
Minimum Defect Spline Multiwavelets
and Parallel Computing for Big Data
Compressing in Cyber-Physical Systems

Boris Shumilov

Abstract The author’s vision of the problems of mathematical modeling of cyber-
physical systems in transport as a three-level hierarchical structure, including envi-
ronmental sensors at the lower level, data processing centers (DPC) at the middle
level, and a single data storage center for developing management decisions at the
upper level is considered. Prospects for big data compressing based on Haar-like
multiwavelets of zero degree splines are explored. In contrast to the use of wavelet
transforms based on Hermitian spline-multiwavelets, the proposed approach does
not require the calculation of approximate values of derivatives. On the other hand,
the parallelization effect is not rigidly related to the degree of a spline. This can lead
to a significant acceleration of calculations due to parallel processing of themeasured
values by several (instead of one) filters. The results of numerical experiments are
given in comparison with the known analogs. The presented algorithm can be used
in the planning of road repairs, in the analysis of road accidents, in the processing of
applications of road users, etc.

Keywords Cyber-physical systems · Big data compressing · Zero degree splines ·
Haar-like multiwavelets · Parallel computing

1 Introduction

The implementation of plans to create “smart cities” as one of the most important
areas of the digital economy requires the priority development of transport infrastruc-
ture, ensuring the movement of people and goods within the city and adjacent terri-
tories [1]. Safe operation and maximum throughput of the resulting cyber-physical
system are possible provided that a diagnostic technology is created for transport
infrastructure facilities, including video-based road conditions [2]. The totality of
such devices forms a heterogeneous distributed system of artificial intelligence [3],
which should be enriched by some hierarchical structure, which would provide the
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Fig. 1 Block diagram of a cyber-physical urban traffic control system

distribution of tasks between devices, their interaction with the environment, and the
exchange of information under fundamental goals and settings (Fig. 1). This implies
the existence of protocols [4] for their joint work at the lower level of interaction,
as well as protocols for sharing in data processing centers (DPC) at the mid-level
and further for transfer to a single data center and development of management deci-
sions at the upper level to form a global cyber-physical urban traffic management
system as part of the concept of creating “smart cities”. It refers to the enormous
amount of structured, semi-structured, and unstructured data [5] that are exponen-
tially generated by high-performance applications in many domains: view data [6],
factor analysis, tomention a few.The difficulties are tremendously growing as applied
to mobile cyber-physical applications [7] and supporting Internet services [8] with
unmanned autonomous systems [9], as a result of which it is necessary to use the
multi-core capabilities of modern processors to parallelize computations [10].

The apparatus of wavelets been introduced by Grossman and Morlet in the
mid-80s of the last century in connection with the analysis of the properties of
seismic and acoustic signals [11] became the best in compression of non-stationary
signals providing a significant advantage over Fourier transform, since, in contrast
to wavelets, the basic Fourier functions (sines and cosines) do not decay at infinity.

The basis for constructing wavelets is the presence of a set of embedded approx-
imating spaces … Vj–1, Vj, Vj+1 … such that each basis function in Vj–1 can be
expressed as a linear combination of basic functions in Vj. In particular, splines—
smooth functions glued from pieces of polynomials of degree m on an embedded
sequence of grids—have this property. A spline defect is a difference between the
degreem and the smoothness of gluing adjacent pieces, and it is equal to the number of
basic functions for each node. For example, step functions, broken lines, and simple
cubic splines of smoothness C2 have a defect 1. Hermitian splines of odd degree m
have a defect (m+1)/2. The use of the wavelet basis at the stage of processing allows
revealing the spectral properties of the approximation spline.
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From the classical literature on the theory of wavelets, it is known that spline
wavelets of the first defect can be built on minimal support [0, 2m+1]—a rather large
length. Boundary wavelets have even larger supports. The reduction of supports
is achieved by the construction of Hermitian spline multi-wavelets [12–14]. The
advantage of multi-wavelets in comparison with scalar wavelets is that [15], under
certain conditions, the wavelet expansion relations are split into separate relations
for the wavelet coefficients of zero (for function), first (for 1st derivative), second
(for 2nd derivative of multiwavelets of the fifth degree), third (for the 3rd derivative
of multiwavelets of the seventh degree) and further orders. In particular, for wavelet
transform of Hermite splines of the fifth degree, splitting into three simultaneously
solvable systems is achieved, of which one is three-diagonal with strict diagonal
dominance and two other four-diagonal systems with dominant central diagonals
[16]. Similar construction for the case of multiwavelets of the 7th degree leads to a
parallel solution of four five-diagonal systems with strict diagonal dominance [17].
That is, the degree of parallelism increases with an increase in the spline defect.

