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Abstract. We study the least cost influence maximization problem,
which has potential applications in social network analysis, as well as in
other types of networks. The focus of this paper is on mixed-integer pro-
gramming (MIP) techniques for the considered problem. The standard
arc-based MIP formulation contains a substructure that is a relaxation
of the mixed 0-1 knapsack polyhedron. We give a new exponential class
of facet-defining inequalities from this substructure and an exact poly-
nomial time separation algorithm for the inequalities. We report prelim-
inary computational results to illustrate the effect of these inequalities.

Keywords: Mixed-integer programming · Influence maximization ·
Social networks · Valid inequalities

1 Introduction

Intricate connections between entities in many natural and man-made systems
form large complex networks. Of particular interest in the area of network science
is gaining insight into the dynamic behavior of spreading or influence processes
in complex networks. For instance, in social network analytics, optimal initiation
of the processes of spreading information, opinions, and/or influence, may play
an important role in designing competitive marketing strategies. Accordingly,
there is an increasing trend in studying influence and information propagation
in social networks (see, e.g., [4,12]). Granovetter [7] propose the linear threshold
model to describe the propagation process in social network, in which the resis-
tance of an individual to influence and influence strength to others are quantified
as threshold and influence factor, respectively. The term “active” is adopted to
represent the state of individual behavior being influenced if the summation of
influence factors from all the connections in social network exceeds the thresh-
old. There are many variants of this problem related to optimally determining
the most influential nodes (people), in order to trigger the propagation process
and reach a desired penetration rate. Kempe et al. [11] consider the Influence
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Maximization Problem (IMP), which they formulate as a discrete stochastic opti-
mization problem. They adopt two models for diffusion processes, namely, the
linear threshold and the independent cascade models. The goal is to activate
some users initially and use them to influence as many other users as possible by
the end of the propagation process. They show that it is NP-hard to both approx-
imate and solve the problem to optimality. Another similar problem introduced
by Chen [3] is referred to as the Target Set Selection Problem (TSSP). In TSSP,
the decision is to find the minimum number of users required initially in order
to activate the entire network through the propagation process. Chen showed
that the problem is NP-hard to approximate and gives a polylogarithmic lower
bound on the approximation ratio. Recently, a new problem named Least Cost
Influence Maximization Problem (LCIM) has been introduced in [5]: it involves
the combination of individual incentives (e.g., discounts, payments, free sample
products) with peer influence together to activate nodes and prompt influence
propagation in a social network. The goal of LCIM is to determine the required
minimum cost of partial incentives given to the key opinion leaders.

