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Preface

Modern high performance computing systems are characterized by a huge number
of compute elements and this number is increasing more and more in the last years.
The always growing compute power should allow researchers and developers to
calculate more extensive or even new scientific or technical problems. At the same
time, these computer systems become more and more heterogeneous and complex,
because of the combination of different specially designed and optimized proces-
sors, accelerators, memory subsystems, and network controllers. So it is increas-
ingly challenging to understand the interactions between high performance
computing, data analysis and deep learning applications or frameworks, and the
underlying computing and network hardware.

This progress is also connected with an even more increasing complexity of the
used software applications. Therefore, powerful software development, and analysis
and optimization tools are required that support application developers during the
software design, implementation, and testing process.

The International Parallel Tools Workshop is a series of workshops that already
started in 2007 at the High Performance Computing Center Stuttgart (HLRS) and
currently takes place once a year. The goal of these workshops is to bring together
HPC tool developers and users from science and industry to learn about new
achievements and to discuss future development approaches. The scope includes
HPC-related tools for performance analysis, debugging, or system utilities as well
as presentations providing feedback and experiences from tool users. In 2018, the
12th International Parallel Tools Workshop1 took place on September 17–18 in
Stuttgart, Germany and in 2019 the 13th International Parallel Tools Workshop2

was held on September 02–03 in Dresden, Germany.
In the presentations and discussions during these workshops, both aspects of the

tools advancement were addressed. Primarily numerous new and refined tools
developments have been presented. In addition, examples for the successful usage of
tools to analyze and optimize applications have been described as well. Most of the

1https://toolsworkshop.hlrs.de/2018/.
2https://tools.zih.tu-dresden.de/2019/.
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demonstrated works represented results of different successful European or national
research projects like EXCELLERAT, READEX, NEXTGenIO, PERFCLOUD, or
COLOC.

The content of the presentations comprised a broad spectrum of topics.
The 2018 workshop keynotes addressed two current aspects from programming

model and tools: Mitsuhisa Sato showed the latest advances in parallel program-
ming with the XcalableMP PGAS language and John Mellor-Crummey presented
the adaptation of the well-known HPCToolkit to address challenges of modern
hardware and software. The talks of this year covered a wide spectrum of topics
ranging from a report about the past and latest additions to the tool support in the
MPI standard over challenges in automated testing of performance and correctness
tools itself up to the new field of tools that target the energy optimization of
applications.

The workshop in 2019 started by the experience of users with tools during the
optimization of codes written in modern languages like C++ as well as complex
simulation frameworks and it ended with the “response of tools” for these needs in
form of the Score-P Python bindings. In between the talks covered topics around
low overhead performance measurement for everyday monitoring of applications,
new ways of capturing execution states or regions, and tool evolution around
different parallel programming models, e.g., Kokkos. Further, various special tool
developments, user interface improvements, and enhanced methods of getting
counters or metrics for a better and quicker understanding of data obtained from
performance experiments were presented.

The book contains the contributed papers to the presentations held on the two
workshops in September 2018 in Stuttgart and September 2019 in Dresden. As in
the previous years, the workshops were jointly organized by the Center of
Information Services and High Performance Computing (ZIH)3 of the Technische
Universitaet Dresden and the High Performance Computing Center Stuttgart
(HLRS).4

Dresden, Germany Hartmut Mix
Christoph Niethammer

Huan Zhou
Michael M. Resch
Wolfgang E. Nagel

3https://tu-dresden.de/zih.
4https://www.hlrs.de.
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Detecting Disaster Before It Strikes: On
the Challenges of Automated Building
and Testing in HPC Environments

Christian Feld, Markus Geimer, Marc-André Hermanns, Pavel Saviankou,
Anke Visser, and Bernd Mohr

Abstract Software reliability is one of the cornerstones of any successful user expe-
rience. Software needs to build up the users’ trust in its fitness for a specific purpose.
Software failures undermine this trust and add to user frustration that will ultimately
lead to a termination of usage. Even beyond user expectations on the robustness of
a software package, today’s scientific software is more than a temporary research
prototype. It also forms the bedrock for successful scientific research in the future. A
well-defined software engineering process that includes automated builds and tests
is a key enabler for keeping software reliable in an agile scientific environment and
should be of vital interest for any scientific software development team. While auto-
mated builds and deployment as well as systematic software testing have become
common practice when developing software in industry, it is rarely used for scientific
software, including tools. Potential reasons are that (1) in contrast to computer scien-
tists, domain scientists from other fields usually never get exposed to such techniques
during their training, (2) building up the necessary infrastructures is often considered
overhead that distracts from the real science, (3) interdisciplinary research teams are
still rare, and (4) high-performance computing systems and their programming envi-
ronments are less standardized, such that published recipes can often not be applied
without heavy modification. In this work, we will present the various challenges we
encountered while setting up an automated building and testing infrastructure for the
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4 C. Feld et al.

Score-P, Scalasca, and Cube projects. We will outline our current approaches, alter-
natives that have been considered, and the remaining open issues that still need to
be addressed—to further increase the software quality and thus, ultimately improve
user experience.

1 Introduction

Software reliability is one of the cornerstones of any successful user experience.
Software needs to build up the users’ trust in its fitness for a specific purpose for it to
be adopted and used in a scientific context. Software failures, at any stage of its use,
will add to user frustration and ultimately lead to a termination of usage. Furthermore,
most scientific software packages are not only provided to the community to enable
scientific exploration, but also form the foundation of research for the developers as
well. If software stability is diminished, so is the capability to build reliable prototypes
on the available foundation.

With the increasing complexity of modern simulation codes, ensuring high soft-
ware quality has been on the agenda of the computational science community for
many years. Post and Kendall derived lessons learned for the ASCI program at Los
Alamos and Lawrence Livermore National Laboratories [40]. Among other factors
for successful simulation software engineering, they recommend to use “modern
but proven computer science techniques”, which means not to mix domain research
with computer science research. However, mapping modern software engineering
practices to the development of scientific simulation codes has proven difficult in the
past, as those practices focus on team-based software development in the software
industry, which is often different from scientific code development environments
(e.g., the “lone researcher” [20]). As Kelly et al. found, domain researchers outside
of computer sciencemay also perceive software engineering practices not as essential
to their research but rather as incidental [34] and being in the way of their research
progress [33]. Nevertheless, Kelly et al. do stress the importance of strategic software
testing to lower the barrier for the introduction and maintenance of software tests in
scientific projects [30].

While the adoption of rigorous software testing has not yet found broad adoption
among scientific software developers, some development teams do employ tech-
niques and supporting infrastructures already today to a varying degree [16, 21, 26,
38, 39]. However, software testing may not only benefit a single software package
at hand, but can also contribute to the assessment of larger, diverse software stacks
common on HPC platforms [32]. Still today, such work oftentimes entails the inte-
gration of different independent software components to fit all project needs, or the
development of new software frameworks to reduce the overhead of maintaining and
increasing the quality of a specific research software project.

In this spirit, our work integrates and extends available practices and software
components in the context of the constraints given by our own research projects (e.g.,
time,manpower, experience) andmay prove to be adaptable in parts to other scientific
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Score-P

OPARI2OTF2 CubeW CubeLib

Scalasca CubeGUI

Fig. 1 Our tools and software components and their build dependencies

software projects. As Fig. 1 shows, our software ecosystem consists of different tools
and software components with various dependencies between them. Score-P [35] is a
highly scalable and easy-to-use instrumentation and measurement infrastructure for
profiling, event tracing, and online analysis of HPC applications. It internally uses
OPARI2, a source-to-source instrumenter for OpenMP constructs. Scalasca [27, 44]
is a set of tools for analyzing event traces and identifying potential performance
bottlenecks—in particular those concerning communication and synchronization.
The Cube components [41] operate on cubex files and consist of (1) CubeW—a C
library for writing, (2) CubeLib—a C++ library for writing and reading plus a set
of command-line tools, and (3) CubeGUI—a graphical performance report explorer.
Last but not least, we provide OTF2 [25], a highly scalable and memory efficient
event trace data format and library.

It is evident that any severe quality degradation in any of the components above
easily affects multiple other components. For example, a defect in the OTF2 com-
ponent may directly affect Score-P’s ability to create new trace measurements and
Scalasca’s ability to process existing or new trace archives. Furthermore, indirect
dependencies may impact the tools as well. For example, if the CubeGUI compo-
nent experiences a severe regression, exploration of Cube profiles—as generated
by Score-P and Scalasca—must fall back on earlier versions of the software. The
automated building and testing setup described in this paper is a direct consequence
of this interdependence among our software components, in order to spot potential
problems early in the development process.

Besides the description of early approaches to automated building and testing for
our tools, the contributions of this work include:

• Aworkflow for usingGitLabCI/CD in anHPCenvironment and for sources hosted
in an external Subversion repository.

• An example for building a test suite for integration testing using the JUBE work-
flow manager.

• An extension of GNU Automake’s Simple Tests rule to support programming
models that require launchers and environment variables to be set.

• Custom TAP printer extensions to the Google Test unit testing framework—
including support for MPI tests—for better integration with GNU Automake.

The rest of this paper is organized as follows. Section2 introduces continuous
builds as a quality assurance measure and discusses the history of our automated
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build setup. It also gives a detailed account of our current implementation, based on
the GitLab continuous integration/continuous delivery (CI/CD) framework. Next,
Sect. 3 extends the discussion to automated testing and provides examples of our
current testing approaches on various levels. Here, Sect. 3.3 highlights our system-
atic integration testing framework for the Scalasca parallel analyzer. Finally, Sect. 4
concludes this work and provides an outlook on the next steps envisioned for further
software quality assurances for our codes.

2 Continuous Builds and Delivery

For any compiled software package, ensuring that the source code can be transformed
into an executable can be seen as a very first step toward a positive user experience
even before actually using it. Before automated buildswere introduced to theScalasca
project, the approach to ensure that the code base compiled and worked on a wide
range of HPC machines was a testathon, carried out just before releases. Every
member of the development team tried to compile the current release candidate on
the HPC machines she had access to and collected a few small-scale measurements
from simple test codes as a sanity check. Portability bugs showed up just at this late
stage in the development process. And since addressing a portability issue with one
platform or programming environment might have introduced a new problem with
another, team members had to start over multiple times due to the creation of new
release candidates. While our experience with this manual approach showed that it
was already valuable in order to identify themost serious problems before publishing
a release, it was nevertheless quite cumbersome.

2.1 History

Therefore, the Scalasca project decided to set up an infrastructure for automated
nightly builds about a decade ago. The first nightly build of the Scalasca 1.x code
base—which also included the full Cube package—ran on a developer workstation
in January 2009. The builds were carried out using a set of home-grown shell scripts
triggered by a cron job, which set up the build environment (e.g., by loading required
environment modules), checked out the main development branch of the code base
from Subversion, ran configure, make, and make install, and finally sent
an e-mail to the developer mailing list on failure. Even the very first set of builds
already exercised three different compilers (GCC, Intel, Sun), but was based on only
a single MPI implementation. Over time, this setup was extended by also including
builds with different MPI libraries, additional compilers, and covering 32- and 64-bit
environments, as well as builds on the local supercomputers available at the Jülich
Supercomputing Centre.Moreover, we enhanced the build scripts to extract compiler
warnings from the build log and report them via e-mail.
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While this nightly build infrastructure did not provide feedback for every single
code revision that had been checked in, it still proved very helpful in identifying
portability issues early on. Therefore, we were already convinced that some form
of continuous build infrastructure—activated by every commit to our source code
repository—was mandatory when starting development of the Score-P, OTF2, and
OPARI2 projects. However, it quickly became clear that extending our build scripts to
support the new projects would require a significant effort (i.e., basically a rewrite).
Thus, the Score-P project partners decided to move away from self-written shell
scripts toward a more widespread, community-maintained solution. As Score-P and
its companion projects use Trac [24] as a minimalistic web-based project manage-
ment tool, the Bitten [23] plug-in seemed like a natural choice to implement con-
tinuous builds. Subsequently, also Scalasca 2.x and the now fully stand-alone Cube
project adopted Bitten to implement their continuous build infrastructure.

Bitten consists of two components: a plug-in for the Trac project environment
running on the server side and a Python-based client that needs to be executed on the
build machines. The configuration has to be done on both sides. On the server side,
build configurations are defined. A build configuration listens on commits to specific
Subversion paths, defines a build recipe, and a set of target platforms. Here, a target
platform is a named set of rules against which the properties of build clients are
matched. In our setup, the target platforms were used to match against environment
module and configure options, for example, whether to build static or shared libraries,
which compilers and MPI libraries to use, etc. The client side basically consists of
a shell script with given properties that is executed regularly (e.g., via a cron job)
on the build machines. The script sets up the build environment depending on its
properties and then executes the Bitten client. This client connects to the Trac server
running the Bitten plug-in providing its properties, and queries whether any commits
that satisfy all of the rules associated with the target platform are pending. In this
case, matching commits are processed according to the configuration’s build recipe.

The Bitten approach to continuous builds has been used over several years for the
projects mentioned above. Although the builds were carried out as expected and gave
us valuable feedback, wewere not fully satisfiedwith this solution. Building the code
base directly from the version control system required that every build client had the
build system tools (i.e., specific versions of GNU Autotools [19, 43]; sometimes
with custom patches to address the peculiarities of HPC systems) to be installed.
Also, the need to maintain the configuration in two places—on the server as target
platforms and on the clients as properties—turned out to be tedious and error-prone.
For example, every newSubversion branch that should be built continuously required
to manually define a new configuration from scratch on the server, as the Bitten plug-
in does not provide an option to copy an existing configuration. Moreover, the client
configurations on potentially all build machines had to be adapted accordingly.

Over time, we developed the desire to specify dependencies between builds, that
is, to create build pipelines. On the one hand, this was motivated by the fact that a
build failure caused by a syntax error or a missing file rather than a portability issue
triggered failure e-mails from every build client, thus polluting the e-mail inboxes
of all developers—one couldn’t see the wood for the trees. On the other hand, we
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wanted our tests to be closer to a user’s perspective, that is, building from a tarball
instead of directly from the version control system. In addition, we wanted to make
a successfully built tarball publicly available. Thus, a pipeline that would meet our
requirements consists of several stages:

• The first stage builds the code base in a single configuration straight from the repos-
itory sources and generates a distribution tarball. Only this initial build requires
special development tools, in our case specific and patched versions of GNU
Autotools and Doxygen [7]. Build failures in the generic parts of the code base
are already detected during this step and therefore only trigger a single e-mail.

• The next stage performs various builds with different configurations to uncover
portability issues, using the generated tarball and the development environments
available on the build machines. This corresponds to what a user would experience
when building a release.

• A subsequent stage makes the tarball publicly available once all builds report
success.

• An additional stage could implement sanity checks between dependent projects,
for example, to detect breaking API changes as early as possible. Also, this stage
could trigger automated tests to run asynchronously after successful builds.

With the pipeline outlined above, our infrastructure would not only do continuous
builds, but continuous delivery (CD) [31], by ensuring that the latest version of our
software can be released as a tarball at any time, even development versions. Please
note that our development process is based on feature branches that get integrated
into the mainline after review. Thus, our process is currently not based on continuous
integration (CI) [17]—the practice of merging all developer working copies to a
shared mainline several times a day.

As Bitten has no built-in support for pipelines, we experimented with emulating
this feature via build attachments and non-trivial shell scripts. However, this setup
quickly became more and more complex, and added to the maintenance worries we
already had. Moreover, the fact that Bitten had not been actively maintained for the
last couple of years also did not increase our trust in this tool.

All in all, we felt a pressing need to find a replacement that lowers the mainte-
nance burden, provides support for build pipelines, and is actively maintained. As a
requirement for the replacement, the configuration of the entire infrastructure should
allow for easy integration of new clients and new repository branches. This would
allow us to easily adjust the number of (HPC) machines that take part in the CD
effort. We could also invite users with access to new and exotic systems to become
part of our CD infrastructure, just by installing and configuring a client on their side,
if they don’t have concerns executing our build scripts on their machine. Besides
clients running on local servers and login nodes of HPC machines, the possibility
of running containerized clients would provide an easy way to improve the cover-
age of operating systems and software stacks under test. An easy integration of new
branches into the CD infrastructure is also considered crucial; setting up CD for a
new release branch should be matter of minutes rather than the cause of anxiety.
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We did a superficial evaluation of a few available solutions to check whether they
would meet our requirements:

• Jenkins [11]—The configuration of a Jenkins server requires the use of plug-
ins. One can run builds on remote servers using SSH plug-ins. Here the server
connects to the client, thus the server’s public SSH key needs to be added to the
authorized_keys file on the client side. From a security point of view this is
a little worse than a client connecting to the server. We will address the security
related issues in Sect. 2.3 below.Moreover, all projects hosted by a Jenkins instance
by default share the SSH key setup, which is a huge impediment for providing a
central Jenkins service also covering projects outside of our ecosystem. At the
time of writing, this limitation could only be overcome using a commercial plug-
in. Furthermore, the vast number of plug-ins and the available documentation
did not guide us to a straightforward configuration of the server, but felt like a
time-consuming trial-and-error endeavor.

• Travis [14]—Travis CI is a continuous integration service for GitHub [9] projects.
Althoughwe envision a transition from Subversion to git for our code base, it is not
clear if the code will be hosted on GitHub.Moreover, builds can only be run within
containerized environments on provided cloud resources, that is, testing with real
HPC environments would not be possible. Therefore, we did not investigate this
option any further.

• GitLab CI/CD [10]—The CI/CD component integrated into the GitLab platform
seemed to best match our requirements. It supports server-side configuration in
a single location, build pipelines, and the generation of web pages. Moreover,
new build clients can easily be set up by copying a statically linked executable
(available for x86, Power, and ARM), and registering the client with the server
only once.

Considering the results of this quick evaluation, we decided to replace the Bitten-
based continuous builds by GitLab CI/CD, starting with the Cube project. The fact
that GitLab allowed self-hosting of projects already stirred interest for it as a replace-
ment for the multi-project Trac server run by our institute. This has certainly influ-
enced our decision to investigate its capabilities early on. While migrating the Cube
project, it quickly turned out that GitLab CI/CD was as good match for our require-
ments. We then moved to GitLab CI/CD also for our remaining projects (Score-P,
Scalasca 2.x, OTF2, and OPARI2).

2.2 GitLab CI/CD

For every project to be continuously delivered1—that is, Score-P, Scalasca 2.x, Cube,
OTF2, and OPARI2—we created a corresponding GitLab project, each providing an

1From the perspective of setting up and configuring the infrastructure, there is no real distinction
between continuous integration and continuous delivery.
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associated git repository. However, as mentioned before, all the components listed
above are currently still hosted in Subversion repositories, and migrating everything
to git was not an option within the available time frame. Thus, the GitLab project
is currently only used to provide the CD functionality, and the git repository to
store the configuration of the CD system. Yet, this required us to find a way to trigger
GitLab CI/CD actions from Subversion commits. Our solution involves three parties:
the Subversion repository, an intermediary GitLab project, and the GitLab CI/CD
project responsible for the continuous builds.

On the Subversion side, a post-commit hook collects information about each
commit, for example, path, revision, author, commit message, etc. Using GitLab’s
REST API, this data is passed to the CI/CD pipeline of the intermediary GitLab
project, whose sole purpose is to match the Subversion commit’s path with a branch
in the GitLab CI/CD project.2 In case of a match, the build recipe of the intermediary
GitLab project commits the Subversion data it received from the post-commit hook
to a file in the matching GitLab CI/CD branch, thereby providing all information
necessary to access the correct Subversion path and revision from within build jobs
of this GitLab CI/CD branch. Only then the build pipeline for the matching branch
is triggered explicitly from the intermediary project, again using a REST API call.
While the functionality of the intermediary GitLab project’s CD recipe could also be
included in the Subversion post-commit hook, this approach decouples the trigger
from the actual branch mapping. This allows for convenient changes using a git
repositorywithout the need to update the post-commit hook on the Subversion server.

With GitLab CI/CD, the entire configuration is specified in a single file named
.gitlab-ci.yml that resides inside a git branch. This file defines a pipeline,
which by default is triggered by a new commit to this branch. A pipeline consists
of an ordered set of stages. Each stage comprises one or more jobs, with each job
defining an independent set of commands. A stage is started only after all jobs of
the previous stage have finished. Individual jobs are executed by runners (e.g., build
clients), which have to be registered once with the GitLab server. Runners can either
be specific to a single project or shared among multiple projects. Optionally, a list of
tags (arbitrary keywords) can be associated with a runner at registration time. This
way it can be restricted to only execute jobs that exclusively list matching tags in
their job description. Communication between stages beyond success and failure,
which is provided by default, can be achieved via per-job artifact files. Artifact files
of jobs are automatically available to all jobs of subsequent stages.

In our current implementation, the CI/CD pipeline consists of the following five
stages: (1) creating a distribution tarball, (2) configuring, building, and testing the
tarball with different programming environments, (3) evaluating the build results and
sending out e-mail notifications if necessary, (4) preparing tarball delivery, and (5)
generating web pages.

The initial, single-job create_tarball stage first checks out the corresponding
project’s source code from Subversion, leveraging the commit information provided

2For example, all commits to Subversion trunk matches git trunk, and commits to Subversion
branches/RB-4.0 matches git RB-4.0.
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by the intermediary GitLab project as outlined above. It then configures and builds
the sources in a single configuration (currently GCC/Open MPI), generates the user
documentation, and then creates a self-contained distribution tarball. Finally, this
tarball is uploaded to the GitLab server as a job artifact. As this is the only stage
working with a checkout from a version control system, special development tools
such as GNU Autotools or Doxygen are only required during this step.

Since job artifacts like the distribution tarball are readily available in subsequent
stages, the follow-up test_tarball stage can use it in the same way a user would
build and install our released versions. This stage comprises multiple jobs, each test-
ing the tarball with a specific configuration or on a particular HPC platform. Each
job executes the configure script with appropriate options, runs make and make
install, and triggers a number of automated tests (see Sects. 3.1 and 3.2). We cur-
rently cover configurations using different compilers (GCC, PGI, Intel, Cray, IBM
XL, Fujitsu), diverse MPI implementations (Open MPI, SGI MPT, MVAPICH2,
Intel MPI, Cray MPI, Fujitsu MPI), multiple architectures (x86, Power, SPARC,
ARM), HPC-specific programming environments (Cray XC, K computer), and sev-
eral configuration options (e.g., with internal/external subcomponents, whether to
build shared or static libraries, or with PAPI, CUDA, or OpenCL support enabled).

The create_tarball and test_tarball stages also upload additional build artifacts
to the GitLab server, for example, the build log in case of failure. The subsequent
evaluate stage analyzes these artifacts from the previous stages and, in case of an
error, determines which message to send to which audience via e-mail. Here, we
distinguish four different error cases: (1) create_tarball took too long or did not
start, (2) create_tarball failed, (3) one or more test_tarball jobs took too long or
did not start, and (4) one or more test_tarball jobs failed. Examples for (3) are jobs
that are supposed to run on remote machines where the machine is in maintenance or
not accessible due to other reasons. These jobs are marked allowed_to_ f ail, which
allows for subsequent stages to continue. Nevertheless, we are able to detect these
jobs since they do not provide a specific artifact file created by successful/failing
jobs. The error cases (1), (2), and (3) are communicated to the commit author and
the CI/CD maintainer only, as they should be able to figure out what went wrong.
This way we refrain from bothering the entire developer community. In contrast,
case (4)—a real build failure—is communicated to a wider audience with the hope
in mind that the community helps to fix the issue. Note that there is only a single
failure e-mail sent out per pipeline invocation, summarizing all build failures and
providing links to the individual build logs for further investigation.

In absence of a real build failure, the prepare_delivery stage is responsible for
copying the distribution tarball, the generated documentation, and related meta-data
to a shared directory. This directory collects the artifacts from the last N pipeline
invocations for multiple branches.

The last stage, generate_pages, operates on this shared directory and creates a
simple website that provides the tarballs and corresponding documentation for all
successful builds it will find in the directory. This website is published via GitLab
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CI/CD’s built-in feature pages and is publicly accessible.3 This way bug fixes and
experimental features are available to the interested audience soon after they have
been committed and in a completely automated process.

With the entire configuration specified in a single file stored in a git repository,
bringing a new branch under CD is now trivial: we just need to create a new branch
from an existing one that is already underCD.As the configuration file lives inside the
git branch, it is copied andwill carry out jobs for the new branch as soon as the CI/CD
pipeline is triggered. However, care needs to be taken not to hardcode any paths (e.g.,
the installation prefix) or variables into the configuration file as this might lead to data
races when pipelines from different branches run in parallel. To prevent this, GitLab
CI/CD offers a set of predefined branch-unique variables that can be used inside the
configuration file to make it race-free. Using these variables, a strict branch naming
scheme, and GitLab CI/CD’s feature to restrict jobs to matching branch names, we
were able to create a single .gitlab-ci.yml file and associated shell scripts that
can be used for any newly created branch.

In our setup, the GitLab CI/CD runners execute on the build machines (local
servers dedicated for CD and testing as well as login nodes of multiple HPC systems
we have access to) and identify themselves via tags. They regularly connect to the
GitLab server to check whether there are any jobs waiting to be executed that match
their tags. If this is the case, the git repository is cloned on the client side and the
job is executed according to the job definition contained in .gitlab-ci.yml.
For our projects, runners are started in the default run mode, creating a process that
is supposed to run forever. However, this is problematic on HPC systems as there
might be a policy in place to kill long-running login-node processes after a certain
time period, usually without prior notice. As we want the runners to be operating
continuously, we have implemented a kill-and-restart mechanism that preempts the
system’s kill. This mechanism is under our control and works as follows: when
starting the runner, we schedule a QUIT signal after a given time period by prefixing
the runner command with timeout -s QUIT <period>. If a runner receives
this signal and is currently processing a job, it first will finish this job and then exit.
Otherwise, it will exit immediately. To keep the runner operational, a cron job on the
HPC machine or on one of our local test systems will regularly restart the runner,
again scheduling the QUIT signal. This regular restart will be a no-operation if the
runner is still alive.

With GitLab CI/CD and the Subversion-to-GitLab trigger mechanism, we now
have a robust, low maintenance, and extensible continuous delivery infrastructure
that is a vast improvement over the previous Bitten-based approach.

The source code of the Score-P and Scalasca projects already include depen-
dent projects like OTF2, OPARI2, CubeW, or CubeLib. When building these parent
projects, the subproject code is built as well, at least during the create_tarball stage.
However, this does not hold for the—with regards to source code—independent Cube
components that do not utilize the dependency management mentioned above. These
components, except for CubeGUI, work directly on cubex files. As changes in one

3See, e.g., http://scorepci.pages.jsc.fz-juelich.de/scorep-pipelines/.

http://scorepci.pages.jsc.fz-juelich.de/scorep-pipelines/
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component might affect the ability to read and/or write cubex files in other compo-
nents, caremust be taken to keep them synchronized. This is ensured by an additional
GitLab CI/CD project that is triggered from Subversion commits to any of the Cube
components, also using the intermediary GitLab CI/CD project for branch matching
described above. This additional GitLab CI/CD project starts with building all Cube
components. On success, CubeW is used to generate cubex files with given con-
tents. These files are passed to CubeLib, where they are read and the validity of the
contents is verified. This way, we are able to detect early on when the components
get out of sync.4

2.3 Open Issues

We need to mention that all build clients in both our previous Trac/Bitten and the
current GitLab CI/CD setup run with user permissions. This is a potential security
risk as all users with permission to commit to a Subversion repository may trigger
a build pipeline that executes code on a system they might not have access to. The
code that is executed are configure scripts and Makefile targets. Adding malicious
code to these files is possible for every developer with commit rights. In our projects,
however, only trusted developers have the right to commit and are therefore able to
trigger builds. Moreover, new features undergo a thorough code review process so
that malicious code is likely to be detected.

Compared to a manual build by a user, either using a tarball or sources checked
out from a version control system’s repository, we do not see a significant difference
to automated builds with regards to security. Although a manual build would allow
for an in-depth examination of the entire code base before executing a build, this is
not feasible in general.

Another attack vector would be a malicious change to the .gitlab-ci.yml
configuration file and associated helper scripts. In our case, write access to these files
is only granted to a subset of the trusted developers with Subversion commit rights.
We consider this setup safe enough for our purposes and the security concerns of
HPC sites.

In contrast to GitLab CI/CD, Jenkins jobs are not initiated by a polling client, but
a pushing Jenkins server. With access to the server it might be possible to log into
the remote build machines, making it slightly easier to perform harmful activities.

As already mentioned, we plan to migrate our code base from Subversion to
git, potentially hosted on a publicly accessible platform. Here, we might get merge
requests from untrusted developers. To deal with such requests, we envision a three-
step CD approach. In the first step we would run the create_tarball stage and some
of the test_tarball jobs in a Docker-containerized environment [6]. On success, the

4Instead of using an additional GitLab CI/CD project, the Cube component’s individual GitLab
CI/CD projects could trigger each other using GitLab CI/CD’s REST API.
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second step would comprise a manual code review process. CD jobs on the HPC
systems will be triggered only if this review has a positive outcome.

Unfortunately we cannot move all CD jobs into containers, as our target systems
are real HPC machines with their non-standard setups and programming environ-
ments. To the best of our knowledge, containers for these site-specific setups do not
exist, and it is beyond our abilities to create such container images ourselves. Thus,
it would be of great help if HPC sites acknowledge the need for continuous building
and testing, and make some dedicated resources available for this purpose, as well
as assist in creating containerized environments of their respective setups.

3 Automated Testing

While continuous builds are vital to get rapid feedback on whether a code base
compiles with different programming environments and configurations, they do not
ensure that the code actually works as expected. For this, tests have to be executed
on various levels—ideally also in an automated fashion.

For automated testing we need to differentiate between tests that are executed
on login nodes and tests that are supposed to run on compute nodes. While the
former can be run directly in the build environment—if not cross-compiled—the
latter pose a challenge as execution of compute-node tests might need a special and
non-standardized environment and startup procedure like a job submission system.
In Sect. 3.3 we present our approach to tackle this challenge with regards to the
Scalasca project. The following two sections will describe how we approach tests
that do not require a job submission system. As the build systems of our tools are
exclusively based on GNU Autotools, we use the standard targets make check
and make installcheck to execute these tests.

3.1 Make Check

The Scalasca project started its journey toward more rigorous and systematic
testing in 2012. As an initial step, we surveyed a number of C++ unit testing
frameworks with respect to their documentation, ease of use, feature sets, and
extensibility. In particular, we evaluated the following unit testing frameworks:
CppUnit [3], CppUnitLite [4], CxxTest [5], UnitTest++ [15], FRUCTOSE [8],
CATCH,5 Boost.Test [1], and Google Test [29]. After weighing the strengths and
weaknesses of the various solutions, we opted for Google Test to implement unit
tests for Cube and Scalasca, as it seemed to best fit our needs. (Note that a re-
evaluation would be necessary when starting a new project today, as the capabilities
of the frameworks have evolved over the past years.)

5Original website no longer accessible; see [2] for the follow-up project.
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All our unit tests are part of the main code base and triggered using the standard
GNU Autotools make check target. However, the default test result report gen-
erated by Google Test is quite verbose and does not integrate well with the GNU
Autotools build system. Therefore, we have developed a TAP [42] result printer
extension, which is able to communicate the outcome of every single unit test to
the Automake test harness rather than indicating success/failure on the granularity
of test executables. In addition, details on failed tests (actual vs. expected outcome)
are included in the test log as TAP comments. While TAP test support is not yet a
first-class citizen in Automake, it only requires a one-off manual setup.

We also enhanced Google Test to support MPI-parallel tests. In this mode, the
TAP result printer extension first collates the test results from each rank, and then
prints the combined overall test result from rank 0. Such parallel tests are only run
when enabled during configure using the –enable-backend-test-runs
option, as it is often not allowed to execute parallel jobs on the login nodes of HPC
systems.6 We also use them sparingly (e.g., to test a communication abstraction
layer on top of MPI), as parallel tests are expensive. In addition to the enhancements
outlined above, a minimal patch was required to make Google Test compile with the
Fujitsu compilers on K computer.

The Score-P project took a different approach to tune the make check rule to
fit its specific testing needs. As in the Scalasca project, tests that are supposed to
run on compute nodes need to be explicitly enabled during configure. Besides
that, Score-P comes with login-node tests that are always executed. We implement
these tests using the standard Automake Simple Tests rule. While the login-node
tests are purely serial programs, the compute-node tests consist of serial, OpenMP,
MPI, MPI+OpenMP, and SHMEM programs. While serial compute-node programs
do not need any special treatment, OpenMP programs require at least a reasonable
value for OMP_NUM_THREADS, and MPI and SHMEM programs are started via
mpiexec and oshrun launchers, also requiring a reasonable value for the number
of ranks to be used. As the different startupmechanisms and specific environment set-
tings could not be modeled by the standard Automake Simple Tests rule, we decided
to slightly modify the existing rule for each programming model and combinations
thereof. That is, we copied the default make check related rules together with their
associated variables. This results in quite some code duplication,7 but is a straightfor-
ward and extensible way of implementing the required functionality. After copying,
we made the duplicate target and variable names unique by adding programming
model specific postfixes. As a next step, we modified minor portions of the code in
order to set the required environment variables and to introduce standard program
launchers. Finally, we use the standard check-local rule to trigger the new pro-
gramming model specific tests. The mechanism described above allows us to stay
entirely within the GNU Autotools universe and to use Automake’s Simple Tests
framework for arbitrary programming models. We need to stress that this extension

6Note that all tests are built unconditionally duringmake check, and thus can be run on a compute
node afterwards outside of the build system.
7Note that the copies might need to be updated for every new version of GNU Automake.
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of the make check rule is not supposed to be used with job submission systems
with their asynchronous nature, but with standard, blocking launchers likempiexec
and oshrun.

The aforementionedCubeLib component also providesmake check targets. As
all Cube componentswork oncubexfiles, it is an obvious approach to try to compare
generated files against a reference. However, this is not easily possible as cubex
files are regular tar archives. These tar archives bundle the experiment meta-data
with multiple data files. Since the experiment meta-data usually also includes creator
version information, and tar archives store file creation timestamps, a simple file
comparison against a reference solution using, for example, the cmp command is
not feasible.8

The CubeLib component is able to write and read cubex files and comes with a
set of file manipulation tools. The test workflow here is as follows: we write cubex
files using the writer API. The generated file is then processed by a CubeLib tool,
using the readerAPI. The resulting file is compared against a reference using a special
cube_cmp tool which overcomes the problems of comparing Cube’s tar archives
mentioned above.

3.2 Make Installcheck

The installcheck rule is used by the Score-P, OTF2, OPARI2, and Cube
projects. It is supposed to work on an installed package as a user would see it.
Amongst others, we use this target to verify that our installed header files are self-
contained. To test this we created minimal test programs that only include individual
header files of our package installations and check whether these programs compile.
In addition, we have implemented a huge number of Score-P link tests which test
one of the central components of the Score-P package, the scorep instrumentation
command. It is used as a compiler prefix in order to add instrumentation hooks and
to link additional libraries to the executable being built. This command comes with
lots of options, libraries to be added, and libraries to be wrapped at link time. We
need to ensure that every valid combination of options leads to a successfully linked
application. We do this by building scorep-instrumented example programs cov-
ering nearly the entire valid option space9 and inspecting them afterwards to verify
that they were linked against the expected libraries. The run-time behavior of these
instrumented programs is not tested here. For this we would need to execute the pro-
grams on compute nodes with their non-standard way of submitting jobs. Besides
that, the nature of the test programs was not chosen to test for specific Score-P
internals, but to provide a way of testing the compile- and link-time behavior of the
scorep command. Furthermore, other Score-P login-node executables are accom-

8The deprecated Cube v3 file format is a pure XML format and can be compared using cmp.
9We choose this time- and disk-space-consuming brute force approach in a early stage of the Score-P
project as it was the easiest to implement in a period of high code change rate.
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panied by a few tests to check if their basic functionality works as expected. In case
of the OPARI2 project, make installcheck just tests the basic workflow of the
OPARI2 source-to-source instrumenter and checks if an instrumented hello world
program can be compiled.

Cube components comewith associated cube*-config tools. These tools pro-
vide compile and link flags a user needs to apply when building and linking against
one of the Cube components. To ensure that these config tools provide the correct
flags and paths, we reuse a subset of the make check tests also during make
installcheck. Here, we are no longer interested in the functionality of the inter-
nals but whether a user could build an application linked against a Cube component.
For that we replace the make check build instructions—provided by the Cube
component’s build system—with the ones provided by the already installed config
tool.

The same approach is used to test the CubeGUI plug-in API. Here we build a hello
world plug-in that exemplifies the entire API. Furthermore, the CubeGUI package
does not provide any additional tests, in particular no tests for the graphical user
interface itself, as these are difficult to automate.

3.3 Scalasca Testing Framework

As already outlined in Sect. 2, system testing of the Scalasca Trace Tools package
traditionally has been done manually in a rather ad-hoc fashion before publishing
a new release. In addition, it has been continuously tested implicitly through our
day-to-day work in applying the toolset to analyze the performance of application
codes from collaborating users, for example in the context of the EU Centre of
Excellence “Performance Optimisation and Productivity” [13]. While this kind of
manual testing has proven beneficial, it is not only laborious and time-consuming,
but usually also only covers the core functionality, and therefore a small fraction of
all possible code paths. Moreover, it suffers from non-deterministic test inputs, for
example, due to using applications with different characteristics, run-to-run variation
in measurements, or effects induced by the platform on which the testing is carried
out. This makes it hard—if not impossible—to verify the correctness of the results.

To overcome this situation and to allow for a more systematic system testing
of the Scalasca Trace Tools package, we developed the Scalasca Test Suite on top
of the JUBE Benchmarking Environment [36]. JUBE is a script-based framework
that was originally designed to automate the building and execution of application
codes for system benchmarking, including input parameter sweeps, submitting jobs
to batch queues, and extracting values from job outputs using regular expressions to
assemble result overview tables.With JUBEv2, however, it has evolved into a generic
workflow management and run control framework that can be flexibly configured
also for other tasks, using XML files. JUBE v2 is written in Python and available for
download [12] under the GNU GPLv3 open-source license.
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In case of the Scalasca Test Suite, we leverage JUBE to automate a testing work-
flow which applies the most widely used commands of the Scalasca Trace Tools
package on well-defined input data sets, and then compares the generated output
against a “gold standard” reference result. Commands that are supposed to be run
in parallel on one or more compute nodes of an HPC system (e.g., Scalasca’s par-
allel event trace analysis) are tested by submitting corresponding batch jobs, while
serial tools that are usually run on login nodes (e.g., analysis report post-processing)
are executed directly. Each test run is carried out in a unique working directory
automatically created by JUBE, and consists of the following steps:

• prereq—This initial step checks whether all required commands are available in
$PATH, to abort early in case the testing environment is not set up correctly.

• fetch—This step copies the input experiment archives (i.e., event traces) and ref-
erence results, both stored as compressed tar files, from a data storage server
to a local cache directory which is shared between test runs. To only transfer
new/updated archives, we leverage the rsync file-copying tool which uses an
efficient delta-transfer algorithm. The connection to the data storage server is via
SSH, with non-interactive operation being achieved using an SSH authentication
agent. The list of files that need to be considered in the data transfer is generated
upfront and passed to a single rsync call, thus avoiding being banned by the data
storage server due to trying to open toomany connections in a short period of time.

• extract—This step extracts the input experiment archive and reference result tar
files into the per-test working directories.

• scout—During this step, Scalasca’s parallel event trace analyzer scout is run
on the input experiment archives. For multi-process experiments (e.g., from MPI
codes), the input trace data is pre-processed by applying the timestamp correction
algorithm based on the controlled logical clock (clc) [18]. If the analysis completes
successfully, the generated analysis report is compared to a reference result.

• remap—This step depends on the successful completion of the previous scout step.
It executes the scalasca -examine command to post-process the generated
trace analysis report. If successful, the post-processed report is compared to a
reference result.

• clc (multi-process experiments only)—This step runs the stand-alone timestamp
correction tool on the input experiment archives. This parallel tool uses the same
controlled logical clock algorithm as the trace analyzer, but rewrites the processed
tracedata into anewexperiment archive.As storing reference traces for comparison
is quite expensive in terms of disk space, the execution of this tool—if successful—
is followed by another run of the event trace analyzerwith the timestamp correction
turned off. The resulting analysis report is then again compared to a reference
solution.

• analyze—This step parses the stdout and stderr outputs of the previous steps
to determine the number of successful/failed tests, and to generate an overview
result table.
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The individual test cases (i.e., input experiment archives) are currently structured
along three orthogonal dimensions, which form a corresponding JUBE parameter
sweep space:

• Event trace format
• Programming model
• Test set

Our current set of more than 180 test cases already covers experiments using the two
supported event trace formats OTF2 and EPILOG (legacy Scalasca 1.x trace format),
traces collected from serial codes as well as parallel codes using OpenMP, MPI, or
MPI+OpenMP in combination, and three different test sets: benchmark, feature,
and regression. The benchmark test set includes trace measurements from various
well-known benchmarks (e.g., NAS Parallel Benchmarks [37], Barcelona OpenMP
Tasks Suite [22], Sweep3D). The feature test set, on the other hand, consists of trace
measurements from small, carefully hand-coded tests, each focussing on a particular
aspect (see Sect. 3.4). Finally, the regression test set covers event traces related to
tickets in our issue tracker. Leveraging traces in the test suite which have triggered
defects that were subsequently fixed ensures that those defects are not accidentally
re-introduced into our code base. Note that additional parameter values (e.g., to add a
new test set) can easily be supported by our test suite; only adding new programming
models (e.g., POSIX threads) requires straightforward enhancements of the JUBE
configuration, as this usually impacts the way in which the (parallel) tools have to
be launched.

Instead of handling input experiment archives as an additional JUBE parameter,
the testing steps outlined above are only triggered for each (format, model, test
set) triple, and then process all corresponding input experiment archives in one go.
Otherwise, an excessive number of batch jobs would be submitted for each test
run. Moreover, many test cases—especially in the feature test set—are quite small,
leading to tests that execute very quickly. Thus, the batch queue management and
job startup overhead would significantly impede testing turnaround times. Each step
therefore evaluates two text files listing the names of the experiments—one per
line—that shall be considered for the current parameter triple: one file lists all input
archives for which the tests are supposed to pass successfully, while a second file
lists the experiments for which testing is expected to fail (e.g., to check for proper
error handling). For improved readability, additional structuring, and documentation
purposes, both files may include empty lines as well as shell-style comments. The
steps then iterate over the list of experiment archives and execute the corresponding
test for each input data set. Since the tested tool may potentially run into a deadlock
with certain input experiments due to some programming error, each test execution is
wrapped with the timeout command—to be killed after a (globally) configurable
period of time—and thus ensures overall progress of a test run.

After a test batch job has completed, result verification is performed serially (on
the login node) based on the resulting cubex files. As mentioned before, cubex
files are regular tar archives which cannot be compared against a reference solution
using cmp. Instead, we use a combination of multiple Cube command-line tools
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(cube_info, cube_calltree, and cube_dump) to first extract and compare
the list of metrics, the calltree, and the topology information, respectively. Then, the
actual data is compared using cube_test, a special tool that can be configured to
compare metrics either exactly by value, or whether the values are within provided
absolute or relative error bounds.

Although the Scalasca Test Suite operates on fixed pre-recorded traces, the
Scalasca event trace analyzer still produces non-deterministic results for several
metrics. For historic reasons, its internal trace representation uses double-precision
floating-point numbers for event timestamps (seconds since the begin of measure-
ment). Therefore, the integer event timestamps used by the OTF2 trace format are
converted on-the-fly to a corresponding floating-point timestamp while reading in
the trace data. During the analysis phase, timestamp/duration data from multiple
threads or processes is then aggregated (e.g., via MPI collective operations or shared
variables protected by OpenMP critical regions) to calculate several metrics. As the
evaluation order of those aggregations cannot be enforced, their results are subject
to run-to-run variation and therefore prohibit an exact bitwise comparison. However,
the results are still within small error bounds and can be verified using a “fuzzy
compare” with the aforementioned cube_test tool. This issue could be fixed by
consistently using only integer values for timestamps and durations, however, this
requires a major code refactoring that affects almost the entire code base, and thus
should not be done without having proper tests in place.

From a user’s perspective, the main entry point for the Scalasca Test Suite is
the testsuite.sh shell script, which automates the execution of various JUBE
commands to perform all preparatory steps, submit the test batch jobs, wait for their
completion, trigger the result verification, and generate an overview result table (see
Fig. 2). Test runs can be configured via a central configuration file, config.xml,
for example, to restrict the parameter space (e.g., only run tests for MPI experi-
ments in the feature test set) or to skip particular test steps (e.g., the clc step) using
JUBE’s tag feature. This can be useful to focus the testing effort on a particular
area during development, and thus improve turnaround times. In case of failing tests,
a more detailed report can be queried (Fig. 3). The step name and number as well
as the parameter values then uniquely identify the corresponding JUBE working
directory. For example, all input experiment archives, job scripts and outputs, and
results from step 5 of the example run shown in Fig. 3 can be found in the directory
000005_clc_otf2_mpi_feature/work for further analysis.

3.4 Systematic Test Cases

As outlined in the previous section, the feature test set of the Scalasca Test Suite
consists of trace measurements from small test codes that each focus on a particular
aspect. The main advantage of such targeted test codes compared to benchmarks,
mini-apps, or full-featured applications is that they are simple enough to reason about
the expected result, and thus allow for verifying correct behavior.
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$ ./testsuite.sh
Executing Scalasca Test Suite (this can take a while...)

OVERALL:
#tests | #pass | #fail | #xfail | #xpass | #error | #miss
-------+-------+-------+--------+--------+--------+------

189 | 182 | | | | 4 | 3

Fig. 2 Scalasca test suite: example overview result table. The columns list the overall number of
tests (#tests), the number of tests that expectedly passed result verification (#pass), failed result
verification (#fail), expectedly failed (#xfail), were expected to fail but passed (#xpass),
failed with a non-zero exit code, crashed, or were killed due to timeout (#error), or where the
required input data or a reference solution was missing (#miss), respectively

$ ./testsuite.sh -d
OVERALL:
#tests | #pass | #fail | #xfail | #xpass | #error | #miss
-------+-------+-------+--------+--------+--------+------

189 | 182 | | | | 4 | 3

SCOUT:
step | format | model | testset | #tests | #pass | | #error | #miss
-----+--------+-------+---------+--------+-------+- ... -+--------+------

2 | otf2 | mpi | feature | 40 | 40 | | |
3 | epik | mpi | feature | 23 | 23 | | |

REMAP:
step | format | model | testset | #tests | #pass | | #error | #miss
-----+--------+-------+---------+--------+-------+- ... -+--------+------

4 | otf2 | mpi | feature | 40 | 40 | | |
6 | epik | mpi | feature | 23 | 23 | | |

CLC:
step | format | model | testset | #tests | #pass | | #error | #miss
-----+--------+-------+---------+--------+-------+- ... -+--------+------

5 | otf2 | mpi | feature | 40 | 36 | | 4 |
7 | epik | mpi | feature | 23 | 20 | | | 3

Fig. 3 Scalasca test suite: example of a detailed result table of a test run limited to MPI tests of
the feature test set. Due to space restrictions, the (empty) #fail, #xfail and #xpass columns
have been omitted from the per-step result tables

One example of such feature test codes is a set of programs covering all blocking
MPI collective operations.Buildingupon the ideas of theAPARTTest Suite [28], each
individual test program exercises the corresponding operation on different communi-
cators, like MPI_COMM_WORLD, MPI_COMM_SELF, and communicators compris-
ing all odd/even ranks and the upper/lower half of ranks, respectively, as well as with
different payloads. Moreover, we use pseudo-computational routines (i.e., functions
that busy-wait for a specified period of time) to induce imbalances, thus construct-
ing event sequences exhibiting a particular wait state detected by the Scalasca event
trace analyzer in a controlled fashion. As a sanity check, each test program also
includes at least one situation in which the analyzer should not detect any (signif-
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icant) wait state.10 Each specific situation to be tested is wrapped inside a unique
function, which leads to distinct call paths in the analysis report and thus allows easy
identification. For all of these test cases, we verified that the key metrics calculated
by the Scalasca trace analyzer match the expected results, and created tickets for
further investigation in our issue tracker when broken or suspicious behavior was
encountered. Although the programming language in which the tests are written is
irrelevant for a trace analysis operating on an abstract event model, we implemented
them in both C and Fortran, as we anticipate that the test codes will also be useful for
testing Score-P—in particular its MPI adapter—on a regular basis. For this reason,
we also created additional variants using magic constants (e.g., MPI_IN_PLACE)
that require special handling during measurement.

In addition, we also developed a configurable trace-rewriting tool—with the inten-
tion to create even more test cases based on trace measurements collected from the
test codes outlined above. This tool allows simple operations such asmodifying event
timestamps or dropping individual events. We currently use it to inject, for example,
artificial clock condition violations into event traces to test Scalasca’s timestamp
correction algorithm, or other artifacts to test proper error handling.

Obviously, writing good test cases is a non-trivial undertaking that requires quite
a bit of thought. However, we consider them a well-spent effort that pays off in the
long run. For example, these systematic tests already helped to uncover a number of
issues in both the Score-P and Scalasca Trace Tools packages that would have been
very hard to spot with real applications. Moreover, the collected trace measurements
used in the feature test set of the Scalasca Test Suite have proven worthwhile as a
“safety net” during various larger refactorings in the Scalasca code base.

3.5 Open Issues

With many scientific projects, the initial focus of development usually is on making
quick progress rather than on writing code that is also covered by tests—and our
projects were no exception. That is, most of our tests that exist today have been
written after-the-fact and lots of legacy code is still untested. However, retroactively
adding tests for entire code bases that have grown for a decade or more is prohibitive.
For example, theMPI 3.1 standard already definesmore than 380 functions for which
the current Score-P 4.1 is providing wrappers that would require appropriate tests to
be written—not to mention SHMEM, CUDA, OpenCL, etc. Thus, we strive to add
tests for newly written or refactored code (following the so-called “boy scout rule”),
thereby slowly increasing our test coverage.

10For some calls, for example N-to-N collectives such as MPI_Allreduce, it is impossible to
construct a test that does not exhibit any wait state. However, the detected wait state will be very
small if the preceding computation is well-balanced, and thus can be distinguished from a “real”
wait state.
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As mentioned in the previous section, we also envision that the systematic test
cases could be used for regular and automated Score-P testing. For this purpose, a
JUBE-based framework similar to the Scalasca Test Suite needs to be implemented.
While various parts of the existing JUBE configuration could likely be reused, and
building, instrumenting, and running test codes with JUBE is straightforward, result
verification is much more challenging than in the Scalasca case using fixed input
data sets. Whereas most counter values such as the number of bytes sent/received
by message passing calls can be compared exactly, time measurements may vary
considerably between runs. Also, different compilers (and even compiler versions)
may use different name mangling schemes or inlining strategies, thus leading to
variations in the experiment meta-data, in particular the definitions of source code
regions and the application’s call tree. Moreover, measurements from task-based
programs are inherently non-deterministic. Although we do not have a good answer
for how to address these issues at this point, both profile and trace measurement
results could nevertheless be subject to various sanity checks. For example, profile
measurements should only include non-negative metric values and generate self-
contained files that can be read by the Cube library, and event traces should use
consistent event sequences such as correct nesting of ENTER/LEAVE events. This
would at least provide a basic level of confidence in that code changes do not break
the ability to collect measurements, and thus still renders such a test suite to be
beneficial.

While the check and installcheck Makefile targets outlined in Sects. 3.1
and 3.2 are already triggered by our GitLab CI/CD setup, the Scalasca Test Suite
still has to be run manually. Instead, it would be desirable to run it automatically
on a regular basis, for example, as a scheduled pipeline once per night or on each
weekend—depending on the average code-change frequency of the project—using
the last successful build of the main development branch. Likewise, this also applies
to tests for other projects that are not integrated into the build process, such as the
yet-to-be-written Score-P Test Suite mentioned above.

4 Conclusion and Outlook

In this article, we have presented an overview of the evolution of our approaches
regarding continuous builds and delivery as well as automated testing in the context
of the Score-P, Scalasca, Cube, OTF2, and OPARI2 projects. We have described
the main challenges we encountered along the way, outlined our current solutions,
and discussed issues that still need to be addressed. The automated approaches have
proven beneficial to identify a multitude of functional and portability issues early
on, way before our software packages were made available to our user community.
Although our implementations are clearly geared toward our needs for testing per-
formance analysis tools and the underlying libraries and components, we believe that
the general approaches are also applicable for testing other HPC-related software,
such as scientific codes.
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In the future, we plan to address the open issues outlined in Sects. 2.3 and 3.5.
As a short-term goal, we will work toward extending our GitLab CI/CD setup to
automatically trigger the execution of the Scalasca Test Suite in regular intervals
using the latest successfully built Scalasca package. In addition,weplan to explore the
use of containerized build environments, a prerequisite for dealing with the security
implications of the envisioned migration of our source codes to (potentially public)
git repositories and contributions from external, untrusted sources. In the medium
term, we plan to implement a test suite for Score-P to carry out functional tests,
similar in spirit to the Scalasca Test Suite. As a continuous and long-term effort, we
will of course also develop new systematic test cases to increase the coverage of our
testing.
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Abstract With today’s top supercomputers consuming several megawatts of power,
optimization of energy consumption has become one of the major challenges on
the road to exascale computing. The EU Horizon 2020 project READEX provides
a tools-aided auto-tuning methodology to dynamically tune HPC applications for
energy-efficiency. READEX is a two-step methodology, consisting of the design-
time analysis and runtime tuning stages. At design-time, READEX exploits applica-
tion dynamism using the readex_intraphase and the readex_interphase tuning
plugins, which perform tuning steps, and provide tuning advice in the form of a tun-
ing model. During production runs, the runtime tuning stage reads the tuning model
and dynamically switches the settings of the tuning parameters for different appli-
cation regions. Additionally, READEX also includes a tuning model visualizer and
support for tuning application level tuning parameters to improve the result beyond
the automatic version. This paper describes the state of the art used in READEX
for energy-efficiency auto-tuning for HPC. Energy savings achieved for different
proxy benchmarks and production level applications on the Haswell and Broadwell
processors highlight the effectiveness of this methodology.
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1 Introduction

The top ranked system in the November 2018 Top500 list is Summit at Oak Ridge
National Laboratory. It consumes 9.8MW with a peak performance of 200PFlop/s.
To reach the exascale level with this technology would already require 48 MW
power. Therefore, energy reduction is amajor goal for hardware, OS, runtime system,
application and tool developers.