This work aims to build new types ofmulti-tieredmultiwavelets based onminimal
defect splines and justify the optimization and parallelization of computational
wavelet transform algorithms to solve problems of processing numerical informa-
tion. The relevance of the work is because in most practical situations only point
values of functions are given. In this case, when using wavelet transforms based on
Hermitian spline multi-wavelets, we will have to calculate the approximate values of
the derivatives necessary for Hermitian interpolation of the table-defined functions,
using, for example, regularized numerical differentiation schemes. The transition to
multi-wavelets based on basic splines of the minimum defect of several successive
levels of thinning of the grid of measured values of the function can lead, if the idea
of splitting is successfully realized, to a significant acceleration of calculations due
to parallel processing of the measured values by several (instead of one) filters. At
the same time, the depth of each filter (the number of successive decimation levels
involved in constructing the filters) is not of fundamental importance, which leads,
in the limit, to the possibility of a one-step procedure for calculating simultaneously
all wavelet decomposition coefficients at all decimation levels instead of reusing the
same filters at each successive level of thinning.

2 Zero Degree Spline Multiwavelets

2.1 Haar Wavelets and Parallel Computing

This applies, in particular, to Haar wavelets proposed by the Hungarian mathemati-
cianAlfredHaar back in 1909.Haarwavelets are orthogonal, have a compact support,
are well localized in space, but are not smooth, because approximating functions for
them are zero-order splines that are discontinuous at nodes. Haar transform is used
to compress images, mainly color and black and white with smooth transitions. This
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type of compression has been known for a long time and directly proceeds from the
idea of using coherence of regions. The compression ratio is set and varies between
5 and 100. When you try to set a larger coefficient on sharp boundaries, especially
those that run diagonally, a “staircase effect” appears—steps of different brightness
with a size of several pixels.

In Haar basis at this level j, there exist 2j scaling functions and 2j wavelets. At
the same time, the necessary refinement (synthesis) matrices that describe how it is
possible to obtain the coefficients of two scaling functions from Vj and two wavelets
fromWj using four coefficients of scaling functions from Vj+1 are of the form:

A2 = 1√
2

[
1 1 0 0
0 0 1 1

]
, B2 = 1√

2

[
1 −1 0 0
0 0 1 −1

]
.

Let there be a one-dimensional discrete input signal S. Each pair of neighboring
elements is associated with two numbers:

ai = S2i + S2i+1√
2

, bi = S2i − S2i+1√
2

.

Repeating this operation for all elements of the original signal, the output receives
two signals, one of which is a coarsened version of the input signal—ai, and the
second contains the detailed information necessary to restore the original signal—bi.
Similarly, the Haar transform can be applied to the received signal ai, etc.

Consider an example ofHaar transformation of a one-dimensional signal of length
16. Let the incoming signal be represented as a string of 16 pixel brightness values
(S): (220, 211, 212, 218, 217, 214, 210, 202, 194, 185, 186, 192, 191, 188, 184, 176).
After applying Haar transformation, the following two sequences are obtained ai:
(304.763, 304.056, 304.763, 291.328, 267.993, 267.286, 267.993, 254.558) and bi:
(6.364, −4.243, 2.121, 5.657, 6.364, −4.243, 2.121, 5.657). It is worth noting that
the values bi are quite close to 0. Repeating the operation, as applied to the sequence
ai, we obtain ai’: (430.5, 421.5, 378.5, 369.5), bi’: (0.5, 9.5, 0.5, 9.5) and further:
(602.455, 528.916) (6.364, 6.364), (800) (52).

