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Abstract The operating efficiency of autonomous objects of different purposes
(underwater vehicles, spacecraft, etc.) substantially depends on the quality of the
information received from heat-releasing apparatuses arranged on a carrying struc-
ture of the autonomous object. The thermal deformation of the carrying framework
is caused by the irregularity of the temperature field due to a heat-releasing of
devices, unsteady heat exchange with the ambient, and other reasons. In this case, the
thermal deformation of the supporting framework, caused by the non-uniformity of
the temperature field due to the heat dissipation of devices, unsteady heat transferwith
the environment, and other reasons, is an important component of the complex distor-
tion of information, especially optical measuring devices due to the displacement of
the optical axis, focal length, etc., under the influence of a thermal gradient. Different
systemsof automatic thermal-stabilization are applied in order to decrease said distor-
tions. The chapter is devoted to the mathematical modeling of thermal processes in
the supporting framework during its automatic thermal gradient stabilization.

Keywords Autonomous object · Thermal-stabilization · Temperature
distribution · Thermogradient stabilization system · Heat source

1 Introduction

Most devices arranged on a carrying structure of an autonomous object emits heat
when operating, and it may cause thermal deformation, which, in turn, negatively
affects the operation’s efficiency of the information-measuring system comprising
optical equipment [1–3]. The problem of stabilization of the average value of the
temperature distribution as well as the reduction of its irregularity in order to exclude
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thermogradient instability of the carrying framework shape is of current interest. The
irregularity of the temperature distribution can be significantly reduced by arranging
additional controlled heat-releasing elements (means of thermal gradient stabiliza-
tion—hereinafter referred to as MTGS) and/or using a liquid cooling system. To
analyze the operating mode of the heat-releasing devices and MTGS, to synthe-
size effective stabilization systems for the temperature distribution of the carrying
framework, a mathematical model of its (framework’s) temperature state is required.

2 Problem Statement

The carrying framework of the information-measuring system of the autonomous
object is considered. The said framework has a shape of a rectangular prism (plate)
and is subject to the influence of various thermal deformation loads. The plate
(Fig. 1a) is cooled under the effect from the environment (the boundary condition of
the third kind is BC-3) and is heated at the points of contact with the heat-releasing
measuring devices: Pr1-Pr4, Pru1-Pru4, C1, h1, C2, h2, Pra, Prb, operating according
to the cyclograms shown in Figs. 2, 3, 4, 5, 6 and 7 [4, 5] for one typical cycle with
period t1 = 30,000 s, and being controlled by MTGS: St1-St9, S1-S9. The basic
initial data required for the calculations are presented in Tables 1 and 2.

The coordinates of the centers of the heat-releasing devices. Central MTGS on the
plate’s side x = 0: St1, St2, St3, St4, St5. Central MTGS on the plate’s side x = R1:
S1, S2, S3, S4, S5. Diagonal MTGS on the plate’s side x = 0 : St6, St7, St3, St8,
St9. Diagonal MTGS on the plate’s side x = R1: S6, S7, S3, S8, S9. Heat-releasing

Fig. 1 Carrying framework: a Arrangement of heat-releasing devices b Arrangement of control
points
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Fig. 2 Cyclogram of changing in heat-releasing power of devices Pr1-Pr4

Fig. 3 Cyclogram of changing in heat-releasing power of devices Pru1-Pru4

Fig. 4 Cyclogram of changing in heat-releasing power of devices Pra-Prb

Fig. 5 Cyclogram of changing in heat-releasing power of devices C1, C2

Fig. 6 Cyclogram of changing in heat-releasing power of devices h1
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Fig. 7 Cyclogram of changing in heat-releasing power of devices h2