The European Horizon 2020 project READEX (Runtime Exploitation of Appli-
cation Dynamism for Energy-efficient eXascale Computing)1 funded from 2015 to
2018 developed the READEX tool suite2 for dynamic energy-efficiency tuning of
applications. It semi-automatically tunes hybrid HPC applications by splitting the
tuning into a Design-Time Analysis (DTA) and a Runtime Application Tuning (RAT)
phase.

READEX configures different tuning knobs (hardware, software and application
parameters) based on dynamic application characteristics. Clock frequencies have
a significant impact on performance and power consumption of a processor and
therefore to the energy efficiency of the system. To leverage this potential, Intel
Haswell processors allow to change core and the uncore frequencies. One basic
idea is to lower the core frequency and increase the uncore frequency for memory
bound regions since the processor is anyway waiting for data frommemory. Another
important tuning parameter is the number of parallel OpenMP threads in a node. If
a routine is memory bound, it might be more energy-efficient to use only so many
threads until the memory bandwidth is saturated [31].

Following the scenario-based tuning approach [10] from the embedded world,
READEXcreates anApplication TuningModel (ATM) at design-timewhich specifies
optimal configurations of the tuning parameters for individual program regions. This
tuning model is then passed to RAT and is applied during production runs of the
application by switching the tuning parameters to their optimal values when a tuned
region is encountered. This dynamic tuning approach of READEX allows to exploit
dynamic changes in the application characteristics for energy tuning while static
approaches only optimize the settings for the entire program run.

READEX even goes beyond tuning individual regions. It can distinguish different
instances of regions, e.g., resulting from different call sites in the code. Such an
instance is called runtime situation (rts). Different rts’s can have different optimal
configurations in the ATM.

READEX leverages well established tools, such as Score-P for instrumentation
and monitoring of the application [18]. The READEX Runtime Library (RRL) imple-
ments RAT and is a new plugin for Score-P. The DTA is implemented via new tuning
plugins for the Periscope Tuning Framework [25].

For reading energymeasurements and for modifying core and uncore frequencies,
several interfaces are supported, such as libMSRsafe [17] and LIKWID [33]. Power
measurements are based on the RAPL [6] counters or on special hardware, such

1www.readex.eu.
2We use the abbreviation READEX for the tool suite in the rest of the paper.

www.readex.eu
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as HDEEM [15] on the Taurus machine in Dresden. If the target machine provides
such special hardware, new measurement plugins for Score-P have to be imple-
mented. Moreover, reading energy measurements as well as setting the frequencies
can require root privileges and appropriate extensions to the kernel of the machine.
The availability of these interfaces is currently the major limitation for applying the
READEX tool suite.

This paper focuses on the features of READEX, the steps to be taken by the user in
applying the tools, and motivates why certain aspects are more or less suited for dif-
ferent applications. The paper is neither a user’s guide nor a technical documentation
of the inner workings of the tools comprising the tool suite.

Section2 presents related available tools for energymanagement of HPC systems.
Section3 introduces the major steps in using the READEX tool suite and presents
Pathway [26], a tool for automating tool workflows for HPC systems. Section4
presents DTA as the first step in tuning applications. The reasoning behind the gen-
eration of the ATM at the end of DTA is given in Sect. 5. Section6 introduces a tool
for the visual analysis of the generated ATM. RAT is presented in Sect. 7, and the
visualization of dynamic switching based on the given ATM in Vampir is introduced
in Sect. 8. Extensions to the READEX tool suite are presented in Sect. 9, and results
from several applications on different machines are summarized in Sect. 10. Finally,
the paper draws some conclusions.

2 State-of-the-Art

As energy-efficiency and consumption have now become one of the biggest chal-
lenges in HPC, research in this direction has gained momentum. Currently, there are
many approaches that employ Dynamic Voltage Frequency Scaling (DVFS) in HPC
to tune different objectives. Rojek et al. [28] used DVFS to reduce the energy con-
sumption for stencil computationswhose execution time is predefined. The algorithm
first collects the execution time and energy for a subset of the processor frequencies,
and dynamically models the execution time and the average energy consumption
as functions of the operational frequency. It then adjusts the frequency so that the
predefined execution time is respected.

Imes et al. [16] developedmachine learning classifiers to tune socket resource allo-
cation, HyperThreads andDVFS tominimize energy. The classifiers predict different
system settings using the measurements obtained by polling performance counters
during the application run. This approach cannot be used for dynamic applications
because of the overhead from the classifier in predicting new settings due to rapid
fluctuations in the performance counters. READEX, however, focuses on auto-tuning
dynamic applications.

The ANTAREX project [32] specifies adaptivity strategies, parallelization and
mapping of the application at runtime by using a Domain Specific Language (DSL)
approach. During design-time, control code is added to the application to provide
runtime monitoring strategies. At runtime, the framework performs auto-tuning by
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configuring software knobs for application regions using the runtime information of
the application execution. This approach is specialized for ARM-based multi-cores
and accelerators, while READEX targets all HPC systems.

Intel’s open-source Global Extensible Open Power Manager (GEOPM) [7] run-
time framework provides a plugin based energy management system for power-
constrained systems. GEOPM supports both offline and online analysis by sam-
pling performance counters, identifying the nodes on the critical path, estimating
the power consumption and then adjusting the power budget among these nodes.
GEOPM adjusts individual power caps for the nodes instead of a uniform power
capping by allocating a larger portion of the job power budget to the critical path.

Conductor [24], a runtime system used at the Lawrence Livermore National Lab-
oratory also performs adaptive power balancing for power capped systems. It first
performs a parallel exploration of the configuration space by setting a different thread
concurrency level andDVFSconfiguration on eachMPIprocess, and statically selects
the optimal configuration for each process. It then performs adaptive power balancing
to distribute more power to the critical path.

The AutoTune project [12, 14] developed a DVFS tuning plugin to auto-tune
energy consumption, total cost of ownership, energy delay product and power cap-
ping. The tuning is performed using a model that predicts the energy and power
consumption as well as the execution time at different CPU frequencies. It uses the
enopt library to vary the frequency for different application regions. While this is a
static approach, READEX implements dynamic tuning for rts’s.

READEX goes beyond previous works by tuning the uncore frequency. It also
exploits the dynamism that exists between individual iterations of the main progress
loop.

3 The READEX Methodology

The READEXmethodology is split into two phases: design-time (during application
development) and runtime (during production runs). READEX performs a sequence
of steps to produce tuning advice for an application. The following sections describe
the steps defined in the READEX methodology.

3.1 Application Instrumentation and Analysis Preparation

The first step in READEX is to instrument the HPC application by inserting probe-
functions around different regions that are of interest to tuning. A region can be
any arbitrary part of the code, for instance a function or a loop. READEX is based
on instrumentation with Score-P and requires that the phase region is manually
annotated. The phase region is the body of the main progress loop of the application.
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In addition to the phase region, READEX supports instrumentation of user regions
using Score-P.

The READEX methodology also allows specifying domain knowledge in the
form of additional identifiers for rts’s. This allows to distinguish rts’s of the same
region and assign different optimal configurations. For example, an identifier can
determine the grid level in a multigrid program, and thus different configurations
can be assigned for the relaxation operation executed on the different levels.

3.2 Application Pre-analysis

After instrumenting an application and preparing it for analysis, the second step in
the READEX approach is to perform a pre-analysis. The objective of this step is
to automatically identify and characterize dynamism in the application behaviour.
This is critical because the READEX approach is based on tuning hardware, system
and application parameters, depending on the dynamism exhibited by the different
regions in the application. READEX is capable of identifying and characterizing two
types of application dynamism:

• Inter-phase dynamism: This occurs if different instances of the phase region have
different execution characteristics. This might lead to different optimal configura-
tions.

• Intra-phase dynamism: This occurs rts’s executed during a single phase have dif-
ferent characteristics, e.g., invocations of different subroutines.

The pre-analysis also identifies coarse-granular regions that have enough internal
computation to rectify the overhead for switching configurations. These regions are
called significant regions.

If no dynamism is identified in the pre-analysis, the rest of the READEX steps are
aborted due to the homogeneous behaviour of the application, which will not yield
any energy or performance savings from auto-tuning.

Figure1 presents an example of the summary of significant regions and the
dynamism identified by READEX in the miniMD application.

3.3 Derivation of Tuning Model

Following the identification of exploitable dynamism in the pre-analysis step, the
third step explores the space of possible tuning configurations, and identifies the
optimal configurations of the tuning parameters for the phases and rts’s during the
application execution. This analysis is performed by PTF (Periscope Tuning Frame-
work) in conjunction with Score-P and the RRL (READEX Runtime Library). PTF
performs DTA experiments through a number of possible search strategies, such as
exhaustive, individual, and heuristic search based on generic algorithm to identify
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Fig. 1 Summary of the application pre-analysis forminiMD. Significant intra-phase dynamism due
to variation in the compute intensity was found for compute_halfneigh() and build(). In
addition, inter-phase dynamism was observed for the phase region due to variation in the execution
time

the optimal configurations for the rts’s of the significant regions identified in the pre-
analysis step. To achieve this, Score-P provides the instrumentation and profiling
platform, while the RRL provides the platform for libraries to tune hardware and
system parameters. Additionally, READEX also has dedicated libraries that tune
application-specific parameters.

It is important to note that the additional identifiers, which can be specified during
the instrumentation step provide additional domain knowledge to distinguish and
identify different optimal configurations for runtime scenarios [5].

After all experiments are completed and optimal configurations are identified, the
rts’s are grouped into a limited number of scenarios, e.g., up to 20. Each scenario
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is associated with a common system configuration, and it is hence composed of
rts’s with identical or similar best configurations. The limitation in the number of
scenarios inhibits a too frequent configuration switching at runtime that may result
in higher overheads from auto-tuning. The set of scenarios, information about the
rts’s associated with the scenarios, and the optimal configurations for each scenario
are stored by PTF in the form of a serialized text file called the Application Tuning
Model (ATM), which is loaded and exploited during production runs at runtime.

3.4 Runtime Application Tuning

Following the completion of DTA, production runs of the application can now be
tuned at runtime using the optimal configurations summarized in the ATM using the
RRL.TheRRLmonitors the application executionusing theScore-P instrumentation,
identifies the scenario that is encountered at runtime, and applies the corresponding
optimal configurations for each scenario using the knowledge in theATM to optimize
the application’s energy consumption. The RRL uses libraries that are loaded as
plugins for setting different configurations of the tuning parameters.

3.5 Pathway for READEX Workflow

Since the READEX methodology has quite a number of steps, it uses Pathway
to automate the entire workflow. Pathway [26] is a tool for designing and execut-
ing performance engineering workflows for HPC applications. Pathway provides an
out-of-the box workflow template that can be configured to apply READEX on an
application in an HPC system of choice. This way, Pathway can keep track of each
step that must be completed in order to obtain the tuning results. Figure2 presents an
example of a custom browser in Pathway that summarizes the results from each step
of applying READEX on the miniMD application. The left pane shows the tuned
applications. The top pane shows a list of experiments performed with the READEX
workflow. The middle pane shows the results from the pre-analysis step, describ-
ing the dynamism detected in the application. The bottom pane displays the ATM
containing the tuning results.

4 Design-Time Analysis

The output of the pre-analysis step [21] is stored in a configuration file in the xml
format. The configuration file consists of tags through which the user can provide
specifications for:
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Fig. 2 READEX Results Browser in Pathway

Tuning parameters: Specified via the ranges (minimum, maximum, step size, and
default) for the CPU frequency, uncore frequency, and the number of OpenMP
threads.

Objectives: These can be the energy, execution time, CPU energy, Energy Delay
Product (EDP), Energy Delay Product Squared, CPU energy, Total Cost of Own-
ership (TCO), as well as their normalized versions. The normalized versions
compute the energy consumption per instruction, and can be used for applica-
tions with varying amounts of computation in a phase but no change in the phase
characteristics.

Energy metrics: These include the energy plugin name and the associated metric
names.

Search algorithm: This can be the exhaustive, random, or individual search strat-
egy.

DTA is performed by the Periscope Tuning Framework (PTF), which is a dis-
tributed framework consisting of the frontend, the tuning plugins, the experiment
execution engine and a hierarchy of analysis agents. During DTA, PTF reads the con-
figuration file, and calls a tuning plugin [12], which searches the multi-dimensional
space of system configurations, each of which is a tuning parameter. The tuning
plugin performs one or more tuning steps, in which a user-specified search algo-
rithm determines the set of system configurations that are evaluated. Each tuning
step executes experiments to measure the effect of the system configuration on the
objective. At the end of each tuning step, the plugin checks if the application should
be restarted. After all the tuning steps are completed, the plugin generates tuning
advice for the application.

Two new plugins, readex_intraphase and the readex_interphase
were developed for PTF to exploit the dynamism detected by READEX. If the pre-
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analysis stage reports inter-phase dynamism for the application, the user is advised
to select the readex_interphase tuning plugin. Both plugins performDynamic
Voltage and Frequency Scaling (DVFS). However, they use different approaches for
DTA, and hence, it is recommended to apply the readex_intraphase tuning
plugin if there is no inter-phase dynamism. Sections4.1 and 4.2 describe in details
the steps performed by the readex_intraphase and readex_interphase
plugins to exploit the application dynamism.

4.1 Intra-Phase Plugin

PTF performs intra-phase dynamism tuning by executing the readex_intraphase
plugin when there are no changes in the dynamic characteristics across the sequence
of phases.

The readex_intraphase plugin executes multiple tuning steps. First, the
plugin executes the application for the default parameter settings. Next, it deter-
mines optimal configurations of the system level tuning parameters for different
rts’s. Finally, the plugin checks the variations in the results of the previous step
and computes the energy savings. The readex_intraphase plugin performs an
additional tuning step if application-level tuning parameters are specified for tuning,
as described in Sect. 9.1.

4.1.1 Default Execution

During this step, PTF executes the plugin with the default configuration of the tuning
parameters to collect the program’s static information after starting the application.
The default settings are provided by the batch system for the system parameters.
PTF uses a specific analysis strategy to gather program regions and rts’s only for
the first phase of the application. The measurement results are required to evaluate
the objective value, for example, time and energy, and are used later to compare the
results in the verification step.

4.1.2 System Parameter Tuning

The system-level parameter tuning step investigates the optimal configuration for
system-level tuning parameters. The plugin uses a user-defined search strategy to gen-
erate experiments. The search strategy is read from the configuration file. READEX
comes with different search strategies: Exhaustive search generates a tuning space
with the cross-product of the tuning parameters, and leads to the biggest number of
configurations that are tested in subsequent program phases. The individual strategy
reduces the number significantly by finding the optimum setting for the first tuning
parameter, and then for the second, and so on. With the random strategy, the number
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of experiments can be specified. If no strategy is specified, the default individual
search algorithm is selected. The experiments are created for the ranges of the tuning
parameters as defined in the configuration file. The plugin evaluates the objective for
the phase region as well as the rts’s. The best system configuration is determined as
the one optimizing the given objective. This knowledge is encapsulated in the ATM.

4.1.3 Verification

The verification step is performed by executing three additional experiments in order
to check for variations in the results produced in the previous step. For this purpose,
PTF configures RRL with the best system configuration for the phase region and the
rts-specific best configuration for the rts’s. The RRL switches the system configura-
tions dynamically for the rts’s.

The plugin then determines the static and dynamic savings for the rts’s and static
savings for the whole phase before generating the ATM. The following three values
characterize the savings at the end of the execution:

1. Static savings for the rts’s: The total improvement in the objective value with the
static best configuration of the rts’s over the default configuration.

2. Dynamic savings for the rts’s: The total improvement in the objective value for
the rts’s with their specific best configuration over the static best configuration.

3. Static savings for the whole phase: The total improvement in the objective value
for the best static configuration of the phase over the default configuration.

4.2 Inter-Phase Plugin

The readex_interphase plugin [20] is used for tuning applications that exhibit
inter-phase dynamism, where the execution characteristics change across the
sequence of phases. While the readex_intraphase plugin does not consider
changes in the behavior of different phases, the readex_interphase tuning plu-
gin first groups similarly behaving phases into clusters, and then determines the best
configuration for each cluster. It also determines the best configurations for the rts’s
of each created cluster.

Thereadex_interphase plugin performs three tuning steps: cluster analysis,
default execution and verification to first cluster the phases, then execute experiments
for the default setting of the tuning parameters, and finally, verify if the theoretical
savings match the actual savings incurred after switching the configurations. Sec-
tions4.2.1–4.2.3 describe the tuning steps in detail.
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4.2.1 Cluster Analysis

The plugin first reads the significant regions, the ranges of the tuning parameters and
the objectives from the READEX configuration file. It then uses the random strategy
to create a user-specified number of experiments. In each experiment, the plugin
measures the effect of executing a phase with a random system configuration from a
uniform distribution [12] on the objective value. The plugin also requests for PAPI
hardware metrics, such as the number of AVX instructions, L3 cache misses, and the
number of conditional branch instructions, which are used to derive the features for
clustering.

Features for clustering are selected carefully, as they have a high impact in select-
ing the cluster-best configuration. Since the dynamism in many applications results
from the variation in the compute intensity and the number of conditional branch
instructions, they were chosen as the features for clustering. The compute intensity
is defined by #AV X Instructions

#L3 Cache Misses [20]. The plugin first normalizes the features and the
objective values for all the phases and the rts’s by a metric which is representative
of the work done, such as the number of AVX instructions. It then transforms the
numeric range of the features to [0,1] scale using min-max normalization.

The plugin then uses the DBSCAN (Density-Based Spatial Clustering of Applica-
tions with Noise) algorithm [9] to group points that are closely packed together into
clusters, and mark points that lie in low-density regions and have no nearby neigh-
bors as noise. DBSCAN requires the minPts and the eps parameters to cluster the
phases.minPts is the minimum number of points that must lie within a neighborhood
to belong in a cluster, and is set to 4 [29]. eps is the maximum distance between any
two data points in the same neighborhood, and is automatically determined using
the elbow method [11]. The elbow is a sharp change in the average 3-NN Euclidean
distances plot, and represents the point with themaximum distance to the line formed
by the points with the minimum and maximum average 3-NN distances.

The plugin then selects the best configuration for each cluster based on the normal-
ized objective value. The cluster-best configuration represents one best configuration
for all the phases of a particular cluster, and individual best configurations for the
rts’s in the cluster.

4.2.2 Default Execution

The tuning plugin restarts the application and performs the same number of experi-
ments as the previous step. In each experiment, the phase is executed with the default
system configuration, i.e., the default settings provided by the batch system for the
system tuning parameters. The plugin uses the objective values obtained for the
phases and the rts’s to compute the savings at the end of the tuning plugin.
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4.2.3 Verification

The plugin restarts the application and executes the same number of experiments as
the previous tuning steps. In each experiment, the plugin executes the phase with
the corresponding cluster-best configuration and the rts’s with their individual-best
configurations. Phases that were considered noise in the clustering step are executed
with the default configuration.

After executing all the experiments, the pluginmodifies theCallingContextGraph
(CCG)3 by creating a new node for each cluster, and then clones the children of the
phase region. It stores the tuning results and the ranges of the features for the cluster
in each newly created node.

Like the readex_intraphase plugin, the readex_interphase plugin
computes the savings as described inSect. 4.1.3.However, thereadex_interphase
plugin aggregates the improvements across all the clusters.

5 Tuning Model Generation

At the end of the DTA, the Application Tuning Model (ATM) is generated based on
the best system configuration computed via the tuning plugins. A best configuration
is found for each rts. One option at runtime is to switch the configuration each time a
new rts is encountered. However, this would result in very frequent switching, with
a corresponding switching overhead (time and energy). To avoid this, READEX
merges rts’s into scenarios, and assigns a common configuration for all rts’s in that
scenario. The obvious solution is to merge rts’s with identical best found config-
urations into scenarios. Since the set of possible configurations is very large, this
can still result in too frequent switching. Hence, READEX merges rts’s with similar
configurations into scenarios and uses one common configuration for all rts’s in a
scenario.

The resulting ATM consists of the complete set of rts’s, each determined by their
identifier values and each with a link to the corresponding scenario. In addition, the
ATM contains a list of the scenarios, each with a corresponding configuration. The
ATM is given as a readable JSON text file. By avoiding to include the complete
configuration for each rts, the ATM size is reduced.

To cluster rts’s that should be merged into a scenario, a three step process is used:
dendogram generation, cluster generation, and scenario creation. The dendogram
is a tree expressing the (dis-)similarity of rts’s based on their configurations. The
tree’s leaves represent the rts’s, whereas all intermediate nodes represent the clusters
of these rts’s. Lance-Williams algorithm [19] recursively computes the inter-cluster
distance, which is used as ametric to alwaysmerge the closest clusters. The algorithm
continues until all clusters are merged into a single cluster.

3A context sensitive version of the call graph.
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The second step makes a cut through the tree in such a way that it minimizes the
dispersion of configurations within a cluster, while at the same time maximizing the
dispersion between clusters. Using the Calinski-Harabasz Index [4], these values
can be combined in such a way that an optimal number of clusters can be found. This
can again be used to compute the point where the tree is cut to create clusters. Each
cluster represents a scenario.

The final step selects a configuration for each scenario, based on the configura-
tions of the rts’s belonging to each of them. Currently, this can be done either by
picking one of the configurations at random, or by computing the average for each
configuration parameter. Picking the random configuration is the current default,
since the configurations are in any case close.

6 Tuning Model Visualization

The effect of the best configuration of different tuning parameters can be inspected by
comparing different scenarios in the tuningmodel by indicating that similar scenarios
appear in closer proximity, while dissimilar scenarios are apart.

The forced layout graph is used to visualize the tuning model. The graph is
constructed based on the JavaScript library D3.js [2]. It compares scenarios in the
tuning model with respect to their similarity and weight. In this context, similarity
represents the distance of scenarios in amulti-dimensional tuning space, andweight is
the aggregated execution time of the rts’s of a scenario relative to the phase execution
time.While similarity is represented by the thickness of the edges between scenarios,
the weight is visualized as the size of the circle representing a scenario. The distance
between scenarios is the result of all forces. The network adapts according to the
forces dynamically.

Figure3 shows the tuning model of the LULESH proxy application from the
CORAL benchmark suite [34]. The nodes in the figure represent scenarios in the
tuning model. Each node is a cluster of rts’s belonging to it. There are six scenarios
in LULESH’s tuningmodel where Scenario 1 covers most of the execution time.
In contrast, Scenario 2 and Scenario 4 are the least significant nodes due to

Fig. 3 The expanded forced
layout of the tuning model of
LULESH upon clicking on a
scenario node
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their lowest weights. As the figure shows, Scenario 1 and Scenario 2 are
the most similar scenarios, and the higher thickness of the edge and lowest distance
between them affirms that. On the opposite side, Scenario 3 and Scenario 6
are the most distant, and hence dissimilar scenarios.

To investigate each scenario, the user can click on a scenario node of the graph.
Upon clicking on a node, the node expands with all the rts nodes of that scenario. A
pop over box appears upon hovering on the node which shows the scenario informa-
tion including rts’swith their weights and the configurations of the tuning parameters.
In this figure, Scenario 1 contains two rts’s: RTS 1 and RTS 2 each represent-
ing 18.35% and 17.31% weight of the phase respectively.

7 Runtime Application Tuning

The Runtime Application Tuning (RAT) phase of READEX is carried out by the
low-overhead READEX Runtime Library (RRL). The RRL is implemented as a
Score-P Substrate Plugin. The plugin interface allows to utilize the instrumentation
infrastructure of Score-P, without direct integration into Score-P [30]. This approach
reduces maintenance and integration efforts by keeping the RRL as a separate entity.
As a substrate plugin, theRRL receives notifications for different instrumented events
that occur during runtime. It uses this information to make switching decisions based
on the application tuning model created at design-time.

The RRL implements three main mechanisms in order to apply the dynamic
configuration switching at runtime: scenario detection, configuration switching, and
calibration. The following sections detail the first two mechanisms, while Sect. 9.4
describes the calibration mechanism, which is an extension to the standard version
that only relies on the previously written ATM.

7.1 Scenario Detection

Runtime detection of the upcoming scenario involves several steps. First, the ATM
is loaded during the application start. Here, the RRL reads the set of configurations,
in the form of scenarios, classifiers, and selectors. When an application region is
entered during the execution, the RRL receives a notification of a region enter event
from Score-P, and performs a check to detect if the encountered region is significant
by searching for the region in the ATM. If the region is found, it is marked as a
significant region. Otherwise, it is marked as an unknown region.

Another check is performed to determine if the regionmust be tuned by computing
the granularity of the region. The region will be tuned only if the granularity is above
a specified threshold, which defaults to 100ms. Once the region is determined to be
both significant and coarse-granular enough, additional identifiers that are used to
identify the current rts are requested. The current rts can then be identified by both
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the call stack and the additional identifiers. Finally, a new configuration is applied for
the current rts to perform the configuration switching. For a coarse-granular region
that is marked as unknown, the calibration mechanism is invoked.

7.2 Configuration Switching

The scenario detection step applies a new configuration to the current region only if
the region entered is found to be significant and coarse-granular. The setting for each
tuning parameter is controlled by a dedicated Parameter Control Plugin (PCP). The
RRL switches a configuration by sending a request to the PCPs.

The RRL supports two different modes for configuration switching: reset and no-
reset. The resetmodemaintains a configuration stack.Whenever a new configuration
is set, the previous configuration is pushed onto this stack. When the corresponding
unset occurs (e.g., if an instrumented region is left), the element is removed from the
stack and the previous configuration is re-applied. If the no-reset mode is selected,
the current configuration remains active until a new configuration is set, and the unset
is ignored. This behaviour is configurable by the user. By default, the reset mode is
enabled.

7.3 Calibrating Unseen Runtime Situations

READEXmakes a distinction between seen and unseen rts’s. For known or seen rts’s
that are already present in the ATM, RRL simply uses the optimal configuration and
performs configuration switching. For unseen rts’s, theRRLcalibrationmechanism is
used to find the optimal system configuration based on machine learning algorithms.
This mechanism is described in Sect. 9.4,

8 Dynamic Switching Visualization

During DTA, PTF runs experiments with different configurations to find the optimal
configuration for each rts in the application, which are then stored in the tuning
model. During RAT, the RRL applies the optimal configuration from the tuning
model for each rts during the application run.Hence, both stages require configuration
switching during the application run.

To enable the user to visualize the configuration switching for each region during
DTA and during a production run, a switching visualizationmodule is included in the
RRL. The visualization module is implemented as a Score-P metric plugin, which
uses the Metric Plugin Interface provided in Score-P [30]. The user can select any of
the hardware, software and application tuning parameters to visualize the switching
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Fig. 4 CPU_FREQUENCY and UNCORE_FREQUENCY switchings during Blasbench runtime
tuning

pattern. The tuning parameter selection is configurable, and the user can specify if all
the tuning parameters or a subset has to be recorded. Each of the tuning parameters
is then added as a metric and recorded in a trace in the OTF2 format [8] by Score-P.
The trace can be visualized in Vampir [3].

Figure4 illustrates the switching of the CPU frequency and uncore frequency
tuning parameters performed by RRL while tuning the Blasbench benchmark. The
top timeline shows the call stack of the application regions. Below that, we see
the CPU frequency changing from 2.5GHz to 1.3GHz. Finally, the bottom pane
shows the switching of the uncore frequency according to the optimal settings of the
different regions.

9 Extensions

READEX provides additional means for tuning the energy-efficiency of applications
by extending the presented concepts. These cover the tuning of application-level
parameters that may be used to select different algorithms and change the control
flow, and provide a significant extension of the tuning parameter space. Application-
level tuning parameters can either be declared in the program code or be tuned by
passing them to the program via the input files, as described in Sects. 9.1 and 9.2.
READEX also supports the construction of a generic tuning model from individual
tuning models generated for program runs with different inputs, and is described in
Sect. 9.3. Section9.4 presents the runtime calibration extension that covers tuning
for rts’s that were not seen during design-time.



Saving Energy Using the READEX Methodology 43

9.1 Application Tuning Parameters

Applications running on a cluster are aimed to solve numerical problems. Usually,
the solutions can be computed with different methods, such as numerical integration
(Simpson, Gaussian Quadrature, Newton-Cotes, ...), function minimization (Gradi-
ent Descent, Conjugate Gradient Descent, Newton, ...), or finding the eigenvalues
and eigenvectors of real matrices (power method, inverse power method, Arnoldi,
...). These methods may have different implementations, like the Fast Fourier Trans-
form (algorithms from Cooley-Tukey, Bruun, Rader, Bluestein) implemented in the
FFTW, FFTS, FFTPACK or MKL.

For a given problem, several methods can provide similar numerical solutions
through different implementations. In HPC, the developer chooses the most efficient
one in terms of numerical accuracy and time to solution. However, the selection
also depends on the computer’s architecture. For example, some methods can be
more efficient on a vector processor than on a superscalar processor. It is up to the
application’s developer to choose the appropriate method and its implementation that
fulfill the computer’s specificity.

In the context of energy saving, the energy consumption must also be minimized.
This makes it hard for the developer to choose which method and implementation
must be executed. READEX offers the developer to expose the various methods and
their implementation via Application Tuning Parameters (ATP) to the tuning process.
ATPs are communicated to READEX through an API that is used to annotate the
source code at locations where the tuning parameters play a role.

Figure5 illustrates the steps performed to tune the ATPs. First, ATPs are declared
in the code through annotations. The application is then linked against theATP library,
which implements the API. During DTA, the ATP description file is generated by
the ATP library. This file includes the tuning parameters with their specifications,

Fig. 5 Workflow showing
the handling of the ATPs in
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and is used to define the search space. The readex_intraphase tuning plugin
extends the search space with the ATPs, and finds the best settings. Finally, the best
configurations are stored in the ATM and passed to RAT.

To annotate the code, the application developer exposes control variables and
mark them as ATPs with the API functions as illustrated in Listing 1. The function
ATP_PARAM_DECLARE declares the parameter’s name, type, default value and
domain. The functionATP_PARAM_ADD_VALUES allows to addpossible values the
parameter can take, in a range specified by minimal, maximal and increment values
or by enumerating explicitly the possible values. The function ATP_PARAM_GET
fetc.hes the value given in the ATM from the RRL and assigns it to the control
variable.

Several ATPs can be defined in the same code. They may be independent or not.
In the latter case, there is a notion of constraints between the parameters. To indicate
to READEX that parameters have constraints between them, these parameters are
put in the same domain name.

Once the source code is annotated and the compiled code is executed, the ATP
library generates a description file in which the ATPs are written. This file contains
the details about the declared application parameters.

DuringDTA, PTF launches the ATP server that reads the ATP description file. The
ATP server’s task is to respond to PTF requests, such as providing the list of ATPs
or a list of valid values of the ATPs. The readex_intraphase tuning plugin
uses the list of valid values to generate a search space of the tuning parameters (not
only the ATPs) and explore it. The resulting tuning model also consists of the best
combination of the ATPs.

The readex_intraphase plugin provides two new search strategies,
exhaustive_atp and individual_atp to compute the optimal ATP con-
figuration. These two search strategies can also be configured via the READEX
configuration file.

Listing 2.1 ATP constraint and exploration declaration with the ATP library.
void foo(){
int atp_cv;
...
ATP_PARAM_DECLARE("solver", RANGE, 1, "DOM1");
int32_t solver_values\cite{ch2BHJR:10:VampirOverview} = {1,5,1};
ATP_ADD_VALUES("solver", solver_values, 3, "DOM1");
ATP_PARAM_GET("solver", &atp_cv, "DOM1");

switch (atp_cv){
case 1:
// choose solver 1
break;

case 2:
// choose solver 2
break;
...

}
int32_t hint_array = {GENETIC, RANDOM};
ATP_EXPLORATION_DECLARE(hint_array, "DOM1");

}

void bar(){
int atp_ms;
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...
ATP_PARAM_DECLARE("mesh", RANGE, 40, "DOM1");
int32_t mesh_values\cite{ch2BHJR:10:VampirOverview} = {0,80,10};
ATP_ADD_VALUES("mesh", mesh_values, 3, "DOM1");
ATP_PARAM_GET("mesh", &atp_ms, "DOM1");
ATP_CONSTRAINT_DECLARE("const1", "(solver = 1 && 0 <= mesh <= 40) ||

(solver = 2 && 40 <= mesh <= 80) || (solver > 2 && mesh = 120)",
"DOM1");

if((atp_ms > 1) && (atp_ms <= 40)){
// choose mesh size 1

}
if((atp_ms > 40) && (atp_ms <= 80)){
// choose mesh size 2

}
if(atp_ms == 120){
// choose mesh size 3

}
}

The exhaustive_atp search space is built from the cross-product of all valid
combinations of ATPs. The plugin contacts the ATP server to receive the valid com-
binations of the points for each of the given ATP domains. The configuration set is
then built from the cross-product of the computed valid points.

On the other hand, the individual_atp strategy tunes the domains individ-
ually. It first evaluates all valid points for the first domain. The best point from this
domain remains fixed and the next domain is investigated until all the domains are
explored.

The tuning of ATPs is done before the tuning of the frequencies and the threads
since it determines the algorithm to be used during execution. This algorithm is then
tuned in subsequent tuning steps of the readex_intraphase tuning plugin with
respect to the system and runtime parameters.

The best configuration of the ATPs is finally passed to RAT through the ATM as
any other tuning parameter. At runtime, the optimal value is read through the ATP
library in combination with the RRL and is assigned to the control variable.

9.2 Application Configuration Parameters

Application-level tuning parameters are frequently part of the application input, and
are given in the input files configuring the program run. To tune those Application
Configuration Parameters (ACP), READEX provides an additional tuning plugin.

The readex_configuration tuning plugin enables tuning of ACPs with
respect to one of the objectives supported by READEX. The plugin first reads a
plugin specific configuration file. This specifies the objective, the search algorithms,
and the tuning parameters. ACPs are identified by their name in the input file. For
each such input file, a template file with the name is given. During the search for the
optimal configuration of the ACPs, the plugin copies the template file to the input
file and replaces all ACP names with the value given in the selected configuration. It
then restarts the application and measures the resulting objective value for the phase
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region. Typically, only a single phase is required to measure the resulting objective
value, but a burst of phases can also be used in a single experiment.

The final outcome of this tuning plugin is an optimal configuration for the ACPs
that is output into a file. Furthermore, final input files are created from the template
files by replacing ACPs by their value in the best configuration.

9.3 Input Identifiers

DTA exploits the variations in the applications for different input sets to improve the
tuning model by identifying more rts’s with different characteristics. Different appli-
cation characteristics induced by the application inputs can be passed to READEX
via input identifiers in the form of key-value pairs in a separate file. For example,
in the MG benchmark [1], the maximum grid resolution may change the compute
intensity on the different grid levels. The change frommemory to compute bound on
coarser grids might happen later if the resolution of the finest gird is higher. To be
more precise, the combination of the finest resolution and the number of processes
onto which the grids are distributed influences the computational characteristics. As
the number of processes increases, data distributes better over the caches, resulting
in switching between memory bound and compute bound. Hence, the number of
processes may also be considered as an input identifier.

Each input identifier is attached to a specific ATM while generating the tuning
model at the end of the readex_intraphase plugin. In order for all of the
tuning information from the different ATMs to be usable by the RRL, these tuning
modelsmust bemerged into a single tuningmodel. This is performed by the tuning
model merger.

The tuning model merger is a standalone program that takes all the ATMs
as input on its command line and outputs a new ATM incorporating all the rts’s from
the input ATMs. The program does this by first deserializing all ATMs. It extracts all
tuning information from the ATMs, such as rts’s and their system configurations as
well as the corresponding input identifiers. The scenarios from the individual ATMs
are discarded. Next, the tuning model merger filters all rts’s in order to avoid
duplicated rts’s in the final tuning model. The next step is to produce a new set of
scenarios by clustering all rts’s as described in Sect. 5. Finally, the tuning model
merger serializes the merged tuning model information and outputs the new ATM
in the JSON format.

9.4 Runtime Calibration

As described in Sect. 3.4, RAT distinguishes known, also called seen, and unknown,
also called unseen, rts’s. Known rts’s have been encountered during DTA. Based on
the used plugin and optimization criteria, optimal configurations for these are saved
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Fig. 6 Heatmap of the energy consumption of a specific region for different core and uncore
frequencies as explored by a Q-Learning algorithm applied at runtime. The algorithm starts at {1.9,
2.2}GHz and finds a more suitable setting {2.3, 2.2}GHz

in the ATM. Unknown rts’s, however, describe rts which have not been encountered
duringDTA. There are several reasonswhy unseen rts’smight occur. The region itself
might be known, but some parameters (e.g., application inputs) changed between
DTA and runtime. Alternatively, an unseen rts could consist of entirely new regions,
which were not seen during DTA. The goal of the runtime calibration is to handle
these unknown rts’s during RAT.

Since runtime calibration is done during production runs, there are two restric-
tions for the algorithm7: First, there can be no user input and second, a suitable
configuration has to be found in a short time. Based on these, we implemented a
Q-Learning based mechanism, which we introduced in [13]. For any unknown rts,
the algorithm starts at a given core and uncore frequency. With a probability of ε,
the algorithm selects a different configuration from the next direct neighbors. To
validate the outcome of the possible optimization, it measures the energy for all
configurations. Based on the result of the measurement, it calculates the so-called
Q-Value. Afterwards, the algorithm chooses the next optimal status according to the
Q-Value and starts from the beginning. Figure6 shows how the mechanism searches
for an energy-efficient optimum. It starts an initial setting, with a core frequency of
1.9GHz and an uncore frequency of 2.2GHzWhen the application terminates, a core
frequency of 2.3GHz and uncore frequency of 2.2GHz is reached.
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10 Results

To demonstrate that READEX is capable of supporting different architectures and
software stacks, we tested it on the Intel Haswell and Intel Broadwell processors both
at TU Dresden’s Top500 cluster Taurus.4 Taurus’ Haswell (two Xeon E5-2680 v3
sockets on a single node, with 12 cores each) partition was selected especially due to
the reliable power measurement infrastructure called HDEEM [15] that was used for
energymeasurement in this project. For energymeasurements on the Broadwell (two
Xeon E5-2680 v4 sockets, with 14 cores each) partition, we used the Intel RAPL
counters with 75W baseline5 to estimate the energy consumption of not only the
CPUs but the whole node similar to HDEEM.

The following text presents the energy savings that were achieved when using
the READEX methodology on READEX test applications, as well as full-fledged
applications. The READEX test applications consist of three basic benchmarks:
Kripke, Lulesh and Blasbench. BEM4I and ESPRESO are full-fledged applications,
whose results are presented in more detail in this section.

BEM4I [23] is a solver for Partial Differential Equations (PDEs) based on the
Boundary Element Method (BEM), and is under development at IT4Innovations.
Contrary to finite element solvers, BEM4I produces dense matrices, and due to the
nature of boundary integral equations, the assembly of system matrices is more or
less compute bound. In contrast, the iterative solver used for the solution of the
resulting system of linear equations is usually memory bound due to matrix vector
multiplications.

The ESPRESO library [27] is a combination of Finite Element (FEM) and BEM
tools and domain decomposition solvers. It supports FEM and BEM (uses BEM4I
library) discretization for Advection-diffusion equation, Stokes flow and structural
mechanics. The ESPRESO solver is a parallel linear solver, which includes a highly
efficient MPI communication layer for inter-node communication, and OpenMP for
intra-node communication.

Table1 shows how the runtime and energy consumption changed, whenREADEX
was used to tune the selected applications. Achieved energy savings vary between
4.3 and 34%. The BEM4I library showed the best energy savings from the evaluated
applications, and in case of the evaluation on the Haswell nodes, the tuned runs were
also shorter than the runs without tuning.

10.1 Exploitation of Application Dynamism

Since BEM4I resulted in the best energy savings, this section describes in detail how
READEX was used to exploit the application dynamism.

4https://doc.zih.tu-dresden.de/hpc-wiki/bin/view/Compendium/SystemTaurus.
5The baseline for the Broadwell partition ha7s been established based on low frequency measure-
ments from IPMI.

https://doc.zih.tu-dresden.de/hpc-wiki/bin/view/Compendium/SystemTaurus
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Table 1 Overall energy and time savings achieved using the READEX methodology on the appli-
cations for the Broadwell and Haswell platforms

Broadwell
energy/time (%)

Haswell
energy/time (%)

IT4I HSW
energy/time (%)

AMG2013 7.5/−10.5 7.0/−14.0 3.4/−23.2

Blasbench 12.0/−9.0 9.9/−9.2 10.9/−19.8

Kripke 4.3/−10.3 10.5/−28.9 10.3/−22.2

Lulesh 10.0/−9.2 18.2/−25.7 7.3/−20.6

BEM4I 23.0/−1.1 34.0/10.9 24.3/8.2

INDEED 14.0/−18.0 19.1/−17.3 –

NPB3.3-BT-MZ 8.9/−11.3 10.8/−12.0 3.1/−2.8

ESPRESO – 7.1/−12.3 8.1/−7.0

OpenFOAM 7.5/−7.6 9.8/−9.8 18.4/−7.5

PDEs are often used to describe phenomena such as sheet metal forming, fluid
flow, and climate modeling. One of the numerical approaches to solving PDEs is
BEM implemented in the BEM4I library. In contrast to volume based methods, such
as the finite element/differences/volume methods, BEM gives dense matrices whose
assembly results in a compute bound code. This fact is even more pronounced when
the assembly kernels are parallelized and vectorized as in the case of BEM4I [22,
35]. In contrast, the iterative GMRES solver based on the matrix-vector product as
implemented in the IntelMath Kernel Library (MKL) is much less compute intensive
and results in memory bound computation. Furthermore, printing the results for
visualization leads to an I/O bound region.

For the memory bound solver (GMRES), manual tuning resulted in a low core
frequency, high uncore frequency and the use of eight threads to overcome Non-
Uniform Memory Access (NUMA) effects of the dual socket computational node.

The energy and time consumptions of each region in the application in optimum
static and optimum dynamic configuration are presented in Table2. Dynamic tuning
represents the case when during the application runtime at the beginning and end
of each instrumented region, its optimal configuration is set. While static savings
reached 15.7%, the dynamic switching among individual configurations increased
the savings to 34.0% on the Haswell nodes. Decrease in the run time in this case was
caused byNUMAeffects of theMKLsolver—the tuned version runs on eight threads,
and due to the compact affinity, all threads run on a single socket. It can also be seen
that the optimum static configuration has a very bad impact on the assemble_k
and assemble_v regions, and also results in a sub-optimal behavior of the region
print_vtu.
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Table 2 Comparison of the energy and time consumption for the default, optimal static, and
dynamic configurations of BEM4I

Assemble_k
(J)/(s)

Assemble_v
(J)/(s)

gmres_solve
(J)/(s)

print_vtu
(J)/(s)

Main (J)/(s)

Default
setings

1467/5.4 1484/ 5.9 2733/10.2 1142/5.6 6872/27.3

Static tuning 1962/9.8 2015/10.6 1366/6.1 420/2.4 5792/29.0

Dynamic
tuning

1476/7.0 1462/7.2 1259/7.9 293/2.1 4531/24.3

Static savings
(%)

−33.8/−82.3 −35.8/−79.1 50.0/40.5 63.2/56.8 15.7/−6.2

Dynamic
savings (%)

−0.6/−30.6 1.5/−20.9 53.9/23.2 74.3/62.9 34.0/10.9

10.2 Application Parameters Tuning

As mentioned in Sect. 9, READEX comes with two approaches to tune applica-
tion parameters: (1) using the ATP library, and (2) using Application Configuration
Parameters (ACP). The integration of the ATP library requires developer knowledge
of the application and therefore, we implemented this support into the ESPRESO
library, which was developed by IT4Innovations in the READEX project.

A long list ofATPswere evaluated: runtime tuning of FETIMETHOD (2 options),
PRECONDITIONERS (5 options), ITERATIVE SOLVERS (2 options), HFETI
type (2 options), SCALING (2 options), BO_TYPE (2 options), NON-UNIFORM
PARTS (6 options), REDUNDANT LAGRANGE (2 options) and adaptive preci-
sion (2 options). For runtime tuning of domain decomposition (10 options), the
developer had to implement the support for this parameter, since ESPRESO per-
forms domain decomposition only during startup. For READEX, we developed an
enhanced ESPRESO to redo the decomposition after each time-step of a transient
simulation. The resulting total number of possible combinations was 3840.

Besides the ESPRESO library, we analyzed three other applications using the
ATPs or ACPs. The energy savings are presented in Table3.

Since there is no default configuration in ESPRESO, the user has to define the
FETI solver based on the knowledge of the problem that has to be solved. Hence,
the savings against the default configuration are not presented. Instead, the energy
consumption in the best and the worst case are compared. The worst case scenario
took 1320s and consumed about 230 kJ, while the best case scenario consumed
32.5 kJ in 189s. Comparing these two cases gives us 86% energy savings. If the user
specifies some reasonable settings, the energy consumption might be about 50–66%
higher than with the best possible settings.
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Table 3 Energy savings achieved for the optimal settings over the worst and the default settings
after evaluating the applications with READEX ATPs/ACPs. *In cases where the default settings
were not available, the values refer to any reasonable settings

Application # parameters
tested/total # of
options (%)

Energy savings verses
worst settings (%)

Energy savings verses
default* settings (%)

ESPRESO 9/3840 86 50–66

ELMER 1/40 97 50–75

OpenFOAM 2/12 24 8

INDEED 3/12 35 25

11 Conclusions

The READEX project developed a tool suite for dynamic tuning of the energy-
efficiency of HPC applications. During design-time, it pre-computes a tuning model
that is then used during runtime for switching system configurations when certain
regions start. This dynamic approach allows to specifically tune the configuration
for individual runtime situations and thus exploits the variation in the application
characteristics during execution for energy reduction.

READEX is based on established tools, i.e., Score-P for instrumentation, moni-
toring, and runtime tuning actions, and PTF for design-time analysis. In contrast to
other tools, DTA is carried out in a single application run since it evaluates potential
candidate configurations in single phases. As part of READEX, a novel plugin inter-
face for Score-P was implemented that allows the addition of new functionality to
the monitor in a transparent way. The RRL is the first demonstrator of this powerful
extension mechanism.

The paper also outlined the results obtained from the tuning system, runtime, and
the application parameters for a wide range of benchmarks, proxy applications and
real applications. The results of dynamic tuning are clearly application dependent
but demonstrate the significant potential of the READEX methodology.

Acknowledgements This work was supported by the European Union’s Horizon 2020 program in
the READEX project (grant agreement number 671657).
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The MPI Tool Interfaces: Past, Present,
and Future—Capabilities and Prospects

Martin Schulz, Marc-André Hermanns, Michael Knobloch, Kathryn Mohror,
Nathan T. Hjelm, Bengisu Elis, Karlo Kraljic, and Dai Yang

Abstract From the beginning, the MPI standard included a profiling interface that
enabled performance tools to intercept MPI calls and record statistics of their use.
This still forms the basis for a rich and portable tool environment, which is invaluable
for users. The MPI forum has since then expanded its efforts in this area by adding
more support for tools, in particular the MPI_T interface, and this has also sparked
similar efforts in other standards, like OpenMP or OpenACC. In this paper we will
highlight the current status of the available interfaces, discuss their gaps and show
how theMPI Tools Working Group in the MPI Forum is working on new approaches
to close these gaps.

1 Introduction

The first version of the Message Passing Interface (MPI) standard was released in
1994 [3]. While the interface has evolved over the years, it remains the de facto
parallel programming standard for distributed-memory architectures in High Perfor-

M. Schulz (B) · B. Elis · K. Kraljic · D. Yang
Fakultät für Informatik, Technische Universität München, Garching, Germany
e-mail: schulzm@in.tum.de

D. Yang
e-mail: d.yang@in.tum.de

M.-A. Hermanns · M. Knobloch
Jülich Supercomputing Centre, Forschungszentrum Jülich GmbH, Jülich, Germany
e-mail: m.a.hermanns@fz-juelich.de

M. Knobloch
e-mail: m.knobloch@fz-juelich.de

K. Mohror
Lawrence Livermore Nat’l Lab, Center for Applied Scientific Computing, Livermore, CA, USA
e-mail: kathryn@llnl.gov

N. T. Hjelm
Los Alamos Nat’l Lab, HPC Division, Los Alamos, NM, USA
e-mail: hjelmn@lanl.gov

© Springer Nature Switzerland AG 2021
H. Mix et al. (eds.), Tools for High Performance Computing 2018 / 2019,
https://doi.org/10.1007/978-3-030-66057-4_3

55

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-66057-4_3&domain=pdf
mailto:schulzm@in.tum.de
mailto:d.yang@in.tum.de
mailto:m.a.hermanns@fz-juelich.de
mailto:m.knobloch@fz-juelich.de
mailto:kathryn@llnl.gov
mailto:hjelmn@lanl.gov
https://doi.org/10.1007/978-3-030-66057-4_3


56 M. Schulz et al.

mance Computing (HPC). Although other metrics have gained importance in the past
decade, high performance has naturally always been the most important focus for
HPC applications. To this end, the designers of MPI have always striven to find the
right balance between portable abstractions and rich building blocks for applications
on one side, while maintaining the ability to extract maximal performance fromHPC
systems using MPI.

While this has led to a wide range of high performance implementations of MPI
libraries, this alone does not guarantee high performing applications. Even with
the availability of such implementations, application developers need to be able to
exploit their features and must be able to understand how design decisions and usage
patterns affect application performance. A rich set of tools that helps in identifying
and assessing performance bottlenecks is indispensable. Further, these tools need to
be able to measure performance details relative to MPI usage, because measuring
performance only at the operating system (OS) level and treating the application as
a black box is insufficient for understanding complex application message passing
behavior.

The original designers of MPI recognized the need for understanding application
usage of theMPI interface and included the profiling interface, PMPI, in the very first
version of the MPI standard. Using PMPI, tools can easily intercept MPI calls and
wrap them with custom code that can implement any needed tool functionality, e.g.,
perform measurements or record traces of messaging calls. PMPI was the optimal
breeding ground for research and development in MPI tools, which led to a plethora
of tools available to application developers today.We now see PMPI tools that imple-
ment a wide range of functionality including performance analysis, debugging and
correctness checking, and even energy savings.

However, while PMPI provides the means to wrap MPI calls to understand and
even alter the behavior of MPI applications, it provides no ability for tools to mea-
sure or alter the behavior of theMPI implementation. With the complexity of today’s
applications and platforms, it is increasingly difficult for application developers to
understand variations in performance across different systems andMPI implementa-
tions. o address this gap, theMPI Tool Information Interface (MPI_T)was introduced
in MPI 3.0. Using MPI_T, a tool can query for internal information about an MPI
implementation in order to measure its performance or to control its behavior. This
new interface has opened up a whole new range of tool capabilities, including being
able to tune MPI behavior at run time for optimal performance.

While the availability of two comprehensive tool interfaces in MPI makes it
uniquely positioned among the parallel programming models, and has even led the
way for other programming models, like OpenMP or OpenACC, some capabilities
remain missing or have opened up due to new requirements in the evolving HPC
ecosystem. The MPI Tools Working Group in the MPI Forum continues to address
these gaps and is currently working on new interfaces to close them. In particu-
lar, the working group is proposing an extension to the MPI_T interface to capture
event information, and is working on a successor to PMPI—code name QMPI—that
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enables a cleaner integration of tools using new software engineering techniques as
well as the stacking of tools. The latter, e.g., enables the transparent inclusion of
center-wide monitoring techniques or runtime specific extensions for tuning without
prohibiting the use of user tools.

In this work we provide a summary of these efforts in the MPI Tools Working
Group of the MPI Forum and discuss open questions. In particular we

• show the impact PMPI had not only on MPI and its users, but also how it was a
role model for other parallel programming models;

• discuss the drawbacks of PMPI and present a next generation profiling interface
able to overcome them;

• motivate the need to access MPI internal information, which led to the addition of
the MPI Tools Information Interface (MPI_T);

• introduce a proposed extension to MPI_T covering event based data;
• touch upon available debugging interfaces, their status and future; and
• highlight open issues that need to be addressed and that the MPI Tools Working
Group is currently working on.

