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Abstract A new principle of mathematical models creation for the technical and
other objects which are characterized by essential nonlinearity of interdependence of
variables is substantiated. It is shown that the use of special analytical functions with
a number of unique properties for the multiplicative transformation of fragmented
mathematical models that approximate certain parts of the modeled dependencies
allows us to obtain new functions that are analytically isolated in their domain of
definition. The analyticity of these functions makes it possible additively to combine
them into a single analytical function that approximates the simulated dependence
in the entire area of its description. In this case, the total approximation error of the
mathematical model of the studied object does not exceed the largest error of frag-
mentary approximating functions. The unique properties ofmultiplicatively isolating
functions provide an almost “seamless” additive union of fragments. This chapter
is dedicated to the study and proof of these properties, which are illustrated by
examples.

Keywords Nonlinear dependence · Mathematical model · Experimental data ·
Approximation · Analytical function · Multiplicative isolation

1 Introduction

Modern control systems for various processes and technical objects are usually
created based on their mathematical models (MM). This approach, in particular, is
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characteristic when using analytical methods for the synthesis of control systems [1–
4]. Currently, such analytical methods are widely used as linearization by feedback
[5, 6], the passification method [7–9], the trajectory-positional approach [10, 11],
the method of quasilinear models [12], and the Jordan controlled form method [13]
and others. In these cases, the required control law is found by solving some systems
of equations that are created on the basis of the requirements for the synthesized
system taking into account the control object’s MM properties. However, analytical
methods of synthesis can be implemented if only the object MM is analytical, i.e.
the functions of its equations are continuous and differentiable. This requirement is
due to the fact that each analytical method for the control systems synthesis implies
some mathematical transformations possibility of the MM equations of both objects
and control systems.

On the other hand, themodern systems quality requirements have increased so that
they can be satisfied only taking into account the nonlinearities that are inherent in
almost all controlled objects. Therefore, theMM of real control objects are nonlinear
[12–14]. Most often, these MMs are determined experimentally by applying some
test actions to the object and fixing its reaction to these actions. The tables obtained as
a result contain experimental point data on the dependence of the object’s variables
from the trial actions and other variables. Very often, these dependencies are very
complex and cannot be described quite accurately by continuous analytical functions
in the entire range of arguments. They have a pronounced fragmentary character, and
neighboring fragments can have different slopes and curvature [14, 15].

Therefore, to obtain MM, these data are approximated at separate intervals by
changes in variables by suitable analytical functions. However, the fragmented MM
of the nonlinear object obtained in this way is not analytical, which does not allow
the use of most of the known methods for the nonlinear controls synthesis.

An example of such a two-dimensional nonlinear dependence f (x1, x2), having a
fragmentary structure with respect to the variable x1, is shown in Fig. 1. As seen here
in the interval x1 ∈ [0 ÷ (4 − 0, 333x2)] derivative ∂ y/∂ x1 is positive, and when
x1 ∈ [(4 − 0, 333x2) ÷ 6] this derivative is negative, i.e. at the boundary of these

Fig. 1 Two-dimensional
dependence y = f (x1, x2)
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Fig. 2 Function fragment
f 0(x)

intervals there is a “kink” of nonlinearity. In such cases, methods are used that can
describe the “kink” with the necessary accuracy. The simplest and most effective is
the piecewise (fragmentary) description [14], which provides any accuracy.

In Fig. 2 shows a fragmentary description y = f0(x)[1(x − 1.5) − 1(x − 3)] of
the nonlinearity of one variable x by some function f 0(x), but only on the interval
1.5 ≤ x ≤ 3. Here, step function 1 (x) is used, but it is not differentiable, therefore
the MM is nonlinearity (Fig. 2) but is not analytic, since it has gaps in the deriva-
tives on the points of the fragments joining, that excludes a possibility of analytical
transformations of such models. The spline approximation also gives a fragmentary
description, but it is also inconvenient for analytical transformations of MM [14,
15]. In addition to the “fragment-oriented” methods, methods are known that are
oriented to the construction of analytical MMs: regression analysis [16], polynomial
decompositions [17], methods of radial basis functions [18], and others. But they
do not provide the necessary accuracy for approximating nonlinearities with kinks,
gaps, and multi-extremums.

