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Abstract. State-of-the-art classifiers rely heavily on large-scale
datasets, such as ImageNet, JFT-300M, MSCOCO, Open Images, etc.
Besides, the performance may decrease significantly because of insuf-
ficient learning on a handful of samples. We present Visual Inductive
Priors Framework (VIPF), a framework that can learn classifiers from
scratch. VIPF can maximize the effectiveness of limited data. In this
work, we propose a novel neural network architecture: DSK-net, which
is very effective in training from small data sets. With more discrimina-
tive feature extracted from DSK-net, overfitting of network is alleviated.
Furthermore, a loss function based on positive class as well as an induced
hierarchy are also applied to further improve the VIPF’s capability of
learning from scratch. Finally, we won the 1st Place in VIPriors image
classification competition.
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1 Introduction

Convolutional Neural Networks (CNNs) have achieved state-of-the-art perfor-
mance in image classification, object detection, semantic segmentation, etc.
With the appearance of AlexNet [14], VGG [18], Inception [12,19–21], ResNet
[9], EfficientNet [22], ResNeSt [29], etc., the top-1 accuracy on ImageNet has
been increased from 62.5% (AlexNet) to 84.5% (ResNeSt-269). Besides different
network backbones, there are also many plug-and-play modules which can sig-
nificantly improve accuracy, such as SE (Squeeze-and-Excitation) [11], CBAM
(Convolutional Block Attention Module) [26], ECA (Efficient Channel Atten-
tion) [24], etc.

However, due to the limitation of label data, the performance of CNN is
greatly limited. Pre-trained models are the most common solution that can get
a fine result because of the prior knowledge. But there are only a few pre-trained
models which are fixed architectures and proposed like Inception, ResNet, Effi-
cientNet, etc. For training from scratch on VIPriors classification dataset which
has only 50 training samples per class, the effectiveness of learning plays an
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important role. Effective and sufficient augment strategies are necessary, such
as rand erasing [32], Mixup [30], CutMix [28], Cutout [7], AutoAugment [5],
RandAugment [6], etc. On the other hand, models would overfit easily with
little training data, so it is crucial to lighten the overfitting with appropriate
regularization.

In this work, a novel network architecture Dual Selective Kernel network
(DSK-net) is proposed to improve the effectiveness on small scale datasets. For
more data-efficient learning, positive class classification loss and intra-class com-
pactness loss are applied to enhance discriminative power of the deeply learned
features. An induced hierarchy is used which is easier for models to learn from
scratch. Methods are evaluated on VIPriors Image Classification dataset. The
dataset is derived from ImageNet and contains 50 images per class for train-
ing and testing. Experimental results show that our methods achieve the best
performance on VIPriors classification dataset.

2 Related Works

2.1 Data Augmentation

Augmentation is an effective way to improve CNNs’ performance especially in
the case of insufficient data. Mixup [30] trains a model on convex combinations
of pairs of examples and their labels together. Cutout [7] randomly erases square
regions on input images during training. CutMix [28] cuts and pastes patches
among training images where the training labels are also mixed proportionally
to the area of patches. It can efficiently make use of training pixels and retain the
regularization effect of regional dropout. GridMask [3] drops pixels on the input
images with multiple squares and different ratios. Recently, with the emergence
of AutoML, network learning strategies also can be searched from data. Auto-
Augmentation [5] is a series of augmentation operation strategies searched on
ImageNet which needs a huge space for searching. Hence RandAugmentation [6]
proposes a simplified search space which has less computational expense.

2.2 Translation Invariance in CNNs

It is generally known that CNNs are not shift-invariant. A small shift or trans-
lation of input will result in a quite different output. To reduce the influence of
translation, several augmentation operations are often used such as scaling, rota-
tion and reflection [2,4,8,17,27]. [31] integrates low-pass filtering to anti-alias
which is a common signal processing module. [13] proposes a full convolution
architecture by removing spatial location as feature which improves equivari-
ance and invariance of the inductive convolutional prior.

2.3 Important Feature Learning

For image classification, locating and recognizing the discriminative feature is
the key to a better performance. And most of discriminative feature extrac-
tion modules are based on attention mechanisms which is inspired by human
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brain neural units. SE (Squeeze-and-Excitation) [11] and ECA [24] are channel
attention architectures. Channel and spatial attention modules are applied in
CBAM [26]. Inspired by adaptive field sizes of neurons, [15] proposes Selective
Kernel (SK) convolution which is based on soft-attention manner to improve fea-
ture extraction efficiency. Except attention architecture, loss function can also
help model learn more discriminative feature. Center loss [25] is implemented by
increasing inter-class dispersion and intra-class compactness. It learns centers
form deep features of each class, and then penalizes the distances between deep
features and their corresponding class centers.

3 Proposed Method

To be more data-efficient, firstly, a 3-branched network called Dual Selective
Kernel (DSK) network is proposed in Fig. 1. DSK has the advantages of discrim-
inative feature extraction, translation invariant and regularization. Secondly, a
composite loss function is designed to improve feature discrimination. It helps
models not only classify correctly but also increase the diversity of different
classes.

