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Abstract With exascale computing forthcoming, performancemetrics such asmem-
ory traffic and arithmetic intensity are increasingly important for codes that heavily
utilize numerical kernels. Performance metrics in different CPU architectures can be
monitored by reading the occurrences of various hardware events. However, from
architecture to architecture, it becomes more and more unclear which native per-
formance events are indexed by which event names, making it difficult for users to
understand what specific events actually measure. This ambiguity seems particu-
larly true for events related to hardware that resides beyond the compute core, such
as events related to memory traffic. Still, traffic to memory is a necessary character-
istic for determining arithmetic intensity. To alleviate this difficulty, PAPI’s Counter
Analysis Toolkit measures the occurrences of events through a series of benchmarks,
allowing its users to discover the high-level meaning of native events.We (i) leverage
the capabilities of the Counter Analysis Toolkit to identify the names of hardware
events for reading andwriting bandwidth utilization in addition tofloating-point oper-
ations, (ii) measure the occurrences of the events they index during the execution
of important numerical kernels, and (iii) verify their identities by comparing these
occurrence patterns to the expected arithmetic intensity of the numerical kernels.

1 Introduction

Most of the major tools that high-performance computing (HPC) application devel-
opers use to conduct low-level performance analysis and tuning of their applications
typically rely on hardware performance counters to monitor hardware-related activi-
ties. The kind of available counters is highly dependent on the hardware; even across
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the CPUs of a single vendor, each CPU generation has its own implementation.
The PAPI performance-monitoring library provides a clear, portable interface to the
hardware performance counters available on all modern CPUs, as well as GPUs,
networks, and I/O systems [8, 9, 14]. Additionally, PAPI supports transparent power
monitoring capabilities for various platforms, including GPUs (AMD, NVIDIA) and
Intel Xeon Phi [5], enabling PAPI users to monitor power in addition to traditional
hardware performance counter data, without modifying their applications or learning
a new set of library and instrumentation primitives.

We have witnessed rapid changes and increased complexity in processor and
system design, which combines multi-core CPUs and accelerators, shared and dis-
tributed memory, PCI-express and other interconnects. These systems require a con-
tinuous series of updates and enhancements to PAPI with richer and more capa-
ble methods needed to accommodate these new innovations. One such example is
the PAPI Performance Co-Pilot (PCP) component, which we discuss in this paper.
Extending PAPI tomonitor performance-critical resources that are shared by the cores
of multi-core and hybrid processors—including on-chip communication networks,
memory hierarchy, I/O interfaces, and power management logic—will enable tuning
for more efficient use of these resources. Failure to manage the usage and, more
importantly, contention for these “inter-core” resources has already become a major
drag on overall application performance.

Furthermore, we discuss one of PAPI’s new features: the Counter Analysis Toolkit
(CAT), which is designed to improve the understanding of these inter-core events.
Specifically, the CAT integratesmethods based onmicro-benchmarking to gain a bet-
ter handle on Nest/Offcore/Uncore/NorthBridge counter-related events—depending
on the hardware vendor. For simplicity, hereafter we will refer to such counters as
Uncore, regardless of the vendor.

We aim to define and verify accurate mappings between particular high-level
concepts of performance metrics and underlying low-level hardware events. This
extension of PAPI engages novel expertise in low-level and kernel-benchmarks for
the explicit purpose of collecting meaningful performance data of shared hardware
resources.

In this paper, we outline the new PAPI Counter Analysis Toolkit, describe its
objective, and then focus on the micro-kernels that are used to measure and correlate
different native events to compute the arithmetic intensity on the Intel Broadwell,
Intel Skylake, and IBM POWER9 architectures.

2 Counter Analysis Toolkit

Native performance events are often appealing to scientific application developers
who are interested in understanding and improving the performance of their code.
However, in modern architectures it is not uncommon to encounter events whose
names and descriptions can mislead users about the meaning of the event. Common
misunderstandings can arise due to speculations insidemodern CPUs, such as branch
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prediction and prefetching in thememory hierarchy, or noise in themeasurements due
to overheads and coarse granularities of measurements when it comes to resources
that are shared between the compute cores (e.g., off-chip caches and main memory).

In earlier work [2], we explored the use of benchmarks that employ techniques
such as pointer chasing [1, 3, 4, 10–13] to stress the memory hierarchy as well as
micro-benchmarks with different branching behaviors to test different branch-related
events. The CAT, which was released with PAPI version 6.0.0, has built upon these
earlier findings by significantly expanding the kinds of tests performed by our micro-
benchmarks, as well as the parameter space that is being explored. Also, we continue
making our latest benchmarks as well as updates to the basic driver code (made after
the PAPI 6.0.0 release) publicly available through the PAPI project’s Git repository.

CAT currently contains benchmarks for testing four different aspects of CPUs:
data caches, instruction caches, branches, and floating-point operations (FLOPs).
Themicro-benchmarks themselves are parameterized and, thus, their behavior can be
modified by expert users who desire to focus on particular details of an architecture.
The driver, which is currently included with CAT, uses specific combinations of
parameters that we have determined appropriate for revealing important differences
between different native events. More details on the actual tests are discussed in the
following sections.

