma Moritake, Ha Trang Nguyen, Daniel Serrano,
and Ferran Roure

Investigating Similarity Metrics for Convolutional Neural Networks
in the Case of Unstructured Pruning . 87

Alessio Ansuini, Eric Medvet, Felice Andrea Pellegrino,
and Marco Zullich

Encoding of Indefinite Proximity Data:
A Structure Preserving Perspective . 112

Maximilian Münch, Christoph Raab, and Frank-Michael Schleif

Author Index . 139

End to End Deep Neural Network
Classifier Design for Universal Sign

Recognition

Vartika Sengar1(B), Renu M. Rameshan1, and Senthil Ponkumar2

1 School of Computing and Engineering, Indian Institute of Technology, Mandi,
Himachal Pradesh, India

vartika.sengar@gmail.com, renumr@iitmandi.ac.in
2 Continental Automotive Components (India) Pvt. Ltd., Bengaluru, India

senthil.ponkumar@continental-corporation.com

Abstract. Self-driving cars and Advanced Driver Assistance Systems
rely heavily on Traffic Sign Recognition for safe maneuvering on the
roads. But traffic signs can vary from one country to another, thereby
necessitating multiple classifiers or a single universal classifier which can
handle variations across countries. This paper reports our attempt at
building a universal classifier. This classifier has to deal with large intra-
class variations in the classes and also similarities among various difficult
to distinguish traffic sign classes. This paper is an extension of our previ-
ous work in which we proposed a hierarchical classifier for traffic signs of
a specific country. In hierarchical classification, dedicated classifiers are
trained for classes which are more difficult to distinguish. Such similar
classes are grouped together automatically by learning category hierar-
chy from the confusion matrix of a flat classifier (building block). In this
paper, we use attention network for country independent classification.
Here, CNN itself pays attention to regions in an image which are more
discriminative and thus results in better classification for such problems.
The aim here is to design a traffic sign recognition framework which can
be used for multiple countries and be able to classify even the hard to
distinguish classes by exploiting category hierarchy of traffic signs. The
model is evaluated on traffic signs of seven countries namely Belgium,
China, Croatia, Russia, Spain, Germany and Italy. The new building
block architecture shows significant improvement of classification accu-
racy that is 97.7% as compared to building block architecture (VGG)
used in our previous paper that is 95.1%.

Keywords: Hierarchical classification · Machine learning ·
Feedforward neural networks · Data processing · Clustering methods ·
Image processing · Pattern recognition · Feature extraction · Attention
networks · Convolutional neural networks

c© Springer Nature Switzerland AG 2020
M. De Marsico et al. (Eds.): ICPRAM 2020, LNCS 12594, pp. 1–12, 2020.
https://doi.org/10.1007/978-3-030-66125-0_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-66125-0_1&domain=pdf
https://doi.org/10.1007/978-3-030-66125-0_1

2 V. Sengar et al.

1 Introduction

Traffic sign classification is a challenging task as it has to deal with traffic signs
belonging to different countries having different number of traffic sign categories.
Figure 1 shows three signs. Figure 1(a) and Fig. 1(b) shows signs of same class
which are visually different. Whereas, Fig. 1(c) shows a sign from a different class
which is visually similar to the sign class of Fig. 1(a) and Fig. 1(b). Referring to
this figure, the first major challenge is revealed as large intra-class variation and
small inter-class variability.

STOP sign STOP sign DO NOT ENTER sign(a) (b) (c)

Fig. 1. Example showing large intra-class variation and small inter-class variability.

As described in our earlier paper [1], in sign classification visual separability
among the classes is not equal. As shown in Fig. 2, some sign categories are
more difficult to differentiate than others and some are very alike. Figure 2(a)
shows signs which are visually different and thus can easily be classified whereas
Fig. 2(b) shows signs which are very similar and difficult to discriminate. Thus,
dedicated classifiers are needed to classify difficult to differentiate sign classes.
To have better recognition, keen observation is required in manually grouping
different sign classes. Its analysis is time consuming and at times error prone
too. Automating the classification of sign classes guided by machine learning
is efficiently handled by a hierarchical classifier [1] which is capable enough to
make the effortless inclusion of the new category of signboards.

Easy to differentiate classes Difficult to differentiate classes(a) (b)

Fig. 2. Examples of easy and difficult traffic sign classes.

End to End Deep Neural Network Classifier Design 3

A well designed traffic sign recognition system should not only perform well
on signs of a particular country but it should also be able to properly recognize
the signs of other countries, handling all the possible variations of a particular
category in a country. In this work, the goal is to design a scalable universal
machine learning based approach which can efficiently take care of wide intra-
class variations without extracting desired handcrafted features beforehand. Here
scalable means adapting to class level changes and database changes.

The above discussion brings out the necessity for a hierarchical classifier as
well as a universal classifier which is country independent in the scope of traffic
sign recognition, as shown in Fig. 3.

Fig. 3. Need for both hierarchical and universal classifier.

The earlier work [1] solves the problem of classification for one country; the
problem of a single classifier which is invariant to country specific changes is
still not solved. In human perspective, there may be a slight variation in each
class sign as we move from one country to another. But for a machine to handle
such variations may be confusing. The existing solutions in literature work for
two [3] or three countries [4] only. Convolution network based solutions can be
thought of for designing a single architecture which can be used for multiple
countries, thereby eliminating the need for country-specific classifiers. Key to
such solutions is learning CNN parameters such that the features obtained are
discriminative. One way of doing this is by using triplet loss function for getting
embeddings such that the embeddings of images of the same class lies closer to
each other and are distant from the embeddings of images from other classes [7].
These embeddings lie on a manifold and any distance measure in manifold can
be used for classification. Other loss functions can also be used which imposes a
margin between images belonging to one class. Also, techniques which are used
to improve the mid-level learning capabilities of CNN by paying attention to the
discriminative regions in an image can be used to solve this problem which is
similar to fine-grained image classification problem.

In this paper we propose a solution to classify traffic signs from multiple
countries. For this we collected traffic sign images from seven countries, namely,

4 V. Sengar et al.

Belgium [18], China [19], Croatia [20], Russia [21], Spain [22], Germany [23] and
Italy [24]. We modified our base network or building block from VGG8 to an
attention based network which shows reasonable performance on data from the
seven countries.

The paper is organized as follows. Section 2 describes review of related litera-
ture. Section 3 explains the method for designing universal hierarchical classifier.
The experimentation details along with results are presented in Sect. 4. Conclu-
sions and future work is discussed in Sect. 5.

2 Related Work

The idea of designing a single classifier for universal sign recognition greatly
reduces the need for country-specific classifiers. Thus, a single self-driving car
trained only once can travel worldwide without switching the classifiers. Some
works in traffic sign recognition domain have already tried to implement this
idea. Saha et al. [3] proposes one for all architecture which works well for mul-
tiple datasets. The idea used in [3] is of dilated residual learning. The dilated
convolutions are used whose effective receptive field grows exponentially, which is
much quicker than conventional convolution, without the loss of resolution which
results from strided convolution and pooling. This merges spatial information
across inputs more quickly with fewer layers. In [3], dilated residual learning
is used which joins residual convolution blocks with hierarchical dilated skip
connections. This model is trained and tested on German Traffic Sign Bench-
mark (GTSRB) [23] and Belgium Traffic Sign Benchmark (BTSC) [18]. Another
work on multiple-dataset traffic sign classification using single CNN is described
by JuriÅi et al. [4]. A single deep CNN model is used which is trained with
dropout. This performs well on intersection and union of three different coun-
try datasets namely Germany, Belgium, and Croatia. A multi-scale architecture
is described in [4]. Here, the branch-offs from the convolutional layers are con-
catenated after adding fully connected layer on top of each convolution-pooling
block. This multi-scale architecture helps to extract several abstract features per
scale before combining in fully connected layers. Also, Rosario et al. [5] explains
transfer learning techniques to use the knowledge gained from an already devel-
oped model of a specific country to better recognize traffic signs from another
country. In [6] Yang et al. explains efficient traffic sign recognition system with
scale aware CNN consisting of a classification module which fuses multi-scale
and multi-level features followed by a fully connected and softmax layer.

In addition there are certain loss functions in literature which can be used to
maximize the inter-class variance and minimize intra-class variance. These intro-
duce a margin between positive example to all other negative examples. Triplet
Loss [7], Large margin Softmax Loss [8], Angular Softmax Loss [9], Contrastive
Center Loss [10], Large Margin Cosine Loss [11] and Additive Margin Softmax
Loss [12] all share the same idea of increasing the discriminative power of fea-
tures. Yang et al. [13] explains convolution prototype learning where prototype
loss is introduced to provide intra-class compactness of feature representation.

End to End Deep Neural Network Classifier Design 5

Another category of solutions which can possibly solve the universal sign
recognition problem is by attending the most discriminative regions during clas-
sification, thereby increasing the accuracy for difficult fine-grained classification
problems. Valev et al. [14] compares the performance of various recent deep
learning architectures like VGG, ResNet, Inception, DenseNet and MobileNet
for fine-grained vehicle classification. In [14] it is concluded that DenseNet proves
to be the best among all architectures for classification after fine tuning weights
of the pre-trained network because every layer is connected to every other layer
which preserve information of both input and skipped layers. Yang et al. [15]
describes a collaborative learning scheme which includes multi-agents. In this
network three agents are used:

– Navigator which proposes the most discriminative region.
– Teacher who evaluates the region proposed by navigator and gives feedback.
– Scrutinizer who inspects proposed regions from Navigator and do classifica-

tion.

Wang et al. [16] proposes a feedforward CNN architecture which is formed by
stacking multiple attention modules. Each module consists of a mask branch
and a trunk branch. Trunk branch is a normal feature processing branch. Mask
branch is used to learn different attention mask for different levels. The atten-
tion is not restricted to a fixed location but to different locations in a single
image. Attention mask softly weights the input image feature by suppressing
bad features and enhancing good discriminative features. Similarly, Fu et al. in
[17] proposed a recurrent attention proposal subnetwork. This network learns
discriminative attention region and its feature representation at multiple scales.
At each scale there are two subnetworks - classification subnetwork and attention
proposal network. Attention proposal network proposes attention region for next
scale iteratively from coarse to a finer level of attention. Two loss functions are
used, one for intra-scale classification loss and another for inter scale ranking loss.
Optimization is done in an alternating manner. For solving fine grained classifica-
tion problem, Wang et al. in [2] focuses on discriminative patches in input image
not by using any auxiliary network or feature encoding but by learning 1 × 1
filter bank which acts as discriminative patch detectors. This is claimed to be
better than the previous approach of localization because here there is no trade-
off between localization and recognition. In [17] and other similar works, initially
the corresponding parts are determined which motivates similarity between the
parts followed by comparison of appearance of these parts to identify the dis-
criminative information which motivates dissimilarity amongst the parts across
classes. Thus, there always exists a trade-off. In [2], there is no such trade-off
and discriminative patches are not necessarily shared across classes. Therefore,
full focus is on classification. In our work we applied the idea of learning 1 × 1
discriminative filter bank from [2] to our building block [1] to solve the problem
of a universal classifier for traffic signs recognition.

6 V. Sengar et al.

3 Methodology

The idea is to modify the building block net of previously proposed hierar-
chical classifier architecture to learn convolutional filter bank which can cap-
ture class specific discriminative patch for enhancing previous classifier to dis-
tinguish between traffic sign from multiple countries. The modification is by
adding attention mechanism of [2] where attention module was used to solve
fine grained classification problem on CUB-200-2011, Stanford Cars and FGVC-
Aircraft datasets. 1 × 1 convolution filter acts as a patch detector in the input
image [2]. The aim is to learn these 1 × 1 convolution filters which have a high
response in the discriminative region. The exemplar illustration is given in Fig. 4.

The building block architecture which was used in earlier work is shown
in Table 1 [1]. Because we need a highly localized discriminative region, small
patches or small receptive field of input feature map should be used. The recep-
tive field is region in input image that is influenced by a particular CNN filter. It
is calculated using Eq. 1 where jump is distance between two adjacent features.

ReceptiveF ield = PreviousReceptiveF ield + (Kernelsize−1) ∗ previousjump
(1)

Also, for accurate patch location, stride between the adjacent patches should be
small. The modified architecture is shown in Fig. 5.

Fig. 4. 1 × 1 Convolution filter bank act as patch detector.

The modified architecture is structured as a two-stream asymmetric archi-
tecture. The two streams are [2]:

1. Discriminative patch branch - Classification on the basis of responses of dis-
criminative patches.

2. Global feature branch - Classification on the basis of global feature and
appearance.

To ensure discriminative representation, the network is trained in such a
way that the patch detectors (bank of convolution filters) identify patches from

End to End Deep Neural Network Classifier Design 7

Table 1. Building block architecture details.

Layer Configuration Receptive field

Conv1 block Convolution 32, 3 × 3 filters 3

Convolution 32, 3 × 3 filters 5

Max pooling 2 × 2 6

Dropout 0.2

Conv2 block Convolution 64, 3 × 3 filters 10

Convolution 64, 3 × 3 filters 14

Max pooling 2 × 2 16

Dropout 0.2

Conv3 block Convolution 128, 3 × 3 filters 24

Convolution 128, 3 × 3 filters 32

Max pooling 2 × 2 36

Dropout 0.2

Flatten

Dense 512

Dropout 0.2

Dense No. of classes (M)

the discriminative regions of the image. The learning mechanism is by using
convolution filter supervision which ensures direct supervision of 1 × 1 filters
shown as the side branch in Fig. 5. If there are M classes and each class has
k discriminative patches then the total number of 1 × 1 convolution filters
needed is kM . After taking the maximum response of each convolution filter
we get a kM -tuple, where each class is represented by a k-tuple. Cross-channel
pooling (each value picked from one filter corresponds to one channel) is done by
averaging over each group of k-tuples, thereby leading to an M -tuple, with each
entry corresponding to a class. Following this, softmax is applied. The filters

Fig. 5. Architecture of modified VGG network.

8 V. Sengar et al.

corresponding to each class finds discriminative patches from training data of
that class such that the average filter response is high.

The patch detector layer initialization is done as follows. The convolution
features from the pre-trained model (VGG) are extracted. At each location of
the feature map, L × W × C, the energy (�2 norm of the C-tuple) is calculated.
Those locations which have energy larger than the threshold are selected. The
selection is done using non-max suppression with a small threshold. K-means is
then applied to selected C-tuple within the class i. Cluster centers are used as
initialization for filters from the class i. In this way, mid-level learning capability
of CNN is enhanced.

4 Experimentation and Results

In previous work [1], the experiments were performed using dataset of single
country. We used GTSRB dataset to solve classification problem of uneven visual
variability of traffic signs using a deep learning based hierarchical classification
design. The difficult classes were distinguished using dedicated fine category
classifiers. The final prediction was the probabilistic weighted average of fine
category prediction, weighted by coarse classifier prediction. The category hier-
archy was learned using spectral clustering on the confusion matrix of building
block CNN. For 29 class problem, the accuracy improved from 92.1% for the
flat classifier to 93.3% for the hierarchical classifier. But the Top-1 accuracy of
93.3% can still be improved. To proceed in that direction the results obtained
were analyzed. Two major issues which were noticed are outliers and size of
images. Outliers (images which do not contain any sign) were removed statisti-
cally by fixing an upper and lower threshold on aspect ratio using box plot. This
threshold entirely depends on the dataset. The second major problem which was
observed is the size of the image which varies from 1 × 4 pixels to 108 × 89 pix-
els. The images which are very small does not contain any information in just
a few pixels. This problem can be solved by removal of such small images. The
accuracy obtained after removing both outliers and small sized images is 97.5%.
Another issue was that upscaling by interpolation leads to loss of quality and
adds blur. So, super-resolution seems to be a better option for upscaling while
preserving texture details. Super-resolution GAN is used for upscaling the image
by a factor of 4. It is observed that there is a significant improvement in accu-
racy by hierarchical classifier. Also, GTSRB dataset is showing improvement in
accuracy from 98.7% to 99.0% which is better than human accuracy of 98.8%.
All the results are reported in Table 2.

In order to scale up and enhance the capability of earlier work the second
objective is to design a universal CNN architecture for traffic sign classification
so that the need for country-specific classifiers is eliminated. Therefore, the pro-
posed network was evaluated using seven country dataset. The VGG-8 network
is used as a base network in the proposed architecture. VGG-8 was also used as a
building block in hierarchical classifier [1]. The input image size for the network
is 224 × 224 × 3. Training is done for 300 epochs with a batch size of 14 images.

End to End Deep Neural Network Classifier Design 9

The test batch size is fixed at 64. Figure 6 shows the location of discriminative
patches before and after training on some test examples from Speed Limit 20
traffic sign class.

Fig. 6. Result showing the location of attention patches before and after training for
GTSRB dataset.

After the training, attention patches are more focused on the discriminative
locations. As observed from the Speed Limit sign classes, the discriminative
region is number written on the sign. For example, among speed limit 20, 30,
50, 60 etc., the discriminative region is 2, 3, 5, 6 respectively. This is justified
from Fig. 6, as the patches after training are located over the number 2 for speed
limit 20 sign class. Thus, this network can be used to locate discriminative parts
when the image has lots of variation within class.

The model is trained and tested using multiple country dataset. The multiple
country dataset is obtained from traffic sign dataset of seven countries- Belgium,
China, Croatia, Russia, Spain, Germany and Italy. All sign classes from GTSRB
is picked and all equivalent classes for the other countries are also selected to
form the dataset. The resulting top-1 testing accuracy is 97.72%. The flat VGG-
8 network gives top-1 testing accuracy of 95.13% which is lower than accuracy
obtained using discriminative filter bank architecture. From To the best of our
knowledge, this is the first such work on seven country dataset. Thus, network
works well on multiple country dataset as well. The result is shown in Table 2.

10 V. Sengar et al.

Table 2. Results of experimentation done on seven countries dataset. HC: hierarchical
classifier.

Dataset Network Accuracy Network Accuracy

29-Triangular: original [1] VGG-8 92.1% HC 93.3%

29-Triangular: outliers removed [1] VGG-8 92.4% HC 93.8%

29-Triangular: small size removed [1] VGG-8 96.1% HC 96.9%

29-Triangular: both removed [1] VGG-8 96.7% HC 97.5%

29-super-resolved Triangular [1] VGG-8 95.0% HC 97.3%

GTSRB [1] VGG-8 98.7% HC 99%

Seven countries traffic sign VGG-8 95.1% Proposed 97.7%

5 Conclusion and Future Work

Attention network based architecture shows improvement over our base model
as used in our previous work on deep learning based hierarchical classification
design. Using this more generalized universal CNN architecture for traffic sign
classification we can eliminate country specific classifiers. This model can be
integrated as a building block in hierarchical classifier architecture, which can
enhance mid-level learning capability of CNN by using 1 × 1 filter as patch
detectors and training it in such a manner that gives maximum response on the
most discriminative regions of the image. It may result in some improvement in
accuracy. We have seen that if the base model accuracy is high, the hierarchi-
cal classifier doesn’t give much improvement (On GTSRB dataset: base model
98.7% and hierarchical classifier: 99.0%) [1]. The accuracy obtained on the seven
countries combined data is 97.72% which is higher than accuracy obtained by
VGG-8 architecture that is 95.13%. This shows that the attention model works
well for multiple country traffic sign recognition. We expect the attention based
VGG-8 model to provide some improvement when used with hierarchical classi-
fiers. Pre-processing techniques and augmentation can also be applied to improve
the performance especially in case when very less examples of the particular class
are available.

References

1. Sengar, V., Rameshan, R.M., Ponkumar, S.: Hierarchical traffic sign recognition for
autonomous driving. In: International Conference on Pattern Recognition Appli-
cations and Methods (ICPRAM), February 2020

2. Wang, Y., Morariu, V.I., Davis, L.S.: Learning a discriminative filter bank within
a cnn for fine-grained recognition. In: The IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), June 2018

3. Saha, S., Amit Kamran, S., Shihab Sabbir, A.: Total recall: understanding traffic
signs using deep convolutional neural network. In: 2018 21st International Confer-
ence of Computer and Information Technology (ICCIT), pp. 1–6, December 2018

End to End Deep Neural Network Classifier Design 11

4. JuriÅi, F., Filkovi, I., Kalafati, Z.: Multiple-dataset traffic sign classification with
one CNN. In: 2015 3rd IAPR Asian Conference on Pattern Recognition (ACPR),
pp. 614–618, November 2015

5. Rosario, G., Sonderman, T., Zhu, X.: Deep transfer learning for traffic sign recogni-
tion. In: 2018 IEEE International Conference on Information Reuse and Integration
(IRI), pp. 178–185, July 2018

6. Yang, Y., Liu, S., Ma, W., Wang, Q., Liu, Z.: Efficient traffic-sign recognition with
scale-aware CNN. CoRR, vol. abs/1805.12289 (2018)

7. Schroff, F., Kalenichenko, D., Philbin, J.: Facenet: a unified embedding for face
recognition and clustering. In: 2015 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 815–823, June 2015

8. Liu, W., Wen, Y., Yu, Z., Yang, M.: Large-margin softmax loss for convolutional
neural networks. In: Proceedings of the 33rd International Conference on Inter-
national72 Conference on Machine Learning, ICML 2016, vol. 48, pp. 507–516.
JMLR.org (2016)

9. Liu, W., Wen, Y., Yu, Z., Li, M., Raj, B., Song, L.: Sphereface: deep hypersphere
embedding for face recognition. In: 2017 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 6738–6746, July 2017

10. Qi, C., Su, F.: Contrastive-center loss for deep neural networks. In: in 2017 IEEE
International Conference on Image Processing (ICIP), pp. 2851–2855, September
2017

11. Wang, H., et al.: Cosface: large margin cosine loss for deep face recognition. In:
2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
5265–5274, June 2018

12. Wang, F., Cheng, J., Liu, W., Liu, H.: Additive margin softmax for face verification.
IEEE Signal Process. Lett. 25, 926–930 (2018)

13. Yang, H., Zhang, X., Yin, F., Liu, C.: Robust classification with convolutional pro-
totype learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 3474–3482, June 2018

14. Valev, K., Schumann, A., Sommer, L.W., Beyerer, J.: A systematic evaluation of
recent deep learning architectures for fine-grained vehicle classification. CoRR, vol.
abs/1806.02987 (2018)

15. Yang, Z., Luo, T., Wang, D., Hu, Z., Gao, J., Wang, L.: Learning to navigate for
fine-grained classification. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y.
(eds.) ECCV 2018, Part XIV. LNCS, vol. 11218, pp. 438–454. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-01264-9 26

16. Wang, F., et al.: Residual attention network for image classification. In: 2017 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6450–6458,
July 2017

17. Fu, J., Zheng, H., Mei, T.: Look closer to see better: recurrent attention convolu-
tional neural network for fine-grained image recognition. In: 2017 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pp. 4476–4484, July 2017

18. BelgiumTS Dataset. https://btsd.ethz.ch/shareddata/
19. Chinese Traffic Sign Database. http://www.nlpr.ia.ac.cn/pal/trafficdata/

detection.html
20. The MASTIF datasets. http://www.zemris.fer.hr/∼ssegvic/mastif/datasets.shtml
21. Russian Traffic sign recognition Dataset. http://graphics.cs.msu.ru/en/research/

projects/imagerecognition/trafficsign

https://doi.org/10.1007/978-3-030-01264-9_26
https://btsd.ethz.ch/shareddata/
http://www.nlpr.ia.ac.cn/pal/trafficdata/detection.html
http://www.nlpr.ia.ac.cn/pal/trafficdata/detection.html
http://www.zemris.fer.hr/~ssegvic/mastif/datasets.shtml
http://graphics.cs.msu.ru/en/research/projects/imagerecognition/trafficsign
http://graphics.cs.msu.ru/en/research/projects/imagerecognition/trafficsign

12 V. Sengar et al.

22. Spanish Traffic Sign Dataset. https://daus-lab.github.io/spanish-traffic-sign-
dataset/

23. GTSRB Dataset. http://benchmark.ini.rub.de/?section=gtsrb&subsection=
dataset

24. DITS - Data set of Italian Traffic Signs. http://users.diag.uniroma1.it/bloisi/ds/
dits.html

https://daus-lab.github.io/spanish-traffic-sign-dataset/
https://daus-lab.github.io/spanish-traffic-sign-dataset/
http://benchmark.ini.rub.de/?section=gtsrb&subsection=dataset
http://benchmark.ini.rub.de/?section=gtsrb&subsection=dataset
http://users.diag.uniroma1.it/bloisi/ds/dits.html
http://users.diag.uniroma1.it/bloisi/ds/dits.html

MaskADNet: MOTS Based on ADNet

Anusha Aswath(B) and Renu M. Rameshan(B)

Indian Institute of Technology, Mandi, Himachal Pradesh, India
anusha.aswath@gmail.com, renumr@iitmandi.ac.in

Abstract. In this paper, we aim to perform multi-object tracking and
segmentation (MOTS) of moving objects in traffic video datasets. A novel
method for tracking multiple objects is proposed, which uses masked
images as input for training ADNet [39], and we name it as MaskADNet.
Segmentation mask prior for tracking using only foreground instances has
shown significant improvements in tracking performance. Better online
update using masked images and reduced tracking failures help achieve
10.57% and 12% increase in precision and success rates over the previ-
ous approach [2]. The segmentation masks obtained after tracking using
MaskADNet have a better Jaccard index or Intersection over Union for
masks. The network also achieves improvements in association of tracks
with detection or re-identification of lost targets in multi-object track-
ing scenarios, with minimal changes in identity. The proposed method of
tracking has shown that tracking using segmentation masks can achieve
significant improvements for multi-object tracking and segmentation.

Keywords: MOTS · Masked input image · Multi-object tracking ·
Segmentation masks · Re-identification

1 Introduction

Advanced Driver Assistance Systems (ADAS) focus on camera, radar and lidar
sensor fusion for classification, detection and tracking in traffic scenarios. Deep
learning methods have revolutionized computer vision solutions and are used
extensively in many computer vision products. But they suffer from the need
of large annotated datasets for training. Data collection using test drives on
interstate highways and city highways are done to record large videos. These
recordings have around 1500000 frames each and require examination for labeling
different objects like cars, trucks, pedestrians, lost cargo, traffic signs, among
others. The labeling effort for one hour of recording is 149 h for cars and 79 h for
pedestrians for fine pixel masks. Automation in labeling such large recordings is
required to make the process of annotation efficient and to save time and effort.

In this paper, we aim to automate generation of ground truth segmentation
masks for multiple objects in a video recording. This task requires simultaneous
tracking and segmentation aided by detection. The accuracy that can be obtained
by using simple bounding box tracking is limited [30]. The tracking performance
can only be improved by using accurate segmentation. An MOTS (Multi-object
c© Springer Nature Switzerland AG 2020
M. De Marsico et al. (Eds.): ICPRAM 2020, LNCS 12594, pp. 13–26, 2020.
https://doi.org/10.1007/978-3-030-66125-0_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-66125-0_2&domain=pdf
https://doi.org/10.1007/978-3-030-66125-0_2

14 A. Aswath and R. M. Rameshan

tracking and segmentation) based solution, where the segmentation improves the
tracking performance is proposed in this paper. Our primary objective is to obtain
accurate masks with minimal changes in identities for the purpose of annotation,
which will be solved by MOTS technique. We propose to use an offline method
involving a robust tracking algorithm that learns all initialized objects and solves
for re-identification, along with producing the segmentation masks.

A single object tracker modified to track multiple objects in a video followed
by segmentation of the tracked targets using polygon vertices was proposed in
[2]. Though the method produced a good set of labeled masks, it has its own
disadvantages. The generative method of predicting actions to locate the object
in the next frame is learnt using bounding box information containing both the
object and the background. The binary classifier also classifies different patches
as object or background using every pixel information inside the bounding box.
In case of appearance variations, occlusion or cluttered background the learning
of actions or the binary classification easily drifts. This is because the set of
actions do not reach the complete target leading to a bounding box that contains
more of background than the object.

In this paper, we combine segmentation and tracking by learning a model
that learns to track objects based on masked inputs. This method automatically
suppresses temporally inconsistent tracks by using only the foreground informa-
tion. The number of tracking failures are minimized by preventing model drift
which improves online target update for changes in appearance, illumination,
blur or fast motion during long term tracking of objects. The proposed method
differs from that of MDT RCM (Multi-Domain Tracking and Re-identification
using Correlation Maps) [2] in the following aspects -

– A new model is trained for tracking using action sequences with masked
images as input.

– It experiments with learning a binary classifier online using masked images
that results in less number of tracking failures due to background changes.

– It also improves the association of re-detected patch with detections and
re-identification of the target using a Siamese network for long-term tracking.

The main contributions in this paper are -

– The method proposed improves a single object-tracker to be used for multi-
object tracking using segmentation masks.

– It solves the problem of mutli-object tracking and segmentation for gener-
ating accurate ground truth data using cues from appearance, motion and
segmentation priors.

The rest of the paper is organized as follows: Sect. 2 gives the related work
on tracking and segmentation methods, Sect. 3 gives details of the proposed
method, followed by results on different datasets and conclusion in Sects. 4 and
5, respectively.

MaskADNet: MOTS Based on ADNet 15

2 Related Work

Multi-target tracking (MOT) is the problem of simultaneously solving for the
trajectories of individual objects, while maintaining their identities over time
through occlusions, clutter and complex interactions. Multi-object tracking and
segmentation (MOTS) extends multi-object tracking to utilize segmentation for
tracking objects in video datasets. Video object segmentation (VOS) aims to
segment foreground objects from background in a video. Video Instance Seg-
mentation Tracking (VIS) [38] combines simultaneous segmentation and track-
ing for different single instance segmented objects in videos. Both MOTS and
VIS addresses common challenges like occlusion, blur, fast motion, out-of-view
and real-time processing. In the following subsections we discuss literature work
related to MOT, VIS and MOTS.

2.1 Multi-object Tracking

Offline Methods. Tracking by detection is the most common approach where
object detections are associated across frames. These methods either learn offline
models based on a similarity measure to associate detections with tracklets. The
offline method does not associate detection with history of the track in case of
occlusions or re-identification. Generative models aim to model the appearance
of the target offline. In [5], an appearance model was learned offline, which could
not adapt to significant appearance changes. In order to solve this problem, some
adaptive appearance models were proposed [14,26]. Pre-trained CNN models are
used to obtain feature maps to correlate two images [27]. A fully convolutional
Siamese network for correlation of a target and search patch was proposed [29]
to learn similarity on targets between frames.

Online Methods. Tracking can also be performed using a discriminative app-
roach, which define the tracking problem as a binary classification task between
the foreground and background. It is important to update the target appearance
model online to take into account appearance changes, cluttered background,
blur or deformations. For discriminative models, the main issue has been improv-
ing the sample collection part to make the online trained classifier more robust
[3,9,11,15]. Tracker based on online update based on bootstrapping from unla-
beled samples collected in video sequence demonstrated good tracking results in
videos [21]. Further, an update to the searching algorithm was performed using
a set of actions and their histories for motion model [39]. A discriminative single
object tracker can be used for tracking multiple objects [7] by solving the online
update in MOT scenarios. The online update and re-identification problem was
solved by using a Siamese tracker in [2].

2.2 Video Instance Segmentation

Video object Segmentation (VOS) depends on two methods - propagation-based
methods and detection-based methods. The propagation methods use the tem-
porally coherent information between frames by formulating it as object mask

16 A. Aswath and R. M. Rameshan

propagation using motion information [10,22,28,35]. This works well for spatio-
temporal smooth motion but fails during discontinuities in case of occlusion and
fast motion. It also suffers from target drift once the target becomes unreliable.
This is because a simple model adapted to first frame mask cannot generalize
well to separate the foreground from background.

Detection-based methods [6,18] model the target appearance and perform
dense pixel classification of targets in a given frame. They work well on occluded
objects, but since they are not temporally correlated they cannot accurately
model the different appearance deformations of the target as the video sequence
proceeds. An example of detection based video object segmentation method is
Mask-RCNN [12]. For Video Instance Segmentation (VIS) [37], to assign an
identity to each of the segmented masks, a new tracking branch was introduced
as MaskTrack-RCNN. Siam-Mask [31] was proposed to track objects and create
masks using a unified network for fast object tracking and segmentation. All new
methods aim at using the unified approach for performing VIS.

2.3 Segmentation for Tracking

A fusion of appearance and motion models using deep learning was used to
propagate segmentation in a fully-automated manner [13]. All of them try to
link segmentation masks based on consistent object tracks.

On the other hand, work on using the segmentation masks to track in further
frames is based on a Bayesian learning approach. A mask prior and appearance
vector of the object with the background vector being the same for all frames
was used in a Bayesian framework in [32]. Another deep learning based method
fuses segmentation mask into its multi-channel features to perform tracking [17].
By using global information for multi-target tracking and local information for
motion based segmentation, a joint multi-cut formulation for obtaining both was
proposed in [16]. This method showed the importance of using point trajectories
and local information for multi-object tracking.

Multi-object tracking and segmentation (MOTS) [30] solves for simultaneous
detection, tracking and segmentation for tracking multiple objects using a single
convolutional network called TrackR-CNN [30]. This method shows that MOTS
can be achieved much more accurately by using a combined approach, as compared
to using only bounding box tracks and single instance segmentation methods.

2.4 Semi-automatic Segmentation

Semi-automatic segmentation using cues from bounding box, scribbles, key
points or edges by a human-in-the-loop provide interactive annotation for pixel
masks. Inside a bounding box, DeepMask [24] can automatically produce dense
pixel-wise prediction. Deep Extreme Cut [19] and Deep Grab Cut [36] offer a
guided and interactive annotation method. All these methods do not offer easy
corrections for pixel annotations. Hence, we propose to use polygon vertices
for semantic instance segmentation generated through the deep learning based
network in [1].

MaskADNet: MOTS Based on ADNet 17

3 Multi-object Tracking and Segmentation Using
MaskADNet

The proposed method (MaskADNet) tracks multiple targets by training ADNet
[39] with inputs in the form of masked images. The network shows improved
tracking results as compared to MDT RCM [2], the baseline method. The num-
ber of resets during long-term tracking due to appearance variations in case of
severe occlusion or out-of-view motion is reduced as compared to the baseline.
It also shows significant improvement in precision and success rates for MOT
scenarios with challenges like blur, illumination variation, fast motion or back-
ground clutter. This is due to improved tracking through action sequences and
online update of the binary classifier using masked inputs.

3.1 Baseline Method

The network based on ADNet [39] was used to track objects using a set of actions
based on the bounding box input. The sequence of actions taken were trained
using reinforcement learning to reach a target in the frame from its previous
position, till a stop action was reached or till a maximum of 20 sequential actions.
The set of actions proceed based on the class score of the object being greater
than a threshold. The action sequence is stopped when the class score is less
than a threshold. Re-detection is performed by sampling patches around the
lost track and selecting the patch with best class confidence score to continue
tracking.

The network also adapted its weights in an online manner based on p-n
(positive and negative) samples collected from past successfully tracked frames.
The bounding box appearance information contain both foreground object and
background. The tracker was extended to track multiple objects by using mul-
tiple branches (multi-domain learning) of the fully connected layers to capture
individual motion information and online update.

Since the classifier score could not work for tracking failures or re-detection
for MOT scenarios, for online update a dynamic threshold for each object based
on the original target appearance was set. A Siamese network [4] for calculat-
ing the PSR (peak to side lobe ratio) value on the correlation maps was used
for handling model drift. Using the dynamic threshold obtained by calculating
the PSR value, the model was adapted online or a re-detection was accepted.
The motion model helped in re-identification of inactive targets by assigning a
search area. To perform segmentation another network that captures the object
shape by predicting polygon vertices around the object to be segmented using
PolyRNN++ [1] was integrated. The two networks for simultaneous tracking and
segmentation were used in an annotation tool using a communication protocol
between them [2].

3.2 MaskADNet

In this method, we improve the single object tracker ADNet using segmenta-
tion masks and thereby improve the MDT RCM tracker by converting it into an

18 A. Aswath and R. M. Rameshan

MOTS. The improvement in tracking thus achieved also improves the segmenta-
tion. Also, the segmentation masks aid in better tracking. The network performs
better as compared to the baseline method in both single and multi-object track-
ing challenges that include occlusions, frequent disappearance or reappearance
and during target interactions.

Network Architecture and Training. The network used for training is a
VGG-M model and is trained in a manner similar to ADNet [39]. The inputs
provided to the network are segmentation masks overlaid on images to obtained
masked inputs as shown in Fig. 1. The network is trained for both supervised
and reinforcement training through different video sequences for learning to take
actions and tracking using class confidence scores.

(a) Positive samples for ADNet.

(b) Positive samples for MaskADNet.

(c) Negative samples.

Fig. 1. Positive and negative samples used for supervised training.

Layers fc6 and fc7 are trained using supervised training through labels gen-
erated for action and class confidence layers. Sample patches are generated as
positive and negative samples pj using Gaussian and uniform noise added to the
groundtruth box. The action label, obtained by using only the positive samples
containing only foreground information, is the action leading to maximum IoU
with ground truth box G. The class label is a binary label of 1 if there is an IoU
of more than 0.7 and 0 otherwise.

lactj = arg max
a

IoU(paj , G)

lclsj =

{
1, if IoU(pj , G) > 0.7
0, otherwise

(1)

MaskADNet: MOTS Based on ADNet 19

The network is trained with cross-entropy loss between the action labels lactj

and the predicted action and the class labels lclsj and the predicted class by the
network. As the network is trained by using only the foreground information, its
learning for predicting action sequences based on class scores is different from
that of ADNet. Examples of positive and negative samples for MaskADNet are
shown in Fig. 1.

For reinforcement learning, the network is trained through rewards obtained
during the tracking simulation. Tracking from frame l to frame l + 1 using the
motion model (through action vector of past 10 actions concatenated to layer
fc5) is used to obtain the sequence of actions. On frame l + 1 the reward is the
intersection over union (IoU) of the tracked box with the ground truth. The cost
function for re-reinforcement learning is changed to include the IoU of mask to
learn better in case of occlusions or out-of-view motion. The reward function is
now modified as -

r =

{
1, if IoU (box and mask)(trackedl, ground truthl+1) > 0.7
−1, otherwise

(2)

During inference, for tracking multiple objects we use the multi-domain network
[2] for the last layers for tracking multiple objects as shown in Fig. 2. The online
update for action and class layers is through masked images for multiple objects
obtained using tracked boxes and segmentation network.

112*112*3

11*11*256

3*3*512
1*1*512

conv3 fc4 fc5

fc6_1

fc7_1

fc7_3

fc6_3

fc7_2

fc6_2

1*1*512 concat 1*1*110

1*1*512 concat 1*1*110

1*1*512 concat 1*1*110

conv2conv1

51*51*96

action

class

action

class

action

class

Fig. 2. Multi-object tracking network by using layers conv1, conv2, conv3, fc4 and fc5
from trained model of MaskADNet.

Dataset for Training. For training the network on segmentation masks, we
use DAVIS 2016 dataset [23] for video object segmentation and DAVIS 2017
dataset [25] for video instance segmentation. The dataset is divided into 70 train
sequences, 30 validation sequences and 40 test sequences. Training is performed
for supervised learning using generated patches and their action and class labels
for 30 epochs. The network is then trained for reinforcement learning for 30

20 A. Aswath and R. M. Rameshan

(a) Dataset containing 3 instance masks for training.

(b) Original and masked image inputs.

Fig. 3. Network trained on instance segmentation masks from DAVIS 2017 dataset.

epochs to track using the motion model of past 10 action vectors. An example
sequence from DAVIS 2017 dataset is shown in Fig. 3.

4 Results and Discussion

A brief description of the datasets used for training and evaluation is provided
in the first section. This is followed by discussion on the results obtained based
on the various metrics for tracking and segmentation.

