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Abstract Performance profiling and debugging are critical components in the
HPC application development workflow, ensuring efficient utilization of hardware
resources and correctness of solution. Having strong tools to underpin these require-
ments enables better software development and more efficient execution. The Arm
Forge tool suite has long been recognized as industry leading within HPC, for deliv-
ering real world usability and actionable information. However, performance engi-
neering is a moving target—due to changes in the HPC ecosystem, such as hard-
ware, software and user workflow. As such the Arm Forge tools are in constant
development—to adapt to, and exploit, the latest use cases. One such emerging
use case is domain-specific contextual information, in the form of user annotations
which can be embedded within performance profiles. Through a collaboration with
Lawrence Livermore National Laboratory (LLNL), and their open-source Caliper
tool, Arm was able to develop this concept into a fully integrated user workflow.
This article will introduce Arm Forge’s latest feature on regional profiling and how
it complements the more traditional, and established, optimization methodology.

1 Introduction

Arm MAP is alightweight and scalable profiling tool that provides a user-friendly and
intuitive overview of the performance of Linux applications. Thanks to an adaptative
sampling mechanism and data aggregation across processes, it is designed to have
a low impact on the application’s runtime performance and generate small result
files. Along with Arm DDT and Arm Performance Reports, MAP is part of Arm
Forge: they all share the same petascale-capable architecture [1]. Arm Forge allows
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scientific developers to write better and more efficient code by providing them with
a solution for their whole workflow. This 9-step guide to optimize HPC applications
[2] illustrates when and how these tools can be used:

Ensure application correctness and fix bugs at scale [DDT]

e Measure all performance aspects (computations, communications, I0) on real
workload [Performance Reports]

Inspect I/O patterns and their source code [MAP]

Investigate workload imbalances and heavy synchronization between processes
[Performance Reports, MAP]

Analyze data transfer rates and slow communication patterns [Performance
Reports, MAP]

Investigate regions with high memory accesses [MAP]

Evaluate core utilization and thread synchronization [Performance Reports, MAP]
Inspect hot loops and vectorized instructions [Performance Reports, MAP]
Validate corrections with automated tests [Performance Reports, MAP, DDT]

Whilst this methodology has proven to be particularly suitable for developers
with a good understanding of computer science, the data captured to resolve these
problems are, in the best case, only loosely correlated with an application’s contextual
information. The profiles relate performance, and time spent, to source code lines,
functions and libraries: for those without an in-depth understanding of the source
code layout this information may be confusing.

In 2019, Arm MAP was extended to support regional profiling using Caliper,
a performance data collection and analysis tool developed by the LLNL [3]. The
objective of this extension is to enable MAP to not only capture computer-centric data,
but to add domain-specific contextual information. Using instrumentation, Caliper
facilitates the identification of C/C++ and FORTRAN code regions for performance
introspection. It can profile or trace these regions, provide auxiliary statistics (such
as MPI or PAPI) and can be coupled to various third-party tools like TAU or Nvprof.

2 Motivation

Profiling with Arm MAP is easy: the user just needs to recompile their code with
the debugging option and prefix the execution command with the map command
to generate profiling results. The results can be open in the GUI for analysis. MAP
straightforwardly represents the application activity in three main sections:

e the metrics graphs describe the activity of the different processes or threads of the
application over time,

e the source code viewer displays the lines of code annotated with time and activity
information,

e the stacks view aggregates time and activity information by call path.

MAP highlights activity patterns using different colors:
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Fig. 1 Activity and CPU floating-point metric

single-thread computations appear in dark green,
multi-thread computations in light green,

thread synchronization in grey,

MPI calls in blue,

IO calls in orange.

This makes it easy to understand the various stages of an applications such as
synchronizations, data loads or checkpoints. However, analyzing largely compute-
bound, MPI-bound or I/O-bound profiles can be more difficult. In this section, we
will illustrate some current design limitation by profiling a modified version of the
Hydro benchmark [4].