2.1 Data Cache Tests

Figure1 shows a plot of the data generated when the data cache read benchmark is
executed. As shown in the figure, there are six regions that correspond to six different
parameter sets. In the first four regions, the access pattern is random (“RND”), and
it is sequential (“SEQ”) in the last two. This choice affects the effectiveness of
prefetching, since random jumps are unlikely to be predicted, but sequential accesses
are perfectly predictable. The access stride is also varied between regions so that it
either matches the size of a cache line on this architecture (64 Bytes) or the size
of two cache lines (128 Bytes). This choice affects the effectiveness of “next-line
prefetching,” which is common in modern architectures. The third parameter that
varies across the six regions is the size of the contiguous block of memory in which
the pointer chaining happens. In effect, this defines the size of the working set of the
benchmark, since all the elements of a block will be accessed before the elements
of the next block start being accessed. We vary this parameter because in many
modern architectures prefetching is automatically disabled as soon as the working
set becomes too large.

TheX-axis of the graph corresponds to themeasurements performed by the bench-
mark. For each combination of parameters, the code performs 76 measurements, and
within each set of 76 measurements, the X-axis corresponds to the size of the buffer
that the benchmark uses. To improve the readability of Fig. 1, at the top of the graph,
we have marked the measurement indices within each region that correspond to the
sizes of the three caches (L1, L2, L3) of the testbed we used (Skylake 6140). For each
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Fig. 1 L2 data cache events

measurement, the benchmark executes a memory traversal defined by the parameters
of the region (e.g., a random pointer chase with a large stride, or a streamed traversal
of each cache line in the buffer). To amortize the effect of cold cache misses (also
known as compulsory misses), the benchmark traverses the test buffer in a loop such
that the number of memory accesses for each measurement exceeds the size of the
buffer by a large factor. As a result, cold cache misses do not have a measurable
effect in our results, as can be seen in the figure.

The red curve with square points depicts the number of hits in the L2 cache per
memory access (hit rate). In each of the six regions, the L2 hit rate is zero when
the buffer size is smaller than the L1 cache (since all accesses are served by the L1
cache). When the buffer is larger than the L1 but smaller than the L2 cache, every
access leads to an L2 hit. This can also be observed in each of the six regions, where
the red curve stays at one hit count per memory access between the markers for the
L1 and L2 cache sizes (shown at the top of the figure).

When the buffer size exceeds the size of the L2, the number of L2 hits per memory
access depends on the parameters of our benchmark. Each region uses different
parameter settings, and we will discuss the various effects of these parameters on
buffer sizes greater than the L2 cache.

block=large : Regions one and three illustrate that for large working sets
(“block=large”) prefetching is disabled, which results in a negligible number of
hits per access.

block=small : For small working sets (“block=small”), which are depicted in
regions two and four, successful prefetching leads to an L2 hit rate above zero.
These two regions, however, exhibit a difference in the hit rate. This is due to
varying stride parameter values in our benchmark.
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block=small, stride=64 : On a machine with a cache line size of 64 bytes—as is
the case for our testbed—using a stride of 64 bytes means that the data fetched
by the “adjacent cache line prefetcher” will contribute to the hit rate.

block=small, stride=128 : However, when the stride of the benchmark is set to
128 bytes, a lower number of prefetched lines is actually accessed, resulting in a
lower hit rate compared to the stride=64 bytes setting.

The last two regions of the graph show the results when the buffer is accessed
sequentially (“SEQ”). In these regions, the notion of “block” does not apply (since
the whole buffer is accessed as one contiguous block), and the access pattern is so
simple that prefetching is most efficient. The only limiting factor is the bandwidth of
the memory subsystem beyond the L2 cache, which is stressed twice as much when
the stride is 128 bytes, leading to a lower hit rate than the case of the 64-byte stride.

The blue curve with round points depicts the miss rate of the L2 cache. As
expected, this curve is complementary to the red curve depicting the hit rate (ignoring
some noise in the measurements).

2.2 Instruction Cache Tests

Unlike the case we discussed in the previous section—where the same micro-
benchmark code was used while key parameters were varied to achieve different
results—the instruction benchmark consists of a series of automatically generated
micro-benchmark functions that have a variable number of instructions. In Fig. 2, we
plot the data generated when the instruction cache benchmark is executed. The data
in the figure are in four regions. Within each region, the micro-benchmark functions
have the same design, but varying numbers of repetitions of their basic block, which
are displayed on the X-axis. The difference between regions is as follows.

1. region TRUE_BRANCH: Each basic block is enclosed in a branch that will
always evaluate to “true” (although it is designed such that it cannot be resolved
by the compiler).

2. region TRUE_BRANCH/FL: The code is the same as in the first region; how-
ever, a large array is accessed at the end of each iteration, so that unified caches
are flushed (“FL”).

3. region FALSE_BRANCH: Each basic block holds most of the code inside a
branch that will always evaluate to “false.” This way, only the first instruction in
a cache line will be used, as the rest will not be retired, and thus, resulting in a
lower hit rate compared to the results from the first region.

4. region FALSE_BRANCH/FL: The code is the same as in the third region, but
it also performs the large data traversal to flush the caches (“FL”).
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Fig. 2 Instruction cache events

Normalization of data for the purpose of readability: 1 In each of the four regions,
we normalize the raw counter values by dividing them by the number of repetitions
of the basic block, which turns these values into rates. In addition, the below function
is applied:

F(x) = log(1 + log(1 + 18.8 × x4))

1.15

This function has the following effects on its input:

• Values lower than 0.5 become smaller.
• Values between 0.5 and 2 are not significantly affected.
• Values larger than 2 grow extremely slowly (F(106) ≈ 3.5).