The remainder of this paper is organized as follows. Section2provides background
on the PMPI interface and highlights the various way it can be exploited; Sect. 3 starts
with identifying the weaknesses of PMPI and then showcases an approach currently
under discussion of theworking group to remedy theseweaknesseswhile retaining its
strengths. Section 4 discusses the MPI_T interface as available since version 3.0 and
highlights endeavors to extend its capabilities from a purely synchronous query inter-
face to one incorporating both synchronous and asynchronous information retrieval.
Section 5 discusses requirements and current approaches for debugging tools and
Sect. 6 concludes the paper including a look on future paths for the development of
MPI tool interfaces.

2 The MPI Profiling Interface/PMPI

MPIwas designed to be used in high-performance computing (HPC) and HPC devel-
opers strive for maximum performance. Thus they need tools to analyze and optimize
their applications. From the very beginning, the MPI Forum regarded tools as a first
class citizen and provided tools support in theMPI standard through theMPIProfiling
interface, or PMPI.

2.1 Design

The MPI Profiling interface is designed as a wrapper interface, i.e., every MPI func-
tion (except very few that are allowed to be implemented as macros) can be accessed
via a name shift: each function can be called either with the MPI_ prefix or with the
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int main(...) {
...

MPI Send(...)
...

MPI Bcast(...)
...

}

Application

MPI Send(...) {
...

PMPI Send(...)
...

}

Interpositioned
Library

PMPI Send(...)

PMPI Recv(...)

PMPI Bcast(...)

PMPI Reduce(...)

MPI Library

Fig. 1 Example of a PMPI interface. Here a library intercepts the MPI_Send call and calls
PMPI_Send inside the wrapper. The MPI_Bcast maps directly to the PMPI_Bcast in the
MPI library

PMPI_ prefix. Typically PMPI_ is defined as a strong symbol and the MPI_ version
as a weak symbol. This allows tools to easily intercept the calls to the MPI library
by implementing the MPI_ call themselves, effectively overwriting the original MPI
routine, and do whatever measurement and analysis is desired before and after the
actual MPI library call, which is then executed using the matching PMPI call.

Figure 1 shows an usage example of the PMPI interface for a library intercepting
the MPI_Send call. Wrapping the library call allows the analysis tool to work with
the actual function parameters, i.e., it can process more information than a basic
interrupt-based profiler. Listing 1 shows an example of wrapping the MPI_Send
and aggregating the time spent in the call as well as the amount of data transferred.

1 static int totalBytes = 0;
2 static double totalTime = 0.0;
3
4 int MPI_Send(const void* buffer , int count , MPI_Datatype datatype ,
5 int dest , int tag , MPI_Comm comm)
6 {
7 double tstart = MPI_Wtime ();
8 int size;
9
10 int result = PMPI_Send(buffer , count , datatype ,
11 dest , tag , comm);
12
13 totalTime += MPI_Wtime () - tstart;
14 MPI_Type_size(datatype , &size);
15 totalBytes += count*size;
16
17 return result;
18 }

Listing 1 Example of a simple MPI_Send wrapper that aggregates the total time spend in the
routine and the bytes transferred.
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2.2 Implications for the MPI Standard

Despite being a rather simple interface, the PMPI definition impacts the whole MPI
standard, even in places where one would not expect it. For example, the additional
letter “P”, which is prepended to the name of eachMPI function, increases the length
of each symbol by one and, in turn due to limited symbol name lengths on C and
Fortran, reduces the number of letters available for each MPI routine. Further, in
order to be able to intercept routines, tool developers need to be able to derive the
actual linker symbol associated with each MPI routine. While this is straightforward
for C bindings, modern Fortran bindings with compiler specific namemangling rules
as well as types not directly matched in C make this hard.

Other issues include the use of threading in tools, which needs to be carefully
considered and adjusted by intercepting the variousMPI initialization calls, aswell as
the definitions of functions tools can use before MPI is initialized or cannot intercept
at all, as they can be implemented as macros for performance reasons. Finally, new
developments or additions within MPI require constant maintenance, e.g., to ensure
new routines can safely be intercepted and handled by PMPI.

2.3 Examples and Use Cases for Performance Analysis

A wide range of different performance analysis tools support MPI analysis via the
PMPI interface. One of the most basic tools, which directly follows in the intuition
of the initial PMPI design, is the lightweight profiler mpiP [52]. mpiP intercepts all
MPI calls and records the number of invocations, measures the time spend in each
MPI routine, gathers data on communication volume and aggregates the statistics
over time. It provides several analysis options:

• Multiple aggregation options

– By function name or type
– By source code location
– By process rank

• Adjustment of reporting volume
• Adjustment of considered call stack depth.

All information captured by mpiP is task-local. It only uses communication during
report generation, typically at the end of the experiment, to merge results from all of
the tasks into one output file. mpiP is highly scalable, with successful measurements
reported up to 262,144 processes.
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Fig. 2 Cube screenshot of a Scalasca analysis of the CESM sea-ice module on 4096 processes.
Cube shows three coupled tree browsers. The left pane contains the metric tree, i.e. all recorded or
calculated performance metrics, The distribution of the selected on the call tree of the application
is shown in the middle pane and the right pane presents the distribution of the selected metric on
the selected call path on the system. This example shows waiting times in MPI communication
mapped to the application topology. It is clearly visible the most waiting time occurs on processes
responsible for the equatorial regions, where no ice is to be processed. In this case recording the
MPI topology using the PMPI interface helped to identify the underlying load-balance problem and
fixing that led to a significant performance improvement

More advanced tools include Score-P [33], a community instrumentation and
measurement infrastructure for multiple analysis tools including Scalasca [21, 55],
Vampir [32], TAU [50] and Periscope [8]. Score-P can generate both profiles and
event traces using either direct instrumentation or sampling. It is a holistic mea-
surement system recording visits, time, communication data and hardware counters.
Score-P provides support for MPI, SHMEM, OpenMP, Pthreads, CUDA, OpenCL,
OpenACC and their valid combinations on all major HPC platforms. Common data
formats for profiling (Cube [44]) and tracing (OTF2 [18]) improve tool interoper-
ability.

Scalasca is an automatic trace analyzer working on OTF2 traces. The idea is to
take whole low-level trace data, perform a scalable, automated search for patterns
indicating inefficient behavior and generate a high-level performance report (of the
same kind as Score-Ps profile reports). Mapping this to the application defined MPI
topology [23] can lead to novel insight in the application behavior. An example for
the CESM sea-ice module is shown in Fig. 2.
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Fig. 3 Vampir screenshot showing many of the available views – the application timeline (1), a
process call-stack (2), a counter timeline (3) for hardware and software counters, a process summary
(4) clustering processes showing similar behavior, a function summary (5), and a communication
matrix view (6). Details on the selected element are shown in the context view (7) and a legend (8)
shows the coloring of the groups in the other views

Vampir is a manual trace file analyzer working on OTF2 traces as well. It pro-
vides a wide variety of highly customizable timelines and displays for any part
of the trace. This allows for a very detailed analysis of the dynamic application
behavior. The main view of Vampir is the application timeline showing all recorded
application events like function enter and exit events, messages send and collec-
tive communications. Vampir features an advanced MPI communication analysis
via communication matrices (number of messages, bytes transferred, etc.) showing
the point-to-point communication behavior in detail as well as several histograms
for all communication statistics. Many of the available views of Vampir are shown
in Fig. 3.

Other performance analysis tool-sets with similar capabilities include TAU with
ParaProf [7], Open|SpeedShop [48], and Paraver/Extrae [40]. Another timeline visu-
alization tool is MPE’s [11] Jumpshot [54], which is based on SLOG-2 event traces.

All tools presented so far are post-mortem analysis tools, i.e., data is collected
at application runtime and the analysis is performed after application termination.
However, performance data can also be analyzed online, i.e., during an application
run. Tools that feature online analysis include Periscope for performance or Ada-
gio [43] and Conductor [36] for power and energy. Such capabilities enable auto
tuning of applications, e.g., with the Periscope Tuning Framework [22].
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2.4 Examples and Use Cases for Correctness Analysis

Though performance analysis was its initial motivation, the use of the PMPI is not
limited to this alone; it has also been used successfully for a range of correctness
checking tools, which can useMPI call information to either identify incorrect usage
of MPI or detect anomalous application behavior.

The most prominent examples are Marmot [35] and its successor MUST [25],
which help users spot mistakes in MPI usage by performing an extensive set of
correctness checks. After application termination, MUST then generates an HTML
report containing both errors and warnings. Errors denote violations of the MPI
standard, i.e., the program is notMPI compliant.MUST supports several error classes
from communicators and groups over MPI_Datatype usage to type mismatch in
point-to-point and collective communication. Figure 4 shows the MUST report for a
datatype mismatch. Warnings on the other hand denote MPI calls that might lead to
scalability or correctness problems, but are still valid in terms of the MPI standard.
One example here is MUSTs deadlock detection, which identifies a series of MPI
calls that can lead to a program deadlock.

As with performance tools, MUST uses the ability to intercept MPI calls with
PMPI to track MPI usage. However, instead of tracking performance characteristics,
e.g., in the form of timings, it implements complex state tracking inside the wrappers
that allows it to track the state of the MPI library. For example, it can record send and
receive types to detect type mismatches or keep track of message dependencies to
identify potential deadlocks. It also uses the wrappers to implement communication
with a central arbiter to check global properties.

Another class of correctness tools targets the application behavior rather than
the MPI usage and aim at the detection of anomalies in the application execution.
They are based on the assumption that most applications are iterative in their nature
and hence breaks in iterative behavior can indicate a problem or fault. This iterative
nature of applications is also exhibited through iterative calls to MPI inside of an
application’s loop bodies. Consequently, tools in this category intercept MPI calls to
construct a model of the application’s behavior and then detect situations when the

Fig. 4 Example of a MUST report for a datatype mismatch in a Send/Receive operation. The
sending process sends two MPI_INT and the receiver receives 8 MPI_BYTE. This is a violation
of the MPI standard that requires matching datatype signatures for sender and receiver
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model no longer applies. Examples for tools in this area are AutomaDeD [10] and
its successor Prodometer [37], which are both based on PMPI and have both shown
substantial scalability.

2.5 Usage Beyond Pure Interception

The above examples already indicate that PMPI has been used way beyond its initial
design of implementing simple profiling tools. Its versatility, however, allows even
more sophisticated uses. As intercepted calls replace existing MPI functions, the
only requirement on them is that they implement the semantics of the original MPI
call faithfully. While calling the matching PMPI routine is certainly one way to
achieve this, it is not the only one; in fact, it is possible to completely reimplement
and possibly optimize MPI functions. This allows users and researchers to change
individual MPI calls without the need to implement a full MPI library and with that
provide quick prototypes. Examples are the replacement of collectives with new,
e.g., topology aware, collectives implemented on top of point to point calls or the
implementation of piggy-backing functionality [45].

One other common way to exploit PMPI is to replace MPI_COMM_WORLD to
transparently reduce its size andwith that split off processes for additional processing,
e.g., for load balancing [38] or coordinating power optimization as in GeoPM [16].
This can be achieved by splitting MPI_COMM_WORLD during an interception of
MPI_INIT and then replacing MPI_COMM_WORLD with the new communicator
on all application processes during the interception of all MPI calls that include a
communicator argument.

One extreme example in its use of PMPI is the MPIecho tool [42], which allows
the creation of clones of MPI processes, i.e., multiple copies MPI processes with
the same rank in MPI_COMM_WORLD can execute concurrently. This can be used to
execute fault injection campaigns (assuming faults don’t affect message behavior)
or to execute slices of expensive memory checks across the set of clones. MPIecho
first uses PMPI, as described above, to reduce MPI_COMM_WORLD by extracting
clone processes (Fig. 5) and then intercepts all communication operations to emulate
the needed functionality: send operations by clone processes are simply dropped (as
they are already executed by the original process) and receives are followed by a
broadcast to all clone processes to distribute the information (Fig. 6).

3 QMPI: Revamping the Profiling Interface

Despite its huge success and wide adaptation in the tools landscape, the PMPI inter-
face has some severe shortcomings that motivates the work in the MPI Forum Tools
working group.
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Fig. 5 MPIecho on an eight process application execution with clones for rank 0, 2 and 6 in
MPI_COMM_WORLD—from [42]

Fig. 6 MPIecho replaces send operations in clones with No-Ops (left) and receive operations with
a broadcast to the clones—from [42]

Being an interface that is more than 25 years old, the PMPI interface was designed
using software engineering techniques that are outdated today. Hence, the time is
ripe for a new and modern successor of the PMPI interface, which is currently being
developed, codenamedQMPI. For example, the reliance onweak symbol intersection
makes the PMPI interface dependent on non-portable features and often confuses
users trying to deploy tools.

Further, the need to preload a single library discourages the modular design of
tools and often prevents reuse of common components across tools. This leads to code
replication or reimplementation of common, often complex features, increasing the
chance for the introduction of bugs and limiting coverage. For example, functionality
like piggybacking, which is used in many tools, is tricky to implement, but cannot
be easily shared among tools.

Finally, andmost importantly, the PMPI interface allows only one tool to be active
during an application run. It is not possible to run a performance analysis tool and a
correctness checker or two complementary analysis tools at the same time.As parallel
computing is quite expensive—especially at large scale—it is desirable to do asmuch
analysis as possible in one run. Even more important, centers increasingly want to
run their ownmonitoring infrastructures and runtime optimizers, like GeoPM, which
each want to use PMPI for their own operation, and this should be possible without
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impeding regular tool operations. The feasibility of creating such combinations was
demonstrated by the PnMPI library [46, 47]. However, this approach used binary
patching not suitable for production. The QMPI interface will support the same
functionality in a cleaner way.

3.1 Requirements

TheQMPI approach, currently under discussion in theMPIToolsWorkingGroup and
recently prototyped [17] aims at closing this gap, while maintaining all capabilities
and concepts of PMPI. Its design is based on the following requirements:

• The new interface shall, like PMPI, be based on wrappers allowing the (a) the easy
implementation of post- and pre-processing steps and (b) maintains PMPI’s ability
to replace the functionality of the MPI call with equivalent code, not necessarily
calling the matching PMPI routine.

• The interface shall support multiple tools that run concurrently within a singleMPI
application and independently perform their tasks within a wrapper hierarchy. The
specification of which tools are loaded shall remain implementation dependent
until we have a solution that can be standardized.

• In addition, it shall be possible to load and instantiate tools multiple times within
the same instance of analysis of an MPI application, but with separate states.

• The interface shall provide only C bindings through a shadow interface. Calls to
MPI by any binding, shall then be translated by theMPI implementation, allowing
a one tool fits all bindings approach.

• Finally, the QMPI interface shall be low to zero in overhead, in particular in
scenarios when no tool is attached.

Combined, this enables the execution of multiple tools, be it from one user or
split between management and user tools; it eliminates the need to wrap the Fortran
interfaces, an undertaking that virtually no tool executes 100% correctly with the
current PMPI interface; it extends the multi tool capability from a tool represented
in one shard library to being able to split common functionality into other tool
layers; and—most importantly—itmaintains all features andwith that all capabilities
initially available in PMPI, including the ability to wrap functions rather then having
independent pre and post calls without the ability to change the invokedMPI routine.

3.2 The QMPI Design

The design of QMPI closely follows these design guidelines. Similar to PMPI, as its
core it uses awrapping approach.However, insteadof implementing1:1 replacements
of MPI calls, a tool defines a set of replacement functions with arbitrary names
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i n t QMPI X (<MPI arguments > , void ∗ con t e x t , MPI blob ){
qmp i x t pqmpi x ;
/ / Query f u n c t i o n p o i n t e r o f ”dynam ic PMPI” f u n c t i o n
MPI Tab le que ry ( QMPI X , &pqmpi x , &n e x t c o n t e x t , n e x t t a b l e ) ;
/ / . . . Do work . . .
/ / Ca l l e q u i v a l e n t t o PMPI X
e r r =pqmpi x ( <MPI arguments> , n e x t c o n t e x t , b lob ) ;
/ / . . . Do work
re turn e r r ;

}

Fig. 7 Sample interception with QMPI

and then registers these with MPI. Further, instead of having a fixed name shifted
interface, as with PMPI, QMPI provides each tool with its own set of MPI functions
that replace the PMPI routines. This new set of functions is abstracted in a context data
structure, which exists for each tool and which stores a table with function pointers
for each PMPI like routine, as well as data for its own state. The latter allowsmultiple
tool instances from the same shared library, each with its own context.

The approach is further illustrated in Fig. 7 from a tool writer’s perspective: as
with PMPI, the tool writer defines a callback function intended to be the replacement
for the intercepted function. The callback function has the same prototype as the
correspondingMPI function it replaces, but adds additional parameter for (a) tracking
the context and (b) passing on a transparent data blob, which is essential to support
correct Fortran bindings.

In the wrapper callback, the developer can the decide which MPI function to call
next and then use one a new query function to retrieve (a) the function pointer of the
matching routine in the following tool (or the MPI library, in case no further tool is
loaded). The same routine also returns the new context that needs to be passed down.
After this initial query, the QMPI routines proceeds like a matching PMPI routine:
after pre-call work and state tracking, the routine calls the needed MPI functionality
through the previously queried function pointers. After completion of this work, the
tool has the chance for some further post processing before returning to the callee of
the tool.

This approach maintains an independence between the tools, as the MPI library
manages the function pointer tables that contain the information about the follow-on
routines. Note, that this design makes no assumption about ordering of the various
tools—each tool works independently, i.e., expects to implement a subset of an
MPI interface, and in turn expects that the functions queried provide correct MPI
functionality.
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3.3 Initial Experiences

As this interface is still in its early design phase, only a prototype [17] currently exists,
which itself uses PMPI for its own implementation to activate the necessary callback
stacks of tools loaded through the proposed interface. Early results on overhead
are very promising both in the no-use case, i.e., no tool attached, and empty use
case, i.e., using one or more tools that intercept all calls, just to call the matching
outgoing routine. Similarly, applications using QMPI in either of the two modes
exhibit negligible overhead.

At the same time, we used the prototype to implement a case study combining an
optimization layer,which replaces collectiveswith ones that bettermatch the physical
characteristics, with a generic performance tool layer. This represent a typical use
case in which a center uses the PMPI capabilities to enhance MPI functionality,
while a user can still use a performance tool in the execution. Without QMPI and
just relying on PMPI, the optimization layer would either block the usage of PMPI
for any user tool or would require the implementation of the optimization within the
MPI library itself, which is hard, requires major software engineering efforts and
would lead to a solution that is only valid for one particular MPI.

The prototype also exposed some deficits, that still need to be addressed. In par-
ticular, the illusion of each tool being fully independent and transparent to other tools
is broken if a tools performs a stack walk. To remedy, future updates of the interface
will provide mechanisms to identify the calling frame of the application code as part
of the context information passed into each wrapper. Further, the configuration of
the available tools remains a point of active discussion. Currently performed with the
help of a configuration file, we are currently looking for a more flexible and scalable
solution.

4 The MPI Tools Information Interface

The PMPI interface is designed to provide application-level information on the mes-
sage passing behavior of an application and, as discussed in the previous sections, it
provides a versatile mechanism to extract this information. However, with complex
HPC system architectures employing increasing levels of concurrency, the behavior
of the MPI implementation itself and its internals moves into the focus of optimiza-
tion efforts. With PMPI, and even with QMPI, the MPI implementation remains a
black box by design, as application behavior is only observed at the interface level.
This makes it difficult to (1) (2) understand inefficient behavior resulting from a
mismatch of application andMPI implementation behavior and (3) derive successful
optimization strategies to overcome these mismatches.

MPI Peruse [29] was an initial attempt to expose implementation internals to
the user of MPI. MPI Peruse was designed as a callback-driven interface, to enable
MPI implementations to notify tools of internal state changes (events). Its specifi-
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cation defined a specific event set—initially focused on non-blocking point-to-point
communication—for an MPI implementation to expose. Keller et al. implemented
a prototype implementation of MPI Peruse using Open MPI [31] to showcase the
benefits of introspection of the unexpected message queue.

However, MPI Peruse was never adopted by the MPI Forum. One of the strongest
arguments against its adoptionwas that the use of predefined events covering a partic-
ular, albeit commonly used, implementation architecture. For example, investigating
the unexpected message queue assumed the availability of such queue, which is not
necessarily the case. As such, mandating these events would have implied a specific
implementation of MPI internals, something the MPI Forum is very careful to avoid.
Nevertheless, the lessons learned with PERUSE influenced the design of MPI_T,
and a first version of MPI_T was adopted in the MPI standard in Version 3.0.

4.1 Design Considerations

During the development of the MPI Tool Information Interface (MPI_T), the main
considerations guiding its design were (1) (2) to avoid assumptions of a specific MPI
implementation model; (3) to support production and debug versions of the MPI
implementation; (4) to avoid limiting the type of information available through the
interface; and (5) to allow for a low- to no-overhead implementation, especially in the
case it is not used. From these considerations, the main design principle of MPI_T
is that MPI implementations should expose only the information that is possible for
and compatible with their specific implementation. Hence, MPI_T was designed to
give full freedom to MPI implementation developers as to what information will
be exposed through the MPI_T interface; and users can use the API to query what
information is exposed along with its semantics in each execution. Using MPI_T,
MPI implementations can expose a variety of information related to performance and
correctness, including information regarding configuration and control, performance,
and debugging of MPI and MPI usage by applications.

The initial version of the MPI_T interface in MPI 3.0 is a query interface, where
users of the interface explicitly control the information exchange between the tool and
MPI. MPI_T includes support for control variables, performance variables, and vari-
able categories. Tools query into theMPI_T interface to discover the performance and
control variables and variable categories that are available at run time. Then, for each
variable or category, the tool can query MPI_T for information, including semantic
information such as the name of the variable or category, a textual description, and
its type. The name and textual description can be used to interpret the meaning of a
variable or category, and user interpretation is needed for full understanding of the
measured data. This functionality is similar to that of hardware performance coun-
ters, where each hardware vendor provides different counters and a user needs to
consult the vendor documentation to make further use of the counters.

The flexibility of variable and category definitions by MPI implementations in
MPI_T is one of the primary reasons for its adoption by the MPI Forum and MPI



The MPI Tool Interfaces: Past, Present, and Future—Capabilities and Prospects 69

implementations; however this flexibility creates a challenge for tool developers and
users. It is challenging for tools to automatically process the variables and categories,
because their semantics are defined by textual descriptions and may require human
intervention for basic tasks such as interpretation, as well as for advanced tasks such
as using variables as building blocks for derived metrics. Even so, advanced tools,
such asMPIAdvisor [19, 20] that automatically recommendsMPI_T control variable
settings to users, successfully use MPI_T across multiple MPI implementations.

All in all, the introduction of MPI_T marks a big step forward in the interaction
between an MPI implementation and its users and tools to obtain insight into the
internals of MPI. Prior to MPI 3.0, MPI implementations often already had internal,
unpublished interfaces to this data that were used internally for testing. MPI_T now
enables a standard way for tools to gain access to this internal information in a
portable way across different MPI implementations.

4.2 Control Variables

Control variables in MPI_T expose variables to users that can be set to influence
the behavior of an MPI implementation during an execution. Examples of control
variables could include the eager limit setting or parameters that control buffer sizes
andmanagement strategies.WithoutMPI_T,mostMPI implementations allow a user
to influence communication behavior through environment variables. Some, e.g.,
OpenMPI, also allow the use of command-line arguments to set specific parameters.
With both approaches, the setting selection can only be made at program start and
lasts for the duration of the execution of the MPI application. However, some of the
configurations of an MPI library could potentially be changed during the run of an
application, but withoutMPI_T users lack a portable API for changing them.Without
MPI_T, performance tuning activities rely on multiple executions of an application
to find the right settings for it.

The API in MPI_T for control variables enables users to first query the MPI
implementation for the variables that are available. Then, the tool can read and set
the control variable values during the execution, as long as it is allowed by the MPI
implementation at the time the user makes the read or set call. This capability enables
new functionality in tools, especially for auto-tuning tools such as Periscope that can
dynamically evaluate the parameter space of control variables in order to find the
best settings for performance for an application on a particular system [12].

We show example control variables from Open MPI in Fig. 8 as displayed by
the Gyan tool [27]. Control variables have several properties including their name;
a verbosity level (VRB) indicates the intended audience of the variable, e.g., D for
Developer; a data type; the ability to be bound to a specific MPI object type (Bind)
meaning that the control variable only refers to the instance of the object it is bound
to, e.g. a specific communicator; a scope which tells the scope of impact of setting
the variable, e.g., LOCAL to a single MPI process or SCOPE_ALL to all processes
in consistent manner; and a value to which the variable is currently set.
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Fig. 8 Control variables in Open MPI as displayed by the Gyan tool

4.3 Performance Variables

Performance variables in MPI_T provide information on changing state within the
MPI implementation. Performance variables can represent a range of information
about MPI implementations, e.g., the number of packets sent for a message, time
spent in blocking operations, or the amount of memory allocated. As with control
variables, MPI implementations prior to MPI_T already had variables describing
performance for internal testing, however they were not necessarily exposed to the
end user. MPI_T provides a portable interface for tools and users to gain insight into
this MPI internal information.

Figure 9 shows the standard workflow for users to use MPI_T for performance
variables which is split into two phases: a setup phase where variable information
is retrieved, and a measurement phase where the variables are started, stopped, and
read. Multiple tools can use MPI_T simultaneously in an application because each
tool monitoring the target program is allocated an MPI_T Session. Operations on
performance variables are isolated to each MPI_T Session so each tool receives
consistent and reliable information.

Since the inception of MPI_T in MPI 3.0, implementations have been growing
their support of performance variables. At the time of this writing, MVAPICH2 in
version MVAPICH v2.33 RC2 exposes 402 performance variables variables (on an
Intel Xeon cluster using Mellanox Connect-IB MT27600 Infiniband cards), whereas
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Fig. 9 Standard use case for performance variables

just four years ago, it exposed a mere 25 [28]. This dramatic increase in performance
variables shows that they are relatively easy to support in MPI implementations
and that there is user demand for the feature. Variables cover a wide spectrum of
information from memory allocation, to queue lengths, from progress information
to data on the use of optimized collectives.

4.4 Examples and Use Cases

Over the years since the release of MPI 3.0, the number of tools that support MPI_T
has grown and several interesting use cases have been explored with the tools.

Gyan andVarlist [28] were the firstMPI_T tools made public.While simple, these
tools have proven to be useful. Varlist queries for and presents information on all
control and performance variables available with the linked MPI implementation.
This is useful for users that want a quick method for finding out what is supported by
the MPI implementation they are using on a particular HPC system. Gyan is a PMPI
tool that calls into the MPI_T interface during MPI_Init and starts measurement
on the performance variables specified by the user. Gyan stops measurement of the
variables duringMPI_Finalize andprints a text-based report of themeasurements
taken during the application run. The summary output of Gyan is useful for a quick
assessment of overall program behavior with respect to MPI.

Gyan was recently extended to include more flexible support for defining an
arbitrary number of events, as well as for tracking individual regions of code,
in combination with the MPI Profiling Interfaces support for code annotations
via MPI_Pcontrol. This version has been used in a comprehensive study to
understand the impact of the size of both the unexpected and the expected receive
queue [34]. For this, it built on MVAPICH2’s support for MPI_T that exposes both
the length of these queues to the user as well as the number of search operations
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on these queues undertaken by the MPI implementation. This enabled us to validate
specifically developed benchmarks that stress these queues.

Following these first tools, more sophisticated tools were developed with MPI_T
support. The TAU [50] and MVAPICH groups teamed up in a co-design effort to
develop MPI_T variables to expose from MVAPICH and to explore their use in
performance tuning applications with TAU. In a talk given at an MVAPICH User
Group Meeting [49], they demonstrated the ability of TAU to visualize performance
metrics related to memory usage by MPI and how setting control variables in TAU
changed the behavior of MVAPICH2. Following this, Ramesh et al. [41] demon-
strated the ability of users to set and view the impact of control variable settings on
MPI performance during run time.

Automatic tuning frameworks represent some of the most sophisticated uses of
MPI_T to date. Here, the tools automatically search the parameter space of control
variables and measure the impact on the performance of applications to find the opti-
mal settings. Gallardo et al. [19, 20] developedMPI Advisor, which aims to provide
optimal performance settings for users in the form of recommendations. They exhib-
ited the usefulness ofMPIAdvisor by demonstrating the impact of the eager threshold
setting inMVAPICH2 for an I/O emulation application called CFOUR, and found up
to a 5× improvement in performance with the optimal setting. The Periscope Tun-
ing Framework is another auto-tuning tool that utilizes MPI_T. In early work [12],
the team used Periscope to explore the performance of collective MPI operations.
They found that the default algorithm for collectives such as MPI_Reduce does
not always perform best and that applications can achieve significant performance
benefits by choosing a different algorithm over the default. Following this, the team
explored more advance auto-tuning in Periscope utilizing performance measure-
ments to guide the auto-tuning process [51]. They found that this strategy was able
to reduce auto-tuning time and significantly improve application performance.

4.5 Extending MPI_T

In this section, we detail some of the active discussions in the MPI Tools Working
Group to extend theMPI_T interface, namely introducing event variables and unique
identifiers for MPI_T variables, categories, and events.

4.5.1 Event Variables

While the information exposed byMPI_T through performance variables can provide
useful insights, the data for these variables is aggregated over time when returned
to the user. There is no mechanism to gain instantaneous information about state
changes in the MPI library from the current MPI_T interface. To address this gap,
the MPI Tools Working Group is designing an extension to MPI_T to include event
variables [24]. In the design, the MPI implementation can notify a tool of events as
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they occur, e.g., the time a message was placed in the unexpected message queue,
or the time that the transfer of a non-blocking send was initiated by the MPI library.
As of this writing, this extension for MPI_T is not part of the MPI Standard, but its
inclusion is actively discussed in the MPI Forum.

The design of the events extension was inspired by an earlier proposal to sup-
port events in MPI called MPI Peruse [30]. Like MPI Peruse, the MPI_T events
interface uses a callback-driven interface to notify the user of event occurrences
asynchronously. However, while the MPI Peruse specification defined events for
MPI implementations to support, our MPI_T events interface follows the design of
MPI_T for performance and control variables and leaves the definition and availabil-
ity of events completely up to the MPI implementation. The workflow for users of
MPI_T events is very similar to that with performance and control variables, where
the tool first queries for the events that are exposed by the MPI implementation and
gets detailed information about them. Following this, the tool registers events of
interest for the callback notifications.

While the interface for events is intended to integrate easily into existing MPI_T
tools, some differences in functionality are necessary due to the execution context
for events:

• Events do not require the use of MPI_T Sessions to support use by multiple tools
simultaneously as is required for performance variables. The reason for this is that
each tool can register for events of interest and theMPI implementation will notify
each registered tool of the event occurrence.

• In contrast to the tool-driven queries for updates on control and performance
variables, event callbacks can occur at any time. Thus, the interface for events
contains restrictions on actions by the tool in event callbacks, e.g., actions may
have be async-signal safe.

• A typical use case for MPI_T events is to enable the capture of event traces by
tools. For this, a complete capture and strict ordering of eventsmight be required by
some tools. The interface supports this need asmuch as possible while maintaining
flexibility for MPI implementations with the introduction of event sources and
notification of dropped events.

Given the tight integration of theMPI_T events interface with the existingMPI_T
approach and a successful prototype implementation in Open MPI [24], we have
confidence that the concept of events in MPI_T will be adopted into the next version
of the MPI Standard.

4.5.2 Variable Identifiers

Another concept under discussion by the MPI Tools Working Group is the notion
of unique identifiers for variables, events, and categories in MPI_T. The reason-
ing behind this need is that MPI_T variables, events, and categories are currently
identified by a string name, which is only guaranteed to be unique within a single
execution of an MPI job. This creates challenges for tools developers in creating
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portable tools that can accommodate changes in MPI implementation support of
MPI_T. As an example, a particular MPI implementation may name its performance
variables according to the module in which the performance metric is defined and
measured. If the MPI implementors decide to refactor the implementation and some
performance variables are moved to new modules, they would have new names in
the new version of the implementation even though the variables may have the same
meanings as before the name change. Tools developers would need to accommodate
both the old names and new names when searching for variables, categories, and
events with this mechanism.

To remedy this situation, the Tools Working Group is working to define unique
identifiers for variables, categories, and events that once assigned would be valid in
perpetuity instead of only for the duration of a single execution of an MPI job. Here,
the unique identifier would not change even if the name of the variable changes due to
MPI implementation changes, such as code refactoring. If the meaning of a variable
changes, then a new unique variable identifier would need to be created to reflect
the change in meaning. Thus, a tool can always be guaranteed that, if it locates a
variable with a known identifier, it will always have the same meaning as in previous
executions.

As of this writing, the form and publishing strategy for unique identifiers is still
undecided as the idea is in relatively early days of discussion. We hope to have a
finalized specification for the concept for introduction into the MPI Standard in the
near future.

5 Debugging Interfaces

In addition to the interfaces covered so far, theMPIToolsWorkingGroup also focuses
on interfaces for debugging. Debugging is an important task for MPI programming
as it can be extremely challenging to diagnose errors in large-scale parallel programs.
The debugging interfaces are “third-party” interfaces, which are intended to be used
by a process external to the target MPI process. This is in contrast to “first-party”
interfaces intended to be used fromwithin the target MPI process, e.g., as with PMPI
or MPI_T. These debugging interfaces enable debuggers and other tools, typically
implemented as external processes, to locate MPI processes in the system and to
access their internal information.

At the time of this writing, no debugging interfaces are part of the actual MPI
Standard, but are documented in so-called side documents that are maintained and
published by theMPI Forum. The reason that the debugging interfaces are not part of
the standard lies in the fact that the information in the side documents represents the
state-of-the-practice that was developed in an ad hoc fashion over time in the MPI
debugger community. The debugging interfaces were never developed with commu-
nity consensus based on best practices, as is the common standard for acceptance into
the MPI Standard. Thus, the debugging interfaces in the side documents represent
the current state of the art in debugging interfaces. The MPI Tools Working Group in
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the MPI Forum is working on formalizing these interfaces for inclusion in the MPI
Standard and we will discuss those efforts in this section.

5.1 MPIR—The Process Acquisition Interface

MPIR [15], also known as theMPI Process Acquisition Interface, enables debuggers
and other tools to locate all OS processes contained in an MPI job. MPIR is not
a true interface, but is instead a rendezvous protocol by which a debugger or tool
can get access to information about all processes in an MPI job in the form of an
in-memory table that contains host name and process ID for each MPI process in
MPI_COMM_WORLD. Once the debugger has this information, it can then attach to
each of these processes for debugging purposes.

In MPIR, the debugger or tool first interacts with what is known as the starter
process. The starter process is defined to be a process that has information about the
location of all MPI processes. The starter process may or may not be an MPI process
itself. For example, in some MPI implementations, the starter process is the MPI
process with rank ‘0’ in MPI_COMM_WORLD and in others it is an OS process that
is responsible for launching the MPI job, e.g., mpiexec or srun.

Tools can be launched in two ways with MPIR. First, they can be part of the job
launch command and take control of the MPI processes when they start. The second
way is for them to attach to an MPI program that is already executing. In both cases,
the first step is to locate the starter process. In the case where the tool is launched
with the MPI job, the tool knows the identity of the starter process. However, in the
case of attach, the user needs to provide the process identifier and location of the
starter process. Once the debugger or tool has located the starter process, it exercises
debug control over the starter process. This means that the debugger can control
the execution of the starter process, set breakpoints, read and write into the starter
process’s memory, and handle breakpoints in the starter process.

The MPIR rendezvous protocol works by the debugger exchanging information
through setting and reading known variables in the address spaces of the starter
process and of the MPI processes being debugged. The protocol also uses a subrou-
tine called MPIR_Breakpoint() defined in the starter process to communicate
changes of state of the known variables so that the debugger can read them. For exam-
ple, the information about all MPI processes is communicated through the following
exchange:

• The starter process notifies the tool that the process table is ready by call-
ing MPIR_Breakpoint() and setting the variable MPIR_debug_state to
MPIR_DEBUG_SPAWNED.

• The tool reads the value ofMPIR_debug_state and nowknows that the process
table is ready.

• The tool reads the value of the MPIR_proctable_size variable to get the
number of processes in the table.
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• For each process in the table, the tool reads in a process descriptor that contains
the host name, executable name, and process identifier for the MPI process. The
starting address for the table is located in the MPIR_proctable pointer variable
in the starter process.

There are many more details on the MPIR protocol in its documentation. The text
in this section is meant to give an overview of the protocol in order to highlight the
functionality and complexity of the current MPIR interface.

5.2 MQD—The Message Queue Dumping Interface

MQD [13, 53], the Message Queue Dumping Interface, enables debuggers to access
message queue information fromMPI processes. Debugging tools use this to provide
users a view of the internal state of MPI message queues in case of a hang or a bug.
There are three conceptual queues for MPI messaging in MQD: the send queue,
the receive queue, and the unexpected message queue. The send and receive queues
contain information about messages for which the user has already posted a send or
receive operation. The unexpected message queue contains message information for
messages that arrive at a process forwhich nomatching receive has been posted by the
application.While these queues are conceptual andmay not reflect the actual queuing
structure of the MPI implementation, understanding the contents and ordering of the
messages in these conceptual queues can help debug particularly tricky program
bugs.

The structure of theMQD interface is fundamentally different from that of MPIR.
MQD defines an API for the exchange of information between the debugger and an
MPI implementation. The API for the MPI implementation is implemented in the
form of a dynamically loaded library (DLL) that is loaded into the debugger process.
Once the debugger has loaded the DLL, the debugger passes a pointer to a structure
containing pointers to its MQD API callbacks to the DLL.

The API is structured such that neither the debugger nor the MPI DLL need to be
aware of each other’s implementation structure. There is an API call for the debugger
to pass opaque types to the DLL. The “image file” opaque type represents the exe-
cutable image of anMPI process that contains symbols needed in theMQD interface.
The “MPI process” opaque type that represents the OS process being debugged. The
DLL uses these opaque types as handles for identifying information about a partic-
ular MPI process to the debugger in its callbacks. The debugger callbacks provide
functionality such as finding symbols and functions and getting type sizes from the
image file, and retrieving the MPI rank and data from the address space of the MPI
process. The DLL interface provides functionality for extracting information about
the communicators in the MPI process and the message queue information for each
communicator.

Using these interfaces, a debugger can extract and display detailed information
about every message in the conceptual message queues from anMPI implementation
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in a portable way. No changes need to be made to the debugger to extract this
information from a different MPI implementation, assuming that implementation
supports the MQD interface.

5.3 Examples and Use Cases

There are several debuggers specifically designed to work with MPI applications
and to extract MPI specific implementation details, including TotalView [6], Allinea
DDT [2], PGI PGDB [4], and STAT [5, 14]. These debuggers are highly valued for
their abilities to help untangle the complex bugs that arise in MPI programs. They
are used to catch computational bugs, hangs, and communication errors. They can
be launched with or attached to a target program, stop the program’s execution, and
then perform debugging tasks such as stepping through code and inspectingmemory.
An exception to this is the STAT debugger that is specialized for diagnosing parallel
program hangs. With STAT, a user attaches STAT to a program when it is hung—
using MPIR—and STAT shows the state of the MPI processes during the hang, as
shown in Fig. 10. In the figure, the tree branches when there is divergence in the state
of MPI processes. In this case, there are three states at the time of the hang. Most
processes (ranks 0 and 3-2047) are in a barrier. However, two processes (ranks 1 and
2) are in a deadlocked messaging situation. From this visualization, a user can easily
find the source of the hang.

Fig. 10 A visualization from the STAT debugger showing the different states of processes in a
hung job. Most processes have reached a barrier while two are stuck in a deadlocked messaging
situation. [5]
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Fig. 11 Message Queue Display using MQD from the Allinea DDT Debugger [1]. Details about
the messages in the selected queues for all communicators are shown in the table at the bottom

Several debuggers support theMQD interface including TotalView, Allinea DDT,
and PGDB. The message queue feature is useful for finding common errors such as
deadlocks and for identifying situations where messages are present but unexpected,
which can indicate a mismatch in the progress of two MPI processes. In Fig. 11, we
show an example visualization of a message queue from the Allinea DDT Debug-
ger [1]. A user can select a particular communicator or see data for all communicators
as well as whichmessage queues to view. Then, in the bottom of the visualization, the
user can see details for each message in the selected queues for that communicator.
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5.4 Gaps and Future Work

There are several deficiencies that have been noted by the community for the debug-
ging interfaces of MPI. The MPI Tools Working Group has discussed the shortcom-
ings of the current state of the debugging interfaces and has begun the process of
designing a replacement API. In the following, we present some of the major design
considerations from those discussions.

A primary deficiency is the lack of a proper interface for the process acquisition
functionality of MPIR. The current approach of the debugger and MPI implemen-
tation setting and reading known variables in the starter and target MPI process is
brittle and introduces portability issues on some systems. The interface needs to be
a proper API abstraction and not the current rendezvous protocol used in MPIR.
This change would not only be good from a software engineering perspective, but
would also enable tools that are not debuggers to use the functionality of locating
and getting basic information about MPI processes.

Other deficiencies in MPIR affect its potential to be used effectively on future
platforms. There is a potential lack of scalability in the method for getting MPI
process information. Currently,MPI returns a table that is populatedwith information
about all processes in MPI_COMM_WORLD. While this method has been shown to
not cause significant slow-downs on current systems, the potential for problems is
clear and should be addressed in a new design. The current approach also does
not account for dynamic processes in MPI and assumes a static process table. We
expect HPC applications in the future to be more dynamic than the current bulk-
synchronous model and a new MPIR design should account for this. Additionally,
the interface assumes that MPI processes are implemented as OS processes, which is
not necessarily true. For example, the MPC [39] implementation of MPI implements
MPI processes as threads. A new design ofMPIR should not assume implementation
details about the MPI library.

Another deficiency that affects both the MQD as well as a redesigned version
of MPIR with a proper API abstraction is locating the appropriate DLL from the
MPI library. In the current version of MQD, a single name is provided in a symbol
in the MPI process MPIR_dll_name. Debugger implementors raised the need for
the availability of multiple potentially compatible DLLs and an API for discovering
if the DLL was compatible with the target process in the environment in which it
was currently running. The new API could also include methods for retrieving type
information from the DLL since the system that the debugger is running on is not
always the same as that of the target process.

Users in the MPI community have expressed the desire to be able to get internal
information about MPI objects such as communicators, data types, and files from
debuggers. Currently, debuggers cannot get this information in an MPI implementa-
tion independent way. AnMPIHandles Introspection interface [9] is under design for
this purpose. With this interface, debuggers could retrieve details about MPI objects
in a similar fashion as is done now in MQD for message queues.
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6 Conclusions and Future Work

Tools are an essential part of the software development life cycle. They must, how-
ever, not only measure time, but need also to be integrated into the programming
model to ensure it can capture additional application context. MPI has always been
exemplar in this area, with the PMPI profiling support from day 1 and with the
addition of MPI_T in version 3.0.

However, experience has shown that these interfaces are not sufficient in the
modern HPC ecosystem. To improve profiling, we therefore propose a successor to
PMPI named QMPI, which—while maintaining all features from PMPI—enables
better software engineering and allows the combined execution of multiple tools, be
it ones inserted by the user as well as those mandated by the system. Similarly, while
the MPI_T interface provides very helpful aggregated insights, additional event data
is needed to fully understand progress within an MPI implementation. Also here, the
MPI Tools Working Group is in the process of preparing a proposal in the form of
an extension of MPI_T focusing on event data, which we have sketched above.

Future work in the area of debugging interfaces will involve working to redesign
the interfaces so that they are appropriate for inclusion into the MPI Standard. We
plan to rework theMPIR interface to be a properAPI abstraction instead of amemory-
based rendezvous protocol. In the redesign, we will account for the deficiencies we
outlined in Sect. 5.4, including scalability and support for dynamic processes and
MPI object introspection.

In addition, tool support will have to evolve with the standard. Especially larger
additions, like fault tolerance or the concept of MPI sessions [26] could have a
profound impact on how tools are used and on how tool interfaces have to change
accordingly. The MPI Tools Working Group in the MPI Forum remains in active
discussions with the rest of the forum on these topics and will continue to represent
the tools’ community in the forum to ensure that MPI stays in the forefront when it
comes to providing excellent support for tools.
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Abstract Multicore systems present on-board memory hierarchies and communi-
cation networks that influence performance when executing shared-memory parallel
codes. Characterising this influence is complex, and understanding the effect of par-
ticular hardware configurations on different codes is of paramount importance. In
this context, precisemonitoring information can be extracted fromhardware counters
(HC) at runtime to characterise the behaviour of each thread of a parallel code. This
technology provides high accuracy with a low overhead. In particular, we introduce a
new tool to get this information from hardware counters in terms of number of float-
ing point operations per second, operational intensity, latency of memory access, and
energy consumption. Note the first two parameters define the well-known Roofline
Model, an intuitive visual performancemodel used to provide performance estimates
of applications running on multi-core architectures. The third parameter quantifies
data locality and the fourth one is related to the load of each node of the system. All
this information is accessed through the perf_events interface provided by Linux,
with the aid of the libpfm library. This tool can be used to utilise its monitoring
information to optimise execution efficiency in NUMA systems by balancing or
scheduling the workloads, guiding thread and page migration strategies in order to
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increase locality and affinity. The designated migrations are based on optimisation
strategies, supported by runtime information provided by hardware counters. Over-
all, the profiling application is launched from a terminal as a background process, it
does not require superuser permissions to run properly, and can lead to performance
optimization in multithreaded applications and power saving in NUMA systems.

1 Introduction

Modern microprocessors include a diverse set of compute cores and on–board mem-
ory hierarchies connected by communication networks. The complexity of those
networks and their protocols increase over time. The design decisions affect area,
energy, and performance. As an example of the degree of complexity that micropro-
cessors have achieved, Fig. 1 shows their evolution in the last 50 years. Developing
efficient parallel code is not straightforward, and a lot of effort and care are needed
to achieve the highest speedup as possible. One of the main metrics that affects
execution time is the memory latency access, especially due to microprocessor per-
formance growing faster over time than the memory performance, which is known
as the “memory gap” [1]. Therefore, it is critical to improve locality of access and
affinity among threads, data, and cores. This is even more important in NUMA (Non
UniformMemory Access) systemswith several multicore processors, which are often
present in modern servers.

Hardware counters aremonitoringmechanisms included in the PerformanceMon-
itoring Unit [2] of the majority of microprocessors, and its use is gaining popularity

Fig. 1 Evolution of microprocessors characteristics [12]
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as an analysis and validation tool. Its effect over the analysed program is practically
imperceptible, and its precision has been significantly increased due to sampling
mechanisms such as Intel PEBS (Precise Event-Based Sampling [3]). Due to the
low overhead they suppose, the counters can obtain a huge amount of data without
interfering noticeably in the performance.

Power consumption has becomeone of the key designmetrics for developingmod-
ernmulticoremicroprocessors. Thismetric depends on a constant basic consumption,
and the processor activity. This power is specially important in mainstream servers,
where the Heating, Ventilating and Air Conditioning (HVAC) are the main factors
of the maintenance costs [4, 5].

Processor performance, typically measured in floating point operations per sec-
ond or instructions per second, cannot be ignored. To characterise the performance
of a program regarding these aspects, various models have been proposed. In par-
ticular, the Roofline Model [6] (RM) offers a good balance between simplicity and
description ability in a 2D graphic. For a more complete characterization in NUMA
systems, extensions to the original model have been proposed, such as the Dynamic
Roofline Model (DyRM) and the 3DyRM [7]. In addition, we must take into account
that the current trend in using virtual machines or containers may mask the actual
work performed by the processes running inside them, which adds another layer of
complexity to their characterization.

There are quite a few tools available for instrumentation and performance analysis
of parallel programs. Important examples are TAU [8], Dyninst [9], HP Caliper [10]
or VTune [11] among others. While offering detailed and useful information about
the behaviour of a program, they do not provide an easy to understand model for the
full program like the DyRM. This is why, to obtain this augmented model, a tool that
takes advantage of the hardware counters (HC) [2] present in modern processors has
been developed. The effect of HC monitoring in the program is virtually impercep-
tible. In addition, HC precision has noticeably increased recently thanks to the new
Precise Event-Based Sampling (PEBS) [3] features. The data that this tool collects is
afterwards used by a second tool to render the models and other performance figures.

The rest of the paper is organized as follows: the Roofline Model is detailed
in Sect. 2. Section3 deals with the interface of data gathering from the hardware
counters. The new developed tool to gather and build the performance information
is introduced in Sect. 4. Section5 focuses on an important case of study contrasting
energy consumption with a performance model. Finally, Sect. 6 summarizes some
conclusions and the future work.

2 The Roofline Model

The stochastic and statistical analysis of performance models [13–15] can predict
precisely the behaviour of a program in multiprocessor systems, but they do not
usually offer information about how to improve the efficiency of the programs, com-
pilers and systems. Furthermore, they are usually hard to use for non expert users.
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The RM is an easy to understand model that allows inferring improvement directives
and information about the behaviour of a program. It also offers information about
how to improve the performance of both software and hardware.

The RM uses a simple approach where the influence of the bottleneck of the
system is highlighted and quantified. In modern systems, the main bottleneck is,
usually, the connection between the processor and the main memory. This is why
the RM relates the processor performance to the off-chip memory traffic. The term
“operational intensity” is defined as the number of operations per DRAM traffic byte
(measured in Flops/Byte), and measures the traffic between the cache memories and
themainmemory, instead of between the processor and the caches. So, the operational
intensity indicates the DRAM memory throughput that a process running in a given
computer really needs.

The RM brings together the performance (measured in GFlops/sec), the oper-
ational intensity and the memory performance in a 2D graphic. It defines several
peaks of performance, namely horizontal lines (roofs) that show the floating point
peak performance. In this way, the actual floating point performance of a particular
process cannot surpass the horizontal line of the RM, because this line is a limit
imposed by the hardware. A second line, with a given slope, delimits the maximum
floating point performance that a memory system can handle for a given operational
intensity. Its slope matches with the maximum memory throughput. These two lines
cross in a point of maximum computational performance and maximum memory
throughput. So, if the operational intensity of the code is below the sloping part of
this roof, it means that its performance is limited by the memory accesses. Whereas,

Fig. 2 Roofline model for AMD opteron X2 and X4 [6]
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if it is below the flat part, it is limited by computations. An example is shown in
Fig. 2.

The RM offers a simple and intuitive representation of a program performance on
a system. Nonetheless, in some cases, it may be misleading. That is the reason why
some extensions to the model have been proposed. Some of them take into account
energy usage [16] or cache–awareness [17]. Other of them is the 3DyRM [7, 18],
which takes into account the system heterogeneity and, therefore, suits better NUMA
computers. In this work, hardware counters will be used to gather the necessary data
to build these models.

3 Intel PEBS

The tool proposed in this work uses the PEBS [3] mechanism in order to obtain
performance information in terms of theRM. PEBS is an advanced sampling function
of the Intel processors in which the processor dumps directly samples in the moment
in which a hardware counter gets overflowed. This counter canmeasure different low
level events, and overflows when it reaches a defined value. The precision of PEBS
comes from the fact that the instruction pointer is registered in each sample, and this
is, at most, to only one instruction distance where the counter actually overflowed. A
key advantage of PEBS is that it minimises the overhead, due to fact that the Linux
kernel only is getting involved when the PEBS buffer is full. So, no interruptions are
triggered until a certain amount of samples are available.

Inmodern Intel processors, since the Nehalem architecture, the PEBS register for-
mat allows obtaining detailed information about the memory accesses. By sampling
memory operations, the virtual address of the accessed data is registered. For load
operations, the latency (measured in number of cycles) is also registered, as well as
information about the memory level where they are read from.

To interact with the hardware counters, the perf_events [19] Linux interface
was used. This interface offers a way to interact with the Linux kernel through anAPI
of the system. In this case, the sampling buffer is stored in the kernel space and can be
read in the user space once it has overflowed. The perf_events interface extends
the PEBS format by registering other data for each sample, such as the PID from the
active process and the TID from the thread. It also offers the possibility to perform
timemultiplexing with the counters. In this way, more events than those supported by
the hardware architecture can be registered almost simultaneously. To achieve this,
additional temporal information is registered for each sample, which indicates how
much time the counters have been working. The perf_events interface offers
access to the latency measure subsystem for read operations in a stable manner since
the 3.10 version of Linux kernel. This also applies to the complete PEBS register
set from the last Intel processors. By using these systems, the interface allows us to
sample individual processes and their children, independently of the core in which
they are actually running. The interface also allows a system-wide sampling, in which
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some or all cores can be sampled simultaneously, storing the data of all processes
running in each one.

By using this interface, we ensure compatibility through many systems, as long
as they are Linux- and Intel-based.

4 The New Proposed Profiling Tool

A tool for obtaining and processing the information about the performance of
memory-shared systems was implemented. This application is launched from a
command–line shell and has no graphical interface. It is written in C/C++, and uses
the perf_events Linux interface for reading the hardware counters in each CPU
and, with this information, characterises the performance of each thread and also the
whole system.

The tool has two main modes: JUST_PROFILE and DO_MIGRATIONS. Cur-
rently, these modes are exclusive. The first mode dumps the hardware counter data
into CSV files, while the second one uses that information to do the migrations
according to an optimization strategy. JUST_PROFILEmode can be extended with
a PROFILE_ENERGY submode, which also dumps instantaneous energy usage. The
strategy used in DO_MIGRATIONS mode is specified during compilation time with
macros, and various strategies can be used at the same time. All of them are at a
very initial stage. The profiler never finishes its execution on its own, and needs a
SIGINT signal to properly end.