Using Haar transform as an example, the structure of a discrete wavelet trans-
form of a signal is visible. At each step of the conversion, the signal splits into two
components: approximation with a coarser resolution and detailed information. The
inverse transformation is performed following the formulas:

S2i = ai + bi√
2

, S2i+1 = ai − bi√
2

.

And in this case, it is permissible to annul the wavelet coefficients that are small in
absolute value by making the least error in the sense of the least-squares method. For
example, for a threshold value <6, we get 8 non-zero coefficients in the remainder,
and the graphical representation of the result has the form (Fig. 2a).
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Fig. 2 The solid line is the image of a one-dimensional signal of length 16, the crosses are the
restored coefficients of the spline of the 0th degree for conversion (in parentheses are the number
of nonzero coefficients): a Haar (8); bWalsh-Hadamard (7)

It is easy to see that the two components of Haar transformation are calculated
independently, so the computational process splits into two threads. In the case
of a multi-wavelet interpretation of Haar basis, the scaling functions relate to two
consecutive grid nodes, and each tetrad of successive signal values is subjected to
transformation by the refinement matrix (synthesis)

1√
2

⎡
⎢⎢⎣
1 1 0 0
0 0 1 1
1 −1 0 0
0 0 1 −1

⎤
⎥⎥⎦.

The corresponding decomposition (analysis) matrices, which are inverse to the
matrix presented above, are simply the result of transposition (a consequence of the
orthogonality of the basic functions) and, therefore, are also sparse:

1√
2

⎡
⎢⎢⎣
1 0 1 0
1 0 −1 0
0 1 0 1
0 1 0 −1

⎤
⎥⎥⎦.

The next step along the path of parallelizing computations is to switch to the
recursive representation of Haar transform [12]. Combine the two successive steps
ofHaar transformation to receive for each tetrad of neighboring elements one average
value and three detailing coefficients under the refinement matrix:

1

2

⎡
⎢⎢⎣

1 1 1 1
1 1 −1 −1√
2 −√

2 0 0
0 0

√
2 −√

2

⎤
⎥⎥⎦.
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All four components of the resulting transformation are calculated independently,
so the computational process splits into four threads. In this case, the total number
of steps in the computational process decreases exactly two times. The three newly
obtained detailing functions, corresponding to the three lower lines of the given
system, are tied to one node and therefore can also be called multi-wavelets. In the
same place [12], it was proposed as an exercise to bring recursion to an 8-tuple
multiwavelet transform and even to a 16-tuple one. Unfortunately, the prospects of
this approach to parallelizing computations were not indicated, and therefore, each
time it has to be reinvented [18].

2.2 Haar Wavelet Packets and Walsh-Hadamard Transform

There is another way to construct a multiwavelet decomposition of step functions
associated with the definition of so-called wavelet packets [12]. In this case, Haar
transform is applied not only to the sequence ai but also to the wavelet coefficients
themselves bi, to obtain Walsh-Hadamard transform as a result:

1

2

⎡
⎢⎢⎣
1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

⎤
⎥⎥⎦.

Other unitary transformations [19], found by arbitrary rearrangement of rows and
columns, can be proposed, but the Walsh-Hadamard transform looks best because
it is symmetric. In any case, the found coefficients differ only by permutation. In
particular, after applyingWalsh-Hadamard transform to the previous signal of length
16, the following sequences are again obtained ai’: (430.5, 421.5, 378.5, 369.5), bi’:
(0.5, 9.5, 0.5, 9.5) and two more sequences: (1.5, 5.5, 1.5, 5.5), (7.5, −2.5, 7.5, −
2.5). Repeating the operation, as applied to the sequence ai’, we obtain the numbers:
(800) (52) (9) (0). For the same threshold value <6, we obtain 7 non-zero coefficients
in the remainder, and the graphical representation of the result has the form (Fig. 2b).