4.1 Dataset Description

The DAVIS 2016 dataset consists 50 high quality videos with 3455 annotated
frames, all captured at 24 fps covering scenarios like occlusions, motion blur and
appearance changes for different single targets. The DAVIS 2017 dataset consist
of 150 sequences, totaling 10459 annotated frames and 376 objects. The DAVIS
2017 dataset have more than one annotated object in the scene and with more
complexity in terms of distractors, fine structures, occlusions and faster motion.

We also perform evaluation on the OTB-100 dataset [34] for comparison
with the baseline approach. For long term multi-object tracking the network is
evaluated on MOT-16 dataset [20] and compared with the previous approach.
OTB-100 dataset consists of 100 video sequences covering different challenges like
illumination and scale variations, fast motion, motion blur, occlusions, deforma-
tions etc. MOT16 dataset has severe occlusions, interacting targets and frequent
disappearance and appearance of objects.

Metrics Used for Evaluation. For evaluation of the proposed tracker under
different scenarios like occlusion, blur, fast motion or illumination changes, pre-
cision and success values are plotted [33].

MaskADNet: MOTS Based on ADNet 21

1. Precision Plot- This plot calculates the number percentage of frames within
the threshold for the center location error, which is defined as the average
Euclidean distance between the center locations of the tracked targets and
the manually labeled ground truths.

2. Success Plot- Another evaluation metric is the bounding box overlap. To
measure the performance on a sequence of frames, we count the number of
successful frames whose overlap is larger than the given threshold.

The evaluation is also be performed on test sequences of DAVIS 2016 and DAVIS
2017 dataset for comparing the two networks (MDT RCM and MaskADNet) for
segmentation output.

1. Jaccard Index- It gives the overlap or intersection over union of the tracked
mask and the ground truth mask.

2. Area of False Negatives- This gives the number of pixels that are not
marked as masks but are actually having pixels with mask. This measure is
used to find the accuracy of the tracker to cover the entire object.

3. Number of Tracking Failures- This gives the number of times the sequence
of actions failed to track it in the next frames. The tracking failure occurs
when the class confidence score of the tracked patch is less than the threshold
for class score. This measure shows how well MaskADNet is trained using
masked inputs to track using actions as compared to the baseline method.

4.2 Evaluation

Figure 4 shows the comparison graphs for precision and success plots on OTB-100
dataset with respect to the ADNet, the MDT RCM [2] (Multi-Domain Tracker
with Re-identification using Correlation Maps), Re3 [8] and MaskADNet. We see
that the precision at location error threshold of 20 pixels are 74.2, 40.5, 80.7 and
91.27 for ADNet, Re3, the MDT RCM tracker and MaskADNet respectively.
The success at an overlap ratio of 0.5 are 78.6, 30.8, 80.6 and 92.6 respectively.
The results for methods other than MaskADNet are taken from [2].

The comparison on DAVIS dataset for Jaccard index, area of false negatives
and number of tracking failures is shown in Table 1. The results are compared for
MDT RCM and MaskADNet on the short video sequences from test data sets.
The samples for online update for both the networks are different - first has
bounding box samples containing both foreground and background pixels and
the latter has only the masked image as positive samples.

The results in Table 1 show that the model trained using masks is able to
track the object more efficiently. This is shown by lesser area of false negatives
indicating better masks within the tracked boxes. It also has lesser tracking
failures using the action sequence to track objects and hence requires lesser
re-detections. An example sequence -parkour from DAVIS 17 dataset having a
single tracking failure as compared to 32 lost tracks is shown in Fig. 5.

22 A. Aswath and R. M. Rameshan

5 10 15 20 25 30 35 40 45 50

0.2

0.4

0.6

0.8

Location Threshold

Precision Plot

ADNet
Re3

MDT RCM
MaskADNet

1 2 3 4 5 6 7 8 9

0.2

0.4

0.6

0.8

1

Overlap Ratio

Success

Success Plot

ADNet
Re3

MDT RCM
MaskADNet

Fig. 4. Precision and Success Plots for 100 OTB data sequences (single object track-
ing).

For evaluating the proposed method for long-term tracking we use the
MOT16 train sequences. The precision and success plots on MOT16-02 video
are shown in Fig. 6. The results for methods other than MaskADNet are taken
from [2] for MOT16-02 dataset. Since ADNet is a single object tracker, it is run
on each instance to be tracked separately and the plot is obtained by averaging
over all the objects.

The results show best performance in comparison with [2] as there are less
tracking failures leading to 1) less learning of re-detected patches 2) better model
for motion through action history vector. Since the drift has reduced the corre-
sponding tracking time has also come down, though we have not measured the
exact time measurements. The Siamese network, in case of tracking failure, is
used to better associate the re-detected patch with detection in the search area
around the object.

Table 1. Results of MaskADNet and MDT RCM on DAVIS 2017 test sequences.

VideoSet Jaccard
index

False
negatives

No. of
tracking
failures

Jaccard
index

False
negatives

No. of
tracking
failures

MaskADNet MDT RCM

car-roundabout 0.98 848.27 0 0.78 10025.88 0

drift-chicane 0.66 3323.62 2 0.64 3502.55 9

goat 0.94 1606.32 0 0.90 2623.14 1

paragliding-launch 0.91 944.06 1 0.64 2831.76 4

parkour 0.92 1685.66 1 0.84 2853.86 32

scooter-black 0.98 153.61 0 0.84 1275.28 9

scooter-board 0.77 3304.61 7 0.63 7888.44 51

Sheep 0.86 371.52 0 0.55 1207.42 5

MaskADNet: MOTS Based on ADNet 23

Fig. 5. First row show tracking failures from frame 20 to 21 and frame 45 to 46 for
MDT RCM framework. Second row shows no tracking failure by using MaskADNet.

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

0.2

0.4

0.6

0.8

Location Threshold

Precision

Precision Plot

ADNet
Re3

MDT RCM
MaskADNet

1 2 3 4 5 6 7 8 9

0.2

0.4

0.6

0.8

1

Overlap Ratio

Success

Success Plot

ADNet
Re3

MDT RCM
MaskADNet

Fig. 6. Precision and Success Plots for MOT16-02 sequence (multi-object tracking).

5 Conclusion

In this paper, we solve the problem of multi-object tracking and segmentation
(MOTS) using MaskADNet. Tracking is performed using segmentation masks
as inputs instead of bounding boxes. By using this approach, we were able to
obtain significant improvements for single and multi-object tracking scenarios.
The new model also led to an improved motion-based tracking, as there are less
number of failures in taking actions. This resulted in better re-identifications by
re-detection over the search area which is determined by the motion model. The
improvements for single object tracking were 10.57% and 12% for precision and
success respectively. We obtain approximately 90% reduction in tracking failures
using action sequences with MaskADNet to track a target in the next frame. This
reduces the need for using re-detections for classifier update or associating with
detections in frames. It performs best in short sequences with challenges like

24 A. Aswath and R. M. Rameshan

background noise, illumination variation, appearance changes or small occlu-
sions. In long-term tracking for association of tracked patches with detections
and re-identification of inactive targets, significant improvements were observed.

The entire framework of using an improved multi-object tracker (MaskAD-
Net), Siamese network for data association and segmentation using polygon ver-
tices for annotation solved for automatic segmentation of different instances in
traffic video datasets. Problems like tracking through occlusions, better associa-
tion with detection or re-identification were solved within this framework. Modi-
fying the baseline tracker by training using segmentation masks showed improved
multi-object tracking and segmentation results for obtaining mask labels in traf-
fic video datasets.

References

1. Acuna, D., Ling, H., Kar, A., Fidler, S.: Efficient interactive annotation of segmen-
tation datasets with polygon-RNN++. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 859–868 (2018)

2. Aswath, A., Rameshan, R., Krishnan, B., Ponkumar, S.: Segmentation of moving
objects in traffic video datasets. In: Marsico, M.D., di Baja, G.S., Fred, A.L.N.
(eds.) Proceedings of the 9th International Conference on Pattern Recognition
Applications and Methods, ICPRAM 2020, Valletta, Malta, 22–24 February 2020,
pp. 321–332. SCITEPRESS (2020)

3. Babenko, B., Yang, M.H., Belongie, S.: Visual tracking with online multiple
instance learning. In: 2009 IEEE Conference on Computer Vision and Pattern
Recognition, pp. 983–990. IEEE (2009)

4. Bertinetto, L., Valmadre, J., Henriques, J.F., Vedaldi, A., Torr, P.H.S.: Fully-
convolutional siamese networks for object tracking. In: Hua, G., Jégou, H. (eds.)
ECCV 2016, Part II. LNCS, vol. 9914, pp. 850–865. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-48881-3 56

5. Black, M.J., Jepson, A.D.: Eigentracking: robust matching and tracking of articu-
lated objects using a view-based representation. Int. J. Comput. Vis. 26(1), 63–84
(1998)

6. Caelles, S., Maninis, K.K., Pont-Tuset, J., Leal-Taixé, L., Cremers, D., Van Gool,
L.: One-shot video object segmentation. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 221–230 (2017)

7. Chu, Q., Ouyang, W., Li, H., Wang, X., Liu, B., Yu, N.: Online multi-object
tracking using CNN-based single object tracker with spatial-temporal attention
mechanism. In: Proceedings of the IEEE International Conference on Computer
Vision, pp. 4836–4845 (2017)

8. Gordon, D., Farhadi, A., Fox, D.: Re3: real-time recurrent regression networks for
visual tracking of generic objects. IEEE Robot. Autom. Lett. 3(2), 788–795 (2018)

9. Grabner, H., Grabner, M., Bischof, H.: Real-time tracking via on-line boosting. In:
BMVC, vol. 1, p. 6 (2006)

10. Grundmann, M., Kwatra, V., Han, M., Essa, I.: Efficient hierarchical graph-based
video segmentation. In: 2010 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, pp. 2141–2148. IEEE (2010)

11. Hare, S., et al.: Struck: structured output tracking with kernels. IEEE Trans. Pat-
tern Anal. Mach. Intell. 38(10), 2096–2109 (2015)

https://doi.org/10.1007/978-3-319-48881-3_56

MaskADNet: MOTS Based on ADNet 25

12. Hu, Y.T., Huang, J.B., Schwing, A.: MaskRNN: instance level video object seg-
mentation. In: Advances in Neural Information Processing Systems, pp. 325–334
(2017)

13. Jain, S.D., Xiong, B., Grauman, K.: FusionSeg: learning to combine motion and
appearance for fully automatic segmentation of generic objects in videos. In: 2017
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2117–
2126. IEEE (2017)

14. Jepson, A.D., Fleet, D.J., El-Maraghi, T.F.: Robust online appearance models for
visual tracking. IEEE Trans. Pattern Anal. Mach. Intell. 25(10), 1296–1311 (2003)

15. Kalal, Z., Matas, J., Mikolajczyk, K.: P-N learning: bootstrapping binary classi-
fiers by structural constraints. In: 2010 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, pp. 49–56. IEEE (2010)

16. Keuper, M., Tang, S., Zhongjie, Y., Andres, B., Brox, T., Schiele, B.: A multi-cut
formulation for joint segmentation and tracking of multiple objects. arXiv preprint
arXiv:1607.06317 (2016)

17. Lee, S.H., Jang, W.D., Kim, C.S.: Tracking-by-segmentation using superpixel-wise
neural network. IEEE Access 6, 54982–54993 (2018)

18. Maninis, K.K., et al.: Video object segmentation without temporal information.
IEEE Trans. Pattern Anal. Mach. Intell. 41(6), 1515–1530 (2018)

19. Maninis, K.K., Caelles, S., Pont-Tuset, J., Van Gool, L.: Deep extreme cut: from
extreme points to object segmentation. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 616–625 (2018)

20. Milan, A., Leal-Taixé, L., Reid, I., Roth, S., Schindler, K.: MOT16: A benchmark
for multi-object tracking. arXiv preprint arXiv:1603.00831 (2016)

21. Nam, H., Han, B.: Learning multi-domain convolutional neural networks for visual
tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 4293–4302 (2016)

22. Perazzi, F., Khoreva, A., Benenson, R., Schiele, B., Sorkine-Hornung, A.: Learn-
ing video object segmentation from static images. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 2663–2672 (2017)

23. Perazzi, F., Pont-Tuset, J., McWilliams, B., Van Gool, L., Gross, M., Sorkine-
Hornung, A.: A benchmark dataset and evaluation methodology for video object
segmentation. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 724–732 (2016)

24. Pinheiro, P.O., Lin, T.-Y., Collobert, R., Dollár, P.: Learning to refine object seg-
ments. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016, Part I.
LNCS, vol. 9905, pp. 75–91. Springer, Cham (2016). https://doi.org/10.1007/978-
3-319-46448-0 5

25. Pont-Tuset, J., Perazzi, F., Caelles, S., Arbeláez, P., Sorkine-Hornung, A., Van
Gool, L.: The 2017 davis challenge on video object segmentation. arXiv preprint
arXiv:1704.00675 (2017)

26. Ross, D., Lim, J., Lin, R., Yang, M.: Incremental learning for robust visual tracking.
Int. J. Comput. Vis. 25(8), 1034–1040 (2008). https://doi.org/10.1007/s11263-007-
0075-7

27. Tao, R., Gavves, E., Smeulders, A.W.: Siamese instance search for tracking. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 1420–1429 (2016)

28. Tsai, D., Flagg, M., Nakazawa, A., Rehg, J.M.: Motion coherent tracking using
multi-label MRF optimization. Int. J. Comput. Vis. 100(2), 190–202 (2012)

http://arxiv.org/abs/1607.06317
http://arxiv.org/abs/1603.00831
https://doi.org/10.1007/978-3-319-46448-0_5
https://doi.org/10.1007/978-3-319-46448-0_5
http://arxiv.org/abs/1704.00675
https://doi.org/10.1007/s11263-007-0075-7
https://doi.org/10.1007/s11263-007-0075-7

26 A. Aswath and R. M. Rameshan

29. Valmadre, J., Bertinetto, L., Henriques, J., Vedaldi, A., Torr, P.H.: End-to-end
representation learning for correlation filter based tracking. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pp. 2805–2813
(2017)

30. Voigtlaender, P., et al.: MOTS: multi-object tracking and segmentation. In: Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 7942–7951 (2019)

31. Wang, Q., Zhang, L., Bertinetto, L., Hu, W., Torr, P.H.: Fast online object tracking
and segmentation: a unifying approach. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 1328–1338 (2019)

32. Winn, J., Blake, A.: Generative affine localisation and tracking. In: Advances in
Neural Information Processing Systems, pp. 1505–1512 (2005)

33. Wu, Y., Lim, J., Yang, M.H.: Online object tracking: a benchmark. In: Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2411–
2418 (2013)

34. Wu, Y., Lim, J., Yang, M.H.: Object tracking benchmark. IEEE Trans. Pattern
Anal. Mach. Intell. 37(9), 1834–1848 (2015)

35. Wug Oh, S., Lee, J.Y., Sunkavalli, K., Joo Kim, S.: Fast video object segmentation
by reference-guided mask propagation. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 7376–7385 (2018)

36. Xu, N., Price, B., Cohen, S., Yang, J., Huang, T.S.: Deep interactive object selec-
tion. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 373–381 (2016)

37. Yang, L., Fan, Y., Xu, N.: Video instance segmentation. In: Proceedings of the
IEEE International Conference on Computer Vision, pp. 5188–5197 (2019)

38. Yao, R., Lin, G., Xia, S., Zhao, J., Zhou, Y.: Video object segmentation and track-
ing: A survey. arXiv preprint arXiv:1904.09172 (2019)

39. Yun, S., Choi, J., Yoo, Y., Yun, K., Young Choi, J.: Action-decision networks
for visual tracking with deep reinforcement learning. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 2711–2720 (2017)

http://arxiv.org/abs/1904.09172

Dimensionality Reduction and Attention
Mechanisms for Extracting Affective

State from Sound Spectrograms

George Pikramenos1,2(B), Konstantinos Kechagias1, Theodoros Psallidas2,
Georgios Smyrnis3, Evaggelos Spyrou2, and Stavros Perantonis2

1 Department of Informatics and Telecommunications,
National Kapodistrian University of Athens, Athens, Greece

{gpik,kkech}@di.uoa.gr
2 National Center for Scientific Research, Demokritos, Athens, Greece

{espyrou,sper}@iit.demokritos.gr
3 School of Electrical and Computer Engineering,

National Technical University of Athens, Athens, Greece
el14007@central.ntua.gr

Abstract. Emotion recognition (ER) has drawn the interest of many
researchers in the field of human-computer interaction, being central in
such applications as assisted living and personalized content suggestion.
When considering the implementation of ER capable systems, if they are
to be widely adopted in daily life, one must take into account that meth-
ods for emotion recognition should work on data collected in an unobtru-
sive way. Out of the possible data modalities for affective state analysis,
which include video and biometrics, speech is considered the least intru-
sive and for this reason has drawn the focus of many research efforts. In
this chapter, we discuss methods for analyzing the non-linguistic com-
ponent of vocalized speech for the purposes of ER. In particular, we
propose a method for producing lower dimensional representations of
sound spectrograms which respect their temporal structure. Moreover,
we explore possible methods for analyzing such representations, including
shallow methods, recurrent neural networks and attention mechanisms.
Our models are evaluated on data taken from popular, public datasets
for emotion analysis with promising results.

Keywords: Sentiment analysis · Speech analysis · Bag-of-visual-words

1 Introduction

Automatic human emotional state recognition constitutes a recent trend in the
broader research area of human computer interaction [1] and has several poten-
tial applications in everyday life. Several data modalities are typically used for
the purposes of ER. Usually, information is obtained through sensors, placed
on the subject’s body or environment. For example, bio-metric sensors, cameras
c© Springer Nature Switzerland AG 2020
M. De Marsico et al. (Eds.): ICPRAM 2020, LNCS 12594, pp. 27–45, 2020.
https://doi.org/10.1007/978-3-030-66125-0_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-66125-0_3&domain=pdf
https://doi.org/10.1007/978-3-030-66125-0_3

28 G. Pikramenos et al.

or microphones may be utilized. Despite that video data has become the main
public means of self-expression [2], cameras are considered to be more invasive
than microphones [3]. Body sensors constitute a reasonable practical alterna-
tive but they may cause discomfort, especially when used continuously for a
long time. Thus, due to the reasons highlighted above, many researchers prefer
microphones for many emotion recognition applications. As such, it is typical
for research works in sentiment analysis to focus on sound data.

In particular, in this work we assume data is collected by microphones captur-
ing the subject’s vocalized speech. Although alternatives exist, for example ana-
lyzing non-verbal vocal expressions (see e.g. [4]), the adopted approach is very
common in ER literature. Vocalized speech is comprised of a linguistic and a
non-linguistic component. The former is made up of the speaker’s pronounced
vocal patterns, while the latter captures the speakers’ pronunciation of these pat-
terns. That is, the linguistic and the non-linguistic part of speech are respectively
what/how the subject said/(it) [5]. Respectively, we say a method is linguistic/non-
linguistic if it analyzes the linguistic/non-linguistic content of speech.

A key benefit of non-linguistic methods is that they create models that
are intrinsically language-independent. Linguistic methods couple the emotion
recognition problem with speech recognition. For this reason, the language
present in the training data limits the generalization capabilities of the produced
model. On the other hand, non-linguistic methods do not require an intermediate
speech recognition step and, instead, only rely on pronunciation. This does not
make the problem simple, since cultural particularities majorly affect the non-
linguistic content of speech. This is true even when handling data containing
a single language, since there are many different sentences, speakers, speaking
styles and rates [6]. Thus, in this chapter we focus on non-linguistic methods.

As is often the case in many machine learning tasks, an important step in
non-linguistic methods is the extraction of an appropriate representation of the
speech signal. Earlier methods for sentiment analysis were mainly based on hand-
crafted features such as the rhythm and pitch intensity of the signal [7]. Latter
methods made popular the use of transformations on the retrieved signal to pro-
duce spectro-temporal features capturing important short and long term char-
acteristics regarding the emotional content of speech. Typical in the literature is
the use of Fourier and wavelet transforms [8]. In particular, many works utilize
short-time Fourier transforms to generate spectrograms of the speech signal in
order to perform emotion recognition [10–12].

An issue that often arises when working with spectrograms in emotion recog-
nition is the dimensionality of the data. For this reason, we investigate schemes
for producing concise representations of spectrograms which preserve important
data aspects such as the temporal structure. In particular, in line with previ-
ous work [13], we propose the use of a visual word vocabulary extracted from
the data as a dimensionality reduction technique. We further extend the work
in [13] by considering the analysis of the extracted representations using neural
networks with attention mechanisms as an alternative to the previously proposed
recurrent network modelling.

Dimensionality Reduction and Attention Mechanisms 29

2 Related Literature Review

As discussed in the previous section, sentiment recognition that incorporates
emotional signals from vocalized speech is the subject of many research efforts.
Earlier approaches to both linguistic and non-linguistic methods utilized shal-
low machine learning methods over hand-crafted features to extract affective
content. In [15], the authors utilize low level audio features, such as prosodic
features, MFCCs and formant frequencies, in conjunction with visual features
extracted from the speaker. They demonstrate a substantial improvement in
accuracy when both modalities are used. Similarly, but focusing only on audio
signals, the authors in [16] utilize Hidden Markov Models to analyze the emo-
tional content of data represented in low level audio features. Their results high-
light the value of analyzing the sequential structure of the signal and the value
of using audio features.

The use of computer vision techniques on spectrograms extracted from speech
signals has emerged as a common practice in sentiment analysis recently. In [17],
the authors utilize keypoint descriptors to produce visual features of spectro-
grams. These descriptors are then clustered to produce a visual vocabulary,
which is in turn used to construct a Bag-of-Visual-Words (BoVW) represen-
tation. However, this representation can prove to be rigid, with each keypoint
assigned to a single visual word, even if closely matching more than one. More-
over, no information about the temporal relations encoded in the spectrogram
are encoded in the representation. An alternative, representation using sequences
of soft histograms is explored in this chapter following the work in [13].

EM
O

-D
B

EM
O

VO
SA

VE
E

Anger HappinessFear Sadness Neutral

Fig. 1. (Figure taken from [13]) Spectrograms produced by applying DTSTFT with
window size 40ms and step size 20 ms to randomly selected audio samples from each of
the considered emotions and datasets. The used audio clips have length 2 s and where
appropriately cropped when necessary. The vertical axis corresponds to frequency while
the horizontal axis corresponds to time (Figure best viewed in color).

30 G. Pikramenos et al.

Researchers have also studied emotion extraction from text data, which can
be seen as a form or representation of speech or an intermediate step for linguistic
methods. In particular, [34], analyze text derived from online sources to identify
positive and negative emotional content. This is accomplished using syntactic
and semantic preprocessing of text, and utilizing an SVM classifier. Such lexical
features can also be used for analyzing vocalized speech, as shown in [19], where
an ASR system is suggested to produce text from speech, and then, both audio
and text features are used to analyze emotion. A similar fusion of audio and
text, is suggested in [35], but there the text is available and does not need to be
extracted.

More recent approaches for sentiment analysis make use of deep learning
methods to extract representations automatically. In particular, the use of com-
puter vision techniques based on neural networks for emotion recognition has
spread significantly. In [24], the authors analyze spectrogram representations,
using convolutional layers to extract representations which preserves the struc-
ture of the image. The features produced by this analysis are fed to a classifier,
leading to good performing models. Other works have proposed similar methods
based on CNNs [10–12].

The value of the temporal structure in speech data for the purposes of recog-
nising affective state is highlighted by several works which utilize recurrent neural
network classifiers to obtain regularized models. In [53], a bidirectional LSTM
is used on both audio and visual features extracted from the facial image and
speech of the speaker, demonstrating the capacity of these models for the task.
In [14], the authors propose the use of both LSTMs and CNNs in conjunction,
for analysing speech spectrograms, with comparable results. Another approach
was followed in [54], where probabilistic echo state networks (π-ESNs) were used
for sentiment analysis. The authors further note that recurrent versions of these
networks not only perform very well on the task, but can further handle data
with no labels, due to their unsupervised nature which enables them to adjust
the number of emotions as required. π-ESNs were fed with acoustic features.

In this work, we make use of a BoVW representation model which preserves
the temporal structure in the spectrogram, in a similar fashion to the work in
[13]. However, unlike previous work, we propose the use of attention-based neural
networks for the analysis of emotional content. It is shown through experiments
that for reasonable numbers of words, the representation relying on sequences of
soft histograms in conjunction with neural networks leveraging attention mech-
anisms leads to high quality classification results. Below we briefly review some
other works which utilize attention mechanisms for supervised learning tasks
related to speech and emotional processing.

Attention mechanisms allow modeling of dependencies between features, or
index lags, without taking into account their “distance” in the corresponding
input/output sequences. These mechanisms have been widely used in NLP tasks
[21–23], as well as in speech recognition, particularly with self attention [29].
In [28], a new network architecture was proposed, which combines deep convo-
lutional neural networks and attention mechanisms for analyzing images. This

Dimensionality Reduction and Attention Mechanisms 31

builds on the work in [30], which converts the self-attention mechanism to work
with a 2D matrix instead of a vector. A similar approach can be found in [31].
In our experimental section, the residual attention network proposed in [28], is
utilized with the entire spectrogram as input, as a benchmark for our methods.

Recently, neural networks leveraging attention mechanisms have also been
proposed for recognizing sentiment. In [58], image processing attention based
neural networks are utilized for tracking the affective state of the subject. In
[59], the authors proposed an attention based model for the extraction of emotion
from images with multiple subjects, while in [60], networks with self-attention
are implemented for speech emotion recognition with very good results. How-
ever, unlike our work, in [60] the authors provide fixed length fragments of the
sound waveform in time domain representation to the classifier. As argued in
[60] self-attention captures long-term dependencies in the input signal which are
essential to effective emotion recognition. The same intuition drives our approach
but instead of processing the raw sound waveform, we analyze the sequence of
spectral contents produced by the sliding window in the discrete-time short-time
fourier transform. We found that self-attention is more effective than the LSTM
approach proposed in our previous work [13].

3 Methodology

In this section we give an end-to-end detailed description of our emotion recog-
nition pipeline. This includes the representation extraction from the raw sound
waveform and the process of training the classifier.

3.1 BoVW Representation Building

The first step for building our vocalized speech representation, is a subsampling
procedure on the original sound signal (in time domain), which yields a set of
measurements {s(tk)}N−1

k=0 . In turn, we perform the Discrete-Time Short-Time
Fourier Transform [7], to obtain a two-dimensional spectrogram. This is essen-
tially a 2-dimensional array described by the mathematical formula,

S(k, n) =
N−1∑

k=0

s(tk)w(tk − nTs)e− 2kπitk
Nw , (1)

where Nw is the number of samples in each window and

w(t − τ) =

{
1, |t − τ | ≤ Tw

0, o/w
(2)

is a kernel function modelling a sliding window which helps us extract short-term
features from the signal. The parameters of the sliding window may be tuned
according to the specific problem at hand. Other choices of w are also possible [7].
A step size Ts is used when sliding the window over the entire range of the signal.

32 G. Pikramenos et al.

The result is converted into a grayscale image I. In Fig. 1, we give visualizations
from random samples for each of five classes of emotions, from three widely used
datasets for sentiment analysis. Both in Fig. 1 and in our performed experiments
(see Sect. 4), each audio clip was cropped to be of duration 2 s, the window size
was 40 ms and the step size 20 ms.

After obtaining the speech spectrograms, we next define a grid of keypoints,
each specified by a pair of pixel coordinates and a scale parameter. For each,
a keypoint descriptor is obtained using ORB [20], with 128 features, following
the work in [13]. Previous work [17] has also considered the use of SIFT/SURF
descriptors. The obtained descriptors are latter used to create a visual vocab-
ulary of words, which is in turn used to generate lower dimensional histogram
representations of the spectrogram.

Having obtained the ORB descriptors for each image, a clustering algorithm
is executed over the entire set of descriptors, for each image and each keypoint
in the dataset, and a visual word pool P = {wi}i is generated. The size of P,
corresponds to the amount of clusters generated by the clustering algorithm.
For example, using a standard k-means clustering algorithm we can control the
size of the vocabulary through our choice of k. In [17], given a pool of words, a
histogram is generated to represent an image by assigning each descriptor to its
closest word and counting the times each word gets assigned a point. In [13], a
soft histogram is used instead. Given a descriptor x, the l2-distance from each
word wi is computed, denoted di(x), and a vector hx is obtained by computing
the softmax over the distances to all words. In more detail, the ith coordinate is
expressed by,

hx
i =

e−di(x)

∑
j∈P

e−dj(x)
. (3)

Then, image I is represented as a soft histogram as,

h(I) =
∑

x∈I

hx. (4)

Note that hx
i can be seen as a soft candidacy score of x to each word i,

as opposed to the hard candidacy score used in [17]. Note also that if a single
word wi is much closer to a keypoint x than all other words, then hx

i ≈ 1 and
hx
j ≈ 0 for each j �= i. For such keypoints, the extracted soft and hard histogram

representations are similar. However, keypoints that have comparable distances
to many words are better described by their soft candidacy scores.

The representation extraction methodology is also provided in pseudocode
in Procedure 1.

Remark 1. If a sufficiently large vocabulary is used, hard histograms may
describe spectrograms sufficiently well. However, an increased number of visual
words increases both inference and preprocessing complexity and also the
dimensionality of the representation. The benefit of soft histograms is that they
allow to better describe the spectrogram while using fewer words.

Dimensionality Reduction and Attention Mechanisms 33

Remark 2. Alternatively, the soft-histogram procedure above can be seen as
executing a form of fuzzy clustering to generate a fuzzy visual vocabulary. In fact
a similar result could be achieved by running some fuzzy clustering algorithm,
e.g., gaussian mixture clustering [57], and directly computing the sum of the soft
candidacy scores of each keypoint in a given image to obtain the soft histogram
representation. Obviously, another soft candidacy score function could be utilized
to yield alternative representations.

3.2 Choosing Target Variables

At this point we must discuss some details regarding the sentiment extraction
task. Emotion recognition is usually treated as a supervised learning task, and
thus the existence of labeled training data is assumed. In this subsection we briefly
discuss the possible ways to label data for sentiment analysis, as these emerge from
the most popular datasets in the community. Both categorical and continuous
labels are widely used in the literature, each with pros and cons. Most existing
datasets which utilize categorical labels (see for example, [25–27]) are based in
Plutchik’s theory [47] of emotions, which argues that there are eight basic emo-
tions and all other emotions are derived by combinations of these. The eight basic
emotions are joy, trust, expectation, fear, sadness, disgust, anger, and surprise.

Procedure 1. Pseudocode for soft-histogram extraction (Taken from [13]).
Input: Data of subsampled audio signals D, parameter set λ;
Result: Soft histogram representation of elements in D;
Compute Spectrograms
D̂, Ŝ ← {}, {};
for each signal S in D do

ŝ ← DTSTFT (s, λ(Ts, Tw));
keypoints ← get grid(ŝ, λ(resolution)) ;
descriptors ← ORB(keypoints);

Ŝ ← Ŝ ∪ {ŝ};

D̂ ← D̂ ∪ {descriptors};

end
Compute Visual Vocabulary
words ← Clustering(D̂, λ(vocabulary size));
Compute Soft Histograms
H ← {};

for each set of descriptors d in D̂ do
histo ← 0;
for each descriptor d in d do

histo ← histo + soft score(d, words);
end
H ← H ∪ {histo};

end

34 G. Pikramenos et al.

Typically, a subset of these emotions is used as a label set together with an addi-
tional “neutral” class, which indicates the absence of an emotional signal.

The benefit of the categorical labels approach is that it leads to models which
are easier to interpret and validate than those produced by continuous labels
approaches. On the other hand, the separation between these emotions may not
be clear in certain situations and in addition, many affective states may not
be well captured by this discretization. For this reason some researchers choose
real-valued target variables to capture sentiment [46]. This approach typically
relies on the PAD model [32], which breaks down emotion into three compo-
nents, namely, Pleasure-Arousal-Dominance, each represented by a real number.
Arguably, this approach is more effective in capturing emotional diversity. How-
ever, model interpretation and validation becomes much harder under continuous
labels. In this work we follow the discrete target variable approach and treat ER
as a classification task because it is more intuitive for the reader. However, the
described methods can easily be adopted to work on real-valued labels.

3.3 Temporal Structure Preserving Representation

An important limitation of the BoVW model, as described so far, is that it does
not take into account the temporal structure of matched visual words present in
the spectrogram. In this section we propose a modification on the plain BoVW
model to capture this temporal structure. Recall that the columns in the pro-
duced spectrograms correspond to different positions of a sliding window. This
can be taken into account when designing our model to make it more robust.
In particular, following the approach in [13], spectrograms are represented as a
sequence of soft histograms, over visual words appearing in each column of the
spectrogram. In particular, after each descriptor in the spectrogram is matched
to a visual word, every column of descriptors (corresponding to all scales) is used
to produce a soft histogram. Then, this sequence of soft-histograms is used to
represent the spectrogram (Fig. 2).

Note that this sequential representation of spectrograms, has the capacity
to encode the input’s temporal structure. In particular, note that the histogram
representation, is insensitive to shuffling the columns of the spectrogram. Ran-
domly shuffling the columns of a spectrogram, produces a spectrogram which
corresponds to a very different audio signal than the one that we are interested
in analyzing. However, both of these signals will have the same BoVW repre-
sentation. On the other hand, the sequential representation considered here is
sensitive to such changes in the original spectrogram. This consideration high-
lights the potential benefit of considering this alternative representation.

Dimensionality Reduction and Attention Mechanisms 35

Microphone
Recording

Data Preprocessing

raw sound data

Data Acquisition

Action Recognition

Training

DTSTFT

D

Classifier
training

Data Processing...
raw sound sample

Classifier

Recognised Emotion

Speech
spectrogram

ORB
Descriptor
Extraction

+

Microphone
Recording

Fig. 2. A visual overview of an abstract version of our methodology. On the right,
the representation building procedure is overviewed. From the original audio signal,
a spectrogram is produced and ORB descriptors for keypoints arranged in a grid are
extracted. A clustering algorithm is executed over all keypoint descriptors, computing a
set of clusters corresponding to the visual vocabulary. A soft histogram is then obtained
by summing, for each cluster, the soft candidacy scores of keypoints. The produced
histogram can be given to a classifier extract emotional content. In this work we propose
an attention based neural network classifier. On the left, training and inference are
shown. (Figure best viewed in color).

The procedure for constructing the aforementioned representation is given
in pseudocode in Procedure 2. The descriptors and vocabulary are obtained
following Procedure 1.

36 G. Pikramenos et al.

Procedure 2. Pseudocode for sequential soft-histogram representation of
spectrograms (Taken from [13]).

Input: Data of subsampled audio signals D, parameter set λ;
Result: Sequential soft histogram representation of elements in D;

D̂, words ← Procedure 1(D, λ);
seqH ← {};

for each set of descriptors d in D̂ do
seq ← [];
for each column of descriptors c in d do

histo ← 0;
for each descriptor d in c do

histo ← histo + soft score(d, words);
end
seq.append(histo)

end
seqH ← seqH ∪ {seq};

end

One way to exploit the temporal structure captured by the described repre-
sentation, is the use of recurrent neural networks. These models have been widely
successful in the task of processing data with a sequential structure and for this
reason constitute a natural choice for this task. In particular, [13] propose the
use of Long Short-Term Memory (LSTM) networks [55] for emotion classifica-
tion. These networks utilize “memory” cells, which allow the LSTM architecture
to recognise long-term dependencies between sequence items, much more effec-
tively than conventional RNN architectures and other recurrent networks with
gated units.

Attention mechanisms have been shown to mitigate the unfavourable com-
pression and loss of information from which typical RNNs suffer even more
effectively than LSTMs. In particular, in [9], the authors suggest that recurrent
architectures can be entirely replaced by attention mechanisms. We will be par-
ticularly interested in so called self attention mechanisms. A self attention layer
is a sequence-to-sequence mapping which enables us to account for correlations
between the input sequence elements, when performing the transformation. In
particular, in the simplest situation, every input element is represented by three
different vectors, namely, the query, key and value. To compute the ith output
sequence element an attention score is obtained between the ith input sequence
element and the rest of the input. An example of an attention scoring function
is the, so called, dot product attention which computes the dot product between
the ith element query vector and the jth element key vector. Then, a softmax
activation is applied on the attention scores to give the attention vector. Finally,
the weighted sum of value vectors weighted by attention values is computed to
yield the ith output sequence element. In the context of recurrent neural net-
works, the query vector typically corresponds to RNN hidden states. The idea

Dimensionality Reduction and Attention Mechanisms 37

behind self attention is to convey diverse positions of the same concealed state
space originating from the input sequence, based on the case that numerous
components together form the overall semantics of a sequence.

Our proposed model utilizes a multi-hop self-attention layer on top of a Bidi-
rectional LSTM layer. The attention layer output is fed into a 2-layer MLP. We
use ReLU activation functions throughout the network except for the output layer
where softmax activation is used. Dropout layers are used in the model’s fully con-
nected layers for regularization purposes and an �2 penalization term is added to
the loss function. A high level visual overview of our model is given in Fig. 3.

Fig. 3. A visual high-level representation of our proposed network architecture.

4 Experiment Details

This section describes the experiments that were completed for the empirical
validation of our approach. For completion, we start by presenting experimental
results and procedures from [13], comparing the different BoVW based repre-
sentations suggested and providing results for the structure preserving method
utilizing an LSTM classifier. Next, we perform emotion classification using the
attention based neural network proposed in this chapter, over the sequential
histogram representation of spectrograms. Moreover, we perform classification
experiments using the residual attention network proposed in [28], with the entire
spectrogram image as input, as an alternative benchmark.

38 G. Pikramenos et al.

Table 1. Experimental results comparing soft and hard histogram representations for
spectrograms with various shallow classifiers (Taken from [13]).

Dataset W.C. Method SVM KNN Random forest

EMO-DB 250 SMH 47.22 50.00 38.89

BoVW 44.44 33.33 38.89

500 SMH 52.78 41.67 52.78

BoVW 52.78 38.89 50.00

1000 SMH 55.56 47.50 55.00

BoVW 52.50 47.50 52.50

SAVEE 250 SMH 31.25 31.25 25.00

BoVW 28.13 31.25 25.00

500 SMH 52.78 48.89 61.11

BoVW 52.78 44.44 61.11

1000 SMH 58.33 52.78 58.33

BoVW 55.56 36.11 55.56

EMOVO 250 SMH 35.00 32.50 35.00

BoVW 30.00 27.50 32.50

500 SMH 32.50 42.50 35.00

BoVW 27.50 27.50 32.50

1000 SMH 32.50 40.00 50.00

BoVW 27.50 17.50 45.00

For every experiment conducted, visual words were obtained from the spec-
trograms by running the mini-batch k-means algorithm [33], which offered an
effective and efficient clustering option. In more detail, all of the spectrograms
were utilized as input for the clustering algorithm to generate the vocabulary,
including both the validation and test sets. In practice, this can be done in any
setting since no label information is used.

4.1 Dataset Description

The data which we used to run our experiments, consists of the below listed public
datasets: EMO-DB [25], SAVEE [27] and EMOVO [26]. The full versions of these
datasets contain different emotion labels from one another, and for this reason six
labels were selected, common to all three datasets, and only data corresponding
to these emotions was used. The emotions considered in our experiments were the
following: Happiness, Sadness, Anger, Fear and Neutral. For each dataset, each
sample was truncated to be of length 2 s, and the DTSTFT was performed with
parameters TS = 20 ms and TW = 40 ms to produce a spectrogram. In turn, for
each spectrogram, a 50-by-50 equidistant grid of keypoints was defined over the
entire image with three scale parameters leading to 7500 descriptors per recording.
For the keypoints, 128-feature orb descriptors were used.