In order to overcome these difficulties, Professor R.A. Neydorf developed a
multiplicative-isolating principle for the MM creation of essentially nonlinear
controlled objects. The algorithmic basis of this principle is the original multiplica-
tively isolating function (MIF) developed by him. It allows one to obtain a common
analytical MM of the controlled object using the Cut-Glue approximation method,
which provides an additive “seamless” combination of fragments of experimental
point data [12, 19, 20].

The aim of this work is to study the properties of MIF as the core of the
multiplicative-isolating principle of creating essentially nonlinear MMs.
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2 Multiplicative-Isolating Principle

The multiplicative-isolating principle is a fundamentally new approach to solving
the problem of approximating experimental data, which, due to significant nonlin-
earity, need fragmentation to achieve the required approximation accuracy. It has
two functionally different stages: the stage of preparation and primary processing of
experimental data, as well as the stage of final processingwith creation of the approx-
imating MM. The experimental data array is split into fragments at the preparatory
stage. Then each fragment is subjected tomathematical description by locally approx-
imating functions. These functions are usually found in the class of analytic func-
tions. The local approximation process is implemented using well-known classical
methods [16–18].

At the stage of final processing, the experimental data undergo a multiplicative
transformation using multiplicatively isolating functions. On the one hand, MIFs
isolate the fragments created at the first stage, and on the other hand, they combine
these fragments into a single analytical function. These operations are schematically

Fig. 3 Point array of experimental data

Fig. 4 Results of multiplicative transformation (1)
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Fig. 5 The resulting single
function F(x)

shown in Figs. 3, 4 and 5. In this case, two fragments are cut from the point experi-
mental data as shown in Fig. 3. Each of these fragments is approximated by a suitable
analytic function (Fig. 4), which are then combined (are glued) into a single contin-
uous function (Fig. 5). These operations are an essential, distinctive feature of the
multiplicative-isolating principle, which determines its approximating capabilities
and uniqueness.

Thus, the processing of experimental data in accordance with the multiplicative-
isolating principle consists in “cutting” them into separate fragments, local approx-
imation of these fragments and then these fragments are glued into a single contin-
uous function with analytical properties. Therefore, the practical implementation of
this principle was called the “Cut-Glue Approximation” (CGA) method. Further we
will consider in more detail the main stages of the multiplicative-isolating principle
implementation.

The initial array of experimental data on a certain object, the model of which must
be created, is represented by point values y(x1) − y(x10), shown in Fig. 3. The entire
array of experimental data does not lend itself to sufficiently accurate approximation
by known methods. This is caused by multi-extremums (minimum at the point x�1

and maximum at the point x�2), and also a rather sharp “kink” of nonlinearity at the
point x�1. Therefore, the array is cut, in this case, into two fragments. Values y(x1) −
y(x�1) refer to the first fragment, and values y(x�1) − y(x10) to the second fragment.

Each of the shown fragments is described with a sufficiently high accuracy by the
analytical locally approximating functions ϕ1(x) and ϕ2(x). This operation corre-
sponds to the application of the well-known piecewise approach to the approxi-
mating nonlinear data problem [14, 16]. However, the paradigm of themultiplicative-
isolating principle is to obtain the final result—MM, in the form of a function with
analytical properties. This condition implies additional steps to combine (glue) the
approximating functions of the selected fragments.

For this purpose, approximating functions of each individual fragment of experi-
mental data is exposed to the isolating transformation. The essence of this transfor-
mation lies in the fact that the approximation created within the limits of the exper-
imental data region limited by the fragment is preserved, and outside the fragment
boundaries the multiplicatively isolating function provides practically zero value.