The tool accepts the following parameters:

• b: filename for base power consumption. This is used in the energy strategy.
• l: minimum memory latency access to sample.
• p: period for memory samples.
• P: period for instruction samples.
• s: polling timeout in milliseconds.

4.1 Data Gathering for the RM

To obtain the axis of ordinates of the RM, the floating point operations informa-
tion in each core are required. Nonetheless, FLOPS were replaced by the number of
instructions executed (event INST_RETIRED). Two reasons lie in this decision. On
one hand, measuring floating point operations per second is particularly appropri-
ate for characterising scientific calculations but, given that we want to characterise
heterogeneous workloads, measuring instructions is considered a more general pro-
cedure. On the other hand, measuring floating point operations per second by using
hardware counters leads to imprecisions due to the way this is done, so one should
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be very careful while interpreting the data [18]. These imprecisions can be avoided
by counting instructions.

To calculate the Operational Intensity, measuring the traffic between cache and
main memory is necessary. So, the number of cache lines from main memory
(event offcore_requests: all_data_rd) was registered for each core. Infor-
mation about the amount of instructions and the memory accesses is registered for
all the samples.

In this way, the state of the hardware counters is registered in each core. If more
than one process or subprocess are executed in the same core simultaneously, the data
must be scaled so each thread can be monitored individually. This aspect is already
addressed within the tool. Each sample has information about the PID and TID of
the specific registered instruction. This, along with the temporization information
provided by the perf_events interface, allows scaling the data from each core
to approximate the values of each thread. As a consequence, the use of hardware
counters becomes an easy task, and the execution of a program can be monitored
completely, including the necessary system processes from the operating system.

Aside from the in–memory store of this information, the developed application
allows dumping this data in general-purpose CSV files that include the following
fields [3]: type (memory or instruction sample), iip (instruction pointer), pid, tid,
time (t imestamp of the sample), sample_addr (memory address of the data, only
formemory samples),cpu (CPU identifier),weight (memory access latency, only for
memory samples), time_e (time enabled, used along the following field for counter
multiplexing), time_r (time running), dsrc (bit maskwhich gives information about
the origin of the data, only for memory samples), inst (amount of instructions),
req_dr (cache lines read from main memory) and mem_ops (amount of memory
reads, only formemory samples). Thedumping is performedperiodically each certain
number of samples, and this value can be tuned by the user.

Additional fields concerning energy usage may be included by using the
PROFILE_ENERGY addition. Since the energy usage is noft obtained using sam-
pling, what we do is reading energy values before doing so with the sampling buffers,
and assigning the read energy values to the last sample of the buffer. This implies that
more samples will have energy values assigned if shorter periods for energy reads
are selected.

4.2 Reading Energy Information

For measuring power consumption, the tool uses Intel RAPL (Running Average
Power Limit), a software interface provided to estimate energy use by using hardware
performance counters and I/O models [20]. Using a software solution may introduce
inaccuracies in the measurements. There are, however, studies focused on validating
the accuracy of RAPL against actual power values [21].

RAPL divides energy consumption into domains, which are useful to distinguish
the source of the value. These domains may vary depending on the system. Some of
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these include “pkg” (package, referred to the whole socket) and “ram”. Furthermore,
these values are available for each processor. This means that, in a NUMA system,
we are able to read these values for each NUMA node.

There are different ways to access the RAPL interface [22]:

• Reading the informationfiles using the powercap interface. This requires no special
permissions, and was introduced in Linux 3.13.

• Using theperf_event interfacewith a Linux kernel 3.14 or newer. This requires
root privilege or a value less than 1 in the perf_event_paranoid file from
the kernel tuning directory.

• Using raw-access to the underlying MSRs under /dev/msr. This requires root
access.

In this work, we decided to use the perf_event interface, since it does not
require superuser permissions and because it is a stable and well-known interface.
Once programmed, the counters start recording energy use. Each time the values are
read we get the raw accumulated energy used (in uJ). The instantaneous power (in
W) can be obtained subtracting two measurements and dividing by the elapsed time
between them.

4.3 Processing and Visualizing the Measured Data

After using the JUST_PROFILE mode, we can process the generated CSV files to,
among other different analyses, plot the Roofline Model for each thread as a point
in a two–dimension figure. Each point has a different colour depending on the PID
associated to the plotted thread. Figure3 shows an example of this functionality. In

Fig. 3 A RM generated in Python with some applications from NAS suite. Each color represents
a different PID
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Fig. 4 Dynamic roofline model for dc application (NAS benchmark)

this case, thefigure showsmultithread applications from theNASParallelBenchmark
Suite for OpenMP (NPB-OMP) [23]. Each color represents a different process, so
threads from the same application have virtually the same performance value.

The Dynamic Roofline Model may also be obtained. Figure4 shows an example
of a DyRM plot for a single thread of the dc application from the NAS Benchmark
Suite. It shows the different RM values during the thread execution, and uses a color
gradient to indicate the temporary phase of each dot.

Plots regarding energy usage may also obtained. Figure5 shows an example of
this kind of graphics that shows how the power consumption varies in a system over
time. In this case, it focuses on the “pkg” domain. Note that each line represents a
different NUMA node.

Additionally, the amount of generated data during that profiling mode can be
humongous (in the order of GBytes, depending on the amount of time the profiler has
been running). So, a Big Data adaptation was made to achieve horizontal scalability
in the load as well as in the data processing stage [24]. It uses Apache Spark in
its Python implementation (PySpark), as well as Spark’s MLlib to do an automatic
classification of applications using the Roofline Model data.
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Fig. 5 Example of energy usage (pkg domain) evolution across time for the whole system, itemized
by NUMA node

4.4 Gathering Overhead

The data gathering application is very lightweight. The overhead is principally deter-
mined by the sampling period. The higher the precision desired, the bigger the over-
head will be. Most of the figures in this document were obtained taking samples each
108 instructions (approximately one sample each 40 ms for most of the used codes).

Typical overhead values have beenmeasured in previousworks [7, 18], performed
in a two-processor server, using workloads based on the NAS Benchmark Suite. It
was found that the overhead of the collecting and sampling application was low
and, in many cases, within the measure error. So, in the cases where the sampling
process collected over 80 samples per second (taking into account both memory and
instructions ones), the overhead remained below the 1% in most of the cases. This
value only surpassed the 3% when increasing the frequency to 300–600 samples per
second.

5 Relation of Energy Usage with the Roofline Model

Regarding the two main RAPL domains for servers, “pkg” depends mainly on
the amount of core activity and the cache usage, while “ram” depends on the
amount of transferred data. These concepts are related to the performance model
we described previously, so our goal in this Section is to relate energy consumption
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Fig. 6 Roofline model of each execution made, along with a heatmap depending on average “pkg”
consumption

with the Roofline Model. There is a previous related study that addressed the rela-
tionship between execution time, energy consumption and the Roofline Model in
both CPU and GPU architectures [16]. Therefore, we selected a set of multithreaded
applications (mainly from the NAS suite) to be profiled with our tool using the
JUST_PROFILE mode, so for each benchmark we obtain both their performance
and energy usage data. Then, we process these data to obtain the Roofline Model of
each application alongside a heatmap that describes the average value for a given
RAPL domain. Figures6 and 7 show the obtained results for our set of applications.
Some of the benchmarks are repeated, but with different number of threads, which
equals to a lower aggregated value of gigainstructions per second. Results show
that, “pkg” consumption has some relation with gigainstructions (the most reddish
dots are in the higher part of the figure), while “ram” has a negative relation with
Operational Intensity (the most reddish dots are near the roof vertex).

Nonetheless, this information is incomplete because we are focusing in the aggre-
gated result of the data. We made then, an analogous study using the Dynamic
Roofline Model, so we can relate instantaneous energy usage with the dynamic per-
formance values. In this way, we are able to generate variations of the DyRM figure
that use a heatmap for the energy consumption, rather than the temporary phase as
the pure DyRM does. Figure8 shows an example of this plot for the bt benchmark
from the NAS suite. The reddish points indicate a high energy usage value, whereas
the blue ones; a low one. In this case, it also shows that a high gigainstructions/s
value leads to a high energy usage in “pkg” domain.

In order to go further in the analysis, another kind of figures were generated.
Figure9 shows, using the same data as the one for Fig. 8, two scatter plots, so it
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Fig. 7 Figure6, but using “ram” domain instead

Fig. 8 Dynamic roofline model with a heatmap for “pkg” domain energy usage for a given NAS
benchmark
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Fig. 9 Scatter plot for bt NAS benchmark, correlating energy usage with performance metrics

is easier to identify a possible correlation between the two pair of metrics (pkg–
ginsts/s and ram–oi). In the case of operational intensity and “ram” usage, it would
be a negative correlation.

6 Conclusions and Future Work

This work introduces a new tool that characterizes the performance of parallel appli-
cations in NUMA systems using low–overhead hardware counter data. Currently, the
tool works on Linux systems and Intel architectures. The performance is shown in
terms of the Roofline model. This tool includes initial implementations of strategies
that address the optimization of memory accesses through page and thread migra-
tions. Another of its goals is to model and decrease power consumption in the whole
system. A study that tries to relate energy usage with performance metrics was also
shown.

As futurework, current strategies have to be refined, and newonesmight be imple-
mented. Other possible extensions include having different performancemetrics, and
adapting it to distributed–memory systems. Furthermore, the presented study about
the relation between energy usage and performance metrics does not apply to every
application. Further research about explaining and modeling energy usage based on
hardware counter data shall be continued.
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Usage Experiences of Performance Tools
for Modern C++ Code Analysis and
Optimization

Huan Zhou, Christoph Niethammer, and Martin Herrerias Azcue

Abstract Due to the need for scalability and readability in software, the ever-
increasing number of performance-critical and large-scale applications nowadays
have been implemented in C++. This encourages the wide usage of the Standard
Template Library (STL) or C++ libraries (for example Eigen) for linear algebra,
whose underlying implementations are fully encapsulated. Therefore, the perfor-
mance analysis and optimization of modern C++ applications (either sequential or
parallel) encounters challenges. In this paper, we aim to analyze and address this
challenge by applying two different performance analysis tools of Cray Performance
Analysis Tool(CrayPat)/Apprentice2 and Extrae/Paraver to practical use cases on a
CrayXC40 system. The output profiling data is fully discussed to pinpoint the perfor-
mance bottlenecks and the parallel scaling issues. The solutions to the performance
problems are further given and (roughly) evaluated. Our experience is generic enough
to be adopted to analyze different applications via the use of other tools.

1 Introduction

Fortran was the first high-level programming language, which was designed with
numerical computations inmind. It is thus especially well suited to support array/ma-
trix computation in an efficient way. This leads to a large number of legacy libraries in
High Performance Computing (HPC) applications, which are written in Fortran [12].
Simulations in HPC have been becoming more and more complex in terms of the
mathematical models and features to solve a wide range of current real-world prob-
lems, over the past decades. Due to the increasing complexity, the applications should
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be implemented in a way that can easily be extended to support new behaviors or
features. This, in turn, results in more complicated code, control flows, and data
structures, which often go far beyond the array/matrix type. Fortran did only slowly
adapt to these needs and therefore, Fortran is nowadays less popular in HPC and
used mostly in some of the contemporary projects regarding HPC. C++, as one of
the high-level programming languages, is becoming a popular alternative to For-
tran in HPC, now, due to its possibility to write high-performance, modularized and
portable code [4]. Since 2011, C++ [2] (aka. modern C++) has been enhancing its
applicability in the area ofHPCwith the improved user-friendliness and enriched fea-
tures and idioms. The C++ Standard Template Library (STL) keeps being extended
with new algorithms and containers. Essentially, the STL is highly recommended,
i.e., it is not necessary to establish the data structures or algorithms that are already
supported in the STL unless it can better describe the characteristics of the applica-
tions. Besides the STL, high performance C++ template libraries for linear algebra
emerged, e.g., Eigen [17], Armadillo [23], etc. Unlike Fortran programmers, modern
C++ programmers face new challenges due to the availability of various template
libraries, whose implementations are transparent to the user. This can frequently lead
to performance degradations if those libraries are used in the wrong way, e.g., by
choosing thewrong STL container or inadequateApplication Programming Interface
(API) function call combinations of external C++ libraries. Therefore, it is of great
significance for the HPC user to detect the origin of the performance bottlenecks in
the sequential or parallel C++ code. I.e., neither the sequential nor parallel C++ code
should waste hardware resources (e.g., CPU and memory) due to inefficiencies in
language and library usage. A strong effort has to be made to identify the underlying
origin of performance issues in the case of the intuitive use of traditional performance
measurement methods, such as manual insertion of time stamps to output log files.
The high encapsulation of data and functions in the modern C++ code will further
increase such effort. This motivates the usage of specialized performance analysis
tools for a better understanding of instrumented C++ programs and the locations of
the performance hotspots in them. The benefits of using specialized performance
analysis tools are fully described in the paper [11].

A variety of performance analysis tools co-exist for different purposes. The Extrae
instrumentation framework [14] and Paraver trace visualization and analysis tool [21]
are two flexible open source tools developed by the Barcelona Supercomputer Cen-
ter (BSC) for general-purpose analysis on a wide variety of HPC platforms. Cray-
Pat [19] and Apprentice2 are easy-to-use legacy tools offered by Cray for the XC
platform. Both of them support C++ and can give deep insight into the program
behavior including hardware performance metrics based on hardware performance
counters. The visualization capabilities of both toolsets allow for a quick inspection
while numerically accurate numbers can still be obtained for detailed performance
statements.

The analysis performed by both tools can be conducted in two aspects: sampling
and event tracing, with which it is possible to determine, which sections of the code
is performance-critical and worth optimizing [7].
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An early study [24] is conducted to describe the differences manifest in the pro-
filing and tracing of parallel C++ programs. The main contribution coming from this
work is to enable measurements for all aspects of C++ classes and templates and
expand experiences on profiling the parallel C++ programs. Those experiences can
not be applied to the modern C++ programs as more advanced features and STL
are added. The recent existing experience in using performance tools is centered on
the profiling of MPI communication together with the scalability analysis [11, 22].
The sequential performance is however also a critical factor to be considered besides
a decent parallelization scheme. The degraded sequential performance is harder to
recover as increased parallelism and should, therefore, receive attention.

To our knowledge, there are so far very limited practices on analyzing high level
C++ based HPC codes. Therefore, in this paper, we use the aforementioned tools (i.e,
CrayPat/Apprentice2 and Extrae/Paraver) to demonstrate the difficulties in under-
standing the potential performance problems of modern C++ code. We showcase the
current way of finding and conquering such performance problems by using a real
world example. Rather, we use three core modules of a Piece-Wise-Linear (PWL)
network solver for large photovoltaic (PV) systems [15]. The modules are imple-
mented in C++ and make use of the Eigen library for linear algebra operations. They
represent performance-critical operations for the detailed simulation of PV systems,
required in the framework of the project HyforPV [16]. Our practices in this paper
exemplify themethod of identifying the hotspots inmodern C++ code and alleviating
their adverse effects, according to obtained profile and tracing data.

After demonstrating the identification of performance issues for our example we
also come up with solutions and apply them to the code. We close the common
optimization cycle process of comparing the code before and after the optimization,
validating our optimization solutions using the performance tools again. The expe-
rience in this paper can also be harnessed when the C++ programmers use other
widespread tools, e.g., Score-P [20] or HPCToolkit [1] to obtain similar data.

This paper is structured as follows. In Sect. 2 we introduce two performance
analysis toolsets: CrayPat/Apprentice2 and Extrae/Paraver. A brief description of the
use cases is given in Sect. 3. Section4 starts with the identification and analysis of the
performance bottlenecks using the aforementioned tools. It is followed by potential
solutions and finished with performance comparisons before and after applying our
solutions. Finally, Sect. 5 concludes with a summary of our work.

2 Performance Analysis Tools

In this section, we briefly introduce the aforementioned two types of performance
analysis tools. They are essentially different, whereas there are several commons
between them. They are utilized together with the Performance Application Pro-
gramming Interface (PAPI) library for obtaining the information on the hardware
counters. They are available for use with C++, C, and Fortran and support a wide
range of parallel programming models including Message Passing Interface (MPI),
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OpenMulti-Processing (OpenMP) and hybrid version combiningMPI and OpenMP.
Ultimately, the performance problems are expected to be indicated and the causes of
those problems could also be reasoned.

There are two fundamental mechanisms of collecting data from an application—
sampling and event tracing. Sampling is a statistical profiling mechanism helping the
user to perceive the holistic calling structure of an application and the time-consuming
routines in it. Therefore, sampling is light-weight and provides a preliminary anal-
ysis of the application performance. Conversely, the event tracing mechanism is
expected to capture more detailed and accurate information for the function calls of
interest at the expense of increasing profiling overhead. Therefore, event tracing is
preferably executed after the potential time-consuming routines are identified during
the sampling. With event tracing, extensive performance metrics, such as parallel
efficiency, load imbalance rate, and thorough hardware performance counter data,
can easily be detected or derived. In Sect. 3, we use the Cray Performance Analysis
Tool(CrayPat)/Apprentices for sampling and the Extrae/Paraver for event tracing.

2.1 CrayPat and Apprentice2

The CrayPat is a fully-featured toolset for analyzing the performance of an appli-
cation compiled and run on a Cray system. It supports Cray Compiling Environ-
ment (CCE), Intel Fortran/C/C++ compiler and GNU Compiler Collection (GCC).
The hardware counters are collected via manually setting the environment variable
PAT_RT_PERFCTR. A typical performance analysis using CrayPat consists of three
steps: (1) instrument the program, (2) execute the instrumented program to generate
the desired raw performance data, and (3) process the raw performance data to print
the human-readable profile report and convert it to files with .ap2 format. These
three steps are satisfied by the CrayPat components—pat_build, the CrayPat run
time environment, andpat_report, respectively. In the profile report, the captured
performance data is correlated to the source code (of the user, standard or third-party
libraries), which facilitates the user to locate the routines of concern. Where appli-
cable, the suggestions of modifications for performance tuning are given. The .ap2
files are visualized and analyzed in the future with Apprentice2.

Apprentice2 takes the .ap2 files as input to visualize and give a deeper sight into
the resulting performance analysis data. Importantly, Apprentice2 can provide a call
tree view of the program execution, from which we can identify the routines that are
called most frequently or spend the most time. These two Cray tools are available
only when the perftools-base module is loaded. CrayPat documentation1 can
be referred to when detailed information is demanded.

1https://pubs.cray.com/content/S-2376/6.3.2/performance-measurement-and-analysis-tools-s-
2376-632/.

https://pubs.cray.com/content/S-2376/6.3.2/performance-measurement-and-analysis-tools-s-2376-632/
https://pubs.cray.com/content/S-2376/6.3.2/performance-measurement-and-analysis-tools-s-2376-632/
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2.2 Extrae and Paraver

Extrae and Paraver are among the often-used code analysis packages to generate
profiles and traces of the execution of MPI and OpenMP parallel programs. Extrae
will collect information during execution for each concurrent execution path, i.e.,
MPI rank and thread. The collected information is merged into a trace in the Paraver
trace file format after the program execution. The trace can then be visualized and
analyzed with Paraver.

Basically, the collected information mainly embodies in three aspects: MPI com-
munication and OpenMP parallel execution, hardware counters—cache misses/hits,
Instructions Per Cycle (IPC), etc.—and user functions. Extrae’s functionality is con-
trolled via XML configuration files. By default, Extrae comes with a rich set of
configuration examples for various tracing scenarios, which can be modified further
by the user according to his/her needs for set up specific instrumentationmechanisms.

Extrae comes as a set of libraries for the different programming models and their
combinations, which intercept important API calls of the models. This allows tracing
dynamically linked binaries using library preloading via LD_PRELOAD without the
need for recompilation or linking of the binary and used libraries. Through this
method, Extrae covers the important MPI and OpenMP models as well as POSIX
standard functions for threads or I/O. The full list of supported models can be found
in the Extrae user guide [8]. Statically linked binaries do not support the preload
method. They require relinking but not a full recompilation.

Two different methods are provided for additional user function instrumentation:
The first uses the DynInst [3] library and does not require recompilation. The second
is based on compile time function instrumentation, allowing for lower run time
overheads but comes with the disadvantage of a required binary recompilation.

Paraver is a flexible program visualization and analysis tool and designed to be
able to provide a global perspective on the program behavior as well as to analyze the
details of any region of concern. Therefore Paraver provides three different display
types: Views, Histograms and 3D Histograms. Views display any information of
Events or counters based on a time line and allow zooming into any area of interest.
The Events and counters are all numeric values, which can be combined by mathe-
matical operations in Paraver and displayed in a view allowing the construction of
arbitrary metrics for analysis. Histograms allow the computation of any statistics
in a given time period in the trace. They can be used to obtain accurate numbers
for metrics where views can only give a rough impression based on color scales.
3D Histograms allow filtering for certain events and values in the trace. These three
components make Paraver being one of the most flexible trace analysis tools.

The views and histograms can be stored in configuration files which can be used
for the analysis of other multiple traces. Paraver provides the user with a spectrum
of predefined configuration data spanning all aspects of performance information:
communication, thread scheduling, hardware performance counters, sanity checks
for the tracing process itself, and many more.



108 H. Zhou et al.

3 Use Cases

This section briefly describes our experience with three test cases: (a) monotonic
current-voltage (I–V) curve Piece-Wise-Linear (PWL) approximation, (b) series-
parallel PWLcurve addition, and (c)MaximumPower Point (MPP) calculation. They
are separate (although related) function modules—implemented in C++ and Eigen
library of version 3.3.7 for linear algebra operations—representing performance-
critical operations for the detailed simulation of (PV) systems. Such simulations
are part of the HyForPV project [16], which aims to provide detailed short-time
production forecasts for large PV plants in real-time and with a very short update
rate. The performance analysis and optimization for these modules (see Sect. 4) is
therefore of significance. Refer to [15] for further details and contextual information.
The following paragraphs provide an overview of the underlying algorithms behind
each module:
I–V curve approximation The response I–V curves of the fundamental compo-
nents (cells and diodes) of a PV system are typically characterized by implicit equa-
tions (e.g., [9]), which are expensive to evaluate. To overcome this problem—and to
achieve a certain degree of model-independence—curves can be represented as PWL
approximations. Since both cell and diode curves are monotonic, relatively simple
algorithms (in this case recursive bisection [6]) can be used for this purpose.

A representative set of curves is calculated in advance and an application-specific
interpolation method [25] is used to calculate the irradiance- and temperature-
dependent curves on run-time. Both this algorithm and the series-parallel addition of
curves (below) can prohibitively increase the number of nodes and/or generate curves
that are no longer strictly monotonic (due to numerical precision errors). The I–V
curve approximation module resolves these issues by (1) using the Ramer–Douglas–
Peucker line simplification algorithm [10] to reduce the number of nodes, and (2)
enforcing strict monotonicity

How close the final PWL curves resemble the original ones depends on the choice
of the distance dimension and the original PWL approximation tolerance.
Series-Parallel PWL curve addition Basically, a photovoltaic (PV) system can be
modeled as hierarchical series-parallel arrays of a handful of similar elements. Cells
connected in series to form cell-strings, typically connected in parallel to a bypass-
diode; and in series with other cell-strings to form a module. Several modules in
series form a string; and one or several strings in parallel form an array. The solution
of non-linear PWL network circuits has been a well-established area of study over
the past more than five decades [13, 18]. While numerous algorithms have been
proposed to find operational point(s) of such a circuit, none seems to be fitted to the
problem at hand, namely: to find the global MPP of the system’s response curve.
Further on, the simple hierarchical structure of a typical PV circuit allows it to be
solved as a series of elemental, independent steps: addition of voltages for elements
in series (e.g., cells into cell-strings, andmodules into series), and addition of currents
for elements in parallel (e.g., cell-strings with bypass diodes, and strings into arrays).
The two operations are actually mirrored versions of each other, which allows further
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simplicity of implementation. The algorithm uses a straightforward “brute force”
approach consisting of five steps: (1) concatenated end to end, to form a common set
of break-points, (2) identification of a unique (within a given tolerance), sorted set
of break-points, (3) linear interpolation, to bring all PWL curves to the common set
of break-points, (4) addition of curve values, and (5) resulting curve simplification
(as described in the previous paragraph).
MPP calculation The I–V curve of a single cell (or any group of identical cells under
uniform irradiance) has a single, characteristic knee where the MPP is located. That
is, a point at which the product of current and voltage reaches a maximum. Arrays
under non-uniform irradiance (or composed or non-identical elements) can lead to
the so calledmismatch effect, with response curves that contain multiple local power
maxima. For an I–V curve represented as a PWL approximation, the MPP will either
be (i) a vertex j in the PWL representation, such that v j i j > vkik for any j �= k, or
(ii) local maxima within a segment, i.e., a point xp on a segment (x j , x j+1) such that
x j < xp = (m j x j − y j )/2m j < x j+1, where m j is the slope of the segment. The
MPP calculation is thus plainly an exhaustive search within the PWL curve vertices
and within any existing local maxima.

4 Performance Studies

Our studies of the performance of the three use cases were conducted on the Cray
XC40parallel system.Wefirstly describe the architecture of the compute nodes in this
parallel system, and then detect the performance bottlenecks in the sequential/parallel
code of the three use cases (i.e., I–V curve approximation, Series-Parallel PWL curve
addition, and MPP calculation) and propose solutions to avoid them.

The performance tools utilized in our studies are CrayPat/Apprentice2 and
Extrae/Paraver. The former focuses on a statistical profile of the sequential code,
where a set of the percentages of exclusive samples for certain functions with respect
to the total exclusive samples are displayed in descending order. The latter traces
the parallel code and especially inspects the performance metrics—load balance and
hardware counters—in relation to the parallel regions. Note, that the parallel code is
always written based on the optimized sequential code for each use case. For demon-
stration purposes, the number of points in the input curve is chosen quite high (i.e.,
1 000 000) to exaggerate the profiling data/performance issue during runs of all the
three use cases. The elapsed time below is measured under experiments running 6
times and averaged with small standard deviations.
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4.1 Cray XC40 System

For our studies, we used the Supercomputer Cray XC40 system, named Hazel Hen,
located at the High-Performance Computing Center Stuttgart (HLRS). The Hazel
Hen compute nodes consist of dual twelve-core Intel Haswell E5-2680v3 processor,
running at 2.5GHz and are equipped with 128GB of Double Data Rate (DDR4)
Random Access Memory (RMA). Each core of the Intel processor has an exclusive
256GB L2 unified cache. A compute node is regarded as a NUMA system where
each processor forms a Non-UniformMemory Access (NUMA) domain and the two
NUMA domains are interconnected with each other through the Intel Quick Path
Interconnect (QPI).

For all of our experiments,we use theGNUprogramming environment 6.0.5 based
on GCC 8.3.0, which comes with support for OpenMP 4.0. The aprun option -d
is specified to define the number of threads per process and bind each thread to a
distinct processor core. The aprun binding scheme goes successively through the
available cores.

4.2 I–V Curve Approximation

In this section, the sequential version of the I–V curve approximation code is profiled
first and then followed by the analysis of its parallel version.

4.2.1 Sequential Version

CrayPat is used to obtain an initial, sampling-based performance dataset, which is
used as a metric [11] to detect the most relevant and performance-critical functions.
This is a critical step as it helps to avoid cumbersome performance data files and high
overhead from blindly taking a full trace. The textual profile for the routines in con-
nection with the Ramer–Douglas–Peucker algorithm, together with their sampling
fractions are shown in Fig. 1. The profiled functions range from the user-defined to
the internal routines of the C++ STL. The latter obscures the experimental dataset.
Here the call graph visualized with Apprentice2 is omitted since only the recursive
function is instrumented, inside which all the sampled routines are visited. Figure1
reveals that the routine _M_range_initialize with the highest sampling fre-
quency is defined in stl_vector.h starting from line 1287. Basically there are
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two different causes for the high sampling count of this routine: either a frequent
occurrence or large overhead. We can exclude the former due to the fact that all
routines occurring in this recursive function are called the same number of times
as the recursion depth. Hence, the routine _M_range_initialize is the most
time-consuming one among the sampled routines. It should receive the most atten-
tion. However, this function is unknown to us as well as to the user of the code.
Therefore, we further dive into the implementation of _M_range_initialize
with the purpose of understanding the fundamental cause of its large overhead. Its
implementation shows that this routine is called to insert copies of the data from
one vector to another vector, which can become expensive, especially when either
the vector size or the recursion depth is large. Next, Listing 1 expands the profiled
recursive function body (named with RDP), from which the connection point with
the routine _M_range_initialize can be located. Clearly, the statements of
out.assign and out.insert entail insertion and memory copying operations
and thus are most likely to induce the invocation of _M_range_initialize.
To address this issue, the output vector (storing the resulting points) can be sub-
stituted by an output list (with std::list) or a global index vector indicating
the position of the wanted points in the input curve. The latter completely removes
the repeated assignment and insert operations. The elapsed time of the (optimized)
algorithm with the index vector is reduced by 32%, compared to the original one
with the output vector.

Fig. 1 Textual profiles of functions and line numbers of the original I–V curve approximation
program
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Listing 1 Source code of the original sequential recursive algorithm

void RDP(vector<Point> pointList, double epsilon, vector<Point>
&output)

{
Line = pointList[0] through pointList[end];
{pos, dmax} =

max_PerpendicularDistance(pointList[0..end-1], Line);
if (dmax > epsilon)
{

vector<Point> recResults1, recResults;
vector<Point> firstLine(pointList.begin(),

pointList.begin()+pos+1);
vector<Point> secondLine(pointList.begin()+pos,

pointList.end());
RDP(firstLine, epsilon, recResults1);
RDP(secondLine, epsilon recResults2);
// Build the result list, merge the two sub-ouput

lists
out.assign(recResults1.begin(), recResults1.end() -

1);
out.insert(out.end(), recResults2.begin(),

recResults2.end());
}
else
{

// Otherwise the output vector only includes the begin
// and end points
out.clear();
out.push_back(pointList[0]);
out.push_back(pointList[end]);

}
}

We continue with the analysis of the above-optimized algorithm by using CrayPat
profiling. The emphasis on the performance-critical part is changed to the recursive
algorithm itself, which is a good candidate for parallelizing using multi-threading
(e.g., OpenMP) to speed up the recursion procedure.

4.3 Parallel Version

We parallelize this recursive algorithm using the OpenMP task construct. The cor-
responding code is shown in Listing 2. The implementation creates one sub-task for
each recursive call and thenwaits for the completion of the two sub-tasks. The elapsed
time of this parallel version for a different number of threads ranging from 1 to 4 is
shown in Table1. Obviously, the parallel version fails to scale with the number of
threads as the elapsed time doubles in comparison to the sequential one. To detect the
actual cause, the full trace analysis of this parallel version executing with 4 threads
is conducted using Extrae/Paraver. Figure2 shows a zoom-in 2D timeline view of
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Table 1 The elapsed time of the original parallel recursive algorithm with 1, 2 and 4 threads

Version #Threads Elapsed time (s)

Sequential 1 0.204

Parallel 2 0.408

4 0.409

Fig. 2 Paraver zoom-in
timeline view of the original
parallel recursive algorithm
run with 4 threads. Time
goes from left to right, colors
indicate current state as
follows: yellow: OpenMP
runtime scheduling, red:
OpenMP synchronization,
blue: user code

the execution with the OpenMP task regions. Time goes from left to right in this
view and each row corresponds to one OpenMP thread. The different colors encode
different functions, where yellow bars indicate time spent in OpenMP runtime, red
bars indicate synchronization overhead triggered by task waiting, and blue (darker)
bars indicate actual user code execution inside tasks. Obviously, this zoom-in graph
is almost stuffed with synchronization and OpenMP runtime. Worse, plenty of small
tasks (with duration less than 3ns) are scattered throughout the timeline.

Listing 2 Source code of the original parallel recursive algorithm with OpenMP task constructs

#pragma omp task firstprivate(begin, position)
{

RDP(begin, position);
}
#pragma omp task firstprivate(position, end)
{

RDP(position, end);
}
#pragma omp taskwait

Therefore, it is necessary to increase the per-task size to reduce the portion of the
runtime overhead in the total elapsed time. To achieve this, an if clause is added to
the OpenMP task directive to prevent the creation of small tasks. With this, tasks are
spawned only when the values of posi tion − begin and end − posi tion are larger
than pre-defined thresholds. Again, the scalability of the optimized version with the
if clause is evaluated and shown in Table2. Now, the elapsed time decreases along
with the increasing number of threads.
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Table 2 The elapsed time of the optimized parallel recursive algorithm with 1, 2 and 4 threads

Run #Threads Elapsed time (s)

Sequential 1 0.204

Parallel 2 0.171

4 0.131

4.4 Series-Parallel PWL Curve Addition

The Series-Parallel PWL curve addition algorithm is implemented in five steps as
described in Sect. 3. The last step is excluded during the profiling performed in this
section, as it is already analyzed in Sect. 4.2.

4.5 Sequential Version

CrayPat is used to present a preliminary view of the functions that are directly or
indirectly required by this module along with their sampling fractions. A list of
the non-negligible sampled routines extracted from the full CrayPat profile textual
report are shown in Fig. 3, with the corresponding code parts being highlighted on

Fig. 3 Textual profiles of functions and line numbers from the original sequential Series-Parallel
PWL curve addition program
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Fig. 4 Textual profiles of functions and line numbers from the optimized sequential Series-Parallel
PWL curve addition program

the left side. From the call graph information of Apprentice2, we find that these non-
negligible routines are visited inside the user function StlSort::sort, which
is implemented based on the STL sorting algorithm. As we explained before, the
sorting operation is visited only once and thus the reason for the high sampling count
of the highlighted routines is the significant time they take. Thus it is desirable to
perform further analysis of the underlying implementation of the routines of concern
according to the given locations. And then the implied behaviors behind them are
demonstrated on the right side. These three behaviors lead to a heap sorting, whose
time complexity is O(n log n) (n is the length of the list to be sorted). This could
be costly especially when the two curves are extremely large and will be certain
to hinder the scalability of this module as the input I–V curve grows. To solve this
performance problem, an ad hoc sorting method needs to be proposed. Note, that the
curves to be combined are already ordered, a one-off merge sort can thus be applied,
whose complexity is O(n). A mini-experiment shows that the average elapsed time
is reduced by up to 68% when the STL-based implementation of this module is
optimized with the one-off merge sort.

We further analyze the optimized implementation in terms of sample information,
as shown in Fig. 4. It can obviously be observed that the sorting-related routines are
no longer within the scope of our consideration due to their absence in the list of
relevant routines. Instead, a routine defined in file stl_algo.h with a relatively
large sample percentage of 17.9 is called inside the user function binScalIndex.
This routine is determined to be an STL algorithm routine upper_bound after
diving into the implementation details of the stl_algo.h. The upper_bound
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itself is insignificant, the repeated invocation of it could, however, bring performance
issues. Therefore, we further identify the ancestral functions of thebinScalIndex
in terms of its call tree. Rather, Listing 3 contains a code snippet showing that the
user function evalScal—as the parent function—is invoked repeatedly until the
nested loops finish.Moreover, this code snippet can be accelerated viamulti-threaded
parallelism.

Listing 3 Code snippet calling the scalEval

for (unsigned j = 0; j < psSize; j++)
for (unsigned i = 0; i < uniquePWLSize; i++)

if (pointSet(j, 2) != UNDEFINED && pointSet(j, 2) !=
i)

{pointSet(j, counterDim) +=
uniqueVecPS.at(i) ->

scalEval(pointSet(j, dim),
dim)*w[i];}

4.6 Parallel Version

As thefirst step towards parallelism,wenaively parallelize the outer loop by explicitly
describing the variable j as private. In this regard, all other variables defined outside
the nested loops (i.e.,pointSet,uniqueVecPS, etc.)will be considered as shared
by default. Next, the elapsed time of this naive parallel version with the number of
threads increasing from 1 to 4 is shown in Table3. We observe bad scalability for
this initial version. Rather, there is a marginal decrease in the elapsed time when the
number of threads is increased to 2 and then a slight increase is observed when the
number of threads reaches 4. Again, further analysis via event tracing is required
to identify the cause of the bad scalability and provide a direction in improving the
scalability.

Listing 4 Code snippet (from the binScalIndex) covering the accesses to pointSet

pointSet(begin) = -Inf; // write to pointSet
pointSet(end) = Inf;
Index = upper_bound(pointSet, val); // read from pointSet
Restore pointSet; // write to pointSet

Table 3 The elapsed time of the original parallel Series-Parallel PWL curve addition programwith
1, 2 and 4 threads

Run # Threads Elapsed time (s)

Sequential 1 0.398

Parallel 2 0.372

4 0.390
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Fig. 5 A zoom-in histogram
of execution of the original
parallel Series-Parallel PWL
curve addition program for
performance statistics

Figure5 provides a Paraver histogram visualization of the profile statistics (such
as parallel efficiency and load balance rate) for the parallel-for region, which
is extracted from the full trace of this parallel version executing with 4 threads. It is
obviously observed that neither synchronization nor load imbalance is the reason for
the bad scalability due to the relatively-low synchronization overhead (compared to
the running overhead) and high load balance rate (97%). Thus we continue collecting
hardware counter information. The IPC in relation to the full trace, is then shown
in Fig. 6. Before the OpenMP parallel construct is encountered, the value of IPC of
thread 0 is in the range between 1.13 and 1.14. However, the value of the IPC for
all the 4 threads falls in the range of 0.34–0.39 when the parallel construct starts. A
parallel execution obtaining IPC lower than 0.5 is unacceptable and most likely due
to that the computational core is stalled by a huge amount of memory Input/Output
(I/O). To solve this performance issue, we shift our attention to the Listing 3 and
then dive into it with the goal of detecting places that potentially trigger the memory
I/O activities. As we mentioned previously, the variable uniqueVecPS is shared
and thus the variable pointSet pointed by it is shared as well. Besides, all the 4
threads will work together on the scalEval function, inside which another user

Fig. 6 Analyzing IPC of
execution of the original
parallel Series-Parallel PWL
curve addition program
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Table 4 The elapsed time of the optimized parallel curve combination algorithm with 1, 2 and 4
threads

Version #Threads Elapsed time (s)

Sequential 1 0.398

Parallel 2 0.343

4 0.316

function binScalIndex is further invoked. For each thread, the accesses to the
shared variablepointSet are required in thebinScalIndex, as the code snippet
in Listing 4 shows. In detail, this code snippet starts with the partial modification to
pointSet, follows with a global read operation inupper_bound and ends with a
restoration of the pointSet. There are thus frequent reads on the pointSet, that
is altered by all the 4 threads. In this regard, the cache coherency protocol, which is
widely applied in the current multiprocessing machines, will force frequent reloads
of the cache blocks (memory I/O). This is theoretically called false sharing [5] on
pointSet pointed by unqiueVecPS.

Accordingly, we optimize the parallel code by removing the writes on the
pointSet from Listing 4 and again estimate its scalability. The elapsed time of
the optimized parallel version is continuously reduced when the number of threads
increases from 1 to 4, as shown in Table4. Not surprisingly, according to Amdahl’s
law, the elapsed time fails to be halved when the number of threads is doubled.

4.7 MPP Calculation

Figure7 provides some initial insights into the sampling statistics of the execution
of the MPP calculation module by using CrayPat. Coupled with the corresponding
call graph (omitted here for clarity), we conclude that the most-frequently sam-
pled sub-routine _M_realloc_insert occurs inside the user-defined function
getMpp. The given hint tells us that the _M_realloc_insert corresponds to
a new operator, which implies memory reallocation. Repeated memory reallocation
is certainly not desirable since the memory allocation is slow and further the real-
location often involves unnecessary copying operations. Next, Listing 5 shows the
relevant code snippet from the user function getMpp, where we can deduce that
the operation of push_back could lead to the memory reallocation. Theoretically,
the push_back is designed to reallocate memory when the vector mpPointSet
exceeds the reserved memory size. To reduce the number of reallocations, the length
of the vector mpPointSet is decided to be the summation of pointSet.size()
and threshold in the first place. In this way, the number of calls to push_back can
be reduced by at most threshold, the value of which should be determined empiri-
cally. The threshold is set to 100 in this comparison experiment, which shows that the
implementation with less push_back improves the time performance by 20.6%.
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Fig. 7 Textual profiles of functions and line numbers from MPP calculation program

Listing 5 Relevant code snippet from MPP program

int length = pointSet.size();
Std::vector<Point> mpPointSet(length);
mpPointSet = pointSet;
for (i = 0; i < pointSet.size() - 1; i++)
{

xmp = the local mpp (power maximum) in the line i through
i+1

if (xmp is interpolative)
mpPointSet.push_back(xmp);

}
Auto largest = std::max_element(mpPointSet.begin(),

mpPointSet.end(),
multiply);

5 Conclusion

Two different types of performance analysis tools (i.e., CrayPat/Apprentice2 and
Extrae/Paraver) are applied to this work. We conducted this work in an attempt to
spread the positive experience in detecting and addressing the performance issues for
both parallel and sequential C++ programs, which build on the C++ STL or external
libraries for common data structures or algorithms. Not only does the analysis of the
scalability of parallel programs matter, but so does the performance of sequential
programs. The sequential code is thus first analyzed with the sampling feature of
the CrayPat/Apprentice2 tool. It aids the user in highlighting the relevant functions
that could require a considerable time and worth optimizing or parallelizing. Then
the parallel one is further traced with the Extrae/Paraver tool, with which the trace
files can be displayed more graphically. Either way, the difficulties we endeavor to
overcome are mainly embodied in two aspects. First, it needs deep inspections of
the obscure or abstract performance data for detecting the root cause. Second, strong



120 H. Zhou et al.

grasp of the user code to be analyzed is necessitated to correlate the root cause to it.
For demonstrating our practices, the C++ code pertaining to the solar simulation has
been selected as benchmark code. The results (hints, solutions, etc.) in this paper are
generic and thus also useful for a broader audience.

Unlike the conventional C++ code, greater efforts are exerted for analyzing the
modern one due to the obscure performance data that the performance tools gener-
ate and the lack of experience for reference. The means of reducing the effort are
twofold: (1) to accumulate more referenced experiences in analyzing and optimizing
the modern C++ applications, and (2) to evolve the performance tools for offering
more straightforward views of the performance data, which directly link the perfor-
mance bottleneck to the source code instead of the routines defined in the STL or
external libraries.
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Performance Analysis of Complex
Engineering Frameworks

Michael Wagner, Jens Jägersküpper, Daniel Molka, and Thomas Gerhold

Abstract Many engineering applications require complex frameworks to simulate
the intricate and extensive sub-problems involved. However, performance analysis
tools can struggle when the complexity of the application frameworks increases.
In this paper, we share our efforts and experiences in analyzing the performance
of CODA, a CFD solver for aircraft aerodynamics developed by DLR, ONERA,
and Airbus, which is part of a larger framework for multi-disciplinary analysis in
aircraft design. CODA is one of the key next-generation engineering applications
represented in the European Centre of Excellence for Engineering Applications
(EXCELLERAT). The solver features innovative algorithms and advanced software
technology concepts dedicated to HPC. It is implemented in Python and C++ and
uses multi-level parallelization via MPI or GASPI and OpenMP. We present, from
an engineering perspective, the state of the art in performance analysis tools, discuss
the demands and challenges, and present first results of the performance analysis of
a CODA performance test case.

1 Introduction

Aviation is an essential part of our society and economy. In 2018 the total number
of passengers rose to 4.3 billion and is estimated to grow at a rate of 4.3% per
year, i.e., doubling about every 15 years [1, 2]. Being the only rapid worldwide
transportation network, air transport represents 35% of all international trade and
about 40% of all international tourism. The global economic impact of aviation
(direct, indirect, induced and catalytic, e.g. on tourism) is estimated at 7.5% of the
world’s Gross Domestic Product (GDP) [3]. On the other side, air transport yields
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undeniable adverse effects on society and environment, most notably, noise pollution
and the emission of greenhouse gases. Due to its increasing growth, aviation could
play an increasingly important role in total CO2 emissions in the future [4].

The EuropeanCommission defines in its vision for Europe’s aviation several goals
to, among others, mitigate the adverse impact of aviation on society and environment.
These goals include a reduction of 75% of CO2 emissions, 90% of NOx emissions,
and 65% of perceived aircraft noise by 2050 (in comparison to a typical new aircraft
in 2000) [5]. For the aerospace industry these goals impose heavy demands on future
product performance, which require step changes in aircraft technology andmandate
new design principles. Thus, future aircraft design may be driven by unconventional
layouts such as the low noise aircraft model (LNA), a blended wing body aircraft, or
the flying wing configuration. For these unconventional layouts flight characteristics
will be dominated by non-linear effects.

In this case, high-fidelity numerical simulation of flight characteristics becomes
inevitable for the design and assessment of future step-changing aircraft designs.
Numerical simulation provides reliable insight into new aircraft technologies and
allows aiming for best overall aircraft performance through integrated aerodynamics,
structures and systems design and allows for consistent and harmonized aerodynamic
and aeroelastic data across the flight envelope.

Another key aspect is the reduction of development time for new aviation technol-
ogy. Today, the development, testing and production of new aircraft involve signifi-
cant timing and financial risks. These risks and the resulting long aircraft operation
spans slow down the introduction of progressive technology and dynamic improve-
ments. For this reason, the German Aerospace Center (DLR) is putting the virtual
product at the heart of its scientific work in its guiding concepts for aeronautics
research. The virtual product, i.e., high-precision mathematical and numerical rep-
resentation of a new aircraft and all its characteristics and components, allows faster
development cycles; starting from product development up to approval, production
and maintenance [6]. To achieve this, further improvements of simulation capabil-
ities as well as computational efficiency and scalability on current and future high
performance computing (HPC) systems is pivotal.

In this paper, we share our efforts and experiences in analyzing the performance
of CODA, a CFD solver for aircraft aerodynamics developed by DLR, ONERA, and
Airbus. While the CFD solver is only one part of FlowSimulator, the larger frame-
work for multi-disciplinary aircraft design, it already reaches the limits of a detailed
performance analysis with current performance analysis tools. CODA incorporates
innovative algorithms and advanced software technology concepts dedicated toHPC.
It is implemented in Python and C++ and uses multi-level parallelization viaMPI or
GASPI and OpenMP. Our principle contribution is an assessment, from an engineer-
ing perspective, of the state of the art in performance analysis tools, a discussion on
demands and challenges, and a presentation of first results of the performance anal-
ysis of a CODA performance test case. This may provide guidance for researchers in
their efforts to analyze and optimize other engineering applications as well as serve
as feedback to performance analysis tool developers.
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In the following sectionwe provide background on the CFD solver CODA, its part
in the larger framework and give a short overview on relevant performance analysis
tools. In Sect. 3 we present first results of the performance analysis of CODA. After
that, in Sect. 4 we discuss challenges and restrictions we experienced during our
efforts to measure and analyze the CFD solver. Finally, we summarize the presented
work and draw conclusions in Sect. 5.

2 Background

In this section we provide an introduction to CODA and its surrounding framework
FlowSimulator. We give a brief overview of relevant performance tools and discuss
the reasoning for the tools used in the performance study.

2.1 The CFD Solver CODA

At the German Aerospace Center (DLR), CFD codes have been developed for
decades, several of which are in production, i.e., in regular industrial use. One of
them is the DLR TAU code [7], which is used in the European aircraft industry,
research organizations and academia since more than 15 years. It has more than hun-
dred frequent users and was, for instance, used for the Airbus A380 and A350 wing
design. TAU uses a classical MPI-only parallelization to simulate steady as well as
unsteady external aerodynamic flows using a 2nd order finite-volumes discretization.

In 2012 DLR decided on the development of a new flexible unstructured CFD
solver called Flucs [8]. This gave the opportunity to design a modern, comprehen-
sive HPC concept from scratch. However, HPC was only one of the design drivers;
among others were: strong fully implicit schemes for improved algorithmic effi-
ciency, higher-order spatial discretization (Discontinuous Galerkin method featur-
ing hp-adaptation) in addition to finite volumes with maximum code share, improved
integration into Python-based multi-disciplinary process chains, and modularity.

Though Flucs had been started as a DLR activity, it has become part of a larger
development that is driven by Airbus, the French aerospace lab ONERA, and DLR.
After Airbus expressed its interest for a new generation CFD solver that is co-
developed by ONERA and DLR in 2015, in May 2017 all three parties reached
an agreement based on the industrial needs and constraints and decided to pursue
the joint effort. The common framework and architecture of the joint development
of the CFD solver based on Flucs was called CODA to reflect the new collaboration
and the involvement of all three partners.

Similar to TAU, CODA uses classical domain decomposition to make use of
distributed-memory parallelism. However, CODA features overlapping halo-data
communication with computation to hide network latency and, thus, improve scala-
bility. In addition, the GASPI [9] implementation GPI-2 can be used for halo com-
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munication as an alternative to MPI. This Partitioned Global Address Space (PGAS)
library features highly efficient one-sided communication, minimizing network traf-
fic as well as latency. Furthermore, CODA features additional sub-domain decom-
position, i.e., each domain can again be partitioned into sub-domains, to make use
of shared-memory parallelism resulting in a hybrid two-level parallelization. Each
sub-domain is processed by a dedicated software thread that is mapped one-to-one
to a hardware thread to maximize data locality.

2.2 The Multi-disciplinary Framework FlowSimulator

The CODA CFD solver is not operated as a stand-alone application but rather as a
plugin to the multi-disciplinary analysis (MDA) framework FlowSimulator [10]. In
particular, CODA uses FlowSimulator’s core component, the FlowSimulator Data-
Manager (FSDM) for I/O, where various I/O libraries are supported, for instance
NetCDF, HDF5, and CGNS. FSDM is an open-source software hosted by DLR [11].
FSDM provides the FSMesh class, which is the preferred container for the exchange
of data among FlowSimulator plugins. FSDM is MPI parallelized and an FSMesh
instance is a distributed representation of the data, usually containing information
on the geometry, the (computational) mesh, flow fields/solutions, as well as coupling
strategies. Fully parallel workflows aim at the parallel scalability of MDA processes
implemented via FlowSimulator. In addition to the distributed-memory paralleliza-
tion usingMPI (via the FSMesh class), FlowSimulator pluginsmay feature additional
parallelization levels like CODA does.

2.3 Overview of Suitable Performance Analysis Tools

Since CODA is implemented in Python andC++ and usesmulti-level parallelization
via MPI or GASPI and OpenMP, the main decision criteria for the selection of
appropriate performance analysis tools is the extent to which the tools support the
standards and their combination. Please note that the following overview of tools we
consider suitable is compiled to the best of our knowledge and reflects our personal
experiences. Hence, we do not claim that the list is complete neither that the tools
may not have recently been extended with the necessary functionality.

The easiest and probably most commonly used method to generate basic per-
formance information for Python programs is via the Python modules profile or
cProfile in combination with pstats [12]. Profile and cProfile are mostly interchange-
able and provide statistics for accumulated duration and number of invocations
for various parts of the program. Any python function can be profiled by call-
ing cProfile.run(<function>) instead of <function>within a Python
script that imports the profiling module. The generated statistics can be formatted
into simple text reports via the pstats module. In a parallel execution, output is gener-
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ated for each process and is intermingled, which requires additional post-processing
to provide meaningful results. Being specific to Python, the Python profile mod-
ules neither provide any information for the C++ parts of hybrid Python and C++
applications nor do they support OpenMP or GASPI.

The commercial tools Arm MAP and Intel Vtune claim to support mixed Python
and C/Fortran applications. Arm MAP displays system information over time, e.g.,
CPU and memory utilization. Intel VTune’s summarized information is based on
periodic sampling for mixed Python and C/Fortran applications. However, we were
unable to locate further details on the available Python support for these tools at the
moment of writing this work and were unable to test the tools by ourselves since
both are commercially distributed and generally unavailable on HPC systems.

Next to these, the well-established parallel performance tools Vampir [13] and
Scalasca [14] based on the Score-P measurement environment [15] provide support
for Python as well as the BSC tools [16] including the Extrae trace monitor [17]
and the Paraver trace analyzer [18] (all except Vampir are open source). Score-P
collects information for C/C++ and Fortran applications and supports among others
MPI and OpenMP but not GASPI. While the main Score-P distribution does not
support Python, there are separately developed Python bindings that allow the usage
of Score-P with Python [19]. Since Score-P uses compiler instrumentation, for C++
applications it can create vast amounts of recorded data and an application slowdown
of up to a factor of 100 rendering the measurement nearly useless [20, 21].

For our performance measurements we chose the BSC tools for twomain reasons.
First, Extrae combines the benefits of instrumentation and sampling by intercepting
the parallel runtime to provide the exact communication behavior but uses sampling
instead of function instrumentation to record the application behavior in the compute
phases. Second, Extrae and Paraver have been successfully used before to analyze
scientific HPC applications with mixed Python/C++ and hybridMPI/OpenMP [22].

3 Performance Study of an Exemplary Test Case

CODA/FlowSimulator is one of the key next-generation engineering simulations
represented in the European Centre of Excellence for Engineering Applications
(EXCELLERAT) [23]. EXCELLERAT’s vision is to close the gap between academic
research and industrial practice, in particular, tomove the European engineeringmar-
ket towards Exascale. It leverages scientific progress in HPC driven engineering by
combining the expertise of the HPC centers involved and enables the development
of next-generation engineering applications; one of them being CODA.

