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Abstract Within the last years, Python became more prominent in the scientific
community and is now used for simulations, machine learning, and data analysis.
All these tasks profit from additional compute power offered by parallelism and
offloading. In the domain of High Performance Computing (HPC), we can look back
to decades of experience exploiting different levels of parallelism on the core, node
or inter-node level, as well as utilising accelerators. By using performance analy-
sis tools to investigate all these levels of parallelism, we can tune applications for
unprecedented performance. Unfortunately, standard Python performance analysis
tools cannot cope with highly parallel programs. Since the development of such soft-
ware is complex and error-prone, we demonstrate an easy-to-use solution based on an
existing tool infrastructure for performance analysis. In this paper, we describe how
to apply the established instrumentation framework Score-P to trace Python applica-
tions. We finish with a study of the overhead that users can expect for instrumenting
their applications.

1 Introduction

Python is one of the Top 5 programming languages,1 and it is not surprising that more
and more scientific software is written in Python. But the standard implementation
CPython interprets Python source code, rather than compiling it. Hence, it is deemed
to be less performant than other programming languages like C or C++.Moreover, as

1According to the TIOBE Index Oktober 2019: https://www.tiobe.com/tiobe-index/.
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CPython employs a Global Interpreter Lock (GIL) [1], it is often stated that Python
does not support parallelism. While there are different Python implementations like
pypy2 or IronPython,3 which try to counter these drawbacks, these approaches do
not represent the standard implementation.

However, CPython is easily extensible, e.g., by using its C-API or foreign function
interfaces. These interfaces allowprogrammers to exploit the parallelismof aproblem
with traditional programming languages like C without losing the flexibility and the
power of the standard Python implementation. Moreover, it is possible to offload
computation to accelerators like graphic cards. Nevertheless, these extensions and
the Python source code itself need to be optimised to exploit the full performance of
a computing system. To optimize the application, it has to be monitored. To monitor
the application, performance-related information has to be collected and recorded.

While collecting performance information is possible to some extent with tools
that are part of the standard Python installation, none of these tools makes it easy
to gain knowledge about the efficiency of thread parallel, process parallel, and
accelerator-supported workloads. However, such tools exist for traditional program-
ming languages used in High Performance Computing (HPC). Here, Score-P [2],
Extrae [3], TAU [4], and others allow users to record the performance of their appli-
cations and analyze them with scalable interfaces.

In this paper, we present the Python bindings for Score-P, which make it easy for
users to trace and profile4 their Python applications, including the usage of (multi-
threaded) libraries, MPI parallelism and accelerator usage. The paper is structured
as follows: We describe our concept and implementation in Sect. 2 and evaluate the
overhead in Sect. 3. We present related work in Sect. 4 and finalize this paper with a
conclusion and an outlook in Sect. 5.

2 The Score-P Python Bindings

The Pythonmodule, which is used to invoke Score-P and allows tracing and profiling
of Python code, is called Score-P Python bindings. Themodule can be split into three
basic blocks, which are used in two phases: The initialisation, which is executed in
a preparation phase, prepares the measurement and executes the application. The
instrumenter is registered with the Python instrumentation hooks and used during
execution. The Score-P C-bindings connect Python with C and Score-P and are also
used during execution. The workflow of the overall process, including preparation
phase and the execution phase, is depicted in Fig. 1.

2https://pypy.org/.
3https://ironpython.net/.
4As defined in [5, Sect. 2].

https://pypy.org/
https://ironpython.net/
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Fig. 1 Overview of the instrumentation process with Score-P. In the first phase, the Score-P Python
module initializes the Score-P measurement system and attaches Score-P libraries. In the second
phase, the bindings use the preloaded Score-P libraries and instrument the Python code to record
events with Score-P. In addition to the Python instrumentation, other parts of the application, such
as MPI, pthreads, and CUDA functions, are automatically instrumented by Score-P (not depicted)

2.1 Preparation Phase

Since version 2.5, Python allows running modules as scripts [6]. This approach
can be used to record traces of a Python application. Instead of starting the Python
application directly, the script and its parameters are passed as arguments to the
Score-P Python module. The recording can be configured by prefixing additional
parameters to the parameter specifying the original Python application. An example
is given in Listing 1.