In Fig. 2, the green line with the hollow square points depicts the (normalized)
hit rate in the Decoded Stream Buffer (DSB) (also known as μOP cache). The DSB
functions as a level-0 instruction cache, as it is the unit inside each core that caches
μOPs after they have been decoded by the Micro Instruction Translation Engine
(MITE)—which is the unit that decodes instructions into μOPs. On Skylake, the
DSB can hold up to 1,536μOPs.

In the first and third regions of the graph, the green line reveals, for small bench-
mark codes (fewer than 150 repetitions of the basic block), most instructions are
delivered to the back-end from the DSB. In regions two and four, however, we see
a normalized value above 3.5, which corresponds to millions of events. This is due
to the loop that accesses the large array in order to flush the unified caches (L2 and

1We perform this normalization on the raw data produced by this benchmark only for presentation
purposes because we have observed that the measurements are either around 1.5, or extremely large,
and thus they cannot be visualized in a readable way, not even in a logarithmic graph.
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L3). The code of the loop is tiny (a simple read from an array and accumulation into
a scalar), and thus, it easily fits in the DSB but executes tens of millions of times in
order to flush the L3.

The dashed light-blue line with solid square points depicts the (normalized) miss
rate of the L1 instruction cache. In regions one and three of the graph, we see that the
L1 only experiences misses when the code becomes large. Interestingly, in regions
two and four, we can see that the L1 instruction cache experiences misses even at
very small code sizes. This is most likely due to the flushing of the L3 cache, which
is inclusive, and therefore invalidates the L1 instruction cache.

Likewise, the (normalized) L2 miss rate, displayed by the purple curve with the
solid points, follows a similar pattern as the L1 miss rate.

The (normalized) L2 hit rate, depicted by the red curve with the hollow square
points, shows a peak for moderately sized codes, and zero for smaller and larger
codes. In addition, we can observe that the L2 hit rate in the first region—where all
the code in the cache is used—is higher than the hit rate in the third region—where
the false branch causes part of the code to be fetched but not executed.

In summary, the goal of thiswork is to generate benchmarks thatmake these curves
different from one another, so we can distinguish between performance events that
have semantic differences.While Fig. 2 holds a significant amount of data, the curves
shown are notably distinct from each other, which substantiates the validity of this
effort.

2.3 Branch Tests

Figure3 shows a plot of the data generated when the branch benchmark is executed.
This test consists of a series of different hand-crafted micro-benchmarks (currently
eleven), each of which exhibits different behavior from the others with respect to one
or more branch instructions. Consequently, when all micro-benchmarks are used,
each type of branch event produces a unique signature, as can be seen in the figure.

Listing 11.1 Branch benchmark #5.
do{

iter_count ++;

BUSY_WORK ();

BRNG ();

if ( (result % 2) == 0 ){

BUSY_WORK ();

if(( global_var1 %2) != 0){

global_var2 ++;

}

global_var1 +=2;

}

BUSY_WORK ();

}while(iter_count <size);

Listing 11.2 Branch benchmark #9.
global_var2 = 1;

do{

BRNG ();

global_var2 +=2;

if(iter_count < global_var2 ){

global_var1 +=2;

goto lbl;

}

BRNG ();

lbl: iter_count ++;

BRNG ();

}while(iter_count <size);
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Fig. 3 Branch events

To illustrate the workings of these micro-benchmarks, we show the key loop of
two of them in the code Listings 11.1 and 11.2. These two codes correspond to the
measurements shown in the graph at indices 5 and 9, respectively.

Looking at the blue curve with the diamond points, we see that at index 5 the value
is zero, which means that benchmark #5 does not trigger any direct branch events
(BR_INST_EXEC:ALL_DIRECT_JMP). On the other hand, at index 9 the blue
curve shows a value of one, indicating that benchmark #9 does execute one direct
branch per iteration. Looking at the code snippets, we can verify that benchmark #5
does not contain any direct branches, but benchmark #9 includes a goto instruction
which will execute in every iteration (the enclosing if statement is always true).

The green curve with hollow square points indicates that benchmark #5 will
experience branch mispredictions with a rate of 50% per iteration, while benchmark
#9 will not experience any mispredictions. This again becomes evident in the code,
since benchmark #5 executes a branch that checks the last bit of a randomly generated
variable (result), and therefore it will be mispredicted 50% of the time, while
benchmark #9 does not execute any non-deterministic branches.

The red curve with X points indicates that in benchmark #5 two conditional
branches are taken at each iteration (BR_INST_EXEC:TAKEN_CONDITIONAL),
while in the case of benchmark #9 only one conditional branch is taken at each iter-
ation. Although not shown in this graph, benchmark #9 also triggers a direct jump to
be taken (BR_INST_EXEC:TAKEN_DIRECT_JUMP). At first glance, it might be
puzzling that benchmark #9 only records one taken conditional branch, although the
code has two conditional branches—one for the if statement and a second one for
the back-edge of the while statement. This happens because the compiler generates
a jump that is taken when the condition of the if statement is false (i.e., it jumps
for the else case, not for the if case), and in the case of benchmark #9 the if
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statement is never false, thus, the branch for the if statement is never taken. This
explanation is easy to verify by examining the generated assembler code.

The light blue curvewith hollow roundpoints and the black curvewith solid square
points indicate that benchmark #5 executes two and a half branches per iteration,
and all of them are retired (i.e., they are not discarded due to speculative execution).
Benchmark #9 executes three branches per iteration, and all three are retired as well.
Examining the code of benchmark #5 reveals that the branch, due to the statement
“if((global_var1%2)!=0)”, will only execute for half the iterations (only
when the enclosingif turns out to be true); and the two branches, due to the enclosing
if and the while statement, will execute once in every iteration. In the case of
benchmark #9, the statement “if(iter_count<global_var2)” will be true
for every iteration, therefore the direct branch contained in it (goto) will execute
for every iteration as well, and so will the while statement.