To utilize current HPC systems and emerging HPC technology, efficient algo-
rithms, both, mathematically and computationally, as well as parallel algorithms
with high scalability are of paramount importance. Performance analysis aids both
targets by assisting developers not only in identifying performance issues in their
applications but also in understanding their behavior on complex HPC systems.
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Hence, one of the long-term goals in the development of workflows for virtual
aircraft design, similar to other engineering disciplines, is to be capable of measur-
ing and analyzing the performance of the entire application workflow. In the case of
CODA, thismeans analyzing the performance of the entiremulti-disciplinary aircraft
analysis workflow (MDA), which itself may consist of a variety of different applica-
tions, programming languages and degrees as well as levels of parallelism. Towards
this goal, the performance analysis of the CFD solver embedded in the workflow
already reaches the limits of current performance analysis methods and, therefore,
provides sufficient challenges whose solving may move ahead, both, application
development and performance analysis tools.

3.1 The Test Case

For an initial analysis of CODA we chose a simple wing-body configuration with
horizontal and vertical stabilizer. The test case uses the Raynolds-averaged Navier–
Stokes equations (RANS) with a Spalart–Allmaras turbulence model (SA-neg). It
uses finite volume spatial discretization with an implicit Euler time integration. The
input of the test is a small unstructured tetrahedral mesh with 1.9 million cells.
Please note that this rather small mesh (one to two orders of magnitude smaller than
industrial cases) was chosen to allow a strong scalability analysis at relatively small
core counts, i.e., neither the tetrahedral cells nor the small number of cells allow
high CFD accuracy in the boundary layer. The test case simulates steady airflow at
subsonic speed and computes typical characteristics like air velocity and direction,
pressure and turbulence. Figure1 visualizes the test case output with the aircraft
configuration and mesh on the left and the airflow around the wing and fuselage with
the surface pressure on the aircraft on the right.

Fig. 1 Visualization of the test case simulation: aircraft configuration with mesh (left) and airflow
around wing and fuselage with surface pressure on the aircraft (right)
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With this test case, we evaluate two different methods for the partitioning of mesh
data to the processes: the recursive coordinate bisection (RCB)method and the graph
partitioningmethod Zoltan [24].While Zoltan typically provides a better partitioning
for the cost of longer partitioning time, it is not fully understood why. Some aspects,
such as less communication partners per process and less overall communication
have been previously identified for TAU. In this study, we analyze the impact of both
partitioners to identify the causes for the different runtime behavior in CODA.

3.2 Measurement Collection

For the initial performance analysis the focus was on strong scalability. For both
mesh partitioning methods, we recorded three measurement sets with 1, 2, 4, 8, and
16 nodes, i.e., 24–384 cores, on Taurus, a cluster with Intel Haswell CPUs, whereas
each node consist of two sockets with 12 cores each, i.e., with two NUMA domains
per node. We measured the code in MPI-only mode, i.e., without node-local sub-
partition via OpenMP, in order to analyze the parallel behavior in the distributed
memory partitioning. We used Extrae 3.7.1 and recorded the top-level Python calls,
MPI communication and PAPI counters for the compute regions. The simulation
was truncated to the first 10 time steps, which resulted in about 90 s of runtime and
a manageable amount of about 1.3GiB of trace data for the largest runs.

3.3 Test Case Analysis Results

For the performance analysis we followed the structured approach to performance
analysis proposed by the European Center of Excellence for Performance Optimiza-
tion and Productivity [25, 26]. The approach organizes the performance analysis into
fivemain phases: first, the collection of a representative set of measurements, second,
an overview of the application and the selection of the focus of analysis (FOA), third,
the application of a performance model to identify potential issues and quantify their
impact, fourth, a detailed analysis guided and prioritized by the performance model,
and, fifth and last, the reporting of the applications performance, analysis results and
recommendations for performance optimization.

3.3.1 RCB Partitioning Method

Figure2 shows an overview of the application behavior with 24 cores based on
the measurements with RCB. The timeline displays represent the behavior of the
application along time (horizontal) and processes (vertical) and provide a general
understanding of the application behavior and simple identification of phases and
patterns. The top timeline depicts the entire application execution with the metric
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Useful Duration, i.e., time spent for computation outside of the parallel runtime (MPI
in this case); whereas the color gradient from green to blue represents the length of
each compute phase from short to long, respectively; black marks time outside of
useful computation, i.e., time in the parallel runtime. After an initialization phase
(until about 25% of the time), the application executes 10 iterations with similar
behavior (after which iterations are stopped) and completes with a finalization phase
(approx. the last 5%).

Since the initialization and finalization phase are overrepresented and the itera-
tions show no significant deviations along time, we selected the iterations four to
six from the execution as focus of analysis (FOA). The second and third timeline of
Fig. 2 depict the distribution of the compute phases and the parallel behavior with
MPI, respectively. Each iteration consists of a large computation phase (blue, middle
timeline) followed by many smaller computation bursts (green). The large computa-
tion is terminated by a global call toMPI_Allreduce (pink, bottom timeline). Within
the smaller computation bursts there is a mix of non-blocking point-to-point commu-
nication (MPI_Isend,MPI_Irecv,MPI_Waitany) and global calls toMPI_Allreduce.

After determining the focus of analysis, we applied a performance model [27]
to this application phase. The performance model combines fundamental perfor-
mance factors that allow quantifying parallel efficiency and scalability with a single
percentage value as well as providing an easy, high-level comparison of different
executions. The performance model computes the global efficiency, i.e., the overall
performance rating, based on the two main components: parallel efficiency and com-
putation scalability. The parallel efficiency provides an overall assessment of the
parallel behavior of the application and is expressed as the product of load balance
and communication efficiency. The computation scalability describes the evolution
of the total time spent in computation of multiple executions and, therefore, is only
meaningful for comparing multiple executions, e.g. with increasing core counts. It
can be further detailed in the scalability of IPC (instructions per cycle), instructions,
and frequency. The performance model is described in more detail in [25, 27].

Table1 shows an overview of the fundamental performance factors based on
the performance model. While the performance model can be computed manually,
Paraver’s basic analysis package [16] computes all the performance factors automat-
ically, which frees the user from manually collecting the data for the performance
model and avoids potential errors in the process.

The observed global efficiency of the test case with RCB decreases from 69.8%
with 24 cores to 48.1% with 96 cores. The decreasing global efficiency is mainly
caused by a decreasing load balance, which is already rather low for the smallest
measurement causing a rather low global efficiency to begin with. The other main
factors achieve very good values: the communication efficiency is very high, i.e.,
very little time is spent in MPI communication. Similarly, the computation scales
very well and the computation efficiency is generally very high with an average of
2.2 instructions per cycle (IPC).

The further detailed analysis is focused and prioritized based on the performance
model. In this case, the low load balance that decreases with scale is the main issue.
Figure3 depicts the effects of the load imbalancewithin the focus of analysis;whereas
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Fig. 2 Application behavior overview using RCB for 24 cores (1 node): application structure of
the entire run (top), computation phases of the FOA (middle), and parallel behavior (bottom)
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Table 1 Efficiency and scalability factors for the executions using RCB with 24 to 96 processes

(%) 24 48 96

Global efficiency 69.8 64.3 48.1

Parallel efficiency 69.8 65.0 49.3

→ Load balance 73.3 68.9 52.5

→ Comm efficiency 95.3 94.4 94.2

Computation
scalability

100.0 98.9 97.5

→ IPC scalability 100.0 100.0 99.9

→ Instructions
scalability

100.0 98.9 97.7

→ Frequency
scalability

100.0 100.0 99.9

Fig. 3 Load balance with RCB using 96 cores: timeline with the compute phases (left) and a
histogram showing the distribution of compute phases based on their number of instructions (right)

the left side gives an overview of the different duration of the compute phases and the
right side shows a histogram with the distribution of compute phases based on their
number of instructions. The histogram represents for each process on the vertical
axis the distribution of compute phases categorized by their number of instructions
(horizontal axis). The color gradient reflects the duration of the compute phase and,
thus, is identical with the gradient in the timeline on the left. The histogram allows
for an easy identification of balance in the program: a perfectly balanced phase would
form a straight line from top to bottom, while an imbalanced phase would produce
a scattered pattern; the more scattered the higher the imbalance.

In this case, the imbalance in execution time strongly correlateswith the imbalance
in the number of instructions (52% balance), while the IPC is well balanced (96%,
not shown here). This means, the origin of the imbalance in time is directly linked
to an imbalanced distribution of the workload to the processes. In addition to the
general imbalance in the large compute phase, the last processes carries extra load
that is not linked to an extra task but to more of the same workload (small blue dot
on the bottom right of the histogram in Fig. 3). Combining the load balance analysis
with the performance model allows to quantify the potential performance gains if all
load balance issues would be completely solved: 31% runtime improvement when
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redistributing the extra workload on the last process and additional 10% and 6%
runtime improvement for perfectly balancing the workload in the large compute
phase and the smaller ones, respectively.

Based on the assessment that load balance is linked to the data partitioning, it can
be concluded that the RCB leads to an unfavorable distribution of the mesh data. A
further analysis revealed that,while theRCBpartitioningmethod distributes themesh
nodes well, it leads to a poor partitioning of the mesh’s volume elements (tetrahy-
dra). However, since CODA’s finite volume method uses a cell-centered metric, the
partitioning of volume elements is much more important.

3.3.2 Zoltan Partitioning Method

For the measurements using the Zoltan graph partitioning method we proceeded as
described above. Since the iterations show no significant deviations along time, as
before, we again selected the iterations four to six from the execution as focus of
analysis (FOA) and applied the performance model.

Table2 shows an overview of the fundamental performance factors for the mea-
surements with Zoltan. The observed global efficiency of the test case with Zoltan
decreases from 97.7% with 24 cores to 80.0% with 384 cores with a noticeable drop
from 192 to 384 cores. The global efficiency achieves a good value, in particular,
since 384 cores is already beyond the target scale for such a small mesh.We identified
three performance issues that diminish the overall performance.

Table 2 Efficiency and scalability factors for the executions using Zoltan with 24 to 384 processes

(%) 24 48 96 192 384

Global
efficiency

97.7 96.0 93.8 91.5 80.8

Parallel
efficiency

97.7 96.1 94.5 92.8 85.1

→ Load
balance

98.0 96.4 95.6 94.5 91.7

→ Communi-
cation
efficiency

99.7 99.8 98.9 98.2 92.9

Computation
scalability

100.0 99.8 99.2 98.5 94.1

→ IPC
scalability

100.0 100.3 100.4 100.6 98.5

→
Instructions
scalability

100.0 98.3 97.7 96.9 94.5

→ Frequency
scalability

100.0 101.2 101.2 101.1 101.0
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Fig. 4 Load balance with Zoltan: timeline with the compute phases (left) and a histogram showing
the distribution of compute phases based on their number of instructions (right)

First, the load balance achieves a much higher value compared to RCB but is
still sub-optimal. The in-depth analysis reveals that the load balance is again mainly
linked to the distribution of mesh elements (see Fig. 4), however, this time achieving
acceptable values for unstructured mesh data.

Second, the communication efficiencydecreases to 92.9%with 384 cores,whereas
the communication achieves almost perfect efficiency up to 192 cores. The detailed
analysis for 384 cores found that the communication efficiency for the large compute
phase (blue in Fig. 4) is almost ideal with 99.8% but reaches only 75.4% in the
smaller compute phases (green in Fig. 4), where the communication is dominated
by small non-blocking point-to-point communication operations. For a small mesh
at this scale, the communication overhead of the up to 630 small communication
operations per process within only 70ms starts becoming too significant in relation
to the actual computation effort per process.

Third and last, the computation scalability decreases to 94.1% with 384 cores,
which is mainly linked to decreasing instructions scalability. Instructions scalabil-
ity describes the evolution of the computational workload and is measured by the
total number of instructions in computation over all processes in comparison to the
reference execution. Thus, an instructions scalability of 94.1% signifies a parallel
workload replication of about 6.2% versus the smallest run. The percentage of addi-
tional workload is again correlated to a relatively high scale for this small mesh,
where control flow operations start becoming significant in relation to operations
dedicated to computing the solution.

3.3.3 Analysis Summary

In comparison to the RCB partitioning method, the Zoltan graph partitioning allows
for a significantly better distribution of volume elements and, thus, amuch higher load
balance. The test case with the graph partitioner achieves a much better scalability
with a speedup of 3.84 out of 4 for 96 processes versus 2.76 with the RCB partitioner;
and 13.1 out of 16 for 384 processes, which is already beyond the target scale for
such a small mesh. Furthermore, the overall runtime at 96 processes was reduced by
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46% due to a much higher load balance of 95.6% in comparison to 68.9% before.
In general, the test case achieves a very high parallel efficiency and computational
scalability for such a small mesh size when using the Zoltan graph partitioning.

4 Challenges in the Performance Analysis of Engineering
Codes

Although state-of-the-art performance analysis tools have been incredibly helpful
by providing insight into the parallel application behavior that allowed us to assess
the performance of the test case and understand why the two partitioning methods
behave so differently, their use was not without certain pitfalls and limitations. This
section discusses challenges and limitations we experienced during the analysis and
arising requirements for performance analysis tools.

HybridMPI-OpenMP parallelization: The CODA CFD solver implements a two-
level hybrid parallelization with MPI/GASPI and OpenMP. Such a hybrid paral-
lelization still poses a challenge to most performance tools and excludes all tools
that focus on only one parallelization level.

GASPI:Up to the time ofwriting, wewere unable to find a performance analysis tool
that officially supports the GASPI standard. Consequently, we are unable to perform
any detailed analysis of the one-sided communication operations via GASPI.

Mixed programming language: Since CODA is implemented in Python and C++,
performance tools require the capability tomeasure program sections implemented in
both programming languages. For many tools this is not given. While Python related
tools are mostly limited to Python and its native parallel constructs, many well-
established HPC performance tools are restricted to common HPC programming
languages like C/C++ or Fortran.

C + + templates: CODA makes use of many modern C++ features including a
wide use of templates. As a result, many tools that rely on automatic compiler instru-
mentation can produce vast data volumes and significant application slow down
when small, typically inlined, functions are instrumented and recorded, since the
introduced measurement overhead drastically exceeds the call time of tiny functions
such as get/set class methods. Potential solutions to this issue are either a combina-
tion of detailed instrumentation for the parallel runtimes and periodic sampling for
the computation phases or intelligent compile time filters for the automatic function
instrumentation.

Heterogeneous systems: For computationally intensive code sections such as the
sparse linear systems solver themulti-layered parallelization is additionally extended
to incorporate hardware accelerators like GPUs. This adds another requirement to
performancemeasurement and representation to analyze CODA in all its complexity.
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Thread-level performance: Next to parallel efficiency, thread-level performance,
i.e., per-core computational efficiency, is an important aspect of numerical simula-
tion. While many parallel performance analyzers provide basic capabilities in the
form of hardware performance counters, e.g. cache misses, and derived metrics such
as instructions per cycle (IPC), a quantitative assessment and an in-depth analysis of
computational efficiency is currently not supported.

Different software versions: FlowSimulator relies on different external dependen-
cies and sometimes on specific software packages or even specific software versions.
This may cause interference with dependencies of performance analysis tools. To
avoid this, applications and tools need to be installedwith compatible software chains.
While this is not an inherent limitation of performance tools, it adds another layer
of complexity to software installations on HPC systems, in particular, if there is a
variety of different applications with various software dependencies.

While the listed requirements originate from CODA, we expect similar require-
ments for other engineering applications. When going forward towards the perfor-
mance analysis of not a single engineering application but rather entire engineering
workflows, we anticipate even more complexity in the various requirements. Such
workflows may include even more different programming languages, other paral-
lelization schemes, different levels of parallelism in the different components of the
workflow, more software dependencies, and generally more complexity that needs
to be captured and represented by performance analysis tools.

5 Conclusion

This paper highlights our efforts in analyzing CODA, a CFD solver for aircraft aero-
dynamics, as part of a larger framework for the multi-disciplinary analysis in aircraft
design.We demonstrate how state-of-the-art performance analysis tools provide pro-
found insight into the parallel application behavior, which helped us to assess the
performance of a CODA scalability test case and, in particular, understand how the
chosen partitioning method impacts the parallel runtime behavior. In addition, we
share our experience during the analysis and discuss challenges and limitations as
well as arising requirements for performance analysis tools. We hope that this will be
beneficial for researchers in their efforts to analyze and optimize other engineering
applications as well as serve as feedback to performance analysis tool developers.
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System-Wide Low-Frequency Sampling
for Large HPC Systems

Josef Weidendorfer, Carla Guillen, and Michael Ott

Abstract Continuous monitoring of HPC systems is essential for a compute center
for various reasons. Different measurement methods come into play, as they provide
different kinds of insights. In this paper, we motivate continuous low-frequency
sampling and its benefits, and we describe how to realize this on top of existing tools
employed at the Leibniz Supercomputing Centre.

1 Introduction

The day-to-day business of a compute center with large HPC systems requires the
continuous monitoring of the installed systems. On the one hand, this involves mea-
surement of power and energy consumption at various granularities to ensure stable
operation, and to keep energy expenses within required bounds. On the other hand,
compute centers want the resources of their systems to be used as efficiently as pos-
sible, ensuring both the highest possible throughput as well as short wait times for
users. To this end, collected metrics usually include utilization of compute units,
memory, network equipment, and storage. This allows both, the detection of perfor-
mance bottlenecks as well as unusual behaviour limiting performance and scalability
of user applications. It also helps in finding root causes of bottlenecks and provides
guidance towards possible solutions to avoid issues in the future. This may involve
getting in contact with users and help them optimize their application. Last but not
least,monitoring provides ameans for understanding the demands and characteristics
of user applications. By observing changes in user demands, this can help with deci-
sions on how resources should be balanced in future systems (for example, capability
of compute units vs. memory/network/storage bandwidths and capacities). In sum-
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mary, continuous monitoring is essential for ensuring high quality of HPC services
provided to users of compute centers.

It is important that continuous monitoring, while required, does not disturb the
operation itself. The user-observed overhead must be kept to a minimum as it may
result in reduced scalability. Partly this can be achieved by using dedicated resources
formonitoringwhich are not sharedwith resources given to user jobs such as separate
servers for aggregation, storing, and querying measurements. However, some useful
metrics may only be available in-band (that is, running on the same hardware as user
code); furthermore, to be able to understand the root cause of some performance issue
at hand, one needs to be able to relate it to the user code which may be needed to be
modified to bypass or avoid the issue in the first place. Towards this end, component
manufactures can help by adding specific measurement hardware not disturbing user
computation, e.g. by providing sophisticated performance monitoring units (PMUs)
able to work autonomously in the background without side-effects on the compute
and communication resources of HPC systems.

Thus, a big theme in monitoring is to use methods which allow for accurateness
of measured metrics yet having as low an overhead as possible. PMUs of modern
compute components typically have counters incremented whenever events of inter-
est are happening. Depending on how counters are configured, the counts reflect
the utilization of various compute resources such as throughput of instructions in
CPU cores, utilization of integer/floating point units, the efficiency of keeping data
for quick reuse in caches, or contention in memory or network accesses. For under-
standing utilization of a resource in a given time frame, it is enough to read out the
state of adequately configured counters at the beginning and end of this time frame.
By using coarse granular time frames such as complete job runs, low overhead is
ensured. This way, potentially bad resource utilization in user jobs can be detected
and a more detailed analysis using special tools can be started. However, getting a
more detailed picture on runtime performance and relation to executed source code
already from continuous monitoring would be highly beneficial.

In this paper, we propose system-wide low-frequency sampling to retrieve more
information from continuous monitoring than what is available from just reading
out performance counters. More specifically, we want to understand the time spent
by compute resources of our HPC systems while running specific pieces of code.
Just being able to understand the time spent in code from different libraries would
probably be sufficient as motivated in Sect. 4. This way, the actual usage of provided
software packages can be identified, allowing to tune the effort spent for maintaining
and supporting them. Having better insight into the usage of particular libraries, one
can focus architecture-specific tuning efforts towards the most heavily used libraries.
Finally, porting effort for users towards future systems can be estimated: it is much
easier to replace a vendor-optimized library for linear algebra than having to change
or even rewrite code.

The contributions of this paper are: (1) a descriptionof currentmonitoring facilities
in place at LRZ; (2) an overview of the benefits of low-frequency sampling for
compute centers; (3) a discussion on how to ensure low overhead, accurateness,
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and significance of collected statistical measurements; (4) example use cases with
respective visualizations.

Section2 gives a short overview ofmeasurementsmethods used inmonitoring and
profiling tools. Section3 reviews important parts of our existing measurement infras-
tructure. Afterwards, in Sect. 4, we state our requirements for improved monitoring.
Section5 gives an overview of the proposed extension, details on implementation
and a fitting visualization.

2 Measurements Methods for Performance Analysis

2.1 Event Counters

Modern microprocessors provide a wide variety of performance counter events. For
virtually any discrete metric of interest, there is most likely a performance counter
event (or a combination of multiple events) available that can be mapped to that
metric and count those events as they happen in a running system. For example, to
measure time, a timermay internally count milli-seconds; onmodern CPUs, there are
typically counters counting CPU clock cycles. Other examples of events of interest
are the number of instructions retired (executed with persistent effects, in contrast
to speculative executions), the number of floating point operations executed, or the
number of L1 cache misses.

Counter values are expected to growmonotonically (there must be adequate mea-
sures to handle overflows). Typically, the Performance Monitoring Unit (PMU) of
modern CPUs has a limited number of counters available per CPU core and on the
“uncore” part (connected to off-chip, either to other sockets or thememorymodules).
Some counters may only count a fixed event type (e.g. the architectural counters in
Intel’s x86 architecture [1]), others may be used to count any of a quite large num-
ber of configurable events. Availability and semantics of event types depends on the
micro-architecture and thus may change between processor implementations even
from the same vendor.

In general, there are two ways to use the counters:

• Reading them out at the beginning and end of a time span of interest, to get the
number of events which happenedwithin this time.While this allows to understand
the utilization of the resource related to the event counted by the counter, it does
not allow for pinpointing the code that triggered the event.

• Configuring an interrupt to happen when the counter overflows. In the interrupt
handler, the program counter (PC) of the executed but interrupted code can be read
and stored. In the most extreme case, one could configure an interrupt to happen
on every event triggered (and interrupts disabled during execution of the handler
itself). However, this usually results in so much overhead that the measurement
becomes useless. Therefore, this mode is better used for statistical sampling, skip-
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ping most of events happening. The PC can be used to come up with a histogram
of how often given code was executed over the samples chosen for a given event.

Exactly relating an event to a machine instruction is tricky due to overlapping out-
of-order and speculative execution of instructions in modern CPUs. The instruction
triggering the event must be tagged while traversing the pipeline of execution stages,
and the counter only can be incremented on retirement. On Intel processors, only
some event types allow for this, called Processor Event Based Sampling (PEBS) [1].

Usage of interrupt on overflow for sampling requires to understand the involved
statistics. According to the (weak) Lawof LargeNumbers [2], an average of a random
sample converges in probability to the expected value if the number of samples grows
towards infinity. To ensure high enough accuracy of resulting statements such as
“X% of time was spent in function Y” or “X% of all cache misses which happen
were triggered while executing code from library Y”, we must ensure (1) random
sampling of events, and (2) that a large number of samples was used to derive the
statement. Regarding requirement (1): assuming that we want to take a sample of
1000 events from a million events (such as time ticks). It is not enough to pick every
1000th event happening, as this can result in aliasing effects. Instead samples must
be equally distributed over all events happening. A practical approach is to randomly
adjust the sample interval after each interrupt, but make sure that on average the
interrupt triggers every 1000 events. Regarding requirement (2): for a given statistical
measurement, one cannot make a statement if the number of samples found to be
true for this statement is too low (such as<100). Luckily, for profiling, only the most
dominant performance issues are of interest (as tackling these issues is best use of
developer time spent for code optimization). It should always be possible to run the
measurement long enough to get a significant number of samples for the statements
of interest. Results derived from a low number of samples should be marked or not
shown at all to not confuse the user.

2.2 Overhead Control

As stated in the introduction, we need to strive for minimal overhead of continuous
monitoring. On the one hand, measurement by itself is not a good use of compute
resources (even if users donot get charged for the time/resources spent during their job
runs). On the other hand, measurement results can be off by as much as the overhead
itself, as we cannot expect overhead to be evenly distributed over the measurement.
Thus, high overhead renders measurement useless.

Reading counter values (the first kind of usage of counters for measurement, see
Sect. 2.1) requires code to do that, e.g. around program regions of interest. This mea-
surement code can be added manually by the developer or automatically by profiling
tools. Independent of that, measurement code (called “instrumentation”) results in
overhead. It is very difficult to come up with a generic instrumentation strategy that
automatically ensures low or equally distributed overhead duringmeasurement. Typ-
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ically, tools perform an incremental approach involving multiple runs of the code
to profile: first runs only are meant to understand e.g. function call frequency and
thus allow an overhead estimation for instrumenting a given function. There is no
inherent need to add instrumentation that reads out counters to the target code to be
measured. However, this is the only way to ensure that the counters are read syn-
chronous to execution of program regions of interest. If an exact relation to source
is not required, counters can also be read from outside of the measured process. An
example is at start and end of a process (as performed by the perf stat tool of
the Linux perf_events [3]).

For statistical sampling, the measurement code can run outside of process (the
interrupt handler). Furthermore, via tuning the (randomized) sampling interval, we
can control the overhead. We only have to make sure to obtain enough samples for
the presented results to be statistically significant.1

Profiling tools often use a combination of instrumentation and sampling. For
example, GProf [4] combines exact measurement of call counts between functions,
derived from instrumentation, with sampling of time spent in functions. Time sam-
pling often is used to trigger readings of other counters (in the interrupt handler):
this allows for periodically taking snapshots of resource utilization.

3 Existing Tooling

Since quite a few years, LRZ uses a self-developed tool called PerSyst to monitor
user jobs and detect potential performance issues by periodically reading perfor-
mance counters. This uses perf_events, the Linux functionality to access performance
counters. More recently, development of the continuous monitoring tool DCDB was
started [7]. It collects arbitrary measurements in a time-series database for later
retrieval. PerSyst recently was ported to leverage DCDB for its measurements.

3.1 PerSyst

The PerSyst Tool [5] (hereinafter PerSyst) is an automatic on-line tool to collect per-
formance information of large scale architectures. PerSyst performs on-line analyses
with codified expert knowledge based on so-called strategy maps which are designed
to reveal bottlenecks in an application. A strategy map is comprised of a tree-like
structure whose nodes analyze and classify the monitored data. Derived metrics (like
clocks per instruction) of a job are compared to a threshold and classified as having
high or low severity.

Figure1 shows the strategy map for GPFS I/O metrics. For example, the file
metadata request rate (box. 3.1.37) is analyzed to check whether the application

1We note that profiling tools based on statistics often ignore this issue.
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Fig. 1 Strategy map for I/O metrics

Fig. 2 PerSyst agent architecture

is opening or closing a file (or files) too often. ‘Too often’ is defined by our own
threshold. The user is asked to consolidate files, if we deemed this as too high (box
3.1.38) (Fig. 2).

Thresholds are selected based on four heuristics:

• Using hardware characteristics and expert knowledge, for example: take the peak
performance of the architecture and calculate a percentage that is known most of
the applications can achieve.

• Based on benchmarks.
• Using thresholds based on choosing a point where the performance doesn’t sig-
nificantly change when improving the metric value.

• Choosing a threshold based on large sets of statistical data of the same cluster.
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Fig. 3 PerSyst collection routes

Scalability is achieved in the PerSyst Tool with a hierarchically distributed soft-
ware architecture. A tree of agents can operate autonomously and run continuously
to measure, analyze, filter, and collect performance data. In order to aggregate the
measurements, the agents are synchronized by the master sync agent at the top of
the tree.

PerSyst groups the performance information into a corresponding job. The archi-
tecture is designed to optimize the collection route and minimize the usage of the
network interconnect.

Figure3 shows how the collection routes along the tree can differ from the orig-
inal configuration. The routes change dynamically at every measurement to obtain
an optimal retrieval of performance data, depending on the placement of the jobs
(incoming jobs and finished jobs may trigger these changes at every measurement).
The performance data is reduced by using two main approaches. Firstly, depending
on the resulting analysis the strategy maps determines to collect or discard perfor-
mance data. Secondly, descriptive qualities of performance data per job are retained
by using quantiles which largely reduce the volume of the raw data. Even though
quantiles provide a scalable solution by reducing data, the aggregations in the context
of a hierarchy of agents can’t be performed with exact calculations at all levels of the
agent tree. Thus, at certain levels of the tree, quantiles are estimated with a special
technique. To reduce the need for estimating quantiles, the mapping of performance
data to agents is optimized which enables the precise calculation of quantiles as
opposed to quantile estimation. PerSyst was deployed in three supercomputers with
a total of 4 different microarchitectures.
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3.2 DCDB

The DataCenter DataBase (DCDB) is a comprehensive monitoring system capable
of integrating data from all system levels. It is designed as a modular and highly-
scalable framework based on a plugin infrastructure.Allmonitored data is aggregated
at a distributed noSQL data store for analysis and cross-system correlation. Its key
features are as follows:

• Modularity: its modular architecture makes integration in existing environments
and the replacement of legacy components easy.

• Abstractability: a single library to access the unified data gathered from sensors
or monitoring mechanisms in facilities, systems and applications.

• Scalability: it scales to arbitrary amounts of sensors and data due to its distributed
and hierarchical architecture.

• Efficiency: the implementation is low-overhead in order to minimize the impact
on running applications.

• Extensibility: a generic plugin-based design simplifies the integration of additional
and custom data sources.

• Flexibility: a wide range of configuration options allows for accommodating a
multitude of deployment requirements.

• Availability: all code is open-source, and as such it can be freely customized
according to the necessities of a specific data center.

Figure4 shows the software architecture of DCDB. It consists of three major
classes of components, each with distinct roles: a set of data Pushers, a set of Collect
Agents, and a set of Storage Backends. These components are distributed across
the entire system and facility, which explicitly can include system nodes, facility
management nodes, and infrastructure components.

Fig. 4 Software architecture of DCDB
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The Pusher component is responsible for collecting monitoring data and is
designed to either run on a compute node of an HPC system to collect in-band data
or on a management or facility server to gather out-of-band data. The plugins for the
actual data acquisition are implemented as dynamic libraries, which can be loaded
at initialization time as well as at runtime. We currently provide ten different Push-
ers, supporting in-band application performance metrics (perf_events), server-side
sensors and metrics (from ProcFS and SysFS), I/O metrics (GPFS and Omnipath),
out-of-band sensors of IT components (IPMI and SNMP), REST-APIs, and building
management systems (BACnet). The Pusher’s data collection capabilities are only
limited by the available plugins and their supported protocols and data sources, and
it is therefore adaptable to a wide variety of use cases.

The Collect Agent is responsible for receiving the sensor readings from a set of
associated Pusher daemons and writing them to a Storage Backend. For that pur-
pose, it assumes the role of an MQTT [6] broker that manages the publish/subscribe
semantics of the MQTT protocol: Pushers publish the readings of individual sen-
sors under their specific topics and the Collect Agent forwards them to the Storage
Backend.

TheDCDBStorage Backend stores themonitoring data which is streamed into the
database. Logically, the data points for a sensor are organized as a tuple of (sensor,
timestamp, reading). These properties make monitoring data a perfect fit for noSQL
databases in general andwide-column stores in particular, due to their high ingest and
retrieval performance for this kind of streaming data. The current implementation of
DCDB leveragesApacheCassandra [8] for theStorageBackend.WechoseCassandra
due to its data distribution mechanism that allows us to distribute a single database
overmultiple server nodes, or StorageBackends, either for redundancy, scalability, or
both. This feature works in synergy with the hierarchical and distributed architecture
of DCDB and effectively allow us to scale our system to arbitrary size.

4 Requirements

In addition to PerSyst’s current functionality, we identified the following require-
ments:

• towards future HPC systems, we need to be able to estimate the required porting
efforts users may be confronted with for various possible future architectures,
including accelerator systems (e.g. with GPUs). To this end, a better understanding
of the applicationmix on our current system is helpful. Being able to see howmuch
time is spent in user-developed code versus 3rd-party libraries is useful, as it allows
us to understand if replacing a library is enough to make good use of GPUs.

• we need a better understanding of the importance of currently provided software
packages for our users. It is very helpful to see that some packages are not really
used (even if loaded into the job environment), as support can eventually be can-
celed. On the other hand, users profit from optimization of heavily used libraries.
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For future HPC systems, it would also be interesting to understand if user code is
GPU-friendly or not. For this, we can already use PerSyst to understand the amount
of AVX-512 instructions executed (with the right performance counter events).

The above requirements can be solved by introducing sampling. From the program
counter of a sample, we can get at the absolute path of the shared library or executable
the code is part of. We will see that this can be done with little effort.

5 Low-Frequency Sampling for Library Usage

5.1 Using Linux perf_events

The PMU support in Linux contains all the functionality required for sampling. If
a process wants to do perform sampling on the system level (i.e., to observe the
execution of another process or all processes running in the system), it first needs
to establish a communication buffer to be able to receive records from the kernel.
Records are added to this buffer whenever

• an observed process maps or unmaps a shared library. The record includes the
absolute path of the file (un)mapped. On start, records for all mapped files are
generated, including the mapping of the main application code itself;

• a sample was triggered. The record will contain the program counter (PC) of the
interrupted user code.

We note that with the first record type, we can maintain per-process data structures
that allow for quickly mapping a given PC to a library/binary. With the actual sample
records, we can update a histogram data structure that stores the number of triggered
sample points for each shared library or binary.

PerSyst has been extended to observe all processes of a compute node with the
help of sampling based on time spent actively in code execution per logical core.
For a given wall-clock period, partly idle cores will trigger less samples than fully
active ones. This can be used to identify imbalance in work load, by adding artificial
samples corresponding to an idle state relative to the wall-clock time actually spent.

5.2 Accuracy of Sampling

Asdescribed inSect. 2.1, for accurate results,weneed to ensure that sampling actually
is using a random sample set, and that only significant number of samples are taken
into account.

For sequential code running an a CPU core, sampling at constant sample intervals
may by skewed due to aliasing effects: if the runtime behavior of the code exposes
a periodical behavior similar to the sampling interval, the results may be off. The
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reason is that a constant sampling interval for sure does not result in a random sample
set. Unfortunately, Linux perf_events currently does not provide the functionality
for randomizing sample intervals between samples, to better approximate random
sample sets (at least in Linux version 5.0). However, with a sample period as low as
1 s, we do not expect to run into aliasing issues.

However, effects similar to aliasing may happen on a parallel system, when sam-
pling is started on all nodes at the same time, and a parallel code ensures almost
synchronous execution in all MPI processes belonging to a user job e.g. with regular
MPI barriers. To counteract this effect, before starting sampling, the PerSyst daemon
adds a pseudo-random sleep time between 0.0 and 1.0 s using a hash derived e.g.
from the hostname.

Regarding significance of the number of samples, we note that the same sample
can be used for different resultswith different significance and accuracy. For example,
to get a statistical result on the time spent for a library X, we may collect samples
running code from that library which all are below 10 per node over a time span of
1h. However, if we sum up the per-node sample counts over e.g. 1000 nodes, the
result becomes significant. This makes clear that even low numbers always need to
be forwarded to DCDB. The aggregation done for different statistical results decides
on significance.

5.3 Visualization

Figure5 shows how the data collected from sampling can be visualized. On the left,
an aggregation is shown for a whole HPC system (a given job scheduler queue),
showing information per user and application. The middle picture shows a zoom

Fig. 5 Mockup of visualization from sampling
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for “User 3”, separating various jobs. Finally, the right side shows a zoom on one
program phase (“idle”), and the break-up of this phase to nodes and even cores.

According to the discussion in the previous section, statistical sampling may
render results misleading and wrong when they are not large enough to show some
significance. Any numbers in the 1-digit range definitely would be too low. However,
if the number 5 actually represents 5000 samples, the visualization shouldbe accurate.
This needs to be taken into account when designing the final visualization; e.g.
zooming in may result in loss of significance. This needs to be reflected accordingly.

6 Conclusion

In this paper, we sketched an extension of continuous monitoring to include system-
wide low-frequency sampling for detecting the actual time spent in user jobs in
various software packages and libraries. This will enable us to put focus on tuning
efforts for software packages actually used. More importantly, this will allow us to
better estimate the amount of porting efforts that would be required by users if we go
for accelerators in future HPC systems. From that and an understanding of the abil-
ity/willingness of users towards porting efforts, as well as predictions of future user
demands (such as AI workloads), we will be able to make a more informed decision
about the best balance of accelerated versus more traditional compute resources for
future systems.

References

1. IntelCorporation: Intel 64 and IA-32Architectures SoftwareDeveloper’sManual, vol. 3B (2019)
2. Dekking, M.: A Modern Introduction to Probability and Statistics. Springer, Berlin (2005)
3. Dimakopoulou, M., Eranian, S., Koziris, N., Bambos, N.: Reliable and efficient performance

monitoring in linux. In: Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis 2016, SC’16, pp. 34:1–34:13, Piscataway, NJ,
USA. IEEE Press (2016)

4. Graham, S., Kessler, P., McKusick, M.: Gprof: a call graph execution profiler (1982)
5. Guillen, C., Hesse, W., Brehm, M.: The persyst monitoring tool - a transport system for perfor-

mance data using quantiles. In: Proceedings of the Euro-Par 2014 Workshops. Lecture Notes in
Computer Science, vol. 8806, pp. 363–374. Springer (2014)

6. Locke, D.: MQ telemetry transport (mqtt) v3. protocol specification. In: IBM developerWorks
Technical Library (2010)

7. Netti, A., Müller, M., Auweter, A., Guillen, C., Ott, M., Tafani, D., Schulz, M.: From facility to
application sensor data: modular, continuous and holistic monitoring with DCDB. In: Proceed-
ings of the International Conference for High Performance Computing, Networking, Storage
and Analysis 2019, SC’19. IEEE Press (2019)

8. Wang, G., Tang, J.: The NoSQL principles and basic application of cassandra model. In: Pro-
ceedings of CSSS 2012. IEEE (2012)



Exploring Space-Time Trade-Off in
Backtraces

Jean-Baptiste Besnard, Julien Adam, Allen D. Malony, Sameer Shende,
Julien Jaeger, Patrick Carribault, and Marc Pérache

Abstract The backtrace is one of the most common operations done by profiling
and debugging tools. It consists in determining the nesting of functions leading
to the current execution state. Frameworks and standard libraries provide facilities
enabling this operation, however, it generally incurs both computational andmemory
costs. Indeed, walking the stack up and then possibly resolving functions pointers
(to function names) before storing them can lead to non-negligible costs. In this
paper, we propose to explore a means of extracting optimized backtraces with an
O(1) storage size by defining the notion of stack tags. We define a new data-structure
that we called a hashed-trie used to encode stack traces at runtime through chained
hashing. Our process called stack-tagging is implemented in a GCC plugin, enabling
its use of C and C++ application. A library enabling the decoding of stack locators
though both static and brute-force analysis is also presented. This work introduces
a new manner of capturing execution state which greatly simplifies both extraction
and storage which are important issues in parallel profiling.
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1 Introduction

The rapid pace atwhichHigh-PerformanceComputing (HPC) hardware is evolving is
putting unprecedented pressure on parallel software and its developers.Hybridization
such as MPI+X or MPI+CUDA require careful design and lead to potential faults
inside codes which have to transition. This state of things explains why the rich tool
ecosystem available in HPC—validation tools, profilers, tracing tools and debuggers,
alongside their corresponding support APIs is important to address this ever-going
challenge. Whether a program is being debugged or profiled, tools generally try to
capture the program’s state to present it to the end user. To do so, a parallel program
can be seen as running in three-dimensional space [12]: over computing resources
(space), time and program’s code. The ability to capture, explore and present this state
in a scalable manner is at the core of the design of any parallel tool. Indeed, due to the
potentially large number of MPI processes and threads running on supercomputers,
means of capturing and storing points in this execution space have to be carefully
designed [7, 20, 23, 29]. In doing so by whatever means, it is generally of interest
to capture the state as fast as possible and to encode it using a minimum amount of
data.

As far as the two first dimensions are concerned, the locality can be expressed
in a relatively compact manner. For example, an event can have a timestamp which
precisely defines when it happened.When it comes to parallel machines, a timestamp
is not necessarily a simple object as a distributed synchronization is required [5, 6],
however, the availability of high precision timers such as the TSC combined with
elaborated synchronization techniques provides such information in constant time
and storage cost (usually a 64 bits integer). Similarly, if we now consider space, by
capturing execution stream creation and their locality (i.e in which node, process and
pinned to which core) it is possible to build an integer identifier table for execution
streams. Then, such value can be used to compactly describe a given thread in a
massively parallel execution given that associated meta-data are correctly handled.
It is not a trivial process but it is solved considering, for example, state-of-the-art
trace formats such as OTF2 [10, 20].

However, the last dimension describing which part of the program is being exe-
cuted is less trivial to extract. It is possible to capture the program counter which
points to the precise line of code being executed but by doing so, the hierarchical
nature of the call-stack is lost. In such configuration, sampling a program shows
“where” you spent time during the execution but does not present you the succes-
sion of function calls which led to it or distinguish between them—all costs being
summed up. In order to preserve this hierarchy, either a list of addresses has to be
kept for each measurement point (the backtrace) or each entry and exit event has to
be monitored and replayed to enable a replay of the stack (approach used in traces).
Overall, there is currently no method enabling compact call-stacks description at the
level of what can be done for other profiling dimensions—a 64-bit integer identifier.
Devising such compact descriptor for call-stacks is the object of this paper. In par-
ticular, we define the notion of stack-tag and explain how it benefits to performance
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and debugging tools by (1) optimizing backtrace operation and (2) yielding constant
size 64 bits backtrace descriptors.

The rest of this paper is organized as follows, we first present related work. In a
second time, we progressively introduce the components enabling stack tagging. The
associated space-time trade-off we rely on is exposed in the context of the hashed-trie
data-structure used to encode call-stacks. We then present our runtime implementa-
tion relying on a GCC plugin and we detail how our approach compares to “regular”
backtraces. Finally, we evaluate stack-tagging on representative applications demon-
strating that such an approach can provide several advantages.

2 Related Work

The backtrace is one of the most common operations for support tools such as debug-
gers [24] and profilers [25]. It is the mean of retrieving the current layout of the stack
and therefore the nesting of function calls leading to current execution point for a
given execution stream. Common methodologies for retrieving backtraces involve
walking the stack using a dedicated library [1, 22, 26]. Complex schemes are at
sometimes needed to reverse compiler’s optimization in order to provide a clear stack
description. Such unwinding mechanisms were developed concurrently for excep-
tion handling (e.g., C++) and debugging [9], leading to duplicate binary sections
with similar purposes (.eh_frame and .debug_frame) [2].

It is also to be noted that some architectures have dedicated support for backtracing
such as through ARM unwind sections [3] or Intel Last Branch Register (LBR) used
for example by Linux Perf (with the –call-graph lbr flag). Such hardware
support despite much faster than any software method generally come with limited
resource with respect to maximum stack depth. For example, current Intel Skylake
architecture can store only up to 32 branching records. In addition, access to such
performance counters might be restricted [27], preventing their direct use.

The closest related-work we found is the notion of probabilistic backtrace [8] by
Bond et al., applying a similar hashing technique for Java applications. We extend
this previous work by fully defining how stack tags could be decoded by storing
relevant information in the generated binary. In addition we target GCC which is
able to compile languages more relevant to High-Performance Computing (C, C++,
Fortran).

Overall, doing a backtrace, despite being a widespread operation, involves com-
plex considerations and therefore is reserved for dedicated libraries generally provide
this feature. Our work in this paper offers an alternative approach which involves a
space-time trade-off while preserving overall application performance.

The hashed trie we present in this paper is inspired by its reference data-structure
the trie [18] (or prefix-tree). It aims at providing features similar to those of a Merkle
tree [19] whereas instead of hashing data hierarchically, we hash the path inside
the tree. As far as storing data through hashing is concerned, it is a common model
in the block-chain paradigm. In our work, we apply the principle of hash-chains to
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encode paths in arbitrary graph modeled by their prefix-tree (or a subset of it). It is,
therefore, a specialized data-structure more focused on encoding the keys leading to
the data than minimizing access time. In fact, what we present is not strictly speaking
a data-structure but a key-linearization procedure to simplify the storage of metrics
attached to a path inside a graph.

3 Hashed Trie

At the core of our contribution, we find a data-structure derived from prefix trees
or tries. Such data-structures are aimed at optimizing the search for elements by
encoding their corresponding key in a tree as a succession of nodes leading to the
element. In other words, the key defines the successive indexes leading to the data.

Figure 1 presents a simple example of trie indexed with a string key. Such data-
structure consists in an M-ary tree representing the choice of an element ki from the
key alphabet. Here, if we consider capital letters, we have M = 26 and each ki going
down the prefix tree is one of the 26 capital letters. Such data-structure enables both
insertions and searches in O(lk)with lk the key length. Given that the key can be split
in ki sub-elements, such trie has a better worst case than for example an hash-table
which is O(N ) with N the number of entries with a much lower average dependent
from the hashing function. However, the trie tends to use much more space than,
for example, hash-table. Indeed, in order to encode all possible keys up to length
n in an alphabet of M symbols, you need k = ∑i=n

i=0 M
i nodes in your trie, each

node containing potentially M pointer to its children nodes. For example, storing
all keys up to a length of three in an alphabet of three characters requires 40 nodes
each with three pointers or 320 Bytes whereas a simple list of all the keys would
use

∑i=3
i=1 i ∗ 3i + 1 or 103 Bytes (counting the NULL key). A trie can, therefore,

Fig. 1 A trie
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Fig. 2 Sample directed
graph
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B

C

become expensive for large key-spaces, it is consequently often used in combination
with other data structures.

Now that we introduced the notion of trie, we propose to consider it not to store
an element at a given key but conversely to associate an element with a given key.
Extending this idea, we propose to derive from tries a compact descriptor for arbitrary
paths in a directed graph. If we define a Graph G(M, K ) with M the set of vertices
and K the set of edges, we can see that any path in such graph can be encoded in
a prefix tree. The reason for this is that each step in the graph is like choosing the
edge k linking current element to the next one from M . For example, if we look at
Fig. 2, there are two paths from A to C, and they can be expressed as ABC and AC,
such keys could be seen as prefixes in a trie covering the whole space for these three
nodes. However, we have seen that the trie is less efficient in terms of storage. Our
idea is then to further optimize this aspect using the trie as a generative function of
the graph, thus storing paths in a radix-tree in a space efficient manner. Enabling, in
particular, the probabilistic encoding of the succession of choices in the key space.
Then, if each node of a graph is given a unique key, any path in the graph can be
encoded with an identifier representing the successive edges from one node to the
other.

In order to generate such identifierswith a fixed size,we rely on recursive identifier
hashing. Therefore, each step in the prefix-tree generates a new and highly likely
unique tag associated with this path. For example, if we consider three nodes A, B
and Cwith respectively 1, 2 and 3 as unique identifier we can encode the tags Ta→b→c

for the path A → B → C as follows using MI X as hashing function combining the
two identifiers into one:

Ta = MI X (1,∅)
Ta→b = MI X (Ta, 2)

Ta→b→c = MI X (Ta→b, 3)

(1)

By looking at Eq.1, we see that thanks to the nested hashing the size of each
path remain constant as the size of a given hash. This makes a big difference when
compared to a trie which needs to store pointers to each possible suffix and even
when compared to a direct key-value array. For the rest of this paper, we now define
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the hashed-trie as being composed of two parts, (1) a model describing the list of
graph nodes and associated keys and (2) a list of tags representing arbitrary path
between these nodes.

4 Path Reconstruction in Hashed-Tries

In the previous section, we described how fixed-sized tags could be generated to
describe paths in a tree. In particular, we unfolded the idea of relying on a trie acting
as a model for the tree supporting the given paths instead of describing the full
corresponding tree. Of course, the choice of repetitively hashing paths to generate
such descriptors does not convey the direct nature of the encoded path. In particular,
such encoding has to be resolved. This process required for each tag and due to
the nature of hash functions, it needs to rely on a brute-forcing of all the possible
combinations.

At first, the brute-forcing process may look expensive and indeed it is in some
conditions. However, this cost has to be mitigated for a tree of (1) small size and (2)
cases when the radix can be limited. Table 3 illustrates the time needed to brute-force
all the possible path for |M | ∈ [2, 1024] and lk ∈ [2, 10]. These times do increase in
an exponential manner along the two axes. Looking that the key space complexity∑i=lk

i=0 |M |i , we can see it as a sum of powers which biggest term is the one where
i = lk , additionally denoting |M |i = ei.ln(|M |) shows that the complexity is expected
to grow faster with path lengths.

What can be observed is that this cost is indeed very high for larger parameters.
However, such cost encompasses the resolution of all path up to lk which could
be encountered for the given graph. Second, the results of Fig. 3 are relative to a
sequential computation, such key-space exploration being an embarrassingly parallel
problem, linear gains are to be expected from parallelization. Consequently, even if

Fig. 3 Stack-tag brute-force evaluation for both full and sparsely connected graphs
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it takes thousands of seconds to explore a given key-space it would be possible to
rely on a punctual parallel resolution to reduce the solution time to a few seconds.

Despite the embarrassingly parallel nature of the path resolution scheme, there
is another approach for limiting its cost. Indeed, resolving paths using what we
described as the trie model supposes that the graph is potentially fully-connected and
therefore yields the maximum resolution cost. This model is by nature the universal
one as it encompasses any directed graph generated by this set of nodes. However,
and hopefully, some of the most interesting graphs are sparser. It is then possible to
extend our model to express the reduced radix of each vertex. To do so, instead of a
node-list, the triemodel could be an adjacencymatrix or someknowledgewith respect
to connectivity. Again, this supposes a storage-size trade-off, indeed a full adjacency
matrix takes up to |M |2 × lidenti f ier Bytes and it has to be compared to the associated
extra computational cost. Moreover, the more edges there are, the closer we get to
the simple trie-model which mimics a fully-connected tree. Therefore, relying on
adjacency matrices to describe the source tree is clearly aimed at relatively sparse
trees. In order to illustrate the potential gain in performance, we propose to redo
the computations from Table 3a with a loosely connected graph. In particular, we
generated random graphs for each configuration such as the output degree of each
vertex is 5% of the number of nodes with at least two outgoing edges.

By looking at these results as shown in Table 3b, the cost has been reduced by a
very important factor, up tomillions times faster (lk = 8, |M | = 32), when compared
to the brute-force result on a fully-connected tree. More importantly, for relatively
small graphs with controlled output degrees, computing every path is a fast operation
in the order of the seconds—keeping in mind that we present timings for sequential
computation. In summary, the hashed-trie approach is to be applied to either tree
with a small number of vertexes (a few hundred), with a low radix (less than 10) and
with the expectation of small paths—the latter being the most expensive dimension
in terms of cost.

Aswewill illustrate in the following sections, backtraces do fulfill such constraints
and can be practically reconstructed. Next Section will consider the use of this data-
structure as an alternative backtracing model. First, evaluating and comparing it with
other methodologies before discussing associated trade-off and advantages.

5 Constant Size Backtrace

Now that we have described the hashed-trie and space/time trade-off it supposes,
this section proposes to apply it to parallel program instrumentation. The overall
call-stack of a program can be seen as a tree and the call stack is a path in this tree.
Due to the potential creation of threads, all stacks may not share the same root i.e.
the main function, and call stack may start with any function.

As far as the structure of the callgraph is concerned, it can be directly inferred
from the source code as in most cases (ignoring function pointers) function calls can
be resolved statically. Such information is not obvious to retrieve from a compiled
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binary, it is however relatively trivial when done at compilation time. For this reason,
we proceeded to the implementation of call-stack tracking through a hashed-trie. This
was done in aGCC8.3.0 plugin inserting extra code in every function during program
compilation.

5.1 Stack Tags with a GCC Plugin

Just as the-finstrument-functions flags does inGCCwe added code at both
the start and end of each function. As per our description in the previous section, our
goal is to enable the systematic hashing of the current stack location before entering
each function. As presented in Fig. 4, in order to track call-stacks, the program has
to be modified not only by hashing current path when entering a function but also by
saving the current stack tag in order to restore it when leaving the function. To do so,
we dynamically added a temporary variable inside each function to save the current
tag prior to computing the one of the local function—such saved tag is restored when
leaving the function. To simplify retrieval while supporting multi-threaded code, the
stack tag is stored in a global thread-local variable (named tls_tag in Fig. 4)
initialized with the value 0. This first initialization defines the "NULL" function at
the root of any call-stack being hashed with the first function. This initial state is
needed as it enables the support for thread creation (POSIX or OpenMP) which may
have a stack starting with an arbitrary function. The direct consequence of this is that
in the call-stack model when reconstructing tags, the "NULL" function is the parent
to every other function.

Each function is given a pseudo-unique identifier based on a hash of its name,
such identifier is statically inserted in each function when proceeding to the hashing.
Additionally, two sections are added to the binaries, the first one .btloc defines
the matching between a function name and a 64 bits identifier. It can be seen as
defining the basic trie-model as discussed in Sect. 3. Indeed, any call-stack will be
a combination of these instrumented function as per definition only instrumented
functions and then those listed can alter the tag. Naturally, using all the functions

Fig. 4 Illustration of our stack-tag implementation using code inserted in successive function calls.
tls_tag is a global thread-local variable accessible from each function context. The stack-tag
can be retrieve at any point of the code by reading this same variable
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as the sole generative function of the possible call-stacks is suboptimal. It is for this
reason that we enriched our plugin with simple static analysis capabilities. Doing so,
we were able to extract every function calls from instrumented functions. We then
defined a new section called .btedge where known transitions are listed as 64bits
tuples. This section is used, in a complement of the node-list to optimize stack-tag
decoding. Note that by default, the linker merges sections it does not “understand”,
greatly simplifying the gathering of compile-time information inside the final binary.