The result of the isolating transformation is new analytical functions— f (x),
which are formed from ϕ(x) by multiplying each ϕ(x) on a special function E(x):
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f1(x) = ϕ1(x)E1(x), f2(x) = ϕ2(x)E2(x). (1)

This operation determined the use of the term “multiplicatively”. Figure 4 shows
the functions f1(x) and f2(x), obtained as a result of applying the multiplicative
operation (1).

Finally, the functions f1(x) i f2(x) are glued together into one analytical
expression by simple summation:

F(x) = f1(x) + f2(x). (2)

The result of their addition—function F(x), is a single continuous curve, which
is shown in Fig. 5.

As can be seen from expressions (1) and (2), the function Ei (x) performs two
operations simultaneously: (1) multiplicatively selects each fragment ϕ(x), keeping
the values of the approximating function in its definition domain; (2) multiplica-
tively “zeroes out” all values of this locally approximating function ϕ(x) outside the
fragment, forming new multiplicatively transformed functions f (x). This provides
the actual fragment “isolation” ϕ(x) in the experimental data array. Therefore the
function Ei (x) from (1) is called the multiplicatively isolating function.

The transformed functions (1) are independent from each other and from other
fragments. Thus, the operation addition of themultiplicatively transformed functions
f1(x) and f2(x) (2) becomes correct both in the mathematical sense and in the sense
of the multiplicative-isolating principle’s paradigm.

Thus, the multiplicatively isolating function (MIF) is the most essential element
of the multiplicative-isolating principle implementation, so we pass on to a detailed
consideration of its properties.

3 Properties of the Multiplicatively Isolating Function

This function should have the following ideal properties as a means of implementing
the multiplicative-isolating principle. First, it should have a value ideally equal to 1,
on the segment of its argument [xi−1 , xi ], i.e.

∀ x ∈ [
xi−1 , xi

] → E I
i (x) = 1. (3)

Secondly, in the rest of the its definition area, the condition of its values (ideally,
exact zeroing) tending to zero must be fulfilled, i.e.

∀ x : xi−1 > x > xi → E I
i (x) = 0. (4)

Function Ei (x) at the interval boundary points xi−1 and xi should ideally have an
average value between its minimum and maximum values throughout the fragment,
i.e. 0.5. Then, when adding and at the edge points of the segments, values equal to
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1 will be obtained. Therefore, the function E I
i (x) must, in addition to the argument

x , contain additional parameters—area coordinates to be cut out, here called the
“fragment”. In this way

E I
i (x, . . .) = E I

i (x, xl , xr ), (5)

where xl , xr are the left and right fragment boundaries, “cut out” from the exper-
imental data array. Accordingly, function E I

i (x) (5) should ideally be described by
the following conditional-logical expression:

E I
i (x, xl , xr ) =

⎧
⎪⎨

⎪⎩

1, ∀ x ∈ (xl , xr );
0.5, ∀ x = xl , xr ;
0, ∀ xl > x > xr .

(6)

The real function Ei (x) was developed and presented in works [13, 19, 20] and
many others. In the general case, it is described by the following expression:

Ei (x, S) =

[
x − xl +

√
(x − xl)2 + ε2l

]
·
[
xr − x + √

(xr − x)2 + ε2r

]

4 ·
[√

(x − xl)2 + ε2l

]
·
[√

(xr − x)2 + ε2r

] . (7)

The main argument of function (7) is the coordinate variable x , and the set S
contains parametric settings that provide the functional of themultiplicative-isolating
principle.

In the one-dimensional case (x—scalar) MIF (7) contains the minimum number
of parametric settings required for multiplicative processing S = {

si |i = 1, 4
}
. Here

s1 = xl , s2 = xr—left and right boundaries of the approximated fragment; s3 = εl ,
s4 = εr—parameters of the experimental data fragment left and right boundaries
approximation error, respectively.