Fig. 1. Dual selective kernel residual block.

3.1 Dual Selective Kernel Network

Discriminative Feature Extraction. To adjust the receptive fields of neu-
rons automatically, selective kernel convolution [15] is added into residual block.
For any given feature map Xi ∈ R

H×W×C , Xi is respectively conducted
by convolutions of kernel size 3 and 5. Then two transforms are conducted:
̂F :Xi → ̂U ∈ R

H×W×C and ˜F :Xi → ˜U ∈ R
H×W×C . Both ̂F and ˜F are com-

posed with depthwise convolution, Batch Normalization and ReLU. Feature U is
a element-wise sum of ̂U and ˜U . For U , global average pooling is used for infor-
mation embedding. Further, a compact feature s ∈ R

C is created by passing
feature embedding to fully connected layer for squeeze. Then Batch Normaliza-
tion, ReLU and another two fully connected layers are applied for different kernel
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excitation. Finally, a soft attention is conducted to select information in different
spatial scales. The weights ω̂ and ω̃ for attention is calculated by a channel-wise
softmax operation of per channel between a and b. The final feature map is
obtained by applying attention weights to feature ̂U and ˜U :

V = ω̂ · ̂U + ω̃ · ˜U (1)

Translation Invariant. The reducing spatial resolution operations in CNNs
including max pooling, average pooling and strided convolution are harmful to
shift-equivariance. Blur pool [31] is an anti-aliased architecture which is com-
patible with above architectures components. For example, max pooling with
stride = 2 in CNNs will be split into max pooling with stride = 1 and blur pool
with stride = 2. Strided convolution with activation function will be split into
convolution with stride = 1, activation function and blur pool. As for blur pool
kernel, it has several anti-aliasing filters from size 2 × 2 to 5 × 5 with increasing
smoothing. In DSK, 3×3 filter is applied in max pooling and strided convolution.

Regularization. Like data augmentation techniques applied to input data,
it is reasonable to apply corresponding techniques to representation branch in
residual block. Let Xi denotes the input tensor of residual block i. W1

i and W2
i

denote weights associated with the two residual units. F denotes the residual
function and Xi+1 denotes the outputs from i. The 3-branch architecture can be
represented as:

Xi+1 = Xi + λiF(Xi,W1
i ) + (1 − λi)F(Xi,W2

i ) (2)

When forward and backward during training, λi is a random value of 0 or 1,
which means that only one of branch1 and branch2 will be randomly selected.
And λi is 0.5 for inference, which means that half of each branch’s output will
be used for inference.

3.2 Loss Function

Categorical cross-entropy (CE) loss after softmax is widely used in multi-class
classification. But for VIPriors classification dataset, CE is suboptimal. Because
it forces models to only focus on training image and ignore the compactness of
intra-class. In this section, several loss functions will be discussed and a combined
loss is proposed as Eq. 3 for a better performance.

L = αLPCL + βLCL + γLTSL (3)

Positive Class Loss. CE loss is showed in Eq. 4. Let p represents the output
of a model and l represents one-hot labels. CE not only directs model to classify
the ground truth class correctly but also forces the prediction of other classes as
low as possible.

LCE = − 1
N

∑

(l ∗ log(p) + (1 − l) ∗ log(1 − p)) (4)
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But is it suitable to use a loss on a small dataset in which the number of classes is
far greater than the number of samples per class? Additionally, [16] proves that
there are many label errors in ImageNet including actual multi-label images but
only labeled with singe class label. We have reasons to believe that there is the
same question on VIProirs classification dataset. Based on the above, making
models only focus on ground truth label may be more beneficial during learning.
Consequently, the positive class loss (PCL) is proposed as:

LPCL =
1
N

∑

(−l ∗ log(p) + (1 − cos(l, p))) (5)

PCL has two parts: the former is from CE, the latter is cosine loss [1].

Center Loss. Although PCL can direct model for a better learning, it is easily
overfitting with less data. Therefore, center loss (CL) [25] in Eq. 6 is used for
more discriminative feature extraction. Let xi ∈ Rd denote the ith deep feature
belonging to the yith class. The yith class center of deep features cyi

∈ Rd is
computed by averaging yith class features of the corresponding classes in each
iteration.

LCL =
1
2

∑

i

||xi − cyi
||22 (6)

Tree Supervision Loss. The semantic relations of classes in VIPriors can be
induced as a hierarchical tree. Child nodes of the tree represent 1000 classes in
the dataset and parent nodes represent superclasses such as animal, vehicle and
etc. For every parent node, its child nodes often have some commonalities which
is helpful for classification. Inspired by Neural-Backed Decision Trees (NBDT)
[23], a hierarchical architecture is defined according to the semantic relationship
based on 1000 classes. Tree supervision loss (TSL) is used for model training.
Let x ∈ Rd denotes featurized sample, wr→i denotes weights of the path from
root nodes r to leaf node ni. TSL can be represented as:

LTSL = LCE([
∏

x ∗ wr→n1 ,
∏

x ∗ wr→n2 , ...], l) (7)