Once again, the detailed explanation of each data point in this graph can be compli-
cated by micro-architecture and compiler optimizations, but the difference between
the different curves is evident, and thus using these benchmarks helps distinguish
between events with different semantics.

An additional discussion on the design of our branch benchmarks can be found
in [2].

2.4 Floating-Point Tests

FLOPs are traditionally separated into the single- and double-precision categories.
On IBM’s POWER9 architecture, there is additional native hardware support for
quad-precision FLOPs [6, 7]. For the sake of consistency across architectures, we
closely examine the double-precision FLOPs.

Figure4 shows a plot of the data generated when the floating-point benchmark is
executed. As shown in the figure, there are six regions, each ofwhich corresponds to a
different Basic Linear Algebra Subprograms (BLAS) kernel being executed. The first
three regions (from left to right) correspond to the single-precision (“SP”) implemen-
tations of the Level-1 (“DOT”), Level-2 (“GEMV”), and Level-3 (“GEMM”) BLAS
kernels (one level per region). The latter three regions correspond to the double-
precision (“DP”) implementations of the three respectiveBLASkernels.More details
about the chosen BLAS routines are discussed in Sect. 3.

Within each region in Fig. 4, the X-axis denotes the number of rows and columns
N of the matrix (or vector) being used in the kernel and will hereafter be referred to
as the dimension. The dimension is incremented per the following piecewise linear
progression. For 1 ≤ N ≤ 100, N is incremented by 1. For 100 < N ≤ 500, it is
incremented by 50. This choice allows us to observe the FLOPs from a larger domain
of N while not proportionally increasing the runtime of the kernels. For each N , the
benchmark executes the BLAS kernel of the floating-point precision corresponding
to the region. In Fig. 4, there is a jump in each of the six regions at N = 100, resulting
from the increment changing from 1 to 50.
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Fig. 4 Single-Precision and Double-Precision floating-point events

In the first region, the blue curve shows the single-precision FLOPs observed
during the execution of the DOT kernel for vectors of dimension ranging from 1 to
500. The black curve shows the number of FLOPs that are expected to occur during
the DOT kernel, which is 2N FLOPs. The second region shows a similar progression
for the GEMV kernel. However, the blue curve in this region grows more rapidly
than in the first region, as the GEMV kernel invokes 2N 2 FLOPs. The third region
shows that the single-precision FLOPs occur per the 2N 3 expectation of the GEMM
kernel. For the next three regions, the blue curve is constantly zero, corresponding
to no single-precision FLOPs being invoked by the double-precision BLAS kernels.
The green curve in the next three regions shows that the double-precision FLOPs
observed during the double-precision DOT, GEMV, and GEMM kernels perfectly
agreewith the expectation. The green curve is constantly zero in the first three regions
because the single-precision BLAS kernels do not invoke double-precision FLOPs.

3 Computation of Arithmetic Intensity for BLAS Kernels

For the study of more precise monitoring of metrics, such as memory traffic and
arithmetic intensity, we have chosen different linear algebra routines that are repre-
sentative of many techniques used in real scientific applications, such as computa-
tional chemistry, climate modeling, and material science simulations, to name but a
few. Dense linear algebra is well represented on most architectures in highly opti-
mized libraries implementing the BLAS API. We present the analysis and study for
the DDOT, DGEMV, and DGEMM routines, as they demonstrate a wide range of
computational intensities. Our goal is to find answers to the following questions:
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1. What is the performance and computational intensity that can be attained on
different architectures?

2. Can PAPI’s new monitoring features for bandwidth utilization and arithmetic
intensity help to make meaningful predictions for a real application? And,

3. How reliable are FLOP and memory bandwidth utilization performance counters
on the different architectures?

BLAS operations are categorized into three levels by the type of operation. Level
1 addresses scalar and vector operations, Level 2 addresses matrix-vector opera-
tions, and Level 3 addresses matrix-matrix operations. The BLAS routines provide
an excellent means of examining arithmetic intensity and performance characteris-
tics given that they are of high importance to scientific computations and are well-
defined and well-understood operations; their implementations are highly optimized
by vendor libraries, and the three levels of the BLAS routines have different memory,
performance, and computational characteristics.

We examine the Level-1 BLAS routine (DDOT) in greater detail. This is a
double-precision operation that multiplies two vectors such that α = xT · y. For
the 2N FLOPs (multiply and add), DDOT reads 2N doubles (assuming x �= y) and
writes one double back. Because there is no data reuse, the routine requires (2N ∗ 8
bytes)/2N = 8 bytes per FLOP. Onmodern architectures, such an operation is band-
width limited and will reach about 5–10% of the theoretical peak performance of
the machine. The hardware bandwidth will not be able to supply the computational
cores with data at a high enough rate to feed the floating-point units.

The Level-2 BLAS routine (DGEMV) is a matrix-vector operation that computes
y = αAx + βy where A is a matrix, x, y are vectors and α, β are scalar values.
This routine performs 2N 2 floating-point operations on (N 2 + 3N ) ∗ 8 bytes for
read and write operations, resulting in a data movement of approximately (8N 2 +
24N )/2N 2 = 4 + 12/N bytes per FLOP. When doing a DGEMV on matrices of
size n, each FLOP uses 4 + 12/N bytes of data. With an increasing matrix size, the
number of bytes required per flop stalls at 4, resulting in bandwidth-bound operations.