Table 1 Basic parameters

Geometry dimensions of the framework

R1 dimensions of the plate along X axis, m 0.15

R2 dimensions of the plate along Y axis, m 2.15

R3 dimensions of the plate along Z axis, m 1.97

Thermophysical characteristics

Specific heat capacity c, J/(kg·°C) 1480

Material density ρ, kg/m3 1440

Thermal conductivity λ, W/(m·°C) 2.3

Heat-transfer coefficient from body surface to environment α, W/(m2·°C) 0.7488

Additional information

Environment temperature Tsred , °C 20

Initial temperature of the plate T 0
pl , °C 40

Dimensions of the seat for heat sources (S), m × m 0.03, 0.1

Biot number Bi 0.7

Table 2 Nominal power of
heat-releasing measuring
devices

Arrangement Device Power, W

Edge YZ,
x = 0, x = R1

Pr1–Pr4, Pru1–Pru4 16

Edge XZ, y = 0 Pra
Prb

10
10

Edge XY,
z = 0, z = R3

C1, C2
h1, h2

14
20

measuring devices on the plate’s side x = 0: Pru1, Pru2, Pru3, Pru4. Heat-releasing
measuring devices on the plate’s side x = R1: Pr1, Pr2, Pr3, Pr4. Heat-releasing
measuring devices on the plate’s side y = 0: Pra, Prb. Heat-releasing measuring
devices on the plate’s side z = 0: h1, C1. Heat-releasing measuring devices on the
plate’s side z = R3: h2, C2.

The temperature field θpl(lx , ly, lz, φ) of the plate is described by the three-
dimensional thermal conductivity equation [6–10]:



Thermogradient Dimensional Stabilization of eddential … 21

∂θpl(lx , ly, lz, φ)

∂φ
= ∂2θpl(lx , ly, lz, φ)

∂l2x

+ ∂2θpl(lx , ly, lz, φ)

∂l2y
+ ∂2θpl(lx , ly, lz, φ)

∂l2z
,

0 < lx < R1 · R−1
2 , 0 < ly < 1, 0 < lz < R3 · R−1

2 , φ ∈ (0;∞), (1)

by relative units: y · R−1
2 = ly, x · R−1

2 = lx , z · R−1
2 = lz, wherein

φ = at
R2
2
—Fourier number (« non-dimensional time »), a = λ

cρ—thermal diffu-

sivity,
θpl(lx , ly, lz, φ) = (Tpl(x, y, z, t) − T ∗) · T ∗−1,

T ∗ = Tsred = const—basic

temperature, °C.
Initial condition:

θpl(lx , ly, lz, 0) = (T 0
pl

− T ∗) · T ∗−1, (2)

wherein T 0
pl = const—initial temperature of the plate, °C.

Boundary conditions:

∂θpl(lx , ly, lz, φ)

∂lx

∣
∣
∣
∣
lx=0

= Qlx0
pl (ly, lz, φ), (3)

∂θpl(lx , ly, lz, φ)

∂lx

∣
∣
∣
∣
lx=R1·R−1

2

= Qlx1
pl (ly, lz, φ), (4)

∂θpl(lx , ly, lz, φ)

∂ly

∣
∣
∣
∣
ly=0

= Qly0
pl (lx , lz, φ), (5)

∂θpl(lx , ly, lz, φ)

∂ly

∣
∣
∣
∣
ly=1

= Qly1
pl (lx , lz, φ), (6)

∂θpl(lx , ly, lz, φ)

∂lz

∣
∣
∣
∣
lz=0

= Qlz0
pl (lx , ly, φ), (7)

∂θpl(lx , ly, lz, φ)

∂lz

∣
∣
∣
∣
lz=R3·R−1

2

= Qlz1
pl (lx , ly, φ). (8)

Here θ lx0
pl (ly, lz, φ), θ lx1

pl (ly, lz, φ), θ
ly0
pl (lx , lz, φ), θ

ly1
pl (lx , lz, φ), θ lz0

pl (lx , ly, φ),

θ lz1
pl (lx , ly, φ)—summarized heat flow on the corresponding edges of the framework:

Qlx0
pl (ly, lz, φ) = qp(φ) −

N
∑

i=1

qi · V i
l×0(ly, lz), (9)
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Qlx1
pl (ly, lz, φ) = −qp(φ) +

N
∑

i=1

qi
l×1 · V i

l×1(ly, lz), (10)

Qly0
pl (lx , lz, φ) = qp(φ) −

M
∑

i=1

qi
ly0 · V i

ly0(lx , lz), (11)