The hashing function used is very simple to limit its overhead. It aims at mixing
current path with the new function identifier. It is implemented as MI X (A, B) =
(A ∗ 11) ⊕ B with A the current path (0 for first element) and B the identifier of
the target function (as stored in the btloc section). Note that in order to optimize
hashing, function identifiers are themselves hashes of the function name, leading to
values spread in the 64-bit space and therefore mitigating the need for a complex
MI X function.

A global TLS variable handling the stack-tag it is inserted by linking a shared
library that we called libbt. This library is externally referenced by the code
injected in each function. Besides, this library implements several functions, includ-
ing backtrace and stack-tag resolution, making these facilities available at runtime.
A tool willing for example to resolve stack-tags in post-mortemmay link itself again
the same library which is able to open binaries and libraries, extracting section of
interest to enable stack-tags consumption.

6 Backtrace Comparison

In order to evaluate the stack-tag backtrace implementation, to assessing its gains,
this section proposes to benchmark each approach turn-by-turn thanks to a simple
recursive code. By doing so, we derive a cost model for each methodology consid-
ering both time and memory aspects. In particular, we show that stack tagging is
competitive in terms of computing cost and efficient in terms of memory usage.

6.1 Stack-Tag Evaluation

In order to describe the cost of stack tagging, it is crucial to account for the transitive
overhead linked with the systematic tagging. Retrieving the backtrace state by itself
is, in fact, the retrieval of a thread-local variable. The direct consequence of this
technique is that there is a cost which can be linked to the backtrace attached to each
function call. Therefore, before comparing our technique with others, the overall
per-function call cost has to first be computed.

To do so, we relied on a simple recursive function. We want to (1) measure the
per-call overhead and (2) ensure that this overhead is actually linear. By using such
function with and without stack-tags for various recursion depth, we generated the
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Fig. 5 Total time spent in
the recursion with and
without stack-tags enabled

graph of Fig. 5 which presents the total time spent in the recursion with and without
instrumentation. Due to the small duration in play, we averaged each measurement
104 times and used the Timestamp Counter (TSC) as a time source. What is impor-
tant to observe is that this overhead is clearly linear (as it could be expected) and
therefore that it is meaningful to model the cost of stack-tagging on a per function
call basis. In addition, using these two series it is possible to compute the pure per-
call overhead of the stack-tagging logic as the difference divided by recursion depth.
The per-call overhead associatedwith stack-tagging is relatively constant and close to
4.76 nanoseconds per function call on this given platform (Intel Core I7Haswell CPU
running at 3.6 GHz). In addition to the computation upon each function call, the cost
of accessing the TLS to retrieve current hash has to be considered, we measured it at
8.9 ns (averaged 104 times) with the first access at 12µs on the same system as a call
the libbt shared-library returning the current stack-tag. These two measurements
allow us to parametrize the cost-model of our stack tracking implementation such as
Cht (d) = 8.9 + 3.2d with d the backtrace depth and Cht in nanoseconds.

6.2 GLIBC and Libunwind Backtrace Evaluation

Now that we measured the total cost of our backtrace implementation, we can com-
pare it with others. We start with the glibc (version 2.24-11) implementation [1] as
part of the backtrace function from the execinfo.h header. We measured its
per call cost at the various depth of the same recursive function. Figure 6a presents
these results. If we now compute the per frame cost of the GLIBC backtrace we
measure 1.95 µs per frame. Therefore we can model the GLIBC backtrace cost as
Cglib = 1950d with d the call-stack depth and Cglib in nanoseconds.

Another implementation of the backtrace function is provided by thelibunwind
[22]. This function called unw_backtrace has the exact same interface than the
one from the GLIBC. Again, we studied the same recursive function in Fig. 6, we
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Fig. 6 Measurement of GLIBC backtrace and libunwind unw_backtrace in function of
call-stack depth. All values were averaged 103 times

measure a cost of 7.79 ns per frame, we can then model Cuw = 7.79d with d the
call-stack depth and Cuw in nanoseconds. It is to be noted that this value is on par
with the one stated by the libunwind documentation “around 10ns/frame” [21].

6.3 Performance Modeling Summary

In previous subsections, we have compared two backtracing approaches to stack-
tagging. A notable difference between stack-tagging and regular backtrace is that
the later returns precise program counters when walking up the stack. This means
that not only the parent function can be extracted but also the calling line after resolv-
ing the address. This is a supplement of information which can be of importance,
for example, if a function calls the same routine multiple time—it would not be cap-
tured by stack-tagging. This mechanism cannot, therefore, be a full replacement for
actual backtraces. Besides, we also measured some gains with stack-tagging. First
dealing with the storage size. As detailed at the beginning of our paper, a stack-tag
is always 64bits whereas backtraces grow linearly with a storage size of 64bits per
frame. Therefore, a regular backtrace takes more storage space which is an expensive
resource, for example, in trace formats. Besides, having such a compact call-stack
descriptor enables fixed-size events which can be an advantage, for example, to do a
timestamp search in files through a dichotomy [17], assuming events are ordered.

Moreover, in terms of backtracing overhead, the POSIX implementation was
clearly not designed for usage in a performance constrained environment. The two
other methods are however closer to each other. As presented in Fig. 7, the libunwind
backtrace is faster up to two framesdue to the costmeasured forTLSaccess.However,
another aspect of the stack-taggingmodel is that it is always on. Consequently, where
libunwind pays the cost at each point of interest, the linear part of our approach is
always paid. This shows that the use of stack-tagging is a matter of trade-off, if
verbose events are to be attached to deep stack locations and that linearized storage
of these backtraces (indexed by tag) is preferable, for example doing a profile, stack
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Fig. 7 Backtrace
performance-models

tags can be of interest. Conversely, if punctual events are to be located precisely
and that the efficient storage of this data is not crucial (e.g. not a trace) libunwind is
probably the best pick.

7 Performance Evaluation

In the previous section,we evaluated the cost of a backtrace alone.However, the stack-
tagging methodology incurs as aforementioned trade-offs and yields information
which are subject to potential collisions due to the nature of hashing functions. These
conflicts should be minimized to enable the reasonable use of such descriptor for
performance analysis. Second, stack tags need to be resolved in order to be converted
back to a call-chains, this has a cost which has to be characterized and limited tomake
the approach practical. Eventually, unlike other methodologies, our approach is not
associated with a transitive cost upon measurement but to a constant per function
overhead. Again, this overhead has to be considered in the choice of backtracing
methodology. This section proposes to evaluate and discuss these aspects, assessing
the productive use of stack-tagging in performance tools.

7.1 Stack Tags and Collisions

Oneof themain trade-off supposed by the stack-tagmodel is that the process supposes
the possibility of multiple stacks colliding in the same tag. Indeed, when consider-
ing combinatory spaces such as graph traversals and the fixed 64 bits of the stack
tag, collisions are inevitable. However, it is important to ensure that the number of
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Table 1 Call-graph metric comparison for various applications. Stacks (d = 10) is the number of
stacks at depth 10. Names in bold are those which led to collisions when exploring stacks up to d
= 10

Program Function Count Max. Degree Stacks (d = 10)

vim 5970 110 216 377 858

gdb 17017 159 198 150 110

gnuplot 12335 122 31 696 396

nano 1429 83 2 732 509

xeyes 4454 41 1 180 195

htop 1365 27 416 237

tar 1355 45 292 740

amg2013 1048 105 115 813

IMB-MPI1 97 17 888

lulesh 186 9 536

collisions remains low to enable a meaningful usage of stack descriptors. Indeed,
performance tools require reliable data to correctly guide the user. In order to mea-
sure this propensity for collisions, we relied on the Spack [11] package manager and
inserted a compiler wrapper invoking our backtrace plugin. Doing so, Spack enabled
use to conveniently compile several tools and all their dependencies with stack tags
enabled providing us with maximal coverage.

In order to detect collisions, we walked all the combinations in the static call-tree
up to a given depth storing all the keys and counting collisions. We did not explore a
pure brute-force model due to its computational cost and the difficulties of storing all
the keys for duplication check. Still, despite being a lower-bound on collisions, we
think that data derived from the static analysis are representative of the collision rate,
especially as all libraries are instrumented and no transition has to be “guessed”. To
proceed, we picked a range of common programs available in Spack, first, common
development tools such as GDB, Nano and VIM to have relatively large code-bases.
We also targeted some utilities such as Gnuplot, htop, tar and a simple graphical
application xeyes. Eventually, we considered common HPC benchmarks such as
Lulesh, AMG2013 and the Intel MPI Benchmarks.

As presented in Table 1, we considered a relatively diverse corpus of common
applications and asked ourselves how many collisions there were in the complete
stack tag set up to a resolution depth of 10. Note that in such configuration, the
generated callgraph is much larger than what is produced by executing the program
as every function from libraries are also unfolded. In the first approach, one can see
that the number of combinations is highly dependent on the program. Second, most
programs did not yield conflicts. In fact and as it could be expected, we observed
conflicts only in larger codes or more precisely codes which call-graph can generate
a large number of stacks.
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From these results, we can conclude that the collision rate is relatively low and
often null for smaller projects. When the graph is small, a tool could mitigate the
cost of conflict by presenting the possible stacks for a given tag, still extracting
some information. This is, of course, an empirical observation that should have to be
confirmed on a much larger set of applications, a point that we would like to address
as future work.

7.2 Backtrace Resolution Cost

Now that we have seen in the previous section that stack tags were relatively good
stack descriptors with a low collision rate, we would like to characterize their decod-
ing cost. This operation consists in starting from a 64 bits stack tag to generate
the corresponding backtrace as a list of functions in order of calling. As previously
detailed, we rely on two-phase decoding, the first one relies on static analysis by
exploring the call-graph stored by a dedicated section of the binary (and its libraries).
The second model is much less efficient and is simply a brute-forcing of all the pos-
sible transitions until finding the right stack. This last approach can be of use, for
example, when a portion of the code is not instrumented and therefore unknown
transitions are emitted. Of course, it would not be practical to indefinitely brute-
force a given combination as there is no guarantee that the result is attainable in
an acceptable time. Therefore, the resolution process is implemented with a time
budget so that if the brute-forcing takes too much time the symbol resolution fails.
Figure 8 presents the percentage of resolved symbols for all the stacks observed
during a simple execution of the respective binaries—data were retrieved using the
-finstrument-functions profiling support from GCC. Obviously, increased
resolution time yields improved accuracy. C programs appear to yield better results
than C++ ones, GDB (≈60%) is an example of such program where resolution is
difficult, we think that it is caused by an incomplete static analysis and therefore a

Fig. 8 Percentage of
resolved stack-tags for a
given per tag resolution time
budget
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lack of our plugin. Still, we can see that brute-forcing stack-tags in a constrained
time is possible and yields acceptable results, enabling tools to decode such tags in
a practical manner.

7.3 Overhead for Event-Based Sampling

Now that we have seen that it was possible to (1) assess the low collision rate when
using stack-tags and (2) decode tags back to backtraces with an acceptable efficiency
we now have to characterize our approach in terms of performance. This section
evaluates stack-tagging in the context of Event-Based Sampling (EBS) over MPI
calls. It simply consists in tagging each MPI calls with its associated stack to split
the profile on the actual source code. It is a common approach for performance
tools such as mpiP [28], TAU [23] and Scalasca [13]. What is interesting is that it
challenges our approach as previously described it leads to a “constant” overhead
as all functions are instrumented whereas other backtraces methodologies impede
the program only on sampling points. It is, therefore, one of the most adverse cases,
generating a full event traces being more suitable to our model.

We, therefore, ran the Lulesh [16], miniFE [14], AMG 2013 [4] and Intel MPI
benchmarks [15] while capturing every MPI calls (through the PMPI, MPI profiling
interface) and backtracing at each call before forwarding the call to the MPI run-
time. Note that we solely measured the backtracing overhead and did not account
for any further processing. Measurements were done with glibc backtrace, libuwind,
and stack-tagging. As far as stack-tagging is concerned, multiple cases are presented
according to the level of instrumentation. Indeed, unlike other methods, it is possi-
ble to partially instrument the binary, therefore leading to partial stack descriptions.
This leads to three configurations, (1) full instrumentation, (2) filtering leaf functions
(containing no calls) and (3) avoiding instrumenting small functions (minimal length
threshold of 50 Gimple statements). This leads us to five measurements per bench-
marks comparing our three stack tagging configurations and the two other backtrace
implementations to reference execution time.

Figure 9a presents the results of MPI event-based sampling of stacks. It can be
seen that C++ benchmarks (Lulesh and miniFE) are challenging targets to our stack
tagging model. Indeed, these languages favor small accessors and overall smaller
functions leading to increasing overhead, 12.5% for Lulesh and 2.4% for miniFE.
However, it can also be seen that selective instrumentation is an efficient manner of
reducing this overhead, thresholding by function size being the most efficient model
at the cost of backtrace accuracy. However, for C codes, stack-tagging was able to
reach levels of performance comparable to the libunwind.

Figure 9 presents the compression ratio achieved by stack taggingwhen compared
to storing arrays of addresses for each backtrace. It can be seen that the average depth
ofMPI calls in these various codes is such as our 64bits tags are between4.96 and6.89
more efficient in terms of storage size, clearly demonstrating the space-time trade-off
we previously mentioned where gains in size are translated to a later decoding cost.
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(a) Overhead relative to the non-instrumented case
for MPI event-based sampling using various backtrace
model. Note that the scale truncates higher values for
readability.

(b) Relative compression rate for stack-
tagging with respect to regular back-
traces (list of addresses).

Fig. 9 Comparison of the stack-tagging approach with other backtracing methodologies on a set
of representative benchmarks

In summary, we have seen that our approach could provide compact stack descrip-
tors with generally acceptable overhead. Caution has to be taken when instrumenting
small functions which are common in C++. In this case, we have seen that selective
instrumentation could partially solve this issue. As part of future work we would like
to explore further the possibility of detecting inline function to selectively disable
stack-tagging—particularly for C++ codes. Consequently, when considering stack
instrumentation from medium to high frequency, our method can have its advan-
tage when compared to other backtraces, as shown in Fig. 7. Conversely, if events of
interest are infrequent, the punctual backtrace methodology is to be preferred.

8 Conclusion

In order to flatten the call stack, we proposed a new abstraction based on chained-
hashing that we called the hashed-trie. This data structure provides a way to model
all the possible transitions in a graph and is then used to encode paths as repetitive
hashes. It is, of course, important to be able to reverse this encoding andwe, therefore,
explored the brute-force method but we also proposed a more optimal approach
relying on finer modeling of the possible transitions, greatly reducing resolution
time.

Eventually, hashed-tries were used to describe stacks. We presented our imple-
mentation of compile-time instrumentation using a GCC plugin in charge of inject-
ing stack tags and supplementary sections inside binaries. Using an empirical set
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of applications we measured reduced collision rates maximum 0.5% and generally
much lower (≤0.01%). Then, after instrumenting the programs and running them,we
resolved 85% of collected stack-tag in a constrained resolution time. Eventually, we
showed that stack-tag instrumentation led to acceptable overhead with the important
aspect that this cost can be mitigated through selective instrumentation, part of this
being targeted in future work.

Overall, this paper developed a new mean of encoding path in a graph through
chained-hashing opening new opportunities for space-time trade-offs in the instru-
mentation and storage of backtraces with potential application in support and per-
formance tools. Such a method can advantageously replace regular backtraces
methodologies in particular for verbose measurements with acceptable overhead
and unprecedented space efficiency.

9 Future Work

As far as the principles behind ourMI X function and chained-hashing are concerned
we clearly miss a more theoretical approach in the complement of the practical one
that we unfolded in this paper. For example, hashes could be split to encode the
depth greatly minimizing the search space. Eventually, we solely explored the TLS
model to attach context data to our execution streams. It would be of interest to
use registers to explore the difference in terms of performance. This would open
interesting consideration such as register-based context for runtimes and tools with
possible hardware support.
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Enabling Performance Analysis of
Kokkos Applications with Score-P

Robert Dietrich, Frank Winkler, Ronny Tschüter, and Matthias Weber

Abstract Nowadays,HPCsystemsoften comprise heterogeneous architectureswith
general purpose processors and additional accelerator devices. For performance and
energy efficiency reasons, parallel codes need to optimally exploit available hard-
ware resources. To utilize different compute resources, there exists a wide range of
application programming interfaces (APIs), some of which are vendor-specific, such
as CUDA for NVIDIA graphics processors. Consequently, implementing portable
applications for heterogeneous architectures requires substantial efforts and possibly
several code bases, which often cannot be properly maintained due to limited devel-
oper resources. Abstraction layers such asKokkos promise platform independence of
application code and thereby mitigate repeated porting efforts for each new acceler-
ator platform. The abstraction layer handles the mapping of abstract code statements
onto specific APIs. Unfortunately, this abstraction does not automatically guarantee
efficient execution on every platform and therefore requires performance tuning. For
this purpose, Kokkos provides a profiling interface allowing performance tools to
acquire detailed Kokkos activity information, closing the gap between program code
and back-end API. In this paper, we introduce support for the Kokkos profiling inter-
face in the Score-P measurement infrastructure, which enables performance analysis
of Kokkos applications with a wide range of tools.
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1 Introduction

The heterogeneity of high-performance computing (HPC) platforms poses a major
challenge for application developers, who must cope with systems in which multiple
processor architectures are used cooperatively, e.g., CPUs and GPUs. Furthermore,
there are several levels of parallelism, such as data and task parallelism.On top of this,
various parallel programming APIs, such as MPI [17], OpenMP [10], CUDA [19],
OpenACC [20] andOpenCL [13], complicate the development of portable programs.

Kokkos [5] provides a C++ programming abstraction, which aims for portabil-
ity without sacrificing performance. Therefore, the programming model abstracts
parallel code execution and data management. The concepts of work dispatching,
execution and memory spaces as well as different data layouts enable the implemen-
tation of several back-ends. Currently, CUDA,HPX [12], OpenMP and Pthreads [18]
are supported. Data layouts are specified asmultidimensional arrays. The paralleliza-
tion abstraction is broken down to three data-parallel constructs: parallel for, parallel
reduce and parallel scan.

Since one of the main concerns of HPC is performance, appropriate tool support
is essential. We added support for Kokkos in the Score-P measurement infrastruc-
ture [14] complementary to the already available CUDA, OpenMP and Pthreads
support. This enables a more holistic analysis of Kokkos programs and provides
developers with details on the Kokkos implementation. With tools such as Vam-
pir [3], Scalasca [9], Cube [21] andCASITA [22] thiswork enables extensive analysis
facilities.

The remainder of thiswork is organized as follows: Sect. 2 gives anoverviewon the
Kokkos profiling interface as well as other profiling interfaces and their integration
into performance analysis tools. We describe our implementation of the Kokkos
profiling interface in Score-P in Sect. 3 and show the benefits of the extended Score-P
analysis with a case study in Sect. 4. Finally, Sect. 5 concludes this work and provides
an outlook for future work.

2 Related Work

Profiling interfaces provide convenient access to runtime information of respective
implementations. In contrast to other instrumentation approaches, such as source
code instrumentation or library wrapping [2], they can expose internals on the exe-
cution of programming models or abstractions. Thus, they are important for perfor-
mance data collection and provide a common interface for profiling tools.
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2.1 The Kokkos Profiling Interface

The Kokkos library implements an interface for debugging and profiling [11], which
enables tools to access the internals of the programming model. Runtime events
(Kokkos::parallel_*) cover the begin and end of dispatched Kokkos regions.
As shown in Table1, there are additional events for initialization and finalization of
the Kokkos library as well as the begin and end of deep copy operations. The cre-
ation and destruction of Kokkos views trigger respective allocation and deallocation
profiling hooks.

The arguments of Kokkos profiling hooks provide further details, e.g., the library
version in the initialization hook and the kernel name in execution dispatch begin
hooks. For matching of begin and end callbacks, a tool may also assign a unique
kernel identifier in dispatch begin callbacks, which will then occur as argument in
the associated end callback. In addition to a pointer to the memory block and its size,
data allocation and deallocation callbacks provide a handle to the respective Kokkos
memory space and the name of the Kokkos view given by the application developer.
The arguments of the deep copy begin hook are besides the number of bytes to be
copied the source and destination memory pointers, allocation names and Kokkos
memory space handles.

The Kokkos profiling interface simplifies several aspects that are more elaborated
in the OpenMP and OpenACC tool interface. For example, the Kokkos profiling
interface only allows the dynamic linkage of a tool library. If a tool library imple-
ments Kokkos profiling hooks, they are called during the execution of a Kokkos
application. However, the Kokkos profiling interface does not provide a mechanism
to dynamically register or unregister callbacks for Kokkos events during runtime of
a Kokkos application.

Table 1 Basic Kokkos functions and corresponding profiling hooks

Basic Kokkos functions Profiling Hooks

Library initialization and finalization

Kokkos::initialize void kokkosp_init_library()

Kokkos::finalize void kokkosp_finalize_library()

Execution dispatch

Kokkos::parallel_for void kokkosp_[begin|end]_parallel_for()

Kokkos::parallel_reduce void kokkosp_[begin|end]_reduce()

Kokkos::parallel_scan void kokkosp_[begin|end]_scan()

Data management

Kokkos::View create void kokkosp_allocate_data()

Kokkos::View destroy void kokkosp_deallocate_data()

Kokkos::deep_copy void kokkosp_[begin|end]_deep_copy()
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However, compared to other profiling interfaces, Kokkos also provides hooks
for manual instrumentation as shown in Listings 1 and 2. The former is kept very
simple. A programmer can mark a profile section and assign a name to this region.
One natural way of use is to push the region at the beginning and pop the region
at the end of an application function. Besides, it is possible to mark a specific code
line with a user provided name. However, this approach only works for perfectly
nested regions as they are treated in a stack fashion and match the calling stack of the
application. In contrast, Listing 2 shows an approach that allows an overlapping of
marked code sections. One can create a profile section with a name and get a unique
identifier which is then used to start and stop a profile section.

Besides a connector to Intel’s VTune Amplifier XE, which is provided with the
Kokkos package, the TAU performance analysis toolkit [24] also implements the
Kokkos profiling interface [23].

2.2 Other Profiling Interfaces

Besides Kokkos, other programmingAPIs also provide a tool interface. For example,
OpenACC [20] specifies a profiling interface since version 2.5 (ACCT). It enables
callbacks to be registered and unregistered for specific runtime events. Similar to the
Kokkos profiling interface, only host-side events can be collected.

Since OpenACC directives can also be executed asynchronously to the host exe-
cution, the ACCT interface specifies several events on respective trigger andwait for
operations. Begin and end events of the latter allow the waiting time of host-device
synchronization to be determined. As device initialization and finalization may take
some time, there are events to expose such offloading overhead. Furthermore, all
event callbacks provide an implicit flag to expose activities or operations that are
executed implicitly by the OpenACC runtime. For interoperability with OpenACC
back-end APIs, a respective interface is available. The integration of the OpenACC
profiling interface into Score-P and respective advantages for program analysis is
described in [4].

Another prominent tool interface is OMPT [6], which has been developed as
an alternative to existing OpenMP instrumentation approaches, e.g., the source-to-
source instrumentation tool OPARI [16] or the OpenMP instrumentation extension
of the Rose compiler [15]. In contrast to the Kokkos and the OpenACC profiling
interface, it also provides support for sampling-based performance analysis tools
such asHPCToolkit [1]. Furthermore,OMPT specifies a tracing interface that enables
recording of activities on the target device or, inKokkos terminology, device activities
in the context of dispatched work. An implementation of OMPT into Score-P and
its challenges are described in [8].
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3 Score-P Integration of the Kokkos Profiling Interface

Score-P is a performance measurement tool which can generate OTF2 [7] traces
and call-path profiles in the CUBE4 and TAU format. It supports data collection for
various programming APIs, such as MPI, OpenMP, CUDA and many others. The
OMPT and ACCT interfaces as well as the CUDA Profiling Tools Interface (CUPTI)
are implemented as so called adapters. In the context of this work we implemented
a Score-P adapter for the Kokkos profiling interface. The Score-P measurement
infrastructure with the Kokkos adapter highlighted and related performance analysis
tools are shown in Fig. 1.

3.1 The Score-P Kokkos Adapter Implementation

The Score-P Kokkos adapter basically implements the Kokkos profiling hooks. In
the Kokkos initialization hook we setup Score-P internal structures, while we do a
respective cleanup in the finalization hook.

Figure2 illustrates the template on the interception of Kokkos dispatch oper-
ations with the Score-P Kokkos adapter using pseudo code blocks. The function
SCOREP_Definitions_NewRegion(name, ...) checks for already vis-
ited regions by name and if a new region name is encountered, it creates a new
Score-P region handle. The same template, stripped by the kernel ID handling, is
used for Kokkos deep copy operations and the manual Kokkos instrumentation via
push and pop of Kokkos regions (see Listing 1).

Fig. 1 Illustration of the Score-P measurement infrastructure. The Kokkos profiling interface is
implemented complementary to existing profiling support. Therefore, events from Kokkos back-
ends CUDA, OpenMP and Pthreads can be included in the measurement and a respective perfor-
mance analysis and tuning
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Fig. 2 Score-P implementation pseudo code of Kokkos execution dispatch hooks

Listing 1 Kokkos hooks for manual instrumentation of perfectly nested code regions

void kokkosp_push_profile_region (const char* name)
void kokkosp_profile_event (const char* name )
void kokkosp_pop_profile_region ()

Listing 2 Kokkos hooks for manual instrumentation of profile sections

void kokkosp_create_profile_section (const char* name ,
uint32_t* sec_id)

void kokkosp_destroy_profile_section (uint32_t sec_id)
void kokkosp_start_profile_section(uint32_t sec_id)
void kokkosp_stop_profile_section(uint32_t sec_id)

The handling of Kokkos profile sections (see hooks in Listing 2) also follows the
depicted template. However, new Score-P region handles are created and stored with
a unique section identifier, when a Kokkos section is created. The section-destroy
hook is used to remove the section identifier from the internal mapping table, similar
to the pop operation of the kernel ID for Kokkos dispatch operations. The start and
stop hooks simply lookup the section identifier from the internal mapping table and
call the Score-P region enter or exit region function.

3.2 Attaching Score-P to the Kokkos Program

Score-P implements the Kokkos profiling hooks in a separate adapter, which is built
as a shared library named libscorep_adapter_kokkos_event.so. The
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environment variableKOKKOS_PROFILE_LIBRARY is set to the path of this library
before the Kokkos program is started. The Kokkos runtime dynamically loads the
Score-P Kokkos adapter library. If no further instrumentation is applied, the Kokkos
initialize hook setups the Score-P measurement system. Other tool interfaces such
as OMPT and ACCT provide a more advanced initialization and support for static
linkage.

4 Case Study

To evaluate the integration of the Kokkos tools interface in Score-P, we use the
ExaMiniMD code. It is the successor of MiniMD, a parallel molecular dynamics
(MD) simulation package written in C++.

MiniMD is intended for use on parallel supercomputers and new architectures
for testing purposes. It performs a parallel MD simulation of a Lennard-Jones sys-
tem and is designed following many of the same algorithm concepts as LAMMPS1

parallel MD code, but is much simpler. For spatial decomposition parallelism it
uses a combination of MPI and one of the node-local parallelization APIs OpenMP,
OpenCL, or OpenACC. ExaMiniMD is a code cleanup of MiniMD and replaces
OpenMP, OpenCL, and OpenACC with Kokkos. It is more modular than MiniMD,
e.g., there are derived classes for force calculation, communication and neighbor list
construction.

4.1 Unmodified Binary

For our initial experiments, we have built ExaMiniMD with MPI and Kokkos. We
did not modify any build files and thus did neither use compiler nor source-code
instrumentation. To generate a trace file, we used Score-P’s library pre-loadingmech-
anism as shown in Listing 3. Finally, we analyzed the trace files by visualization with
Vampir.

We run our experiments on the GPU partition of TU Dresden’s Taurus cluster,
which is equipped with two Intel E5-2450 CPUs and two NVIDIA K20Xm GPUs.
Hence, we used two MPI processes with one CUDA back-end GPU each. In the
initial experiment, we recorded calls to the MPI library and applied our Score-P
Kokkos adapter. In the subsequent experiment, we added instrumentation of the
CUDA back-end via CUPTI.

The Vampir visualization in Fig. 3 shows the last experiment with MPI, Kokkos
and CUDA instrumentation. The regions in purple represent Kokkos regions, with
kokkosp_parallel_for being most time-consuming in the selected time
interval. However, most of the time is spent in CUDA synchronization (mostly

1http://lammps.sandia.gov.

http://lammps.sandia.gov
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Fig. 3 Vampir visualization of an ExaMiniMD measurement run using an unmodified binary. The
timeline on the top left shows twoMPI processes with each using twoCUDA streams for theKokkos
back-end. The CUDA driver API is colored in cyan, CUDA kernels in light blue. Kokkos regions
are colored purple, as shown in the call stack timeline of MPI rank 0 on the bottom left. The display
on the right visualizes the accumulated exclusive runtime of all recorded regions in the selected
interval. The black dots visualize mostly bursts of host-device copies

cuCtxSynchronize). The reason for this is that Kokkos does not perform load
balancing between host and back-end. In case of the CUDA back-end, the host waits
when CUDA kernels are executed. This fact might be more interesting for library
developers than for application developers as the latter cannot change the back-end
implementation.

Listing 3 Example for running unmodified Kokkos binary with Score-P enabled

export LD_PRELOAD =\
‘scorep -preload -init --cuda --value -only ./kokkos -app ‘

export KOKKOS_PROFILE_LIBRARY =\
$SCOREP_LIBRARY_PATH /libscorep_adapter_kokkos_event .so

./kokkos -app

Even without modifying the executed binary, the performance analysis with
Vampir gives an overview on the runtime behavior of Kokkos regions and a visual
correlation with the underlying CUDA back-end. By adding additional information
to the Kokkos construct (which is not implemented yet), we could also provide a
correlation to the source code.

4.2 Instrumented Binary

The following measurements of ExaMiniMD were performed with compiler instru-
mentation via Score-P, which enables the correlation between program functions,
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Fig. 4 Vampir visualization of an ExaMiniMD measurement run using an instrumented binary.
Execution setup and color coding are the same as in Fig. 3, but application functions are additionally
instrumented and colored in green

Kokkos and other used API functions, e.g., from MPI and CUDA. However, this
requires a recompilation of ExaMiniMDwith Score-P. The adaption of the build pro-
cess can be very cumbersome for complex build systems. In such cases the sampling
feature of Score-P might be an alternative. Figure4 shows the Vampir visualization
of an instrumented ExaMiniMD run.

For a better understanding of the code structure we took a closer look at the
main loop, which basically consists of four parts (see Listing 4). Each time step
performs an initialization, a halo update, a force computation and a finalization.
Figure5 highlights the occurrence of the initial_integrate function in a
Vampir timeline and thus the begin of each iteration.As can be seen from theFunction
Summary at the bottom, there are 200 invocations of this function in total, which
implies 100 iterations per process. An iteration can vary in execution time. In our
execution, after each ten iterations an energy computation takes place and after 20
iterations the data is exchanged via MPI.

Listing 4 Main loop of ExaMiniMD

ExaMiniMD ::run(int nsteps) {
for(int step = 1; step <= nsteps; step++ ) {
initial_integrate ();
update_halo ();
// Compute Short Range Force
force ->compute(system ,binning ,neighbor );
// Second part of the verlet time step integration
integrator ->final_integrate ();

}
}
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Fig. 5 Vampir visualization of an ExaMiniMD measurement run. The occurrences of the
initial_integrate() function are highlighted (with yellow color). The number of invo-
cations is shown in the Function Summary at the bottom

Fig. 6 Vampir visualization of an ExaMiniMD measurement run. The zoom into one iteration
shows the time share of halo update/exchange and the force computation

Figure6 illustrates one iteration and reveals its execution stack. The individual
phases of an iteration are differently colored, yellow for the initialization, orange
for the halo update and dark purple for the force computation. One can see that
the halo update takes about one third of the execution time of an iteration. The
update_halo function executes a series of kokkosp_parallel_for con-
structs to transfer data between host and device and between the processes via
MPI_Send/MPI_Receive. The question arises whether it would be possible to
pack the short host-device transfers and kernels together into a single operation each.
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Fig. 7 ExaMiniMD:Vampir comparison view of a CUDA and anOpenMP back-endmeasurement.
During one iteration with OpenMP back-end (purple background), about ten iterations with CUDA
back-end are performed. Color coding is similar to Fig. 6, with the OpenMP parallel regions colored
brown

The remaining two thirds of execution time of one iteration are spent in the force com-
putation, also using the kokkosp_parallel_for construct, which is mapped
directly to the GPU. After the host triggers the data transfer from host to the device
and the kernel, it directly starts waiting for their completion.

In our last experiment we used OpenMP as Kokkos back-end, where most time
is spent in the force computation phase, which is implemented as OpenMP parallel
region. Figure7 compares a run with CUDA and OpenMP back-end. The CUDA
back-end (K20Xm GPU) is about ten times faster than the OpenMP back-end (Intel
E5-2680v4 CPU) as it performs ten iterations within the time of one OpenMP iter-
ation. It can also be seen that the initialization phase of the CUDA version is about
five times faster, although this phase is not offloaded to the GPU.

In summary, the visualization of the Kokkos abstraction layer in Vampir in com-
bination with compiler and back-end instrumentation gives us a better understanding
of how the back-end implementation performs on a given architecture. However, it
would be desirable to get additional information on the back-end from the Kokkos
profiling itself, so that it was not necessary to capture extra information from the
back-end to evaluate the efficiency of hardware usage. For instance, useful informa-
tion for OpenMP includes the number of requested OpenMP threads. The CUDA
back-end could inform about the number of CUDA kernels per Kokkos dispatch, the
CUDA grid and block arrangement and the bytes transferred.
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5 Conclusion

This paper presents the integration of the Kokkos profiling interface in Score-P.
Therefore, this work builds the foundation for comprehensive performance analy-
sis with a wide range of tools such as Vampir, Scalasca, Cube and CASITA. The
paper demonstrates the new analysis capabilities with the Vampir tool. Event traces,
recorded by Score-P and visualized with Vampir, provide a very detailed insight
into the execution of Kokkos applications. This enables program developers to ana-
lyze their applications, reveal bottlenecks, and identify potential for performance
optimizations.

This work also shows limitations of the current Kokkos implementation. Event
logs shown in this paper attest that the Kokkos CUDA back-end does not perform
load balancing between host and device. Furthermore, the current implementation of
the Kokkos profiling interface supports only one profiling library at a time. However,
this restriction is not inherently caused by the interface design and therefore can be
abolished in future implementations.

Finally, this work suggests extensions for future versions of the Kokkos profiling
interface. For instance, performance analysis would benefit from options to correlate
Kokkos constructs and their generated code, such as CUDA kernels or OpenMP
regions, as well as additional information about dispatched workload, such as the
number of used threads or CUDA streams.
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Regional Profiling for Efficient
Performance Optimization

Florent Lebeau, Patrick Wohlschlegel, and Olly Perks

Abstract Performance profiling and debugging are critical components in the
HPC application development workflow, ensuring efficient utilization of hardware
resources and correctness of solution. Having strong tools to underpin these require-
ments enables better software development and more efficient execution. The Arm
Forge tool suite has long been recognized as industry leading within HPC, for deliv-
ering real world usability and actionable information. However, performance engi-
neering is a moving target—due to changes in the HPC ecosystem, such as hard-
ware, software and user workflow. As such the Arm Forge tools are in constant
development—to adapt to, and exploit, the latest use cases. One such emerging
use case is domain-specific contextual information, in the form of user annotations
which can be embedded within performance profiles. Through a collaboration with
Lawrence Livermore National Laboratory (LLNL), and their open-source Caliper
tool, Arm was able to develop this concept into a fully integrated user workflow.
This article will introduce Arm Forge’s latest feature on regional profiling and how
it complements the more traditional, and established, optimization methodology.

1 Introduction

ArmMAP is a lightweight and scalable profiling tool that provides a user-friendly and
intuitive overview of the performance of Linux applications. Thanks to an adaptative
sampling mechanism and data aggregation across processes, it is designed to have
a low impact on the application’s runtime performance and generate small result
files. Along with Arm DDT and Arm Performance Reports, MAP is part of Arm
Forge: they all share the same petascale-capable architecture [1]. Arm Forge allows
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scientific developers to write better and more efficient code by providing them with
a solution for their whole workflow. This 9-step guide to optimize HPC applications
[2] illustrates when and how these tools can be used:

• Ensure application correctness and fix bugs at scale [DDT]
• Measure all performance aspects (computations, communications, IO) on real
workload [Performance Reports]

• Inspect I/O patterns and their source code [MAP]
• Investigate workload imbalances and heavy synchronization between processes
[Performance Reports, MAP]

• Analyze data transfer rates and slow communication patterns [Performance
Reports, MAP]

• Investigate regions with high memory accesses [MAP]
• Evaluate core utilization and thread synchronization [Performance Reports, MAP]
• Inspect hot loops and vectorized instructions [Performance Reports, MAP]
• Validate corrections with automated tests [Performance Reports, MAP, DDT]

Whilst this methodology has proven to be particularly suitable for developers
with a good understanding of computer science, the data captured to resolve these
problems are, in the best case, only loosely correlatedwith an application’s contextual
information. The profiles relate performance, and time spent, to source code lines,
functions and libraries: for those without an in-depth understanding of the source
code layout this information may be confusing.

In 2019, Arm MAP was extended to support regional profiling using Caliper,
a performance data collection and analysis tool developed by the LLNL [3]. The
objective of this extension is to enableMAP tonot only capture computer-centric data,
but to add domain-specific contextual information. Using instrumentation, Caliper
facilitates the identification of C/C++ and FORTRAN code regions for performance
introspection. It can profile or trace these regions, provide auxiliary statistics (such
as MPI or PAPI) and can be coupled to various third-party tools like TAU or Nvprof.

2 Motivation

Profiling with Arm MAP is easy: the user just needs to recompile their code with
the debugging option and prefix the execution command with the map command
to generate profiling results. The results can be open in the GUI for analysis. MAP
straightforwardly represents the application activity in three main sections:

• the metrics graphs describe the activity of the different processes or threads of the
application over time,

• the source code viewer displays the lines of code annotated with time and activity
information,

• the stacks view aggregates time and activity information by call path.

MAP highlights activity patterns using different colors:
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Fig. 1 Activity and CPU floating-point metric

• single-thread computations appear in dark green,
• multi-thread computations in light green,
• thread synchronization in grey,
• MPI calls in blue,
• IO calls in orange.

This makes it easy to understand the various stages of an applications such as
synchronizations, data loads or checkpoints. However, analyzing largely compute-
bound, MPI-bound or I/O-bound profiles can be more difficult. In this section, we
will illustrate some current design limitation by profiling a modified version of the
Hydro benchmark [4].

2.1 Application Activity and Metrics

The main thread activity in Fig. 1 pictures the type of operation performed by the
16 processes running Hydro across time. The color code listed above allows to
identify what looks like an iterative pattern: MPI calls are performed regularly as the
application runs.

This application is compute-bound: 97% of the activity is spent in computations.
The CPUfloating-point activity graph underneath themain thread activity aggregates
data across all processes to display the average. Shading is used to represent the
difference between the average and the minimum and maximum values recorded
for each sample. Floating-point activity is high for the whole run, especially when
compute activity has been recorded, but the graph doesn’t highlight any additional
pattern.

The lack of more diversity in terms of activity doesn’t provide more information
at this stage and we need to complement our analysis by investigating the source
code of the application.

2.2 Function and Stack View

Figure2 shows the source code of the main function of Hydro. The iterative aspect is
immediately confirmed thanks to the annotations: the same compute-bound function
is called by all the processes in two code paths alternately.
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Fig. 2 Source and Function view

Fig. 3 Stack view

The functions view is displayed underneath the source code viewer and lists the
functions sorted by execution time. Thus, it is easy to find the three first bottlenecks
of the application: riemann, trace and updateConservativeVars. Time glyphs indicate
that they are called all along the execution and that they are compute-bound.

The stack view, shown in Fig. 3, illustrates how these functions are called from
main, in the two branches of code that were identified earlier.
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Fig. 4 Collapsed stack view

Figure4 illustrates how the stack view can be expanded to show which lines of
codes inside these functions are costly.

While the updateConservativeVars function spends 79% of its execution time in
3 lines of code, the trace function spends 69% in 15 lines and riemann 55% in 15
lines. MAP highlights that the internal profile of these last two bottlenecks is flat.
Optimizing them might be time-consuming.

In addition to that, the trace and riemann functions are large pieces of code:
approximately 200 and 340 lines respectively when the updateConservativeVars
function is only 70 lines of code. Gathering application context information is impor-
tant to make their optimization more efficient.

3 Instrumenting Code with Caliper

MAP has identified the main function bottlenecks and are listed in Table1.

Table 1 Hydro flat profile

Function Time spent in self (s)

Riemann 37.8

Trace 12.8

UpdateConservativeVars 9.2

Qleftright 7.6

GatherConservativeVars 6.3

Constoprim 3.5

Slope 3.3
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Caliper allows to instrument functions very simply inCusinghigh-levelmacros [5]:

• CALI_MARK_FUNCTION_BEGIN specifies where a function starts and
CALI_MARK_FUNCTION_END specifies where it terminates. All exit points
must be marked.

• CALI_LOOP_BEGIN specifies where a loop starts and
CALI_LOOP_END specifies where it terminates. Inside the loop region,
CALI_MARK_ITERATION_BEGIN identifies the start of an iteration and
CALI_MARK_ITERATION_ENDidentifies the end.All iteration exit pointsmust
be marked.

• CALI_MARK_BEGIN and CALI_MARK_END specify user-defined code
regions.

In Hydro, comments left by the developers allow to break down the riemann
function and label different sections as shown in Listing 1.

Listing 1 Pseudo-code with Caliper annotations
C A L I _ M A R K _ L O O P _ B E G I N ( r i e m a n n _ s l i c e _ i d ,

" r i e m a n n _ s l i c e s " ) ;
/ / c o m p u t e p r e s s u r e , d e n s i t y , v e l o c i t y f o r e a c h s l i c e
f o r ( s = 0 ; s < s l i c e s ; s + + )
{

C A L I _ M A R K _ I T E R A T I O N _ B E G I N ( r i e m a n n _ s l i c e _ i d , s ) ;
C A L I _ M A R K _ B E G I N ( " r i e m a n n _ s l i c e _ p r e c o m p u t e " ) ;
f o r ( i = 0 ; i < n a r r a y ; i + + )
{ [ . . . ] }
C A L I _ M A R K _ E N D ( " r i e m a n n _ s l i c e _ p r e c o m p u t e " ) ;
C A L I _ M A R K _ B E G I N ( " r i e m a n n _ s l i c e _ i n t e r f a c e s " ) ;
f o r ( i t e r = 0 ; i t e r < H n i t e r _ r i e m a n n ; i t e r + + )
{ [ . . . ] }
C A L I _ M A R K _ E N D ( " r i e m a n n _ s l i c e _ i n t e r f a c e s " ) ;
C A L I _ M A R K _ B E G I N ( " r i e m a n n _ s l i c e _ a r r a y s " ) ;
f o r ( i = 0 ; i < n a r r a y ; i + + )
{ [ . . . ] }
C A L I _ M A R K _ E N D ( " r i e m a n n _ s l i c e _ a r r a y s " ) ;
C A L I _ M A R K _ I T E R A T I O N _ E N D ( r i e m a n n _ s l i c e _ i d ) ;

}
C A L I _ M A R K _ L O O P _ E N D ( r i e m a n n _ s l i c e _ i d ) ;

Caliper can be used to generate profiling information on annotated regions.
Through a configuration file, services can be selected to provide measurement data
using sampling or tracing. The results can be displayed via standard output or stored
in data files that can be queried afterwards.

To profile a Caliper-enabled application, MAP doesn’t need a Caliper configura-
tion file. MAP only relies on the high-level macros in the source code and automat-
ically adjust the interface to present Caliper-specific information in a user-friendly
way.



Regional Profiling for Efficient Performance Optimization 189

Fig. 5 Regions view displaying Caliper-annotated code sections

4 Visualizing and Analyzing Results

When opening the profile of a Caliper-enable application in MAP’s GUI, additional
sections automatically appear to display regional information: the regions view and
the selected region activity graph.

4.1 Regions View

The regions view lists the code sections marked with Caliper high-level macros as
shown in Fig. 5. For each region, the corresponding time spent as a percentage is given
and a time glyph shows when and how the region is executed between processes.

Each region can be enabled or disabled to be displayed in the selected region
activity graph. A color label allows to identify them in the graph.

4.2 Selected Region

The selected regions graph displays which Caliper region is executed as Hydro runs:
each sample or horizontal point indicate how many processes are executing the code
regions labelled with different colors. Figure6 illustrates how the sub iterations of
Hydro can be identified easily when enabling the riemann (in red), trace (purple)
and updateConservativeVars (pink) Caliper code regions.

In addition, thanks to Caliper the CPU floating-point metric graph highlights that
the riemann function is particularly responsible for high values. As suggested in
the 9-step guide to optimize HPC applications, additional CPU performance aspects
can be analyzed more closely: MAP can display many additional metrics. Here, the
amount of CPUmemory accesses is average, but the amount of CPU vector floating-
point operations is low. Figure7 shows how MAP allows to zoom in a time frame
and pinpoint that the riemann function is not performing any vector instruction at
all.



190 F. Lebeau et al.

Table 2 Summary of bottlenecks classified by Caliper region

Caliper region Number of lines of code Time spent (%)

Riemann_slice_precompute 4 14

Riemann_slice_interfaces 5 17

Riemann_slice_arrays 6 24

5 Optimizing

Instead of selecting Caliper function regions, arbitrary code regions can be selected
to provide insight about how the riemann function is executed. The selected regions
in Fig. 8 shows how the riemann_slice_precompute, riemann_slice_interfaces, and
riemann_slice_arrays regions are executed over time and between processes. MAP
is also able to display this information in the source code viewer and in the stack
viewer.

MAP highlights that these regions of code in the riemann function are not vector-
ized. Expanding the stack gives more information as shown in Fig. 9 and summarized
in Table2.

These code regions correspond to three different loop nests that the compiler
doesn’t seem to be able to vectorize. Inserting OpenMP SIMD directives can help
and we can generate new profiles with MAP to check if the optimization has been
successful.

Figure10 shows the result of the optimization: the three loop nests are now effi-
ciently vectorized, leading to a speed-up of 1.57 on the whole application.

Fig. 6 Selected regions showing the execution of Caliper-annotated code sections

Fig. 7 CPU vector metric
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6 Current Limitations

The instrumentation of fine-grain loops can be problematic. It may increase themem-
ory footprint of the application and may result in a significant overhead. However, as
shown in Table3 using MAP on Caliper-enabled application doesn’t add overhead
compared to using Caliper only.

For now, neither MAP nor Caliper propagates Caliper attributes set on the main
thread to OpenMP worker threads when entering an OpenMP parallel region. As a
result, the Caliper regions executed by worker threads may not be available. This
might be addressed in the future either by MAP or Caliper itself.

Fig. 8 MAP profiling results with activate regions focused view enabled
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Fig. 9 Stack view with Caliper information

Fig. 10 Caliper annotated with vectorized loops

Table 3 Overhead figures of MAP and Caliper

Application Run time (s) Run time with MAP
(s)

Run time with MAP
and Caliper (%)

Hydro 36.09 36.47 1

Hydro with Caliper 36.71 37.42 2

Hydro with Caliper
and fine-grain loop
instrumentation

112.44 124.5 11

7 Conclusion

We have presented MAP, a lightweight profiling tool for HPC and Caliper, a per-
formance introspection framework. We have illustrated how MAP can benefit from
Caliper: it brings meaningful information to application profile and helps analyzing
and optimizing applications faster.We have also demonstrated howMAP contributes
to the Caliper ecosystem and how it can complement the work done with other third-
party tools.

Thanks to the support for Caliper annotations, the 9-step guide to optimize HPC
applications can now be used by domain scientists in addition to computer scientists.
They canwork hand in hand and optimize the application further, verify if the changes
produce correct results or if there are any bug left in the application. The Arm DDT
parallel debugger can help with this, by allowing users to inspect data structures and
check for memory leaks for instance.

Other possible use cases could be to analyze the behavior of the application when
scaling up to more nodes or with different test cases. Caliper annotations could
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help finding misbehavior in functions or sections of code that only appear on some
configurations.
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Effortless Monitoring of Arithmetic
Intensity with PAPI’s Counter Analysis
Toolkit

Daniel Barry, Anthony Danalis, and Heike Jagode

Abstract With exascale computing forthcoming, performancemetrics such asmem-
ory traffic and arithmetic intensity are increasingly important for codes that heavily
utilize numerical kernels. Performance metrics in different CPU architectures can be
monitored by reading the occurrences of various hardware events. However, from
architecture to architecture, it becomes more and more unclear which native per-
formance events are indexed by which event names, making it difficult for users to
understand what specific events actually measure. This ambiguity seems particu-
larly true for events related to hardware that resides beyond the compute core, such
as events related to memory traffic. Still, traffic to memory is a necessary character-
istic for determining arithmetic intensity. To alleviate this difficulty, PAPI’s Counter
Analysis Toolkit measures the occurrences of events through a series of benchmarks,
allowing its users to discover the high-level meaning of native events.We (i) leverage
the capabilities of the Counter Analysis Toolkit to identify the names of hardware
events for reading andwriting bandwidth utilization in addition tofloating-point oper-
ations, (ii) measure the occurrences of the events they index during the execution
of important numerical kernels, and (iii) verify their identities by comparing these
occurrence patterns to the expected arithmetic intensity of the numerical kernels.

1 Introduction

Most of the major tools that high-performance computing (HPC) application devel-
opers use to conduct low-level performance analysis and tuning of their applications
typically rely on hardware performance counters to monitor hardware-related activi-
ties. The kind of available counters is highly dependent on the hardware; even across
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the CPUs of a single vendor, each CPU generation has its own implementation.
The PAPI performance-monitoring library provides a clear, portable interface to the
hardware performance counters available on all modern CPUs, as well as GPUs,
networks, and I/O systems [8, 9, 14]. Additionally, PAPI supports transparent power
monitoring capabilities for various platforms, including GPUs (AMD, NVIDIA) and
Intel Xeon Phi [5], enabling PAPI users to monitor power in addition to traditional
hardware performance counter data, without modifying their applications or learning
a new set of library and instrumentation primitives.

We have witnessed rapid changes and increased complexity in processor and
system design, which combines multi-core CPUs and accelerators, shared and dis-
tributed memory, PCI-express and other interconnects. These systems require a con-
tinuous series of updates and enhancements to PAPI with richer and more capa-
ble methods needed to accommodate these new innovations. One such example is
the PAPI Performance Co-Pilot (PCP) component, which we discuss in this paper.
Extending PAPI tomonitor performance-critical resources that are shared by the cores
of multi-core and hybrid processors—including on-chip communication networks,
memory hierarchy, I/O interfaces, and power management logic—will enable tuning
for more efficient use of these resources. Failure to manage the usage and, more
importantly, contention for these “inter-core” resources has already become a major
drag on overall application performance.

Furthermore, we discuss one of PAPI’s new features: the Counter Analysis Toolkit
(CAT), which is designed to improve the understanding of these inter-core events.
Specifically, the CAT integratesmethods based onmicro-benchmarking to gain a bet-
ter handle on Nest/Offcore/Uncore/NorthBridge counter-related events—depending
on the hardware vendor. For simplicity, hereafter we will refer to such counters as
Uncore, regardless of the vendor.

We aim to define and verify accurate mappings between particular high-level
concepts of performance metrics and underlying low-level hardware events. This
extension of PAPI engages novel expertise in low-level and kernel-benchmarks for
the explicit purpose of collecting meaningful performance data of shared hardware
resources.

In this paper, we outline the new PAPI Counter Analysis Toolkit, describe its
objective, and then focus on the micro-kernels that are used to measure and correlate
different native events to compute the arithmetic intensity on the Intel Broadwell,
Intel Skylake, and IBM POWER9 architectures.

2 Counter Analysis Toolkit

Native performance events are often appealing to scientific application developers
who are interested in understanding and improving the performance of their code.
However, in modern architectures it is not uncommon to encounter events whose
names and descriptions can mislead users about the meaning of the event. Common
misunderstandings can arise due to speculations insidemodern CPUs, such as branch
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prediction and prefetching in thememory hierarchy, or noise in themeasurements due
to overheads and coarse granularities of measurements when it comes to resources
that are shared between the compute cores (e.g., off-chip caches and main memory).

In earlier work [2], we explored the use of benchmarks that employ techniques
such as pointer chasing [1, 3, 4, 10–13] to stress the memory hierarchy as well as
micro-benchmarks with different branching behaviors to test different branch-related
events. The CAT, which was released with PAPI version 6.0.0, has built upon these
earlier findings by significantly expanding the kinds of tests performed by our micro-
benchmarks, as well as the parameter space that is being explored. Also, we continue
making our latest benchmarks as well as updates to the basic driver code (made after
the PAPI 6.0.0 release) publicly available through the PAPI project’s Git repository.