In the first step, all Score-P related parameters are parsed. Score-P supports a
variety of programming models like OpenMP, MPI, and CUDA. However, increas-
ing the monitoring detail leads to more information in a trace or profile but also to
a higher instrumentation overhead. Therefore, we allow the user to choose which
functionality should be monitored. Based on the chosen features, the Score-P ini-
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1 # mpirun -n 2 -> run two parallel MPI processes
2 # python -> each of these runs python
3 # -m scorep -> run ’scorep ’ module before

actual script
4 # --mpp=mpi --thr... -> use MPI & pthread

instrumentation
5 # ./run.py -> the script or application to

run
6 # -app -arg -> an argument to ./run.py
7 mpirun -n 2 \
8 python -m scorep --mpp=mpi --thread=pthread ./run.py -

app -arg

Listing 1 Calling an MPI-parallel application using the Score-P Python bindings

tialisation code is generated. This code is then compiled and added together with
some dependencies to the LD_PRELOAD environment variable. As LD_PRELOAD
is evaluated by the linker, the whole Python interpreter needs to be restarted, which
is done using os.execve() [7].

Once restarted, the module starts the second step: The instrumenter is created,
and the arguments, which are succeeding the Score-P arguments are utilised. The
first non-Score-P argument is the Python application that shall be executed, followed
by its arguments. The Python application is read, compiled, and executed [8], and
its arguments are passed to the application.

2.2 Execution Phase

As described before, the execution phase uses two different software parts: the instru-
menter and the Score-P C-bindings that hand over the events from the instrumenter
to Score-P.

2.2.1 The Instrumenter

The instrumenter represents a component that is registered with CPython and sup-
posed to be called for specific events during the execution of an application. Python
offers two registration alternatives for such callback functions: sys.settrace()
and sys.setprofile() [9]. However, different events are raised and for-
warded to the instrumenter depending on which of these functions is used. A sum-
mary of these events is shown Table1. Obviously, both functions can be used
to instrument function calls, but both also offer different functionality. While
sys.setprofile() can be used to trace also calls to C-functions,
sys.settrace() can be used to record lines of code or operations executed.
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Table 1 Supported events for Python profiling/debugging interfaces

Event Description Supported by sys_set…

…profile() …trace()

Call A function is called ✓ ✓

Return A code block (e.g., a
function) is about to
return

✓ ✓

C_call A C function is about
to be called

✓ ✗

C_return A C function has
returned

✓ ✗

C_exception A C function has
raised an exception

✓ ✗

Line The interpreter is
about to a new line
of code or re-execute
the condition of a loop

✗ ✓

Exception An [Python] exception
has occurred

✗ ✓

Opcode The interpreter is
about to execute a new
opcode

✗ ✓

Please note that tracing has different meanings in the Python documentation and
in the HPC community. In the former, tracing describes the investigation of per line
execution of the source code, which can be used to implement debuggers [9]. In
contrast, the HPC community understands tracing as the recording of events like
entering or exiting a region over time [5]. In this paper, we use the term tracing
for the HPC notion of tracing. If we refer to the python notion of tracing we use
sys.settrace().

However, for each callback, sys.settrace() and sys.setprofile(),
Python also issues thePython framecausing the event and someadditional arguments.
The Python frame holds information like the current line number of the associated
module. The instrumenter passes this information to the Score-P C-bindings.

2.2.2 Score-P C-bindings

The Score-PC-bindings between Python and Score-P use the PythonC-interface [10]
and the user instrumentation from Score-P [11, Sect. J.1.2]. The bindings do not
only forward events regarding entering or exiting of functions, but also group these
functions based on their associated module. Moreover, they also pass information
like line number or the path to the source file to Score-P. Score-P then uses these
instrumentation events to create Cube4-profiles, OTF2-traces or to call substrate
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Fig. 2 Trace of a simple application using the Score-P Python bindings and Vampir. __main__
indicates that the function is part of the currently run script

Fig. 3 Trace of a Python application [13] using CUDA and MPI. Traced using the Score-P Python
bindings. Green are TensorFlow functions; red are MPI operations; blue are CUDA operations;
black lines are CUDA communication

plugins for an online interpretation. Resulting traces can be viewed in Vampir [12],
as shown in Fig. 2 for the small example code in Listing 2. A more complex parallel
application is visualized in Fig. 3.

1 def baz():
2 print("Hello

World")
3 def foo():
4 baz()
5 if __name__ == \
6 "__main__":
7 foo()
8

Listing 2 Simple Python example
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3 Performance Evaluation

To evaluate the overhead caused by the instrumentation, we designed two test cases.
The first test case, shown in Listing 3, increments a value in a loop.We expect that the
overhead introduced by the sys.setprofile() instrumenter does not depend
on the number of iterations about this loop, since no functions are entered or exited.
In contrast, we expect that the instrumenter using sys.settrace() causes an
overhead depending on the iterations, since it is called for each executed line.

The second test case (Listing 4) uses a function to increment the value. Here, we
expect a strong dependency on the number of iterations for both instrumenters.