Qly1
pl (lx , lz, φ) = −qp(φ) +

M
∑

i=1

qi
ly1 · V i

ly1(lx , lz), (12)

Qlz0
pl (lx , ly, φ) = qp(φ) −

K
∑

i=1

qi
lz0 · V i

lz0(lx , ly), (13)

Qlz1
pl (lx , ly, φ) = −qp(φ) +

K
∑

1=1

qi
lz1 · V i

lz1(lx , ly). (14)

qp(φ)—flows of heat losses from the surface, which are assumed to be the same
on all surfaces of the plate; qi

lx0, q
i
lx1—flows from the heat sources arranged on

the edges lx = 0 and lx = R1 · R−1
2 accordingly, qi

ly0, q
i
ly1—flows from the heat

sources arranged on the edges ly = 0 and ly = 1 accordingly, qi
lz0, q

i
lz1—flows

from the heat sources arranged on the edges lz = 0 and lz = R3 · R−1
2 accordingly,

wherein the intensity of flows from the heat sources is defined as a ratio of heat
emission power P of the corresponding device to its area S of contact with the plate
surface qi = P · S−1; V i

lx0(ly, lz), V
i
lx1(ly, lz)—functions determining the location

of the devices on the edges lx = 0 and lx = R1 · R−1
2 accordingly, V i

ly0(lx , lz),
V i
ly1(lx , lz)—functions determining the location of the devices on the edges ly = 0

and ly = 1 accordingly, V i
lz0(lx , ly), V

i
lz1(lx , ly)—functions determining the location

of the devices on the edges lz = 0 and lz = R3 · R−1
2 accordingly.

The temperature distribution in the plate is determined by solving auxiliary three-
dimensional boundary value problem (1)–(8) according to the following algorithm:

1. Solving θpl(lx , ly, lz, φ) three-dimensional boundary value problem (1)–(8) is
considered as the product of θpl(lx , φ), θpl(ly, φ) and θpl(lz, φ):

θpl(lx , ly, lz, φ) = θpl(lx , φ) · θpl(ly, φ) · θpl(lz, φ)

solving the corresponding boundary value problems [11, 12] under condition
qi
lx = 0, qi

ly = 0, qi
lz = 0, influence thereof is reflected by the summation

of said solving and corresponding solving of three-dimensional boundary value
problem with the boundary condition of the second kind (BC-2).

2. The convective nature of the heat exchange of the plate with the environment
(BC-3) is reflected by the equivalent model for BC-2.
Figure 8 shows proposed in the paper [13] structural representation of one-
dimensional third boundary value problemBC-3 for θ0

pl = 0 by transfer functions
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Fig. 8 The framework of one-dimensional auxiliary boundary value problem θpl (lx , φ) by the
Laplace transforms θpl (lx , p)

BC-2 Wlx0(lx , p), Wlx1(lx , p) accordingly for the one lx = 0 and for the other
lx = R1 · R−1

2 side of the plate.
Here Bi = α · R2 · λ−1—Biot number. In the current example θsred(φ) =
(Tsred(t) − T ∗) · T ∗−1 = 0.
The corresponding transforms θpl(ly, p), θpl(lz, p) of temperature distributions
θpl(ly, φ), θpl(lz, φ) is determined in the same way.

3. The thermal effect from the heat-releasing devices and MTGS is determined
independently, and then taken into account in the general problem (1)–(8) by
summation of the corresponding components of the temperature field.

3 Interaction with the Environment

One-dimensional boundary value problems with BC-2 for θpl(lx , φ), θpl(ly, φ),

θpl(lz, φ) used in the scheme (Fig. 8) are the following:

⎧

⎪⎪⎨

⎪⎪⎩

∂θpl (lx ,φ)

∂φ
= ∂2θpl (lx ,φ)

∂l2x
, 0 < lx < R1 · R−1

2 , φ ∈ (0;∞),

θpl(lx , 0) = θ0
pl , 0 ≤ lx ≤ R1 · R−1

2 , φ ∈ (0;∞),
∂θpl (lx ,φ)

∂lx

∣
∣
∣
lx=0

= qp(φ),
∂θpl (lx ,φ)

∂lx

∣
∣
∣
lx=R1·R−1

2

= −qp(φ).