The Level-3 BLAS routine (DGEMM) performs a matrix-matrix multiplication
computing C = αAB + βC where A, B,C are all matrices and α, β are scalar val-
ues. This operation performs 2N 3 floating point operations (multiply and add) for
4N 2 data movements, reading the A, B,C matrices and writing the results back to
C . This means that DGEMM has a bytes/FLOP ratio of (4N 2 ∗ 8)/2N 3 = 16/N .
When doing a DGEMM on matrices of size N , each FLOP uses 16/N bytes of data.
As the size of thematrix increases, the number of bytes required per FLOP decreases,
until other limits of the processor are reached. The DGEMM has a high data reuse
allowing it to scale with the problem size until the performance is near the machine
peak.
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3.1 Results

Our implementations of the BLAS-based benchmarks access a buffer larger than the
largest cache after the initialization of the arrays that hold the vectors andmatrices, but
before the actual numerical operations occur. This is done to ensure the vectors and
matrices used in the operations are not present in the cache, but they reside strictly in
memory at the start of each BLAS operation. As such, the following implementations
differ from the floating-point test of CAT. CAT does not require such a mechanism to
be in place since its test only gauges FLOP occurrences and is agnostic to memory
traffic. This mechanism does not affect the actual number of FLOPs executed.

The FLOPs counters we measure using PAPI are defined by the following PAPI

preset on each of the IntelBroadwell, Intel Skylake, and IBMPOWER9architectures:
PAPI_DP_OPS. This preset event is specifically optimized to count scaled double-
precision vector operations. For the sake of completion, it is worth mentioning a
second PAPI FLOPs preset event, namely PAPI_SP_OPS, which is optimized to
count scaled single-precision vector operations. Table1 shows how the two PAPI

FLOPs presets are derived from the native counters as they are available on our three
chosen architectures.

In this paper, however, we exclusively focus on double-precision arithmetic, and
thus we will not include PAPI_SP_OPS measurements in our analyses.

Figure5 shows the double-precision floating-point operation counts for each of
the three levels of BLAS operations for each of the Intel Broadwell, Intel Skylake,
and IBM POWER9 CPU architectures. The dimension of the vectors and matrices
used in the BLAS operations follows the same piecewise linear progression as in
CAT’s floating-point tests.

For each of the three BLAS kernels, the expected number of floating-point
operations—as calculated and discussed in Sect. 3—matches perfectly the mea-
surements from PAPI_DP_OPS. This demonstrates that for the Intel Broadwell,
Intel Skylake, and IBM POWER9 architectures, the definitions for the PAPI preset
PAPI_DP_OPS (as listed in Table1) reliably measure double-precision floating-
point operations for various kernels with different computational characteristics.

Table 1 PAPI’s double- and single-precision FLOPs preset definitions
Architecture PAPI_DP_OPS PAPI_SP_OPS

Skylake FP_ARITH:SCALAR_DOUBLE + FP_ARITH:SCALAR_SINGLE +

2*FP_ARITH:128B_PACKED_DOUBLE + 4*FP_ARITH:128B_PACKED_SINGLE +

4*FP_ARITH:256B_PACKED_DOUBLE + 8*FP_ARITH:256B_PACKED_SINGLE +

8*FP_ARITH:512B_PACKED_DOUBLE 16*FP_ARITH:512B_PACKED_SINGLE

Broadwell FP_ARITH:SCALAR_DOUBLE + FP_ARITH:SCALAR_SINGLE +

2*FP_ARITH:128B_PACKED_DOUBLE + 4*FP_ARITH:128B_PACKED_SINGLE +

4*FP_ARITH:256B_PACKED_DOUBLE 8*FP_ARITH:256B_PACKED_SINGLE

POWER9 PM_DP_QP_FLOP_CMPL PM_SP_FLOP_CMPL
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Fig. 5 BLAS FLOPs on the Broadwell, Skylake, and POWER9 architectures

Fig. 6 DDOT Memory Accesses on the Intel Broadwell architecture

In Figs. 6 and 7, we plot the statistical minimum and median of the measured
memory accesses, taken from 20 executions of the DDOT BLAS operation using the
Intel Broadwell and Skylake architectures, respectively. The minimum and median
measurements are shown because noise in the measurement can only be positive, so
the minimum is the closest to a noise-free measurement, the median provides a sense
of the variance, and the maximum can be arbitrarily noisy, so we omit it. We also
show the expected number of memory accesses per the following formulation. There
are two vectors of N double-precision floating-point elements (each of which is 8
bytes). Thus, a DDOT operation using vectors of length N consumes 2 ∗ 8 ∗ N bytes
of memory since each element of each vector must be read. There is no expected,
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Fig. 7 DDOT Memory Accesses on the Intel Skylake architecture

systematic pattern of memory writing traffic for the DDOT operation. The memory
events wemeasure count memory traffic in sizes of entire cache lines of memory, and
each cache line is 64 bytes. Therefore, the amount of memory traffic we observe by
measuring the events is (2∗8∗N )

64 . Figures6 and 7 show that themeasurements ofDDOT
operations for smaller vector dimensions exhibit background memory accesses from
the system on the order of 102 and 103, respectively. As N increases, the minimum
and median measurements very closely agree with the expectation. Note that since
the DDOT operation streams through the vectors, there is no data reuse. Thus, DDOT
is agnostic to the size of the CPUs’ caches. Because of this, when N is large enough
such that the memory required to store the two vectors is greater than the size of the
cache, the measured behavior should remain close to the expected behavior shown.
Figures6 and 7 show that the PAPI counters on both the Intel Broadwell and Skylake
architectures measure the correct memory traffic for the DDOT operation. In Sect. 4,
we elaborate further on the actual PAPI events that we used for measuring memory
traffic.

