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Abstract. Convolutional Neural Networks (CNNs) are prone to overfit
small training datasets. We present a novel two-phase pipeline that lever-
ages self-supervised learning and knowledge distillation to improve the
generalization ability of CNN models for image classification under the
data-deficient setting. The first phase is to learn a teacher model which
possesses rich and generalizable visual representations via self-supervised
learning, and the second phase is to distill the representations into a stu-
dent model in a self-distillation manner, and meanwhile fine-tune the
student model for the image classification task. We also propose a novel
margin loss for the self-supervised contrastive learning proxy task to bet-
ter learn the representation under the data-deficient scenario. Together
with other tricks, we achieve competitive performance in the VIPriors
image classification challenge.
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1 Introduction

Convolutional Neural Networks (CNNs) have achieved breakthroughs in image
classification [8] via supervised training on large-scale datasets, e.g., ImageNet
[4]. However, when the dataset is small, the over-parametrized CNNs tend to
simply memorize the dataset and can not generalize well to unseen data [21]. To
alleviate this over-fitting problem, several regularization techniques have been
proposed, such as Dropout [15], BatchNorm [11]. In addition, some works seek to
combat with over-fitting by re-designing the CNN building blocks to endow the
model with some encouraging properties (e.g., translation invariance [12] and
shift-invariance [22]).

Recently, self-supervised learning has shown a great potential of learning use-
ful representation from data without external label information. In particular,
the contrastive learning methods [1,7] have demonstrated advantages over other
self-supervised learning methods in learning better transferable representations
for downstream tasks. Compared to supervised learning, representations learned
by self-supervised learning are unbiased to image labels, which can effectively
prevent the model from over-fitting the patterns of any object category. Fur-
thermore, the data augmentation in modern contrastive learning [1] typically
c© Springer Nature Switzerland AG 2020
A. Bartoli and A. Fusiello (Eds.): ECCV 2020 Workshops, LNCS 12536, pp. 422–429, 2020.
https://doi.org/10.1007/978-3-030-66096-3_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-66096-3_29&domain=pdf
https://doi.org/10.1007/978-3-030-66096-3_29


Distilling Visual Priors from Self-Supervised Learning 423

involves diverse transformation strategies, which significantly differ from those
used by supervised learning. This may also suggest that contrastive learning can
better capture the diversity of the data than supervised learning.

In this paper, we go one step further by exploring the capability of con-
trastive learning under the data-deficient setting. Our key motivation lies in the
realization that the label-unbiased and highly expressive representations learned
by self-supervised learning can largely prevent the model from over-fitting the
small training dataset. Specifically, we design a new two-phase pipeline for data-
deficient image classification. The first phase is to utilize self-supervised con-
trastive learning as a proxy task for learning useful representations, which we
regard as visual priors before using the image labels to train a model in a super-
vised manner. The second phase is use the weight obtained from the first phase
as the start point, and leverage the label information to further fine-tune the
model to perform classification.

In principle, self-supervised pre-training is an intuitive approach for pre-
venting over-fitting when the labeled data are scarce, yet constructing the pre-
training and fine-tuning pipeline properly is critical for good results. Specifically,
there are two problems to be solved. First, the common practice in self-supervised
learning is to obtain a memory bank for negative sampling. While MoCo [7] has
demonstrated accuracy gains with increased bank size, the maximum bank size,
however, is limited in the data-deficient setting. To address this issue, we pro-
pose a margin loss that can reduce the bank size while maintaining the same
performance. We hope that this method can be helpful for fast experiments
and evaluation. Second, directly fine-tuning the model on a small dataset still
faces the risk of over-fitting, based on the observation that fine-tuning a lin-
ear classifier on top of the pre-train representation can yield a good result. We
proposed to utilize a recent published feature distillation method [9] to perform
self-distillation between the pre-trained teacher model and a student model. This
self-distillation module plays a role of regularizing the model from forgetting the
visual priors learned from the contrastive learning phase, and thus can further
prevent the model from over-fitting on the small dataset.

