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Abstract The cascade architecture of neural networks, providing multichannel
information processing as a part of a cyber-physical system, is presented. The archi-
tecture contains a hybrid network for aggregation of intermediate results obtained
by an ensemble of deep recurrent neural networks based on fuzzy logic methods.
The structure of the software which implements the presented architecture and being
developed for conducting simulation experiments is described, their results are given.
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1 Introduction

The improvement of the information support for cyber-physical systems now tends
to be based on the use of machine learning methods which automate the procedure
of extracting the necessary regularity from incoming data. Among these methods,
deep neural networks gained the greatest popularity, which was facilitated by the
emergence of new efficient neural network architectures and significantly increased
abilities for computing technology in the middle price segment. This allowed many
researchers to conduct algorithms learning and implement them in practice with the
use of ready-made hardware solutions [1, 2].

The use of such solutions for complex industrial objects is faced with the need
to process multi-channel technological information, therefore, in this case, ensem-
bles of neural networks, each element of which takes into account the presentation
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features and data format in a particular channel, are becoming very popular. The result
combination for the work of channel neural networks for working out any general-
izing solution, in this case, is carried out in the output analytical unit. The algorithms
for the operation of such blocks are various, and they are based on additional cascades
of neural networks [3, 4]; the following approaches are also used: fuzzy aggrega-
tion of ensemble output [5, 6]; additional information for ensemble learning [7];
self-organization of networks [8]; modifications of the Bayesian approach allowing
compensation the imbalance of existing data [9]. Each of the above-mentioned
approaches develops applied directions for neural networks usage taking into account
a certain aspect of a particular application or presentation features and initial data
form when combining the results for channel information processing. The existing
wide variety of applied fields for neurotechnologies, which exist nowadays, ensures
the relevance of research in this direction.

This work proposes a neural network architecture that provides multi-channel
information processing as a part of a cyber-physical system in order to assess its
condition. The architecture contains the input ensemble for the deep recurrent neural
network (DRNN) and output hybrid neural network to aggregate the intermediate
results of the presented data. Such a composition of neural networks allows predicting
the parameters of a cyber-physical system due to DRNN and classifying its condi-
tion using an output hybrid (neuro-fuzzy) system which set of rules, generated
automatically during learning, can be adjusted if necessary.

2 Materials and Methods

A specific feature of the applied aspect of neural networks in cyber-physical systems
is the need to adapt the resulting solutions to the information-technological environ-
ment of the physical process, which is based on the experience of a developer both in
the field of information and hardware. This process for neural networks consists of the
analysis of the receiving result and further adjustment of network architectures and
their hyperparameters (initial parameters of networks and optimization procedures
which are unchanged during network training).

The absence of universal network architectures leads to the necessity to use various
techniques to improve the results of data analysis. Boosting being one of them. It
consists of the sequential aggregation of different algorithms in which each subse-
quent one uses the results of the previous ones for learning, this allows obtaining a
stronger solution, high generalizing ability, and universality [10]. To a certain extent,
the introduction of methods, which allow improving the understanding of how the
neural network receives the result since this provides an opportunity for actions
to improve it, can also be attributed to boosting. For example, in [11, in Russian]
taking into account the symmetries in the incoming signals, we propose a grouping
of neurons in a hidden layer according to the form of automorphism and the use
of three-phase activation functions for each group. In many cases a similarity of a
multi-agent approach is used: sets of relatively simple neural networks with different
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hyperparameters are created, and then their outputs are analyzed according to various
schemes [12].

The authors propose a hybrid architecture for the classifier of the technological
process (TP) condition for the production of phosphorus from apatite-nepheline ores
waste [13, in Russian], shared DRNN and ANFIS networks (adaptive neuro-fuzzy
inference system is an adaptive network based on the fuzzy inference system of
Takagi–Sugeno) [14]. This structure provides a mechanism to introduce into the
“closed” neural network classifier the possibility of recording expert knowledge due
to adjusting the rule base synthesized by the ANFIS system and allows making clas-
sification based on additional knowledge. The approach under consideration makes
the understanding of classification results accessible since the output cascade of the
neural networks ensemble the interpretation for the previous signals will be visible.

It should be noted, that hybrid approaches for the solver building in intelligent
systems are often used in modifications of various subject areas and the ANFIS
option is not the only one that can be used. One of the alternatives is the «coactive
neuro-fuzzy inference system» (CANFIS), which also combines fuzzy logic and
neural networks, achieving an increase in the power of intelligent systems through
the use of verbal and numerical description of the subject area [15].

The proposed hybrid architecture contains the cascade inclusion of DRNN block
and adaptive ANFIS networks, therefore, the output fuzzy classifier ANFIS gets a
possibility to forecast the TP condition taking into account its behavior in the past
due to the presence of such ability in DRNN.