According to the authors [12], the obtained approximation is good, but not excel-
lent. Besides, the total number of computational operations is greater. In our opinion,
all this is redeemed by the absence of the square root extraction operation and the
uniform loading of computing cores in parallel.
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2.3 Use of Orthogonal Wavelets with Compact Support
and With Scaling Coefficient N

Another way to construct multi-wavelets for minimum defect splines is to use
wavelets with a scaling factor of N = 4. According to the theory [20, 21], the refine-
ment matrix describing how to obtain coefficients of the scaling function from Vj

and three wavelets fromWj using four coefficients scaling functions from Vj + 2, has
the form:

1

6

⎡
⎢⎢⎣

3 3 3 3
3
√
2 −3

√
2 0 0√

6
√
6 −2

√
6 0√

3
√
3

√
3 −3

√
3

⎤
⎥⎥⎦.

After applying the presented transformation to a signal of length 16, the same
sequence is obtained ai’: (430.5, 421.5, 378.5, 369.5) and three more sequences:
(6.364, 2.121, 6.364, 2.121) and (2.858, 4.491, 2.858, 4.491), (−3.175, 10.104, −
3.175, 10.104). At the same time, calculations are rather laborious due to a large
number of square roots, and the savings in the number of computational operations are
not so great as in themultiwavelet formofHaar transform.Repeating the operation, as
applied to the sequence ai’, we obtain the numbers: (800) (6.364) (38.784) (35.218).
For the same threshold value <6, we obtain 8 non-zero coefficients in the remainder,
and the graphical representation of the result obtained has the form (Fig. 3a).

Thus, the last approach considered looks worse in all possible indicators. Never-
theless, since the matrix of transition to the lowest level of resolution has 16 coef-
ficients in the multi-wavelet version instead of 4 in the classical Haar version,
the formulation of the multi-wavelet transformation optimization problem in some
parameters does not seem hopeless.
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Fig. 3 The solid line is the image of a one-dimensional signal of length 16, the crosses are the
restored coefficients of the spline of the 0th degree for conversion (in parentheses are the number
of nonzero coefficients): a in [20] (8); b slant (7)
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3 Use of Orthogonality to Polynomials of Higher Degree

One such interesting option for optimizing a multi-wavelet transform is an attempt to
find Haar-like multi-wavelets based on the orthogonality property to polynomials of
degree higher than the spline degree. In literature, the property of orthogonality for
polynomials is usually called the property of zero moments. Previously, only scalar
wavelets were used, and, for example, such properties as supports compactness,
orthogonality, symmetry, zeromoments, and other characteristics important in signal
processing cannot be present in a scalar wavelet at the same time. A multi-wavelet-
based systemcan have all of themat once. Thismeans thatmulti-wavelets can provide
perfect reconstruction (due to orthogonality), good efficiency at the signal boundaries
(due to symmetry), and a high approximation order (due to the large number of zero
moments) so that they can act when processing signals and fields better than scalar
ones.

It is said that a waveletψ(x) is orthogonal to polynomials of order n if the integral∫
ψ(x)xkdx is identically zero for k = 0, . . . , n − 1, but not for k = n. Wavelets

orthogonal to polynomials of a higher degree are often desirable in applications
where numerical approximations of smooth operators are required.

The requirement of orthogonality to polynomials can sometimes be an excessive
restriction. There is not a single wavelet basis (except for Haar basis), which simul-
taneously has compact support and is orthogonal and symmetric. But its drawback is
that it is orthogonal only to zero degree polynomials. Therefore, if we want to obtain
wavelets with compact support and high accuracy, we need to sacrifice the orthog-
onality of the basic functions. However, such damage is not always “painful”: for
example, in some cases we can build a multi-scale analysis in which wavelets with
this resolution are orthogonal to each other, and at the same time, they are orthogonal
to higher polynomials.