1 import sys
2

3 result = 0
4

5 iterations = \
6 int(sys.argv [1])
7

8 iteration_list = \
9 list(range(iterations

))
10

11 for i in iteration_list:
12 result += 1
13

14 assert(result ==
iterations)

Listing 3 Test case 1: loop only

1 import sys
2

3 def add(val):
4 return val + 1
5

6 result = 0
7 iterations = int(sys.argv

[1])
8 iteration_list = \
9 list(range(iterations)

)
10

11 for i in iteration_list:
12 result = add(result)
13

14 assert(result ==
iterations)

Listing 4 Test case 2: function calls

Weperformedour experiments on theHaswell partitionof theTaurusCluster atTU
Dresden. Each node is equipped with two Intel Xeon CPU E5-2680 v3 with 12 cores
per CPU, and at least 64 GB of main memory per node [14]. Measurements are taken
for each instrumenter, i.e. sys.setprofile() and sys.settrace(), as well
as without the Score-P module, marked with None. Each experiment is repeated 51
times. The results are depicted in Fig. 4. We use linear interpolation to calculate the
costs for (a) enabling instrumentation and (b) using the instrumentation. While the
former includes setting up the Python environment and starting and finalizing Score-
P, the latter represents the costs to execute one loop iteration. We disabled the Score-
P measurement substrates profiling and tracing to represent only the overhead of
instrumenting the code.The linear interpolationuses themedianof eachmeasurement
and the polyfit function from numpy to create t = α + βN where t represents the
runtime, N is the number of iterations, α is the one-time overhead for enabling the
instrumentation and β is the cost per loop iteration. The results of this interpolation
are presented in Table2.

For the first test case (Fig. 4a), we see that the instrumentation cost is about
0.6 s. This cost will apply every time the instrumentation is enabled. Executing one
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Fig. 4 Runtime of two instrumenters and non-instrumented code (None) for different test cases.
Dotted lines represent a linear interpolation of themedians of eachmeasurement point. The overhead
for setting up the measurement and starting the Python environment is 0.6 s and independent of the
instrumenter. Please note the different x-axis

Table 2 Overhead for test cases (median results): α: constant overhead; β: per loop iteration
overhead

Test case 1 Test case 2

Instrumenter α (s) β (us) α (s) β (us)

None 0.05 0.17 0.05 0.3

sys.setprofile() 0.58 0.18 0.61 15.0

sys.settrace() 0.63 0.98 0.58 17.9

loop will consume about 0.17µs. Capturing the loop execution on a per-line scale
without forwarding the information to Score-P costs additionally 0.8µs. This cost
only appears for thesys.settrace() instrumenter.

For the second case (Fig. 4b), we see the same initial costs. However, the per-
iteration costs are higher since we call functions. The general overhead without
instrumentation (None) increases by about 0.13µs to about 0.3µs. The overhead
for function instrumentation increases even more. Here each function call adds about
14.7µs (for sys.setprofile()). Due to the per-line overhead, we can say
that sys.settrace() should not be used in the current implementation where
the same data is given to Score-P by both available instrumenters. Therefore, we
choose to set sys.setprofile() as default instrumenter. In future versions of
our software, we plan to include information on exceptions or executed lines in
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profiles and traces. The user will have to choose whether the additional information
is important enough for the added overhead.

4 Related Work

There are different tools to profile or trace Python code. The most common ones
are the built-in profiling tools profile and cProfile [15]. While both share the same
command-line interface, cProfile is preferable, since it is implemented in C and
therefore faster. The output of both tools is usually written to the command line,
but can also be re-directed to a file. The output can be converted and visualised by
several third-party tools. For example, pyprof2calltree [16] enables users to convert
the output for later analysis with Kcachegrind [17]. An alternative is SnakeViz [18],
which visualises the output of the built-in profilers in a web application.

All these tools are only focussed at single node analysis and do not support
parallel programming paradigms used in HPC, like MPI or OpenMP. This is dif-
ferent for Extrae [3] and TAU [4]. Extrae uses sys.setprofile() to reg-
ister callbacks from Python. The developers implemented their interface using
ctypes, which is a foreign function interface for Python. TAU version 2.28.1 utilises
PyEval_SetProfile from the C-API and register a callback function that is
written in C.

5 Conclusion and Future Work

In this paper, we introduced a module that enables performance engineers to instru-
ment Python applications with Score-P. We described and justified different design
decisions that we encountered during development. To quantify the runtime over-
head, we presented measurements of two benchmark kernels. Based on these mea-
surements, we decided to use sys.setprofile() as the default instrumenter, as
the runtime overhead is smaller than the overhead caused by sys.settrace().

Further work might include ways to control the runtime overhead, besides manual
instrumentation. One approach could be to sample Python applications.

The Score-P Python bindings are available online at https://github.com/score-p/
scorep_binding_python.
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