Dimensionality Reduction and Attention Mechanisms 39

4.2 Experimental Procedure Description

Firstly, an evaluation of the soft histogram representation against the typical
hard histogram representation is presented as carried out in [13]. To this end,
three popular shallow classifiers were utilized: SVM (with an RBF kernel), Ran-
dom Forest and k-nearest neighbors where the Euclidean distance was chosen
as a distance measure. Different proximity measures where also tested for the
k-nearest neighbor classifier, including �1 and Wasserstein distance but we empir-
ically found that the results were not as good. Each classifier was trained on dif-
ferent data representations and the test accuracy was used a measure of fitness
for these representations.

The train-test split was chosen to be 90%–10% for each dataset. For each
representation, hyperparameters were selected through grid search and 5-folds
stratified cross validation. The best performing hyperparameters among all folds
were chosen as the best. The resulting classifier was trained on the entire train-
ing set, and the test accuracy was reported. The entire evaluation process was
repeated for three different numbers of visual word. These were 250, 500 and
1000. The results are reported in Table 1, as taken from [13].

Similarly, we report the results obtained by analyzing the sequential his-
togram representation of spectrograms using the LSTM. Again, for each dataset
the same three different word counts are used as before. Ten models are trained
on ten different random train-validation-test splits, with respective percentages
80%, 10% and 10%. The validation set is used to perform early stopping regular-
ization. The maximum, minimum and mean test accuracies are reported for each
dataset and word count combination. The results are summarized in Table 2, as
taken from [13].

Table 2. Results for the LSTM classification experiment. Accuracies are given in
percentages, W.C. represents word count and B represents the benchmark obtained
from shallow classifiers presented in Table 1 (Taken from [13]).

Dataset W.C. Accuracy B

Mean Max Min

EMO-DB 250 59.76 60.98 58.54 50.00

500 62.93 63.17 60.54 52.78

1000 56.48 57.34 56.10 55.56

SAVEE 250 37.77 44.44 30.55 31.25

500 65.08 69.16 62.22 61.11

1000 68.77 70.55 66.39 58.33

EMOVO 250 40.91 42.86 38.90 35.00

500 50.98 57.14 47.62 42.50

1000 50.12 53.64 46.53 50.00

40 G. Pikramenos et al.

To serve as a benchmark we further conducted an experiment where we used
a residual attention network on the entire spectrogram image. A train-validation-
test random split was performed, again with percentages 80%, 10% and 10%. An
earlystopping callback was utilized, monitoring the validation set loss value with
a patience parameter set to 5. The test set accuracy and f1 score were measured
and the entire process was repeated 10 times. The average metrics from these
runs are reported in Table 3.

Table 3. Results of evaluating the residual attention network directly on the spectro-
gram images. The results are represented in percentages and correspond to mean test
set metrics over 10 runs.

Dataset Accuracy F1 score

EMO-DB 59.49 58.32

SAVEE 36.11 11.88

EMOVO 35.00 34.12

Finally, we perform an experiment to evaluate the performance of our pro-
posed attention-based recurrent neural network on the sequential soft histogram
representation of the spectrograms. A similar procedure to above was used with
an 80% − 10% − 10% train-validation-test split, using an early stopping call-
back with patience 5. For each dataset, three different vocabulary sizes, namely
250, 500 and 1000 were used, in accordance with previous experiments. The
mean metric scores are reported for each of 10 different runs. The results are
summarized in Tables 4, 5 and 6.

Table 4. Results for the proposed attention-based neural network classification exper-
iment with a vocabulary size of 250. Metrics are given in percentages.

Dataset Accuracy F1 score

EMO-DB 51.27 39.08

SAVEE 37.81 32.84

EMOVO 40.97 27.14

Table 5. Results for the proposed attention-based neural network classification exper-
iment with a vocabulary size of 500. Metrics are given in percentages.

Dataset Accuracy F1 score

EMO-DB 63.18 58.11

SAVEE 68.01 64.17

EMOVO 54.69 53.12

Dimensionality Reduction and Attention Mechanisms 41

Table 6. Results for the proposed attention-based neural network classification exper-
iment with a vocabulary size of 1000. Metrics are given in percentages.

Dataset Accuracy F1 score

EMO-DB 63.21 61.95

SAVEE 57.51 51.24

EMOVO 50.99 50.03

5 Discussion on Results

The produced results are aligned with what we expected, while we can also make
some interesting observations. Firstly, it is observed that using a soft histogram
representation instead of a conventional BoVW model indeed yields better per-
forming classifiers. This is intuitive since soft histograms make up richer repre-
sentations in lower dimensionalities, i.e. for smaller vocabulary sizes. Moreover,
we observe that the number of visual words used plays an important role in the
accuracy of produced classifiers for both representations. While we see that 250
words usually yield worse classifiers than both 500 and 1000 words, 500 words
often outperform 1000 words. This indicates that while 250 words are often
too few, significantly under representing the spectrogram, it is often the case
that 1000 words are too many, yielding a too high dimensional representation.
In practice, the number of keywords should be selected using some validation
technique.

We further note, as expected that, the temporal structure preserving rep-
resentation given by sequences of histograms provides much better classifica-
tion results when combined with sequence processing models. In particular, the
LSTMs that were trained on these representation significantly outperform the
shallow classifiers obtained by the simple soft histogram representations. This
can also be contrasted with the residual attention network which was trained on
the raw spectrogram images. We see that this performed much worse than the
LSTM. Moreover, even though it achieved relatively good results on EMO-DB,
it significantly under performed on the other two datasets.

Finally, the attention based sequence processing model proved to be very
effective. Indeed, for most setups it produced comparable or better results than
the plain LSTM. Again, we make the same observations regarding the number of
words and in practice this hyperparameter should be tuned through validation.

6 Closing Remarks

Recently, interest in emotion recognition research has increased, especially over
sound, as it is important in many human-computer interaction applications and
sound recordings can be collected without causing discomfort to individuals as
alternative methods such as video or body sensor readings. In this chapter, we
have discussed some novel methods for the analysis of the emotional content of

42 G. Pikramenos et al.

audio signals obtained from vocalized speech, using the classification paradigm
for sentiment analysis. In particular, we reviewed dimensionality reduction tech-
niques for speech spectrograms which rely on BoVW models and introduced an
attention based neural network model for analyzing such representations.

The explored approaches offer good performance and can be found useful
in various applications, like assisted living and personalized content suggestion.
In addition, our methods process sound data, the collection of which is con-
sidered least invasive amongst other alternatives and this makes our approach
a good candidate for potential implementations of ER capable systems. More-
over, because our method is non-linguistic, relying on low-level audio features
(spectrograms), it leads to models that are not dependent on language. We
experimentally verified our method’s good performance on data in English and
German.

After extensive experimentation, we empirically validated our methods and
drew the following conclusions. Firstly, our BoVW dimensionality reduction tech-
nique offer an effective and efficient method for constructing concise represen-
tations of speech signals for analysing sentiment. We found that preserving the
structure of the spectrogram in the extracted representation is beneficial for the
classification task, and that our sequential histogram representation in combi-
nation with either recurrent neural networks or attention-based networks offers
classifiers with very satisfactory performance. We found that attention-based
networks are particularly well suited for the emotion recognition task, especially
when combined with our concise representation of spectrograms. In particular,
we conclude that the approaches suggested here offer a significantly outperform
previous work that utilizes BoVW representations.

References

1. Cowie, R., et al.: Emotion recognition in human-computer interaction. IEEE Sign.
Process. Mag. 18(1), 32–80 (2001)

2. Poria, S., Chaturvedi, I., Cambria, E., Hussain, A.: Convolutional MKL based
multimodal emotion recognition and sentiment analysis. In: 2016 IEEE 16th Inter-
national Conference on Data Mining (ICDM), pp. 439–448. IEEE (2016)

3. Zeng, E., Mare, S., Roesner, F.: End user security and privacy concerns with smart
homes. In Thirteenth Symposium on Usable Privacy and Security (SOUPS 2017),
pp. 65–80 (2017)

4. Sauter, D.A., Eisner, F., Calder, A.J., Scott, S.K.: Perceptual cues in nonverbal
vocal expressions of emotion. Quart. J. Exp. Psychol. 63(11), 2251–2272 (2010)

5. Anagnostopoulos, C.N., Iliou, T., Giannoukos, I.: Features and classifiers for emo-
tion recognition from speech: a survey from 2000 to 2011. Artif. Intell. Rev. 43(2),
155–177 (2015). https://doi.org/10.1007/s10462-012-9368-5

6. El Ayadi, M., Kamel, M.S., Karray, F.: Survey on speech emotion recognition:
features, classification schemes, and databases. Pattern Recogn. 44(3), 572–587
(2011)

7. Giannakopoulos, T., Pikrakis, A.: Introduction to Audio Analysis: A MATLAB R©
Approach. Academic Press, Cambridge (2014)

https://doi.org/10.1007/s10462-012-9368-5

Dimensionality Reduction and Attention Mechanisms 43

8. Drakopoulos, G., Pikramenos, G., Spyrou, E.D., Perantonis, S.J.: Emotion recog-
nition from speech: a survey. In: WEBIST, pp. 432–439 (2019)

9. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information
Processing Systems, pp. 5998–6008 (2017)

10. Badshah, A.M., Ahmad, J., Rahim, N., Baik, S.W.: Speech emotion recognition
from spectrograms with deep convolutional neural network. In: 2017 International
Conference on Platform Technology and Service (PlatCon), pp. 1–5. IEEE (2017)

11. Satt, A., Rozenberg, S., Hoory, R.: Efficient emotion recognition from speech using
deep learning on spectrograms (2017)

12. He, L., Lech, M., Maddage, N., Allen, N.: Stress and emotion recognition using log-
Gabor filter analysis of speech spectrograms. In 2009 3rd International Conference
on Affective Computing and Intelligent Interaction and Workshops, pp. 1–6. IEEE
(2009)

13. Pikramenos, G., Smyrnis, G., Vernikos, I., Konidaris, T., Spyrou, E., Perantonis,
S.J.: Sentiment analysis from sound spectrograms via soft BoVW and temporal
structure modelling. In: ICPRAM, pp. 361–369 (2020)

14. Lim, W., Jang, D., Lee, T.: Speech emotion recognition using convolutional and
recurrent neural networks. In: 2016 Asia-Pacific Signal and Information Processing
Association Annual Summit and Conference (APSIPA), pp. 1–4. IEEE (2016)

15. Wang, Y., Guan, L.: Recognizing human emotional state from audiovisual signals.
IEEE Trans. Multimedia 10(5), 936–946 (2008)

16. Nogueiras, A., Moreno, A., Bonafonte, A., & Mariño, J. B.: Speech emotion recog-
nition using hidden Markov models. In Seventh European Conference on Speech
Communication and Technology (2001)

17. Spyrou, E., Nikopoulou, R., Vernikos, I., Mylonas, P.: Emotion recognition from
speech using the bag-of-visual words on audio segment spectrograms. Technologies
7(1), 20 (2019)

18. Hanjalic, A.: Extracting moods from pictures and sounds: Towards truly person-
alized TV. IEEE Sign. Process. Mag. 23(2), 90–100 (2006)

19. Rozgić, V., Ananthakrishnan, S., Saleem, S., Kumar, R., Vembu, A.N., Prasad,
R.: Emotion recognition using acoustic and lexical features. In Thirteenth Annual
Conference of the International Speech Communication Association (2012)

20. Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: ORB: an efficient alternative
to SIFT or SURF. In: 2011 International Conference on Computer Vision, pp.
2564–2571. IEEE (2011)

21. Hu, D.: An introductory survey on attention mechanisms in NLP problems. In:
Bi, Y., Bhatia, R., Kapoor, S. (eds.) IntelliSys 2019. AISC, vol. 1038, pp. 432–448.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-29513-4 31

22. Kristensen, L.B., Wang, L., Petersson, K.M., Hagoort, P.: The interface between
language and attention: prosodic focus marking recruits a general attention net-
work in spoken language comprehension. Cereb. Cortex 23(8), 1836–1848 (2013)

23. Galassi, A., Lippi, M., Torroni, P.: Attention, please! a critical review of neural
attention models in natural language processing. arXiv preprint. arXiv:1902.02181
(2019)

24. Mao, Q., Dong, M., Huang, Z., Zhan, Y.: Learning salient features for speech
emotion recognition using convolutional neural networks. IEEE Trans. Multimedia
16(8), 2203–2213 (2014)

25. Burkhardt, F., Paeschke, A., Rolfes, M., Sendlmeier, W. F., Weiss, B.: A database
of German emotional speech. In Ninth European Conference on Speech Commu-
nication and Technology (2005)

https://doi.org/10.1007/978-3-030-29513-4_31
http://arxiv.org/abs/1902.02181

44 G. Pikramenos et al.

26. Costantini, G., Iaderola, I., Paoloni, A., Todisco, M.: EMOVO corpus: an Italian
emotional speech database. In: International Conference on Language Resources
and Evaluation (LREC 2014), pp. 3501–3504. European Language Resources Asso-
ciation (ELRA) (2014)

27. Jackson, P., Haq, S.: Surrey audio-visual expressed emotion (SAVEE) database.
University of Surrey, Guildford, UK (2014)

28. Wang, F., Jiang, M., Qian, C., Yang, S., Li, C., Zhang, H., Tang, X.: Residual
attention network for image classification. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 3156–3164 (2017)

29. Salazar, J., Kirchhoff, K., Huang, Z.: Self-attention networks for connectionist
temporal classification in speech recognition. In: ICASSP 2019–2019 IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing (ICASSP), pp.
7115–7119. IEEE (2019)

30. Lin, Z., Feng, M., Santos, C.N.D., Yu, M., Xiang, B., Zhou, B., Bengio, Y.: A struc-
tured self-attentive sentence embedding. arXiv preprint. arXiv:1703.03130 (2017)

31. Yan, Z., Liu, W., Wen, S., Yang, Y.: Multi-label image classification by feature
attention network. IEEE Access 7, 98005–98013 (2019)

32. Mehrabian, A.: Framework for a comprehensive description and measurement of
emotional states. Genet. Soc. Gen. Psychol. Monogr. 121, 339–361 (1995)

33. Sculley, D.: Web-scale k-means clustering. In: Proceedings of the 19th International
Conference on World Wide Web, pp. 1177–1178 (2010)

34. Binali, H., Wu, C., Potdar, V.: Computational approaches for emotion detection
in text. In: 4th IEEE International Conference on Digital Ecosystems and Tech-
nologies, pp. 172–177. IEEE (2010)

35. Jin, Q., Li, C., Chen, S., Wu, H.: Speech emotion recognition with acoustic and
lexical features. In 2015 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pp. 4749–4753. IEEE (2015)

36. Lu, L., Liu, D., Zhang, H.J.: Automatic mood detection and tracking of music
audio signals. IEEE Trans. Audio Speech Lang. Process. 14(1), 5–18 (2005)

37. Yang, Y.H., Lin, Y.C., Su, Y.F., Chen, H.H.: A regression approach to music
emotion recognition. IEEE Trans. Audio Speech Lang. Process. 16(2), 448–457
(2008)

38. Panda, R., Malheiro, R.M., Paiva, R.P.: Novel audio features for music emotion
recognition. IEEE Trans. Affect. Comput. 11, 614–626 (2018)

39. Grimm, M., Kroschel, K., Mower, E., Narayanan, S.: Primitives-based evaluation
and estimation of emotions in speech. Speech Commun. 49(10–11), 787–800 (2007)

40. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Com-
put. Vis. 60(2), 91–110 (2004). https://doi.org/10.1023/B:VISI.0000029664.99615.
94

41. Bay, H., Tuytelaars, T., Van Gool, L.: SURF: speeded up robust features. In:
Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 404–
417. Springer, Heidelberg (2006). https://doi.org/10.1007/11744023 32

42. Wöllmer, M., et al.: Abandoning emotion classes-towards continuous emotion
recognition with modelling of long-range dependencies. In: Proceedings of the 9th
Interspeech 2008 Incorp. 12th Australasian International Conference on Speech
Science and Technology SST 2008, Brisbane, Australia, pp. 597–600 (2008)

43. Giannakopoulos, T., Pikrakis, A., Theodoridis, S.: A dimensional approach to emo-
tion recognition of speech from movies. In: 2009 IEEE International Conference on
Acoustics, Speech and Signal Processing, pp. 65–68. IEEE (2009)

http://arxiv.org/abs/1703.03130
https://doi.org/10.1023/B:VISI.0000029664.99615.94
https://doi.org/10.1023/B:VISI.0000029664.99615.94
https://doi.org/10.1007/11744023_32

Dimensionality Reduction and Attention Mechanisms 45

44. Lee, H., Pham, P., Largman, Y., Ng, A.Y.: Unsupervised feature learning for audio
classification using convolutional deep belief networks. In: Advances in Neural
Information Processing Systems, pp. 1096–1104 (2009)

45. Zhang, T., Kuo, C.C.J.: Audio content analysis for online audiovisual data seg-
mentation and classification. IEEE Trans. Speech Audio Process. 9(4), 441–457
(2001)

46. Busso, C., et al.: IEMOCAP: interactive emotional dyadic motion capture
database. Lang. Resour. Eval. 42(4), 335 (2008)

47. Plutchik, R.: A general psychoevolutionary theory of emotion. In: Theories of Emo-
tion, pp. 3–33. Academic press, Cambridge (1980)

48. Papakostas, M., et al.: Deep visual attributes vs. hand-crafted audio features on
multidomain speech emotion recognition. Computation 5(2), 26 (2017)

49. Martíınez, J.G.: Recognition and emotions. A critical approach on education. Pro-
cedia Soc. Behav. Sci. 46, 3925–3930 (2012)

50. Tickle, A., Raghu, S., Elshaw, M.: Emotional recognition from the speech signal
for a virtual education agent. J. Phys. Conf. Ser. 450(1), 012053 (2013)

51. Bahreini, K., Nadolski, R., Westera, W.: Towards real-time speech emotion recogni-
tion for affective e-learning. Educ. Inf. Technol. 21(5), 1367–1386 (2016). https://
doi.org/10.1007/s10639-015-9388-2

52. Busso, C., et al.: Analysis of emotion recognition using facial expressions, speech
and multimodal information. In: Proceedings of the 6th International Conference
on Multimodal Interfaces, pp. 205–211 (2004)

53. Wöllmer, M., Metallinou, A., Eyben, F., Schuller, B., Narayanan, S.: Context-
sensitive multimodal emotion recognition from speech and facial expression using
bidirectional LSTM modeling. In: Proceedings of the INTERSPEECH 2010,
Makuhari, Japan, pp. 2362–2365 (2010)

54. Trentin, E., Scherer, S., Schwenker, F.: Emotion recognition from speech signals
via a probabilistic echo-state network. Pattern Recogn. Lett. 66, 4–12 (2015)

55. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735–1780 (1997)

56. Sak, H., Senior, A.W., Beaufays, F.: Long short-term memory recurrent neural
network architectures for large scale acoustic modeling (2014)

57. Theodoridis, S., Koutroumbas, K.: Pattern recognition and neural networks. In:
Paliouras, G., Karkaletsis, V., Spyropoulos, C.D. (eds.) ACAI 1999. LNCS (LNAI),
vol. 2049, pp. 169–195. Springer, Heidelberg (2001). https://doi.org/10.1007/3-
540-44673-7 8

58. Aminbeidokhti, M., Pedersoli, M., Cardinal, P., Granger, E.: Emotion recognition
with spatial attention and temporal softmax pooling. In: Karray, F., Campilho, A.,
Yu, A. (eds.) ICIAR 2019. LNCS, vol. 11662, pp. 323–331. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-27202-9 29

59. Gupta, A., Agrawal, D., Chauhan, H., Dolz, J., Pedersoli, M.: An attention model
for group-level emotion recognition. In: Proceedings of the 20th ACM International
Conference on Multimodal Interaction, pp. 611–615 (2018)

60. Tarantino, L., Garner, P.N., Lazaridis, A.: Self-Attention for speech emotion recog-
nition. In: INTERSPEECH, pp. 2578–2582 (2019)

https://doi.org/10.1007/s10639-015-9388-2
https://doi.org/10.1007/s10639-015-9388-2
https://doi.org/10.1007/3-540-44673-7_8
https://doi.org/10.1007/3-540-44673-7_8
https://doi.org/10.1007/978-3-030-27202-9_29

Efficient Radial Distortion Correction
for Planar Motion

Marcus Valtonen Örnhag(B)

Centre for Mathematical Sciences, Lund University, Lund, Sweden
marcus.valtonen ornhag@math.lth.se

Abstract. In this paper we investigate simultaneous radial distortion
calibration and motion estimation for vehicles travelling parallel to pla-
nar surfaces. This is done by estimating the inter-image homography
between two poses, as well as the distortion parameter. Radial distor-
tion correction is often performed as a pre-calibration step; however,
accurately estimating the distortion profile without special scene require-
ments may make such procedures obsolete. As many modern day con-
sumer cameras are affected by radial distortion to some degree, there is
a great potential to reduce production time, if properly implemented.

We devise two polynomial solvers, for radially distorted homographies
compatible with different models of planar motion. We show that the
algorithms are numerically stable, and sufficiently fast to be incorporated
in a real-time frameworks. Furthermore, we show on both synthetic and
real data, that the proposed solvers perform well compared to competing
methods.

Keywords: Radial distortion correction · Homography · Visual
odometry · Polynomial solvers

1 Introduction

When designing a Visual Odometry (VO) pipeline it is beneficial to integrate
any prior knowledge of the intended environment or known motion model para-
meters. One particular instance, that will be further investigated in this paper,
is the planar motion model, in which a vehicle travels on—or parallel to—a
planar surface. Such a scenario is common in man-made environments, but can
also accurately approximate outdoor scenarios under certain conditions, such
as cars travelling on a highway. In the current literature we find several papers
on planar motion models, restricted to fit particular use cases or pre-calibrated
parameters [3,6,20]. The general case, however, was first introduced in [17] which

The author gratefully acknowledges Mårten Wadenbäck and Martin Karlsson for pro-
viding the data for the planar motion compatible sequences, and Magnus Oskarsson
for fruitful discussions regarding the basis selection heuristic which made the proposed
solvers faster. This work has been funded by the Swedish Research Council through
grant no. 2015-05639 ‘Visual SLAM based on Planar Homographies’.

c© Springer Nature Switzerland AG 2020
M. De Marsico et al. (Eds.): ICPRAM 2020, LNCS 12594, pp. 46–63, 2020.
https://doi.org/10.1007/978-3-030-66125-0_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-66125-0_4&domain=pdf
http://orcid.org/0000-0001-8687-227X
https://doi.org/10.1007/978-3-030-66125-0_4

Efficient Radial Distortion Correction for Planar Motion 47

incorporates two unknown overhead tilt angles, which are assumed to be con-
stant throughout the trajectory of the vehicle. They assumed the floor is in the
field of view of the camera, allowing them to compute the motion parameters
through inter-image homographies. Another approach utilizing the floor to com-
pute the motions was done by [6]. More recent development was done by [26,27],
and is the first to accurately recover the complete set of motion parameters
using inter-image homographies. Other notable approaches include that of [30],
in which a planar VO pipeline using a dense matching scheme was proposed.

In the most general setting, assuming the camera is rigidly mounted on the
vehicle, the number of motion parameters are reduced to five, which should be
compared to the general homography, which has eight degrees of freedom [7].
These parameters consist of the two overhead tilt parameters, and three non-
constant parameters: one rotational angle (about the floor normal), and two
translational components.

In order to obtain a homography, keypoints are extracted and matched. These
keypoints then serve as input to the homography estimation algorithm. Since the
extraction and matching steps are imperfect for any realistic image sequence,
outliers and noise are prone to exist. Typical steps taken to resolve this issue
include the use of robust estimation frameworks, e.g. RANSAC. It is at this point
the benefit of working with fewer motion parameters come to light. Since fewer
motion parameters demand fewer point correspondences in order to be estimated,
one can select a minimal amount of points in the RANSAC framework. The fewer
points you are able to select, the greater the probability of selecting only inliers.
By doing so, one can reduce the number of RANSAC iterations.

In the general case, with four point correspondences, one may linearly extract
the homography; however, if any of the motion parameters are known or con-
strained, this may no longer be the case, as the resulting systems of equations
often are nonlinear. This poses a new type of problem—can we solve these equa-
tions sufficiently fast and accurate? Luckily, many methods from computational
algebraic geometry [4] has been used in many computer vision problems, and
certain frameworks already exist for how to proceed. One of the earliest, and
still used today, was [9].

This paper is a revised journal version of [25], where we will consider the gen-
eral planar motion model with unknown radial distortion, and devise a polyno-
mial solver that can accurately recover the motion and distortion parameters in
real-time applications. Furthermore, we propose a planar motion compatible min-
imal two point solver with radial distortion when the tilt angles are known. This
situation arises when the tilt is pre-calibrated or can be accessed using external
sensors, such as an IMU to extract the gravity direction. For indoor scenarios,
assuming that the gravity direction is aligned with the floor normal—which often
is a valid approximation—is equivalent to knowing the tilt angles. There are situa-
tions where similar assumptions can be made, without significant loss in accuracy,
e.g. aerial imagery. Regardless of the situation, radial distortion is necessary to
account for in any accurate VO pipeline, and is often done in a pre-calibration step,
where the distortion parameters are obtained. By incorporating the parameter in
the homography estimation process, we hope to eliminate this pre-processing step.

48 M. Valtonen Örnhag

2 Related Work

2.1 Homography Estimation

The Direct Linear Transform (DLT) equations is a linear system of equations
to extract a homography H given a number of point correspondences. In the
general setting, with eight degrees of freedom, the minimal case requires four
point correspondences. To see this, let us consider a single pair of point corre-
spondences on a common scene plane, denoted by x ↔ x̂. They are related by
a homography H as λx̂ = Hx, for some scalar λ �= 0. Equivalently, we may
express this as x̂ × Hx = 0, thus eliminating the scale parameter λ, or,

⎡
⎣

0 −ŵxT ŷxT

ŵxT 0 −x̂xT

−ŷxT x̂xT 0

⎤
⎦

⎡
⎣
h1

h2

h3

⎤
⎦ = 0, (1)

assuming homogeneous coordinates, i.e. x = [x, y, w]T and x̂ = [x̂, ŷ, ŵ]T ,
respectively. Here hT

k is the k:th row of the homography matrix H. As the cross
product introduces a linear dependence, only two of the equations are necessary,
hence explaining why four point correspondences are minimal in the general
case. Thus, using four point correspondences the problem can be transformed
into finding the one-dimensional null space h = [hT

1 hT
2 hT

3]T , which is typically
obtained using SVD of the coefficient matrix.

In the general planar motion model there are only five motion parameters,
hence the minimal case requires but 2.5 point correspondences. Similarly, we
may construct a system of equations, by using three point correspondences and
discard the last equation in the corresponding DLT system. This can be written
as Ch = 0 where C ∈ R5×9 is the coefficient matrix. Again, this is a problem of
finding the null space of C; however, the null space is now four-dimensional. As
an additional step, one must now find the null space coefficients which makes H
a homography compatible with the general planar motion model. It was shown
in [24,29] that there are eleven quartic constraints (as well as a sextic constraint)
in the elements of H that has to be fulfilled in order to guarantee compatibility.

2.2 Modelling Radial Distortion

In order to compensate for the radial distortion, several models have been pro-
posed. A classic method, still in use today, is the Brown–Conrady model [2],
in which also tangential distortion is corrected. The division model introduced
in [5], has gained attention as it provides accurate approximations of the dis-
tortion profile with fewer parameters. For this reason, we will only consider the
distortion model, and restrict ourselves to a single distortion parameter, as this
allows us to use fewer point correspondences.

Efficient Radial Distortion Correction for Planar Motion 49

Let λ denote the distortion parameter. Then the distorted (or measured)
image points can be expressed as xi = [xi, yi, 1]T

xu
i = f(xi, λ) =

⎡
⎣

xi

yi

1 + λ(x2
i + y2

i)

⎤
⎦ , (2)

where xu
i are the undistorted image points, assuming the distortion center is

aligned to the center of the image. Furthermore, we select the coordinate system
such that the origin is aligned with the distortion center.

We may now modify the DLT equations (1) as the distortion parameter only
appears in the homogeneous coordinates. Consider two point correspondences
xi ↔ x̂i, then

f(x̂i, λ) × Hf(xi, λ) = 0 . (3)

This approach has been used for the general case of radially distorted homo-
graphies [11], conjugate translations with radial distortion [21], and the case
of jointly estimating lens distortion and affine rectification from coplanar fea-
tures [22]. The last two use an explicit parameterization of the motion para-
meters, instead of trying to parameterize the null space of the DLT system. In
common for all methods is that the resulting problem is a polynomial system
of equations, and is solved by further reduction to an eigenvalue problem [4].
Automatic solvers for polynomial systems have been proposed, primarily using
Gröbner bases, such as [9,12–14,16], or resultant based methods [1]. Alternative
approaches include considering the problem as a Quadratic Eigenvalue Prob-
lem (QEP) [5,8,10].

3 The General Planar Motion Model

Consider a camera mounted rigidly on a vehicle travelling on a planar surface.
We model this scenario by assuming that the camera moves in the plane z =
0, parallel to the surface on which the vehicle moves, located in z = 1. This
parameterization also fixes the scale of the global coordinate system.

Consider two consecutive views, A and B, with the corresponding camera
matrices

PA = Rψθ[I | 0],
PB = RψθRφ[I | − t],

(4)

where the constant overhead tilt is modeled by Rψθ, and consists of a rotation θ
about the y-axis followed by a rotation of ψ about the x-axis. Furthermore, we
allow the vehicle to rotate an angle φ about the z-axis, which may vary. As the
camera is assumed to be mounted rigidly on the vehicle, the height above the
floor is constant, hence we may assume that it travels in the plane z = 0, leaving
two translation components tx and ty, see Fig. 1. From this, one may derive the
corresponding inter-image homography

H = λRψθRφTtR
T
ψθ, (5)

50 M. Valtonen Örnhag

z = 1

n

z = 0

Fig. 1. Illustration of the problem geometry considered in the paper. The camera is
mounted rigidly on a mobile platform, thus travelling parallel to the ground floor
in the plane z = 0. We allow a constant, but generally unknown, overhead tilt to be
present, which is modelled by the angles psi (about the x-axis and θ (about the y-axis).
Furthermore, the camera can rotate about the z-axis (by an angle φ) and translate in
the plane z = 0, i.e. there are in total five degrees of freedom—three rotations and two
translations. Figure reproduced from [25].

where Tt = I − tnT is a translation matrix, for the translation t = [tx, ty, 0]T ,
relative the plane normal n = [0, 0, 1]T . The homography matrix can be made
unique by e.g. imposing det(H) = 1.

In addition to the DLT constraints, the elements of a homography compat-
ible with the general planar motion model must satisfy a number of polynomial
constraints. Such constraints were numerically derived in [29], where it was shown
that that there are at least eleven quartic constraints. The novel theoretical frame-
work used in [24], showed that these constraints were necessary, but not sufficient;
however, by adding a sextic constraint, it was shown that they are sufficient.

4 Polynomial Solvers

4.1 A Non-minimal Relaxation (4 Point)

In theory, one would be able to construct a minimal solver with three point cor-
respondences, as there are six degrees of freedom—the five motion parameters
discussed in Sect. 3, and the distortion parameter. In practice, however, this
problem is hard, and we have yet to find a tractable solution which is numeri-
cally stable and sufficiently fast for real-time applications. Consequently, we have
opted for a non-minimal four point relaxation. We do believe this is an accept-
able compromise, as a general homography with a single distortion parameter
requires 4.5 point correspondences for the minimal configuration. This effectively

Efficient Radial Distortion Correction for Planar Motion 51

means one has to sample five point pairs to estimate a hypothesis. This section
is largely reproduced from [25].

10−20 10−10 0 1010
0.00

0.02

0.04

0.06

0.08

0.10

|λ − λest|

Fr
eq

ue
nc

y
(%

)

10−20 10−10 0 1010
0.00

0.05

0.10

‖H − Hest‖F

Fr
eq

ue
nc

y
(%

)
2 point 4 point

Fig. 2. Error histogram of the estimated distortion parameter λ (left) and the homo-
graphy H for 100,000 random instances, for both of the proposed methods.

Similarly, to the approach in [11] we expand the third row of (3); however,
we consider using only four point correspondences. This results in the following
equation

(−ŷih11 + x̂ih21)xi + (−ŷih12 + x̂ih22)yi + (−ŷih13 + x̂ih23)wi = 0, (6)

where wi = 1 + λ(x2
i + y2

i) and ŵi = 1 + λ(x̂2
i + ŷ2

i) are functions of the radial
distortion parameter λ. There are eight monomials involved in this expression,
namely

v1 =
[
h11 h12 h13 h21 h22 h23 λh13 λh23

]T
. (7)

Using four point correspondences results in a system of equations, which can be
written as

M1v1 = 0, (8)

where M1 is a 4 × 8 matrix. For non-degenerate configurations the null space
of M1 is four-dimensional. Consequently, we may parameterize v1 as

v1 =
4∑

i=1

γini, (9)

where γi are unknown basis coefficients. Since the last two monomials of v1

depend on the previous elements, this relation has to be enforced when comput-
ing the basis coefficients γi. These give rise to two equations

v8 = λv6 and v7 = λv3 . (10)

Furthermore, we proceed to fix the scale by letting γ4 = 1.

52 M. Valtonen Örnhag

We will now use the second row of (3). Similarly, we may write this as

M2v2 = 0, (11)

where M2 ∈ R4×16. Here the null space vector v2 consists of seven variables,
and 16 monomials: h31, h32, h33, λh33 and λ2γi, λγi, γi for i = 1, 2, 3 and

10−3 10−2.5 10−2 10−1.5 10−1 10−0.5

10−7

10−5

10−3

10−1

101

σ

|λ
−

λ
es
t|

10−3 10−2.5 10−2 10−1.5 10−1 10−0.5

10−3

10−2

10−1

100

101

102

σ
‖H

−
H

es
t‖ F

4 point 5 point

Fig. 3. Distribution of estimation error in the distortion parameter λ, and the homo-
graphy H (measured in the Frobenius norm) for different noise levels σ and unknown
tilt. The proposed solver is compared to the five point solver [5]. Figure and caption
reproduced from [25].

λ2, λ, 1. We may now proceed to eliminate the first three variables—h31, h32

and h33—as they are only present in four monomials. As we are using four point
correspondences, yielding four equations, Gauss–Jordan elimination can be used.
We obtain the following upon performing the elimination

M̂2 =

⎡
⎢⎢⎣

h31 h32 λh33 h33 λ2γ1 λγ1 γ1 λ2 λ 1
1 • • • · · · • • •

1 • • • · · · • • •
1 • • • · · · • • •

1 • • • · · · • • •

⎤
⎥⎥⎦ . (12)

It turns out that the columns of the right 4 × 12 submatrix are not indepen-
dent. In order to generate a correct solver, it is important to generate integer
instances satisfying these dependencies.

From the eliminated system M̂2v2 = 0 we get the four equations

h31 + f1(γ1, γ2, γ3, λ) = 0,
h32 + f2(γ1, γ2, γ3, λ) = 0,

λh33 + f3(γ1, γ2, γ3, λ) = 0,
h33 + f4(γ1, γ2, γ3, λ) = 0,

(13)

where fi(γ1, γ2, γ3, λ) are polynomials in the variables γ1, γ2, γ3, λ. Exploiting
the relations between the last two equations of (13), an additional constraint is
obtained

λf4(γ1, γ2, γ3, λ) = f3(γ1, γ2, γ3, λ) . (14)

Efficient Radial Distortion Correction for Planar Motion 53

The eliminated variables h31, h32 and h33 are polynomials of degree three, thus
making (14) of degree four. Together with (10) we have three equations in four
unknowns. Since we are able to express all elements of the homography H as
a function of four variables, we can enforce one of the 11 quartic constraints
originally found in [29]. Evaluating these constraints using H it turns out that
ten of the constraints are of degree 12 and one of degree 10 due to cancellation of
higher order terms. We choose the smallest one to build the polynomial solver.

Using the automatic generator [12] we find that there are 18 solutions to the
problem in general, and by sampling a basis based on the heuristic presented
in [15] an elimination template of size 177 × 195 could be created.

10−3 10−2.5 10−2 10−1.5 10−1 10−0.5

10−7

10−5

10−3

10−1

101

σ

|λ
−

λ
es
t|

10−3 10−2.5 10−2 10−1.5 10−1 10−0.5

10−4

10−2

100

102

σ

‖H
−
H

es
t‖ F

2 point 4 point 5 point

Fig. 4. Distribution of estimation error in the distortion parameter λ, and the homo-
graphy H (measured in the Frobenius norm) for different noise levels σ and known tilt
(assumed to be compensated for). The proposed two point solver is compared to the
four point and five point solver [5]. Distribution of estimation error in the distortion
parameter λ, and the homography H (measured in the Frobenius norm) for different
noise levels σ and known tilt (assumed to be compensated for). The proposed two point
solver is compared to the four point and five point solver [5].

4.2 Minimal Solver with Known Tilt (2 Point)

If the tilt angles are known, we can treat the planar motion case with radial
distortion. In this case there are four degrees of freedom, and thus the minimal
configuration requires two point correspondences. In this section, we will derive
a novel solver for this case. Using a different approach than in the previous
section, we may explicitly parameterize the homography. Let us use the following
parameterization for the rotation matrix

Rz =

⎡
⎣

c −s 0
s c 0
0 0 1

⎤
⎦ , (15)

where c2 + s2 = 1, hence the sought homography is given by H ∼ Rz + tnT ,
where t = [tx, ty, 0]T is a translation vector and n = [0, 0, 1]T is a floor normal.
Let us consider the modified DLT equations (3) again, but this time using two
point correspondences. Using the first and third rows, we note that there are

54 M. Valtonen Örnhag

in total five unknowns—c, s, tx, ty and the radial distortion parameter λ—and
in total eleven monomials, hence we may write the system as Mv = 0, where M
is a 4 × 11 matrix and v is the vector of monomials. Furthermore, of these eleven
monomials, we find only four which contain the variables c and s. Therefore, it
is possible to use Gauss–Jordan elimination to eliminate these variables. The
corresponding system, after elimination, is on the form

M̂ =

⎡
⎢⎢⎣

λc c λs s λtx tx λ2ty λty ty λ 1
1 • • • • • • •

1 • • 0 • • 0 0
1 • • • • • • •

1 • • 0 • • 0 0

⎤
⎥⎥⎦ . (16)

Notice the pattern of zeros emerging in the eliminated system. This, and other
more intricate relations, between the coefficients are necessary to account for in
order to create an accurate polynomial solver.

From the above system we may introduce the functions gi, such that

λc + g1(tx, ty, λ) = 0,
c + g2(tx, ty, λ) = 0,

λs + g3(tx, ty, λ) = 0,
s + g4(tx, ty, λ) = 0 .

(17)

where gi(tx, ty, λ) are polynomials in the variables tx, ty and λ. Furthermore, we
utilize the two relations

g1(tx, ty, λ) = λg2(tx, ty, λ),
g3(tx, ty, λ) = λg4(tx, ty, λ) .

(18)

The constraint c2 + s2 = 1 translates into

g22(tx, ty, λ) + g24(tx, ty, λ) = 1 . (19)

Now, we have a reduced system with three unknowns—tx, ty and λ—given
by (18) and (19). It turns out that (18) are cubic and (19) are quartic, and
by analyzing the dimension of the corresponding quotient ring, we find that the
system has six solutions in total (it can be verified that the original system has
six solutions as well). Using [15] an elimination template of size 18 × 24 was
constructed.

5 Experiments

5.1 Synthetic Data

In this section we investigate the numerical stability and noise sensitivity of
the proposed solver. We generate synthetic homographies, compatible with the

Efficient Radial Distortion Correction for Planar Motion 55

general planar motion model (with and without tilt), as well as distortion para-
meters. Random scene points are generated using the homography and subse-
quently distorted using the division model.

The polynomial solvers were generated according to Sect. 4 in C++, and the
mean runtime for the 4 point solver is 730 µs and for the 2 point solver 13 µs
(measured over 100,000 instances on a standard desktop computer).