CAT currently contains benchmarks for testing four different aspects of CPUs:
data caches, instruction caches, branches, and floating-point operations (FLOPs).
Themicro-benchmarks themselves are parameterized and, thus, their behavior can be
modified by expert users who desire to focus on particular details of an architecture.
The driver, which is currently included with CAT, uses specific combinations of
parameters that we have determined appropriate for revealing important differences
between different native events. More details on the actual tests are discussed in the
following sections.

2.1 Data Cache Tests

Figure1 shows a plot of the data generated when the data cache read benchmark is
executed. As shown in the figure, there are six regions that correspond to six different
parameter sets. In the first four regions, the access pattern is random (“RND”), and
it is sequential (“SEQ”) in the last two. This choice affects the effectiveness of
prefetching, since random jumps are unlikely to be predicted, but sequential accesses
are perfectly predictable. The access stride is also varied between regions so that it
either matches the size of a cache line on this architecture (64 Bytes) or the size
of two cache lines (128 Bytes). This choice affects the effectiveness of “next-line
prefetching,” which is common in modern architectures. The third parameter that
varies across the six regions is the size of the contiguous block of memory in which
the pointer chaining happens. In effect, this defines the size of the working set of the
benchmark, since all the elements of a block will be accessed before the elements
of the next block start being accessed. We vary this parameter because in many
modern architectures prefetching is automatically disabled as soon as the working
set becomes too large.

TheX-axis of the graph corresponds to themeasurements performed by the bench-
mark. For each combination of parameters, the code performs 76 measurements, and
within each set of 76 measurements, the X-axis corresponds to the size of the buffer
that the benchmark uses. To improve the readability of Fig. 1, at the top of the graph,
we have marked the measurement indices within each region that correspond to the
sizes of the three caches (L1, L2, L3) of the testbed we used (Skylake 6140). For each
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Fig. 1 L2 data cache events

measurement, the benchmark executes a memory traversal defined by the parameters
of the region (e.g., a random pointer chase with a large stride, or a streamed traversal
of each cache line in the buffer). To amortize the effect of cold cache misses (also
known as compulsory misses), the benchmark traverses the test buffer in a loop such
that the number of memory accesses for each measurement exceeds the size of the
buffer by a large factor. As a result, cold cache misses do not have a measurable
effect in our results, as can be seen in the figure.

The red curve with square points depicts the number of hits in the L2 cache per
memory access (hit rate). In each of the six regions, the L2 hit rate is zero when
the buffer size is smaller than the L1 cache (since all accesses are served by the L1
cache). When the buffer is larger than the L1 but smaller than the L2 cache, every
access leads to an L2 hit. This can also be observed in each of the six regions, where
the red curve stays at one hit count per memory access between the markers for the
L1 and L2 cache sizes (shown at the top of the figure).

When the buffer size exceeds the size of the L2, the number of L2 hits per memory
access depends on the parameters of our benchmark. Each region uses different
parameter settings, and we will discuss the various effects of these parameters on
buffer sizes greater than the L2 cache.

block=large : Regions one and three illustrate that for large working sets
(“block=large”) prefetching is disabled, which results in a negligible number of
hits per access.

block=small : For small working sets (“block=small”), which are depicted in
regions two and four, successful prefetching leads to an L2 hit rate above zero.
These two regions, however, exhibit a difference in the hit rate. This is due to
varying stride parameter values in our benchmark.
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block=small, stride=64 : On a machine with a cache line size of 64 bytes—as is
the case for our testbed—using a stride of 64 bytes means that the data fetched
by the “adjacent cache line prefetcher” will contribute to the hit rate.

block=small, stride=128 : However, when the stride of the benchmark is set to
128 bytes, a lower number of prefetched lines is actually accessed, resulting in a
lower hit rate compared to the stride=64 bytes setting.

The last two regions of the graph show the results when the buffer is accessed
sequentially (“SEQ”). In these regions, the notion of “block” does not apply (since
the whole buffer is accessed as one contiguous block), and the access pattern is so
simple that prefetching is most efficient. The only limiting factor is the bandwidth of
the memory subsystem beyond the L2 cache, which is stressed twice as much when
the stride is 128 bytes, leading to a lower hit rate than the case of the 64-byte stride.

The blue curve with round points depicts the miss rate of the L2 cache. As
expected, this curve is complementary to the red curve depicting the hit rate (ignoring
some noise in the measurements).

2.2 Instruction Cache Tests

Unlike the case we discussed in the previous section—where the same micro-
benchmark code was used while key parameters were varied to achieve different
results—the instruction benchmark consists of a series of automatically generated
micro-benchmark functions that have a variable number of instructions. In Fig. 2, we
plot the data generated when the instruction cache benchmark is executed. The data
in the figure are in four regions. Within each region, the micro-benchmark functions
have the same design, but varying numbers of repetitions of their basic block, which
are displayed on the X-axis. The difference between regions is as follows.

1. region TRUE_BRANCH: Each basic block is enclosed in a branch that will
always evaluate to “true” (although it is designed such that it cannot be resolved
by the compiler).

2. region TRUE_BRANCH/FL: The code is the same as in the first region; how-
ever, a large array is accessed at the end of each iteration, so that unified caches
are flushed (“FL”).

3. region FALSE_BRANCH: Each basic block holds most of the code inside a
branch that will always evaluate to “false.” This way, only the first instruction in
a cache line will be used, as the rest will not be retired, and thus, resulting in a
lower hit rate compared to the results from the first region.

4. region FALSE_BRANCH/FL: The code is the same as in the third region, but
it also performs the large data traversal to flush the caches (“FL”).
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Fig. 2 Instruction cache events

Normalization of data for the purpose of readability: 1 In each of the four regions,
we normalize the raw counter values by dividing them by the number of repetitions
of the basic block, which turns these values into rates. In addition, the below function
is applied:

F(x) = log(1 + log(1 + 18.8 × x4))

1.15

This function has the following effects on its input:

• Values lower than 0.5 become smaller.
• Values between 0.5 and 2 are not significantly affected.
• Values larger than 2 grow extremely slowly (F(106) ≈ 3.5).

In Fig. 2, the green line with the hollow square points depicts the (normalized)
hit rate in the Decoded Stream Buffer (DSB) (also known as μOP cache). The DSB
functions as a level-0 instruction cache, as it is the unit inside each core that caches
μOPs after they have been decoded by the Micro Instruction Translation Engine
(MITE)—which is the unit that decodes instructions into μOPs. On Skylake, the
DSB can hold up to 1,536μOPs.

In the first and third regions of the graph, the green line reveals, for small bench-
mark codes (fewer than 150 repetitions of the basic block), most instructions are
delivered to the back-end from the DSB. In regions two and four, however, we see
a normalized value above 3.5, which corresponds to millions of events. This is due
to the loop that accesses the large array in order to flush the unified caches (L2 and

1We perform this normalization on the raw data produced by this benchmark only for presentation
purposes because we have observed that the measurements are either around 1.5, or extremely large,
and thus they cannot be visualized in a readable way, not even in a logarithmic graph.
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L3). The code of the loop is tiny (a simple read from an array and accumulation into
a scalar), and thus, it easily fits in the DSB but executes tens of millions of times in
order to flush the L3.

The dashed light-blue line with solid square points depicts the (normalized) miss
rate of the L1 instruction cache. In regions one and three of the graph, we see that the
L1 only experiences misses when the code becomes large. Interestingly, in regions
two and four, we can see that the L1 instruction cache experiences misses even at
very small code sizes. This is most likely due to the flushing of the L3 cache, which
is inclusive, and therefore invalidates the L1 instruction cache.

Likewise, the (normalized) L2 miss rate, displayed by the purple curve with the
solid points, follows a similar pattern as the L1 miss rate.

The (normalized) L2 hit rate, depicted by the red curve with the hollow square
points, shows a peak for moderately sized codes, and zero for smaller and larger
codes. In addition, we can observe that the L2 hit rate in the first region—where all
the code in the cache is used—is higher than the hit rate in the third region—where
the false branch causes part of the code to be fetched but not executed.

In summary, the goal of thiswork is to generate benchmarks thatmake these curves
different from one another, so we can distinguish between performance events that
have semantic differences.While Fig. 2 holds a significant amount of data, the curves
shown are notably distinct from each other, which substantiates the validity of this
effort.

2.3 Branch Tests

Figure3 shows a plot of the data generated when the branch benchmark is executed.
This test consists of a series of different hand-crafted micro-benchmarks (currently
eleven), each of which exhibits different behavior from the others with respect to one
or more branch instructions. Consequently, when all micro-benchmarks are used,
each type of branch event produces a unique signature, as can be seen in the figure.

Listing 11.1 Branch benchmark #5.
do{

iter_count ++;

BUSY_WORK ();

BRNG ();

if ( (result % 2) == 0 ){

BUSY_WORK ();

if(( global_var1 %2) != 0){

global_var2 ++;

}

global_var1 +=2;

}

BUSY_WORK ();

}while(iter_count <size);

Listing 11.2 Branch benchmark #9.
global_var2 = 1;

do{

BRNG ();

global_var2 +=2;

if(iter_count < global_var2 ){

global_var1 +=2;

goto lbl;

}

BRNG ();

lbl: iter_count ++;

BRNG ();

}while(iter_count <size);
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Fig. 3 Branch events

To illustrate the workings of these micro-benchmarks, we show the key loop of
two of them in the code Listings 11.1 and 11.2. These two codes correspond to the
measurements shown in the graph at indices 5 and 9, respectively.

Looking at the blue curve with the diamond points, we see that at index 5 the value
is zero, which means that benchmark #5 does not trigger any direct branch events
(BR_INST_EXEC:ALL_DIRECT_JMP). On the other hand, at index 9 the blue
curve shows a value of one, indicating that benchmark #9 does execute one direct
branch per iteration. Looking at the code snippets, we can verify that benchmark #5
does not contain any direct branches, but benchmark #9 includes a goto instruction
which will execute in every iteration (the enclosing if statement is always true).

The green curve with hollow square points indicates that benchmark #5 will
experience branch mispredictions with a rate of 50% per iteration, while benchmark
#9 will not experience any mispredictions. This again becomes evident in the code,
since benchmark #5 executes a branch that checks the last bit of a randomly generated
variable (result), and therefore it will be mispredicted 50% of the time, while
benchmark #9 does not execute any non-deterministic branches.

The red curve with X points indicates that in benchmark #5 two conditional
branches are taken at each iteration (BR_INST_EXEC:TAKEN_CONDITIONAL),
while in the case of benchmark #9 only one conditional branch is taken at each iter-
ation. Although not shown in this graph, benchmark #9 also triggers a direct jump to
be taken (BR_INST_EXEC:TAKEN_DIRECT_JUMP). At first glance, it might be
puzzling that benchmark #9 only records one taken conditional branch, although the
code has two conditional branches—one for the if statement and a second one for
the back-edge of the while statement. This happens because the compiler generates
a jump that is taken when the condition of the if statement is false (i.e., it jumps
for the else case, not for the if case), and in the case of benchmark #9 the if
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statement is never false, thus, the branch for the if statement is never taken. This
explanation is easy to verify by examining the generated assembler code.

The light blue curvewith hollow roundpoints and the black curvewith solid square
points indicate that benchmark #5 executes two and a half branches per iteration,
and all of them are retired (i.e., they are not discarded due to speculative execution).
Benchmark #9 executes three branches per iteration, and all three are retired as well.
Examining the code of benchmark #5 reveals that the branch, due to the statement
“if((global_var1%2)!=0)”, will only execute for half the iterations (only
when the enclosingif turns out to be true); and the two branches, due to the enclosing
if and the while statement, will execute once in every iteration. In the case of
benchmark #9, the statement “if(iter_count<global_var2)” will be true
for every iteration, therefore the direct branch contained in it (goto) will execute
for every iteration as well, and so will the while statement.

Once again, the detailed explanation of each data point in this graph can be compli-
cated by micro-architecture and compiler optimizations, but the difference between
the different curves is evident, and thus using these benchmarks helps distinguish
between events with different semantics.

An additional discussion on the design of our branch benchmarks can be found
in [2].

2.4 Floating-Point Tests

FLOPs are traditionally separated into the single- and double-precision categories.
On IBM’s POWER9 architecture, there is additional native hardware support for
quad-precision FLOPs [6, 7]. For the sake of consistency across architectures, we
closely examine the double-precision FLOPs.

Figure4 shows a plot of the data generated when the floating-point benchmark is
executed. As shown in the figure, there are six regions, each ofwhich corresponds to a
different Basic Linear Algebra Subprograms (BLAS) kernel being executed. The first
three regions (from left to right) correspond to the single-precision (“SP”) implemen-
tations of the Level-1 (“DOT”), Level-2 (“GEMV”), and Level-3 (“GEMM”) BLAS
kernels (one level per region). The latter three regions correspond to the double-
precision (“DP”) implementations of the three respectiveBLASkernels.More details
about the chosen BLAS routines are discussed in Sect. 3.

Within each region in Fig. 4, the X-axis denotes the number of rows and columns
N of the matrix (or vector) being used in the kernel and will hereafter be referred to
as the dimension. The dimension is incremented per the following piecewise linear
progression. For 1 ≤ N ≤ 100, N is incremented by 1. For 100 < N ≤ 500, it is
incremented by 50. This choice allows us to observe the FLOPs from a larger domain
of N while not proportionally increasing the runtime of the kernels. For each N , the
benchmark executes the BLAS kernel of the floating-point precision corresponding
to the region. In Fig. 4, there is a jump in each of the six regions at N = 100, resulting
from the increment changing from 1 to 50.
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Fig. 4 Single-Precision and Double-Precision floating-point events

In the first region, the blue curve shows the single-precision FLOPs observed
during the execution of the DOT kernel for vectors of dimension ranging from 1 to
500. The black curve shows the number of FLOPs that are expected to occur during
the DOT kernel, which is 2N FLOPs. The second region shows a similar progression
for the GEMV kernel. However, the blue curve in this region grows more rapidly
than in the first region, as the GEMV kernel invokes 2N 2 FLOPs. The third region
shows that the single-precision FLOPs occur per the 2N 3 expectation of the GEMM
kernel. For the next three regions, the blue curve is constantly zero, corresponding
to no single-precision FLOPs being invoked by the double-precision BLAS kernels.
The green curve in the next three regions shows that the double-precision FLOPs
observed during the double-precision DOT, GEMV, and GEMM kernels perfectly
agreewith the expectation. The green curve is constantly zero in the first three regions
because the single-precision BLAS kernels do not invoke double-precision FLOPs.

3 Computation of Arithmetic Intensity for BLAS Kernels

For the study of more precise monitoring of metrics, such as memory traffic and
arithmetic intensity, we have chosen different linear algebra routines that are repre-
sentative of many techniques used in real scientific applications, such as computa-
tional chemistry, climate modeling, and material science simulations, to name but a
few. Dense linear algebra is well represented on most architectures in highly opti-
mized libraries implementing the BLAS API. We present the analysis and study for
the DDOT, DGEMV, and DGEMM routines, as they demonstrate a wide range of
computational intensities. Our goal is to find answers to the following questions:
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1. What is the performance and computational intensity that can be attained on
different architectures?

2. Can PAPI’s new monitoring features for bandwidth utilization and arithmetic
intensity help to make meaningful predictions for a real application? And,

3. How reliable are FLOP and memory bandwidth utilization performance counters
on the different architectures?

BLAS operations are categorized into three levels by the type of operation. Level
1 addresses scalar and vector operations, Level 2 addresses matrix-vector opera-
tions, and Level 3 addresses matrix-matrix operations. The BLAS routines provide
an excellent means of examining arithmetic intensity and performance characteris-
tics given that they are of high importance to scientific computations and are well-
defined and well-understood operations; their implementations are highly optimized
by vendor libraries, and the three levels of the BLAS routines have different memory,
performance, and computational characteristics.

We examine the Level-1 BLAS routine (DDOT) in greater detail. This is a
double-precision operation that multiplies two vectors such that α = xT · y. For
the 2N FLOPs (multiply and add), DDOT reads 2N doubles (assuming x �= y) and
writes one double back. Because there is no data reuse, the routine requires (2N ∗ 8
bytes)/2N = 8 bytes per FLOP. Onmodern architectures, such an operation is band-
width limited and will reach about 5–10% of the theoretical peak performance of
the machine. The hardware bandwidth will not be able to supply the computational
cores with data at a high enough rate to feed the floating-point units.

The Level-2 BLAS routine (DGEMV) is a matrix-vector operation that computes
y = αAx + βy where A is a matrix, x, y are vectors and α, β are scalar values.
This routine performs 2N 2 floating-point operations on (N 2 + 3N ) ∗ 8 bytes for
read and write operations, resulting in a data movement of approximately (8N 2 +
24N )/2N 2 = 4 + 12/N bytes per FLOP. When doing a DGEMV on matrices of
size n, each FLOP uses 4 + 12/N bytes of data. With an increasing matrix size, the
number of bytes required per flop stalls at 4, resulting in bandwidth-bound operations.

The Level-3 BLAS routine (DGEMM) performs a matrix-matrix multiplication
computing C = αAB + βC where A, B,C are all matrices and α, β are scalar val-
ues. This operation performs 2N 3 floating point operations (multiply and add) for
4N 2 data movements, reading the A, B,C matrices and writing the results back to
C . This means that DGEMM has a bytes/FLOP ratio of (4N 2 ∗ 8)/2N 3 = 16/N .
When doing a DGEMM on matrices of size N , each FLOP uses 16/N bytes of data.
As the size of thematrix increases, the number of bytes required per FLOP decreases,
until other limits of the processor are reached. The DGEMM has a high data reuse
allowing it to scale with the problem size until the performance is near the machine
peak.
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3.1 Results

Our implementations of the BLAS-based benchmarks access a buffer larger than the
largest cache after the initialization of the arrays that hold the vectors andmatrices, but
before the actual numerical operations occur. This is done to ensure the vectors and
matrices used in the operations are not present in the cache, but they reside strictly in
memory at the start of each BLAS operation. As such, the following implementations
differ from the floating-point test of CAT. CAT does not require such a mechanism to
be in place since its test only gauges FLOP occurrences and is agnostic to memory
traffic. This mechanism does not affect the actual number of FLOPs executed.

The FLOPs counters we measure using PAPI are defined by the following PAPI

preset on each of the IntelBroadwell, Intel Skylake, and IBMPOWER9architectures:
PAPI_DP_OPS. This preset event is specifically optimized to count scaled double-
precision vector operations. For the sake of completion, it is worth mentioning a
second PAPI FLOPs preset event, namely PAPI_SP_OPS, which is optimized to
count scaled single-precision vector operations. Table1 shows how the two PAPI

FLOPs presets are derived from the native counters as they are available on our three
chosen architectures.

In this paper, however, we exclusively focus on double-precision arithmetic, and
thus we will not include PAPI_SP_OPS measurements in our analyses.

Figure5 shows the double-precision floating-point operation counts for each of
the three levels of BLAS operations for each of the Intel Broadwell, Intel Skylake,
and IBM POWER9 CPU architectures. The dimension of the vectors and matrices
used in the BLAS operations follows the same piecewise linear progression as in
CAT’s floating-point tests.

For each of the three BLAS kernels, the expected number of floating-point
operations—as calculated and discussed in Sect. 3—matches perfectly the mea-
surements from PAPI_DP_OPS. This demonstrates that for the Intel Broadwell,
Intel Skylake, and IBM POWER9 architectures, the definitions for the PAPI preset
PAPI_DP_OPS (as listed in Table1) reliably measure double-precision floating-
point operations for various kernels with different computational characteristics.

Table 1 PAPI’s double- and single-precision FLOPs preset definitions
Architecture PAPI_DP_OPS PAPI_SP_OPS

Skylake FP_ARITH:SCALAR_DOUBLE + FP_ARITH:SCALAR_SINGLE +

2*FP_ARITH:128B_PACKED_DOUBLE + 4*FP_ARITH:128B_PACKED_SINGLE +

4*FP_ARITH:256B_PACKED_DOUBLE + 8*FP_ARITH:256B_PACKED_SINGLE +

8*FP_ARITH:512B_PACKED_DOUBLE 16*FP_ARITH:512B_PACKED_SINGLE

Broadwell FP_ARITH:SCALAR_DOUBLE + FP_ARITH:SCALAR_SINGLE +

2*FP_ARITH:128B_PACKED_DOUBLE + 4*FP_ARITH:128B_PACKED_SINGLE +

4*FP_ARITH:256B_PACKED_DOUBLE 8*FP_ARITH:256B_PACKED_SINGLE

POWER9 PM_DP_QP_FLOP_CMPL PM_SP_FLOP_CMPL
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Fig. 5 BLAS FLOPs on the Broadwell, Skylake, and POWER9 architectures

Fig. 6 DDOT Memory Accesses on the Intel Broadwell architecture

In Figs. 6 and 7, we plot the statistical minimum and median of the measured
memory accesses, taken from 20 executions of the DDOT BLAS operation using the
Intel Broadwell and Skylake architectures, respectively. The minimum and median
measurements are shown because noise in the measurement can only be positive, so
the minimum is the closest to a noise-free measurement, the median provides a sense
of the variance, and the maximum can be arbitrarily noisy, so we omit it. We also
show the expected number of memory accesses per the following formulation. There
are two vectors of N double-precision floating-point elements (each of which is 8
bytes). Thus, a DDOT operation using vectors of length N consumes 2 ∗ 8 ∗ N bytes
of memory since each element of each vector must be read. There is no expected,
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Fig. 7 DDOT Memory Accesses on the Intel Skylake architecture

systematic pattern of memory writing traffic for the DDOT operation. The memory
events wemeasure count memory traffic in sizes of entire cache lines of memory, and
each cache line is 64 bytes. Therefore, the amount of memory traffic we observe by
measuring the events is (2∗8∗N )

64 . Figures6 and 7 show that themeasurements ofDDOT
operations for smaller vector dimensions exhibit background memory accesses from
the system on the order of 102 and 103, respectively. As N increases, the minimum
and median measurements very closely agree with the expectation. Note that since
the DDOT operation streams through the vectors, there is no data reuse. Thus, DDOT
is agnostic to the size of the CPUs’ caches. Because of this, when N is large enough
such that the memory required to store the two vectors is greater than the size of the
cache, the measured behavior should remain close to the expected behavior shown.
Figures6 and 7 show that the PAPI counters on both the Intel Broadwell and Skylake
architectures measure the correct memory traffic for the DDOT operation. In Sect. 4,
we elaborate further on the actual PAPI events that we used for measuring memory
traffic.

Figures8 and 9 show theminimumandmedianmemory accessmeasurements dur-
ing the DGEMV BLAS operation on the Intel Broadwell and Skylake architectures,
respectively. We show the expected number of memory accesses per the following
formulation. There are two vectors of N double-precision floating-point elements
(each of which is 8 bytes). In addition, there is a matrix of double-precision floating-
point elements, of which there are N 2. The DGEMV operation incurs a read for each
of the elements of the operand matrix, operand vector, and result vector, totalling
8 ∗ (N 2 + 2 ∗ N ) bytes read. It incurs a write for each of the elements in the result
vector, which would total 8 ∗ N bytes written. But other micro-benchmarks indicate
that the cache writes back to memory in whole counts of a cache line. To account
for this, we instead include the term 8 ∗ 8 ∗ N (8 ∗ 8 bytes = 64 bytes, which is the
size of a cache line) in the expectation formula shown in Figs. 8 and 9. This term
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Fig. 8 DGEMV Memory Accesses on the Intel Broadwell architecture

Fig. 9 DGEMV Memory Accesses on the Intel Skylake architecture

would theoretically have more influence on the total expectation for memory traffic
than 8 ∗ N , but since the bytes read include a term which is quadratic with N , nei-
ther 8 ∗ 8 ∗ N nor 8 ∗ N has a significant numerical impact on the total expectation.
Furthermore, since two expectations, including one for each of 8 ∗ 8 ∗ N and 8 ∗ N
bytes written, are visually indistinguishable, we include 8 ∗ 8 ∗ N . Thus, the total
expectation for the memory traffic of the DGEMV operation is the number of bytes
read plus the number of bytes written divided by 64, (8∗(N 2+2∗N )+8∗8∗N )

64 , by virtue of
the memory traffic events we measure counting traffic in sizes of entire cache lines.
DGEMV has little data reuse since it streams through the operand matrix and result
vector. Only the operand vector’s data is reused. As such, DGEMV is not sensitive to
the size of the cache until the memory required to store the single operand vector of



210 D. Barry et al.

Fig. 10 DGEMM Memory Accesses on the Intel Broadwell architecture

Fig. 11 DGEMM Memory Accesses on the Intel Skylake architecture

N elements requires enough memory to exceed the size of the cache. As in the case
of the DDOT, we see that there is background memory traffic from the system, on the
order of 102 for Broadwell and 103 for Skylake, for small values of N . We observe
that as N increases, the measuredmemory traffic closely agrees with the expectation.
Therefore, Figs. 8 and 9 show that the PAPI counters on both the Intel Broadwell and
Skylake architectures measure the correct memory traffic for the DGEMV operation.

Figures10 and 11 show the minimum and median memory access measurements
for the DGEMM BLAS operation (also on the Intel Broadwell and Skylake archi-
tectures). There are three matrices (two operand matrices and one result matrix)
of N 2 double-precision floating-point elements (each of which is 8 bytes), each of
which must be read, resulting in 8 ∗ 3 ∗ N 2 bytes read. It incurs a write for each of
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the elements of the result matrix, totalling either 8 ∗ 8 ∗ N 2 or 8 ∗ N 2 bytes writ-
ten, depending on whether the writebacks to memory occur per cache lines written
or per elements written, respectively. Since the bytes written for the DGEMM are
quadratic in N , there is a significant difference between these two potential memory
writing terms with respect to their impact on the total expectation. Thus, we have
two expectations, (8∗(3∗N 2+8∗N 2))

64 and (8∗(3∗N 2+N 2))

64 . We once again divide by 64 here
since the events wemeasure account for memory traffic in the amount of entire cache
lines. As such, we show both expectations in Figs. 10 and 11. Unlike the DDOT and
DGEMV operations, the DGEMM operation is sensitive to the size of the cache of
the CPU on which it is executed because the second operand matrix (which contains
a number of elements quadratic with N ) is reused for every row of the result matrix
which is computed. Depending on how the hardware prefetches and caches data for
the DGEMM operation, we establish two bounds for the maximum dimension of
matrices which fit within the cache. The sizes of the caches in the Broadwell and
Skylake architectures are 35.84 and 25.344 MB, respectively. If the hardware caches
the entire first and second operand matrices, then we establish a lower bound on the
maximum dimension of the matrices which fit within the cache per the following
equations (in which we use the cache sizes of the two architectures).

Broadwell: 35840 ∗ 1024 = 2 ∗ 8 ∗ N 2 =⇒ N = 1514
Skylake: 25344 ∗ 1024 = 2 ∗ 8 ∗ N 2 =⇒ N = 1273
If the hardware caches the entire second operand matrix but only a row of the

first operand matrix, we establish an upper bound on the maximum dimension of the
matrices which fit within the cache per the following equations.

Broadwell: 35840 ∗ 1024 = 8 ∗ (N 2 + N ) =⇒ N = 2141
Skylake: 25344 ∗ 1024 = 8 ∗ (N 2 + N ) =⇒ N = 1800
For each of the above equations, the negative solutions for N are disregarded.

The region between these bounds is shaded in each of Figs. 10 and 11. We observe
that while N fits well within the size of the caches, the measured memory traffic
closely agrees with the expectation. We also observe that for relatively small values
of N , the memory writing behavior tends to occur per cache line. However, as N
increases, the writing tends to occur per element. Background memory traffic is not
prevalent, even for relatively small values of N , due to the large amount of memory
accesses incurred relative to the DDOT andDGEMV. Thus, Figs. 10 and 11 show that
we obtain the correct measurements for memory traffic for the DGEMM operation
utilizing the PAPI counters on the Intel Broadwell and Skylake architectures.

4 Benchmarks for Memory Traffic

There are two crucial categories of events to define arithmetic intensity: memory
traffic and FLOPs. Memory traffic is further categorized as reading or writing. For
the purposes of our benchmarks, memory reading traffic entails the amount of data
read from memory to the CPU cache, and memory writing is the amount of data
written tomemory from the cache.Among theCATbenchmarks thatwehave publicly
released, the codes for testing the data caches can also be used to test traffic to main
memory. This is the case when the buffer size exceeds the size of the last level cache.
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The known events that we utilize for the PAPI counters to measure memory traffic
on the Intel Broadwell and Skylake architectures are as follows: Intel Broadwell
(One-Socket Node):

bdx_unc_imc[0|1|4|5]::UNC_M_CAS_COUNT:[RD|WR]:cpu=0

Intel Skylake (Two-Socket Node):

skx_unc_imc[0-5]::UNC_M_CAS_COUNT:[RD|WR]:cpu=[0|18]

By measuring these events using the CAT data cache reading benchmark, we obtain
the plots that follow. We used the same CAT benchmarks to classify the available
Uncore events on the IBM POWER9 architecture which correlate with the observed
behavior of the memory-reading events on the Intel Broadwell and Skylake architec-
tures shown in Figs. 12 and 13, respectively. The events measured in Fig. 14 exhibit
similar behavior to those of memory reading events measured in Figs. 12 and 13.
Note that the expectation in the third and fourth regions in Fig. 14 varies from those
in Figs. 12 and 13 since the size of a cache line on the IBM POWER9 architecture
is 128 Bytes [7]. Subsequent cross-referencing of [6] verified these events indeed
measure the memory reading traffic. Hence, we obtained the following names of the
memory traffic events on the IBM POWER9 architecture, which we use to measure
memory reading during the execution of the BLAS operations on the IBM POWER9
architecture. IBM POWER9 (Two-Socket Node):

pcp:::perfevent.hwcounters.nest_mba[0-7]_imc.

PM_MBA[0-7]_[READ|WRITE]_BYTES.value:cpu[84|172]

Fig. 12 Memory reading traffic on the Broadwell architecture
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Fig. 13 Memory reading traffic on the Skylake architecture

Fig. 14 Memory reading traffic on the POWER9 architecture

4.1 IBM POWER9 Measurements via PCP

Measuring the traffic tomainmemory requires access toUncore counters,whichmea-
sure events that are shared betweendifferent cores. Therefore, elevated privileges—or
very permissive system settings—are required in order to read them. To work around
this limitation, IBMmade their Uncore counters available through the PCP interface
also, which can be accessed by any user. To take advantage of this feature, PAPI
included a component for interfacing with PCP. As a result, counters for measuring
memory traffic on IBM systems can be read using PAPI without the need for elevated
privileges. The downside of making measurements through PCP is the coarseness of
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the measurements and the overhead incurred by the PCP daemon. In the rest of this
section, we describe our effort to amortize the overheads of PCP in ourmeasurements
and give a quantitative analysis of the results. The discussion that follows is focused
on the vector dot-product operation (DDOT), but all the techniques we will discuss
apply directly to all other kernels we used as benchmarks.

If a measurement infrastructure—e.g., PCP—is susceptible to noise, it is usually
beneficial to take measurements of operations that take longer to complete and result
in larger measurements in order to amortize the noise. This approach, however,
would limit the size of the vectors that we use to very large numbers. Since we aim
to correlate the memory traffic measurements with the theoretical expectation for
the known linear algebra operations, this limitation is not ideal. To work around
this problem, and study the noise in PCP, we used the approach that is shown in
Listing 11.3.

Listing 11.3 Benchmark code for amortizing and studying PCP noise.

1 v_a = malloc( v_size * max_reps * sizeof(double) );
2 v_b = malloc( v_size * max_reps * sizeof(double) );
3 junk = malloc( LARGE_BUF_SIZE * sizeof(double) );
4
5 for ( i = 0; i <= v_size*max_reps; i++ ) {
6 v_a[i] = ...
7 v_b[i] = ...
8 }
9

10 for ( reps = 1; reps <= max_reps; reps *= 2 ) {
11
12 for( i = 0; i < LARGE_BUF_SIZE; i++ ){
13 junk[i] = ...
14 }
15
16 PAPI_start( EventSetBW );
17
18 for ( iter = 0; iter < reps; iter++ ) {
19 offset = iter * v_size;
20 ddot(v_size , &v_a[offset], &v_b[offset ]);
21 }
22
23 PAPI_stop(EventSetBW , &value);
24 printf("%.0lf:", (double)value/( double)reps);
25 }

As can be seen in the code listing, the actual operation is executed in line 20.
However, instead of simply executing the operation once and measuring it with
PAPI, we execute multiple iterations of it. However, simply executing the exact same
operation multiple times would skew the memory traffic measurements, since the
caches would filter some of the memory requests. To avoid this problem, we allocate
memory for multiple copies of the vectors (lines 1,2), and every time we execute
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(a) 1 repetition (b) 8 repetitions

(c) 64 repetitions (d) 512 repetitions

Fig. 15 POWER9 measurements of memory traffic events via PCP for DDOT benchmark

the operation, we provide it a different memory region (e.g., &v_a[offset]).
Furthermore, we do not just execute the operation a fixed number of times, but rather
we vary the number of repetitions (line 10) in order to study the effect of repetition on
noise suppression. Finally, to avoid cache reuse between iterations of the outer loop,
we access (in every iteration) a buffer that exceeds all cache sizes (lines 12,13,14).
We should also note that the actual benchmark contains additional code (not shown
to improve readability) that prevents compilers from labeling parts of our code as
dead, which would lead to optimizing those parts away.

The results of this study can be seen in Fig. 15. In these graphs, for any given
vector size N the expected number of reads is given by the equation:

Reads = 2 × 8 × N

64

since DDOT reads two vectors with double-precision elements (which use 8 bytes
each), and the cache of the target machine (POWER9) implements a memory con-
troller with the “capability to fetch only 64 bytes of data (half cache lines), instead of
the normal full cache-line size of 128 bytes of data from the memory when memory
bandwidth utilization is very high” [7] (Page 350). The expected number of write
operations should be constant, and close to zero, since the DDOT operation does not
write anything back into the memory, but rather accumulates the result into a register.
Since the DDOT does not write back to memory, and the measured reads in Fig. 15
correlate to the measured writes for small N , these reads are regarded as noise.
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The graph shown in Fig. 15a shows the data measured when the operation was
repeated only once. Clearly, the measurements do not correlate with the expectation
(plotted as a solid black line) due to very heavy noise, for all vector sizes. In Fig. 15b,
we show the measured data when eight repetitions of the operation were used, and as
can be seen in the plot, for very large vector sizes the measurements start converging
to the expected values. In Fig. 15c, we used 64 repetitions of the operation and
the measurements start converging to the expected values much earlier. Finally, in
Fig. 15d, our benchmark repeats the operation 512 times, and the measurements
converge to the expected values very early, and remain close to the expectation.

These results are encouraging but at the same time they represent a cautionary tale.
On one hand, they show that the experiments we performed on the IBM POWER9
architecture for the purpose of this study were successful in amortizing the overhead
and the noise caused by PCP. On the other hand, they highlight the coarseness of
the measurements offered by PCP and the limited usability when studying short
kernels. In other words, our findings suggest that application developers who wish
to study the memory traffic of their applications in coarse intervals can acquire
usefulmeasurementswithout the need for elevated privileges by using PCP.However,
library developers who wish to study the behavior of fast kernels need to resort to
techniques similar to the one outlined in this section in order to amortize the high
overhead and noise of PCP.

5 Conclusion

Computing the Arithmetic Intensity of an application or a kernel is essential for
understanding its performance, andwhether there is roomfor improvement.However,
measuring the quantities necessary to compute the arithmetic intensity—namely
floating-point operations and traffic to memory—often entails access to hardware
counters that may require elevated privileges, or have cryptic names.

In this paper, we discussed our effort to simplify the effort of measuring these
counters and quantifying their reliability through PAPI. In particular, we outlined
CAT, a new tool that was released with PAPI 6.0.0, and we showed how it can be
used to identify which native events are best suited for measuring traffic to main
memory. We demonstrated that the arithmetic intensity of three important BLAS
operations (DOT, GEMV, GEMM) can be successfully computed on three modern
architectures (Intel Broadwell, Intel Skylake, IBM POWER9) and explained how
PAPI’s PCP component can be used on the POWER9 system to sidestep the require-
ment for elevated privileges. Finally, we performed a study on the reliability of the
PCP measurements and explained how the noise and overhead in the measurements
can be mitigated, even for small kernels that do not perform enough operations to
amortize the noise on their own.

To summarize, this paper addresses the following questions:
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1. What is the performance and computational intensity that can be attained on differ-
ent architectures?On the IntelBroadwell, Intel Skylake, and IBMPOWER9archi-
tectures, such performancemetrics as FLOPs andmainmemory traffic are gauged
via the PAPI counters.We have shown that the FLOPs andmemory traffic—which
occur during the execution of the DDOT, DGEMV, and DGEMM operations—
match the expectations for each respective operation.

2. Can PAPI’s new monitoring features for bandwidth utilization and arithmetic
intensity help to make meaningful predictions for a real application? As we have
shown, the PCP component in PAPI allows the user to measure the Uncore events
for memory traffic for the DDOT, which is a common dense linear algebra oper-
ation. The results we have presented indicate that relatively fast kernels, such as
DDOT, require multiple repetitions to provide meaningful, expected performance
measurements to application developers and performance analysts.

3. How reliable are FLOP and memory bandwidth utilization performance counters
on the different architectures? Per our experiments, the PAPI counters report the
expected FLOPs for the three BLAS operations on the Intel Broadwell, Intel Sky-
lake, and IBMPOWER9 architectures. The PAPI counters also report the expected
memory traffic for eachBLASoperation on the Intel Broadwell andSkylake archi-
tectures. On the IBM POWER9 architecture, repetitions of the DDOT operation
yield the expected amount of memory traffic by amortizing the noise in PCPmea-
surements. Hence, the PAPI counters provide reliable FLOP and memory traffic
event counts across the three architectures we have examined.
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ONE View: A Fully Automatic Method
for Aggregating Key Performance
Metrics and Providing Users with a
Synthetic View of HPC Applications

William Jalby, Cédric Valensi, Mathieu Tribalat, Kevin Camus,
Youenn Lebras, Emmanuel Oseret, and Salah Ibnamar

Abstract One of the major issues in the performance analysis of HPC codes is
the difficulty to fully and accurately characterize the behavior of an application. In
particular, it is essential to precisely pinpoint bottlenecks and their true causes. Addi-
tionally, providing an estimation of the possible gain obtained after fixing a particular
bottleneck would surely allow for a more thorough choice of which optimizations to
apply or avoid. In this paper, we present ONE View, a MAQAO module harnessing
different techniques (sampling/tracing, static/dynamic analyses) to provide a com-
prehensive human-friendly view of performance issues and also guide the user’s
optimization efforts on the most promising performance bottlenecks.

1 Introduction

The evolution of the recent HPC processors has shown an increase in both, the
number of components (larger multi-core/many-cores), and in terms of mechanism
complexity (advanced out of order, multilevel memory hierarchies). These trends
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make the task of application optimization more and more complex: not only the
sources of potential performance loss have become more diverse, but several of them
can occur simultaneously and with different impacts. Additionally, sorting out the
sources from the consequences of performance losses, therefore identifying the right
issue to be addressed, becomes increasingly difficult.

To face such challenges, the most advanced performance tools rely heavily on
hardware performance counters to locate and identify performance issues. Although
the recent generation of microprocessors have increased the number (up to several
thousands) of performance events which can be monitored, very often they fail in
delivering to the code developers the type of information needed. For example, when
looking for potential improvements to an array access (through blocking or array
restructuring), a code developer first needs to know whether it is really the critical
performance issue to be tackled, and second, to know how much performance gain
can be obtained after applying a specific optimization. If performance counters can
help at identifying critical issues (although with some strong limitations), they are
completely unable to evaluate the performance impact of a code change. In fact, per-
formance counters are great in providing information on hardware resource usage
but not in guiding the code developer through optimization choices. Additionally,
code developers need to get an idea of the confidence they can have in the results
provided by performance tools. Very few tools provide even a basic estimation of
the quality of the measurements carried out. Therefore, the code developer can be
completely misled and waste substantial time and efforts on a non-existing issue.
Finally, the code developers will mostly be interested in optimizing the code for dif-
ferent data sets and for different configurations (number of cores, nodes, . . .), thus
needing to aggregate performance views across different cases to study the perfor-
mance impact and select the right trade off. Unfortunately, this simple aggregation
capacity is missing in most of today’s performance tools.

In this paper, we will present the ONE View module, an element of the MAQAO
performance analysis framework, which aims at precisely helping the code developer
in selecting, with some reasonable confidence, themost profitable optimizations. The
main contributions of ONE View (presented in this paper) are:

• Provide a methodology and tools capable of projecting/evaluating the potential
performance gain of important code optimizations such as: vectorization (full and
partial), blocking, array restructuring, prefetching, etc.

• Aggregate static analysis and dynamic measurements, and combine sampling and
tracing to provide the user with a full assessment of the application performance
behavior.

• Present quality estimates on the measurements carried out allowing the user to get
a precise degree of “confidence” in the results provided.

• Provide a framework for automatically generating performance views across mul-
tiple configurations, data sets or code variants.

Section2 briefly presents tools with similar approaches. Section3 presents the exper-
imental setup used to demonstrateONEView capabilities on a real full strength appli-
cation, QMCPACK. Section4 briefly describes the two major modules in charge of
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the “what if scenarios” (CQA for static evaluation and DECAN for dynamic evalua-
tion). Section5 gives an overview of ONE View’s organization and Sect. 6 presents a
complete set of results obtained onQMCPACK. Section7 describes how these results
could be used to improve the performance of QMCPACK. Finally, Sect. 8 covers our
conclusion and future work directions.

2 State of the Art

Performance optimization has long been dominated by the iterative process of devel-
oping the code, measuring its performance on a target platform, analyzing the mea-
sured data to identify inefficiencies, andmodifying the code to improve performance.
Significant advancements have been achieved by the performance tools community
in the domain of probe-based and sample-based instrumentation [1, 2], access to
high-resolution timers and hardware counters [3, 4], and parallel profiling and trac-
ing measurement [1, 5–7] that can scale to fit large HPCmachines. Other tools [8, 9]
profile the application to generate a synthetic distribution (MPI, OpenMP, CPU, IO
. . .), or combine sampling, loop trip count instrumentation and code static analysis
to report vectorization metrics and other code patterns [10] but do not provide an
estimation of the projected gain after optimization.

Presently, the state-of-the-art performance analysis tools can process large paral-
lel profiles and trace data [1, 3, 5, 6, 11] generated from performance experiments
as well as produce results that generally reflect basic properties of HPC application
execution (e.g., time distribution, hardware behavior, load imbalance, synchroniza-
tion barriers, . . .) with a strong focus on parallelism issues such as the use of MPI
and OpenMP. However, there is much less support for automated reasoning about
performance problems and guidance for performance improvement. Similarly, the
reliability of the results is seldom evaluated by the tools themselves.

3 Experimental Setup

To demonstrate ONE View’s capabilities, we will present in the next sections
measurements performed on a Skylake, Intel(R) Xeon(R) Platinum 8170 CPU @
2.10GHz with 186 GB 6-channel 2666MHz DDR4 RAM. The target reference
application is QMCPACK [12]: an open-source, C++, high-performance electronic
structure code that implements numerous Quantum Monte Carlo algorithms. In this
paper, we used the QMCPACK version fromNiO ECP Benchmark Suite, the INTEL
compiler 19.0.1.144 and the INTEL MKL Library 2019.1.144
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4 Evaluating Performance Gains of Code Transformations

To evaluate the potential gain of a transformation on a loop, we rely on two different
tools (CQA and DECAN) using different evaluation methods but operating along
the same principles. Starting from the original assembly code, we first generate an
assembly code variant which corresponds to the code after transformation. Then,
the performance of this variant is either computed using static methods (CQA) or
directly measured by running the variants (DECAN).

4.1 CQA: Code Quality Analyzer

CQA [13] is a static analysis module which computes various code quality metrics
(characteristics of the Control Flow Graph, length of the critical data path, etc., . . .)
on a segment of a binary code. In particular, for a sequence of basic blocks, CQA
produces a timing estimate (number of cycles). This performance estimate relies on
a simple hardware model assuming infinite buffer sizes but using an exact functional
unit configuration and exact instruction timings: latency and throughput (see [14]
which provide detailed information on instruction behavior for all of the x86 family
of processors). Since CQA is operating statically, no information is available to
determine operand location in the memory hierarchy. By default, CQA will assume
that all of the data accesses are serviced from L1. In addition to this simple L1
estimate, CQA will produce L2 (resp. L3, RAM) estimates corresponding to data
accessed serviced from L2 (resp. L3, RAM).

CQA basic capabilities have been augmented to generate variants obtained by
modifying the original assembly. Since these variants will not be executed but simply
evaluated using the CQA performance model, there is no constraint on the modifi-
cations performed. Three main variants are used:

• CODE CLEAN: in this variant, all of the non FP operations are suppressed. The
main goal of this variant is to detect cases where the compiler has generated
potentially inefficient code. This inefficiency will be quantitatively assessed by
running CQA on the “Clean Variant” and comparing the obtained timings with
the original ones. Typically, these inefficiencies can be eliminated by using proper
compiler switches or permuting loops.

• FP VECTOR: in this variant, first, all of the scalar FP arithmetic instructions
are replaced by their vector counterparts. Correspondingly, the load and store
instructions which, by the variant definition, have to remain scalar, are replicated
and adapted to fill in and use the vector register content.

• FULL VECTOR: in this variant, both, scalar arithmetic, and scalar memory
(load/store) instructions are replaced by their vector counterparts. However, non
unit stride data accesses (which have no direct vector equivalent) are left scalar or
replaced by scatter/gather instructions on the most recent CPU versions. This code
variant is essentially equivalent to the code which would be generated by using
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Fig. 1 The vertical y-axis displays the cumulative speedup (on the whole QMCPACK application)
which could be obtained by cleaning the loops (removing potential inefficiencies). The horizontal
x-axis lists the loops by their decreasing impact in terms of performance gains

Fig. 2 The vertical y-axis displays the cumulative speedup (on the whole QMCPACK application)
which could be obtained by fully vectorizing the loops. The horizontal x-axis lists the loops by their
decreasing impact in terms of performance gains

the SIMD directive which forces the compiler to produce vector code ignoring
potential data dependencies.

Figure1 (resp Fig. 2) displays the performance of the Code Clean (Full Vector)
variants inQMCPACK. It can be clearly seen that globally, the compiler has generated
very efficient code. The maximum potential gain of cleaning (fine tuning) the code
would be at most 2,5% and this would require an effort on 25 loops (see Fig. 1) which
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represent quite a large effort for a limited potential gain. As it can be seen on Fig. 2,
the potential of full vectorization is higher, up to 8% in total with two loops which
can offer a performance gain of 1% each.

4.2 DECAN: Differential Analysis

Themain goal of Differential Analysis is to precisely identify delinquent instructions
(carrying a high performance penalty) and provide a quantitative assessment of their
impact. This is performed using DECAN [15], a MAQAO module capable of modi-
fying a loop in the binary file by removing or transforming a subset of instructions
through binary rewriting. DECAN can also run and time the modified binary (called
a DECAN variant) in order to compare its time with the original unmodified binary
time. Given that these transformations can significantly alter the execution, the final
application’s output will be similarly impacted and its results will most likely be
erroneous. In order to limit this impact, extra steps are added to restore the applica-
tion’s context after the measurements are performed. In any case, these variants are
not expected to produce meaningful results, since their purpose is the gathering of
performance data.

DECAN applies different binary transformations to generate multiple variants.
Then, by comparing DECAN variants timings with the original timing, the tool
determines the impact on performance of removing/transforming the target subset
of instructions. The values of useful hardware event counters are also collected.

In the context of this article, we will focus on the DECAN transformations used
in the most significant analyses displayed in ONE View:

• LS Stream: This transformation removes all instructions in target loops except data
accesses (loads and stores) and loop control. Observing a large speedup on this
variant compared to the original version indicates that the Load/Store instructions
are not the limiting factor and that the loop is computation bound.

• FP Stream: This transformation removes all instructions in target loops except
those performing FP arithmetic and loop control. A large speedup on this variant
indicates that FP arithmetic instructions are not the limiting factor and that the
loop is memory (data access) bound.

• DL1: In this variant, all load and store instructions of a target loop are set so that
the same address is accessed across different iterations. This ensures that all data
accesses are serviced from the L1 cache level. A speedup on this variant means
that the corresponding loop suffers from L1 cache misses.

Additional transformations allow to evaluate the front-end stress by replacing all
instructions with no-operation instructions (FES transformation), or the correct oper-
ation of the prefetcher by inserting prefetch instructions.

In the next section, the use of FP and LS variants will be demonstrated. Figure3
presents the impact of DL1. At the opposite of the previous transformations (Code
Clean and Full Vectorization) which showed limited performance gains, DL1 shows
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Fig. 3 The vertical y-axis displays the cumulative speedup (on the whole QMCPACK application)
which could be obtained by perfect blocking. The horizontal x-axis lists the loops by their decreasing
impact in terms of performance gains

potential large benefit, a single loop transformation bringing about 30% of perfor-
mance improvement.

5 ONE View: Automated Characterization of Applications
and Reporting

In this section, we will describe the overall organization of the ONE View tool. We
will start by first describing the profiling tools.

5.1 Profiling

The primary goal of Profiling is to identify and locate the key contributors (func-
tions, loops) to total execution time. Within the MAQAO framework, two profiling
techniques are used: sampling and tracing.

TheMAQAOLProf module is a lightweight profiler relying on hardware counters
sampling to ensure minimal overhead with respect to time and memory usage. LProf
provides performance data on functions and loops, and also identifies which should
be further investigated.

The MAQAO VProf (Value profiling) module inserts timing probes in the binary
file to perform standard tracing measurements. VProf goes further by analyzing each
loop instance execution and building a loop behavior summary across the whole
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application. Loops are known to be executed multiple times (millions, even billions
of times) within a single application run. For each loop execution, the Cycles Per
Iteration (CPI) value and loop instance number are recorded in “buckets” and sorted
according to the CPI. Recording the loop instance number is essential in order to
reproduce or track a loop’s behavior. This analysis is critical because loops can
exhibit very different behaviors depending upon the iteration count or cache states.
With VProf, the user is capable of not only locating performance issues at loop
level, but also at the loop instance level. This allows to rebuild the call chain and
precisely locate the issue. In a first pass, 31 instances—representative of a bucket—
are identified and will then be used in all further measurements. Using these multiple
results, standard statistical metrics (mean, standard deviation, etc.) are calculated,
providing an assessment of the quality of the measurement performed.

5.2 Overall ONE View Organization

ONE View is a MAQAO module in charge of: (a) launching all of the other perfor-
mance modules, (b) formatting their output, and (c) aggregating the various perfor-
mance views in an HTML report, a spreadsheet in the XLSX format, or as formatted
text. ONE View offers three levels of reporting:

1. REPORT ONE: only LProf and CQA are invoked in order to generate a light
application profile and to statically analyze every loop. Generating this report
entails a ∼10% estimated overhead.

2. REPORT TWO: this report includes analyses from REPORT ONE and adds
results from a VProf analysis and the DECAN DL1 transformation on the hottest
loops of the application. This level requires running the applicationmultiple times
thus the resulting overhead is higher (x3). This report provides a full static analysis
of vectorization and the Locality analysis performed by DECAN through DL1.

3. REPORT THREE: this report includes analyses fromREPORTTWOwith addi-
tional DECAN analyses of all variants as well as the collection of hardware per-
formance events. This level requires to run all DECAN variants and the resulting
overhead is much higher, between 2x and x10 depending upon the number of
hardware events to be monitored.

ONE View manages the invocation of the various modules with the adequate
configurations and options (list of hardware events, . . .). The DECAN variants and
the various measurements are performed in a single run, heavily using the large
number of instances of the same loop. Because the measured loops represent a very
small fraction of the overall loop instances, the overhead for a given run is very limited
and the corresponding slowdown compared to the original execution time is under x2.
To limit the time spent profiling, the user can first run ONE View One (low overhead
reporting) and from the obtained results select the hot loops to further investigate.
Reducing the number of target loops drastically reduces the overall profiling time.
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Fig. 4 Methodology outline

The concepts presented above can be easily extended tomulti-core andmulti-node
applications. For this, an additional ONEViewmode focuses on the scalability prop-
erties of loops and/or parallel regions. The ONE View Scalability mode performs
multiple invocations of a parallel application with different numbers of threads, pro-
cesses and nodes defined by the user. The tool then aggregates the results to compute
the efficiency (defined as the ratio between the observed speedup and the expected
ideal speedup considering the number of threads) at the application, function, and
loop levels.

Figure4 below shows how all of the modules are combined to provide a detailed
performance analysis [16].

6 ONE View Results

In this section, we will present the results produced by ONE View, focusing on a
comprehensive set of results particularly useful for the analysis of QMCPACK.

ONE View results are organised along views corresponding to different levels of
analyses.

6.1 Global View

This view presents an estimation of the overall quality of the program with regard
to performance and the possible improvements to be expected. It includes a set of
global metrics, the graphs presenting “what if” scenarios derived from CQA and
DECAN analyses (see Figs. 1, 2 and 3), and a summary of the experiment.