Let the described architecture and its application be considered for the specific
application for which it was specially created: for the processing of technolog-
ical information of the system for phosphorus production from apatite-nepheline
ores waste. The cyber-physical system consists of an intelligent information
superstructure and three units (Fig. 1) implementing TP:

• a pelletizer (it forms raw pellets from ores waste);
• a multi-chamber indurating machine of a conveyer type (it provides high-

temperature roasting of raw pellets);
• an ore-thermal furnace (pellets are melted in it with the release of gaseous

phosphorus);
• The listed units are indicated in Fig. 1 as control objects CO1, CO2, and CO3,

respectively.

DRNN application is justified by their ability to accumulate knowledge for some
retrospective time period, which is in demand in the TP control, as it makes it possible
to evaluate its condition not only by current parameters but also taking into account
their past behavior. It is especially important for complex TP inwhich different stages
are differentiated both in time and in space and implemented on various units. The
DRNN ensemble provides the approximation of the historic behavior and spatial
division of the controlled system into separate technological zones. The ANFIS
block, in its turn, automates the receiving of final conclusions based on the results
provided by recurrent networks.
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Fig. 1 The hybrid architecture of the information processing in the cyber-physical system

The application of mathematical models for transformation processes of the feed-
stock into the final product by each unit makes it possible to determine the condition
variables at the input/output of each unit [13]. When preparing the learning sets
variables are united into row vectors:

V1 = [Du1], V2 = [r1εu0], V3 =[r2σkη], (1)

where D—a middle diameter for the waste particles of apatite-nepheline ores (mm);
u1—specific humidity of ores waste (%); r1—a radius of a raw pellet (mm), ε—a
pellet porosity (in fractions of the volume of the entire pellet), uo—pellets humidity
at the exit from the granulator (%); r2—a radius of a roasted pellet (mm); σk—a
pellet compressive strength (kN/pellet); η—a degree of response in decarbonization
reactions (a fraction of the reacted substance from its total volume). It should be
mentioned, that the output row vector V2 of the granulator is the input one for the
induratingmachine, and its output row vector V3 is the output one for the ore-thermal
furnace, which output parameter is the purity of the resulting phosphorus γp (% from
the general volume of the output fractions).

The listed parameters, taken at discrete intervals of time �t, form an initial data
matrixwhich is constantly updatedwith newvalues as the observation time increases.
For the neural network training the data taken for a long time period, which provides
a sufficient amount of the learning sample, is used. The data are stored in the form
of a file with CSV format, which fragment reflecting the typical values for the TP
parameters is shown in Fig. 2.

From the whole variety of DRNN for the considered architecture, two types
of networks were selected, which have the best representative power and have a
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Fig. 2 Data file fragment

wide range of practical applications. These networks are based on the algorithm
of long short-term memory (LSTM, Long Short-Term Memory) [16, 17] and the
network GRU (Gated Recurrent Unit) [18, 19], applied LSTM principles but having
fewer numbers of filters and operations for calculations. LSTM and GRU layers
allow coping with a problem of gradient attenuation observed in direct propaga-
tion networks with a large number of layers, as the number of layers increases, the
network eventually becomes unlearning [20]. DRNN (in variants LSTM and GRU)
in the proposed architecture are used for solving the problem of regression.

DRNN and ANFIS learning is carried out separately in two stages. At the first
stage, DRNN is trained, at the second stage ANFIS is trained. Before learning, data
are prepared and normalized. From the CSV file, the information is entered into the
matrix: MV = {[V1 V2 V3 γp]i}, where i = 0, 1, 2, … Nmv, where Nmv—the
number of rows in the table read from the file. From this matrix, learning and test
sets are formed taking into account the following control parameters: lookback—the
number of time intervals from the current moment, determining the number of rows
in one learning data packet; delay—the interval of the forecast (if delay= 0, then the
current condition is estimated); min_index and max_index—the indexes restricting
data retrieval from MV; shuffle—a logic key, at shuffle = 1 rows are retrieved from
MVwith shuffling, at shuffle=0without shuffling; batch_size—anumber of samples
in one packet, according to which the network weights are adjusted; step—a period
in intervals specifying the value of lines decimation from MV.

The LSTM/GRU unit (Fig. 1) uses several DRNN connected in parallel, which
differ in the number of components in the input data vectors and the output parameter.
For networks DRNN1–DRNN3 the input vector is the combined row vector [V1V2],
and the networks differ in what parameter is taken for them as the output one: r1, ε,
or uo: r1, respectively. For DRNN4–DRNN7 networks the sets of vectors [V2 V3]
are the input parameters. DRNN4–DRNN7 are the output parameters in networks:
r2, σk, η, and γp respectively.

Without dwelling on the algorithms of the networks, we only note that the output
yk k-th DRNN, k = 1, 2, …, 7, is formed in accordance with the expression:

yk = f (state_tk ◦ Uk + BVk ◦ Wk + bk), (2)

where state_tk, Uk, bk—learning parameters of k-th LSTM for the current moment
of time t, z—a symbol of Hadamard matrices (component-wise product), BVk—the
input packet of learning data.
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It should be noted, that LSTM/GRU contains a sequentially located set of recur-
rence units and can only process a parameter row [20]. However, the learning algo-
rithms provide for a packet supply of initial data to the network input (in accordance
with the above-mentioned list of control parameters), therefore, state state_tk, Uk,
and bk tk, Uk, are matrixes.