5.2 Numerical Stability

By using the described method, we generate noise-free problem instances. Sim-
ilarly to [11], we use physically reasonable parameters, and cover a wide range
of distortions by allowing the distortion parameter λ to be chosen at random in
the interval [−0.7, 0]. In Fig. 2 we show the error histogram for 100,000 random
problem instances. When measuring the Frobenius norm error, the homographies
have been normalized to h33 = 1.

Input Output

Fig. 5. Two radially distorted images (left) and the rectified and stitched panorama.
The distortion parameter and homography was obtained using the proposed solver
in a RANSAC framework. Blue border added for visualization. Figure and caption
reproduced from [25]. (Color figure online)

From the histogram of the four point solver, we conclude that most para-
meters are estimated accurately, with an error in the range of 10−10. Such
an error is acceptable for most applications; however, some errors are higher,

56 M. Valtonen Örnhag

reaching an error around 10−2. After careful analysis, we attribute this to the
ten degree polynomial, which was added to conform with one of the original
quartic constraints necessary for making the proposed solver compatible with
the general planar motion model. Luckily, errors of the higher magnitude is less
frequently occurring, and can be efficiently discarded in a robust framework,
such as RANSAC. We will show that this is the case in the coming sections.

For the two point solver the errors are negligible for most computer vision
applications, and is also a strong candidate for a robust framework, given that
the assumptions of known tilt are met.

5.3 Noise Sensitivity

Similar to the previous section we generate synthetic problem instances, but cor-
rupt the radially distorted image coordinates with Gaussian noise with a vari-
ance σ2. The noise is varied from mild to severe and at every noise level 10,000
problem instances were generated and the corresponding error measured. As a
comparison, the five point method based on the QEP approach [5] was used.

The result is shown in Fig. 3. Note that the mean error for both quantities
are lower for the proposed method compared to the five point method, for all
noise levels. Analogously, but with known overhead tilt, we compare the two
point solver to the other methods, see Fig. 4. Here we see a clear benefit over the
other, more general, methods.

Fig. 6. Setup used in the panorama stitching experiment. Figure and caption repro-
duced from [25].

Efficient Radial Distortion Correction for Planar Motion 57

5.4 Image Stitching

In this section, we use the proposed four point solver in a classic stitching pipeline
based on a standard approach for estimating a homography. The pipeline consists
of first detecting and extracting SURF keypoints, followed by nearest neighbor
matching. From all matched keypoints we select four at random and feed to the
proposed solver in a RANSAC framework. The input images are taken using a
digital camera with a fish-eye lens mounted on a tripod, overlooking a textured
floor, see Fig. 6. The camera tilt was fixed during the experiment, and only the
tripod itself was moved, hence generating a motion compatible with the general
planar motion model.

The output from the experiment is shown in Fig. 5. Bundle adjustment or
other non-linear refinements of the obtained homography was not performed.
Apart from being aligned with the correct edges we also note that lines that are
straight in reality also appear straight in the final panorama, thus indicating
that the radial distortion parameter was correctly estimated.

In terms of the efficiency of the robust framework, we use the same input
images and compare the five point solver [5] with the proposed solver. This is
done by recording the number of inliers as a function of the number of RANSAC
iterations. We repeat the experiment 500 times, and show the average result in
Fig. 7, which shows that the proposed method consistently has a higher number
of inliers.

Fig. 7. Number of inliers vs. number of RANSAC iterations for the images in Fig. 5.
The data has been averaged over 500 test instances. Figure and caption reproduced
from [25].

5.5 Application to Visual Odometry

In this section we use real data from a mobile robot of model Fraunhofer IPA
rob@work. The sequence was originally used in [28], but the radial distortion

58 M. Valtonen Örnhag

profile was pre-calibrated. On the mobile robot a camera is mounted rigidly, with
an unknown overhead tilt, which excludes the application of the two point solver.
The distortion is clearly noticeable and the field of view is almost entirely of the
textured floor upon which the robot travels. Furthermore, the robot is equipped
with omni-directional wheels, which allows for pure rotations. A reference system
with an absolute accuracy of 100 μm tracks the robot as it moves about, and
the resulting data is used as ground truth.

We consider three sequences:

Line. Forward motion in a straight line with a constant orientation (320 images),
Turn. Forward motion while rotating, resulting in a slight turn (344 images),
Parallel Parking. Forward motion followed by a sharp turn, while keeping

constant rotation (325 images).

−5 0 5
·10−7

0

50

100

150

λ
∗

λest

Fr
eq

ue
nc

y

Fig. 8. (Left) Histogram of estimated distortion parameters for the proposed method
evaluating during the parallel parking sequence. The selected parameter λ

∗
is marked

with a dashed line. (Middle) Undistorted image of a calibration chart, not part of
the sequence. (Right) Rectified image using the estimated parameter λ

∗
. Figure and

caption reproduced from [25].

We consider a standard VO pipeline, including an initial solution via homo-
graphy estimation, from which the initial camera poses are estimated (both
intrinsic and extrinsic parameters) and finally a non-linear refinement step using
bundle adjustment. Both the proposed method and the five point method [5] are
capable of producing an initial estimation through inter-image homographies.
Given a pair of consecutive images we may estimate the distortion parameter as
well as the homography, using either solver, in a RANSAC framework. To extract
the full set of motion parameters, we use the method in [27], hence establish-
ing the initial poses. The estimated robot trajectory can then be extracted and
compared to the ground truth. Note that in a complete VO pipeline, the initial
position is important in order to avoid excessive amounts of bundle adjustment
iterations, as these typically become large-scale optimization problems. There-
fore, it is of interest to decrease the number of necessary iterations, by supplying
a good initial guess.

Efficient Radial Distortion Correction for Planar Motion 59

The methods are comparable in terms of accuracy, as can be seen in Fig. 9,
with a slight preference for the proposed method. As noted in [23,24], there is no
significant boost in performance by pre-optimizing early on in the VO pipeline.
One of the main issues is that the constant overhead tilt, due to the camera
being rigidly mounted onto the robot, is not enforced throughout the entire
trajectory by only considering a single homography. For consistency, one must
consider an entire sequence of homographies. Nevertheless, the proposed method
benefits from the same performance gain as was noted in Sect. 5.4; namely, that
the number of RANSAC iterations required are fewer than for the five point
method.

The problem with considering only a single homography also affects the esti-
mation of the radial distortion coefficient. In return, every pair of consecutive
images yields a new estimate; however, we know a priori that it is constant
through the trajectory. We propose using histogram voting as a robust way to
obtain an initial guess. To evaluate the performance we use previously unseen
images of calibration charts, that were acquired during the creation of the robot
test sequences. We proceed by considering the parallel parking test sequence, and
use the estimated parameters as a basis for the histogram voting experiment,
see Fig. 8. As can be seen, the chosen parameter λ∗, yields an acceptable initial
solution, to be refined in a bundle adjustment framework.

5.6 Application to Aerial Imagery

In this final section we test the novel two point solver for aerial imagery. We
use the TNT Aerial VideoTestset (TAVT) [19]. In this dataset, video sequences
from a UAV have been recorded, at varying flight heights. The onboard global
shutter camera is recording in full HDTV resolution at 30 fps, and suffers from
mild radial distortion. Although the distortion is not severe, it was shown in [18]
that failure to compensate for it results in severely distorted mosaicing attempts.

We use the sequences recorded at higher altitudes, in this case 1000 m and
1500 m above ground, as these are not affected as much by potential non-zero and
non-constant tilt, making the two point solver suitable. The solver is incorpo-
rated in a RANSAC framework, and the pipeline is identical to previous setups
for real images. The sequences are subsampled to include every tenth image
of the original sequences, hence contain 117 and 158 images each. The resulting
mosaics are shown in Fig. 10. Note that no non-linear optimization has been per-
formed, nor histogram voting to determine the distortion profile. Yet, even for
this simple pipeline, we manage to produce visually acceptable results, similar
to those of the original articles [18,19]. Perhaps the only noticeable difference is
the lack of blending, seam-finding and other processing involved; however, these
artifacts do not stem from the solver.

60 M. Valtonen Örnhag

Fig. 9. Estimated trajectories for line, turn and parallel parking of the VO experiment
in Sect. 5.5. Images to the left show the entire trajectory, and the ones to the right are
zoomed in on a region of interest. Figure and caption reproduced from [25].

Efficient Radial Distortion Correction for Planar Motion 61

Fig. 10. Mosaics from the 1000m sequence (top) and 1500m sequence of the TAVT
dataset [19] obtained using the proposed two point solver.

6 Conclusions

In this paper, we studied simultaneous radial distortion correction and motion
estimation for planar motion. We proposed two polynomial solvers for estimating
the homography and distortion parameter, and showed that they are sufficiently
numerically robust and fast to be incorporated in a real-time VO pipeline. The
proposed solvers were tested rigorously on both synthetic and real data, and
were shown to be on par or superior to competing methods.

References

1. Bhayani, S., Kukelova, Z., Heikkila, J.: A sparse resultant based method for efficient
minimal solvers. In: Computer Vision and Pattern Recognition (CVPR), June 2020

2. Brown, D.C.: Decentering distortion of lenses. Photogram. Eng. 32, 444–462 (1966)
3. Chen, T., Liu, Y.H.: A robust approach for structure from planar motion by stereo

image sequences. Mach. Vis. Appl. (MVA) 17(3), 197–209 (2006)
4. Cox, D.A., Little, J., O’Shea, D.: Using Algebraic Geometry. Graduate Texts in

Mathematics. Springer, New York (2005)
5. Fitzgibbon, A.W.: Simultaneous linear estimation of multiple view geometry and

lens distortion. In: Conference on Computer Vision and Pattern Recognition
(CVPR), December 2001

6. Hajjdiab, H., Laganière, R.: Vision-based multi-robot simultaneous localization
and mapping. In: Canadian Conference on Computer and Robot Vision (CRV),
London, ON, Canada, pp. 155–162, May 2004

7. Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd
edn. Cambridge University Press, Cambridge (2004)

62 M. Valtonen Örnhag

8. Kayumbi, G., Cavallaro, A.: Multiview trajectory mapping using homography with
lens distortion correction. EURASIP J. Image Video Process. 2008(1), 1–11 (2008).
https://doi.org/10.1155/2008/145715

9. Kukelova, Z., Bujnak, M., Pajdla, T.: Automatic generator of minimal problem
solvers. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008. LNCS, vol.
5304, pp. 302–315. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-
540-88690-7 23

10. Kukelova, Z., Bujnak, M., Pajdla, T.: Polynomial eigenvalue solutions to the 5-pt
and 6-pt relative pose problems. In: British Machine Vision Conference (BMVC)
(2008)

11. Kukelova, Z., Heller, J., Bujnak, M., Pajdla, T.: Radial distortion homography. In:
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 639–647,
June 2015

12. Larsson, V., Åström, K.: Uncovering symmetries in polynomial systems. In: Leibe,
B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9907, pp.
252–267. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46487-9 16

13. Larsson, V., Åström, K., Oskarsson, M.: Efficient solvers for minimal problems by
syzygy-based reduction. In: Computer Vision and Pattern Recognition (CVPR),
pp. 2383–2392, July 2017

14. Larsson, V., Åström, K., Oskarsson, M.: Polynomial solvers for saturated ideals.
In: International Conference on Computer Vision (ICCV), pp. 2307–2316, October
2017

15. Larsson, V., Kukelova, Z., Zheng, Y.: Camera pose estimation with unknown prin-
cipal point. In: Computer Vision and Pattern Recognition (CVPR), pp. 2984–2992
(2018)

16. Larsson, V., Oskarsson, M., Åström, K., Wallis, A., Kukelova, Z., Pajdla, T.:
Beyond gröbner bases: Basis selection for minimal solvers. In: Computer Vision
and Pattern Recognition (CVPR), pp. 3945–3954 (2018)

17. Liang, B., Pears, N.: Visual navigation using planar homographies. In: Interna-
tional Conference on Robotics and Automation (ICRA), Washington, DC, USA,
pp. 205–210, May 2002

18. Meuel, H., Ferenz, S., Munderloh, M., Ackermann, H., Ostermann, J.: In-loop
radial distortion compensation for long-term mosaicking of aerial videos. In: Pro-
ceedings of the 23rd IEEE International Conference on Image Processing (ICIP),
pp. 2961–2965, September 2016

19. Meuel, H., Munderloh, M., Reso, M., Ostermann, J.: Mesh-based piecewise planar
motion compensation and optical flow clustering for ROI coding. APSIPA Trans.
Sign. Inf. Process. 4, e13 (2015)

20. Ort́ın, D., Montiel, J.M.M.: Indoor robot motion based on monocular images.
Robotica 19(3), 331–342 (2001)

21. Pritts, J., Kukelova, Z., Larsson, V., Chum, O.: Radially-distorted conjugate trans-
lations. In: Conference on Computer Vision and Pattern Recognition (CVPR)
(2018)

22. Pritts, J., Kukelova, Z., Larsson, V., Chum, O.: Rectification from radially-
distorted scales. In: Jawahar, C.V., Li, H., Mori, G., Schindler, K. (eds.) ACCV
2018. LNCS, vol. 11365, pp. 36–52. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-20873-8 3

23. Valtonen Örnhag, M., Wadenbäck, M.: Enforcing the general planar motion model:
bundle adjustment for planar scenes. In: De Marsico, M., Sanniti di Baja, G., Fred,
A. (eds.) ICPRAM 2019. LNCS, vol. 11996, pp. 119–135. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-40014-9 6

https://doi.org/10.1155/2008/145715
https://doi.org/10.1007/978-3-540-88690-7_23
https://doi.org/10.1007/978-3-540-88690-7_23
https://doi.org/10.1007/978-3-319-46487-9_16
https://doi.org/10.1007/978-3-030-20873-8_3
https://doi.org/10.1007/978-3-030-20873-8_3
https://doi.org/10.1007/978-3-030-40014-9_6

Efficient Radial Distortion Correction for Planar Motion 63

24. Valtonen Örnhag, M.: Fast non-minimal solvers for planar motion compatible
homographies. In: International Conference on Pattern Recognition Applications
and Methods (ICPRAM), Prague, Czech Republic, pp. 40–51, February 2019

25. Valtonen Örnhag, M.: Radially distorted planar motion compatible homographies.
In: International Conference on Pattern Recognition Applications and Methods
(ICPRAM), pp. 280–288 (2020)

26. Wadenbäck, M., Heyden, A.: Planar motion and hand-eye calibration using inter-
image homographies from a planar scene. In: International Conference on Com-
puter Vision Theory and Applications (VISAPP), pp. 164–168 (2013)

27. Wadenbäck, M., Heyden, A.: Ego-motion recovery and robust tilt estimation for
planar motion using several homographies. In: International Conference on Com-
puter Vision Theory and Applications (VISAPP), pp. 635–639, January 2014

28. Wadenbäck, M., Karlsson, M., Heyden, A., Robertsson, A., Johansson, R.: Visual
odometry from two point correspondences and initial automatic tilt calibration.
In: International Joint Conference on Computer Vision, Imaging and Computer
Graphics Theory and Applications (VISIGRAPP 2017), pp. 340–346 (2017)

29. Wadenbäck, M., Åström, K., Heyden, A.: Recovering planar motion from homogra-
phies obtained using a 2.5-point solver for a polynomial system. In: International
Conference on Image Processing (ICIP), pp. 2966–2970 (2016)

30. Zienkiewicz, J., Davison, A.J.: Extrinsics autocalibration for dense planar visual
odometry. J. Field Robot. (JFR) 32(5), 803–825 (2015)

A Preliminary Study on Tree-Top
Detection and Deep Learning

Classification Using Drone Image Mosaics
of Japanese Mixed Forests

Yago Diez1(B) , Sarah Kentsch2 , Maximo Larry Lopez Caceres2 ,
Koma Moritake1, Ha Trang Nguyen2, Daniel Serrano3, and Ferran Roure3

1 Faculty of Science, Yamagata University, Yamagata, Japan
yagodiezdonoso@gmail.com, yago@sci.kj.yamagata-u.ac.jp

2 Faculty of Agriculture, Yamagata University, Yamagata, Japan
3 Eurecat, Centre Tecnològic de Catalunya, Barcelona, Spain

Abstract. Tree counting and classification tasks in forestry are often
addressed by costly, in terms of labour and money, field surveys carried
on manually by forestry experts. Consequently, computer vision tech-
niques have been used to automatically detect tree tops and classify
them in terms of species or plant health status. The success of the algo-
rithms are highly dependent on the data, and most significantly in its
quantity and in the number of challenges it presents. In this work we
used Unmanned Aerial Vehicles to acquired extremely challenging data
from natural Japanese mixed forests. In a first step, six common clus-
tering algorithms were used for tree top detection. Furthermore, we also
assessed the usability of five different deep learning architectures to clas-
sify tree tops corresponding to trees in different degrees of affectation
from a parasite infestation. Data covering an area of 40 ha are used in
extensive experiments resulting in a detection accuracy of over 80% with
high location accuracy and up to 90% with lower accuracy. Classification
results produced by our algorithms reached error rates as low as 0.096
for classification. Data acquisition and runtime considerations show that
this techniques is useful to process real forest data.

Keywords: Computer vision · Tree detection · Tree classification ·
Mixed forests · Clustering techniques

1 Introduction and State of the Art

The average global forest cover around 30% of the surface [4], while forests in
Japan occupy approximately 68% of its territory, playing an important role in the
ecosystem. A large part of them is made up of deciduous mixed forest [54]. Since
the early 20th century, research on these issues is carried out using manual land
surveys [18,31,36], which are labor-intensive, expensive and often require high
degrees of expertise. Understanding their ecologically complexity, due to varying
c© Springer Nature Switzerland AG 2020
M. De Marsico et al. (Eds.): ICPRAM 2020, LNCS 12594, pp. 64–86, 2020.
https://doi.org/10.1007/978-3-030-66125-0_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-66125-0_5&domain=pdf
http://orcid.org/0000-0003-4521-9113
http://orcid.org/0000-0001-5693-5217
http://orcid.org/0000-0002-9748-7120
http://orcid.org/0000-0003-1005-4267
https://doi.org/10.1007/978-3-030-66125-0_5

A Preliminary Study on Tree-Top Detection 65

tree species distribution as well as the interactions between species, is necessary
to design adequate management policies [22]. This is specially important in times
where climate change creates stress to these ecosystems [4]. The development of
methods to gather and process forest information which is fast, efficient and
reliable to be able to monitor forests accurately [3].

Unmanned Aerial Vehicles (UAVs) are rapidly becoming an essential tool in
forestry applications [19,41–43]. UAVs are remote easy-to-use and inexpensive
and acquire are high-resolution images in the range of cm/pixel. This results in
highly detailed image information which can be easily accessed and processed
automatically [5]. Computer vision techniques are common in a variety of areas
ranging from 3D reconstruction [51] to medical imaging [20]. The expansion in
several research fields and therewith an increase in data availability started with
the appearance of new techniques such as Deep Learning where some well estab-
lished computer vision concepts such as segmentation, registration or classifica-
tion are applied [14,42]. The variety of computer vision algorithms techniques
used with high-resolution images obtained by drones, allows to use choose algo-
rithms which can be applied for the problem of detecting individual trees.

In the fields of agriculture and forests plantations, accurate information
about plant numbers within stands were acquired by manual tree counting
[30,37,40,47,52]. In natural forests, detecting individual trees is a necessary
task for evaluating the distribution, measuring tree heights or estimating carbon
stocks [41,42,58] and tasks in forest management like getting surveys [29,33,49].
However, characteristics of individual trees like their size or the species com-
positions are challenging in terms of image analysis algorithms [26]. Equally,
soil signals and man-made objects may cause decreases of classification accuracy
achieved [32,52]. Most of the existing studies are carried out in plantations, since
trees are more equally in size and age (often same species) and disturbing factors
are reduced, which increases classification accuracy [10,40,53].

In this paper the work presented in [13] was continued by adapting well
known clustering and extreme detection computer vision algorithms to locate
tree tops in dense and unmanned forests. A new pre-processing step based on
filtering the floor section of the data is presented. This new algorithm is included
in the pipeline and compared to the previous approach. We have also widened
the scope of our study by adding an image classification step that uses deep
learning. We classify images corresponding to the tree tops using several deep
learning architectures in order to assess the possibility of using these architec-
tures for species or health status classification of trees with the amount of data
commonly available in forestry applications. A comprehensive work of the stud-
ied algorithms are presented with analysis the correctness, precision and needed
time of each strategy. In order to better situate the work in the proper context
we have also significantly expanded the discussion on previous work.

The paper is organised as follows. The rest of this section introduces pre-
vious studies in the field of tree detection and counting by the use of com-
puter vision. Section 2 describes the tackled problem information about the data
acquisition process. An extensive explanation on the data characteristics and the
effects on this study are given. Section 3 provide information on the algorithms,

66 Y. Diez et al.

pre- and post-processing steps that were performed to overcome data difficul-
ties to detect tree tops. Section 4 provides quantitative evaluation of the results
obtained. Finally, the conclusions and considerations on future work in Sect. 5.

1.1 State of Art

In a time of changing climate, natural forests become of great interest to study
the effects of climate on tree distribution or forest health [4,8,9]. Tree count-
ing provides useful information for forest (specially plantation) management
[2,40,50,53,61]. Single trees detection using automatic methods and image anal-
ysis is a challenging problem affected by factors such as tree age and height,
tree stand composition, the terrain the forest is set on and lighting conditions
at the time of acquisition [26]. Initial studies used tree tops higher intensity
values in comparison to the surrounding pixels [21,45,46,48]. Other methods
refined an initial set of tree tops [30] using local elevation extrema or classical
image segmentation techniques such as Watersheds, Region Growing, or mor-
phological operators. For example, [15] detected points with high grey values
and compared performances of Region Growing, Template matching and Brow-
nian motion methods to refine the segmentation and obtain tree crowns. [26]
uses a Digital Elevation Model (DEM) to detect seed regions of single trees
based on pixel-wise elevation values. [35] made the importance of data evident
by comparing different algorithms on different datasets and forest conditions.

Recent studies have been using deep learning approaches to analyze images
with higher resolution [10,37,40,61]. For example [37] used a deep learning model
to detect and count oil palm trees in satellite images. First, a binary classifier
was used to separate the data into tree and background. Then, a sliding window
technique was used to refine the segmentation obtaining an accuracy of 96%.
On another study, [40] the related problem of separating young and mature
oil palm trees was solved with 95% accuracy using two separate deep convolu-
tional neural networks. [12] detect trees and estimate their phisical properties
using DEM information. [57] presented a DSM-based floor elimination step and
subsequently compared different image modalities (RGB and multispectral) to
segment and classify olive trees in a plantation. Multispectral images obtained
the best accuracy at 97%.

Most of these used data acquired in plantations while much less attention
has been devoted so far to mixed natural forests. Taken into account studies
such as [35] that show how most algorithms are highly data-dependent existing
algorithms are likely to fail to produce optimal results in challenging environ-
ments such as natural mixed forests. The main reason for this is that forests
are markedly heterogeneous environments and that the images acquired in them
are affected by shadowing and lighting changes. Furthermore, forest composi-
tion and, most specially the overlapping of tree crowns, make tree detection a
challenging task. Specific examples of how frequent problems in natural forest
affect existing methods are: The sensitiveness of region growing to reflectance
changes pointed in [30], the difficulties on maximum filtering when dealing with
small and young trees as well as problems with template matching in crowded

A Preliminary Study on Tree-Top Detection 67

stands (both pointed in [37]). Hence, in this paper we set out to detect tree tops
using RGB mosaics and DEMs in an exceedingly challenging scenario due to our
forests being natural, unmanaged, mixed and set in areas with steep slopes.

2 Data Gathering, Annotation and Preprocessing

Japanese natural mixed forests are often located in mountainous areas. Our cho-
sen study sites, located in the northern most area of the Asahi mountains and Zao
mountain, are representative forests of those areas. In general the studied forests
are characterized by steep slopes ranging between 33 and 40% [39], dense struc-
tures and high under-story vegetation, which hampers field studies and analysis
in forests. For these forests dominate tree species were identified, but accurate
information about the distribution of all appearing tree species, their number and
location within the forest, as well as their development are not known.

Fig. 1. Shows the location of the study sites (left) and two representative example sites
used to detect treetops, DEMs and mosaics (bottom right).

2.1 Data Acquisition

The small user-friendly drones, namely a DJI Phantom 4 and DJI Mavic 2 Pro
were used to acquire the data. The drones were used to collect images of the
mixed forest and to cover different sites within the forest. The drones took high
resolution RGB images, since the Phantom 4 is equipped with 12 megapixel and
the Maivc with a 20 megapixel camera. GPS and GLONASS satellite systems are
used to georeferenced the position of the drone. A standardize flight protocol was
used to assure constant overlaps and flight altitudes during image acquisitions

68 Y. Diez et al.

by using the app DJI GS Pro. The pre-programmed flight time was set between
15 min and 30 min considering the area covered per site.

Locations. The diversity of Japanese forests leaded to a selection of differ-
ent forest environments which represent those special environments (see Fig. 1).
One location was chosen in the Yamagata University Research Forest (YURF)
located in the northwest of the main island of Japan, Honshu (38◦ 49′14′′N,
139◦ 47′47′′E). As part of the Asahi mountain the 753,02 ha large area represent
natural mixed forests. For image collection seven different sites (four river and 3
slope sites) where chosen to represent the characteristics the forest. In the sum-
mer season 2019, data gathering was performed in those areas covering 3 to 6 ha
per site. Parameters for the flights were set between 80 and 140 m depending on
the elevation of the mountain together with an overlap 90 and 96%. Per flight
raw images between 214 and 418 were collected.

The second study site is the Zao mountain, a volcano in the southeastern
part of Yamagata Prefecture (38◦ 09′10.5′′N 140◦ 25′18.4′′E). The mountain
is mostly composed of fir trees (Abies sachalensis) affected by moth and bark
beetle infestations since 2014. The study sites are located at different altitudes
of the mountain. The sites located in lower areas are characterized by a mixture
of fir trees with deciduous trees, while the forest develops to a monoculture of
fir trees with increasing altitude. Furthermore, with higher altitude the number
of infected trees increase. Image collection took place during the summer season
2019. Three sites were covered with flight altitudes between 60 and 70 m, 90%
front and side overlap and cover area of each flight ranging between 1 to 2 ha.
Per site up to 495 raw images were collected.

2.2 Data Processing and Annotation

The raw images were processed by Metashape software [1]. Metashape used
image information and GPS coordinates to align raw images which were trans-
formed into a dense point cloud. The dense cloud is used to create image mosaics
and Digital Elevation Models (DEM), which are used in this approach. The dif-
ferences between the mosaic and the DEM are the stored information. While the
mosaic contains colour information, the DEM express different elevations in a
gray-scale format. Examples of the mosaics can be seen in Fig. 1 (right) while the
center part of the same figure contains examples of DEMs. In total, a number
of 10 mosaics, as well as their DEMs were considered for this study. The DEM
can be exported as GeoTIFF file from Metashape software in which location
information are embedded. Those files cannot be opened in image visualisation
software. Therefore, a pre-processing step was done to transform the GeoTIFF
into a JPEG file using ArcGIS.

Figure 2 depicts the workflow for pre-processing the data for using them with
deep learning techniques. Images were collected and processed in Metashape.
Before the annotation process the DEM needed to be converted, and both the
DEM and the mosaic were used in GIMP to prepare the annotation for handing
them to the algorithms.

A Preliminary Study on Tree-Top Detection 69

Fig. 2. Overview of the software used to pre-process the data.

The following step was the manually annotation process, done with GIMP, an
image manipulation software. The mosaic and the DEM were used as single layers
and a third layer was added for the annotations. The annotation process was done
by marking higher points in the third layer on basis of the DEM information. The
mosaic was used for confirmation that the marked points belongs to tree tops,
since the mosaics contained further features, like a rope way. Figure 3 presents
a part of one of the mosaics with superimposed annotation data. Besides that,
trees on Zao mountain sites were annotated into four categories healthy fir, sick

Fig. 3. Detail of the mosaic data (left), the mosaics (center) and the results of anno-
tation (right), tree tops are presented as white points. This figure originally appeared
in the initial version of this work [13].

70 Y. Diez et al.

fir, dead fir and deciduous based on orthomosaics. Healthy firs account for firs
with majority branches covered by green leaves. Sick firs are defined as firs with
more than half of branches defoliated while dead firs have no needle present on
all branches. As we mainly focus on the infestation of fir trees on this site, all
deciduous species we simply marked them as deciduous.

2.3 Challenges in Data and Limitations of This Study

Previous studies already used image analysis and computer vision techniques to
count trees, especially in agricultural fields. In agricultural fields the trees are
planted which has several benefits for computer vision detection algorithms, like
thresholding and contour detection. Trees are planted in lines and separated from
each other, which makes it easy to differentiate between single trees and soils. The
accuracy for tree detection has therefore a high accuracy [23,40,56]. Detecting
trees is challenging in well-managed forests, while unmanaged and dense forests,
like the Japanese mixed natural forests makes tree detection more difficult. The
characteristic of mixed natural forests are overlapping canopies and high density
of understory vegetation, which increase the difficulty to differentiate between
canopies and bushes. Separation of tree crowns from different tree species is
difficult, while it is impossible for the trees of the same species. Tree counting
tasks are therefore difficult to conduct. The DEM and its height information
offers the possibility to reconstruct forests as a 3D version, which can be a
useful tool for detecting trees. The localisation of highest points in regions of
interest can help to identify single trees. However, there are few studies done
in dense forests with variable tree distributions and their influence on detecting
single tree [17,35,60].

The heterogeneity of the forests which we faced complicated the work and the
effectiveness of using computer vision techniques. The forests show areas, where
a few trees are isolated, while next to it a high number of trees covered the area.
Furthermore, the chosen sites show different characteristics in the elevation. As
mentioned in Sect. 2.1 there are sites which are located close to the river or on
slopes, which has a high impact on the density of the forest, the resolution and
the height information of pixels in the mosaics. As lighter pixels represent higher
altitudes” the pixel value is always a mix of the altitude and the elevation of the
ground. This causes difficulties, when small bushes cover slope areas and pixel
information show high values due to the elevation (Fig. 4 top right). Therefore,
only regions with trees needed to be detected by the algorithm considering a local
maxima. Additionally, the sick trees which can be found in Zao mountain fur-
ther influence the detection possibility since dead trees are barley represented in
DEM. Artifacts at the corners of mosaic appearing due to missing images caused
distortion, as well as man-made objects like buildings (Fig. 4 bottom) or electric-
ity towers (Fig. 4 center right) can cause problems with the algorithm. Since the
data itself show a high degree of heterogeneity, the used mosaics were divided
into classes which represent more homogenous characteristics of the forests in
the mosaic. Two mosaics were classified by their high density and their location

A Preliminary Study on Tree-Top Detection 71

Fig. 4. Data difficulties. The top left image shows a DEM representing a slope with
bushes. The top right and center left images represent varying canopy densities in
DEMs. The images in the center right and bottom, show the mosaic and the DEM of
the same area containing distortion caused by man-made objects. This figure originally
appeared in the initial version of this work [13].

in steep slopes. A certain degree of tree density variability can be compensated
with the algorithms used. However, the other mosaics represent characteristics
highly different from those two DEMs and good results could not be obtained
by a single set of parameters, they were discarded. The results presented were
obtained by using the remaining 8 mosaics.

72 Y. Diez et al.

3 Materials and Methods

Fig. 5. Pipeline of the studied algorithms.

In this section we present the algorithms used to extract tree tops from DEMs
and classify the trees represented by those tree tops. Taking previous works
into account (see, for example, [41]) our initial aim was to search for local pixel
intensity maxima in the DEM. However, the data presented additional chal-
lenges, which increased numbers of tree candidate points outside of the regions
properly containing trees. This happened due to the Orography of our data col-
lection sites (see Sect. 2.3). Two examples of the problems encountered are that
(Fig. 5):

– Due to uphill areas within the DEM tree tops were often not local DEM
maxima

– There were regions without trees at different altitude values (sometimes
including the DEM global maximum).

Tree densities in different DEMs, as well as within one DEM show significant
variations as three windows with the same size contained no, 2, 4 or 10 tree
tops, for example. Tree detection algorithms cannot be used with the same set
of parameters for the whole of each mosaic.

As a result, a first step in our algorithm aimed at finding the “interest
regions” containing trees or filtering out the contained floor. Section 3.1 presents
two algorithms to achieve this goal. After the regions were determined to actu-
ally contain trees then we run several well-known clustering algorithms in order
to extract tree tops (Sect. 3.2). Finally, small regions around the tree tops where
used with several Deep Learning Classifier architectures in Sect. 3.3.

3.1 Interest Region Extraction

Interest Maps Using DEM Values, and Gradients. The strategy followed
the three steps described by [13]. First, the DEM was divided in interest regions

A Preliminary Study on Tree-Top Detection 73

according to heights associated to each pixel by a thresholding algorithm. A
value of 0 was assigned to the floor, which were not located in slope areas and
then discarded. High value pixel were assigned a 2 representing tree tops, which
were not received in all mosaics. Pixels which could not clearly identified as
part of the previous mentioned values got a value of 1. In the second step of
the algorithm the presence or absence of high DEM intensity gradients were
used to divide regions. The Sobel filter [11] identified large gradients in x and
y directions, which were added into a single gradient image to assigned regions
without a gradient a value of 0, the ones with a value of 2. A morphological
closing operator [24] was further used to find tree tops in enclosed regions of the
tree crowns. A combination of the described labels result into:

– 0 −→ Pixel assigned to the floor without elevations.
– 1 −→ Pixels which do not belong to floor or high pixel values and with no

gradients.
– 2 −→ Pixels with a high value and no gradients.
– 3 −→ Pixels not belonging to floor nor being high, but with Gradients present.
– 4 −→ High pixel with gradients.

Figure 6 shows an example of an interest map. The detailed subfigure shows
that higher tree top densities are marked with brighter pixel intensities repre-
senting higher interest. Difficulties of the terrain can be seen in the bottom left
corner of the main figure, where sections of high interest contain no trees, but
bushes in an uphill part having pixel values close to the ones of tree tops.

Fig. 6. Example of an interest map with superimposed tree tops marked as points.
This figure originally appeared in the initial version of this work [13].

Floor Filtering. In this second strategy to filter out the floor of the DEM, infor-
mation from the mosaics were incorporated. Specifically, three different strategies
we used. 1) As shadows are known to belong to the floor regions, the mosaic was
turned into grayscale representation and blurring and thresholding was used
to detect darker areas (corresponding to shadows). 2) Color parameters were

74 Y. Diez et al.

considered and thresholding used to filter out all areas with low green values
including dirt sections or river areas as can be seen in Fig. 1. 3) Finally lower
pixels in the DEM were filtered out. The result from these strategies was a binary
mask representing the regions belonging to the floor (black) or to trees (white).
This mask was extended using several iterations of a sliding window strategy
by painting pixels within a given altitude threshold of floor pixels. Thus, slope
regions were identify that ascended slowly without sudden changes in altitude
by the presence of trees. The resulting floor binary mask was then used to mask
out the part of the DEM containing the floor.

3.2 Tree Top Detection Algorithm

Several algorithms were applied on the masks where regions without trees were
filtered out. A sliding window technique was applied, using different window sizes
which affects the performance of the algorithms. One of the six tree top detection
algorithms run for each position of the window. Since the studied algorithms are
presented in [13] the following description is kept short, for detailed information
refer to the aforementioned reference.

Iterative Global Maxima
The iterative Global Maxima (GMax) is a simple and fast algorithm consists on
finding the maximum intensity value in each window.

Peak Local Maxima
This algorithm (from now on as LMax) identified several local maxima presented
within the DEM in each window. A gaussian smoothing in combination with a
certain threshold discarded low values considering a certain distance.

DBSCAN
“Density based spatial clustering” (short DBSCAN) [16] is a clustering algo-
rithm considering data densities. The algorithm groups nearby points using a
parameter ε and a parameter ms to filter cluster centers, then marks points not
grouped as outliers.

K-Means
K-Means (from now om KM) is a clustering algorithm [38] partitioning the data
k clusters. Each pixel belongs to the cluster with the mean intensity closer to its
own intensity value. The specific algorithm used for this as well as the subsequent
clustering algorithm is the number of classes considered nc.

Fuzzy C-Means
As a variation of K-Means, Fuzzy C-Means (FCM) algorithm assigns each pixel a
probability to belong to each existing cluster [6]. Computed centroids depending
on the probability of each pixel to belong to a class and a fuzziness parameter
changing weight of the contribution of each pixel are considered.

A Preliminary Study on Tree-Top Detection 75

Gaussian Mixture Model
The Gaussian Mixture Model GMM algorithm clusters data considering every
cluster as a normal (or Gaussian) random variable. Pixel probabilities are com-
puted to assign them to clusters (or Gaussians) by defining Gaussian parameters
and updated under the use of an expectation maximization algorithm. The algo-
rithm ends when a certain convergence criterion is held.

Use of Interest Maps to Refine the Detected Tree Tops. For all algo-
rithms, any tree top detected in the section identified as not containing trees, was
discarded. For all of the other sections, tree tops were assigned an “uncertainty”
region in the shape of a disk of varying radius. Then intersecting uncertainty rea-
sons were merged and a single representative tree top was used. The interest map
was used to make the uncertainty regions in lower interest regions have larger
radii. With this, the number of points in lower interest regions was reduced.

For the three parameterised clustering algorithms (KM, FCM, GMM), the
average of the interest map labels of the pixels in each window was used to
adjust the number of clusters being detected with higher interest regions being
assigned more clusters.

3.3 Tree Top Classification

Tree top classification is a central step in many forestry applications such as
labeling the trees in a mosaic according to their species or determining the
health status of trees (as infestations as happens in one of our data acquisition
locations). In order to capture the distinctive characteristics of each tree type,
a small square patch around each tree top were sampled (indicated by a single
points at its center). Then, each patch was assigned a class according to the
manual annotation codifying the classes that could be found in the image as
mentioned in Sect. 2.1 (Healthy Fir, Sick Fir, Dead Fir and deciduous). Using
this information, the problem was formalised in terms of deep learning as a
classical single-label classification problem using the patches extracted around
the tree tops. This problem was solved using one of the following deep learning
classifiers:

1. Alexnet [34] is one of the first widely used convolutional neural networks,
composed of eight layers (five convolutional layers sometimes followed by
max-pooling layers) and three fully connected layers).

2. Squeezenet [28] used so-called squeeze filters, including point-wise filter to
reduce the number of parameters needed. A similar accuracy to Alexnet was
claimed with fewer parameters.

3. Vgg [55] represents an evolution of the Alexnet network that allowed for an
increased number of layers (16 in the version considered in our work) by using
smaller convolutional filters.

4. Resnet [25] was one of the first DL architectures to allow higher number of
layers by including blocks composed of convolution, batch normalization and
ReLU. In the current work its version with 50 layers had been used.

76 Y. Diez et al.

5. Densenet [27] use a larger number of connections between layers to claim
increased parameter efficiency and better feature propagation that allows
them to work with even more layers (121 in this work).

All these DL classifiers were initialised used Imagenet weights. See, for exam-
ple, [34]. The classifiers where trained using the manually annotated tree points
and information of the tree health classes annotated in the mosaic. The data
was randomly divided into two subsets of 80% for training and 20% for testing.

4 Experiments

Continuing the work presented in [13], all the algorithms tested in this section
were implemented in python [59]. The opencv library [7] was used for low-level
image operations and scikit-learn [44] was used to retrieve implementations of
clustering algorithms.

4.1 Tree Top Detection

In this section we report the performance of the six methods studied in terms of
the same three objective measures presented in [13]. In this case we provide thir
formulae with a very succinct description and refer the reader to the mentioned
reference for details.