The global metrics aim at giving an overall view of the quality of the code. They
include the following values:

• Timing: Total execution time of the application; and the percentage spent in loops
and innermost loops.
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Fig. 5 Global Metrics for QMCPACK. Values are colored from green to red depending on how
they influence the program performance (from good to bad)

• Compilation Options: List of standard optimisation options that were not used
when compiling the application. These options include optimisation and architec-
ture specialization flags.

• Flow Complexity: Average number of paths in loops. Values closer to 1 are better,
since a complex flow makes it harder for the compiler to optimize.

• Array Access Efficiency: Estimation of the regularity of accesses to array ele-
ments across the whole application. Higher values mean that most arrays are
accessed regularly or at a fixed stride.

• What-if scenarios: These metrics are derived from the “what if” scenarios pro-
duced by CQA and DECAN. They include for each of them the potential speedup
to be expected over the whole application if the optimisation could be applied to
every loop in the file, and the number of loops to optimise to obtain 80% of this
speedup.

Figure5 presents an example of thesemetrics for the initial version ofQMCPACK.
In this case, the expected speedups if cleaning or vectorizing the code are low.
Conversely, the speedup expected for improving data caching is significantly higher,
and would require only 3 loops to reach 80%. The average number of paths by loop
is 1.4, which means that some improvements could also be expected by simplifying
the control flow.
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6.2 Profiling Results

These views focus on the results gathered from the LProf profiling module.
A first view summarises them to provide information on the general profile of

the application. It includes a categorization view showing where time is spent in the
application or its external dependencies: main application, MPI or OpenMP runtime,
memory management, I/O, specialized libraries, etc. It also contains a breakdown of
the relative coverage of each loop and function of the application allowing to identify
how many loops and functions are worth investigating/optimizing. Figure6 presents
an example of the categorization view for QMCPACK. A second more detailed view
displays the coverage of each function and of the loops they contain, along with their
load distribution across the threads on which the application was executed and the
call chains leading to their invocation. Figure7 presents an example of this view for
QMCPACK.

Fig. 6 Code Categorisation for QMCPACK, displaying the percentage of time spent in various
code categories involved when executing the application. The three top categories are Binary, which
corresponds to the application itself, Maths, which corresponds to functions defined in specialised
libraries such as the MKL, and OMP, which corresponds to the functions of the OpenMP runtime
specifically
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Fig. 7 Function List for QMCPACK. This view lists the functions identified in the application
in decreasing order of their coverage. Functions can be expanded to display the loop nests they
contain. Functions or loops with a too short execution time are highlighted in orange or red to signal
an unreliable value. The Deviation column displays the variation between the coverage of the given
function or loop across the different threads of the application

6.3 Loop Summary

This view presents all information available on loops, regrouping results from every
MAQAO modules involved in the analysis.

The metrics available include the CQA speedup predictions if the loop can be
vectorized or cleaned, the timing of the DECAN variants, and their stability. The
stability of a given measure is computed as (Tmedian − Tmin) ÷ Tmin , where Tmedian

and Tmin are respectively the median and minimal values across all 31 measurements
of the buckets. It can be computed globally for a loop and by buckets.

Figure8 presents an example of this summary for the initial version ofQMCPACK
limited to the DECAN variants timings. The loops bound by computation (resp.
memory access) can be detected by the timing of the FP variant (resp. LS variant)
being close to the timing of the original (ORIG variant). The DECAN timings offer
a quantitative estimate of the difference between computation and memory.

Figure9 adds the stability metrics and iteration counts of the loops. The stability
metrics allows to estimate the reliability of a measure. A higher metric means that
the value has been varying more between measurements. The relative instabilities of
the hottest loops are due to memory accesses.
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Fig. 8 Loops Expert Summary for QMCPACK. Column ORIG corresponds to the original version
of the code, the others to the DECAN transformations with the same name (see Sect. 4.2). Values
highlighted in red signal a highly unreliable result (execution time below 250 cycles), orange a
weakly reliable result (time between 250 and 500), and not highlighted a reliable result (time above
500)

Fig. 9 Extended Loop Expert Summary for QMCPACK. Values highlighted in red signal a highly
unreliable result (execution time below 250 cycles), orange a weakly reliable result (time between
250 and 500), and not highlighted a reliable result (time above 500). For each variant, the columns
STA contain the stability metric of the results (lower is better)
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Fig. 10 Weak Scalability Runs Description for QMCPACK. This presents the various parameters
used for each run, such as the number of processes, thread, nodes, . . .

Fig. 11 Weak Scalability Coverage by Category for QMCPACK. Coverages are expressed in
percentages. The x-axis references the runs by the names used in Fig. 10

6.4 Scalability Results

This view presents the metrics related to the application scalability. Themainmetrics
computed during a scalability run are the speedup and efficiency (as described in
Sect. 5.2). In the case of a weak scaling application, the efficiency does not take into
account the number of threads.
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Fig. 12 Loop weak scalability report for QMCPACK. The runs are referenced by the names used
in Fig. 10. Efficiency values are highlighted from green (satisfactory) to red (can be improved)

Figure10 presents a description of the scalability runs, including the various
parameters varying from one run to another. Figure11 displays the coverage of
the various code categories of code (such as MPI, OpenMP, memory handling, or
the application itself) across the different runs involved in the scalability analysis.
Figure12 displays the efficiencies of the hottest application loops. Since this is a
weak scalability application, most of them are close to 1.

7 Application to QMCPACK

The vectorization of QMCPACK was already quite satisfactory: CQA analyses
showed that only a 8% speedup at most could be expected if achieving full vec-
torization on all loops (as shown in Figs. 5 and 2). However, it was possible to obtain
significant speedups by focusing on other performance issues.

One such issuewas the detection byCQAof a large number of paths in a few loops.
These loops were perfectly vectorized but the compiler generated a very complex
control flow around the vector instructions. The source code contained a loop nest
(7 iterations) annotated with a full unroll directive, ignored by the compiler. This
was fixed by fully unrolling by hand the problematic loop nest, yielding a speedup
between 7 and 9% at application level.

Another issue detected by CQA was a loop containing a large number of stack
accesses, unbalanced port usage due to the presence of “special” instructions, and
partial vectorization. This was due to a large loop body that overwhelmed compiler
optimization capacities. This was addressed by splitting the loop in order to reduce
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its complexity to a level manageable by the compiler, yielding a speedup of 1% at
application level.

It was also possible to detect from DECAN analyses that reducing L1 traffic
held a strong potential benefit (as seen on Fig. 3). This was addressed by adding for
some loops a surrounding loop providing some data reuse (blocking) which could
be exploited by Unroll and Merge, yielding a 20% speedup at application level.

The cumulative speedup of these optimisations reached 30% at application level.

8 Conclusion

ONE View allows automating the launching of several tools, formatting their outputs
and providing the end user with aggregated views of performance metrics. In addi-
tion, ONE View provides detailed performance analyses of optimizations such as
vectorization (full or partial) and loop blocking. Such a tool is of critical importance
in the HPC world where architectures are becoming increasingly complex making
the code optimization task extremely tedious.

ONE View has been successfully used to optimise industrial and academic appli-
cations such as Yales 2 or QMCPACK.

Future works will focus on following the evolution of architectures to provide up-
to-date information, expanding the analysis capabilities of ONEView by adding new
modules focusing on other aspects of the performance analysis process and further
increasing its usability for non performance optimisation experts.
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A Picture Is Worth a Thousand
Numbers—Enhancing Cube’s Analysis
Capabilities with Plugins

Michael Knobloch, Pavel Saviankou, Marc Schlütter, Anke Visser,
and Bernd Mohr

Abstract In the last couple of years, supercomputers became increasingly large
and more and more complex. Performance analysis tools need to adapt to the system
complexity in order to be used effectively at large scale. Thus, we introduced a plugin
infrastructure in Cube 4, the performance report explorer for Score-P and Scalasca,
which allows to extend Cube’s analysis features without modifying the source code
of the GUI. In this paper we describe the Cube plugin infrastructure and show how it
makesCube amore versatile and powerful tool.Wepresent different plugins provided
by JSC that extend and enhance the CubeGUI’s analysis capabilities. These add new
types of system-tree visualizations, help create reasonable filter files for Score-P
and visualize simple OTF2 trace files. We also present a plugin which provides a
high-level overview of the efficiency of the application and its kernels. We further
discuss context-free plugins, which are used to integrate command-line Cube algebra
utilities, like cube_diff and similar commands, in the GUI.

1 Introduction

Cube is the performance report explorer for Score-P [1] and Scalasca [2]. The CUBE
data model is a three-dimensional performance space consisting of the dimensions
(i) performance metric, (ii) call-path, and (iii) system location. Each dimension is
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Fig. 1 Overview of the Cube GUI. It shows the three coupled tree browsers with the metric-tree
on the left, the call-tree in the middle and the system-tree on the right

represented as a tree and shown in three coupled tree browsers, i.e. upon selection
of a tree item the trees to the right are updated. Non-leaf nodes of each tree can be
collapsed or expanded to achieve the desired level of granularity. Figure1 shows an
overview of the Cube GUI.

Cube can be used to analyze measurements of all scales, from a laptop to the
largest-scale supercomputerswithmillions of threads. It is regularly used in the Jülich
SupercomputingCentre (JSC) Extreme ScalingWorkshops [3] and for the analysis of
applications in the High-Q club [4]. These large-scale applications typically embody
an extensive call-tree and a system-tree with thousands of locations. Without further
visualization, an analysis of such large trees is confusing and inefficient.

In recent years, supercomputing systems became more and more complex, both
on the hardware and the software side. Many HPC systems now have heterogeneous
nodes with some form of accelerator attached to the compute nodes. This leads to
a higher variability in programing models used for HPC application development.
In addition to the traditionally used MPI and OpenMP, we now have CUDA and
OpenACC for GPU programming and OpenCL for FPGA’s. All these programming
models require new way of representation in the trees and new analysis methods.

Tomeet the challenges outlined above, we work continuously on Cube to enhance
its analysis capabilities and to make it more scalable. With version 4, Cube evolved
from being a simple report explorer to a capable analysis tool [5]. However, with the
monolithic approach, which we followed in Cube for a long time, this is a daunting
task as the code quality degrades and becomes harder to maintain. To counteract this,
we split up Cube in multiple components and distribute it in form of four separate
packages:
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• CubeW—A high performance C library to write CUBE files.
• CubeLib—A general purpose C++ library to interact with and manipulate CUBE
files and a set of associated command-line tools.

• CubeGUI—The graphical report explorer.
• jCubeR—A Java library for reading CUBE files.

To add advanced analysis features more easily, we introduced a plugin infrastruc-
ture to the CubeGUI. We separated core parts, that build the foundation of the GUI,
and reformulated the other parts of the CubeGUI as standalone plugins which are
shipped together with the core parts in the CubeGUI package. Plugins, which may
have further dependencies or are not considered stable, are available for download
at our website [6]. Other performance analysis tools follow this route as well, for
example TAU provides a plugin infrastructure as well [7].

The remainder of this paper is organized as following: In Sect. 2 we describe
the plugin architecture in more detail. Section3 covers context-free plugins and in
Sect. 4 we present plugins that help with the analysis of large-scale applications by
enhancing or replacing the system-tree view. Several other plugins, their use-case and
examples are presented in Sect. 5. These include stable plugins, that are included in
the CubeGUI package and more experimental plugins that are available in an online
repository. We conclude the paper and give an outlook on future work in Sect. 6.

2 Plugin Architecture

The CubeGUI plugin architecture is designed to further advance the extension of
the analysis features of CubeGUI, while at the same time streamlining the extension
process. The first step towards using a plugin infrastructure and the decoupling of
features consisted in defining core functionality and extensions. In this context some
features of the previously monolithic CubeGUI have been classified as extensions
and turned into plugins, even though they always have been part of the CubeGUI.

The core functionality of the CubeGUI consists of Cube file management, GUI
handling and the global calculation mode. The management aspects cover loading
the Cube data and meta data for metric-, call- and system-tree descriptions. The
core elements of the CubeGUI structure are three coupled tree browsers, that can be
seen in Fig. 1. Using this three dimensional approach, the calculations happen in a
three step selection process from left to right, each step narrowing the focus of the
calculation. The name Cube is derived from this three dimensional approach. For
the selections single or multiple entries can be chosen, although the metric-tree only
allows selections of the same type, e.g., counts, time or bytes. In this scheme, the
right-most panel represents a point-like value depending on the selections on the two
left panels. The middle panel aggregates along a row-value depending only on the
left-most panel. The left-most panel is an aggregation on a plane value and has no
dependencies, representing the global value. The default setting has the metric-tree
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on the left, the call-tree in the middle and the system-tree on the right. However, the
order of panes can be changed, with the respective shift in the calculation order.

Extensions for the CubeGUI are the foundation of the plugin concept and can fall
into a set of different categories.

The core behavior of CubeGUI assumes to be working on a single Cube file. For
a new class of plugins this is not a requirement, as they work on one or multiple
existing Cube files and create a resulting Cube file in the process. These so-called
context-free plugins will be covered in Sect. 3.

Cases where more than a single number is used for entries are implemented by
value plugins, which change the handling and display of values in the CubeGUI.
These can for example occur in forms of histograms, small box plots, or a numeric
triple. An application for this plugin is the visualization of TAU [8] profiles in the
CubeGUI, see Sect. 5.1.2.

Aside from numerical values, the CubeGUI represents values through colored
nodes, taken from a global color map. The color mapping allows easy visual identi-
fication of hot-spots and patterns. While the default color map can be configured to a
degree, there are occasions where a more specialized color map is required. Whether
this is a device optimized color map or map highlighting a specific use case, in either
case a new colorMap plugin can be employed.

In Sect. 4 another category of extensions is presented. There, additional and alter-
native visualizations for the default system-tree are presented, with a special focus
on a global perspective. These fall into the category of context-sensitive plugins, as
their value representation is dependent on the selections in the first two panes.

All extensions have the commonality, that they require the use of an API to define
the plugin and interact with the CubeGUI core. This API is part of the overall plugin
architecture and the interface between core and current and future plugins. It realizes
a set of states that can be queried and signals that plugins can react to. For more
detailed information refer to the set of examples in the CubeGUI installation and
the documentation, particularly the CubeGUI Plugin Developer Guide,1 which is
included in a standard CubeGUI installation.

In the following we present examples for the different categories of extensions.

3 Context-Free Plugins

As stated in Sect. 2, context-free plugins are a special kind of plugins that are only
available when no Cube files are loaded. They enhance the loading screen of the
CubeGUI to integrate operations that generate Cube files within the GUI. Upon
start, the CubeGUI shows a list of available context-free plugins next to a list of
recently opened Cube files, see Fig. 2a.

1Plugin development guide: https://apps.fz-juelich.de/scalasca/releases/cube/4.4/docs/plugins-
guide/html.

https://apps.fz-juelich.de/scalasca/releases/cube/4.4/docs/plugins-guide/html
https://apps.fz-juelich.de/scalasca/releases/cube/4.4/docs/plugins-guide/html
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Onemain purpose of these plugins is to provide access to the Cube algebra utilities
(which are part of the CubeLib package) directly from the GUI. These are:

• cube_merge allows to merge several experiments into a single one and explore
the result. It is typically used for an analysis that requires more metrics than can
be collected in a single measurement, e.g. hardware counter measurements with
PAPI or perf counters, where only a limited number of counters can be measured
simultaneously. It can also be used to enhance a Scalasca trace analysis report
(which omits any hardware counter information that might be present in the trace)
with hardware counter information obtained from a profile report. This is neces-
sary for a detailed POP analysis with the Advisor plugin as presented in Sect. 5.
Further, cube_merge is useful for a comprehensive analysis of MPMD applica-
tions, where each part was measured independently, or workflows consisting of
multiple executables.

• cube_mean creates an “average” result ouf of several structurally identical mea-
surements in order to smooth the variations in the run-time, introduced for example
by OS jitter or contention on the network.

• cube_diff creates the difference between two preferably structurally identicalmea-
surements. The typical usage example is the validation of tuning actions with a
“before optimization versus after optimization” comparison. It can also be used
to investigate the behavior of an application built with different tool-chains, e.g.
compiler or MPI versions.

Beside the Cube algebra tools, context-free plugins can be used to integrate other
tools as well. We provide two additional context-free plugins:

• tau2cube enables the CubeGUI to load native TAU performance measurements.
We will discuss the tau2cube plugin in more detail in Sect. 5.

• Scaling: Investigating the scaling behavior of an application is a common task for
an HPC application developer. Either the application is run with the same input on
different scales (strong scaling) or the input set scales with the number of system
resources (weak scaling). However, usually only the whole application or a few
kernels are regarded in such an analysis.
The Scaling plugin allows a detailed analysis of the scaling behavior of every
single routine. For that, a series of “identical” Score-P measurements on different
system sizes is performed. This results in cube files with the same metrics and a
nearly identical call tree. Only the system tree is different in each of these files. The
Scaling plugin gathers the individual measurement results into one and displays
the metric values in dependency of the system size, e.g. time/#processes. It is
recommended to use the Scaling plugin in combination with the JengaFett plugin
(see Sect. 5) to replace the system tree view. Figure2b shows an example of the
Scaling plugin where the system dimension displays bar plots for the time per
process (dark brown) and the calculated speedup (light brown). This calculation
works for every metric and call-path selection.
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(a) Cube – Choosing
Context-free Plugin

(b) Cube Scaling

Fig. 2 Screenshots of Cube showing the loading screen where the context-free plugins can be
chosen (a) and an example of the Scaling plugin in combination with the Jenga Fett plugin (b).
There we plot the time in dark brown and the corresponding speedup for measurements from 1 to
48 processes

4 System-Tree Enhancements

The system-tree view is the default right-most pane of the CubeGUI representing
the system locations, e.g., processes, threads, CUDA streams etc., used in the mea-
surements. It combines a logical hierarchy of processes and their child threads with
known hierarchal information about the system hardware up to the rack level (e.g.
nodes, midplanes, etc.). Each level can be collapsed and expanded as needed and the
respective levels will show the inclusive or exclusive values, as with the metric- and
call-trees. It also provides the option to define and select subsets that may be used
for example by the box plot plugin as shown in Sect. 4.2.

Figure3 shows a measurement of MP2C on 4096 processes on a Blue Gene/Q
machine. MP2C [9] is a simulation for multi particle collision dynamics of solvated
particles in a fluid. The the system-tree shows the hierarchy levels of the BlueGene/Q
from rack to node card. Since MP2C is a MPI only application, the node level hierar-
chy is limited to processes. This example will be used to showcase the visualization
alternatives presented in this section.
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Fig. 3 MP2Cmeasurement examplewith 4096 processes on aBlueGene/Qhighlighting the limited
global overview with the default system-tree due to the limited number of locations shown at the
same time

The reason for introducing alternative system-tree visualizations lies in the scope
and variation of applications and users’ analysis needs, where one solution rarely
meets all requirements. Most of the time a combination of different view points on
the same data, is the most helpful approach. Therefore, the intent of this category
of plugins is not to replace the system-tree, and instead offer a set of different per-
spectives to be used in unison. With that in mind, the plugins are not completely
disconnected in their function and allow selections in one view to update selections
in others where applicable. With the ability to detach views, these can be viewed side
by side.

Any measurement containing notably more locations than the standard view size
of the system-tree in the CubeGUI presents a challenge for its comfortable use. In
Fig. 3 the number of processes able to be shown at the same time is limited and even
collapsing the tree to node card level will not improve that notably. In consequence,
the user has to spend time scrolling to specific locations and looses the global view
over all locations. In turn, this may lead to missing patterns in the behavior of the
currentmetricwhen spanningmultiple locations. To alleviate this issue, various Cube
plugins have been introduced to enhance the system-tree view or to offer alternative
visualizations.

The following section highlights alternatives that use numerical or visual presenta-
tions and, in case of topologies, incorporate additional data to create the visualization.
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4.1 Sunburst

This plugin displays the system-tree data in a 360 degree sectored disk [10]. It allows
the visualization of thewhole system-tree in a relatively limited spacewhich provides
a global overview over the value distribution of ametric over the entire measurement.

The system-tree hierarchy is reflected in the rings of the sunburst view, from the
highest level at the center to the location level on the outermost ring. Any selection of
locations or levels is mirrored in the system-tree panel and vice versa. The sunburst
view can be manipulated to show different levels at the same time through expanding
and collapsing different selections. Settings for behavior and visual style can be
accessed through a context menu.

In continuation of the initial example of Figs. 3, 4 shows the same metric and
call-path selection to highlight the differences. While in the the system-tree none
of the location sub sets reveal a pattern directly, in the sunburst view the regular
pattern becomes immediately recognizable. While the sunburst view does not show

Fig. 4 MP2C example with an equivalent sunburst view of Fig. 3
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numerical data directly, except through mouse-over on slices of the respective levels,
it aids in the identification of locations that justify further investigation. Making
selections here will update the system-tree view accordingly and will allow a closer
look.

4.2 Statistics: Box and Violin Plots

The Statistics plugin gathers data for the selected metric values from the system-tree
and displays these in form of a box plot [11]. The statistical data is represented as
maximum and minimum, quartiles, as well as mean and median.

This plugin allows fast access to global numerical data of a measurement and can
serve as entry point by offering a global perspective as well as highlighting more
detailed imbalances, depending on the chosen metric and call-path selections.

For a detailed analysis, there also exists the option to define subsets of nodes,
processes or locations and limit the statistics calculation to that subset.

The violin plot [12] is similar to the box plot, however it additionally presents the
distribution of themetric values. This allows the identification of partitions within the
system and highlights peaks in multi-modal measurements, which are an indication
for the existence of performance issues within themeasurement. In combination with
the Sunburst of Sect. 4.1 or the topology plugin of Sect. 4.3 this aids in matching the
general distribution or specific partitions to sets of locations. The statistics plugin
also offers the numbers in tabular form for easy access.

Figure5 uses the MP2C example from before, and shows a concentrated partition
with only a few outliers, which is the expected result based on the visual impression
of the sunburst in Fig. 4. In this case the shape of the violin plot does not reveal
too much additional information. Compared to this, the example of Fig. 6, looking
at a different region of the same experiment, highlights multiple partitions for the
respective selection. As mentioned before, not all visualizations provide the most
insight for every use case and therefore they should be used together to reveal the
most significant issues.

4.3 Topologies

The topology plugin, compared to the sunburst and statistics plugin, is not just a
different view on the same system-tree data as it incorporates additional information
about neighborhood relations between locations. This additional structural data can
be defined by MPI Cartesian calls, Score-P user instrumentation or platform spe-
cific interfaces, e.g., the 5D torus of a Blue Gene/Q like the now decommissioned
JUQUEEN [13] in Fig. 7b. More details on the creation and recording of topologies
can be found in the user documentation on the Score-P website [14].
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(a) Box plot (b) Violin plot

Fig. 5 MP2C example showing a statistics perspective of the selections and data from Fig. 3

(a) Box plot (b) Violin plot

Fig. 6 Different function selection on the MP2C example, highlighting a distribution with parti-
tioned clusters

The main component of the topology plugin is the 3D display of the topology
data. It allows the visualization of up to three dimensions directly, while for higher
dimensional data dimensions have to be combined through either folding or slicing.
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(a) MPI Cartesian 16x16x16 (b) Blue Gene/Q 5D torus

Fig. 7 Topologies for the MP2C example of Fig. 3

Folding in this context represents the concatenation of two or more dimensions
into one visual dimension. By Slicing on the other hand, the user chooses single
values for a subset of dimensions and displays the remaining dimensions in the
plugin. Both methods reduce the number of visual dimensions effectively to three
and allow the visualization of topologies with an arbitrary number of dimensions.
The arrangement and order of dimensions can be controlled by the pull-up control
field at the bottom of the plugin. Controls for a more fine grained adjustment of
the 3D view can be found in the topology toolbar. Additional settings for the visual
appearance of the 3D view are available in the Plugins menu. As with the sunburst
plugin mouse-over reveals the numerical information to the visual data.

The sunburst view showed a repeating pattern for the selected call-path in the
MP2C example. Figure7a displays the used MPI topology, which was automati-
cally created from the MPI data by Score-P. This visualization now reveals that the
repeating pattern represents a hot-spot in the communication pattern, as the view
incorporates the Cartesian structure provided by MPI. In Fig. 7b the same selection
is presented in the platform topology of JUQUEEN, showing the seven dimensions
of the Blue Gene/Q architecture. This shows the physical placement of processes and
threads within the 5D torus and the assignment to cores and hardware threads within
their nodes. In this figure the example uses folding to arrange the dimensions. With
high dimensional topologies this may require checking various dimension orders,
but as the example shows hot spots can be identified as with the MPI topology. The
additional hardware information can lead to the identification of issues with the cho-
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sen partition within the system or of outside influences that are not caused by the
application itself. As this combines logical with physical locations, threads have to
be bound to cores for the duration of the application run, otherwise an unambiguous
matching is impossible.

Aside from a straightforward Process x Threads topology, which is a two dimen-
sional mapping of the system-tree and can be generated for every measurement, all
other topology types require additional input from the application, the user or the
system under investigation. That makes them a conditional tool to be employed if the
use case matches the requirements. This showcases that the topology plugin, like the
other plugins presented in this section, should and have to be used in concert with
each other and that there is no hard rule for when one plugin should be preferred
over the others.

5 Other Plug-Ins

All plugins presented so far fit in Cube’s 3-dimensional data model with a metric,
a program and a system dimension. However, the plugin architecture is not limited
to this scheme. In this section we present plugins that still work on the selected
metric and call-tree item, but either open a new window or show their results in
the rightmost panel, but independent from the system-tree. For that we extended the
right-most panel by a tabs to switch between the system dimension and the other
plugins.

5.1 Integration in the Score-P Ecosystem

One of the major goals of the Score-P ecosystem is the interoperability of distinct
performance analysis tools built upon the common measurement infrastructure. This
is ensured by common data formats for profiles—the CUBE4 format—and traces—
the Open Trace Format 2 (OTF2) [15]. OTF2 trace files can be analyzed manually
by Vampir [16] or automatically by Scalasca [2].

5.1.1 Vampir Connector

While it is already useful to be able to analyze the same trace data manually and
automatically, it would be preferable to use the results of the Scalasca trace analysis
for a following in-depth analysis with Vampir. Scalasca stores detailed information
of the most severe instances, i.e. the instance with the longest waiting time, for each
performance inefficiency pattern it detects. While this is unambiguously for point-
to-point communication, it is defined as the instance with the largest sum of waiting
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(a) Cube – Context menu to
open Vampir

(b) Vampir zoomed to most severe instance

Fig. 8 Screenshots showing the Vampir connector plugin. The user can start Vampir directly from
the CubeGUI (a), which opens the trace at the relevant point in time (b)

times of all involved processes/threads for collective communication. This is not
necessarily the one with the largest individual waiting time.

If Vampir and the D-BUS components are installed on the same machine it is
possible to connect the CubeGUI to the trace browser and view the state of the
analyzed program at the point of the occurrence of the most severe instance of the
selected pattern. Figure8 shows an example using the JURASSIC (Juelich Rapid
Spectral Simulation Code) application [17]. The user has to select the desired metric
in the metric-tree and then right-click on the respective instance of that pattern in the
call-tree to open Vampir, as shown in Fig. 8a. Here the selected metric is the “Wait at
OpenMP barrier” and the interesting instance is the implicit barrier at the end of the
main loop. This in turn opens Vampir (in a separate window) at a reasonable zoom
level so that the pattern and some application activity before and after is visible, see
Fig. 8b. We see the last three iterations of the computational loop with the typical
increase in waiting time due to load-balancing issues.

5.1.2 Tau2cube and Tau Value Display

TAU [8], as part of the Score-P ecosystem, can open CUBE4 files natively. That
does not hold for the opposite direction. We provide a (context-free) plugin called
tau2cube to enable the CubeGUI to load native TAU measurements. It is possible to
load and directly merge multiple TAU measurements, which is useful as TAU stores
all recorded metrics in distinct files, with the exception of the time metric, which
is present in each file. Figure9 shows an example of a TAU measurement with four
metrics. Note that we see a flat call-tree as TAU stores only flat profiles.
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Fig. 9 Cube showing the merged result of 3 TAU measurements. We see a flat call-tree originating
from TAU’s flat profiles and no names of the nodes in the system-tree, as TAU does not store them

Score-P is able to collect a statistic of metric values for every call-path. These
are called “Tau Tuples” as they follow the same structure as the tuples introduced
by TAU. It is possible to display them as a small box-plot in the metric- and call-
tree. This allows to get an overview about statistic behavior along the call-tree or
system-tree

5.1.3 ScorePion

With instrumentation being the default measurement mode of Score-P, measurement
overhead is a factor to consider in many analyses, especially of C++ applications
with many small functions that get called frequently. To mitigate that effect we
can use filtering, i.e. mark functions to not be measured (run-time filtering) or not be
instrumented at all (compile-time filtering). The GNU compiler uses the same format
for compile-time filtering as we use for run-time filtering in Score-P. The format of
the filter file used by the Intel compiler2 varies slightly.

With the ScorePion plugin we enable the creation of a Score-P or Intel filter
file directly from the GUI. The user simply right-clicks on a call-tree item to add
or remove it from the filter. The ScorePion plugin generates additional metrics for
Score-P measurement system memory requirements, the resulting trace size (after
applying the filter), and the expected impact on measurement overhead, see Fig. 10.
All the advanced features of the Score-P filter file like black- and white-listing of
functions and files, stacking of filter rules and wildcards are supported by ScorePion.

2Intel compile time filtering API description: https://software.intel.com/en-us/cpp-compiler-
developer-guide-and-reference-tcollect-filter-qtcollect-filter.

https://software.intel.com/en-us/cpp-compiler-developer-guide-and-reference-tcollect-filter-qtcollect-filter
https://software.intel.com/en-us/cpp-compiler-developer-guide-and-reference-tcollect-filter-qtcollect-filter
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Fig. 10 Screenshot of the ScorePion plugin. In the right pane it shows the stacking of filter rules
and information on trace size and memory requirements

5.1.4 Iteration Profiling

Score-P enables the user to mark loops via its user instrumentation API and record
each iteration of the loop independently. The default representation of such a loop is a
separate call-tree node for each iteration, whichmakes an analysis of loop-dependent
behavior very difficult for loops with many iterations. We provide two plugins for
a graphical analysis of iteration-dependent behavior. Figure11 shows an example
of both plugins with the TeaLeaf [18] application. It clearly shows that every 12th
iteration shows a different behavior from the previous 11. This is due to a function that
is called only every 12th iteration. The Barplot plugin plots the value of the selected
metric versus the iterations of the loop. The value can be the minimum, maximum or
the average across all system locations. Further, a stacked bar of minimum, average
and maximum is possible, as shown in Fig. 11a. The Heatmap plugin (Fig. 11b)
plots locations versus iterations with the value being color-coded according to the
currently chosen color palette. The color palette can be changed using the Colormap
plugin. Next to the standard rainbow palette, Cube provides a configurable gradient,
double gradient, helix, and different standard gradient palettes. Using those, specific
values such as the median or extrema can be emphasized. It also allows to adopt
visualization for screenshots used in printing or presentations.

5.1.5 Blade

Scalasca’s automatic trace analysis guarantees to cover the entire trace data, but the
generated report omits the time dimension. However, often it is necessary to look
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(a) Barplot (b) Heatmap

Fig. 11 Screenshots of an iteration profile of TeaLeaf using the Barplot (a) and the Heatmap (b)
plugin, showing the Time metric in each case. Both views show an anomaly every 12th iteration

(a) Blade – Full trace view (b) Blade – zoomed to iteration level

Fig. 12 Screenshots of the Blade plugin for an execution of JURASSIC. User routines are colored
green, MPI routines purple and time spend in OpenMP in orange

at the dynamic behavior of the analyzed application with a timeline-based trace
browser. The standard tool for this task in the Score-P ecosystem is Vampir, a very
powerful OTF2 trace analyzer with many customizable displays. Vampir however
is a commercial tool and typically only available on larger supercomputers. For
small-scale experiments a quick glance on the trace is often enough to identify
performance problems. For that we provide Blade, a simple OTF2 trace explorer,
which is integrated in the CubeGUI. Thus, it allows a quick look on the tracing
experiments with respect of the selected call-path and simple filter rules.

Figure12 shows screenshots of the Blade plugin. A view of the entire application
execution is shown in Fig. 12a. Figure12b shows the same information in Blade
as Fig. 8b shows in Vampir, i.e. the iterations with the highest waiting time in the
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OpenMP barrier. Vampir shows a lot more information, but the general structure
of the imbalance leading to the wait-state is also visible in Blade. However, the
automatic zooming to the most severe instance is not (yet) available for Blade, so a
complete manual analysis is required in this case.

5.2 Program Structure

Raw performance data is often very hard to interpret without detailed understanding
of the applications algorithm and implementation. We developed two plugins to help
the performance analyst to assess the structure of the application by providing a
complete Call Graph and its implementation by linking performance data to the
source code. Figure13 shows examples of both plugins.

5.2.1 Call Graph

This plugins displays the call-tree in form of a graph. The unique regions are the
nodes of the graph and aggregated metric values are assigned to the edges. A call-
graph can help to detect critical calls in an application with a complex call-tree more
efficiently. This plugin generates the call-graph in the dot format and thus depends on
aGraphviz3 installation. A newWindow is opened containing the graph, as presented
in Fig. 13a.

5.2.2 Source Code Viewer

Source code viewer with syntax highlighting for C/C++ and Fortran. The viewer,
like the system view, is linked to the call-tree, i.e. selecting a different call-tree node
automatically shows the respective source code region. An example is shown in
Fig. 13b, highlighting the main OpenMP loop of the JURASSIC application.

5.3 Metric Correlation

Often it is necessary to regard the combination of multiple metrics in order to get
a complete picture of the application performance characteristics. To spare the user
from clicking through the metric-tree we provide two plugins that help to identify
correlation between metrics.

3http://www.graphviz.org.

http://www.graphviz.org
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(a) Call Graph View

(b) Source Code View

Fig. 13 Screenshots of the Call graph plugin (a) and the Source Code Viewer plugin (b)
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5.3.1 Jenga Fett

The Jenga Fett plugins allows to display metric values as bar charts along the system
locations. It offers twomodes: First, a stacked bar chart to display awholemetric sub-
tree in one bar per process/thread as shown in Fig. 14a, presenting the whole Time
metric sub-tree. In the second mode, Jenga Fett allows to present multiple metrics
as independent bars next to each other. The performance analyst can so easily spot
correlations between the metrics. Figure14b shows an example putting time and L2
cache misses (PAPI_L2_TCM) next to each other. It is clearly visible that processes
with many cache misses have a high run-time while processes with a short run-time
have only a few cache misses.4 Another good use-case for this type of analysis is the
Scaling plugin we presented in Sect. 3.

5.3.2 Advisor

Performance assessment of a parallel program can be a daunting task, as the causes
of performance problems can be manifold. Major problems are a bad workload
distribution, an inefficient communication scheme and a bad utilization of the system
resources. In the course of the Performance Optimisation and Productivity Centre
of Excellence (POP [19]) a methodology was developed to allow the performance
analyst to acquire a standardized assessment of the code under investigation. This
results in a hierarchal set of metrics [20] that quantify the relative impact of various
performance factors. These metrics in general have a value between 0 and 1 (or 0%
and 100% respectively), with a higher value being better.

The Advisor plugin makes the POP methodology metrics [20] available in the
CubeGUI. Currently the following metrics are regarded:

• Parallel Efficiency: determines the performance loss when distributing computa-
tional work over the processes of the system. It is calculated as the product of Load
Balance and Communication Efficiency.

• Load Balance: is the ratio of the average computation time (across all processes)
and the maximum computation time (i.e. run-time without communication and
synchronization).

• Communication Efficiency: is the maximum (across all processes) of the ratio
between computation time and total run-time.Communication Efficiency identifies
when code is inefficient because it spends a large amount of time communicating
rather than performing useful computations. It is composed of two additional met-
rics that reflect two causes of excessive time within communication, Serialisation
Efficiency and Transfer Efficiency

• Serialisation Efficiency (SerE): measures inefficiency due to idle time within com-
munications (i.e. time where no data is transferred).

• Transfer Efficiency (TE): measures inefficiencies due to time in data transfer.

4The application was amatrix-matrix-multiplication benchmark with alternating column-major and
row-major outer loops.
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(a) Jenga Fett – Stacked bar plot

(b) Jenga Fett – Metric correlation plot

Fig. 14 Screenshots of the two modes of the Jenga Fett plugin. A stacked bar plot of Time (sub-
)tree (a) and the correlation of multiple metrics (b). Here time and L2 cache misses are plotted next
to each other and a clear correlation is visible
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Fig. 15 Screenshot of the Advisor plugin showing the POP metrics for the main computational
routine of JURASSIC

Further we report some hardware counter related metrics:

• Stalled resources: The ratio of cycles a processor was stalled and total CPU cycles.
• Instructions: The total number of “useful” instructions being executed, i.e. not
counting instructions in spin-wait phases.

• IPC: Instructions Per Cycle (IPC) is the number of useful instructions by CPU
cycles and commonly used to determine the utilization of the processor. However,
this metric alone can be misleading as the performance of an application strongly
depends on the instructions being executed, i.e. a lower IPC can be better if vector
instructions are used instead of scalar instructions.

The POP metrics can be calculated at any level of granularity—the whole appli-
cation, a single kernel, or, with Cubes multiple selection feature, multiple kernels at
the same time. Figure15 shows an example of the Advisor plugin for the main com-
putational routine of JURASSIC. Communication efficiency is very good as there
is no MPI in this kernel and load balance is an issue as we have already seen in
Figs. 8b and 12b. To present all metrics at once we need to merge at least two perfor-
mance reports: A Scalasca trace analysis and a profile containing the PAPI counters
PAPI_TOT_INS, PAPI_TOT_CYC, and PAPI_RES_STL. Without a trace anal-
ysis we have to omit the Serialisation Efficiency and Transfer Efficiency metrics.
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6 Conclusion and Future Work

In this paper we gave an overview over the newly introduced CubeGUI plugin infras-
tructure. We described the broad spectrum of plugins and showed how they can help
in everyday performance analysis. The enhancements of the system-tree help in the
analysis of large-scale applications and several plugins increase the efficiency of the
analysis by quickly pinpointing issues (like the Advisor plugin) or enabling novel
types of analysis (like Jenga Fett). Context-free plugins make the often overlooked
but incredibly useful Cube algebra utilities more accessible to non-expert analysts.

However, there is still a lot of ongoing and planned future work to do. First, we
want to decouple more features from the core and provide them as plugins to keep
the code as clean as possible. We plan to make plugins more powerful and versatile
by enhancing the API and providing more mechanisms for plugins to communicate
and interact with the CubeGUI. Performance is also an important topic, not only for
applications but for performance analysis tools as well. We want to utilize the intra-
node concurrency of modern CPUs to speed up the calculations within a plugin as
well as the communication between plugins. As part of this, there is a current effort
to make calculations asynchronous and distributed over smaller steps to increase
interactivity of the CubeGUI for larger experiments.

An ongoing development in Cube is the switch to a client-sever architecture, i.e.
a server is running on the HPC system where the performance results are and a client
is running on the local machine of the performance analyst to utilize the hardware
of HPC nodes and avoid transfering large amounts of data. The plugin infrastructure
needs to be adapted to the architecture change in the GUI and we need a definition
of modular plugins with a “server-side” part and a “client-side” part of the plugin.

Of course we also strive to expand the list of available plugins—ideally including
third-party developed plugins as well. We are looking at a tighter integration with
other tools, both performance analysis tools (like for example Paraver [21]) and
visualization tools (e.g. Paraview [22]). Performance analysis and tuning is still a
very hard task and we want to ease that burden by providing an as comprehensive
view as possible.

Acknowledgements Parts of this project has received funding from the European Union’s Horizon
2020 research and innovation programme under grant agreements No 676553 and 824080.
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Advanced Python Performance
Monitoring with Score-P

Andreas Gocht , Robert Schöne, and Jan Frenzel

Abstract Within the last years, Python became more prominent in the scientific
community and is now used for simulations, machine learning, and data analysis.
All these tasks profit from additional compute power offered by parallelism and
offloading. In the domain of High Performance Computing (HPC), we can look back
to decades of experience exploiting different levels of parallelism on the core, node
or inter-node level, as well as utilising accelerators. By using performance analy-
sis tools to investigate all these levels of parallelism, we can tune applications for
unprecedented performance. Unfortunately, standard Python performance analysis
tools cannot cope with highly parallel programs. Since the development of such soft-
ware is complex and error-prone, we demonstrate an easy-to-use solution based on an
existing tool infrastructure for performance analysis. In this paper, we describe how
to apply the established instrumentation framework Score-P to trace Python applica-
tions. We finish with a study of the overhead that users can expect for instrumenting
their applications.

1 Introduction

Python is one of the Top 5 programming languages,1 and it is not surprising that more
and more scientific software is written in Python. But the standard implementation
CPython interprets Python source code, rather than compiling it. Hence, it is deemed
to be less performant than other programming languages like C or C++.Moreover, as

1According to the TIOBE Index Oktober 2019: https://www.tiobe.com/tiobe-index/.
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CPython employs a Global Interpreter Lock (GIL) [1], it is often stated that Python
does not support parallelism. While there are different Python implementations like
pypy2 or IronPython,3 which try to counter these drawbacks, these approaches do
not represent the standard implementation.

However, CPython is easily extensible, e.g., by using its C-API or foreign function
interfaces. These interfaces allowprogrammers to exploit the parallelismof aproblem
with traditional programming languages like C without losing the flexibility and the
power of the standard Python implementation. Moreover, it is possible to offload
computation to accelerators like graphic cards. Nevertheless, these extensions and
the Python source code itself need to be optimised to exploit the full performance of
a computing system. To optimize the application, it has to be monitored. To monitor
the application, performance-related information has to be collected and recorded.

While collecting performance information is possible to some extent with tools
that are part of the standard Python installation, none of these tools makes it easy
to gain knowledge about the efficiency of thread parallel, process parallel, and
accelerator-supported workloads. However, such tools exist for traditional program-
ming languages used in High Performance Computing (HPC). Here, Score-P [2],
Extrae [3], TAU [4], and others allow users to record the performance of their appli-
cations and analyze them with scalable interfaces.

In this paper, we present the Python bindings for Score-P, which make it easy for
users to trace and profile4 their Python applications, including the usage of (multi-
threaded) libraries, MPI parallelism and accelerator usage. The paper is structured
as follows: We describe our concept and implementation in Sect. 2 and evaluate the
overhead in Sect. 3. We present related work in Sect. 4 and finalize this paper with a
conclusion and an outlook in Sect. 5.

2 The Score-P Python Bindings

The Pythonmodule, which is used to invoke Score-P and allows tracing and profiling
of Python code, is called Score-P Python bindings. Themodule can be split into three
basic blocks, which are used in two phases: The initialisation, which is executed in
a preparation phase, prepares the measurement and executes the application. The
instrumenter is registered with the Python instrumentation hooks and used during
execution. The Score-P C-bindings connect Python with C and Score-P and are also
used during execution. The workflow of the overall process, including preparation
phase and the execution phase, is depicted in Fig. 1.

2https://pypy.org/.
3https://ironpython.net/.
4As defined in [5, Sect. 2].

https://pypy.org/
https://ironpython.net/
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Fig. 1 Overview of the instrumentation process with Score-P. In the first phase, the Score-P Python
module initializes the Score-P measurement system and attaches Score-P libraries. In the second
phase, the bindings use the preloaded Score-P libraries and instrument the Python code to record
events with Score-P. In addition to the Python instrumentation, other parts of the application, such
as MPI, pthreads, and CUDA functions, are automatically instrumented by Score-P (not depicted)

2.1 Preparation Phase

Since version 2.5, Python allows running modules as scripts [6]. This approach
can be used to record traces of a Python application. Instead of starting the Python
application directly, the script and its parameters are passed as arguments to the
Score-P Python module. The recording can be configured by prefixing additional
parameters to the parameter specifying the original Python application. An example
is given in Listing 1.

In the first step, all Score-P related parameters are parsed. Score-P supports a
variety of programming models like OpenMP, MPI, and CUDA. However, increas-
ing the monitoring detail leads to more information in a trace or profile but also to
a higher instrumentation overhead. Therefore, we allow the user to choose which
functionality should be monitored. Based on the chosen features, the Score-P ini-
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1 # mpirun -n 2 -> run two parallel MPI processes
2 # python -> each of these runs python
3 # -m scorep -> run ’scorep ’ module before

actual script
4 # --mpp=mpi --thr... -> use MPI & pthread

instrumentation
5 # ./run.py -> the script or application to

run
6 # -app -arg -> an argument to ./run.py
7 mpirun -n 2 \
8 python -m scorep --mpp=mpi --thread=pthread ./run.py -

app -arg

Listing 1 Calling an MPI-parallel application using the Score-P Python bindings

tialisation code is generated. This code is then compiled and added together with
some dependencies to the LD_PRELOAD environment variable. As LD_PRELOAD
is evaluated by the linker, the whole Python interpreter needs to be restarted, which
is done using os.execve() [7].

Once restarted, the module starts the second step: The instrumenter is created,
and the arguments, which are succeeding the Score-P arguments are utilised. The
first non-Score-P argument is the Python application that shall be executed, followed
by its arguments. The Python application is read, compiled, and executed [8], and
its arguments are passed to the application.

2.2 Execution Phase

As described before, the execution phase uses two different software parts: the instru-
menter and the Score-P C-bindings that hand over the events from the instrumenter
to Score-P.

2.2.1 The Instrumenter

The instrumenter represents a component that is registered with CPython and sup-
posed to be called for specific events during the execution of an application. Python
offers two registration alternatives for such callback functions: sys.settrace()
and sys.setprofile() [9]. However, different events are raised and for-
warded to the instrumenter depending on which of these functions is used. A sum-
mary of these events is shown Table1. Obviously, both functions can be used
to instrument function calls, but both also offer different functionality. While
sys.setprofile() can be used to trace also calls to C-functions,
sys.settrace() can be used to record lines of code or operations executed.
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Table 1 Supported events for Python profiling/debugging interfaces

Event Description Supported by sys_set…

…profile() …trace()

Call A function is called ✓ ✓

Return A code block (e.g., a
function) is about to
return

✓ ✓

C_call A C function is about
to be called

✓ ✗

C_return A C function has
returned

✓ ✗

C_exception A C function has
raised an exception

✓ ✗

Line The interpreter is
about to a new line
of code or re-execute
the condition of a loop

✗ ✓

Exception An [Python] exception
has occurred

✗ ✓

Opcode The interpreter is
about to execute a new
opcode

✗ ✓

Please note that tracing has different meanings in the Python documentation and
in the HPC community. In the former, tracing describes the investigation of per line
execution of the source code, which can be used to implement debuggers [9]. In
contrast, the HPC community understands tracing as the recording of events like
entering or exiting a region over time [5]. In this paper, we use the term tracing
for the HPC notion of tracing. If we refer to the python notion of tracing we use
sys.settrace().

However, for each callback, sys.settrace() and sys.setprofile(),
Python also issues thePython framecausing the event and someadditional arguments.
The Python frame holds information like the current line number of the associated
module. The instrumenter passes this information to the Score-P C-bindings.

2.2.2 Score-P C-bindings

The Score-PC-bindings between Python and Score-P use the PythonC-interface [10]
and the user instrumentation from Score-P [11, Sect. J.1.2]. The bindings do not
only forward events regarding entering or exiting of functions, but also group these
functions based on their associated module. Moreover, they also pass information
like line number or the path to the source file to Score-P. Score-P then uses these
instrumentation events to create Cube4-profiles, OTF2-traces or to call substrate
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Fig. 2 Trace of a simple application using the Score-P Python bindings and Vampir. __main__
indicates that the function is part of the currently run script

Fig. 3 Trace of a Python application [13] using CUDA and MPI. Traced using the Score-P Python
bindings. Green are TensorFlow functions; red are MPI operations; blue are CUDA operations;
black lines are CUDA communication

plugins for an online interpretation. Resulting traces can be viewed in Vampir [12],
as shown in Fig. 2 for the small example code in Listing 2. A more complex parallel
application is visualized in Fig. 3.

1 def baz():
2 print("Hello

World")
3 def foo():
4 baz()
5 if __name__ == \
6 "__main__":
7 foo()
8

Listing 2 Simple Python example
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3 Performance Evaluation

To evaluate the overhead caused by the instrumentation, we designed two test cases.
The first test case, shown in Listing 3, increments a value in a loop.We expect that the
overhead introduced by the sys.setprofile() instrumenter does not depend
on the number of iterations about this loop, since no functions are entered or exited.
In contrast, we expect that the instrumenter using sys.settrace() causes an
overhead depending on the iterations, since it is called for each executed line.

The second test case (Listing 4) uses a function to increment the value. Here, we
expect a strong dependency on the number of iterations for both instrumenters.

1 import sys
2

3 result = 0
4

5 iterations = \
6 int(sys.argv [1])
7

8 iteration_list = \
9 list(range(iterations

))
10

11 for i in iteration_list:
12 result += 1
13

14 assert(result ==
iterations)

Listing 3 Test case 1: loop only

1 import sys
2

3 def add(val):
4 return val + 1
5

6 result = 0
7 iterations = int(sys.argv

[1])
8 iteration_list = \
9 list(range(iterations)

)
10

11 for i in iteration_list:
12 result = add(result)
13

14 assert(result ==
iterations)

Listing 4 Test case 2: function calls

Weperformedour experiments on theHaswell partitionof theTaurusCluster atTU
Dresden. Each node is equipped with two Intel Xeon CPU E5-2680 v3 with 12 cores
per CPU, and at least 64 GB of main memory per node [14]. Measurements are taken
for each instrumenter, i.e. sys.setprofile() and sys.settrace(), as well
as without the Score-P module, marked with None. Each experiment is repeated 51
times. The results are depicted in Fig. 4. We use linear interpolation to calculate the
costs for (a) enabling instrumentation and (b) using the instrumentation. While the
former includes setting up the Python environment and starting and finalizing Score-
P, the latter represents the costs to execute one loop iteration. We disabled the Score-
P measurement substrates profiling and tracing to represent only the overhead of
instrumenting the code.The linear interpolationuses themedianof eachmeasurement
and the polyfit function from numpy to create t = α + βN where t represents the
runtime, N is the number of iterations, α is the one-time overhead for enabling the
instrumentation and β is the cost per loop iteration. The results of this interpolation
are presented in Table2.

For the first test case (Fig. 4a), we see that the instrumentation cost is about
0.6 s. This cost will apply every time the instrumentation is enabled. Executing one
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Fig. 4 Runtime of two instrumenters and non-instrumented code (None) for different test cases.
Dotted lines represent a linear interpolation of themedians of eachmeasurement point. The overhead
for setting up the measurement and starting the Python environment is 0.6 s and independent of the
instrumenter. Please note the different x-axis

Table 2 Overhead for test cases (median results): α: constant overhead; β: per loop iteration
overhead

Test case 1 Test case 2

Instrumenter α (s) β (us) α (s) β (us)

None 0.05 0.17 0.05 0.3

sys.setprofile() 0.58 0.18 0.61 15.0

sys.settrace() 0.63 0.98 0.58 17.9

loop will consume about 0.17µs. Capturing the loop execution on a per-line scale
without forwarding the information to Score-P costs additionally 0.8µs. This cost
only appears for thesys.settrace() instrumenter.

For the second case (Fig. 4b), we see the same initial costs. However, the per-
iteration costs are higher since we call functions. The general overhead without
instrumentation (None) increases by about 0.13µs to about 0.3µs. The overhead
for function instrumentation increases even more. Here each function call adds about
14.7µs (for sys.setprofile()). Due to the per-line overhead, we can say
that sys.settrace() should not be used in the current implementation where
the same data is given to Score-P by both available instrumenters. Therefore, we
choose to set sys.setprofile() as default instrumenter. In future versions of
our software, we plan to include information on exceptions or executed lines in
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profiles and traces. The user will have to choose whether the additional information
is important enough for the added overhead.

4 Related Work

There are different tools to profile or trace Python code. The most common ones
are the built-in profiling tools profile and cProfile [15]. While both share the same
command-line interface, cProfile is preferable, since it is implemented in C and
therefore faster. The output of both tools is usually written to the command line,
but can also be re-directed to a file. The output can be converted and visualised by
several third-party tools. For example, pyprof2calltree [16] enables users to convert
the output for later analysis with Kcachegrind [17]. An alternative is SnakeViz [18],
which visualises the output of the built-in profilers in a web application.

All these tools are only focussed at single node analysis and do not support
parallel programming paradigms used in HPC, like MPI or OpenMP. This is dif-
ferent for Extrae [3] and TAU [4]. Extrae uses sys.setprofile() to reg-
ister callbacks from Python. The developers implemented their interface using
ctypes, which is a foreign function interface for Python. TAU version 2.28.1 utilises
PyEval_SetProfile from the C-API and register a callback function that is
written in C.

5 Conclusion and Future Work

In this paper, we introduced a module that enables performance engineers to instru-
ment Python applications with Score-P. We described and justified different design
decisions that we encountered during development. To quantify the runtime over-
head, we presented measurements of two benchmark kernels. Based on these mea-
surements, we decided to use sys.setprofile() as the default instrumenter, as
the runtime overhead is smaller than the overhead caused by sys.settrace().

Further work might include ways to control the runtime overhead, besides manual
instrumentation. One approach could be to sample Python applications.

The Score-P Python bindings are available online at https://github.com/score-p/
scorep_binding_python.
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