Recall that for the case of splines of degree zero (step functions), the scaling
function φ(x) with the unit value of the integral

∞∫
−∞

φ(x) dx = 1,

which determines the rough approximation of a signal, is constant:

φ(x) =
{
1, 0 ≤ x < 1,

0, x /∈ [0, 1).

The mother wavelet function ψ(x) [22] with a zero value of the first three
moments,
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∞∫
−∞

ψ(x) xkdx = 0, k = 0, 1, 2,

which determines signal details, is defined as follows:

ψ(x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1, 0 ≤ x < 1/4,

−3, 1/4 ≤ x < 1/2,

3, 1/2 ≤ x < 3/4,

−1, 3/4 ≤ x < 1,

0, x /∈ [0, 1).

Unfortunately, the inverse matrix of the defining system of equations for this
wavelet is filled. Therefore, in contrast to the classical case (Haar orthogonal
wavelets), the transition to explicitly setting synthesis filter coefficients is not advis-
able. The process of dividing the coefficients ai into a rougher version ai’ and refine-
ment coefficients bi’ is more convenient to carry out in the form of a solution of a
system of linear equations of dimension 2j × 2j [23]. There is known the only way
to simplify further the numerical solution by splitting the system into even and odd
nodes [14–16], to pass as a result to 2j–1 × 2j–1 matrix. But this trick only works for
splines of an odd degree and wavelets with shifted supports [24–26].

3.1 Slant Matrices

In the case of a multi-wavelet interpretation of the basis obtained, the scaling func-
tions refer to four consecutive grid nodes, two four-point wavelets orthogonal to
polynomials of zero degrees and one—first degree, respectively, are determined, and
each tetrad of successive signal values is transformed by the refinement matrix (the
so-called slant matrix [27])

1

2

⎡
⎢⎢⎢⎣

1 1 1 1
3√
5

1√
5

− 1√
5

− 3√
5

1 −1 −1 1
1√
5

− 3√
5

3√
5

− 1√
5

⎤
⎥⎥⎥⎦.

The corresponding decomposition (analysis) matrices, which are inverse to the
matrix presented above, as in the case of Haar matrices, are simply the result of its
transposition (a consequence of the orthogonality of the basic functions).

After applying the slant transformation to a signal of length 16, the same numbers
ai’ and new sequences bi’: (1.118, 10.957, 1.118, 10.957) and (7.5, −2.5, 7.5, −
2.5), (1.118, 0.671, 1.118, 0.671) are obtained. Repeating the operation, as applied
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Fig. 4 The solid line is the image of a one-dimensional signal of length 16, the crosses are the
restored coefficients of the spline of the 0th degree for the double transform (in parentheses are the
number of nonzero coefficients): a Walsh-Hadamard (7); b slant (6)

to the sequence ai’, we obtain the numbers: (800) (52.535) (0) (–15.205). For the
same threshold value <6, we obtain 7 non-zero coefficients in the remainder, and the
graphical representation of the result has the form (Fig. 3b).

4 Use of Double Transformation

Now we apply Walsh-Hadamard transformation not only to the sequence ai’, but
also to all the multiwavelet coefficients ofWalsh-Hadamard decomposition obtained
above. Miraculously, most of the coefficients were reset to zero: (800, 10, 7, 5) and
three more sequences: (52, 0, 0, 0) and (9, −9, −4, 10), (0, 0 , 0, 0). So there is
the so-called “lossless” compression effect. If we zero here two coefficients (−4, 5),
which are less than 6 in absolute value, then there are also 7 nonzero coefficients,
and the reconstructed image is hardly distinguishable from the original (Fig. 4a).