(15)

⎧

⎪⎪⎨

⎪⎪⎩

∂θpl (ly ,φ)

∂φ
= ∂2θpl (ly ,φ)

∂l2y
, 0 < ly < 1, φ ∈ (0;∞),

θpl(ly, 0) = θ0
pl , 0 ≤ ly ≤ 1, φ ∈ (0;∞),

∂θpl (ly ,φ)

∂ly

∣
∣
∣
ly=0

= qp(φ),
∂θpl (ly ,φ)

∂ly

∣
∣
∣
ly=1

= −qp(φ).

(16)

⎧

⎪⎪⎨

⎪⎪⎩

∂θpl (lz ,φ)

∂φ
= ∂2θpl (lz ,φ)

∂l2z
, 0 < lz < R3 · R−1

2 , φ ∈ (0;∞),

θpl(lz, 0) = θ0
pl , 0 ≤ lz ≤ R3 · R−1

2 , φ ∈ (0;∞),
∂θpl (lz ,φ)

∂lz

∣
∣
∣
lz=0

= qp(φ),
∂θpl (lz ,φ)

∂lz

∣
∣
∣
lz=R3·R−1

2

= −qp(φ).

(17)
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In order to solve said boundary value problems a finite integral transformations
method is applied [13]:

θ̄pl(μn, τ ) =
R1·R−1

2∫

0

θpl(lx , φ)ϕn(μn, lx )r(lx)dlx , (18)

θ̄pl(ψm, τ ) =
1∫

0

θpl(ly, φ)ϕm(ψm, ly)r(ly)dly, (19)

θ̄pl(γk, τ ) =
R3·R−1

2∫

0

θpl(lz, φ)ϕk(γk, lz)r(lz)dlz, (20)

wherein θ̄pl(μn, ψm, γk, τ )—transform of the original function; r—weight function
(according to current problems r = 1); μn, ψm, γk—proper numbers:

μn = πnR2

R1
, n = 0, 1, 2, . . . ; ψm = πm, m = 0, 1, 2, . . . ;

γk = πkR2

R3
, k = 0, 1, 2, . . . .

The normalized system of proper functions in one-dimensional problems has the
form:

ϕn(μn, lx ) = 1

En
ϕ∗
n (μn, lx ) = 1

En
cos(πn

R2lx
R1

) , n = 0, 1, 2, . . . ,

ϕm(ψm, ly) = 1

Em
ϕ∗
m(ψm, ly) = 1

Em
cos(πmly) ,m = 0, 1, 2, . . . ,

ϕk(γk, lz) = 1

Ek
ϕ∗
k (γk, lz) = 1

Ek
cos(πk

R2lz
R3

) , k = 0, 1, 2, . . . ,

Normalizing constants:

En =
√

∫ R1·R−1
2

0

[

ϕ∗
n (μn, lx )

]2
r(lx)dlx =

{√

R1 · R−1
2 , n = 0

√

R1 · (2R2)−1, n = 1, 2, 3 . . .
,

Em =
{

1,m = 0√
0.5,m = 1, 2, 3 . . .

, Ek =
{√

R3 · R−1
2 , k = 0

√

R3 · (2R2)−1, k = 1, 2, 3 . . .
.
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Solving the boundary value problems (15)–(17) for BC-2 θpl(lx , φ), θpl(ly, φ),

θpl(lz, φ) is the following:

θpl(lx , φ) =
∞

∑

n=0

ϕ(μn, lx )

φ∫

0

R(μn, τ )G∗
n(μn, φ − τ)dτ

+
∞

∑

n=0

ϕ(μn, lx )

R1·R−1
2∫

0

θ0
plG

∗
n(μn, φ)ϕ(μn, ξlx )dξlx (21)

θpl(ly, φ) =
∞

∑

m=0

ϕ(ψm, ly)