Settings xl and xr ensure the formation of the one-dimensional fragment bound-
aries when it is “cut out”, and εl = εr—the fulfillment of the conditions for the MIF
existence [19]. The study of function (7) as a multiparameter dependence shows
that it really has all the properties important for the multiplicative-isolating principle
implementation. It should be noted that, provided εl = εr , function (7) has symmetric
left and right fronts of the “cut out” fragment, therefore the function Ei (x, S) with
εl = εr is called “symmetric”. Accordingly, function (7) with εl �= εr is called
“asymmetric” [19, 20].

Let us consider the main features and properties of multiplicatively isolating
function (7):

(1) MIF (7) in the interval (xl , xr ) takes values close to one. Moreover, the prox-
imity of its values to one is effectively adjusted by the parameters εl , εr . In ranges
(−∞ , xl) and (xr , ∞) MIF (7) takes on values as close to zero as desired.
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Moreover, both the proximity of the function value to zero and the proximity to
the edge points are also adjusted by the parameters εl , εr .
This MIF property is illustrated in Fig. 6, which shows the MIF (7) graph at
xl = 14,xr = 21 and at εl = εr = ε. It is clearly seen: the smaller value of ε,

the MIF values in the interval x ∈ (xl , xr ) closer to 1, and if x /∈ (xl , xr ),
then the values of Ei (x, xl , xr , ε) (7) are closer to zero. In this case, the graph
of function Ei (x, xl , xr , ε) (7) is symmetrical about point xsm = 17.5, which in
this case is the midpoint of the interval (xl , xr ).

(2) Function (7) symmetric at εl = εr about the middle of the interval (xl , xr ) and
has a single maximum at point xsm = (xr + xl)/2 [19, 20]. This is also clearly
seen in Fig. 6, where point xsm = 17.5.

(3) At boundary points xl , xr MIF (7) takes a value from 0.25 to 0.5, which, in
turn, depends on the width of the fragment | xr − xl | and value εl , εr [20].

(4) Function (7) of the asymmetric MIF has a single maximum at point xam , which
is shifted to boundary xl or xr , which has a smaller parameter εl or εr . This
MIF property is illustrated in Fig. 7 by graphs E1(x, S) and E2(x, S) where
xl = −0.5, xr = 0.5 and εl1 = 0.1, εr1 = 1.0, εl2 = 0.3, εr2 = 0.01.

Fig. 6 Symmetric MIF with different values ε

Fig. 7 Asymmetric MIFs
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As you can see in Fig. 7, the MIF curves are essentially non-symmetric. The
extremum point xam of function E1(x, S) really shifts towards a lower value εl
or εr . So, if εl1 = 0.1, εr1 = 1.0, then extremum E1(x, S) corresponds to the
point xam = −0.265, if εl2 = 0.3, εr1 = 0.01, then the extremum corresponds
to point xam = 0.403. Extreme function value E(x, S) becomes much less than
1 with an increase in the average value (εl + εr )/2 and approaches to 1 as this
value decreases.

(5) MIF (7) is infinitely differentiable, like any radical-fractional function.

Examples of creating mathematical models based on the multiplicative-isolating
principle can be found in [12, 19] and others.

4 Conclusion

The multiplicative-isolating principle of creation of mathematical nonlinear models
based on experimental data is an effective approach that has no analogues in world
practice. A practical implementation of this principle is the Cut-Glue approxima-
tion method, in which the fundamental properties of the multiplicatively isolating
functions are used. This method is perspective and, that is important, an effective
way of the mathematical description of experimental data, and also the subsequent
creation of analytical models of significantly nonlinear objects. The features of the
multiplicative-isolating principle are considered above allow to solve the problems
of minimization of approximation error and increase in accuracy of the description
of experimental data.

Acknowledgements Chapter is prepared on the results of the projects creation with support of the
RFBR grants No. 18-08-01178\20 in DGTU and No. 19-08-01226 in LLC “SRI MVUS”.
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