2 Related Works

Self-supervised learning focus on how to obtain good representations of data
from heuristically designed proxy tasks, such as image colorization [23], tracking
objects in videos [17], de-noising auto-encoders [16] and predicting image rota-
tions [6]. Recent works using contrastive learning objectives [18] have achieved
remarkable performance, among which MoCo [2,7] is the first self-supervised
method that outperforms supervised pre-training methods on multiple down-
stream tasks. In SimCLR [1], the authors show that the augmentation policy
used by self-supervised method is quite different from the supervised methods,
and is often harder. This phenomenon suggests that the self-supervised learned
representations can be more rich and diverse than the supervised variants.
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Knowledge distillation aims to distill useful knowledge or representation from
a teacher model to a student model [10]. Original knowledge distillation uses
the predicted logits to transfer knowledge from teacher to student [10]. Then,
some works found that transferring the knowledge conveyed by the feature map
from the teacher to student can lead to better performance [14,20]. Heo et al.[9]
provided a overhaul study of how to effectively distill knowledge from the feature
map, which also inspires our design for knowledge distillation. Self-distillation
uses the same model for both teacher and student [5], which has been shown to
improve the performance of the model. We utilize the self-distillation method as
a regulation term to prevent our model from over-fitting.

3 Method

Our method contains two phases, the first phase is to use the recently published
MoCo v2 [2] to pre-train the model on the given dataset to obtain good repre-
sentations. The learned representations can be considered as visual priors before
using the label information. The second phase is to initialize both the teacher and
student model used in the self-distillation process with the pre-trained weight.
The weight of the teacher is frozen, and the student is updated using a combina-
tion of the classification loss and the overhaul-feature-distillation (OFD) [9] loss
from the teacher. As a result, the student model is regularized by the represen-
tation from the teacher when performing the classification task. The two phases
are visualized in Fig. 1.
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Fig. 1. The two phases of our proposed method. The first phase is to construct a
useful visual prior with self-supervised contrastive learning, and the second phase is to
perform self-distillation on the pre-trained checkpoint. The student model is fine-tuned
with a distillation loss and a classification loss, while the teacher model is frozen.
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3.1 Phase-1: Pre-Train with Self-Supervised Learning

The original loss used by MoCo is as follows:

Lmoco = − log
[

exp (q · k+/τ)
exp (q · k+/τ) +

∑
k− exp (q · k−/τ)

]
, (1)

where q and k+ is a positive pair (different views of the same image) sampled
from the given dataset D, and k− are negative examples (different images). As
shown in Fig. 1, MoCo uses a momentum encoder θk to encode all the k and put
them in a queue for negative sampling, the momentum encoder is a momentum
average of the encoder θq:

θk ← ηθk + (1 − η)θq. (2)

As shown in MoCo [7], the size of the negative sampling queue is crucial to
the performance of the learned representation. In a data-deficient dataset, the
maximum size of the queue is limited, we propose to add a margin to the original
loss function to help the model obtain a larger margin between data samples thus
help the model obtain a similar result with fewer negative examples.

Lmargin = − log
[

exp ((q · k+ − m) /τ)
exp ((q · k+ − m) /τ) +

∑
k− exp (q · k−/τ)

]
. (3)

3.2 Phase-2: Self-Distill on Labeled Dataset

The self-supervised trained checkpoint from phase-1 is then used to initialize
the teacher and student for fine-tuning on the whole dataset with labels. We
choose to use OFD [9] to distill the visual priors from teacher to student. The
distillation process can be seen as a regulation to prevent the student from over-
fitting the small train dataset and give the student a more diversed representation
for classification.

The distillation loss can be formulated as follows:

Ldistill =
∑
F

dp (StopGrad (Ft) , r(Fs)) , (4)

where Ft and Fs stands for the feature map of the teacher and student model
respectively, the StopGrad means the weight of the teacher will not be updated
by gradient descent, the dp stands for a distance metric, r is a connector function
to transform the feature from the student to the teacher.

Along with a cross-entropy loss for classification:

Lce = − log p(y = i|x) , (5)

the final loss function for the student model is:

Lstu = Lce + λLdistill . (6)

The student model is then used for evaluation.
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4 Experiments

Dataset. Only the subset of the ImageNet [4] dataset given by the VIPrior
challenge is used for our experiments, no external data or pre-trained checkpoint
is used. The VIPrior challenge dataset contains 1,000 classes which is the same
with the original ImageNet [4], and is split into train, val and test splits, each
of the splits has 50 images for each class, resulting in a total of 150,000 images.
For comparison, we use the train split to train the model and test the model on
the validation split.