Hausdorff Distance

dH(A,B) = max
{

sup

a ∈ A

inf

b ∈ B
d(a, b),

sup

b ∈ B

inf

a ∈ A
d(a, b)

}

This metric provides a way to measure to measure distances between points
but is vulnerable to outlier values and is, thus completed with two more metrics:

Matched Ground Truth Points Percentage (m%)
The percentage of ground truth points matched gives us an indication of what
percentage of the tree tops were detected by defining an acceptable uncertainty
region as a circle of a fixed radius around each ground truth point. However this
measure was vulnerable to methods finding many point which would eventually
end up finding points close to all ground truth points but would not coincide
with what we intuitively consider a good prediction. To fix this we considered a
third metric:

Counting Measure
Stands for the difference of the trees present in the mosaic “n”, with the number
of tree tops detected “d” weighted over the number of trees cnt = n−d

n .
Only methods achieving good results for the three metrics at the same time

(as low as possible for Hausdorff and cnt and as close to 100 as possible for m%)
are reported.

A Preliminary Study on Tree-Top Detection 77

4.2 Interest Region Extraction

Tables 1, 2 and 3 present quantitative results for this experiment. An example of
the data used as well as result for some of the methods can be found in Fig. 7.
Tables 1, 2 appeared in [13] and are provided for ease of comparison, a new
interest region extraction is summarised in Table 3 and compared to previous
results.

Table 1. Comparison 0f pre-processing algorithms.

Hausdorff distance GMax LMax DBSCAN KM FCM GMM

Interest map 1249.96 1456.74 1194.10 1198.85 1258.62 1170.26

Floor filtering 1316.61 1361.42 1210.10 1142.51 1256.22 1109.28

Table 1 presents the average Hausdorff distance, over all 8 mosaics consid-
ered, for the six methods studied with the two interest region extraction tech-
niques studied. Best results are obtained by GMM (1170.26/1109.28), DBSCAN
(1194.10/1210.10) and KM (1198.85/1142.51). GMax and FCM obtain results
close to 1250 while the result of LMax is close to 1400. This indicates a superior
performance in terms of this distance of clustering methods over those aimed at
finding intensity maxima. The floor filtering approach obtained slightly better
results for this criterion for the best performing methods.

Tables 2 and 3 presents results for the cnt and m% measures for each method
and DEM. Table 2 corresponds to the interest map pre-process while Table 3
refers to the floor filtering pre-process. The tables are divided into two parts,
the top parts contain information about five of the DEMs while the lower parts
contains information on the remaining three as well as the average. Each row
corresponds to one method and each pair of columns to the performances of all
the studied methods for one particular DEM. The final two columns contain the
averages of the cnt and m% measures. Notice that positive cnt values indicate
that the algorithm overestimated the number of trees, negative values indicate
underestimation and that the average presented was computed using average
values so as not to cancel both errors out.

For the interest map pre-process, (Table 3), best results are observed for
the GMax algorithm achieving the best matched point percentage and counting
measure (90.64, 8.09). High results of over 80% on matching percentage were
obtained by FCM (81.88, 13.15), GMM (81.15, 14.25) AND DBSCAN (80.94,
14.28). KM is able to match slightly fewer tree tops but is better at count-
ing them (76.90, 11.50) while LMax obtains the worst results with still high
matched tree percentage but a clear tendency to overestimate the number of
trees producing a bad cnt value (72.47, 27.49). Conversely, results presented
in Table 3 and referring to the floor filtering pre-process show how best results
were observed for the GMax algorithm achieving the best matched point percent-
age and counting measure (85.68, 9.41). High results of over 80% on matching

78 Y. Diez et al.

Table 2. Tree crown detection method performance with the Interest Map Preprocess.
This table originally appeared in the initial version of this work [13].

DEM 1 2 3 4 5

Method m% cnt m% cnt m% cnt m% cnt m% cnt

GMax 90,34 -15,91 92,93 0,51 91,48 13,77 89,78 3,11 85,83 16,25

LMax 85,23 10,23 78,79 12,12 65,57 30,16 53,33 32,89 82,92 25

DBSCAN 77,84 -21,02 80,81 -3,28 90,16 -15,08 76 -13,33 80,83 4,58

KM 64,2 5,11 72,22 22,73 78,69 0 69,78 10,67 80,42 17,08

FCM 72,73 -5,11 73,74 18,18 83,61 -15,41 77,78 -1,78 84,17 1,67

GMM 70,45 -10,23 72,22 19,44 81,64 -10,49 76,44 -2,67 82,92 5,83

DEM 6 7 8 AVERAGE

Method m% cnt m% cnt m% cnt m% cnt

GMax 91,13 0 88,51 13,75 95,15 1,43 90,64 8,09

LMax 66,01 37,44 77,59 45,2 70,29 26,86 72,47 27,49

DBSCAN 70,94 -7,88 83,8 11,11 87,14 -38 80,94 14,28

KM 71,92 3,94 88,51 6,21 89,43 -26,29 76,90 11,50

FCM 76,35 -9,85 92,09 -12,62 94,57 -40,57 81,88 13,15

GMM 79,8 -15,27 92,28 -12,62 93,43 -37,43 81,15 14,25

Table 3. Tree crown detection method performance with the Floor Filtering Prepro-
cess.

DEM 1 2 3 4 5

Method m% cnt m% cnt m% cnt m% cnt m% cnt

GMax 85.94 7.81 82.86 15.43 89.87 11.39 85.53 7.57 79.92 7.53

LMax 83.85 17.19 72.57 1.71 76.71 5.32 60.20 27.96 78.24 16.32

DBSCAN 64.58 5.21 68.57 12.57 75.44 9.37 80.26 8.22 60.67 16.74

KM 79.17 7.81 77.14 9.71 70.13 5.82 74.67 8.22 87.87 8.37

FCM 80.21 5.21 78.29 24.00 69.87 4.05 75.33 19.08 88.70 13.81

GMM 74.48 17.19 66.29 1.14 58.48 25.32 74.34 6.25 73.64 23.01

DEM 6 7 8 AVERAGE

Method m% cnt m% cnt m% cnt m% cnt

GMax 86.63 13.37 84.15 2.45 90.54 9.74 85.68 9.41

LMax 71.29 6.93 88.11 15.28 83.38 37.54 76.79 16.03

DBSCAN 69.80 23.76 61.70 12.64 80.80 25.50 70.23 14.25

KM 83.17 29.21 85.85 7.92 90.54 49.28 81.07 15.79

FCM 82.67 46.04 87.74 14.53 90.54 59.60 81.67 23.29

GMM 74.75 6.93 83.96 6.60 81.66 14.61 73.45 12.63

percentage were obtained by KM (81.07, 15.79) and FCM (81.67, 23.29). This
last method, though, is much less precise when counting trees. Other methods
obtain satisfactory results with counting errors around 15% and detection rates
from 70 to 76%.

A Preliminary Study on Tree-Top Detection 79

As opposed to what was observed for the Hausdorff metric, best results seem
to be obtained for this metric for the methods that rely on DEM intensity
maxima. Best results overall where obtained by the interest map pre-process
and GMax algorithm although most methods performed better with the Floor
filtering pre-process.

Table 1 seem to be painting a slightly different picture to Tables 2 and 3
concerning method performance. We believe the main reason for this has to
with the behaviour of algorithms in areas of extreme point tree top density.
That is, areas with very few or many tree tops. On the one hand, the GMax
algorithm tends to place a similar number of points in all these areas (this
behaviour is corrected to a certain extent by the use of interest maps detailed in
Sect. 3.2). Conversely, algorithms such as GMM and FCM tend to place fewer
points than Gmax in lower density areas and more in higher density areas.
The extra points in lower density areas heavily penalise the Hausdorff value
for GMax while the extra points in high density areas penalise a little bit the
counting measure for clustering methods. Figure 7 shows a medium-high density
area where GMax has predicted too few points. Moreover, the distance between
the predicted points is somewhat large while not large enough so that most of the
points are not matched. On the other hand, KM and GMM manage to predict
points much closer to the ground truth points but on occasion they also place
extra points that detract from their counting score. This seems to agree with the
differences in performance obtained by the DEM intensity based methods (most
specially GMax) when considered with the two pre-processing algorithms. The
floor filtering algorithm results in a more strictly binarised DEM (some areas
that appeared as “low priority” but where available in the interest map algorithm
become totally unavailable). This results in algorithms that tend to place points
further from their true position such as GMax (as expressed by Table 1) not
being able to place some of the points at all. Similarly, algorithms that tend to
place points closer to their real position benefit from the disappearance of these
“low priority” regions resulting in decreased Hausdorff distance with similar (if
not improved) counting measure.

4.3 Tree Classification

For this experiment, we considered one of the mosaics from the Zao site presenting
Bark Beetle infestation. This site contains Deciduous trees that are not affected by
the beetle as well as Evergreen trees of the Fir species. Although in this experiment
we focus on this application, the algorithms studied can be used in a wide variety
of forestry-related applications. For the current experiment, we annotated each
of the pixels of the image as to belong to one of the following classes: Deciduous,
Dead Fir, Healthy Fir, Sick Fir. In order to focus on the merits of the classification
algorithms, for this experiment we used manually annotated tree tops. A small
patch around each tree top (of 100 × 100 pixels, amounting approximately to a
2 m sided square) was automatically extracted. The position of the corresponding
tree top was used along with the manually annotated ground truth on tree health
to determine the class the patch belonged to.

80 Y. Diez et al.

6MED)b6ciasom)a

xaML)dxaMG)c

MMG)fMK)e

Fig. 7. Example results for selected tree detection algorithms for DEM6. a) The orig-
inal mosaic image b) contains the corresponding DEM image. In both cases manually
annotated ground truth points are marked in black and a section is highlighted. d–e
contain results of some of the studied methods superimposed a DEM section. Larger
points stand for ground truth points while the smaller ones represent predicted points.
This figure originally appeared in the initial version of this work [13].

Transfer Learning and Parameter Tuning. Our data set consisted, thus,
of patches that belonged to one of the aforementioned categories. The dataset
was then divided into 80% training and 20% validation. All deep learning mod-
els where initialised using imagenet weights, so transfer learning from a large,
general-purpose dataset was performed. As we were using a relatively small num-
ber of images (680 patches corresponding to tree tops) all deep learning models
were kept “frozen” during training. This stands for all the layers on the deep
learning architectures except the final layers that output the classification cate-
gory for each image remained unchanged during the whole training process. The
idea behind this is that the pre-trained networks are already capable of ade-
quately classifying our images and only a final layer that takes the output of the
network and translates into the categories of our problem needs to be trained
for each network. All networks were trained using different learning rates to give

A Preliminary Study on Tree-Top Detection 81

a broad view of their performance. Figure 8 contains Error Rate (ER) values
for the validation set in each of the considered DL architectures over a list of
learning rate values.

The figure shows how best results (0.096 ER) are obtained both by Resnet
and Vgg. Densenet, Squeezenet and Squeezenet obtain slightly worse results
with 0.11, 0.12 and 0.13 ER respectively. Resnet was consistently better than
the other networks at this classification task. The values obtained show how
these DL networks can adequately perform the classification task with a low
rate of error. A more detailed look at the confusion matrix for LR 0.1 and the
Resnet network (Table 4) shows how most classes are classified without error
although some confusion can be observed for the Healthy Fir class. Specifically,
it is confused in a few cases with the deciduous class (which does not represent
a practical problem) and sometime healthy Fir trees are assigned the “sick Fir”
category. This would be seen in a practical setting as a (small number of) false
positive detection for an application aimed at detecting sick trees.

Fig. 8. Error Rate Results for tree classification for all learning rates and DL architec-
tures.

Table 4. Confusion Matrix for the Tree health classification experiment.

Real Vs Predicted Dead Fir Deciduous Healthy Fir Sick Fir

Dead Fir 7 0 0 0

Deciduous 0 58 0 0

Healthy Fir 0 6 12 6

Sick Fir 0 1 0 45

82 Y. Diez et al.

While the current results show that deep learning is suitable for this type of
classification task and represent a novel tool to aid the analysis of drone-acquired
forest mosaics, improving the classification accuracy will be part of our future
work. Specifically, larger networks will be considered along with larger datasets
that can be used to train the full (unfrozen) networks.

4.4 Time Considerations

All experiments were run in a workstation using a Linux Ubuntu operating
system with 10 dual-core 3 GHz processors and an NVIDIA GTX 1080 graphics
card. With this setup, the average runtimes of the algorithms using their best
combination of parameters for the eight DEM images show a high variability of
performance. The fastest methods (considering the interest map pre-processing)
are GMax (23 s), DBSCAN (62 s) and LMAX (102 s), while the slowest are KM
(1537 s), GMM (1916 s) and FCM (5755 s). These results show how even the
slower of them is faster than a human expert annotation. However, the algorithms
have some precision problems in terms of tree counting so, a possibility is to use
their result as a starting point to make human annotation faster. Consequently,
both the performance metrics and these time considerations show how drone
images and computer vision algorithms can already be used as a tool to save
huge amounts of time by forestry experts.

5 Conclusions

In this paper we presented a complete analysis of several tree top detection algo-
rithms in the challenging situation where the data comes from mixed forests that
grow naturally. Forests in Japan are often found in very steep terrain presenting
steep slopes this makes the detection of trees more difficult. For this reason, we
designed a pre-processing algorithm to focus on the parts of the mosaic that
actually contain trees. We studied two variants of this pre-process. The first
built an interest map focused on identifying regions with different tree densities,
the second was aimed at filtering out the floor using pixel altitude and color
information.

On a subsequent step, six tree top detection algorithms were tested. These
algorithms had their parameters adapted to the changing tree density conditions
using the interest. Results showed how all algorithms were able to predict the
tree top positions, (see Tables 2, 3). Gmax obtained best results with 90% of
matching. FCM, GMM or DBSCAN reached accuracies over 80%. Regarding
tree counting, Gmax obtained 8% in the tree counting criterion. Other methods
obtained the following results: 11% (KM), 13–14% (FCM, GMM, DBSCAN).
For completeness, we used the Hausdorff distance to measure the quality of the
experiments (see Table 1). These results showed how the points predicted by
GMax are not as close to the real tree tops as those predicted by GMM, KM or
DBSCAN. These improved results that are also backed by qualitative observa-
tion. Taking into account all results shown, we conclude that the best algorithms

A Preliminary Study on Tree-Top Detection 83

for tree top detection, in terms of accuracy, are FCM, GM and DBSCAN. How-
ever, for a quick initial approach to the tree top positions, GMax showed the
best performance (see Sect. 4.4).

In the final step of the presented pipeline, patches where extracted about tree
tops and classified using five different deep learning architectures. Even though
these networks where kept frozen due to the relatively low number (around 700)
of tree tops considered and, thus, only the final layer of these networks was re-
trained, high classification accuracies were obtained (ER 0.096). The confusion
matrix presented showed how clearly different classes were told apart without
mistake and that mild confusion was observed for the “Sick Fir” class. In our
future work we will improve classification accuracy by considering larger deep
learning architectures trained unfrozen by using larger datasets. The use of data
balancing and augmentation will also be explored.

Time consideration showed how the automatic algorithm studied provide
forest scientists with new tools that can have an immediate impact in forest
research. The algorithms presented make some of their tasks much faster than
the existing alternative (fieldwork). Even if some error remains in the automatic
approaches studied they can still be used as a good initial guess which can be
corrected by the forest specialist in a matter of minutes for the applications
where maximum precision is needed.

References

1. Agisoft: Agisoft metashape 1.5.5, professional edition. http://www.agisoft.com/
downloads/installer/. Accessed 19 Aug 2019

2. Aliero, M., Bunza, M., Al-Doksi, J.: The usefulness of unmanned airborne vehicle
(UAV) imagery for automated palm oil tree counting. J. For. 1 (2014)

3. Allen, C.D., Breshears, D.D.: Drought-induced shift of a forest–woodland ecotone:
rapid landscape response to climate variation. Proc. Natl. Acad. Sci. 95(25), 14839–
14842 (1998)

4. Anderegg, W.R.L., Anderegg, L.D.L., Kerr, K.L., Trugman, A.T.: Widespread
drought-induced tree mortality at dry range edges indicates that climate stress
exceeds species’ compensating mechanisms. Glob. Chang. Biol. 25(11), 3793–3802
(2019)

5. Banu, T.P., Borlea, G.F., Banu, C.M.: The use of drones in forestry. J. Environ.
Sci. Eng. 5 (2016)

6. Bezdek, J.C., Ehrlich, R., Full, W.: FCM: the fuzzy C-means clustering algorithm.
Comput. Geosci. 10(2), 191–203 (1984)

7. Bradski, G.: The OpenCV library. Dr. Dobb’s J. Softw. Tools 25, 120–125 (2000)
8. Chen, I.C., Hill, J.K., Ohlemüller, R., Roy, D.B., Thomas, C.D.: Rapid range shifts

of species associated with high levels of climate warming. Science 333(6045), 1024–
1026 (2011)

9. Crimmins, S.M., Dobrowski, S.Z., Greenberg, J.A., Abatzoglou, J.T., Mynsberge,
A.R.: Changes in climatic water balance drive downhill shifts in plant species’
optimum elevations. Science 331(6015), 324–327 (2011)

10. Csillik, O., Cherbini, J., Johnson, R., Lyons, A., Kelly, M.: Identification of citrus
trees from unmanned aerial vehicle imagery using convolutional neural networks.
Drones 2(4), 39 (2018)

http://www.agisoft.com/downloads/installer/
http://www.agisoft.com/downloads/installer/

84 Y. Diez et al.

11. Danielsson, P.E., Seger, O.: Generalized and separable sobel operators. In: Machine
Vision for Three-Dimensional Scenes, pp. 347–379. Elsevier (1990)

12. Dı́az-Varela, R.A., De la Rosa, R., León, L., Zarco-Tejada, P.J.: High-resolution
airborne UAV imagery to assess olive tree crown parameters using 3D photo recon-
struction: application in breeding trials. Remote Sens. 7(4), 4213–4232 (2015)

13. Diez, Y., Kentsch, S., Lopez-Caceres, M.L., Nguyen, H.T., Serrano, D., Roure, F.:
Comparison of algorithms for tree-top detection in drone image mosaics of Japanese
mixed forests. In: Proceedings of the ICPRAM 2020. INSTICC, SciTePress (2020)

14. Diez, Y., Suzuki, T., Vila, M., Waki, K.: Computer vision and deep learning tools
for the automatic processing of Wasan documents. In: Proceedings of the 8th Inter-
national Conference on Pattern Recognition Applications and Methods - Volume
1: ICPRAM, pp. 757–765. INSTICC, SciTePress (2019)

15. Erikson, M., Olofsson, K.: Comparison of three individual tree crown detection
methods. Mach. Vis. Appl. 16(4), 258–265 (2005)

16. Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A density-based algorithm for discov-
ering clusters in large spatial databases with noise. In: Proceedings of the KKD,
vol. 96, pp. 226–231. AAAI Press (1996)

17. Falkowski, M.J., Smith, A.M., Gessler, P.E., Hudak, A.T., Vierling, L.A., Evans,
J.S.: The influence of conifer forest canopy cover on the accuracy of two individual
tree measurement algorithms using lidar data. Can. J. Remote. Sens. 34(sup2),
S338–S350 (2008)

18. Frayer, W.E., Furnival, G.M.: Forest survey sampling designs: a history. J. For.
97(12), 4–10 (1999)

19. Gambella, F., et al.: Forest and UAV: a bibliometric review. Contemp. Eng. Sci.
9, 1359–1370 (2016)

20. Garćıa, E., et al.: Breast MRI and X-ray mammography registration using gradient
values. Med. Image Anal. 54, 76–87 (2019)

21. Gougeon, F.A.: A crown-following approach to the automatic delineation of indi-
vidual tree crowns in high spatial resolution aerial images. Can. J. Remote Sens.
21(3), 274–284 (1995)

22. Grotti, M., Chianucci, F., Puletti, N., Fardusi, M.J., Castaldi, C., Corona, P.:
Spatio-temporal variability in structure and diversity in a semi-natural mixed oak-
hornbeam floodplain forest. Ecol. Indic. 104, 576–587 (2019)

23. Guerra-Hernández, J., Cosenza, D.N., Rodriguez, L.C.E., Silva, M., Tomé, M.,
Dı́az-Varela, R.A., Gonzáez-Ferreiro, E.: Comparison of ALS- and UAV(SfM)-
derived high-density point clouds for individual tree detection in eucalyptus plan-
tations. Int. J. Remote Sens. 39(15–16), 5211–5235 (2018)

24. Haralick, R.M., Shapiro, L.G.: Computer and Robot Vision, 1st edn. Addison-
Wesley Longman Publishing Co., Inc., Boston (1992)

25. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
CoRR abs/1512.03385 (2015)

26. Hirschmugl, M., Ofner, M., Raggam, J., Schardt, M.: Single tree detection in
very high resolution remote sensing data. Remote Sens. Environ. 110(4), 533–544
(2007). ForestSAT Special Issue

27. Huang, G., Liu, Z., Weinberger, K.Q.: Densely connected convolutional networks.
In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 2261–2269 (2016)

28. Iandola, F.N., Moskewicz, M.W., Ashraf, K., Han, S., Dally, W.J., Keutzer, K.:
SqueezeNet: Alexnet-level accuracy with 50x fewer parameters and <1mb model
size. CoRR abs/1602.07360 (2016)

A Preliminary Study on Tree-Top Detection 85

29. Katoh, M., Gougeon, F.A.: Improving the precision of tree counting by combining
tree detection with crown delineation and classification on homogeneity guided
smoothed high resolution (50 cm) multispectral airborne digital data. Remote Sens.
4(5), 1411–1424 (2012)

30. Ke, Y., Quackenbush, L.J.: A comparison of three methods for automatic tree
crown detection and delineation from high spatial resolution imagery. Int. J.
Remote Sens. 32(13), 3625–3647 (2011)

31. Kelly, A.E., Goulden, M.L.: Rapid shifts in plant distribution with recent climate
change. Proc. Natl. Acad. Sci. 105(33), 11823–11826 (2008)

32. Kentsch, S., Lopez Caceres, M.L., Serrano, D., Roure, F., Diez, Y.: Computer vision
and deep learning techniques for the analysis of drone-acquired forest images, a
transfer learning study. Remote Sens. 12(8), 1287 (2020)

33. Korpela, I., et al.: Single-tree forest inventory using lidar and aerial images for 3D
treetop positioning, species recognition, height and crown width estimation. In:
Proceedings of IAPRS, vol. 36 (2007)

34. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep con-
volutional neural networks. In: Proceedings of the 25th International Conference
on Neural Information Processing Systems - Volume 1, NIPS 2012, pp. 1097–1105.
Curran Associates Inc. (2012)

35. Larsen, M., Eriksson, M., Descombes, X., Perrin, G., Brandtberg, T., Gougeon,
F.A.: Comparison of six individual tree crown detection algorithms evaluated under
varying forest conditions. Int. J. Remote Sens. 32(20), 5827–5852 (2011)

36. Lenoir, J., Gégout, J.C., Marquet, P.A., de Ruffray, P., Brisse, H.: A significant
upward shift in plant species optimum elevation during the 20th century. Science
320(5884), 1768–1771 (2008)

37. Li, W., Fu, H., Yu, L., Cracknell, A.: Deep learning based oil palm tree detection
and counting for high-resolution remote sensing images. Remote Sens. 9(1), 22
(2017)

38. Lloyd, S.: Least squares quantization in PCM. IEEE Trans. Inf. Theory 28(2),
129–137 (1982)

39. Lopez, L., Hayashida, P., Mori, P., Koyama, P., Ashitani, P., Nobori, P.Y.: 8th
forest plan. Internal Report (2014)

40. Mubin, N.A., Nadarajoo, E., Shafri, H.Z.M., Hamedianfar, A.: Young and mature
oil palm tree detection and counting using convolutional neural network deep learn-
ing method. Int. J. Remote Sens. 40(19), 7500–7515 (2019)

41. Natesan, S., Armenakis, C., Vepakomma, U.: ResNet-based tree species classifica-
tion using UAV images. ISPRS Int. Arch. Photogramm. Remote. Sens. Spat. Inf.
Sci. XLII-2/W13, 475–481 (2019)

42. Onishi, M., Ise, T.: Automatic classification of trees using a UAV onboard camera
and deep learning. ArXiv abs/1804.10390 (2018)

43. Paneque-Gálvez, J., McCall, M.K., Napoletano, B.M., Wich, S.A., Koh, L.P.: Small
drones for community-based forest monitoring: an assessment of their feasibility
and potential in tropical areas. Forests 5(6), 1481–1507 (2014)

44. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn.
Res. 12, 2825–2830 (2011)

45. Pinz, A.: Final results of the vision expert system VES: finding trees in aerial
photographs. Wissensbasierte Mustererkennung. OCG-Schriftenreihe 49, 90–111
(1989)

46. Pitkänen, J.: Individual tree detection in digital aerial images by combining locally
adaptive binarization and local maxima methods. Can. J. For. Res. 31(5), 832–844
(2001)

86 Y. Diez et al.

47. Pont, D., Kimberley, M.O., Brownlie, R.K., Sabatia, C.O., Watt, M.S.: Calibrated
tree counting on remotely sensed images of planted forests. Int. J. Remote Sens.
36(15), 3819–3836 (2015)

48. Pouliot, D., King, D., Bell, F., Pitt, D.: Automated tree crown detection and delin-
eation in high-resolution digital camera imagery of coniferous forest regeneration.
Remote Sens. Environ. 82(2), 322–334 (2002)

49. Richardson, J.J., Moskal, L.M.: Strengths and limitations of assessing forest density
and spatial configuration with aerial lidar. Remote Sens. Environ. 115(10), 2640–
2651 (2011)

50. Rizeei, H.M., Shafri, H.Z.M., Mohamoud, M., Pradhan, B., Kalantar, B.: Oil palm
counting and age estimation from worldview-3 imagery and LiDAR data using an
integrated OBIA height model and regression analysis. J. Sens. 2018, 2536327:1–
2536327:14 (2018)

51. Roure, F., Lladó, X., Salvi, J., Diez, Y.: GridDS: a hybrid data structure for residue
computation in point set matching. Mach. Vis. Appl. 30(2), 291–307 (2019)

52. Santoro, F., Tarantino, E., Figorito, B., Gualano, S., D’Onghia, A.M.: A tree count-
ing algorithm for precision agriculture tasks. Int. J. Digit. Earth 6(1), 94–102
(2013)

53. Shafri, H.Z.M., Hamdan, N., Saripan, M.I.: Semi-automatic detection and counting
of oil palm trees from high spatial resolution airborne imagery. Int. J. Remote Sens.
32(8), 2095–2115 (2011)

54. Shimada, T.: State of Japan’s forests and forest management 2nd country report
of Japan to the Montreal process. Forestry Agency, Japan, October 2009

55. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. In: International Conference on Learning Representations
(2015)

56. Srestasathiern, P., Rakwatin, P.: Oil palm tree detection with high resolution multi-
spectral satellite imagery. Remote Sens. 6(10), 9749–9774 (2014)

57. Torres-Sánchez, J., López-Granados, F., Serrano, N., Arquero, O., Peña, J.M.:
High-throughput 3-D monitoring of agricultural-tree plantations with unmanned
aerial vehicle (UAV) technology. PLoS ONE 10, 1–20 (2015)

58. Torresan, C., et al.: Forestry applications of UAVs in Europe: a review. Int. J.
Remote Sens. 38(8–10), 2427–2447 (2017)

59. Van Rossum, G., Drake Jr., F.L.: Python tutorial. Centrum voor Wiskunde en
Informatica Amsterdam, The Netherlands (1995)

60. Vauhkonen, J., et al.: Comparative testing of single-tree detection algorithms under
different types of forest. For. Int. J. For. Res. 85(1), 27–40 (10 2011)

61. Weinstein, B.G., Marconi, S., Bohlman, S., Zare, A., White, E.: Individual tree-
crown detection in RGB imagery using semi-supervised deep learning neural net-
works. Remote Sens. 11(11) (2019)

Investigating Similarity Metrics
for Convolutional Neural Networks
in the Case of Unstructured Pruning

Alessio Ansuini1(B) , Eric Medvet2(B) , Felice Andrea Pellegrino2(B) ,
and Marco Zullich2(B)

1 Research and Technologies Institute, AREA Science Park, Trieste, Italy
alessio.ansuini@areasciencepark.it

2 Department of Engineering and Architecture, University of Trieste, Trieste, Italy
{emedvet,fapellegrino}@units.it, marco.zullich@phd.units.it

Abstract. Deep Neural Networks (DNNs) are essential tools of modern
science and technology. The current lack of explainability of their inner
workings and of principled ways to tame their architectural complexity
triggered a lot of research in recent years. There is hope that, by making
sense of representations in their hidden layers, we could collect insights on
how to reduce model complexity—without performance degradation—by
pruning useless connections. It is natural then to ask the following ques-
tion: how similar are representations in pruned and unpruned models?
Even small insights could help in finding principled ways to design good
lightweight models, enabling significant savings of computation, mem-
ory, time and energy. In this work, we investigate empirically this prob-
lem on a wide spectrum of similarity measures, network architectures
and datasets. We find that the results depend critically on the similar-
ity measure used and we discuss briefly the origin of these differences,
concluding that further investigations are required in order to make sub-
stantial advances.

Keywords: Machine learning · Pruning · Convolutional Neural
Networks · Lottery ticket hypothesis · Canonical correlation analysis ·
Centered kernel alignment · Network similarity · Explainable AI

1 Introduction

It is not fully understood why Deep Neural Networks (DNNs) generalize well to
new data also in conditions of severe overparametrization—in which the network
capacity would be enough to memorize large datasets—and what is the class of
functions that these networks are able to learn [1,37]. In order to make sense of
inner workings of DNNs, in recent years many new methods have been introduced
with the purpose of comparing representations in trained networks and during
training [20,28,32]. On the other hand, recent pruning techniques proved very
effective in reducing big models to a tiny fraction of their original size, without
c© Springer Nature Switzerland AG 2020
M. De Marsico et al. (Eds.): ICPRAM 2020, LNCS 12594, pp. 87–111, 2020.
https://doi.org/10.1007/978-3-030-66125-0_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-66125-0_6&domain=pdf
http://orcid.org/0000-0002-3117-3532
http://orcid.org/0000-0001-5652-2113
http://orcid.org/0000-0002-4423-1666
http://orcid.org/0000-0002-9920-9095
https://doi.org/10.1007/978-3-030-66125-0_6

88 A. Ansuini et al.

substantial degradation in performance [8,11,12,29]. These findings suggest that
DNNs are able to represent data in effective ways also when they are forced to
get rid of most of their parameters (up to more than 99%).

In the present exploratory work, we address, empirically, the following ques-
tion: “How similar are representations in pruned and unpruned models?” We
focus on Convolutional Neural Networks (CNNs) engaged in different Computer
Vision tasks, training each model from scratch and pruning it with Iterative
Magnitude Pruning (IMP) [16,29]. We then extract internal representations of
the CNN layers and compare them by means of several recently introduced sim-
ilarity measures.

The present work is an extension of [3], in which we trained multiple CNNs
(from a single architectural family) on five subsets of increasing complexity of the
dataset CIFAR-10 [21], pruning these networks using IMP. There, we observed
a peculiar trend in the SVCCA similarity, particularly when we considered the
complete dataset, from which we concluded that intermediate layers differ the
most between pruned and unpruned networks; the following questions, however,
remained unanswered:

– are these trends shared across datasets and architectures?
– how these trends depend on the particular notion of similarity used?

In the present work, we address these research questions by performing a more
thorough experimental analysis w.r.t. [3] in terms of architectures, datasets, and
similarity measures. We show that some of the most recently introduced sim-
ilarity criteria, result in a remarkable stability of similarity across layers, thus
suggesting that the action of IMP pruning (even when the resulting sub-network
is much smaller than the original architecture) do not change substantially the
representations. In order to make our findings reproducible and more accessi-
ble, we made the code publicly available at https://github.com/marcozullich/
pruned layer similarity.

The remainder of the paper is organized as follows: in Sect. 2 we describe
pruning techniques, stressing the innovations introduced in our investigation.
In Sect. 3 we present in detail the employed techniques, namely, IMP and the
similarity measures. In Sect. 4 we describe how these techniques are applied in
this work, and provide a description of datasets, architectures, and hyperparame-
ters. In Sect. 5 we describe our results on performance and layer-wise similarities
between pruned and unpruned networks. Finally, in Sect. 6 we discuss critically
our results, putting an accent on the difference of the results obtained with
different similarity measures.

2 Related Work

2.1 Techniques for DNN Pruning

DNN pruning techniques may be split into two macro-categories [4]: unstruc-
tured and structured. Unstructured pruning acts without following “a specific

https://github.com/marcozullich/pruned_layer_similarity
https://github.com/marcozullich/pruned_layer_similarity

Investigating Similarity Metrics 89

geometry or constraint, [. . .] it leads to irregular sparsity”. Structured pruning,
on the contrary, acts on well-defined substructures of the DNN, such as a single
neuron or a whole convolutional filter; IMP belongs to the first category [16]. In
[29] various pruning techniques, both unstructured and structured, are compared
on Computer Vision tasks; the authors show that unstructured pruning leads to
the best outcomes, in particular IMP with Learning Rate Rewind (LRR), that
we describe in Sect. 3.1 and use throughout the present work.

2.2 Comparisons Between Pruned and Unpruned DNNs

There exist several works analyzing analogies between pruned and unpruned
DNNs. Apart from performance comparisons (test-set accuracy, time efficiency,
energy consumption, etc.) which are the staple of the majority of such works,
there is a minority of studies concentrating on other aspects.

Other types of comparison include, for instance, calibration [34] and robust-
ness [35]; in [11] the interpretability of pruned CNNs w.r.t. their unpruned coun-
terparts is considered.

Interpretability is related to the number of “convolutional units that rec-
ognize particular human-interpretable concepts”, and it has been shown that
pruning with IMP do not substantially alter interpretability. A more recent work
compared pruning masks obtained from various pruning techniques, including
IMP [26]. A pruning mask is a binary structure identifying with a 0 the parame-
ters of the original DNN that have been pruned, and with a 1 the surviving ones.
The authors compared masks using the Jaccard similarity (intersection-over-
union). Although the relationship between representations and pruning masks
is not immediate, the work provides interesting insights about the parallelisms
between structured and unstructured pruning; moreover, the authors empirically
show that, given an unpruned DNN, there exist multiple sub-networks that can
match its test accuracy.

In our previous work [3], we addressed layer-wise similarities between pruned
and unpruned DNNs using a similarity metric specifically designed for neural
networks, Mean CCA Similarity [28] (see also Sect. 3.2). We are not aware of
other works dedicated to layer-by-layer comparisons of pruned and unpruned
DNNs.

3 Tools

In this section we present the tools we used to perform our experiments: IMP—
together with the main strategies for its application—and the similarity metrics
used to compare representations.

3.1 IMP

IMP, first proposed in [16], is a pruning technique that iteratively performs the
following three steps: (1) start from a fully trained neural network (complete or

90 A. Ansuini et al.

unpruned network), (2) prune parameters with magnitude falling below a given
quantile, (3) re-train the network with the remaining parameters for a given
number of epochs.

At each iteration, IMP produces a network with increased sparsity, i.e., with
a larger portion of weights set to 0.

Several variants on this theme are possible, based on how to choose the
parameters to be removed:

– Global Pruning [12]: all the parameters are pooled together and a given pro-
portion of them is pruned, regardless of the layer they belong to.

– Local Pruning [12]: a fixed proportion of low-magnitude parameters is pruned
from each layer; the threshold is determined layer-by-layer.

– Mixed Pruning [38]: a hybrid between global and local pruning—parameters
may be pooled in separate structures depending on the layer they belong to,
and pruning may be applied separately for each pool. For instance, in [38] the
authors experiment with pooling separately parameters from convolutional
layers and fully-connected layers.

In [24] it was shown that global pruning outperforms, in terms of test-set accu-
racy, the other two strategies; hence, in this work, we will use the former.

When IMP was introduced, it was customary to re-train the pruned neural
network for a small number of iterations (fine-tuning, FT) while keeping the
Learning Rate (LR) fixed at the same value as the last epoch of training of the
complete network. Since then, this procedure has been shown [29] to produce sub-
par results as far as accuracy is concerned. Additional heuristics for re-training
were introduced in subsequent works:

– Weight Rewind (WR) [12]: before re-training, rewind the surviving parame-
ters to their configuration at initialization. This strategy showed promising
results, albeit only on relatively small architectures; it was later found in [13]
that rewinding at a configuration of a training iteration close to the initial
one (late resetting strategy) allowed for the successful application of WR also
on larger networks, such as VGG19 [30].

– Learning Rate Rewind (LRR) [29]: before re-training, do not modify the value
of the surviving parameters, but re-use the same LR schedule that was used
in the complete network. The authors also brought empirical evidence that
LRR produces networks having better accuracy than WR and FT, especially
at higher pruning rates.

In [3], we employed IMP with WR and late resetting. In the present work,
we decided to switch to IMP with LRR, due to its better empirical results. As
we will later note in Sect. 5, if we restrict our considerations on SVCCA, the
results we get are comparable to the ones obtained in [3], suggesting that, as far
as the representations of the layers of the neural networks are concerned, there
is not much difference between IMP with WR and IMP with LRR.

Investigating Similarity Metrics 91

3.2 Similarity Metrics for Neural Networks Data Representations

In this section, we present the various metrics to compare representations in the
(hidden) layers of neural networks which we employed in this work.

These metrics allow for the comparison between generic layers of neural net-
works (possibly belonging to different architectures) through the representations,
i.e., the activation matrices obtained as output of such layers in response to a
fixed dataset [28]. For a dataset composed by n data points, a generic fully-
connected layer of p neurons is hence represented by an n × p matrix.

Comparing Layers with Convolutional Structure. We say that a layer has
a convolutional structure when its representation is not two-dimensional, as is the
case of fully-connected layers, but four-dimensional. For instance, convolutional
layers and two-dimensional max-pooling layers fall under this category.

Generally, we can represent such layers with four-dimensional tensors having
shape n × c × h × w, where n is the number of data points through which we
obtain the representation, c is the number of channels in the layer, and h and w
are the spatial dimensions of the data point at the layer1.

Since the metrics that we are going to present work with matrices, addi-
tional strategies for treating these tensors are needed in order to produce a two-
dimensional matrix out of the original four-dimensional tensor. These strategies
might differ from metric to metric.

The present work is focused on CNNs operating on two-dimensional images,
thus we will not consider strategies to compare layers whose representations have
larger dimensions (e.g., three-dimensional convolutions).

Metrics Based on Canonical Correlation Analysis (CCA). CCA [18] is
a multivariate statistical technique to compare two representations of phenom-
ena described starting from the same dataset of n units. CCA finds two linear
transforms such that, when applied to the two representations, produce a set
of orthonormal vectors in a common space, and these vectors have maximum
pair-wise Pearson correlation. In our case, the phenomena are the two layers we
wish to compare.

Formally, given two matrices L1, L2 such that L1 ∈ R
n×p1 and L2 ∈ R

n×p2 ,
let p̃ be the minimum between p1 and p2. The two sought transforms are called
W1 ∈ R

p1×p̃ and W2 ∈ R
p2×p̃.

By applying them to L1 and L2, we get

Z1 = L1W1 (1)
Z2 = L2W2, (2)

with Z1, Z2 ∈ R
n×p̃. Denoting by z

(1)
i the i-th column of Z1 (also called the i-th

canonical vector), we wish that:
1 For spatial dimension we mean the size of each single channel of the image (or anal-

ogous two-dimensional structure) after the application of the convolutions operated
by the given layer.

92 A. Ansuini et al.

(a) z
(k)
i ⊥ z

(k)
j , with k ∈ {1, 2}, i, j ∈ {1, . . . , p̃}, i �= j, and

(b) the pair z
(1)
i , z

(2)
i , with i ∈ {1, . . . , p̃} maximizes the residual Pearson corre-

lation, called canonical correlation (CC), identified by ρi.