For a slant transformation, similar calculations lead to the values: (800, 50.535,
0, −15.205) and three more sequences: (12.075, −4.4, 0, −8.8) and (5, 4.472, 0,
8.944), (1.789 , 0.2, 0, 0.4). If we zero all the coefficients here, which are less than
6 in absolute value, then 6 non-zero coefficients remain, however, in the region of
the first signal oscillation, a significant defect of the reconstructed image is observed
(Fig. 4b). Note that with the multi-wavelet transformations of Haar and [20], such a
“trick” does not work. The compression quality is deteriorating (Figs. 5a, b, and 6a).

5 Experiments With Use a Scaling Factor 8

For a scaling factor of N = 8, the calculation of Haar transform splits into eight
threads following the matrix
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Fig. 5 The solid line is the image of a one-dimensional signal of length 16, the crosses are the
restored coefficients of the 0-degree spline for the double conversion of Haar (in brackets are the
number of non-zero coefficients): a (8); b (10)
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Fig. 6 The solid line is the image of a one-dimensional signal, the crosses are the restored coeffi-
cients of the 0-degree spline for the double conversion of (in brackets are the number of non-zero
coefficients and the length 16): a in [20] (9, 16); b Haar (12, 64)

1

2
√
2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1
√
2 0 2 0 0 0

1 1
√
2 0 −2 0 0 0

1 1 −√
2 0 0 2 0 0

1 1 −√
2 0 0 −2 0 0

1 −1 0
√
2 0 0 2 0

1 −1 0
√
2 0 0 −2 0

1 −1 0 −√
2 0 0 0 2

1 −1 0 −√
2 0 0 0 −2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Therefore, the total number of steps in the computational process decreases exactly
four times. For illustration, we will perform a continuous continuation of the signal
given above of a length of 16 according to the formulas:

Si+16 = Si − 220 + 2S15 − S14, i = 0, 1, . . . , 15;
Si+32 = Si − 220 + 2S31 − S30, i = 0, 1, . . . , 31,
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adding a linear trend to convince: Si + i, i = 0, 1, . . . , 63.
Here, Haar double transformation turned out to be slightly better than the single

transformation, both in the number of coefficients, which are on modulo >6 (12
instead of 16), and in the quality of the graphical representation of the result obtained
after their zeroing (Fig. 6b).

As for the wavelet packets, in this case, the procedure of constructing them has
to be repeated 2 times, to obtain Walsh-Hadamard transformation (the essence is the
Kronecker product of three Haar matrices [28], which from a computational point
of view can be more profitable):

√
2

4

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 1
1 −1 1 −1 1 −1 1 −1
1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1
1 1 1 1 −1 −1 −1 −1
1 −1 1 −1 −1 1 −1 1
1 1 −1 −1 −1 −1 1 1
1 −1 −1 1 −1 1 1 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

After the double Walsh-Hadamard transform, most of the obtained coefficients
are strictly equal to zero:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1228 10 12 10 2 −8 −18 20
72 0 0 0 0 0 0 0
144 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
288 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

This shows that the Walsh-Hadamard double transformation is exact on linear
functions. In Fig. 7a, b presents the results of similar calculations for a quadratic
trend Si + i2, i = 0, 1, . . . , 63. Namely, the errors of signal reconstruction using
the double Haar and Walsh-Hadamard transforms over a given threshold (>64) are
presented. The number of non-zeroed coefficients is indicated in parentheses.

6 Conclusion

There is extensive literature related to Walsh-Hadamard transforms [29] and their
generalizations to higher-order orthogonal and biorthogonal spline wavelets [30].
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Fig. 7 The error of signal reconstruction using the double transforms a Haar (20); b Walsh-
Hadamard (16) (in parentheses are the numbers of nonzero coefficients)

There is an urgent need for the construction of parallel algorithms for calculating
semi-orthogonal spline-multiwavelets of the minimum defect on this basis. In the
chapter, the author’s vision of the problem of “Big Data” compressing in cyber-
physical systems in transport was presented. Prospects for data compressing algo-
rithms based on a multiwavelet approach that is proposed to be implemented as a
program on a mobile device are explored. The presented algorithms can be used in
the planning of road repairs, in the analysis of road accidents, in the processing of
applications of road users, etc.
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