Figures8 and 9 show theminimumandmedianmemory accessmeasurements dur-
ing the DGEMV BLAS operation on the Intel Broadwell and Skylake architectures,
respectively. We show the expected number of memory accesses per the following
formulation. There are two vectors of N double-precision floating-point elements
(each of which is 8 bytes). In addition, there is a matrix of double-precision floating-
point elements, of which there are N 2. The DGEMV operation incurs a read for each
of the elements of the operand matrix, operand vector, and result vector, totalling
8 ∗ (N 2 + 2 ∗ N ) bytes read. It incurs a write for each of the elements in the result
vector, which would total 8 ∗ N bytes written. But other micro-benchmarks indicate
that the cache writes back to memory in whole counts of a cache line. To account
for this, we instead include the term 8 ∗ 8 ∗ N (8 ∗ 8 bytes = 64 bytes, which is the
size of a cache line) in the expectation formula shown in Figs. 8 and 9. This term
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Fig. 8 DGEMV Memory Accesses on the Intel Broadwell architecture

Fig. 9 DGEMV Memory Accesses on the Intel Skylake architecture

would theoretically have more influence on the total expectation for memory traffic
than 8 ∗ N , but since the bytes read include a term which is quadratic with N , nei-
ther 8 ∗ 8 ∗ N nor 8 ∗ N has a significant numerical impact on the total expectation.
Furthermore, since two expectations, including one for each of 8 ∗ 8 ∗ N and 8 ∗ N
bytes written, are visually indistinguishable, we include 8 ∗ 8 ∗ N . Thus, the total
expectation for the memory traffic of the DGEMV operation is the number of bytes
read plus the number of bytes written divided by 64, (8∗(N 2+2∗N )+8∗8∗N )

64 , by virtue of
the memory traffic events we measure counting traffic in sizes of entire cache lines.
DGEMV has little data reuse since it streams through the operand matrix and result
vector. Only the operand vector’s data is reused. As such, DGEMV is not sensitive to
the size of the cache until the memory required to store the single operand vector of



210 D. Barry et al.

Fig. 10 DGEMM Memory Accesses on the Intel Broadwell architecture

Fig. 11 DGEMM Memory Accesses on the Intel Skylake architecture

N elements requires enough memory to exceed the size of the cache. As in the case
of the DDOT, we see that there is background memory traffic from the system, on the
order of 102 for Broadwell and 103 for Skylake, for small values of N . We observe
that as N increases, the measuredmemory traffic closely agrees with the expectation.
Therefore, Figs. 8 and 9 show that the PAPI counters on both the Intel Broadwell and
Skylake architectures measure the correct memory traffic for the DGEMV operation.

Figures10 and 11 show the minimum and median memory access measurements
for the DGEMM BLAS operation (also on the Intel Broadwell and Skylake archi-
tectures). There are three matrices (two operand matrices and one result matrix)
of N 2 double-precision floating-point elements (each of which is 8 bytes), each of
which must be read, resulting in 8 ∗ 3 ∗ N 2 bytes read. It incurs a write for each of
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the elements of the result matrix, totalling either 8 ∗ 8 ∗ N 2 or 8 ∗ N 2 bytes writ-
ten, depending on whether the writebacks to memory occur per cache lines written
or per elements written, respectively. Since the bytes written for the DGEMM are
quadratic in N , there is a significant difference between these two potential memory
writing terms with respect to their impact on the total expectation. Thus, we have
two expectations, (8∗(3∗N 2+8∗N 2))

64 and (8∗(3∗N 2+N 2))

64 . We once again divide by 64 here
since the events wemeasure account for memory traffic in the amount of entire cache
lines. As such, we show both expectations in Figs. 10 and 11. Unlike the DDOT and
DGEMV operations, the DGEMM operation is sensitive to the size of the cache of
the CPU on which it is executed because the second operand matrix (which contains
a number of elements quadratic with N ) is reused for every row of the result matrix
which is computed. Depending on how the hardware prefetches and caches data for
the DGEMM operation, we establish two bounds for the maximum dimension of
matrices which fit within the cache. The sizes of the caches in the Broadwell and
Skylake architectures are 35.84 and 25.344 MB, respectively. If the hardware caches
the entire first and second operand matrices, then we establish a lower bound on the
maximum dimension of the matrices which fit within the cache per the following
equations (in which we use the cache sizes of the two architectures).

Broadwell: 35840 ∗ 1024 = 2 ∗ 8 ∗ N 2 =⇒ N = 1514
Skylake: 25344 ∗ 1024 = 2 ∗ 8 ∗ N 2 =⇒ N = 1273
If the hardware caches the entire second operand matrix but only a row of the

first operand matrix, we establish an upper bound on the maximum dimension of the
matrices which fit within the cache per the following equations.

Broadwell: 35840 ∗ 1024 = 8 ∗ (N 2 + N ) =⇒ N = 2141
Skylake: 25344 ∗ 1024 = 8 ∗ (N 2 + N ) =⇒ N = 1800
For each of the above equations, the negative solutions for N are disregarded.