3 Application and Results

DRNN networks were trained in the mode of sequence to end, when not complete
results sequences were returned for all time intervals, but only the last result for each
input sequence. GRU application in the architecture shown in Fig. 1 allows reducing
the computational cost for network learning due to their simpler structure, compared
with LSTM, as noted above. The use of GRU together with LSTM is justified by
the appropriateness of testing simpler solutions if they allow achieving the specified
accuracy for TP condition estimation.

In the second stage, the ANFIS network is trained, this network has seven inputs
(by the number of DRNNs) and one CL output having a range of values from 0 to
1. The network solves the problem of classifying the condition for TP based on the
results of its evaluation of DRNN. It was accepted that the condition of the TP can
be divided into four classes (depending on the value of the parameter γp): “nominal
value”, “nominal value excess”, “small deviation down from the nominal value” and
“big deviation down from the nominal value” (Table 1).

The entire range (from0 to 100%) is a technologically permissible spread in values
of the parameter γp, the exceeding of which is alreadymonitored by instrumentation.

The program that implements the architecture provides a control parameter delay,
depending on it the current condition can be evaluated (delay = 0) or forecasted
(delay > 0). Unlike DRNN, ANFIS learning requires a significantly smaller training
sample due to the relatively small number of adjustable network parameters [15].

To test the proposed neural network architecture simulation experiments were
performed in MatLab 2019b environment, which has a specialized machine learning

Table 1 Classes numbers of the output parameter for the ore-thermal furnace

Class number Class name Interval of values for a
parameter γp, %

ANFIS output,
appropriate to class

1 Nominal value 40–60 0.75

2 Exceeding the nominal
value

61–100 1.00

3 Small deviation down
from the nominal value

30–39 0.50

4 Big deviation down from
the nominal value

0–29 0.25
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Sequence
input LSTM/GRU Fully

connected
Regression
output ANFIS

Fig. 3 Hybrid network layer scheme for one channel of data processing

library Deep Network Designer. Before learning, the data were normalized using
the operations of subtraction the mean and roof-mean-square deviation. A simplified
scheme of the channels layers for processing TP parameters is shown in Fig. 3.

Each of seven LSTMwas trained during 250 epochs, the number of samples in the
training dataset was 50,000, and in the testing one, it was 10,000. To avoid retraining
the decimation mechanism was used. The training quality estimation (Fig. 4) was
carried out with the use of two metrics: the root-mean-square error and loss function
[21].

ANFIS configuration: the number of inputs—7; the number of membership func-
tions for each input—2; the type of membership functions—trimf; the number of
outputs—1; the type of membership functions—linear. In the process of ANFIS
training ANFIS, a set of rules was generated, the structure of which is reflected in
the fragment shown in Fig. 5.

The neural networks were trained on the following hardware: ASUSTUFGaming
FX705DT-AU039notebook,AMDRyzen73750HCPU,2.3GHz,NVIDIAGeForce
GTX 1650 4G GPU, 1024 CUDA cores (provide parallel computing). Classification
results are presented in Fig. 5.

The crosses indicate the output of the hybrid architecture classifier, the dots indi-
cate the levels corresponding to the true classes. The forecasting parameter delay
= 0 was suggested, which means the recognition of the current condition, however,

Fig. 4 LSTM metrics dynamics in the training process
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Fig. 5 A fragment of ANFIS rules set

this does not affect the quality of the classification performed by ANFIS, since the
LSTM/GRU unit is responsible for the forecast accuracy in this architecture (its
accuracy characteristics are shown in Fig. 4). We note that in the experiment the
replacement of LSTM by GRU practically did not affect the accuracy of the forecast,
this fact can be due to a large number of training epochs or the features of the training
data set.

The grouping of the classifier output values near the true class values in Fig. 6
can indicate the operability of the proposed hybrid architecture and the ability of
its application to solve the problem for classifying the TP conditions. To obtain an
integer class number fromTable 1, it is possible to specify a valid range for the spread
of the ANFIS output values. Some of the ANFIS outputs, underlined in Fig. 6, have
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Fig. 6 Classification results
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significant deviations from the true values, which reflect classification errors that can
be reduced by modification of the hybrid architecture hyperparameters, for example,
the number of ANFIS input membership functions can be increased to three.

4 Conclusion

The proposed hybrid architecture makes it possible to take advantage of twomethod-
ologies for constructing neural networks: to perform a retrospective analysis of time
series using the DRNN ensemble and to generalize the results of their work with
the ANFIS system providing an additional opportunity to make adjustments to the
automatically created knowledge base in case of need.

The conducted simulation experiment showed the ability of the proposed hybrid
architecture to carry out the classification of the process condition based on the
stage-by-stage processing of the initial information using the DRNN and ANFIS
systems.

The obtained results can be used in the development of knoware and software for
systems of intelligent data analysis in various subject areas.
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