Hence, we obtain a sequence of column vectors pairs (z(1)i , z
(2)
i)i∈{1,...,p̃} exhibit-

ing decreasing CCs.

Mean CCA Similarity. These values of CC may be averaged [28] to obtain a
similarity metric called Mean CCA Similarity:

Mean CCA Similarity(L1, L2)
.=

∑p̃
i=1 ρi
p̃

(3)

The CCs may actually be obtained [33] in a one-shot fashion from the Singu-
lar Value Decomposition (SVD), applied to a matrix derived from the variance-
covariance matrices of the two layers L1, L2.

SVCCA. The Singular Vector Canonical Correlation Analysis (SVCCA), was
proposed in [28]. The idea behind this technique is to perform a SVD for dimen-
sionality reduction of the representation of the layers, then operate the CCA
as explained in the previous section. The authors of [28] recommend to apply
SVD such that only the singular values accounting for the 99% of variance are
retained.

Such a dimensionality reduction is motivated by the observation that, in
layers representations, “many low variance directions (neurons) are primarily
noise”. Moreover, the SVD is expected to reduce overestimation of the similarity
on some degenerate configurations for the layers.

The Mean CCA Similarity calculated when using SVCCA will be referred to
as Mean SVCCA Similarity.

PWCCA. In [23], it was argued that the Mean CCA Similarity may misrep-
resent the similarity between two layers, given the fact that all the correlation
coefficients in Eq. (3) are weighted equally. It was then proposed to weigh the
CCs according to the contribution of the corresponding canonical vectors in
determining the representation of the original layer.

We recall that L1 ∈ R
n×p1 and L2 ∈ R

n×p2 are the layers representation. We
call l

(1)
m ∈ R

n the m-th column vector of L1. It contains the activations of the
m-th neuron to all the n data points. We suppose, without loss of generality, that
p1 ≤ p2, so that p̃ = min(p1, p2) = p1. The canonical vectors of L1, z

(1)
i ∈ R

n,
are the column vectors of Z1 = L1W1. Then, the contribution αi of z

(1)
i in

determining L1 is:

αi
.=

p1∑

j=1

|lTj z
(1)
i | (4)

where T denotes transposition. In case p2 < p1, Eq. (4) must be formulated using
the corresponding indices and vectors from L2 instead of L1.

Investigating Similarity Metrics 93

Plugging the contributions as weights of the mean in Eq. (3), we get the target
similarity metric, called PWCCA (Projection Weighted Canonical Correlation
Analysis):

PWCCA(L1, L2)
.=

∑p̃
i=1 αiρi

∑p̃
i=1 αi

(5)

Handling of Layers with Convolutional Structure. When comparing lay-
ers with convolutional structure, whose representation is a 4D tensor, the tensors
are reshaped as in [28]. Precisely, given L1 ∈ R

n× c×h×w, the spatial dimen-
sions h and w are merged into the first dimension (the one concerning the data
points), thus yielding a matrix L̃1 ∈ R

nhw × c. The reason for this reshaping is
that, as noted in [28], the degrees of freedom of neurons in layers with convo-
lutional structures are limited, due to the spatial structure of the filters, to the
channel only. Incidentally, the reshaping tackles the issue raised in [20] that,
when the number of data points is smaller than the number of neurons, CCA-
based similarity metrics produce inappropriate results. Indeed, usually, despite
n < chw, it also happens that nhw > c: thus, in such case, the reshaping pro-
duces representations where the number of data points is larger than the number
of neurons.

This procedure has a major limitation concerning the comparison between
layers having different spatial dimensions. Let’s suppose that the two layers
have spatial dimensions h × w and h′ × w′ respectively (with c and c′ channels
respectively), the corresponding representations, reshaped as above, have size
nhw× c and nh′w′ × c′. Since a requirement for CCA is that the number of rows
must be the same between the two representations (i.e., the number of data
points in the representations of the two layer must be the same), it follows that
the metrics based on CCA cannot be obtained in this case. Similarly, it is also
impossible to compare, e.g., a convolutional layer with a fully-connected layer.

Though, to our knowledge, the existing literature has not proposed solutions
to this problem, the authors of [28] and [23] have rendered their code and con-
sequent considerations public in [14], while proposing two techniques to enable
the comparison: (a) interpolation, to upsample the smaller image such that it
matches the larger image spatial dimensions, and (b) average pooling along the
spatial dimensions, to average out the two spatial dimensions and obtain a matrix
of shape n × c. We remark that we will not be needing these metrics, since we
will always be comparing convolutional and max-pooling layers having the same
number of data points and the same spatial dimensions.

3.3 Kernel-Based Metrics

Metrics based on kernels are computed from the Gram matrices obtained from
the representations of the layers. In a sense, these techniques consider an addi-
tional step from those based on CCA, viewing the representation of the layer
not as the activation matrix L, but as the Gram matrix obtained from applying
a kernel function κ to the rows of L itself.

94 A. Ansuini et al.

Centered Kernel Alignment (CKA). CKA [6,7] is a similarity metric for
kernels computed from representations obtained from the same number of data
points n. [20] makes the case for CKA as a similarity index particularly suit-
able for comparing DNNs layers representations. The authors cite the invariance
to orthogonal transformations and isotropic scalings of the space as desirable
properties enjoyed by CKA.

We consider once again our two layers representations L1 ∈ R
n×p1 and L2 ∈

R
n×p2 , with corresponding Gram matrices K1 ∈ R

n×n and K2 ∈ R
n×n, both

positive semi-definite and obtained out of universal kernel functions κ1 and κ2.
We constrain L1, L2 to be centered w.r.t. their column means2 or, alternatively,
their Gram matrices K1,K2 must be centered by subtracting both the column
and row means3.

CKA is calculated as:

CKA(K1,K2)
.=

〈K1,K2〉F
‖K1‖F ‖K2‖F (6)

where ‖K‖F=
√

tr(KKT) is the Frobenius norm, and 〈K1,K2〉F = tr(K1K
T
2)

is the Frobenius inner product.
CKA itself is a normalization4 of the Hilbert-Schmidt Independence Criterion

[15] to test the independence between sets of random variables.
In [20], it is argued that CKA is a metric which is fitter than CCA-based

similarities to compare DNN representations. Besides the aforementioned invari-
ances, the authors base this claim upon two experiments in which they record
much greater success by CKA in recognizing similarity patterns in architecturally
equivalent DNNs trained from different random initializations.

Normalized Bures Similarity (NBS). A more recent work [32], proposes, in
addition to CKA, the use of another metric based on Gram matrices, NBS [5].
Still, the requirement is that L1, L2, or K1,K2, must be centered as explained
for CKA.

It is calculated as:

NBS(K1,K2) =

√

tr(K1/2
1 K2K

1/2
1)√

tr K1 trK2

(7)

Also this quantity is comprised between 0 and 1. [32] refers to it as an alternative
to CKA, sharing all of its invariances. It is to be noted, though, that the authors
argue, on limited settings, that this metric may be inferior w.r.t. CKA.

Considerations on Kernels. Both CKA and NBS are, in their respective
works, calculated on Gram matrices obtained with linear kernels or variations
of them.
2 I.e., for each column, its mean across the instances must be 0.
3 I.e., for each row/column, its mean across the columns/rows must be 0.
4 Such that its value lies between 0 and 1.

Investigating Similarity Metrics 95

In [20], some experiments are conducted with Radial Basis Function kernels,
finding that results obtained with these kernels are similar with respect to lin-
ear kernels, preferring the latter due to their simplicity and absence of tunable
parameters. Taking this into account, we will also calculate CKA and NBS using
linear kernels only.

In [32], only a variation of a linear kernel is used. This kernel is modified in
order to incorporate the gradient of the DNN. They do so by calculating Gram
matrices on (a) the values of the parameters of the layer, (b) the values of the
gradient of the loss function w.r.t. the parameters of the layer, and combining the
two via the Hadamard product (matrix element-by-element product) obtaining
a new positive semidefinite Gram matrix. While we believe that this technique
may be well suited to compute similarities of DNNs in their training steps, we
think that gradients are not needed in order to compare feature maps of fully-
trained networks, although it may be interesting to incorporate this metric in
future analyses. We will hence conform to work with Gram matrices obtained
strictly on the parameter space.

4 Methods

In order to carry out our exploration, we operated following this scheme:

1. We trained a complete (unpruned) CNN on a given dataset and a given opti-
mizer until convergence.

2. We pruned it using IMP with LRR for 20 iterations with a pruning rate of
20%. This value is suggested as a default in [29]. The pruning was operated
for P runs, each time re-starting from the same complete CNN. We averaged
the similarities over these runs in order to get more robust results. After the
execution of IMP for 20 iterations, the pruned CNNs have a sparsity level of
around 98.5%5 (or, alternatively, around 1.5% of the parameters survive the
pruning operation).

3. We obtained the representations for the hidden layers of all the CNNs, both
unpruned and pruned.

4. We compared, using multiple similarity metrics, each layer of the pruned
CNNs with the corresponding layer of the complete CNN.

We repeated this process over different datasets and CNN architectures:

– CNN on the dataset CIFAR-10 [21]; architecture based on VGG16 [30].
– CNN on the dataset CIFAR-10; architecture based on ResNet [17].
– CNN on the dataset SVHN [25]; architecture based on VGG [30].

The details about the datasets, the CNN architectures, and the optimizers used
are presented in Sects. 4.1 and 4.2. The metrics employed in the comparison are
Mean SVCCA Similarity, PWCCA, CKA, and NBS.

5 The exact value depends on the presence of layers or parameters not affected by
pruning, such as batch normalization.

96 A. Ansuini et al.

4.1 Datasets

CIFAR-10. CIFAR-10 [21] is a dataset for image classification composed of
60000 color images having size 32×32 pixels. The images belong to 10 classes, of
which 6 are animals and the other 4 are means of transportation. The dataset,
which is available on https://www.cs.toronto.edu/∼kriz/cifar.html, is already
split into a training set composed of 50000 images and a test-set of 10000 images.

In our experiments, the dataset was augmented by applying random data
augmentation schemes (cropping, horizontal flipping, affine transformation, cut-
out).

SVHN. SVHN [25] is a dataset composed of 99289 color images of size 32 × 32
pixels, each exhibiting a caption of a house number extracted from the online
service Google Street View of Google Maps6. Each image is centered into a sin-
gle digit, which is the target of the classification. Hence, there are 10 classes
(digits from 0 to 9). Some images may exhibit more than one digit: in this case,
only the central digit must be considered and the other digits act as distractors.
The dataset, which is available on http://ufldl.stanford.edu/housenumbers/, is
already split into a training set of 73257 images and a test-set of 26032 images.
Moreover, an additional dataset of 531131 images may be used for training pur-
poses (e.g., as a validation dataset) although it is specified in the hosting site
that these examples are “somewhat less difficult”.

SVHN is currently available both as an image classification dataset and as
an object recognition dataset. In this second case, the images are larger than
32 × 32 and the target is to recognize all of the digits present inside the images.
In this work, we refer to SVHN solely as an image classification dataset.

4.2 CNN Architectures and Optimizers Used

VGG. [30] is a relatively simple family of CNN architectures characterized by a
cascade of convolutional blocks followed by fully-connected layers and the output
layer, having as many neurons as the number of classes. Each convolutional block
is composed of 2, 3, or 4 convolutional layers having the same number of filters
(usually doubling the number of filters of the convolutional layers of the previous
block), followed by a final max-pooling layer.

VGG16 for CIFAR-10. VGG16 is a specification of VGG with 5 convolutional
blocks.

The original implementation uses the ReLU activation function for all the
hidden layers and has 2 fully-connected hidden layers at the end; moreover, no
dropout [31] or batch normalization (BN) [19] are employed. Our implementation
differs from the original one, tracing the recent work on IMP (see [29]):

6 https://maps.google.com.

https://www.cs.toronto.edu/~kriz/cifar.html
http://ufldl.stanford.edu/housenumbers/
https://maps.google.com

Investigating Similarity Metrics 97

– we employ BN before the activation function in each convolutional layer;
– we drop the two fully-connected layers, thus rendering the CNN fully convo-

lutional [22]. After the last max-pooling layer, Global Average Pooling (GAP)
is applied to flatten the output of said layer and feed it to the output layer.

We will refer to this network architecture as VGG16 BN throughout this work:
a schematic representation of VGG16 BN is present in Fig. 1.

VGG16 BN was trained for 160 epochs on CIFAR-10 using the optimizer
Stochastic Gradient Descent with Momentum [27] (SGDM) and employing a
step decay LR annealing schedule. The hyperparameters are as of [29], with a
batch size of 128 since we trained the models on a single GPU.

6464 32

32

conv1

128 128 16

conv2

256 256 256 8

conv3

512 512 512 4

conv4

512 512 512 2

conv5

1 51
2

GAP

1

fc+softmax

10

Fig. 1. Graphical schematization of VGG16 BN. Yellow blocks represent convolu-
tional layers, red blocks represent max-pooling layers, and teal blocks represent fully-
connected layers. (Color figure online)

VGG for SVHN. In order to train a CNN on SVHN, we employed a custom VGG
composed of 4 blocks, each one having two convolutional layers, except for the
last one. In the first block each convolutional layer has 32 filters. The number of
filters double in each convolutional block, so that the convolutional layer in the
fourth block has 256 filters. After the last block, the output is pooled with GAP
and fed to the output layer, thus rendering also this CNN fully-convolutional.
In this work, we will refer to this architecture as VGG SVHN : a schematic
representation of VGG SVHN is shown in Fig. 2.

We trained the network for 15 epochs with a batch size of 50, we used the
optimizer SGDM with hyperparameters as for VGG16 BN, and a step decay LR
schedule, annealing by a factor of 10 at epochs 7 and 12.

98 A. Ansuini et al.

3232 32

32

conv1

6464 16

conv2

128 128 8

conv3

256 4

conv4

1 25
6

GAP

1

fc+softmax

10

Fig. 2. Graphical schematization of VGG16 SVHN. Yellow blocks represent con-
volutional layers, red blocks represent max-pooling layers, and teal blocks represent
fully-connected layers. (Color figure online)

ResNet. ResNet [17] is a family of CNN architectures based on a cascade
of convolutional layers and employing skip connections which bypass one or
more convolutional layers. Skip connections propagate the received information
content directly to the end of the skipped layers. The output of the skipped
layers is then summed to the content propagated by the skip connections: for this
reason, the skipped layers can be also considered as belonging to a residual block,
while the corresponding skip connection may also be called identity shortcut. The
skipped connections allow for the construction of very deep DNNs, tackling the
vanishing gradient problem.

We trained a variation of a ResNet on CIFAR-10. The architecture is
inspired by a publicly available GitHub implementation (https://github.com/
davidcpage/CIFAR-10-fast); a scheme is reported in Fig. 3.

The main difference between this architecture and the classic ResNet is that
the second convolutional block (conv2 in Fig. 3) has no subsequent residual block.
According to the author of this architecture, this allows for a better optimization
on CIFAR-10; generally, the convergence of this CNN is very fast and it allows
for a full training in less than 10 minutes on a single GPU. Due to this reason,
we will refer to this architecture as ResNet fast .

We trained this CNN for 24 epochs and batch size of 512 using SGDM with
LARS updates [36], as in the original implementation of this network.

https://github.com/davidcpage/CIFAR-10-fast
https://github.com/davidcpage/CIFAR-10-fast

Investigating Similarity Metrics 99

64 32

32

preparatory

128 32

conv1

128 128 16

residual1

+

256 16

conv2

512 8

conv3

512 512 4

residual2

+

1 51
2

GAP

1

fc+softmax

10

Fig. 3. Graphical schematization of ResNet fast. Yellow blocks represent convolu-
tional layers, red blocks represent max-pooling layers, and teal blocks represent fully-
connected layers. (Color figure online)

5 Results

5.1 Test-Set Accuracy

The performances in terms of test-set accuracy are shown in Fig. 4.
We can note how the two models based upon CIFAR-10 (VGG16 BN and

ResNet fast) behave similarly: the first iterations of IMP produce CNNs which
outperform the complete model; at around 10% of parameters remaining, the
accuracy spikes, then it slowly decreases, while remaining comparable w.r.t. the
unpruned counterpart. This behaviour is expected from a DNN pruned with
IMP, and has been known since [12].

Focusing instead on the CNN trained on SVHN (VGG SVHN), we note a dif-
ferent behaviour: somewhat unexpectedly, the test-set accuracy of all the pruned
networks tends to decrease as IMP is performed. This may be an indication that
the unpruned structure of the network (VGG SVHN) is adequate w.r.t. the
difficulty of the problem (SVHN) and pruning even a small percentage of the
connections is detrimental to its generalization capability. It may also be that the
hyperparameters of the optimizer are adequate to train the complete network
only, and may be hence tuned during the following IMP iterations to improve
accuracy. We are not going to delve into this analysis as we believe it is not
relevant to the foundations of this work. Anyway, this trend in test-set accuracy
on SVHN was noticed also in other works, such as [34], albeit on different CNN
architecture.

5.2 Layer-Wise Pruned vs. Unpruned Similarity

As stated in Sect. 4, we compared the layers of the pruned CNNs with their
unpruned counterparts. Specifically, the comparison was operated on represen-
tations of:

100 A. Ansuini et al.

0.92

0.93

0.94

0.95

0.96

1.00 0.50 0.25 0.15 0.10 0.05 0.03 0.02 0.01

VGG16_BN

0.92

0.93

0.94

0.95

0.96

1.00 0.50 0.25 0.15 0.10 0.05 0.03 0.02 0.01

VGG_SVHN

0.92

0.93

0.94

0.95

0.96

1.00 0.50 0.25 0.15 0.10 0.05 0.03 0.02 0.01

ResNet_fast

Proportion of Parameters Remaining

Te
st

−s
et

 A
cc

ur
ac

y

Fig. 4. Test-set accuracy averaged over multiple runs for our three models. Error bands
correspond to 2 standard deviations. The dotted lines represent the reference accuracy
of the complete model (corresponding to proportion of parameters equals to 1.00). The
x-axis is in logarithmic scale.

– convolutional layers (in short, conv ; conv res if the layer is part of a resid-
ual block of a ResNet), after the application of BN and activation function
(ReLU);

– max-pooling layers (in short, pool);
– for ResNet only, addition nodes (in short, add), i.e., the nodes where the

residuals are summed to the output of the skipped connections;
– output layers (in short, out), before the application of the activation function

(softmax).

VGG16 BN. The values of the metrics for VGG16 BN are shown in Fig. 5.
We can make the following observations.

Mean SVCCA Similarity and PWCCA show a very specific “U” shape which
we also noted in [3]7 with simpler CNN architectures, while the problem was still
CIFAR-10. The curves still bottom out around the third convolutional block,

7 In that work, we employed Mean SVCCA Similarity only, but the shape produced
by PWCCA is very similar.

Investigating Similarity Metrics 101

with a minimum slightly greater than 0.3. In addition to that, we can tell that
the similarities decrease as the IMP iteration is increased, a phenomenon which
become slightly less obvious as we near the output layer. Finally, in all iterations,
the representations of the output layer have a similarity larger than 0.9.

CKA tells a different story: overall, the similarity is still high for all lay-
ers; while in SVCCA and PWCCA we had a similarity index ranging from 0.3
to around 0.95, in CKA we never record a value lower than 0.75. Moreover,
the general trend we can observe is that the similarity seems to decrease as
we progress from the first layers toward the output layer. Within the first two
convolutional blocks, the similarity is rather packed between different iterations,
with slightly smaller values as the IMP iteration is increased; after that, the
values fan out, and the CNNs with higher sparsity exhibit a smaller similarity
w.r.t. the unpruned counterparts. It is also of interest to note that the output
layers seem to be not as similar as indicated in SVCCA/PWCCA; moreover,
the values seem to be largely more scattered, ranging from around 0.77 to 0.95.
Furthermore, starting with the 8-th IMP iteration (around 16% of parameters
remaining in the model), they stack together CKA-wise, exhibiting a similarity
of around 79%.

The values produced by NBS seem to blend characteristics of both CKA
and SVCCA/PWCCA: the values range from 0.7 to 1.0, similarly to what we
observed in CKA, and there is a “fan-out” effect at the third convolutional block,
akin to CKA. On the other hand, we may notice that there does not seem to be
the overall decreasing trend produced by CKA; instead, there is a clear bottom,
identifiable between the 3-rd pooling layer and the subsequent convolutional lay-
ers, after which the similarities increase once again. This parallels what happens
with SVCCA and PWCCA, although, in that case, the similarities were much
lower, closer to 0.35, while with NBS they rest between 0.7 and 0.85. Finally the
output layers exhibit a higher NBS than they do with CKA; on the other hand,
there still seems to be a convergence at around 0.9 for the sparser CNNs.

VGG SVHN. Figure 6 shows the results for VGG SVHN. W.r.t. VGG16 BN,
we see more consistency between the four metrics.

Mean SVCCA Similarity and PWCCA do not exhibit a minimum with a
clear subsequent recovery; instead, in both cases there seems to be two bottoms
in the 3-rd and the 4-th convolutional blocks, after which the similarity spikes
at the output; despite this spike, there seems not to be a recovery in the sim-
ilarity corresponding to subsequent hidden layers, as instead we noticed with
VGG16 BN.

CKA shows a similar landscape w.r.t. VGG16 BN, with an overall decreasing
trend leading to the output layer; moreover, there is a noticeable bowl for the last
3 or 4 iterations of IMP in correspondence with the 3-rd pooling layer. Again,
we can note somewhat of a large range of values at the output layer, with CKA
values ranging from 0.78 to 0.95.

102 A. Ansuini et al.

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

co
nv

co
nvpo

ol
co

nv
co

nvpo
ol
co

nv
co

nv
co

nvpo
ol
co

nv
co

nv
co

nvpo
ol
co

nv
co

nv
co

nvpo
ol ou

t

layer

M
ea

n
SV

C
C

A
Si

m
ila

rit
y

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

co
nv

co
nvpo

ol
co

nv
co

nvpo
ol
co

nv
co

nv
co

nvpo
ol
co

nv
co

nv
co

nvpo
ol
co

nv
co

nv
co

nvpo
ol ou

t

layer
PW

C
C

A

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

co
nv

co
nvpo

ol
co

nv
co

nvpo
ol
co

nv
co

nv
co

nvpo
ol
co

nv
co

nv
co

nvpo
ol
co

nv
co

nv
co

nvpo
ol ou

t

layer

C
KA

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

co
nv

co
nvpo

ol
co

nv
co

nvpo
ol
co

nv
co

nv
co

nvpo
ol
co

nv
co

nv
co

nvpo
ol
co

nv
co

nv
co

nvpo
ol ou

t

layer

N
BS

5 10 15 20
IMP iteration

Fig. 5. Average layer-wise similarity between layers of pruned VGG16 BN vs.
unpruned counterpart for various metrics (indicated on the y-axis). The values are
averages over 20 runs of IMP. Error bands omitted for chart readability. Line color
(light to dark) identifies the iteration of IMP.

Finally, the figure traced by NBS is very similar to CKA, barring the “bowl”
at the 3-rd convolutional block we saw in CKA: hence we might say that NBS
seems a more regular CKA counterpart.

5.3 ResNet fast

The similarity values for ResNet fast are shown in n Fig. 7.
CKA and PWCCA show a trend which, at first sight, may recall the one

saw in VGG16 BN. It must be noted, though, that, excluding the output layer,

Investigating Similarity Metrics 103

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

co
nv

co
nv po

ol
co

nv
co

nv po
ol

co
nv

co
nv po

ol
co

nv po
ol ou

t

layer

M
ea

n
SV

C
C

A
Si

m
ila

rit
y

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

co
nv

co
nv po

ol
co

nv
co

nv po
ol

co
nv

co
nv po

ol
co

nv po
ol ou

t

layer

PW
C

C
A

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

co
nv

co
nv po

ol
co

nv
co

nv po
ol

co
nv

co
nv po

ol
co

nv po
ol ou

t

layer

C
KA

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

co
nv

co
nv po

ol
co

nv
co

nv po
ol

co
nv

co
nv po

ol
co

nv po
ol ou

t

layer

N
BS

5 10 15 20
IMP iteration

Fig. 6. Average layer-wise similarity between layers of pruned VGG SVHN vs.
unpruned counterpart for various metrics (indicated on the y-axis). The values are
averages over 5 runs of IMP. Error bands omitted for chart readability. Line color
(light to dark) identifies the iteration of IMP.

the recovery in similarity is very weak after the minimum found at the third
convolutional layer. Moreover, the similarity is slightly higher w.r.t. VGG16 BN:
for VGG16 BN, the bottom reached as low as 0.35 for SVCCA and 0.32 for
PWCCA, while for ResNet fast the values are always above 0.40, and even above
0.45 for PWCCA. In addition to this, there seems to be a clear convergence of
the similarity values as the IMP iteration (and, hence, the sparsity of the CNN)
increases, a phenomenon that did not seem as evident in the other two networks.

104 A. Ansuini et al.

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

co
nv

co
nv po

ol

co
nv

_re
s

co
nv

_re
s

ad
d

co
nv po

ol
co

nv po
ol

co
nv

_re
s

co
nv

_re
s

ad
d ou

t

layer

M
ea

n
SV

C
C

A
Si

m
ila

rit
y

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

co
nv

co
nv po

ol

co
nv

_re
s

co
nv

_re
s

ad
d

co
nv po

ol
co

nv po
ol

co
nv

_re
s

co
nv

_re
s

ad
d ou

t

layer
PW

C
C

A

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

co
nv

co
nv po

ol

co
nv

_re
s

co
nv

_re
s

ad
d

co
nv po

ol
co

nv po
ol

co
nv

_re
s

co
nv

_re
s

ad
d ou

t

layer

C
KA

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

co
nv

co
nv po

ol

co
nv

_re
s

co
nv

_re
s

ad
d

co
nv po

ol
co

nv po
ol

co
nv

_re
s

co
nv

_re
s

ad
d ou

t

layer

N
BS

5 10 15 20
IMP iteration

Fig. 7. Average layer-wise similarity between layers of pruned ResNet fast vs.
unpruned counterpart for various metrics (indicated on the y-axis). The values are
averages over 5 runs of IMP. Error bands omitted for chart readability. Line color
(light to dark) identifies the iteration of IMP.

For CKA and NBS, again the similarity values are all very high, with CKA
hardly touching the 0.90 mark, while NBS reaches as low as 0.82. Generally,
CKA seems to exhibit no trend at all, with values remaining about constant.
NBS, on the other hand, shows a more distinct trend, with a minimum located
at the second residual block, with a slight recovery as we head toward the output
layer.

Investigating Similarity Metrics 105

6 Discussion

6.1 Takeaways from Results

The results presented in Sect. 5.2 show that the four similarity metrics we used to
compare representations in CNNs lead to different outcomes. While CCA-based
metrics reveal a “U”-shaped trend, CKA gives constant or slightly decreasing
similarities; finally, NBS outputs a “U”-shaped similarity profile with some pecu-
liar traits: (a) the minimum is reached 2–3 layers “later” w.r.t CCA-based met-
rics and (b) the similarity is much higher w.r.t. SVCCA or PWCCA.

In [3] we conjectured that the trend observed with Mean SVCCA Similarity
could be a consequence of the Intrinsic Dimensionality (ID) of representations
[2]: since in intermediate layers the ID is typically at its highest (often much
higher than the ID of the input), there might be the possibility that in inter-
mediate layers there is more variability and therefore more opportunities for
dissimilarities that could be captured by such measures.

In the light of these new results, however, this conjecture seems problematic
since (a) CKA suggests a very different picture than SVCCA or PWCCA, and
(b) NBS, despite in qualitative agreement with SVCCA and PWCCA, places
the minimum further in the progression of the layers, where the ID is typically
far from its maximum [2].

In [20,32] it is argued that CKA is to be preferred to other CCA-based mea-
sures, since the latter pose too stringent requirements (invariance to invertible
linear transformations) that can lead to paradoxical results.

The similarity results obtained with CKA seem to suggest the following:

a) representations in pruned and unpruned networks are remarkably similar;
b) there is a weak but progressive decrease of similarity (i) as we increase the

sparsity in the CNN, and (ii) as we transverse the network in the forward
direction; however, this trend seems not to be very pronounced, and there
are typically plateaus in the CKA similarity.

We did not compare explicitly the features learnt by the CNNs, although an
analysis may be possible considering, for instance (i) parameters-based similarity
measures instead of representation-based, or (ii) quantitative metrics comparing
features learnt by the DNNs, like Net2Vec [10].

6.2 Comparing Output Layers

Conversely to hidden layers, it could be argued that a similarity metric to com-
pare output layers does not need invariances to orthogonal transformation, since
the role of the neurons within the output layers are fixed: in a DNN for classifica-
tion, neuron i of the output layer is proportional to the probability of assignment
of a given data point to the i-th class.

The four metrics we used up to now have all been indicated as fit to compare
DNNs for a given amount of reasons: invariances to specified transformations,

106 A. Ansuini et al.

measuring statistical correlations between random variables in different dimen-
sions, etc. As an addition to our analysis, we experiment with comparing the
output layers with a slight variation of a classical similarity metric for vectors:
the cosine similarity. Given vectors a, b ∈ R

p, the cosine similarity is defined as

csim(a, b) =
aT b

‖a‖2‖b‖2 (8)

This similarity metric is used to compare generic vectors belonging to the same
space. An output layer of c neurons, though, is represented a generic matrix
A ∈ R

n×c where n is the number of data points employed to obtain the
representation. In order to enable the comparison between two output layers
A,B via cosine similarity, we simply consider the vectorized representations
vec(A) = [A11, . . . , A1c, . . . , An1, . . . , Anc] and feed it into Eq. 8. Finally, since
csim(·, ·) ∈ [−1, 1], in order to normalize its support w.r.t. the other four metrics
used, we consider its magnitude:

|csim(vec(A), vec(B))| ∈ [0, 1]

This adjustment reflects already what happens, for instance, in CKA, which, to
put it simply, measures the (in)dependence between two sets of variables [20],
but does not distinguish whether the possible dependence is positive or negative,
being comprised between 0 and 1.

Settings and Results. We evaluated the network VGG16 BN with the same
subset of CIFAR-10 of 5000 data points (see Sect. 4), keeping only the repre-
sentations of the output layer. The evaluation was repeated for the complete
network and all of the pruned networks (20 runs × 20 IMP iterations).

The results of this similarity compared with the previous four are shown in
Fig. 8. We note that:

a) the vectorized cosine similarity does not exhibit the “stacking” effect we note
on the last iterations of IMP; conversely, the values seem rather well dis-
tributed along the range [0.80, 0.97];

b) unlike SVCCA, PWCCA, and NBS, which all record similarities above 0.9, the
cosine similarity starts high at the first iterations, before sinking to around
0.8. Under this facet, it seems more akin to CKA, even if the distribution
w.r.t. the iteration of IMP is different. Note also that the cosine similarity and
CKA are somewhat related as CKA is based upon the Hilbert-Schmidt Inde-
pendence Criterion, which is itself based upon the cosine similarity between
features of a representation [20].

The fact that we notice some differences between output layers may indicate how,
despite producing DNNs with comparable test-set accuracy, the probabilities of
assignment of the 5000 data points to the various classes in the pruned models
may disagree w.r.t. the unpruned model. This may be attributable, for example,
to a difference in calibrations, as noted in [34].

Investigating Similarity Metrics 107

0.75

0.80

0.85

0.90

0.95

1.00

Mean SVCCA PWCCA NBS CKA vec. cosine
Metric

Si
m

ila
rit

y

5

10

15

20
IMP iteration

Fig. 8. Average similarity of pruned output layers w.r.t. the unpruned counterparts
for the network VGG16 BN, for various iterations of IMP and different similarity
metrics. Values are averaged over 20 different runs of IMP starting from the same
complete network.

6.3 Considerations on the Rotational Invariance of Similarity
Metrics for Convolutional Layers

To wrap up the discussions, we believe it is of interest to make a brief digression
whether the rotational invariance is really a desirable property that a generic
similarity metric must possess. It is undeniable that this property be enjoyed for
comparing, for instance, fully-connected layers: if a network is composed only
of such layers, it may be possible to carefully permute all of the neurons in its
hidden layers to obtain a new DNN producing the exact same output; in this
case, we wish that a similarity metric indicates that the layers of the old and
the new network are pairwise identical.

This, instead, is not the case for CNNs, because the parameters of convolu-
tional layers possess a spatial constraint w.r.t. the image they see: neurons inside
a channel of a convolutional layer recognize specific features that they would not
be able to distinguish as accurately if “moved around” in other positions within
the same channel. The same does not hold, instead, when we consider full chan-
nels: a careful permutation of the channels in a CNN, along with the neurons
in the possible fully-connected layers, can result in a CNN producing the same
output.

Hence, we argue that, for the case of convolutional layers (and pooling layers
as well, as they share the same spatial structure), a similarity metric should enjoy
a rotational invariance only at the level of channels of convolutional layers. In
Sect. 3.2, when talking about the handling of convolutional layers by SVCCA
and PWCCA, we reported that, to compute similarities for convolutional layers,
these two metrics require a preprocessing step for the layers such that the spatial
dimensions are merged into the data points dimension, leaving as proper neurons
in the representation the sole dimension regarding channels. This strategy may

108 A. Ansuini et al.

also be, in principle, applicable to CKA and NBS and may be analyzed in a
future work.

7 Conclusions and Future Work

In this work, we compared representations in pruned and unpruned networks,
trained for Computer Vision task, extending in several directions the range of
our earlier work [3], by considering a wider spectrum of similarity measures, new
models and datasets.

Specifically, we analyzed layer-wise representation similarities across several
CNN architectures trained on CIFAR-10 and SVHN. We considered a repre-
sentative set of available similarity measures, namely: Mean SVCCA Similarity,
PWCCA, CKA, and NBS. These metrics produce, in our settings, contrasting
results which do not allow to draw univocal conclusions on the impact of pruning
on representations.

While SVCCA and PWCCA yield similar results, suggesting that in pruned
network intermediate layers create very dissimilar representations with respect
to the complete network (see Figs. 5 to 7, panels on the first row), CKA shows
a weak, almost monotonic decrease across the network (see Figs. 5 to 7, left
panel on the second row). NBS, which in principle is similar to CKA, and shares
its desirable invariances, is in qualitative agreement with the trends exhibited
by SVCCA and PWCCA, on a much smaller scale. All the similarity measures
we investigated are in agreement in indicating a progressive departure—as more
and more connections are removed during the iterations of IMP—from the orig-
inal representations. In the case of CKA anyway, this departure is contained
(similarity never falling below 0.75 in all our experiments).

We proposed two observations on the rotational-invariance of metrics for
comparing output layers and convolutional layers, respectively, hinting at direc-
tions for future works (see Sect. 6.3). Very recently, a modification of existing
similarity measures was proposed, integrating the information coming from the
gradient [32].

We identified several directions for further research on comparing represen-
tations in pruned and unpruned networks:

– exploration of new similarity measures that integrate CKA with the informa-
tion coming from gradients [32];

– modifications of existing metrics, e.g., enforcing channels-only rotational-
invariance in convolutional layers;

– extensions to large-scale datasets, like ImageNet [9];
– exploration of other pruning strategies, like structured pruning or Accelerated

IMP [39], to examine how representations obtained in this way differ w.r.t.
IMP with WR.

A detailed understanding of representations in pruned networks is of primary
importance for theoretical and practical reasons. We hope that this exploratory,
empirical work will inspire new theoretical investigations on the nature of these

Investigating Similarity Metrics 109

representations, enabling a deeper understanding of the inner workings of deep
neural networks, and enhancing the security of their applications.