The region between these bounds is shaded in each of Figs. 10 and 11. We observe
that while N fits well within the size of the caches, the measured memory traffic
closely agrees with the expectation. We also observe that for relatively small values
of N , the memory writing behavior tends to occur per cache line. However, as N
increases, the writing tends to occur per element. Background memory traffic is not
prevalent, even for relatively small values of N , due to the large amount of memory
accesses incurred relative to the DDOT andDGEMV. Thus, Figs. 10 and 11 show that
we obtain the correct measurements for memory traffic for the DGEMM operation
utilizing the PAPI counters on the Intel Broadwell and Skylake architectures.

4 Benchmarks for Memory Traffic

There are two crucial categories of events to define arithmetic intensity: memory
traffic and FLOPs. Memory traffic is further categorized as reading or writing. For
the purposes of our benchmarks, memory reading traffic entails the amount of data
read from memory to the CPU cache, and memory writing is the amount of data
written tomemory from the cache.Among theCATbenchmarks thatwehave publicly
released, the codes for testing the data caches can also be used to test traffic to main
memory. This is the case when the buffer size exceeds the size of the last level cache.
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The known events that we utilize for the PAPI counters to measure memory traffic
on the Intel Broadwell and Skylake architectures are as follows: Intel Broadwell
(One-Socket Node):

bdx_unc_imc[0|1|4|5]::UNC_M_CAS_COUNT:[RD|WR]:cpu=0

Intel Skylake (Two-Socket Node):

skx_unc_imc[0-5]::UNC_M_CAS_COUNT:[RD|WR]:cpu=[0|18]

By measuring these events using the CAT data cache reading benchmark, we obtain
the plots that follow. We used the same CAT benchmarks to classify the available
Uncore events on the IBM POWER9 architecture which correlate with the observed
behavior of the memory-reading events on the Intel Broadwell and Skylake architec-
tures shown in Figs. 12 and 13, respectively. The events measured in Fig. 14 exhibit
similar behavior to those of memory reading events measured in Figs. 12 and 13.
Note that the expectation in the third and fourth regions in Fig. 14 varies from those
in Figs. 12 and 13 since the size of a cache line on the IBM POWER9 architecture
is 128 Bytes [7]. Subsequent cross-referencing of [6] verified these events indeed
measure the memory reading traffic. Hence, we obtained the following names of the
memory traffic events on the IBM POWER9 architecture, which we use to measure
memory reading during the execution of the BLAS operations on the IBM POWER9
architecture. IBM POWER9 (Two-Socket Node):

pcp:::perfevent.hwcounters.nest_mba[0-7]_imc.

PM_MBA[0-7]_[READ|WRITE]_BYTES.value:cpu[84|172]

Fig. 12 Memory reading traffic on the Broadwell architecture
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Fig. 13 Memory reading traffic on the Skylake architecture

Fig. 14 Memory reading traffic on the POWER9 architecture

4.1 IBM POWER9 Measurements via PCP

Measuring the traffic tomainmemory requires access toUncore counters,whichmea-
sure events that are shared betweendifferent cores. Therefore, elevated privileges—or
very permissive system settings—are required in order to read them. To work around
this limitation, IBMmade their Uncore counters available through the PCP interface
also, which can be accessed by any user. To take advantage of this feature, PAPI
included a component for interfacing with PCP. As a result, counters for measuring
memory traffic on IBM systems can be read using PAPI without the need for elevated
privileges. The downside of making measurements through PCP is the coarseness of
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the measurements and the overhead incurred by the PCP daemon. In the rest of this
section, we describe our effort to amortize the overheads of PCP in ourmeasurements
and give a quantitative analysis of the results. The discussion that follows is focused
on the vector dot-product operation (DDOT), but all the techniques we will discuss
apply directly to all other kernels we used as benchmarks.

If a measurement infrastructure—e.g., PCP—is susceptible to noise, it is usually
beneficial to take measurements of operations that take longer to complete and result
in larger measurements in order to amortize the noise. This approach, however,
would limit the size of the vectors that we use to very large numbers. Since we aim
to correlate the memory traffic measurements with the theoretical expectation for
the known linear algebra operations, this limitation is not ideal. To work around
this problem, and study the noise in PCP, we used the approach that is shown in
Listing 11.3.

Listing 11.3 Benchmark code for amortizing and studying PCP noise.

1 v_a = malloc( v_size * max_reps * sizeof(double) );
2 v_b = malloc( v_size * max_reps * sizeof(double) );
3 junk = malloc( LARGE_BUF_SIZE * sizeof(double) );
4
5 for ( i = 0; i <= v_size*max_reps; i++ ) {
6 v_a[i] = ...
7 v_b[i] = ...
8 }
9

10 for ( reps = 1; reps <= max_reps; reps *= 2 ) {
11
12 for( i = 0; i < LARGE_BUF_SIZE; i++ ){
13 junk[i] = ...
14 }
15
16 PAPI_start( EventSetBW );
17
18 for ( iter = 0; iter < reps; iter++ ) {
19 offset = iter * v_size;
20 ddot(v_size , &v_a[offset], &v_b[offset ]);
21 }
22
23 PAPI_stop(EventSetBW , &value);
24 printf("%.0lf:", (double)value/( double)reps);
25 }

As can be seen in the code listing, the actual operation is executed in line 20.
However, instead of simply executing the operation once and measuring it with
PAPI, we execute multiple iterations of it. However, simply executing the exact same
operation multiple times would skew the memory traffic measurements, since the
caches would filter some of the memory requests. To avoid this problem, we allocate
memory for multiple copies of the vectors (lines 1,2), and every time we execute
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(a) 1 repetition (b) 8 repetitions