φ∫

0

R(ψm, τ )G∗
m(ψm, φ − τ)dτ

+
∞

∑

m=0

ϕ(ψm, ly)

1∫

0

θ0
plG

∗
m(ψm, φ)ϕ(ψm, ξly)dξly (22)

θpl(lz, φ) =
∞

∑

k=0

ϕ(γk, lz)

φ∫

0

R(γk, τ )G∗
k(γk, φ − τ)dτ

+
∞

∑

k=0

ϕ(γk, lz)

R3·R−1
2∫

0

θ0
plG

∗
k(γk, φ)ϕ(γk, ξlz)dξlz (23)

wherein R(μn, φ) = R1(μn, φ)−R0(μn, φ), R(ψm, φ) = R1(ψm, φ)−R0(ψm, φ),

R(γk, φ) = R1(γk, φ) − R0(γk, φ)—functions determined by the boundary condi-
tions: R0(μn, φ) = qp(φ)ϕn(μn, 0), n = 0, 1, 2, 3 . . . ,

R0(ψm, φ) = qp(φ)ϕm(ψm, 0), m = 0, 1, 2, 3 . . . ,

R0(γk, φ) = qp(φ)ϕk(γk, 0), k = 0, 1, 2, 3 . . . ,

R1(μn, φ) = −qp(φ)ϕn(μn, R1 · R−1
2 ), R1(ψm, φ) = −qp(φ)ϕm(ψm, 1),

R1(γk, φ) = −qp(φ)ϕk(γk, R3 · R−1
2 ). G∗

n, G∗
m, G∗

k—time components of the
Green’s function:

G∗
n(μn, φ) = e(−μ2

nφ) = e(−R2
2π

2n2(R2
1)

−1φ), n = 0, 1, 2 . . . , (24)

G∗
m(ψm, φ) = e(−ψ2

mφ) = e(−π2m2φ), m = 0, 1, 2 . . . , (25)

G∗
k(γk, φ) = e(−γ 2

k φ) = e(−R2
2π

2k2(R2
3)

−1φ), k = 0, 1, 2 . . . , (26)
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Transfer functions (TF) used in the scheme (Fig. 8) for one-dimensional boundary
value problem with BC-2 along lx , ly, lz and being the Laplace transforms of the
corresponding Green’s functions have the following form:

Wlx (lx , p) = R2 · (R1 p)
−1 + 2R2 · R−1

1

∞
∑

n=1

cos(πnR2lx · R−1
1 )

× cos(πnR2ξlx R
−1
1 )R2

1(R
2
2π

2n2)−1(R2
1(R

2
2π

2n2)−1 p + 1)−1 (27)

Wly(ly, p) = p−1 + 2
∞

∑

m=1

cos(πmly) cos(πmξly)

× (π2m2)−1((π2m2)−1 p + 1)−1 (28)

Wlz(lz, p) = R2 · (R3 p)
−1 + 2R2R

−1
3

∞
∑

k=1

cos(πkR2lz R
−1
3 )

× cos(πkR2ξlz R
−1
3 )R2

3(R
2
2π

2k2)−1(R2
3(R

2
2π

2k2)−1 p + 1)−1 (29)

wherein ξ—corresponding spatial coordinate of the heat source arrangement, said
heat source is considered as a control (disturbing) action. A design model for solving
additional boundary value problems (15)–(17) under the condition qi

lx = 0, qi
ly =

0, qi
lz = 0 may be created by dependencies (27)–(29) within using the scheme

according to Fig. 8 in the MATLAB software.

4 Temperature Effect from the Heat Sources

The areas of contact of the heat sources with the plate surfaces lx = 0,
lx = R1 · R−1

2 along the corresponding coordinates are designated in Fig. 9:
Alx0(0, A

y
lx0, A

z
lx0), Blx0(0, B

y
lx0, B

z
lx0), Clx0(0,C

y
lx0,C

z
lx0), Dlx0(0, D

y
lx0, D

z
lx0);

Alx1(R1 · R−1
2 , Ay

lx1, A
z
lx1), Blx1(R1 · R−1

2 , By
lx1, B

z
lx1), Clx1(R1 · R−1

2 ,Cy
lx1,C

z
lx1),

Dlx1(R1 · R−1
2 , Dy

lx1, D
z
lx1).