Implementation Details. For phase-1, we set the momentum η as 0.999 in
all the experiments as it yields better performance, and the size of the queue
is set to 4,096. The margin m in our proposed margin loss is set to be 0.4. We
train the model for 800 epochs in phase-1, the initial learning rate is set to 0.03
and the learning rate is dropped by 10x at epoch 120 and epoch 160. Other
hyperparameter is set to be the same with MoCo v2 [2],

For phase-2, the λ in Eq. 6 is set to 10−4. We also choose to use �2 distance
as the distance metric dp in Eq. 4. We train the model for 100 epochs in phase-2,
the initial learning rate is set to 0.1 and is dropped by 10x every 30 epochs.

Ablation Results. We first present the overall performance of our proposed
two phase pipeline, then show some ablation results.

As shown in Table 1, supervised training of ResNet50 [8] would lead to over-
fitting on the train split, thus the validation top-1 accuracy is low. By first
pre-training the model with the phase-1 of our pipeline, and fine-tuning a linear
classifier on top of the obtained feature representation [18], we can reach a 6.6
performance gain in top-1 accuracy. This indicates that the feature learned from
self-supervised learning contain more information and can generalize well on the
validation set. We also show that fine-tuning the full model from phase-1 can
reach better performance compared to only fine-tuning a linear classifier, which
indicates that the weight from phase-1 can also serve as a good initialization,
but the supervised training process may still cause the model to suffer from
over-fitting. Finally, by combining phase-1 and phase-2 together, our proposed
pipeline achieves 16.7 performance gain in top-1 accuracy over the supervised
baseline.

The Effect of Our Margin Loss. Table 2 shows that effect of the number
negative samples in contrastive learning loss, the original loss function used by
MoCo v2 [7] is sensitive to the number of negatives, the fewer negative, the lower
the linear classification result is. Our modified margin loss can help alleviate the
issue with a margin to help the model learn a larger margin between data points.
Thus leading to a more discriminative feature space. The experiments show that
our margin loss is less sensitive to the number negatives and can be used in a
data-deficient setting.
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Table 1. Training and Pre-training the model on the train split and evaluate the
performance on the validation split on the given dataset. ‘finetune fc’ stands for train
a linear classifier on top of the pretrained representation, ‘finetune’ stands for train the
weight of the whole model. Our proposed pipeline (Phase-1 + Phase-2) can have 16.7
performance gain in top-1 validation accuracy.

ResNet50 #Pretrain Epoch #Finetune Epoch Val Acc

Supervised Training - 100 27.9

Phase-1 + finetune fc 800 100 34.5

Phase-1 + finetune 800 100 39.4

Phase-1 + Phase-2 (Ours) 800 100 44.6

Table 2. The Val Acc means the linear classification accuracy obtained by fine-tune a
linear classifier on top of the learned representation. The original MoCo v2 is sensitive
to the number of negative, the performance drops drastically when number negatives
is small. Our modified margin loss is less sensitive to the number negatives, as shown
in the table, even has 16x less negatives the performance only drops 0.9.

#Neg Margin Val Acc

MoCo v2 [7] 4096 - 34.5

1024 - 32.1

256 - 29.1

Margin loss 4096 0.4 34.6

1024 0.4 34.2

256 0.4 33.7

Table 3. The tricks used in the competition, our final accuracy is 68.8 which is a
competitive result in the challenge. Our code will be made public. Results in this table
are obtain by train the model on the combination of train and validation splits.

#Pretrain Epoch #Finetune Epoch Test Acc

Phase-1 + Phase-2 800 100 47.2

+Input Resolution 448 800 100 54.8

+ResNeXt101 [19] 800 100 62.3

+Label-Smooth [13] 800 100 64.2

+Auto-Aug [3] 800 100 65.7

+TenCrop 800 100 66.2

+Ensemble two models 800 100 68.8

Competition Tricks. For better performance in the competition, we combine
the train and val split to train the model that generate the submission. Several
other tricks and stronger backbone models are used for better performance,
such as Auto-Augment [3], ResNeXt [19], label-smooth [13], TenCrop and model
ensemble. Detailed tricks are listed in Table 3.
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5 Conclusion

This paper proposes a novel two-phase pipeline for image classification using
CNNs under the data-deficient setting. The first phase is to learn a teacher model
which obtains a rich visual representation from the dataset using self-supervised
learning. The second phase is transfer this representation into a student model
in a self-distillation manner, meanwhile the student is fine-tuned for downstream
classification task. Experiments shows the effectiveness of our proposed method,
Combined with additional tricks, our method achieves a competitive result in
the VIPrior Image Classification Challenge.
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