2.1 Application Activity and Metrics

The main thread activity in Fig. 1 pictures the type of operation performed by the
16 processes running Hydro across time. The color code listed above allows to
identify what looks like an iterative pattern: MPI calls are performed regularly as the
application runs.

This application is compute-bound: 97% of the activity is spent in computations.
The CPU floating-point activity graph underneath the main thread activity aggregates
data across all processes to display the average. Shading is used to represent the
difference between the average and the minimum and maximum values recorded
for each sample. Floating-point activity is high for the whole run, especially when
compute activity has been recorded, but the graph doesn’t highlight any additional
pattern.

The lack of more diversity in terms of activity doesn’t provide more information
at this stage and we need to complement our analysis by investigating the source
code of the application.

2.2 Function and Stack View

Figure 2 shows the source code of the main function of Hydro. The iterative aspect is
immediately confirmed thanks to the annotations: the same compute-bound function
is called by all the processes in two code paths alternately.
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The functions view is displayed underneath the source code viewer and lists the
functions sorted by execution time. Thus, it is easy to find the three first bottlenecks
of the application: riemann, trace and update ConservativeVars. Time glyphs indicate
that they are called all along the execution and that they are compute-bound.

The stack view, shown in Fig. 3, illustrates how these functions are called from

main, in the two branches of code that were identified earlier.
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Fig. 4 Collapsed stack view

Figure4 illustrates how the stack view can be expanded to show which lines of
codes inside these functions are costly.

While the updateConservativeVars function spends 79% of its execution time in
3 lines of code, the trace function spends 69% in 15 lines and riemann 55% in 15
lines. MAP highlights that the internal profile of these last two bottlenecks is flat.
Optimizing them might be time-consuming.

In addition to that, the trace and riemann functions are large pieces of code:
approximately 200 and 340 lines respectively when the updateConservativeVars
function is only 70 lines of code. Gathering application context information is impor-
tant to make their optimization more efficient.

3 Instrumenting Code with Caliper

MAP has identified the main function bottlenecks and are listed in Table 1.

Table 1 Hydro flat profile

Function Time spent in self (s)
Riemann 37.8

Trace 12.8
UpdateConservative Vars 9.2

Qleftright 7.6
GatherConservativeVars 6.3

Constoprim 35

Slope 3.3
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Caliper allows to instrument functions very simply in C using high-level macros [5]:

e CALI_MARK_FUNCTION_BEGIN specifies where a function starts and
CALI_MARK_FUNCTION_END specifies where it terminates. All exit points
must be marked.

e CALI_LOOP_BEGIN specifies where a loop starts and
CALI_LOOP_END specifies where it terminates. Inside the loop region,
CALI_MARK_ITERATION_BEGIN identifies the start of an iteration and
CALI_MARK_ITERATION_END identifies the end. All iteration exit points must
be marked.

e CALI_MARK_BEGIN and CALI_MARK_END specify user-defined code
regions.

In Hydro, comments left by the developers allow to break down the riemann
function and label different sections as shown in Listing 1.

Listing 1 Pseudo-code with Caliper annotations
CALI_MARK_LOOP_BEGIN (riemann_slice_1id
"riemann_slices ") ;

// compute pressure , density , velocity for each slice
for (s =0; s<slices ; s ++)
{
CALI_MARK_ITERATION_BEGIN (riemann_slice_id , s);
CALI_MARK_BEGIN (" riemann_slice_precompute ") ;
for (1i=0; i<narray ; i++)
{ [...1 }
CALI_MARK_END (" riemann_slice_precompute ") ;
CALI_MARK_BEGIN (" riemann_slice_interfaces " );
for (iter =0; iter <Hniter_riemann ; iter ++)
{ [...1 }
CALI_MARK_END (" riemann_slice_interfaces ") ;
CALI_MARK_BEGIN (" riemann_slice_arrays ");
for (i =0; i<narravy ; i++)
{ [...1] }
CALI_MARK_END (" riemann_slice_arrays ");

CALI_MARK_ITERATION_END (riemann_slice_id ) ;
}

CALI_MARK_LOOP_END (riemann_slice_id);

Caliper can be used to generate profiling information on annotated regions.
Through a configuration file, services can be selected to provide measurement data
using sampling or tracing. The results can be displayed via standard output or stored
in data files that can be queried afterwards.