4 Experiments

4.1 Implementation Details

Following data augmentation methods are used in our models: random resize
and crop, random horizontal flip and CutMix (with a probability of 0.5). All
models are trained with 16 GPUs and 64 samples per CPU. In the training
stage, warm up with initial lr of 0.0001 in 5 epochs, cosine learning rate [10]
with initial lr of 0.1, dropout with probability of 0.2, weight decay of 0.0001 and
label smooth are used for learning. For coefficients in Eq. 6, α, γ and β are set to
1, 0.0005 and 1. In early time of the competition, we trained model on training
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set for methods attempt and verification. And in the final stage, we trained
models on both training set and most of validation set. Only a little samples
in validation set were reserved for validation. For final prediction, Test Time
Augmentation (TTA) with 10-crop was used. Additionally, experimental results
prove that increasing training epochs from 90 to 360 improve model accuracy
by 5.3%.

4.2 Results

Table 1 shows the results for ResneXt, D-ResNeXt, SK-ResNeXt, DSK-ResNeXt,
PSL and CL on validation set. Models are trained with 360 epochs.

Table 1. Performance of DSK-net, PSL and CL on validation set.

top-1 acc. (%)

ResNeXt50 32x4d 52.01

D-ResNeXt50 32x4d 54.45

SK-ResNeXt50 32x4d without anti-aliasing 54.06

SK-ResNeXt50 32x4d 54.37

DSK-ResNeXt50 32x4d 55.97

DSK-ResNeXt50 32x4d+PSL 56.48

DSK-ResNeXt50 32x4d+PSL+CL 57.51

Table 2 shows results of TSL for EfficientNet and ResNeSt in the final stage.
Models are trained with 720 epochs and tested on partial validation set.

Table 2. The experiment results of TSL.

top-1 acc. (%)

EfficientNet-b3 62.42

EfficientNet-b3+TSL 63.15

EfficientNet-b5 65.43

EfficientNet-b5+TSL 65.85

EfficientNet-b6 65.67

EfficientNet-b6+TSL 66.26

ResNeSt-101(320x320) 65.96

ResNeSt-101(320x320)+TSL 67.15

ResNeSt-200(320x320) 67.40

ResNeSt-200(320x320)+TSL 67.81
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Table 3 shows the results of DSK-net in the final stage. Models are trained
with 540 epochs and tested on partial validation set. 69.59% is the best single
model performance we achieved.

Table 3. The experiment results of DSK-net.

top-1 acc. (%)

DSK-ResNeXt50 32x4d(224x224) 67.35

DSK-ResNeXt50 32x4d(320x320) 69.20

DSK-ResNeXt101 32x4d(224x224) 68.02

DSK-ResNeXt101 32x4d(320x320) 69.59

4.3 Other Tricks

Results for CutMix showed in Table 4 indicate that the global semantic infor-
mation and local area feature are equally import.

Table 4. The experiment results on validation set for CutMix. Input size is 320× 320,
training epoch is 90.

top-1 acc. (%)

ResNeXt50 32x4d 45.23

ResNeXt50 32x4d+CutMix with prob = 0.3 45.73

ResNeXt50 32x4d+CutMix with prob = 0.5 46.25

ResNeXt50 32x4d+CutMix with prob = 0.7 45.85

ResNeXt50 32x4d+CutMix with prob = 1.0 44.35

Results of label smooth, dropout and dual pool are showed in Table 5:

Table 5. The experiment results of label smooth, dropout and dual pool on validation
set. Models are trained with 360 epochs.

top-1 acc. (%)

ResNeXt50 32x4d 50.56

ResNeXt50 32x4d+dual pool 50.87

ResNeXt50 32x4d+label smooth 50.70

ResNeXt50 32x4d+dropout with prob=0.2 50.90

ResNeXt50 32x4d+dropout with prob=0.4 50.84

ResNeXt50 32x4d+dual pool+label smooth+dropout with prob=0.2 51.82
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4.4 Ensembling

For a better performance, we ensembled predictions of above methods in total
16 models including EfficientNet-b5, EfficientNet-b6, ResNeSt-101, ResNest-200,
DSK-ResNeXt50, DSK-ResNeXt101. Finally, a weighted score average method
was used that the weight of higher performance models was 3, the rest was 1.
Finally, we got the score of 73.08% on test set.

Figure 2 shows an overview of methods and appearances. No external
image/video data or pre-trained models were used throughout the competition.

Fig. 2. Performance overview.

5 Conclusions

In this paper, we discuss and explore data-efficient learning, visual inductive
priors and training from scratch. In VIPF, we propose a novel architecture
called DSK-net, which is robust to translation. Sufficient experiment results
fully proved that DSK-net learns efficiently from insufficient data and outper-
formed EfficientNet, ResNeSt on VIPriors classification dataset. Then a loss
based on positive class is applied for model constraint. An induced hierarchy is
used which can direct models to learn discriminatively and easily. Experimental
results show that VIPF we proposed is effective. Finally we won the 1st place in
VIPriors image classification competition.
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