The boundary value problem for the temperature component θist (lx , ly, lz, φ) of
the heat sources effect is as follows:

Fig. 9 General designation
of the heat sources
coordinates when lx fixed
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∂θist (lx , ly, lz, φ)

∂φ
= ∂2θist (lx , ly, lz, φ)

∂l2x
+ ∂2θist (lx , ly, lz, φ)

∂l2y

+ ∂2θist (lx , ly, lz, φ)

∂l2z
, 0

< lx <
R1

R2
, 0 < ly < 1, 0 < lz <

R3

R2
, φ ∈ (0;φk). (30)

Initial conditions: θist (lx , ly, lz, 0) = 0. Boundary conditions along axis lx :

∂θist (lx ,ly ,lz ,φ)

∂lx

∣
∣
∣
lx=0

= −∑∞
i=0 q

i
lx0

[

1(ly − Ay
lx0) − 1(ly − By

lx0)
]·

·[1(lz − Az
lx0) − 1(lz − Dz

lx0)
]

,
(31)

∂θist (lx ,ly ,lz ,φ)

∂lx

∣
∣
∣
lx=R1·R−1

2

= ∑∞
i=0 q

i
lx1

[

1(ly − Ay
lx1) − 1(ly − By

lx1)
]·

·[1(lz − Az
lx1) − 1(lz − Dz

lx1)
]

,
(32)

Boundary conditions along with the coordinates ly and lz—formalized similarly.
The components of the temperature distribution in the plate under the heat sources
effect is determined by the corresponding convolution with the Green’s function
Gist (lx , ξlx , ly, ξly, lz, ξlz, φ − τ) [14]:

θist (lx , ly, lz, φ) = θ lx
ist (lx , ly, lz, φ) + θ

ly
ist (lx , ly, lz, φ) + θ lz

ist (lx , ly, lz, φ), (33)

θist (lx , ly , lz , φ) =

−
∑

lx=0

φ2∫

φ1

Dz
lx0∫

Azlx0

By
lx0∫

Ay
lx0

qilx0Gist (lx , ξlx , ly , ξly , lz , ξlz , φ − τ)dξlydξlzdτ

+
∑

lx=R1·R−1
2

φ4∫

φ3

Dz
lx1∫

Azlx1

By
lx1∫

Ay
lx1

qilx1Gist (lx , ξlx , ly , ξly , lz , ξlz , φ − τ)dξlydξlzdτ

−
∑

ly=0

φ2∫

φ1

Dx
ly0∫

Axly0

Bz
ly0∫

Azly0

qily0Gist (lx , ξlx , ly , ξly , lz , ξlz , φ − τ)dξlzdξlx dτ

+
∑

ly=1

φ4∫

φ3

Dx
ly1∫

Axly1

Bz
ly1∫

Azly1

qily1Gist (lx , ξlx , ly , ξly , lz , ξlz , φ − τ)dξlzdξlx dτ

−
∑

lz=0

φ2∫

φ1

Dx
lz0∫

Axlz0

By
lz0∫

Ay
lz0

qilz0Gist (lx , ξlx , ly , ξly , lz , ξlz , φ − τ)dξlydξlx dτ
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+
∑

lz=R3·R−1
2

φ4∫

φ3

Dx
lz1∫

Axlz1

By
lz1∫

Ay
lz1

qilz1Gist (lx , ξlx , ly , ξly , lz , ξlz , φ − τ)dξlydξlx dτ.

(34)

wherein

Gist (lx , ξlx , ly , ξly , lz, ξlz, φ − τ) =
∞
∑

n=0

G∗
n(μn, φ − τ)ϕn(μn, lx )

× ϕn(μn, ξlx )r(ξlx ) ·
∞
∑

m=0

G∗
m(ψm , φ − τ)ϕm(ψm , ly)

× ϕm(ψm , ξly)r(ξly)
∞
∑

k=0

G∗
k (γk , φ − τ)ϕk(γk , lz)

× ϕk(γk , ξlz)r(ξlz).