To profile a Caliper-enabled application, MAP doesn’t need a Caliper configura-
tion file. MAP only relies on the high-level macros in the source code and automat-
ically adjust the interface to present Caliper-specific information in a user-friendly
way.
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Fig. 5 Regions view displaying Caliper-annotated code sections

4 Visualizing and Analyzing Results

When opening the profile of a Caliper-enable application in MAP’s GUI, additional
sections automatically appear to display regional information: the regions view and
the selected region activity graph.

4.1 Regions View

The regions view lists the code sections marked with Caliper high-level macros as
shown in Fig. 5. For each region, the corresponding time spent as a percentage is given
and a time glyph shows when and how the region is executed between processes.

Each region can be enabled or disabled to be displayed in the selected region
activity graph. A color label allows to identify them in the graph.

4.2 Selected Region

The selected regions graph displays which Caliper region is executed as Hydro runs:
each sample or horizontal point indicate how many processes are executing the code
regions labelled with different colors. Figure 6 illustrates how the sub iterations of
Hydro can be identified easily when enabling the riemann (in red), trace (purple)
and updateConservativeVars (pink) Caliper code regions.

In addition, thanks to Caliper the CPU floating-point metric graph highlights that
the riemann function is particularly responsible for high values. As suggested in
the 9-step guide to optimize HPC applications, additional CPU performance aspects
can be analyzed more closely: MAP can display many additional metrics. Here, the
amount of CPU memory accesses is average, but the amount of CPU vector floating-
point operations is low. Figure 7 shows how MAP allows to zoom in a time frame
and pinpoint that the riemann function is not performing any vector instruction at
all.
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Table 2 Summary of bottlenecks classified by Caliper region

Caliper region Number of lines of code Time spent (%)
Riemann_slice_precompute 4 14
Riemann_slice_interfaces 5 17
Riemann_slice_arrays 6 24

5 Optimizing

Instead of selecting Caliper function regions, arbitrary code regions can be selected
to provide insight about how the riemann function is executed. The selected regions
in Fig. 8 shows how the riemann_slice_precompute, riemann_slice_interfaces, and
riemann_slice_arrays regions are executed over time and between processes. MAP
is also able to display this information in the source code viewer and in the stack
viewer.

MAP highlights that these regions of code in the riemann function are not vector-
ized. Expanding the stack gives more information as shown in Fig. 9 and summarized
in Table2.

These code regions correspond to three different loop nests that the compiler
doesn’t seem to be able to vectorize. Inserting OpenMP SIMD directives can help
and we can generate new profiles with MAP to check if the optimization has been
successful.

Figure 10 shows the result of the optimization: the three loop nests are now effi-
ciently vectorized, leading to a speed-up of 1.57 on the whole application.
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6 Current Limitations

The instrumentation of fine-grain loops can be problematic. It may increase the mem-
ory footprint of the application and may result in a significant overhead. However, as
shown in Table 3 using MAP on Caliper-enabled application doesn’t add overhead
compared to using Caliper only.

For now, neither MAP nor Caliper propagates Caliper attributes set on the main
thread to OpenMP worker threads when entering an OpenMP parallel region. As a
result, the Caliper regions executed by worker threads may not be available. This
might be addressed in the future either by MAP or Caliper itself.