(c) 64 repetitions (d) 512 repetitions

Fig. 15 POWER9 measurements of memory traffic events via PCP for DDOT benchmark

the operation, we provide it a different memory region (e.g., &v_a[offset]).
Furthermore, we do not just execute the operation a fixed number of times, but rather
we vary the number of repetitions (line 10) in order to study the effect of repetition on
noise suppression. Finally, to avoid cache reuse between iterations of the outer loop,
we access (in every iteration) a buffer that exceeds all cache sizes (lines 12,13,14).
We should also note that the actual benchmark contains additional code (not shown
to improve readability) that prevents compilers from labeling parts of our code as
dead, which would lead to optimizing those parts away.

The results of this study can be seen in Fig. 15. In these graphs, for any given
vector size N the expected number of reads is given by the equation:

Reads = 2 × 8 × N

64

since DDOT reads two vectors with double-precision elements (which use 8 bytes
each), and the cache of the target machine (POWER9) implements a memory con-
troller with the “capability to fetch only 64 bytes of data (half cache lines), instead of
the normal full cache-line size of 128 bytes of data from the memory when memory
bandwidth utilization is very high” [7] (Page 350). The expected number of write
operations should be constant, and close to zero, since the DDOT operation does not
write anything back into the memory, but rather accumulates the result into a register.
Since the DDOT does not write back to memory, and the measured reads in Fig. 15
correlate to the measured writes for small N , these reads are regarded as noise.
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The graph shown in Fig. 15a shows the data measured when the operation was
repeated only once. Clearly, the measurements do not correlate with the expectation
(plotted as a solid black line) due to very heavy noise, for all vector sizes. In Fig. 15b,
we show the measured data when eight repetitions of the operation were used, and as
can be seen in the plot, for very large vector sizes the measurements start converging
to the expected values. In Fig. 15c, we used 64 repetitions of the operation and
the measurements start converging to the expected values much earlier. Finally, in
Fig. 15d, our benchmark repeats the operation 512 times, and the measurements
converge to the expected values very early, and remain close to the expectation.

These results are encouraging but at the same time they represent a cautionary tale.
On one hand, they show that the experiments we performed on the IBM POWER9
architecture for the purpose of this study were successful in amortizing the overhead
and the noise caused by PCP. On the other hand, they highlight the coarseness of
the measurements offered by PCP and the limited usability when studying short
kernels. In other words, our findings suggest that application developers who wish
to study the memory traffic of their applications in coarse intervals can acquire
usefulmeasurementswithout the need for elevated privileges by using PCP.However,
library developers who wish to study the behavior of fast kernels need to resort to
techniques similar to the one outlined in this section in order to amortize the high
overhead and noise of PCP.

5 Conclusion

Computing the Arithmetic Intensity of an application or a kernel is essential for
understanding its performance, andwhether there is roomfor improvement.However,
measuring the quantities necessary to compute the arithmetic intensity—namely
floating-point operations and traffic to memory—often entails access to hardware
counters that may require elevated privileges, or have cryptic names.

In this paper, we discussed our effort to simplify the effort of measuring these
counters and quantifying their reliability through PAPI. In particular, we outlined
CAT, a new tool that was released with PAPI 6.0.0, and we showed how it can be
used to identify which native events are best suited for measuring traffic to main
memory. We demonstrated that the arithmetic intensity of three important BLAS
operations (DOT, GEMV, GEMM) can be successfully computed on three modern
architectures (Intel Broadwell, Intel Skylake, IBM POWER9) and explained how
PAPI’s PCP component can be used on the POWER9 system to sidestep the require-
ment for elevated privileges. Finally, we performed a study on the reliability of the
PCP measurements and explained how the noise and overhead in the measurements
can be mitigated, even for small kernels that do not perform enough operations to
amortize the noise on their own.

To summarize, this paper addresses the following questions:
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1. What is the performance and computational intensity that can be attained on differ-
ent architectures?On the IntelBroadwell, Intel Skylake, and IBMPOWER9archi-
tectures, such performancemetrics as FLOPs andmainmemory traffic are gauged
via the PAPI counters.We have shown that the FLOPs andmemory traffic—which
occur during the execution of the DDOT, DGEMV, and DGEMM operations—
match the expectations for each respective operation.

2. Can PAPI’s new monitoring features for bandwidth utilization and arithmetic
intensity help to make meaningful predictions for a real application? As we have
shown, the PCP component in PAPI allows the user to measure the Uncore events
for memory traffic for the DDOT, which is a common dense linear algebra oper-
ation. The results we have presented indicate that relatively fast kernels, such as
DDOT, require multiple repetitions to provide meaningful, expected performance
measurements to application developers and performance analysts.

3. How reliable are FLOP and memory bandwidth utilization performance counters
on the different architectures? Per our experiments, the PAPI counters report the
expected FLOPs for the three BLAS operations on the Intel Broadwell, Intel Sky-
lake, and IBMPOWER9 architectures. The PAPI counters also report the expected
memory traffic for eachBLASoperation on the Intel Broadwell andSkylake archi-
tectures. On the IBM POWER9 architecture, repetitions of the DDOT operation
yield the expected amount of memory traffic by amortizing the noise in PCPmea-
surements. Hence, the PAPI counters provide reliable FLOP and memory traffic
event counts across the three architectures we have examined.
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