5 Result of Modeling

The mathematical model created in the MATLAB software on the basis of the
obtained relations [15, 16] allows us to carry out the approximate synthesis of the
controller, analysis of the corresponding control system stability and etc. A finite—
element numerical modeling in the ANSYS software [17–19] is applied to problem
solving more precisely.

We consider here the task of stabilizing the temperature in the critical cross-section
of the carrying framework of the autonomous object (Fig. 1b) along the line from
Uz1 to Uz5 by controlling the diagonal MTGS St6, St7, St3, St8, St9 on the one side
of the prism and S6, S7, S3, S8, S9 on the other side thereof. The results of modeling
the reaction of the temperature distribution in the carrying framework to the effect of
the heat sources during t = 30,000 s in the ANSYS software are reflected in Fig. 10.

Figure 10b shows the temperature fields of the prism under the effect of diagonal
MTGS St6, S6, St9, S9 with the power of 8 W.

The temperature graphs of the corresponding cross-section line are presented in
Fig. 11, wherein the vertical axis Tpl ,

◦
C represents temperature values, and the

horizontal axis D, m represents a diagonal cross-section from Uz1 to Uz5.
The results of the operation of the automatic temperature stabilization system in

the critical node Uz1 being critical for providing the dimensional stabilization along
the line of cross-section from Uz1 to Uz5 are subject to consideration. The closest
heat sources influence Uz1 in a most substantial way: from the measuring devices in
nodes Pr3, Pru3 being controlled by MTGS St6, S6, as well as the convective heat
exchange with the environment.
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Fig. 10 Finite-element modeling of the carrying framework temperature in the Ansys software (t
= 30,000): aWithout MTGS effect bWhen diagonal MTGS effect, wherein MTGS arranged along
the line from Uz1 to Uz5

Fig. 11 Graphs of temperature distribution for t = 30,000 s: a Along diagonal cross section from
Uz1 to Uz5 without MTGS b Along diagonal cross section from Uz1 to Uz5 when MTGS effect

The algorithm of control of MTGS St6 and S6 effecting on the point of control
Uz1 is implemented by the proportional—integral (PI) law of control (Figs. 12, 13).

There is an automatically formed the changing in the power of MTGS St6 and S6
in deviation from the average value of the MTGS power at the PI-controller output.

6 Conclusions

There have been presented an argument for the problem of automatic stabilization
of temperature distribution in the carrying framework of the autonomous object as
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Fig. 12 Scheme of modeling a temperature control system of the critical node of the carrying
framework in theMATLAB software: Tsr—the predetermined temperature in the node Uz1, Alfa—
the unit of determination of the heat exchange coefficient, α; WS6, WSt6, WPr3,WPru3, Wk—
transfer functions determining the temperature in the node Uz1 when MTSG S6, St6, measuring
devices Pr3, Pru3 and convective heat exchange effect, PID Controller—unit of modelling PI-
controller (without derivative term)

Fig. 13 Result of modeling the automatic temperature stabilization system in the node in the
MATLAB software: 1 Temperature in the node Uz1 under the automatic control, °C; 2 Temperature
in the nodeUz1without control, °C; 3 Power ofMTGS generated at the PI-controller output (control
for MTGS), W; 4 Cyclogram of changing in heat-releasing power of the measuring devices, W; 5
Convectional heat losses, °C; a Portion of temperature distribution under the automatic control, °C
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the effective means for decreasing the temperature component in the error of the
information-measuring system arranged on the said framework.

There has been provided a method of mathematical modeling of the tempera-
ture distribution in the carrying frameworks of autonomous objects, said method
comprises approximate mathematical modeling in the MATLAB software and more
precise modeling in the ANSYS software.

By analytical structural-parametric identification, there have been obtained the
transfer functions of the temperature distribution in the carrying framework for
implementation in an approximate mathematical model in MATLAB software and
controller synthesis.

Modeling of the automatic temperature stabilization system in the node of the
critical cross-section of the supporting framework has confirmed its high efficiency.
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