File Edit View Metrics Window Help

Profiled: hydro on 16 processes, 2 nodes, 16 cores (1 per process) Sampled from: Thu Aug 22 2019 17:16:44 (UTC+01) for 55.7s

Main thread activity

Selected regions

O

CPU floating-point  *%°

29.8 % = -
o -—_— - T .- e —_— e - ——
CPU fp vector 08 I
34% ] = " L pa— L
~ = = o - d—

18:16:56-18:17:07 (11.420s, 20.5% of total): Main thread compute 97.8 %, MPI 2.2 %, Sleeping 0

%

T main.c@ |
27908 #it ".rno E
o = dt.m.\.n,
: ¥
2 #endif
283 1
284 ff de = l.e-3;
285 // if (H.mype == 1) fprintf(stdout, "Hydro starts godunov.\n
286 B if ((H. -nstep % 2) == 0) {
287 hydro godunov(l, dt, H, &I-Iv, &HW goduncv, &Hvw godunov) :
288 _,-' hydro_godunov(2, dt, H, &Hv, &Hw, &HvVW);
289 E
46.0% M B B B M A 2o0 hydxa godunov (2, dt, H, &Hv, &Hw_godunov, &Hvw_godunov);
291 hydro_godunov(l, dt, H, &Hv, &Hw, &HVW);
252 }
293 end_iter = decclock();
294 cellPerCycle = (double) (H.globnx * H.globny) / (end_iter - :
295 avgCellPerCycle += cellPerCycle:
296 nbCycla++;
297
298 H.nstep++;
|
Input/Output | Project Fles  Main Thread Stacks | Functions | Regions |

Main Thread Stacks

Total core time in selected regi [sur

[chid [mpr | Function(s) on line | source

46.0% M B B B AN

= & hydro ram;

hydre_godunowv(2, dr, H, &Hv,

® hydro_godunov
compute_deltat (fdt, H, fHw_de

93.0% 0.3%
3.3% + compute_deltat

Fig. 8 MAP profiling results with activate regions focused view enabled



192 F. Lebeau et al.

Main Thrsad Stacks
| Toral core time n sslected reg | Seif  |Chid  |MP1 | Function(s) on ine Source
“remann

T

E?%EE?%’??I

Lot 0o wanc
/home/flebeau/Code/Demo_calipex/HydroC mod/Src/riemann.c:170

0.15% of selected core time on the main thread was in 2 functions (/fmax, fmax@pit) called from this line
3.23% of selected core time on the main thread in nonlfunction code on this line

% of the selected core time was in the instrumented region annotation:riemann_slice precomputel

Fig. 9 Stack view with Caliper information

. e —
=5 Ellu- AMES LEBE LA iBEY sl ]|g

— e — o

Fig. 10 Caliper annotated with vectorized loops

O st post %

Haw B i

mye ]

Table 3 Overhead figures of MAP and Caliper

Application Run time (s) Run time with MAP | Run time with MAP
(s) and Caliper (%)

Hydro 36.09 36.47 1

Hydro with Caliper 36.71 37.42 2

Hydro with Caliper 112.44 124.5 11

and fine-grain loop

instrumentation

7 Conclusion

We have presented MAP, a lightweight profiling tool for HPC and Caliper, a per-
formance introspection framework. We have illustrated how MAP can benefit from
Caliper: it brings meaningful information to application profile and helps analyzing
and optimizing applications faster. We have also demonstrated how MAP contributes
to the Caliper ecosystem and how it can complement the work done with other third-
party tools.

Thanks to the support for Caliper annotations, the 9-step guide to optimize HPC
applications can now be used by domain scientists in addition to computer scientists.
They can work hand in hand and optimize the application further, verify if the changes
produce correct results or if there are any bug left in the application. The Arm DDT
parallel debugger can help with this, by allowing users to inspect data structures and
check for memory leaks for instance.

Other possible use cases could be to analyze the behavior of the application when
scaling up to more nodes or with different test cases. Caliper annotations could
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help finding misbehavior in functions or sections of code that only appear on some
configurations.
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