References

1. Allen-Zhu, Z., Li, Y., Liang, Y.: Learning and generalization in overparameterized
neural networks, going beyond two layers. In: Advances in Neural Information
Processing Systems, pp. 6155–6166 (2019)

2. Ansuini, A., Laio, A., Macke, J.H., Zoccolan, D.: Intrinsic dimension of data rep-
resentations in deep neural networks. In: NIPS 2019 (2019)

3. Ansuini, A., Medvet, E., Pellegrino, F.A., Zullich, M.: On the similarity between
hidden layers of pruned and unpruned convolutional neural networks. In: De Mar-
sico, M., Sanniti di Baja, G., Fred, A. (eds.) Proceedings of the 9th International
Conference on Pattern Recognition Applications and Methods (ICPRAM 2020),
pp. 52–59. Scitepress, La Valletta, February 2020

4. Anwar, S., Hwang, K., Sung, W.: Structured pruning of deep convolutional neural
networks. ACM J. Emerg. Technol. Comput. Syst. (JETC) 13(3), 1–18 (2017)

5. Bures, D.: An extension of Kakutani’s theorem on infinite product measures to
the tensor product of semifinite w*-algebras. Trans. Am. Math. Soc. 135, 199–212
(1969)

6. Cortes, C., Mohri, M., Rostamizadeh, A.: Algorithms for learning kernels based on
centered alignment. J. Mach. Learn. Res. 13, 795–828 (2012)

7. Cristianini, N., Shawe-Taylor, J., Elisseeff, A., Kandola, J.S.: On kernel-target
alignment. In: Advances in Neural Information Processing Systems, pp. 367–373
(2002)

8. Crowley, E.J., Turner, J., Storkey, A., O’Boyle, M.: Pruning neural networks: is it
time to nip it in the bud? arXiv preprint arXiv:1810.04622 (2018)

9. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale
hierarchical image database. In: CVPR 2009 (2009)

10. Fong, R., Vedaldi, A.: Net2vec: quantifying and explaining how concepts are
encoded by filters in deep neural networks. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 8730–8738 (2018)

11. Frankle, J., Bau, D.: Dissecting pruned neural networks. arXiv preprint
arXiv:1907.00262 (2019)

12. Frankle, J., Carbin, M.: The lottery ticket hypothesis: Finding sparse, trainable
neural networks. In: International Conference on Learning Representations (2019).
https://openreview.net/forum?id=rJl-b3RcF7

13. Frankle, J., Dziugaite, G.K., Roy, D.M., Carbin, M.: Stabilizing the lottery ticket
hypothesis. arXiv preprint arXiv:1903.01611 (2019)

14. Google: (sv)cca for representational insights in deep neural networks (2019).
https://github.com/google/svcca

15. Gretton, A., Bousquet, O., Smola, A., Schölkopf, B.: Measuring statistical depen-
dence with Hilbert-Schmidt norms. In: Jain, S., Simon, H.U., Tomita, E. (eds.) ALT
2005. LNCS (LNAI), vol. 3734, pp. 63–77. Springer, Heidelberg (2005). https://
doi.org/10.1007/11564089 7

16. Han, S., Pool, J., Tran, J., Dally, W.: Learning both weights and connections for
efficient neural network. In: Cortes, C., Lawrence, N.D., Lee, D.D., Sugiyama, M.,
Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 28,
pp. 1135–1143. Curran Associates, Inc. (2015)

http://arxiv.org/abs/1810.04622
http://arxiv.org/abs/1907.00262
https://openreview.net/forum?id=rJl-b3RcF7
http://arxiv.org/abs/1903.01611
https://github.com/google/svcca
https://doi.org/10.1007/11564089_7
https://doi.org/10.1007/11564089_7

110 A. Ansuini et al.

17. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 770–778 (2016)

18. Hotelling, H.: Relations between two sets of variates. Biometrika 28(3–4), 321–377
(1936). https://doi.org/10.1093/biomet/28.3-4.321

19. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network train-
ing by reducing internal covariate shift. In: ICML, pp. 448–456 (2015). http://
proceedings.mlr.press/v37/ioffe15.html

20. Kornblith, S., Norouzi, M., Lee, H., Hinton, G.: Similarity of neural network rep-
resentations revisited. In: Chaudhuri, K., Salakhutdinov, R. (eds.) Proceedings of
the 36th International Conference on Machine Learning. Proceedings of Machine
Learning Research, vol. 97, pp. 3519–3529. PMLR, Long Beach, California, USA,
09–15 June 2019. http://proceedings.mlr.press/v97/kornblith19a.html

21. Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny
images (2009)

22. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic
segmentation. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 3431–3440 (2015)

23. Morcos, A., Raghu, M., Bengio, S.: Insights on representational similarity in neural
networks with canonical correlation. In: Bengio, S., Wallach, H., Larochelle, H.,
Grauman, K., Cesa-Bianchi, N., Garnett, R. (eds.) Advances in Neural Information
Processing Systems, vol. 31, pp. 5732–5741. Curran Associates, Inc. (2018)

24. Morcos, A., Yu, H., Paganini, M., Tian, Y.: One ticket to win them all: gener-
alizing lottery ticket initializations across datasets and optimizers. In: Wallach,
H., Larochelle, H., Beygelzimer, A., d’Alché Buc, F., Fox, E., Garnett, R. (eds.)
Advances in Neural Information Processing Systems, vol. 32, pp. 4932–4942. Cur-
ran Associates, Inc. (2019)

25. Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., Ng, A.Y.: Reading digits
in natural images with unsupervised feature learning (2011)

26. Paganini, M., Forde, J.: On iterative neural network pruning, reinitialization, and
the similarity of masks. arXiv preprint arXiv:2001.05050 (2020)

27. Qian, N.: On the momentum term in gradient descent learning algorithms. Neural
Netw. 12(1), 145–151 (1999)

28. Raghu, M., Gilmer, J., Yosinski, J., Sohl-Dickstein, J.: SVCCA: singular vector
canonical correlation analysis for deep learning dynamics and interpretability. In:
Guyon, I., et al. (eds.) Advances in Neural Information Processing Systems, vol.
30, pp. 6076–6085. Curran Associates, Inc. (2017)

29. Renda, A., Frankle, J., Carbin, M.: Comparing fine-tuning and rewinding in neural
network pruning. In: International Conference on Learning Representations (2020)

30. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556, September 2014

31. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.:
Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn.
Res. 15(1), 1929–1958 (2014)

32. Tang, S., Maddox, W.J., Dickens, C., Diethe, T., Damianou, A.: Similarity of neural
networks with gradients. arXiv preprint arXiv:2003.11498 (2020)

33. Uurtio, V., Monteiro, J.M., Kandola, J., Shawe-Taylor, J., Fernandez-Reyes, D.,
Rousu, J.: A tutorial on canonical correlation methods. ACM Comput. Surv. 50(6)
(2017). DOIurl10.1145/3136624

https://doi.org/10.1093/biomet/28.3-4.321
http://proceedings.mlr.press/v37/ioffe15.html
http://proceedings.mlr.press/v37/ioffe15.html
http://proceedings.mlr.press/v97/kornblith19a.html
http://arxiv.org/abs/2001.05050
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/2003.11498

Investigating Similarity Metrics 111

34. Venkatesh, B., Thiagarajan, J.J., Thopalli, K., Sattigeri, P.: Calibrate and prune:
improving reliability of lottery tickets through prediction calibration. arXiv
preprint arXiv:2002.03875 (2020)

35. Ye, S., et al.: Adversarial robustness vs. model compression, or both. In: The IEEE
International Conference on Computer Vision (ICCV), vol. 2 (2019)

36. You, Y., Gitman, I., Ginsburg, B.: Large batch training of convolutional networks.
arXiv preprint arXiv:1708.03888 (2017)

37. Zhang, C., Bengio, S., Hardt, M., Recht, B., Vinyals, O.: Understanding deep
learning requires rethinking generalization. arXiv preprint arXiv:1611.03530 (2016)

38. Zhou, H., Lan, J., Liu, R., Yosinski, J.: Deconstructing lottery tickets: zeros, signs,
and the supermask. In: Advances in Neural Information Processing Systems, pp.
3597–3607 (2019)

39. Zullich, M., Medvet, E., Pellegrino, F.A., Ansuini, A.: Speeding-up pruning for
artificial neural networks: introducing accelerated iterative magnitude pruning. In:
Proceedings of the 25th International Conference on Pattern Recognition (2021)

http://arxiv.org/abs/2002.03875
http://arxiv.org/abs/1708.03888
http://arxiv.org/abs/1611.03530

Encoding of Indefinite Proximity Data: A
Structure Preserving Perspective

Maximilian Münch1,2(B), Christoph Raab1,3, and Frank-Michael Schleif1

1 Department of Computer Science, University of Applied Sciences Würzburg-Schweinfurt,
97074 Würzburg, Germany

{maximilian.muench,christoph.raab,frank-michael.schleif}@fhws.de
2 Bernoulli Institute for Mathematics, C. & S. and AI, University of Groningen, P.O. Box 407,

9700 AK Groningen, The Netherlands
3 Bielefeld University, CITEC, 33619 Bielefeld, Germany

Abstract. Over the last two decades, kernel learning attracted enormous interest
and led to the development of a variety of successful machine learning models.
The selection of an efficient data representation is one of the critical aspects to
get high-quality results. In a variety of domains, this is achieved by incorporating
expert knowledge in the used domain-specific similarity measure. The majority of
machine learning models require the similarity measure to obey some mathemat-
ical constraints. In particular to be a valid Mercer kernel, the similarity function
that is used as a kernel function, has to be symmetric and positive semi-definite.
Domain-specific similarity functions can be made available to kernel machines by
additional operations from the field of indefinite learning. Approaches used today
are often inefficient and harmful to the domain encoded knowledge. In this paper,
we analyze multiple approaches in indefinite learning and suggest a novel, effi-
cient preprocessing operation which widely preserves the domain-specific infor-
mation, while still providing a Mercer kernel function. In particular, we address
practical aspects like out of sample extension and an effective implementation of
the approach. This is accompanied by extensive experimental results on various
typical data sets with superior results in the field.

Keywords: Non-metric · Proximity learning · Similarity · Indefinite · von
Mises iteration · Eigenvalue correction · Shifting · Flipping · Clipping

1 Introduction

In various natural and social sciences, large data sets have an intrinsic complex structure.
Examples are sequential data like protein- or genome-sequences, graph structures, time
series or text corpora. These so-called structured data are compositional and it is very
challenging to represent the respective samples by a fixed-length vector encoding [42].

Therefore, another representation by means of domain-specific pairwise proximi-
ties is frequently employed. The proximities can either be measured by similarities,
most related to kernel functions, or by dissimilarities, related to distance functions. In
this context, similarities describe how close or similar two data points and dissimilarity

c© Springer Nature Switzerland AG 2020
M. De Marsico et al. (Eds.): ICPRAM 2020, LNCS 12594, pp. 112–137, 2020.
https://doi.org/10.1007/978-3-030-66125-0_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-66125-0_7&domain=pdf
https://doi.org/10.1007/978-3-030-66125-0_7

Encoding of Indefinite Proximity Data 113

measures indicate how different two elements are to each other. Note that an associ-
ated similarity measure can always be derived for a given symmetric dissimilarity, as
shown later on. Depending on the type and the mathematical properties of the proximity
function, either distance-based models like the classic k-nearest neighbor algorithm or
similarity-based models like kernel machines are used. The most popular model using
similarities by means of metric inner products is the support vector machine [53].

Due to the compositional nature of the data, classical similarity measures like the
Euclidean inner product or dissimilarity measures like the Euclidean distance, are not
applicable, in general. The more generic proximity measures are effective from the
domain perspective but violate mathematical requirements given classical machine
learning algorithms [41]. Also an embedding into a vector space is challenging and
often suboptimal [41]. The field of indefinite learning provides concepts to enable the
use of classical learning machines for these more generic types of proximities [51].

Today, such similarity or distance measures are quite common in various disci-
plines: for example in bioinformatics, various alignment functions such as the Smith-
Waterman algorithm [20] or Dynamic Time Warping [47] are used for sequential data.

Also in the area of object computer vision, various proximity measures, such as
the tangent distance [48], shape matching distance or pyramid match kernel are used.
Furthermore, such measures find application in medicine, economics, psychology, and
many other disciplines. A list of measures and domains is given in Table 1. One of the
main reasons for the creation of such a variety of new proximity measures is their degree
of accuracy: domain-specific measures or functions allow a more accurate representa-
tion of the relationships among data points than standard measures such as Euclidean
distance [13,42]. In the creation of the data representation, substantial domain expertise
has often been incorporated directly, such that the expected discriminating properties of
the objects are directly considered and are already essential part of the proximity rela-
tionship.

Table 1. List of commonly used non-metric proximity measures in various domains.

Measure Application field

Dynamic time warping (DTW) [47] Time series or spectral alignment

Inner distance [31] Shape retrieval e.g. in robotics

Compression distance [10] Generic used also for text analysis

Smith Waterman alignment [20] Bioinformatics

Divergence measures [9] Spectroscopy and audio processing

Generalized Lp norm [30] Time series analysis

Non-metric modified Hausdorff [11] Template matching

(Domain-specific) alignment score [35] Mass spectrometry

However, domain-specific proximity measures do not fulfill desirable mathemat-
ical properties. In particular, the (associated) similarity measure is often not positive

114 M. Münch et al.

(semi-) definite (non-psd), implying that the measure cannot be directly used in clas-
sical kernel approaches. For dissimilarity based approaches, metric properties are also
often required [41]. These so-called indefinite matrices pose a severe problem for many
machine learning algorithms since they violate common mathematical assumptions of
the optimization procedures used to fit the model or in the structure of the algorithm
itself. For example, the very effective support vector machine can only be used to a
limited extent, since the convexity of the optimization can no longer be guaranteed
[33]. In case of a psd input matrix, the underlying convex optimization can be solved by
standard numerical solvers, approaching the global optimum [44]. However, if the input
matrix is indefinite, there might be no global minimum or either only a local optimum is
found or the solver does not converge at all [33]. Employing a non-psd measure in SVM
is, therefore, a heuristic approach without any guarantees, which becomes prohibitive
in practical applications.

Consequently, strategies and techniques that can handle non-metric proximity mea-
sures are desirable. For this purpose, a considerable variety of approaches that can pro-
cess indefinite data has been published - see [33,51] for an extended discussion. How-
ever, some of these approaches modify the structure of the data significantly, resulting
in the partial destruction of the data’s natural properties.

In this contribution, we discuss and detail a recently published approach by [37],
referred to as advanced shift, that transforms indefinite data into psd while preserving
large parts of the data’s topology. In Sect. 2, we provide relevant notation, review the
most prominent indefinite learning strategies and discuss their advantages and disadvan-
tages. Subsequently, we provide an in-depth analysis of the novel advanced shift app-
roach for non-metric proximity data and show further practical findings and additional
in-depth experiments. We conclude by a detailed discussion and provide an outlook to
further research in this area.

2 Non-metric Proximity-Based Learning

In this section, we provide a brief overview of the concepts of learning with non-metric
proximity data and potential ways to deal with indefinite data. Additionally, we also
point out considerable limitations of the previously proposed methods.

2.1 Notation and Basic Concepts

Kernels and Kernel Functions. Let X be a collection of N objects xi, i = 1,2, ...,N,
in some input space. Further, let φ : X �→H be a mapping of patterns from X to a high-
dimensional or infinite-dimensional Hilbert space H equipped with the inner product
〈·, ·〉H . The transformation φ is, in general, a non-linear mapping to a high-dimensional
space H and may commonly not be given in an explicit form. Instead of this a kernel
function k : X ×X �→ R is given which encodes the inner product in H . The kernel k is
a positive (semi) definite function such that k(x,x′) = 〈φ(x)�,φ(x′)〉 for any x,x′ ∈ X .
The matrix K := Φ�Φ is an N×N kernel matrix derived from the training data, where
Φ : [φ(x1), . . . ,φ(xN)] is a matrix of images (column vectors) of the training data in H .

Encoding of Indefinite Proximity Data 115

The motivation for such an embedding comes with the hope that the non-linear transfor-
mation of input data into higher dimensional H allows for using linear techniques in H .
Kernelized methods process the embedded data points in a feature space utilizing only
the inner products 〈·, ·〉H (kernel trick) [53], without the need to calculate φ explicitly.
The specific kernel function can be very generic, but in general, it is expected that the
kernel is a Mercer kernel [53]. Most prominent are the linear kernel with k(x,x′) = x�x′

as the Euclidean inner product or the RBF kernel k(x,x′) = exp
(
−||x−x′||2

2σ2

)
, with σ as

a free parameter. Although the kernel function can be very generic, nearly all common
kernel methods assume the kernel to satisfy Mercer’s conditions [53] and thus be posi-
tive semi-definite (psd). However, as already mentioned, these conditions are not always
fulfilled, particularly with the use of domain-specific similarity measures. Their pair-
wise proximity (similarity or dissimilarity) measures can be conveniently summarized
in an N ×N (symmetric) proximity matrix with no restriction if the given proximities
are exclusively determined by measures for similarity or dissimilarity.

If a generic similarity measure is used (or a non-metric dissimilarity), negative
eigenvalues occur and the data are represented in a so-called Krein space, consisting
of two Hilbert spaces. A Krein space can be interpreted as an indefinite inner prod-
uct space endowed with a Hilbertian topology [2]. An inner product space (K ,〈·, ·〉K)
is a Krein space if we have two Hilbert spaces H+ and H− spanning K such that
∀ f ∈ K we have f = f+ + f− with f+ ∈ H+ and f− ∈ H− and ∀ f ,g ∈ K , 〈 f ,g〉K =
〈 f+,g+〉H+ − 〈 f−,g−〉H− . When working in the Krein space, the need is no longer
to minimize the loss of standard kernel algorithms but rather stabilize the loss in
average [33].

We refer to proximity matrices created on a similarity measure as S and proximity
matrices based on a measure of dissimilarity as D, respectively. A conversion from
D to a corresponding S can be realized by a process referred to as double centering
[41]. Models which do not employ an explicit vector space but similarities only are also
referred to as similarity based learning [13]. In [17] and [40], the authors outlined this to
be also applicable to indefinite proximities with low computational costs. Subsequently,
we focus exclusively on kernel-based supervised learning (in particular classification)
and will consider only similarities.

2.2 Indefinite Proximities

Learning a classifier needs not to be done using vectorial data but can solely based on
a proximity representation, as mentioned before. If the underlying measure is a generic
similarity function (in contrast to a Mercer kernel), we work with non-psd or indefinite
kernels [51] and dedicated algorithms. Otherwise, additional preprocessing operations
are required to train an accurate model with this data.

Employing a data representation in form of proximities is particularly helpful in
the following scenarios: (a) the original data is not available in vectorial form, e.g.
protein sequences, graph data, text data or (b) the primal focus is on the relationship
between the data points [13]. As outlined in [41], the majority of analysis algorithms
are applicable only in a tight mathematical setting, in particular the metric properties are
often required. Although this may sound like a promising strategy at first, the restriction

116 M. Münch et al.

to metrics imposes major disadvanatages. While the scientific world is widely metric,
in reality, many problems are better addressed by proximity measures that neglect these
metric restrictions for a better information representation [49]. In [11], a modified non-
metric version of the Hausdorff distance was performed that outperformed the original
metric Hausdorff distance in the context of object matching in images.

Also, it is evident that some data are inherently compositional and cannot be rep-
resented by a metric without loss of information. This is the case for graphs, text
documents, spectral data, or biological data [8,28,39]. Modern embedding techniques
based on autoencoder methods still try to approximate reliable embeddings into a vec-
torial space, are hard to fit and require enormous amounts of resources, which is not
always available and these techniques have shown high performance only for narrow
domains, like text processing in a particular language [18,56,57]. Alternatives are often
restricted to metric spaces [54], which requires correction techniques for non-metric
data as detailed later on. The application of domain-specific measures, already effective
over many decades, does not require such efforts and has shown superior performance
in many cases [13]. For this reason, multiple authors criticized these limitations and
clearly pointed out that these non-metric parts of the data contain valuable information
and should be preserved [41,49]. For this purpose, several approaches have been pro-
posed to address the problem of indefinite proximity learning as schematically shown in
Fig. 1. There are two main directions that allow to work with non-metric proximity data
despite the problems of indefiniteness. The two main lines for working with non-metric
data are completely opposite:

Fig. 1. Overview on various approaches to address the problem of non-psd proximity data based
on [51].

1) Make Data psd and Use Established Models: The data is modified to become psd.
Afterwards, models can be used which have a solid theoretical basis and which have
been used successfully for years. The structure of the data should be preserved, other-
wise there is a risk of information loss. Basically, there are three considerable subcate-
gories in which the psd-transformation approaches can be divided:

Eigenvalue Corrections: As metric violations lead to negative eigenvalues in the data’s
eigenspectrum, some approaches simply tried to modify the data’s eigenspectrum.

Encoding of Indefinite Proximity Data 117

The intention is to modify the negative eigenvalues in such a way that no negative
eigenvalues remain after the correction. These correction procedures will be discussed
in more detail later on.

Embedding Approaches: Embeddings are another way to transform non-metric or non-
psd input data to an equivalent metric representation. Here, the main purpose is to find
a description of the data in another (but metric) vector space that preserves the proxim-
ities of the data as well as possible. In general, the data are embedded in a Euclidean
space since many classifiers assume the Euclidean metric anyway, either implicitly or
explicitly. However, especially with non-metric input data, exact embeddings are rarely
feasible, as already outlined before. For this reason, it is common to embed the data in
a Pseudo-Euclidean space. See [22,41] for an extended discussion.

Learning a Proxy Function: Learning a proxy function over the input proximity data
was one of the first approaches to transform non-metric to metric data. Over the years,
several ways were suggested to obtain an alternate psd-matrix that is maximally aligned
to the non-psd input data (see [51] for an overview).

2) Leave Data Non-psd and Create New Insensitive Models: An alternative way is to
keep the data non-psd and to create models that are insensitive to indefiniteness. Thus,
the original structure of the data and also the information in the negative parts of the
eigenspectrum remain exactly the same. However, the negative eigenspectrum has to be
considered in the optimization processing leading to computational complex and rarely
sparse solutions.

Learning of Indefinite Decision Functions: Here, the model definition is based directly
on the nonmetric proximity function. In [3], properties of similarity functions are dis-
cussed that have to be satisfied to ensure good capabilities for a learning task. There
it is assumed that the similarity matrix is reinterpreted as an empirical feature space.
Recent algorithms with a decision function based on nonmetric proximities are given in
[1,7,27].

Learning Models in the Krein Space: The last group of approaches in this list keeps the
data unchanged and makes use of a reformulation from an optimization into a stabiliza-
tion problem by means of an extension of the common inner product in the Reproducing
Kernel Hilbert Space (RKHS) into a Reproducing Kernel Krein space (RKKS) [33]. In
[33], this is used to establish a valid SVM model, named KSVM, in the RKKS. This
KSVM approach is able to work directly on the indefinite kernel matrices and outper-
formed all other methods available at that time. Recent extensions of this idea have been
proposed in [50,52].

The aim of this subsection was to give an overview of some possibilities of how to
handle non-psd data in general. Although there are several methods that directly work
with indefinite data, these models are not frequently used. This is mainly due to their
quadratic to cubic complexity and the obtained complex, non-sparse models. Also the
stability, induced by the eigendecomposition in Krein spaces, sometimes results in some
difficulties [32,33]. Therefore, we focus in the following on eigenspectrum corrections
that can be done without reformulating the entire optimization framework.

118 M. Münch et al.

2.3 Eigenspectrum Corrections

As discussed in the previous section, a natural way to address the indefiniteness prob-
lem is to correct the eigenspectrum of S, to obtain a positive semi-definite matrix S∗.
Since metric violations cause negative eigenvalues in the eigenspectrum of the matrix
S, the matrix becomes non-metric. To correct S, a generic approach is to use an eigen-
decomposition: S =UΛU�, where Λ contains the eigenvalues λi corresponding to the
eigenvectors ui in U .

Now, the eigenvalues in Λ can be modified in order to remove all negative parts
in the eigenspectrum by different strategies, leading to Λ∗. After the application of an
appropriate correction procedure on the eigenvalues, an approximated (but now psd)
matrix can be reconstructed, referred to as S∗ =UΛ∗U�. Common strategies for modi-
fying the negative eigenvalues include flipping, clipping, squaring, and shifting, which
are illustrated in Fig. 2. Here, x-axis represents the index of the eigenvalue while the
y-axis illustrates the value of the eigenvalue (referred to as impact or strength). The
red line shows the original magnitude of the eigenvalue, the blue-dashed line shows the
impact after the correction method.

The data in Fig. 2(a) illustrates the eigenvalues of an artificial sample data set. The
data set consists of negative and positive eigenvalues, with an equal contribution on
the eigenspectrum. On the left side of Fig. 2(a), the eigenvalues λ < 0 are shown in
orange. On the right side, the positive eigenvalues λ > 0 are highlighted in green. In the
following, various correction methods and their impact on the eigenvalues’ contribution
on the whole eigenspectrum are considered.

Flip Eigenvalue Correction: The flip operation was one of the earliest correction tech-
niques used to achieve positive semi-definiteness. For this purpose, all negative eigen-
values in Λ are set to λi := |λi| ∀i. The motivation behind this approach is to retain
some of the information coded in the negative eigenvalues [19,43]. Figure 2(b) displays
the preservation of potentially relevant information lying in the negative eigenvalues
of the original data. Consequently, the impact of the originally negative eigenvalues
remains intact [41]. This operation can be calculated with O(N3) or O(N2) if low-rank
approaches are used.

Square Eigenvalue Correction: All negative eigenvalues in Λ are set to λi := λ2
i ∀i

which amplifies large and shrink very small eigenvalues. The square eigenvalue correc-
tion can be achieved by matrix multiplication [55] with ≈ O(N2.8). A major drawback
of this method, however, is that large eigenvalues increase even further, whereas small
eigenvalues may vanish completely. The small eigenvalues in Fig. 2(c) seem almost
negligible compared to the impact of the other eigenvalues.

Clip Eigenvalue Correction: This approach comes with the hope that all negative eigen-
values are caused by noise and hence can be eliminated without loss of information. All
negative eigenvalues in Λ are set to 0 (see Fig. 2(d)). Following [23], this clipping
operation leads to the nearest psd matrix S in terms of the Frobenius norm. Such a cor-
rection can be achieved by an eigendecomposition of the matrix S, a clipping operator

Encoding of Indefinite Proximity Data 119

on the eigenvalues, and the subsequent reconstruction. This operation has a complexity
of O(N3). The complexity might be reduced by either a low-rank approximation or the
approach shown by [34] with roughly quadratic complexity.

(a) Original

(b) Flip (c) Square

(d) Clip (e) Classic Shift

Fig. 2. Eigenspectrum plots of a generated example. Plot 2(a) shows the original spectrum of the
eigenvalues of this exemplary dataset. Plots 2(d)–2(e) show the impact of the respective correction
method on the eigenvalues.

120 M. Münch et al.

Classical Shift Eigenvalue Correction: The shift operation was already discussed ear-
lier by different researchers [15,29] and modifies Λ such that λi := λi −mini Λ ∀i. One
main advantage of the classical shift eigenvalue correction is that if the smallest eigen-
value λmin is already known, the operations can be accomplished with linear costs. In
case λmin is not yet available, at first, a determination or approximation procedure is
needed to determine λmin, usually with higher computational costs. A spectrum shift
enhances all the self-similarities and, therefore, the matrix’s eigenvalues by the amount
of λmin, as shown in Fig. 2(e). During a shift correction, only the diagonal elements
of the matrix are modified. Hence, there is no change of the similarity between any
two different data points thus their relationships remain the same. However, this pro-
cedure may also increase the intrinsic dimensionality of the data space and introduce
noise contributions. Eigenvalues without contribution zero contribution, respectively,
receive a considerable boost - in particular, their new contribution level is |λmin| after
the shift operation. If eigenvalues receive an increase in contribution during a correction
procedure, their corresponding eigenvectors are considered important within the data.
Thus, originally unimportant parts of the data are suddenly attributed a much higher
significance.

2.4 Limitations

In the past, there have been various approaches to modify the eigenspectrum to ensure
positive definiteness [41,51]. However, all these approaches suffer from certain limita-
tions: Most approaches modify the eigenspectrum in a very aggressive way destroying
large parts of its structure. In particular, the clip, flip, and square operator have an appar-
ent strong impact. Additionally, they are also costly due to an involved cubic eigen-
decomposition accessing the eigenvalues. In general, the clip operator only removes
eigenvalues, but generally keeps the majority of the eigenvalues unaffected. While this
method is useful in case of negative eigenvalues induced by noise, it may also remove
valuable contributions if these eigenvalues contain meaningful information. The flip
operator, on the other hand, affects all negative eigenvalues by changing the sign and
this will additionally lead to a reorganization of the eigenvalues. In the past, the flip
operator has actually worked quite well in many scenarios and the information in the
data has not been completely destroyed. Unfortunately, the necessity of an eigendecom-
position makes the flip unattractive for practical applications. The square operator, in
general, is similar to flip, but additionally emphasizes large eigencontributions while
reducing eigenvalues smaller than one. The classical shift operator is only changing
the diagonal of the similarity matrix leading to a shift of the whole eigenspectrum by
the provided offset. While this simple approach seems to be very reasonable, it has
the major drawback that all eigenvalues are shifted, which also affects small or even
zero eigenvalue contributions. While zero eigenvalues have no contribution in the orig-
inal similarity matrix, they are artificially upraised by the classical shift operator. This
may introduce a large amount of noise in the eigenspectrum causing substantial prob-
lems for many learning algorithms, such as kernel machines. In addition, the intrinsic
dimensionality of the data is increased artificially, resulting in an even more challenging
problem.

Encoding of Indefinite Proximity Data 121

3 Eigenvalue Modification via Nullspace Integrated Shifting

To overcome these challenges, we introduced an improved version of the classic shift
referred to as advanced shift. In the following section, we discuss the advanced shift
and particularly the benefits of the nullspace correction. Additionally to the work of
[37], we provide an accurate alternative estimation of the smallest eigenvalue and also
give a convenient option for an out-of-sample extension.

3.1 Advanced Shift Correction

The advanced shift method in [37] performed better mainly due to two aspects: (a) it
preserves the advantages of the classical shift - in particular, the lower computational
costs - and (b) it compensates the disadvantages, such as artificial noise and an increased
intrinsic dimension. The problem of the artificial induced noisy contribution of the clas-
sic shift is addressed in the advanced shift by means of a nullspace correction. The aim
of this nullspace correction step is to eliminate shifted eigenvalues with near to zero
contributions in the original data.

Accordingly, the overall structure of the eigenspectrum is widely kept by preserving
eigenvalues with large absolute contribution and by keeping small values close to zero.
All eigenvalues are positive after the correction step. We call this a structure preserving
encoding. The procedure is summarized in Algorithm 1.

Algorithm 1. Advanced shift eigenvalue correction.
Advanced shift(S,k)
if approximate to low-rank then

S := LowRankApproximation(S,k)
end if
λ := |ShiftParameterDetermination(S)|
B := NullSpace(S)
N := B ·B′
S∗ := S+2 ·λ · (I−N)
return S∗

As a first step in this algorithm, we suggest a low-rank approximation on the input
similarity matrix S to map all small eigenvalues to exact zero. Although this may lead to
loss of information, we assume that the near-zero eigenvalues actually arise from noise
and are meaningless in the original data, compared to the preserved larger eigenvalues.
This step is particular useful if the matrix has a large rank with many small, but non-
vanishing eigenvalues. For a matrix with full rank, the advanced shift behaves similar
to a classic shift with a doubled shift factor.

The low-rank approximation can be achieved by a restricted singular value decom-
position with computational costs of O(N2). If the number of samples N ≤ 1000, then
the target rank was specified as k = 30 and k = 100, otherwise. The effect of such a
low-rank approximation on the eigenvalues is shown in Fig. 3.

122 M. Münch et al.

(a) Original (b) Low-rank approximated

Fig. 3. Eigenspectrum plots of the Zongker dataset [26] used in the experiments in Sect. 4.1.
Figure 3(a) shows the original spectrum of the eigenvalues of this dataset. Figure 3(b) shows the
eigenspectrum after the low-rank approximation. The eigenvalues close to zero have lost their
contribution after the approximation. (Color figure online)

Prior to the low-rank approximation, the eigenvalues in the orange shaded areas,
Fig. 3, are close to zero, but not exactly zero, i.e. they contribute to the eigenspectrum.
However, after the low-rank approximation, there is no contribution of these eigenval-
ues since all values in this segment are set to exactly zero. Thus, only the meaningful
eigenvalues (in the red and green shaded boxes, Figs. 3(a) and 3(b)) retain their contri-
bution during further steps.

It is essential to find a suitable shift parameter λmin in order to keep the modifi-
cation of the eigenspectrum as small as possible, but large enough to avoid negative
eigenvalues. An inappropriately large shift parameter may also lead to numerical scal-
ing problems. To determine a reliable shift parameter λ, various methods are available
as we will discuss in Sect. 3.2 in more detail. In this paper we used a modified vari-
ant of the von Mises or power iteration [36] to get the smallest eigenvalue. After the
determination, we take the absolute value of λmin in the subsequent steps.

After the ShiftParameterDetermination(S), the basis B of the nullspace is calculated.
This can again be done in a cost-saving way by a restricted SVD, hence the computa-
tional costs remain at O(N2). Here, B consists of all vectors that form the basis for the
nullspace of S, in other words all vectors mapping S to zero, such that S ·B= 0, where
B is explicitly not zero.

The dimension of the nullspace can be obtained by the rank-nullity-theorem []. The
rank-nullity-theorem states that the dimension of the nullspace equals the difference
between the number of columns in S and the rank of S. At this point the importance of
the low-rank approximation becomes evident: in case of a matrix S with full rank, the
dimension of the nullspace becomes zero and thus, B is empty. Therefore, we recom-
mend the low-rank approximation at the beginning to ensure the nullspace is not left
empty and the setting does not fall back to the classical shift with all associated prob-
lems. After this step, the nullspace matrix N is calculated as the dot product of B and
B′. The subtraction of N from the identity matrix I (I−N) can be seen as a projection
matrix onto the orthogonal complement of the vectors in the nullspace B. The matrix
N can be computed with costs of O(N2). With this step, not only diagonal elements are
modified like in the classical shift but also non-diagonal elements are slightly affected.
This results in a modification of all eigenvalues except those for which S · B = 0.

Encoding of Indefinite Proximity Data 123

To ensure the final matrix preserves the information encoded in the large negative eigen-
values, the shift-factor is doubled and integrated into the shift matrix. At last, this shift
matrix 2 ·λ ·(I−N) is added to the original matrix S. The eigenvalues of the final eigen-
spectrum are all non-negative. Since all sub tasks can be achieved with computational
costs of about O(N2), the entire procedure can be done with O(N2) operations.

In the experiments, we analyze the effect of this transformation method with and
without a low-rank approximation and compare it to the aforementioned alternative
methods. Nevertheless, we can already tell that the cost of performing the advanced
shift is comparable to the costs of the classical shift with λmin and significantly lower
than that of the clip and flip methods.

3.2 Determination and Approximation of the Shift Parameter

As the advanced shift relies on the classical shift, one main advantage of this correc-
tion method is its simplicity. As mentioned in the previous Section, the overall com-
putational costs of this method strongly depend on the costs to calculate the small-
est eigenvalue λmin. Hence, choosing an appropriate λmin is a crucial step leading to a
trade-off problem: methods of low computational costs may determine an imprecise,
potentially inappropriate λmin while methods with high computational costs make the
advanced shift more costly. Performing an eigenvalue decomposition on the complete
matrix to determine λmin is accurate but in general unattractive due to its cubic costs.
For this purpose, efficient approaches include for example applying a low-rank approx-
imated eigendecomposition on the original data, working with a sufficiently large shift
parameter, making a guess of the smallest eigenvalue, or analyzing the eigenspectrum
of only a subsample of the original data [51]. In our approach, we suggest employing a
power iteration method, in particular, the von Mises approach but slightly modified to
get a more accurate determination of λmin[36]. This modified procedure gives an accu-
rate estimation of the overall smallest eigenvalue. The classic von Mises returns only
the dominant eigenvalue, i.e. the eigenvalue with the absolute highest value, regard-
less of whether it is positive or negative. The modified von Mises provides both the
largest positive and negative eigenvalue. The modified von Mises iteration is described
in Algorithm 2.

Algorithm 2. ShiftParameterDetermination(S) - modified von Mises.
Modified von Mises iteration(S)
[umax,λmax] =ClassicalVonMises(S)
S= (S−λmax ∗ I)
[utempMin,λtempMin] =ClassicalVonMises(−S)
λmin = −(λtempMin −λmax)
if λmax < λmin switch λmin,max
return λmin

The first step, is the application of a classical von Mises iteration to identify the
largest eigenvalue λmax. Subsequently, each element on the diagonal of S is reduced by

124 M. Münch et al.

λmax. Afterwards, another von Mises iteration is performed, this time with the nega-
tive S. This modification of the von Mises iteration determines both the largest and the
smallest eigenvalue.

3.3 Out-of-Sample Extension for New Test Points

Correcting eigenvalues to use non-psd data often poses some difficulties when the mod-
els are tested with new data points [51]. In general, one would like to modify the train-
ing and test data in a consistent way. Ideally, the modification is done directly on the
similarity function and not on the completely computed matrix S. However, in case
of eigenvalue correction methods this is not applicable, so the new points have to be
transformed differently into the modified space.

In this section, we propose an efficient way for such a transformation of a new
data point xt . The following steps summarize the out of sample extension used in our
experimental setup:

1. Calculation of the similarity values between xt and at least three data points from X
as anchor points using the same unmodified similarity measure. We obtain a similar-
ity representation st of xt by calculating a reasonable number of pairwise similarities
to the training data. For example, the support vectors of the obtained model.

2. Lookup of the similarity values for all anchor points using S.
3. Calculate the weights necessary to reconstruct st by trilateration using the anchor

point similarity vectors
4. The weights are now applied to the anchor point similarities of S∗ (the modified

similarities) and we obtain a trilaterated s∗t

3.4 Structure Preservation of the Eigenspectrum

As mentioned before structure preservation refers to retention of larger eigenvalue con-
tributions. Hence, those parts of the eigenspectrum that need not to be corrected should
be kept close to its original state. In particular, only negative eigenvalues are in scope,
requiring a correction step. These operations should be non-aggressive, which we call
structure preserving. As illustrated in the synthetic example in Fig. 2, the various correc-
tion methods modify the eigenspectrum in different degrees and some of them change
the structure of the eigenspectrum fundamentally.

These modifications to the eigenvalues include various operations, like changing the
sign of the eigenvalues, deleting, amplifying or shrinking of eigenvalue contributions,
or a reorganization of eigenvalues and their respective eigenvectors.

Particularly these operations have severe effects on methods that consider only a
few (dominating) eigenvalues.

Figure 4 illustrates the impact of each eigenvalue correction method on the prop-
erties of the eigenspectrum, in particular, the eigenvalues of the real-world Zongker
dataset. For further detailed information on this dataset, see Sect. 4.1.

Here, the y-axis illustrates the contribution value (or impact) of the eigenvalue and
the x-axis represents the index of the eigenvalue. The left column of Fig. 4 (Subfigures
4(a), 4(c), 4(e), 4(g), 4(i)) shows the eigenspectra without a low-rank approximation,

Encoding of Indefinite Proximity Data 125

0 20 40 60 80 100
index

0

5

10

15

ei
ge
nv
al
ue

(a) Original

0 20 40 60 80 100
index

0

5

10

15

ei
ge
nv
al
ue

(b) Original Low-Rank

0 20 40 60 80 100
index

0

5

10

15

ei
ge
nv
al
ue

(c) Clip

0 20 40 60 80 100
index

0

5

10

15

ei
ge
nv
al
ue

(d) Clip Low Rank

0 20 40 60 80 100
index

0

5

10

15

ei
ge
nv
al
ue

(e) Flip

0 20 40 60 80 100
index

0

5

10

15

ei
ge
nv
al
ue

(f) Flip Low Rank

0 20 40 60 80 100
index

0

5

10

15

ei
ge
nv
al
ue

(g) Shift

0 20 40 60 80 100
index

0

5

10

15

ei
ge
nv
al
ue

(h) Shift Low Rank

0 20 40 60 80 100
index

0

5

10

15

ei
ge
nv
al
ue

(i) advanced shift

0 20 40 60 80 100
index

0

5

10

15

ei
ge
nv
al
ue

(j) Advanced Shift Low Rank

Fig. 4. Visualizations of the Zongker dataset’s eigenspectra after applying various correction
methods. Further details to this dataset are given in Sect. 4.1.

126 M. Münch et al.

particularly in this case the original similarity matrix has full rank. The right column
(Subfigures 4(b), 4(d), 4(f), 4(h), 4(j)) comprises the low-rank version of the eigen-
spectrum: In the following figures, the choice of color and linestyle of the highlighted
regions is as follows: The red rectangle (solid line) highlights those negative parts of
the eigenvalues which are negative in the original data and for which it is essential that
their contribution is preserved in the data. The orange rectangle (dashed line) represents
those eigenvalues that are close to zero or exactly zero. The green rectangle (dotted
line) highlights those parts that contained the positive eigenvalues in the original data.
Also, their contribution should also be kept unchanged in order not to manipulate the
eigenspectrum too aggressive. Figure 4(a) illustrates the eigenspectrum of the original
dataset without any modification. In this example, the eigenspectrum contains both pos-
itive and negative eigenvalues, hence the original data is indefinite. Figure 4(b) shows
the low-rank representation of the original data of 4(a). Here, the major negative and
major positive eigenvalues (red/solid and green/dotted rectangle) are still present, but
many eigenvalues, that have been close to zero before, are set to exactly 0 (black/dashed
rectangle) after the approximation step.

Figure 4(c) and Fig. 4(d) show the eigenvalues after applying the clip operator to the
eigenvalues shown in Figs. 4(a) and 4(b). In both cases, the major positive eigenvalues
(green/dotted rectangle) remain unaffected. However, the negative eigenvalues close
to zero (parts of the orange/dashed rectangle in Figures) and in particular the major
negative eigenvalues (red/solid rectangle) are all set to exactly 0. By using the clip
operator, the contributions to the eigenspectrum of both major negative and slightly
negative eigenvalues are completely eliminated.

In contrast to clipping, the flip corrector preserves the contribution of the negative
and slightly negative eigenvalues, shown in Figs. 4(e) and 4(f). When using the flip
corrector, only the negative sign of the eigenvalue is changed to positive; thus, only the
diagonal of the matrix is changed and not the entire matrix. Since the square opera-
tor behaves almost analogously to the flip operator, it was not listed separately here.
Squaring the values of a matrix significantly increases the impact of the major eigen-
values compared to the minor eigenvalues. This leads to a huge change in the respective
eigenvalue’s magnitude. If an essential part of the data’s information is located in the
small eigenvalues, this part gets a proportionally reduced contribution, against the sig-
nificantly increased major eigenvalues.

The modified eigenspectra after applications of the classical shift operator are pre-
sented in Figs. 4(g) and 4(h): by increasing all eigenvalues of the spectrum, the higher
negative eigenvalues (red/solid rectangle) that had more impact now only remain with
zero or close to zero contribution. Furthermore, a higher contribution was assigned
to those eigenvalues that previously had no or nearly no effect on the eigenspec-
trum (orange/dashed rectangle). As a result, the classical shift increases the number
of non-zero eigencontributions by introducing artificial noise into the data. The same
is also evident for the advanced shift without low-rank approximation depicted in Fig.
4(j). Since the Zongker dataset is of full rank, the nullspace is empty (Rank-Nullity-
Theorem) and thus there is only a shift twice of the shift parameter on the diagonal.
Here, the importance of a low rank approximation becomes evident, otherwise the
advanced shift behaves analogously to the classical shift. As there are many eigenvalues
close to zero but not exactly zero in this data set, all these eigenvalues are also increased
in the advanced shift, but can be cured in the low-rank approach.

Encoding of Indefinite Proximity Data 127

Unlike the advanced shift approach without low-rank approximation, depicted in
Fig. 4(j), a low-rank representation of the data leads to a shifting of only those eigenval-
ues that had relevant contributions before (red/solid rectangle). Eigenvalues with previ-
ously almost zero contribution (orange/dashed rectangle), get a contribution of exactly
zero by the approximation and are therefore not shifted in the advanced shift method.

In summary, the structure of the eigenspectrum is only preserved by using the flip
corrector (including noise contributions), partially in the square operator, and also by
the advanced shift operator with low-rank approximation but not the clip or the clas-
sic shift corrector. Although this section contained results exclusively for the Zongker
dataset, we observed similar findings for other indefinite datasets as well. Our first find-
ings show, that a more sophisticated treatment of the similarity matrix is needed to
obtain a suitable psd matrix. This makes our method more appropriate compared to
simpler approaches such as the classic shift or clip.

4 Experiments

This section contains a series of experiments highlighting the effectiveness of our app-
roach in combination with a low-rank approximation. We evaluate the algorithm for a
set of benchmark data that are typically used in the context of proximity-based super-
vised learning. The data are briefly described in the following and summarized in Table
2, with details given in the references. Subsequently, the experimental setup and the
performance of the different eigenvalue correction methods on the benchmark datasets
are presented and discussed in this section.

4.1 Datasets

We use a variety of standard benchmark data for similarity-based learning. All data sets
used in this experimental setup are indefinite with different spectral properties. If the
data are given as dissimilarities, a corresponding similarity matrix can be obtained by
double centering [41]: S = −JDJ/2 with J = (I− 11�/N), with identity matrix I and
vector of ones 1.

The datasets used for the experiments are described in the following and summa-
rized in Table 2, with details given in the references. The triplet (p,q,z) is also referred
to as the signature. In this context, the signature describes the ratio of positive to nega-
tive and zero eigenvalues of the respective data set.

1. Aural Sonar consists of 100 signals with two classes, representing sonar signals
dissimilarity measures to investigate the human ability to distinguish different
types of sonar signals by ear. Details are provided in [7].

2. Balls3d/Balls50d consist of 200/2000 samples in two/four classes. The dissimi-
larities are generated between two constructed balls using the shortest distance on
the surfaces. The original data description is provided in [42].

3. The Catcortex data set is provided as a 65 × 65 dissimilarity matrix describ-
ing the connection strengths between 65 cortical areas of a cat from four regions
(classes): auditory (A), frontolimbic (F), somatosensory (S) and visual (V). The
dissimilarity values are measured on an ordinal scale.

128 M. Münch et al.

4. The Kopenhagen Chromosomes data set constitutes 4,200 human chromosomes
from 21 classes represented by grey-valued images. These are transferred to
strings measuring the thickness of their silhouettes. These strings are compared
using edit distance. Details are provided in [39].

5. The Delft gestures (1500 points, 20 classes, balanced, signature: (963,536,1)),
taken from [12], is a set of dissimilarities generated from a sign-language inter-
pretation problem. It consists of 1500 points with 20 classes and 75 points per
class. The gestures are measured by two video cameras observing the positions
of the two hands in 75 repetitions of creating 20 different signs. The dissimilar-
ities are computed using a dynamic time-warping procedure on the sequence of
positions (Lichtenauer, Hendriks, Reinders 2008).

Table 2. Overview of the datasets used in our experimental setup. Details are given in the textual
description.

Dataset #samples #classes Signature

Aural Sonar 100 2 (62,38,0)

Balls3d 200 2 (48,152,0)

Balls50d 2000 4 (853,1147,0)

Catcortex 65 4 (49,16,0)

Chromosomes 4200 21 (2258,1899,43)

DelftGestures 1500 20 (963,536,1)

FaceRec 945 139 (794,150,1)

Flowcyto-1 612 3 (538,73,1)

Flowcyto-2 612 3 (26,73,582)

Flowcyto-3 612 3 (541,70,1)

Flowcyto-4 612 3 (26,73,582)

Gauss with overlap 1000 2 (469,531,0)

Gauss without overlap 1000 2 (468,532,0)

Patrol 241 8 (233,8,0)

Prodom 2604 53 (1502,680,422)

Protein 213 4 (170,40,3)

Sonatas 1068 5 (1063,4,1)

SwissProt 10988 10 (8487,2500,1)

Tox-21 (AllBit) 14484 2 (2049,0,12435)

Tox-21 (Assymetric) 14484 2 (1888,3407,9189)

Tox-21 (Kulczynski) 14484 2 (2048,2048,10388)

Tox-21 (McConnaughey) 14484 2 (2048,2048,10388)

Vibrio 1100 49 (851,248,1)

Voting 435 2 (178,163,94)

Zongker 2000 10 (1039,961,0)

Encoding of Indefinite Proximity Data 129

6. Facerec dataset consists of 945 sample faces with 139 classes, representing sam-
ple faces of people, compared by the cosine similarity as measure. Details are
provided in [7].

7. The Flowcyto dataset is based on 612 FL3-A DNA flowcytometer histograms
from breast cancer tissues in 256 resolution. The initial data were acquired by M.
Nap and N. van Rodijnen of the Atrium Medical Center in Heerlen, The Nether-
lands, during 2000–2004, using tubes 3, 4,5, and 6 of a DACO Galaxy flowcy-
tometer. Overall, this data set consists of four datasets, each representing the same
data, but with different proximity measure settings. Histograms are labeled in 3
classes: aneuploid (335 patients), diploid (131), and tetraploid (146). Dissimilari-
ties between normalized histograms are computed using the L1 norm, correcting
for possible different calibration factors [12]. Further information on the analysis
of flow cytometry data in a more classical setting can be found in [5].

8. For working with Gauss data, we create two datasets X , each consisting of 1000
data points in two dimensions divided into two classes. Data of the first dataset
are linearly separable, whereas data of the second dataset are overlapping. To
calculate dissimilarity matrix D, we use D= tanh(−2.25 ·X ·XT +2).

9. The Patrol data set is about the classification of 241 people into one of 8 patrol
units based on whom people claimed was in their unit when asked to name five
people in their unit.

10. The ProDom dataset with signature (1502,680,422) consists of 2604 protein
sequences with 53 labels. It contains a comprehensive set of protein families and
appeared first in the work of [46]. The pairwise structural alignments were com-
puted by [46]. Each sequence belongs to a group labeled by experts; here, we use
the data as provided in [12].

11. Protein: the Protein data set has sequence-alignment similarities for 213 proteins
and is used for comparing and classifying protein sequences according to its four
classes of globins: heterogeneous globin (G), hemoglobin-A (HA), hemoglobin-
B (HB) and myoglobin (M). The signature is (170,40,3), where class one through
four contains 72, 72, 39, and 30 points, respectively [24].

12. Sonatas dataset consists of 1068 sonatas from five composers (classes) from two
consecutive eras of western classical music. The musical pieces were taken from
the online MIDI database Kunst der Fuge and transformed to similarities by nor-
malized compression distance [38].

13. SwissProt: the SwissProt data set (SWISS), with a signature (8487, 2500, 1), con-
sists of 10,988 points of protein sequences in 30 classes taken as a subset from the
popular SwissProt database of protein sequences [6]. The considered subset of the
SwissProt database refers to the release 37. A typical protein sequence consists
of a string of amino acids, and the length of the full sequences varies between 30
to more than 1000 amino acids depending on the sequence. The ten most com-
mon classes such as Globin, Cytochrome b, Protein kinase st, etc. provided by the
Prosite labeling [16] were taken, leading to 5,791 sequences. Due to this choice,
an associated classification problem maps the sequences to their corresponding
Prosite labels. These sequences are compared using Smith-Waterman which com-
putes a local alignment of sequences [20]. This database is the standard source for

130 M. Münch et al.

identifying and analyzing protein sequences such that an automated classification
and processing technique would be very desirable.

14. Tox-21: The initial intention of the Tox-21 challenges is to predict whether cer-
tain chemical compounds have the potential to disrupt processes in the human
body that may lead to adverse health effects, i. e. are toxic to humans [25]. This
version of the dataset contains 14484 molecules encoded as Simplified Molecular
Input Line Entry Specification (SMILE) codes. SMILE codes are ASCII-strings
to encode complex chemical structures. For example, Lauryldiethanolamine
has the molecular formula of C16H35NO2 and is encoded as CCCCCCCCCC-
CCN(CCO)CCO. Each smile code is described as a morgan fingerprint [14,45]
and encoded as a bit-vector with a length of 2048 via the RDKit1 framework.
The molecules are compared to each other by using the non-psd binary similar-
ity metrics AllBit, Kulczynski, McConnaughey, and Asymmetric provided by the
RDKIT. The similarity matrix is based on pairwise similarities calculated by the
respective metric. According to the applied similarity metrics, the resulting matri-
ces are varying in their amount of negative eigenvalues. The task of the dataset is
binary classification, which is either toxic or non-toxic for every given molecule
and should be predicted by a machine learning algorithm.

15. Vibrio: Bacteria of the genus Vibrio are Gram-negative, primarily facultative
anaerobes, forming motile rods. Contact with contaminated water and the con-
sumption of raw seafood are the primary infection factors for Vibrio-associated
diseases. Vibrio parahaemolyticus, for instance, is one of the leading causes of
foodborne gastroenteritis worldwide. The vibrio data set consists of 1,100 sam-
ples of vibrio bacteria populations characterized by mass spectra. The spectra
encounter approximately 42,000 mass positions. The full data set consists of 49
classes of vibrio-sub-species. The mass spectra are preprocessed with a standard
workflow using the BioTyper software [35]. As usual, mass spectra display strong
functional characteristics due to the dependency of subsequent masses, such that
problem-adapted similarities such as described in [4,35] are beneficial. In our
case, similarities are calculated using a specific similarity measure as provided by
the BioTyper software [35] with a signature (851,248,1).

16. Voting contains 435 samples in 2 classes, representing categorical data, which are
compared based on the value difference metric [7].

17. Zongker dataset is a digit dissimilarity dataset. The dissimilarity measure was
computed between 2000 handwritten digits in 10 classes, with 200 entries in each
class [26].

4.2 Results

We evaluate the accuracy of the proposed advanced shift correction on the mentioned
datasets against other eigenvalue correction methods using the standard python SVC
classifier from sklearn-package. As the data was already given as pairwise similarity
matrices, we used ‘precomputed’ for the attribute kernel to restrict an additional kernel
trick within the SVM implementation. We verified that the corrected input kernel matrix

1 https://www.rdkit.org/.

https://www.rdkit.org/

Encoding of Indefinite Proximity Data 131

was indeed psd by an additional test using an eigendecomposition, no fails were found.
Again, this is typically important for kernel methods to guarantee the expected con-
vergence of the optimization framework. Nevertheless, we also compare our approach
in a setup without a correction, thus leaving the input matrix non-psd. As discussed in
[21], it may nevertheless lead to good results. For a better evaluation of the considered
methods, the low-rank approximation was applied to all eigenvalue correction methods.
Only when employing the original data in the SVM, the low-rank approximation was
omitted to ensure that no negative parts are lost. Once again, please note that the sim-
ple application of a low-rank approximation only does not lead to the intended results.
If the negative eigenvalues are particularly small, a low-rank approximation can elim-
inate these eigenvalues, but this is rarely the case. Accordingly, convergence problems
and information loss as well as inadequate models may still occur due to the negative
eigenvalues in uncorrected input data.

For the evaluation of the experiments, we stored the algorithm’s accuracy and its
standard deviation achieved in a ten-fold cross-validation shown in Table 3. Addition-
ally, we track the percentage of support vectors as an indicator of the model complexity.
The results for the percentage of necessary support vectors are shown in Table 4.

The parameter C of the SVM has been selected for each correction method by a
grid search on independent data not used during this evaluation phase. We ran the entire
experiments at least three times for each benchmark dataset. Some datasets are already

Table 3. Prediction accuracy (mean ± standard-deviation) for the various data sets and methods
in comparison to the advanced shift method.

Dataset Adv. shift Original Classic shift Clip Flip Square

Aural Sonar 88.0 ± 0.13 88.0 ± 8.72 89.0 ± 0.08 86.0 ± 0.11 88.0 ± 0.06 87.0 ± 0.11

Balls3d 100.0 ± 0.0 59.5 ± 9.6 37.0 ± 0.07 78.5 ± 0.05 96.0 ± 0.04 55.0 ± 0.09

Balls50d 48.15 ± 0.04 25.4 ± 2.27 20.65 ± 0.02 27.2 ± 0.04 41.15 ± 0.03 25.05 ± 0.02

Catcortex 87.86 ± 10.93 85.24 ± 13.38 92.62 ± 9.79 89.52 ± 14.53 95.0 ± 7.64 95.48 ± 6.94

Chromosomes 96.45 ± 0.01 n. c n. c 38.95 ± 0.02 97.29 ± 0.0 96.07 ± 0.01

Delft Gestures 98.07 ± 1.01 97.87 ± 0.72 96.8 ± 1.29 98.2 ± 0.9 98.07 ± 1.05 97.6 ± 1.2

FaceRec 62.33 ± 0.05 85.92 ± 2.44 62.22 ± 0.07 61.92 ± 0.07 63.27 ± 0.05 86.13 ± 0.02

Flowcyto-1 69.28 ± 5.10 63.74 ± 6.50 66.02 ± 5.45 69.93 ± 6.31 70.26 ± 5.41 70.58 ± 6.09

Flowcyto-2 72.4 ± 5.85 62.09 ± 5.36 65.69 ± 6.44 71.39 ± 4.96 70.42 ± 3.84 71.08 ± 2.86

Flowcyto-3 70.26 ± 3.58 62.09 ± 0.44 64.55 ± 5.61 70.74 ± 5.70 71.10 ± 4.67 70.75 ± 3.03

Flowcyto-4 70.43 ± 6.12 59.88 ± 0.58 63.54 ± 6.97 71.10 ± 4.92 70.25 ± 5.31 68.29 ± 5.68

Gauss with overlap 91.6 ± 0.03 1.5 ± 1.2 64.55 ± 5.61 70.74 ± 5.70 –71.10 ± 4.67} 70.75 ± 3.03

Gauss without overlap 100.0 ± 0.0 15.4 ± 3.88 2.2 ± 0.01 99.7 ± 0.0 100.0 ± 0.0 100.0 ± 0.0

Patrol 26.15 ± 10.73 20.78 ± 6.52 23.65 ± 7.68 24.45 ± 9.47 22.78 ± 7.09 23.67 ± 8.17

Prodom 99.85 ± 0.25 n. c 99.77 ± 0.26 99.77 ± 0.31 99.77 ± 0.25 99.65 ± 0.47

Protein 99.07 ± 0.02 59.63 ± 5.98 58.31 ± 0.09 98.59 ± 0.02 99.05 ± 0.02 98.61 ± 0.02

Sonatas 94.29 ± 0.02 87.55 ± 2.38 90.73 ± 0.02 93.64 ± 0.04 94.19 ± 0.02 93.44 ± 0.03

SwissProt 97.55 ± 0.01 97.48 ± 0.5 96.48 ± 0.0 96.42 ± 0.0 96.54 ± 0.0 97.43 ± 0.0

Tox-21 (AllBit) 97.36 ± 0.49 97.37 ± 0.47 97.38 ± 0.44 97.33 ± 0.52 97.38 ± 0.30 97.35 ± 0.38

Tox-21 (Assymetric) 97.46 ± 0.44 90.40 ± 2.01 95.28 ± 0.64 96.96 ± 0.46 97.33 ± 0.35 97.18 ± 0.48

Tox-21 (Kulczynski) 97.36 ± 0.39 92.81 ± 2.16 95.28 ± 0.54 97.20 ± 0.26 97.29 ± 0.37 97.30 ± 0.31

Tox-21 (McConnaughey) 97.34 ± 0.41 92.08 ± 2.02 94.97 ± 0.56 97.15 ± 0.50 97.33 ± 0.32 97.15 ± 0.54

Vibrio 100.0 ± 0.00 100.0 ± 0.00 100.0 ± 0.00 100.0 ± 0.00 100.0 ± 0.00 100.0 ± 0.00

Voting 97.24 ± 0.03 96.33 ± 2.53 95.88 ± 0.03 96.59 ± 0.04 96.77 ± 0.03 96.77 ± 0.02

Zongker 97.7 ± 0.01 92.05 ± 1.01 92.85 ± 0.01 96.85 ± 0.01 97.2 ± 0.01 96.75 ± 0.01

132 M. Münch et al.

identified as showing convergence problems when working with kernel methods [37,
51]. In our experiments, convergence issues mainly occurred in the Chromosomes and
Prodom datasets with the original non-psd data and with the classic shift (not converged
- subsequently n.c.).

In Table 3, we show the classification accuracy for the experimental setup consisting
of the considered datasets and various eigenvalue correction methods.

Using uncorrected data (column labeled: original) reliable results were obtained
rarely compared with other classical correction methods. Therefore, we assume that a
correction step is indeed necessary since the use of uncorrected non-psd data shows
clear limitations in accuracy. In summary, the presented advanced shift combined with
the modified von Mises iteration performed best, followed by the flip correction method
and the square correction method. It becomes evident how important the preservation
of the eigenspectrum’s structure is for the performance in supervised learning tasks:
advanced shift, Flip and Square are all capable of preserving the structure of the eigen-
spectrum (in case of the square method at least roughly), since the dominant eigenval-
ues both positive and negative are retained by means of these methods. As the low-rank
approximation leads to a large number of truly zero eigenvalues, the noisy contributions
were removed from the data. Especially, the advanced shift benefits from the elimina-
tion of the small eigenvalues, as seen in [37], where the low-rank approximation led to
a boost in performance. Also, the eigenvalue clip provides considerable results in the
experiments and is only slightly behind Flip, Square and advanced shift. The classical
shift, which has been frequently recommended in the literature, fell significantly behind
the other methods in our experiments. The plain choice of a sufficiently high shifting
factor λmin solves the metric problems, but seems to disturb the eigenstructure.

Additionally to the accuracy of the considered methods, the number of support vec-
tors of each trained SVM model was gathered as an indication for the model’s complex-
ity. The results are shown in Table 4 in terms of the percentage of necessary support
vectors.

For this purpose, the number of points that serve as support vectors is set in rela-
tion to the total number of data points. The higher this percentage, the more data points
are needed for a successful model. This also implies, however, higher complexity of the
model, which often results in a reduced generalization to new data points and additional
costs in the out of sample extension. In summary, the results shown in Table 4 highlight
the comparability of the advanced shift to the other approaches. In general, compared
to the original SVM using uncorrected non-psd data without a low-rank approximation,
the advanced shift performed better almost consistently and in some cases even sig-
nificantly. Furthermore, compared to the classic shift correction, the advanced shift is
significantly better in accuracy and the percentage of required support vectors. Consid-
ering the complexity in terms of required support vectors, the advanced shift performs
competitively compared to clip and flip. However, in relation to the square correction
method, the advanced shift suffers from minor limitations.

In summary, the advanced shift is competitive to the clipping and flipping correc-
tion methods but generally requires a higher number of support vectors compared to the
square correction. Considering the accuracy as well as the number of necessary support
vectors and the computational costs, the advanced shift is preferable to clip and flip

Encoding of Indefinite Proximity Data 133

Table 4. Percentage of data points that are necessary for the model (in terms of support vectors)
to build a well-fitting decision hyperplane.

Dataset Adv. shift Original Classic shift Clip Flip Square

Aural Sonar 53.1% 74.5% 86.7% 76.8% 77.3% 42.4%

Bacteria 44.0% 98.8% 62.4% 46.6% 47.1% 44.4%

Balls3d 17.4% 51.8% 100.0% 56.6% 48.6% 19.1%

Balls50d 60.8% 94.7% 96.3% 95.2% 95.7% 94.9%

Catcortex 77.0% 67.2% 92.7% 61.9% 65.4% 53.9%

Chromosomes 39.3% n. c n. c 30.3% 30.6% 23.8%

Delft Gestures 76.0% 72.3% 100.0% 58.3% 58.2% 29.1%

FaceRec 90.5% 91.5% 90.5% 90.5% 90.5% 64.1%

Flowcyto-1 60.9% 64.8% 99.7% 61.6% 63.6% 62.4%

Flowcyto-2 58.7% 72.6% 96.7% 56.9% 58.1% 57.7%

Flowcyto-3 57.7% 63.0% 99.3% 56.7% 57.4% 58.6%

Flowcyto-4 58.9% 69.0% 99.6% 59.3% 58.8% 61.8%

Gauss with overlap 9.2% 99.0% 99.0% 3.5% 5.9% 2.2%

Gauss without overlap 24.4% 84.8% 95.7% 34.0% 21.1% 21.0%

Patrol 99.7% 99.7% 99.7% 99.7% 99.7% 99.7%

Prodom 18.7% n. c 18.7% 18.7% 18.8% 12.9%

Protein 38.6% 80.3% 99.8% 21.5% 21.5% 12.9%

Sonatas 38.2% 67.8% 78.7% 34.5% 34.5% 26.9%

SwissProt 13.9% 48.9% 13.9% 13.9% 13.9% 12.2%

Tox-21 (AllBit) 5.5% 5.8% 7.4% 6.5% 7.2% 4.6%

Tox-21 (Assymetric) 5.4% 7.3% 10.0% 7.6% 7.1% 4.6%

Tox-21 (Kulczynski) 5.9% 8.0% 10.0% 7.2% 7.1% 5.3%

Tox-21 (McConnaughey) 5.6% 8.4% 8.3% 7.6% 7.5% 4.2%

Vibrio 99.6% 100.0% 99.6% 99.6% 99.6% 92.0%

Voting 9.7% 8.6% 26.2% 8.5% 8.5% 9.1%

Zongker 50.4% 63.5% 100.0% 31.5% 34.5% 22.5%

and comparable to the square correction. As already noted in previous studies, there is
no simple solution for eigenvalue correction methods on non-metric data. Therefore,
we introduced an efficient way for non-psd data to be handled in common methods
like kernel machines. Nevertheless, when analyzing non-psd data, various aspects of
the data always need to be considered, especially the relevance of the negative por-
tions. The results in this section clearly show that the advanced shift works particularly
well when the negative eigenvalues possess a considerable contribution to the eigen-
spectrum. Additionally, due to the low-rank approximation as preprocessing step, the
structure of the eigenvalues is preserved.

134 M. Münch et al.

5 Conclusions

In this paper, we discussed a recently proposed eigenvalue correction method for non-
metric proximity data, referred to as advanced shift. In particular, we highlighted how
indefinite data is transformed into positive semi-definiteness while simultaneously pre-
serving large parts of the eigenspectrum. Standard correction methods and their impact
on the eigenspectrum were shown as well as their major limitations, advantages and dis-
advantages. Surprisingly, the classic shift correction is frequently recommended in the
literature suggesting the simple application of a sufficiently high offset to cure the indef-
initeness problems. The associated destruction of the eigenspectrum due to shifting all
eigenvalues - including those with small or zero contribution - is frequently neglected.

Contrary to this, as a result of our approach, the overall structure of the eigenvalues
is preserved: eigenvalues with vanishing contribution before the shift remain irrelevant
after the shift as well as eigenvalues with a high contribution keep high relevance after
the correction. Moreover, the advanced shift performed superior to many other methods
not only in terms of retaining the eigenspectrum, but also in our experimental setup. We
analyzed the effectiveness of the advanced shift on a broad spectrum of classification
problems from indefinite learning. In combination with the low-rank approximation,
our approach performed competitive, in most cases considerable better compared to
other methods.

In future work, further matrix approximation techniques will be analyzed together
with the advanced shift. Also unsupervised learning tasks are of interest as further
research.

Acknowledgments. At first, we would like to thank Michael Biehl (University of Groningen) for
useful discussions, proofreading and supporting work in the initial conference publication [37].
We also thank Gaelle Bonnet-Loosli for providing support with indefinite learning and R. Duin,
Delft University for various support with DisTools and PRTools[12]. We would like to thank
Dr. Markus Kostrzewa and Dr. Thomas Maier for providing the Vibrio data set and expertise
regarding the biotyping approach and Dr. Katrin Sparbier for discussions about the SwissProt
data (all Bruker Corp.).

A related conference publication by the same authors was published at the 9th International
Conference on Pattern Recognition Applications and Method (ICPRAM2020) (see [37]) - copy-
right related material is not affected.

References

1. Alabdulmohsin, I.M., Cissé, M., Gao, X., Zhang, X.: Large margin classification with indef-
inite similarities. Mach. Learn. 103(2), 215–237 (2016)

2. Azizov, T.Y., Iokhvidov, I.S.: Linear operators in spaces with indefinite metric and their
applications. J. Sov. Math. 15, 438–490 (1981)

3. Balcan, M.F., Blum, A., Srebro, N.: A theory of learning with similarity functions. Mach.
Learn. 72(1–2), 89–112 (2008)

4. Barbuddhe, S.B., et al.: Rapid identification and typing of listeria species by matrix-assisted
laser desorption ionization-time of flight mass spectrometry. Appl. Environ. Microbiol.
74(17), 5402–5407 (2008)

Encoding of Indefinite Proximity Data 135

5. Biehl, M., Bunte, K., Schneider, P.: Analysis of flow cytometry data by matrix relevance
learning vector quantization. PLoS One 8, e59401 (2013)

6. Boeckmann, B., et al.: The SWISS-PROT protein knowledgebase and its supplement
TrEMBL in 2003. Nucleic Acids Res. 31, 365–370 (2003)

7. Chen, H., Tino, P., Yao, X.: Probabilistic classification vector machines. IEEE Trans. Neural
Netw. 20(6), 901–914 (2009)

8. Chen, Y., Garcia, E., Gupta, M., Rahimi, A., Cazzanti, L.: Similarity-based classification:
concepts and algorithms. J. Mach. Learn. Res. 10, 747–776 (2009)

9. Cichocki, A., Amari, S.I.: Families of alpha- beta- and gamma-divergences: flexible and
robust measures of similarities. Entropy 12(6), 1532–1568 (2010)

10. Cilibrasi, R., Vitányi, P.M.B.: Clustering by compression. IEEE Trans. Inf. Theory 51(4),
1523–1545 (2005)

11. Dubuisson, M.P., Jain, A.: A modified hausdorff distance for object matching. In: Proceed-
ings of the 12th IAPR International Conference on Pattern Recognition, Conference A: Com-
puter Vision & Image Processing, vol. 1, pp. 566–568, October 1994

12. Duin, R.P.: PRTools, March 2012. http://www.prtools.org
13. Duin, R.P.W., P ↪ekalska, E.: Non-euclidean dissimilarities: causes and informativeness. In:

Hancock, E.R., Wilson, R.C., Windeatt, T., Ulusoy, I., Escolano, F. (eds.) SSPR /SPR 2010.
LNCS, vol. 6218, pp. 324–333. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-14980-1 31

14. Figueras, J.: Morgan revisited. J. Chem. Inf. Comput. Sci. 33, 717–718 (1993)
15. Filippone, M.: Dealing with non-metric dissimilarities in fuzzy central clustering algorithms.

Int. J. Approx. Reasoning 50(2), 363–384 (2009)
16. Gasteiger, E., Gattiker, A., Hoogland, C., Ivanyi, I., Appel, R., Bairoch, A.: ExPASy: the

proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res. 31, 3784–
3788 (2003)

17. Gisbrecht, A., Schleif, F.: Metric and non-metric proximity transformations at linear costs.
Neurocomputing 167, 643–657 (2015)

18. Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016)
19. Graepel, T., Obermayer, K.: A stochastic self-organizing map for proximity data. Neural

Comput. 11(1), 139–155 (1999)
20. Gusfield, D.: Algorithms on Strings, Trees, and Sequences: Computer Science and Compu-

tational Biology. Cambridge University Press, Cambridge (1997)
21. Haasdonk, B.: Feature space interpretation of SVMs with indefinite kernels. IEEE TPAMI

27(4), 482–492 (2005)
22. Harol, A., P ↪ekalska, E., Verzakov, S., Duin, R.P.W.: Augmented embedding of dissimilarity

data into (pseudo-)euclidean spaces. In: Yeung, D.-Y., Kwok, J.T., Fred, A., Roli, F., de
Ridder, D. (eds.) SSPR /SPR 2006. LNCS, vol. 4109, pp. 613–621. Springer, Heidelberg
(2006). https://doi.org/10.1007/11815921 67

23. Higham, N.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra
Appl. 103(C), 103–118 (1988)

24. Hofmann, T., Buhmann, J.M.: Pairwise data clustering by deterministic annealing. IEEE
Trans. Pattern Anal. Mach. Intell. 19(1), 1–14 (1997)

25. Huang, R., et al.: Tox21challenge to build predictive models of nuclear receptor and stress
response pathways as mediated by exposure to environmental chemicals and drugs. Front.
Environ. Sci. 3, 85 (2016)

26. Jain, A., Zongker, D.: Representation and recognition of handwritten digits using deformable
templates. IEEE TPAMI 19(12), 1386–1391 (1997)

27. Kar, P., Jain, P.: Supervised learning with similarity functions. In: Proceedings of Advances
in Neural Information Processing Systems, 26th Annual Conference on Neural Information
Processing Systems, Lake Tahoe, Nevada, United States, vol. 25, pp. 215–223 (2012)

http://www.prtools.org
https://doi.org/10.1007/978-3-642-14980-1_31
https://doi.org/10.1007/978-3-642-14980-1_31
https://doi.org/10.1007/11815921_67

136 M. Münch et al.

28. Kohonen, T., Somervuo, P.: How to make large self-organizing maps for nonvectorial data.
Neural Netw. 15(8–9), 945–952 (2002)

29. Laub, J.: Non-metric pairwise proximity data. Ph.D. thesis, TU Berlin (2004)
30. Lee, J., Verleysen, M.: Generalizations of the Lp norm for time series and its application to

self-organizing maps. In: Cottrell, M. (ed.) 5th Workshop on Self-Organizing Maps, vol. 1,
pp. 733–740 (2005)

31. Ling, H., Jacobs, D.W.: Using the inner-distance for classification of articulated shapes. In:
CVPR 2005, San Diego, CA, USA, pp. 719–726. IEEE Computer Society (2005)

32. Loosli, G.: TrIK-SVM: an alternative decomposition for kernel methods in Krein spaces. In:
Verleysen, M. (ed.) In Proceedings of the 27th European Symposium on Artificial Neural
Networks (ESANN) 2019, pp. 79–94. d-side publications, Evere (2019)

33. Loosli, G., Canu, S., Ong, C.S.: Learning SVM in Krein spaces. IEEE Trans. Pattern Anal.
Mach. Intell. 38(6), 1204–1216 (2016)

34. Luss, R., d’Aspremont, A.: Support vector machine classification with indefinite kernels.
Math. Program. Comput. 1(2–3), 97–118 (2009)

35. Maier, T., Klebel, S., Renner, U., Kostrzewa, M.: Fast and reliable MALDI-TOF MS-based
microorganism identification. Nature Methods 3, 1–2 (2006)

36. Mises, R.V., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsaufloesung.
ZAMM - J. Appl. Math. Mech. / Zeitschrift für Angewandte Mathematik und Mechanik
9(2), 152–164 (1929)

37. Münch, M., Raab., C., Biehl., M., Schleif., F.: Structure preserving encoding of non-
euclidean similarity data. In: Proceedings of the 9th International Conference on Pattern
Recognition Applications and Methods, ICPRAM, vol. 1, pp. 43–51. INSTICC, SciTePress
(2020)

38. Mokbel, B.: Dissimilarity-based learning for complex data. Ph.D. thesis, University of Biele-
feld (2016)

39. Neuhaus, M., Bunke, H.: Edit distance based kernel functions for structural pattern classifi-
cation. Pattern Recogn. 39(10), 1852–1863 (2006)

40. Oglic, D., Gärtner, T.: Scalable learning in reproducing kernel Krein spaces. In: Proceedings
of the 36th International Conference on Machine Learning, ICML 2019, 9–15 June 2019,
Long Beach, California, USA, pp. 4912–4921 (2019)

41. Pekalska, E., Duin, R.: The Dissimilarity Representation for Pattern Recognition. World Sci-
entific, Singapore (2005)

42. P ↪ekalska, E., Harol, A., Duin, R.P.W., Spillmann, B., Bunke, H.: Non-euclidean or non-
metric measures can be informative. In: Yeung, D.-Y., Kwok, J.T., Fred, A., Roli, F., de
Ridder, D. (eds.) SSPR /SPR 2006. LNCS, vol. 4109, pp. 871–880. Springer, Heidelberg
(2006). https://doi.org/10.1007/11815921 96

43. Pekalska, E., Paclı́k, P., Duin, R.P.W.: A generalized kernel approach to dissimilarity-based
classification. J. Mach. Learn. Res. 2, 175–211 (2001)

44. Platt, J.C.: Fast training of support vector machines using sequential minimal optimization.
In: Advances in Kernel Methods: Support Vector Learning, pp. 185–208. MIT Press, Cam-
bridge (1999)

45. Ralaivola, L., Swamidass, S.J., Saigo, H., Baldi, P.: Graph kernels for chemical informatics.
Neural Netw. 18(8), 1093–1110 (2005)

46. Roth, V., Laub, J., Buhmann, J.M., Müller, K.R.: Going metric: denoising pairwise data. In:
NIPS, pp. 817–824 (2002)

47. Sakoe, H., Chiba, S.: Dynamic programming algorithm optimization for spoken word recog-
nition. IEEE Trans. Signal Process. 26(1), 43–49 (1978)

48. Saralajew, S., Villmann, T.: Adaptive tangent distances in generalized learning vector quan-
tization for transformation and distortion invariant classification learning. In: IJCNN 2016,
Vancouver, BC, Canada, 2016, pp. 2672–2679 (2016)

https://doi.org/10.1007/11815921_96

Encoding of Indefinite Proximity Data 137

49. Scheirer, W.J., Wilber, M.J., Eckmann, M., Boult, T.E.: Good recognition is non-metric.
Pattern Recogn. 47(8), 2721–2731 (2014)

50. Schleif, F., Raab, C., Tiño, P.: Sparsification of core set models in non-metric supervised
learning. Pattern Recognit. Lett. 129, 1–7 (2020)

51. Schleif, F., Tiño, P.: Indefinite proximity learning: a review. Neural Comput. 27(10), 2039–
2096 (2015)

52. Schleif, F., Tiño, P.: Indefinite core vector machine. Pattern Recogn. 71, 187–195 (2017)
53. Shawe-Taylor, J., Cristianini, N.: Kernel Methods for Pattern Analysis and Discovery. Cam-

bridge University Press, Cambridge (2004)
54. Sidiropoulos, A., et al.: Approximation algorithms for low-distortion embeddings into low-

dimensional spaces. SIAM J. Discret. Math. 33(1), 454–473 (2019)
55. Strassen, V.: Gaussian elimination is not optimal. Numerische Mathematik 13(4), 354–356

(1969)
56. Yanardag, P., Vishwanathan, S.V.N.: Deep graph kernels. In: Proceedings of the 21th ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining, Sydney,
NSW, Australia, 10–13 August 2015, pp. 1365–1374. ACM (2015)

57. Zhang, J., Zhu, M., Qian, Y.: protein2vec: predicting protein-protein interactions based on
LSTM. IEEE/ACM Trans. Comput. Biol. Bioinf. 1 (2020)

Author Index

Ansuini, Alessio 87
Aswath, Anusha 13

Caceres, Maximo Larry Lopez 64

Diez, Yago 64

Kechagias, Konstantinos 27
Kentsch, Sarah 64

Medvet, Eric 87
Moritake, Koma 64
Münch, Maximilian 112

Nguyen, Ha Trang 64

Pellegrino, Felice Andrea 87
Perantonis, Stavros 27

Pikramenos, George 27
Ponkumar, Senthil 1
Psallidas, Theodoros 27

Raab, Christoph 112
Rameshan, Renu M. 1, 13
Roure, Ferran 64

Schleif, Frank-Michael 112
Sengar, Vartika 1
Serrano, Daniel 64
Smyrnis, Georgios 27
Spyrou, Evaggelos 27

Valtonen Örnhag, Marcus 46

Zullich, Marco 87

	Preface
	Organization
	Contents
	End to End Deep Neural Network Classifier Design for Universal Sign Recognition
	1 Introduction
	2 Related Work
	3 Methodology
	4 Experimentation and Results
	5 Conclusion and Future Work
	References

	MaskADNet: MOTS Based on ADNet
	1 Introduction
	2 Related Work
	2.1 Multi-object Tracking
	2.2 Video Instance Segmentation
	2.3 Segmentation for Tracking
	2.4 Semi-automatic Segmentation

	3 Multi-object Tracking and Segmentation Using MaskADNet
	3.1 Baseline Method
	3.2 MaskADNet

	4 Results and Discussion
	4.1 Dataset Description
	4.2 Evaluation

	5 Conclusion
	References

	Dimensionality Reduction and Attention Mechanisms for Extracting Affective State from Sound Spectrograms
	1 Introduction
	2 Related Literature Review
	3 Methodology
	3.1 BoVW Representation Building
	3.2 Choosing Target Variables
	3.3 Temporal Structure Preserving Representation

	4 Experiment Details
	4.1 Dataset Description
	4.2 Experimental Procedure Description

	5 Discussion on Results
	6 Closing Remarks
	References

	Efficient Radial Distortion Correction for Planar Motion
	1 Introduction
	2 Related Work
	2.1 Homography Estimation
	2.2 Modelling Radial Distortion

	3 The General Planar Motion Model
	4 Polynomial Solvers
	4.1 A Non-minimal Relaxation (4 Point)
	4.2 Minimal Solver with Known Tilt (2 Point)

	5 Experiments
	5.1 Synthetic Data
	5.2 Numerical Stability
	5.3 Noise Sensitivity
	5.4 Image Stitching
	5.5 Application to Visual Odometry
	5.6 Application to Aerial Imagery

	6 Conclusions
	References

	A Preliminary Study on Tree-Top Detection and Deep Learning Classification Using Drone Image Mosaics of Japanese Mixed Forests
	1 Introduction and State of the Art
	1.1 State of Art

	2 Data Gathering, Annotation and Preprocessing
	2.1 Data Acquisition
	2.2 Data Processing and Annotation
	2.3 Challenges in Data and Limitations of This Study

	3 Materials and Methods
	3.1 Interest Region Extraction
	3.2 Tree Top Detection Algorithm
	3.3 Tree Top Classification

	4 Experiments
	4.1 Tree Top Detection
	4.2 Interest Region Extraction
	4.3 Tree Classification
	4.4 Time Considerations

	5 Conclusions
	References

	Investigating Similarity Metrics for Convolutional Neural Networks in the Case of Unstructured Pruning
	1 Introduction
	2 Related Work
	2.1 Techniques for DNN Pruning
	2.2 Comparisons Between Pruned and Unpruned DNNs

	3 Tools
	3.1 IMP
	3.2 Similarity Metrics for Neural Networks Data Representations
	3.3 Kernel-Based Metrics

	4 Methods
	4.1 Datasets
	4.2 CNN Architectures and Optimizers Used

	5 Results
	5.1 Test-Set Accuracy
	5.2 Layer-Wise Pruned vs. Unpruned Similarity
	5.3 ResNet_fast

	6 Discussion
	6.1 Takeaways from Results
	6.2 Comparing Output Layers
	6.3 Considerations on the Rotational Invariance of Similarity Metrics for Convolutional Layers

	7 Conclusions and Future Work
	References

	Encoding of Indefinite Proximity Data: A Structure Preserving Perspective
	1 Introduction
	2 Non-metric Proximity-Based Learning
	2.1 Notation and Basic Concepts
	2.2 Indefinite Proximities
	2.3 Eigenspectrum Corrections
	2.4 Limitations

	3 Eigenvalue Modification via Nullspace Integrated Shifting
	3.1 Advanced Shift Correction
	3.2 Determination and Approximation of the Shift Parameter
	3.3 Out-of-Sample Extension for New Test Points
	3.4 Structure Preservation of the Eigenspectrum

	4 Experiments
	4.1 Datasets
	4.2 Results

	5 Conclusions
	References

	Author Index