Despite the fact that the aforementioned problems share certain similari-
ties, the challenges of finding an exact optimal solution can be very different
when these problems are formulated by mathematical optimization models. In
this paper, we consider the LCIM problem and formulate it as a mixed-integer
programming problem to study its polyhedral structure. We assume that all
the parameters are deterministic and the influence propagation occurs in dis-
crete time steps. From a practical point of view, the assumption of determin-
istic linear threshold depends on the accuracy of estimation of influence factor
and threshold parameters. Machine learning and data mining techniques may
enable one to obtain accurate predictions on those parameters from massive
amounts of data available nowadays. A similar assumption on deterministic lin-
ear threshold model can be found in [10], where the authors consider targeted
and budgeted influence maximization in social networks and give an iterative
greedy algorithm to solve the problem. Most of the previous studies on social
network optimization problems mainly focus on developing heuristic and approx-
imation algorithms. Existing studies on exact integer programming methods for
influence maximization problems are relatively limited. Raghavan and Zhang
[15] study the Weighted Target Set Selection problem (WTSSP) in which each
node is associated with a unique cost in the objective function for initial activa-
tion. They give a compact and tight extended formulation for WTSSP on tree
graphs and later show it is also tight on directed acyclic graphs. To apply this
extended formulation to general graphs, they design a branch-and-cut algorithm
that includes a separation for cycle elimination constraints. Wu and Küçükyavuz
[17] study the two-stage stochastic influence maximization problem where the
second-stage cost function is submodular. They develop a delayed constrained
generation algorithm with strong optimality cuts that utilizes the submodularity
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and demonstrate its effectiveness in extensive computational results. Nannini
et al. [14] propose a branch-and-cut algorithm and heuristic branch-cut-and-
price algorithms for robust influence maximization, where node thresholds and
arc influence factors are subject to budget uncertainty. They show that opti-
mization for a worst-case scenario robust solution is NP-hard. Fischetti et al.
[6] present a novel set covering formulation for generalized LCIM. They propose
strengthened generalized propagation inequalities and show that they dominate
the cycle elimination constraints in the original formulation. A price-cut-and-
branch algorithm with heuristic separation for the proposed inequalities and
column generation is given to deal with the exponential number of variables and
constraints. Günneç et al. [9] establish the computational complexity for LCIM
based on the reduction from the independent set problem. In particular, when
100% penetration rate is not required, they show that LCIM is NP-hard on arbi-
trary graphs and bipartite graphs for both equal and unequal influence. For the
100% penetration rate, the optimization of LCIM with unequal influence on a
tree remains NP-hard. On the other hand, LCIM with equal influence on a tree
with the 100% penetration rate is shown to be polynomially solvable. They give a
greedy algorithm and a total unimodular formulation for this special case. In the
subsequent paper, Günneç et al. [8] extend their total unimodular formulation
for LCIM on a tree to an arbitrary graph. To ensure the solution is acyclic, they
give several pre-processing steps and separation for cycle elimination constraints
in the branch-and-cut algorithm.

1.1 Notation and Problem Definition

For convenience, we use the notation [n] = {1, · · · , n} and subscripts to indicate
the elements of a vector. The n-dimensional jth unit vector is denoted as ej . For
a set Q ⊆ R

n, we use conv (Q) to denote its convex hull of solutions.
Formally, a given network (e.g., a social network) is represented by a directed

graph G = (V,A), where the set of nodes V with cardinality n may correspond to
the set of people and set of arcs A with cardinality m indicates the connection
and influence direction between the people in the network. Each node i ∈ V
has threshold hi and each arc (i, j) ∈ A is associated with an influence weight
dij . The coverage (penetration) rate is denoted by τ , where 0 < τ ≤ 1, and the
neighborhood of node i is denoted by Ni := {j ∈ V : (j, i) ∈ A}. We assume that
dij and hi are positive integers such that max{dji : j ∈ Ni} < hi for all i ∈ V
to omit trivial cases. All nodes are assumed inactive initially and nodes remain
active once influences from neighbors and incentives reach the threshold. For
each node i ∈ V , let continuous variables xi be the amount of partial incentives
given to user i, binary variables yij indicate whether influence is exerted from
node i to j, and binary variables zi indicate whether node i is activated. The
arc-based formulation of LCIM is given by
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min
x,y,z

∑

i∈V

xi

xi +
∑

j∈Ni

djiyji ≥ hizi ∀i ∈ V (1)

zi ≥ yij ∀(i, j) ∈ A s.t. (j, i) /∈ A (2)
∑

i∈V

zi ≥ �τn� (3)

∑

(i,j)∈C

yij ≤
∑

i∈V (C)\{k}
zi ∀k ∈ V (C),∀ cycles C ⊆ A (4)

x ∈ R
n
+

y ∈ B
m, z ∈ B

n.

Node propagation constraints (1) evaluate the total incoming influence from
neighbor plus the incentives given to a node. Constraints (2) ensure that arc
(i, j) exerts influence if node i is activated. The minimum coverage constraints
(3) describe the number of nodes that need to be activated given a predeter-
mined penetration rate τ . The generalized cycle elimination constraints (4) where
V (C) = {i ∈ V : (i, j) ∈ C} cut off solutions that form a cycle as the induced
optimal influence propagation graph is supposed to be acyclic. Note that the arc-
based formulation proposed by [2] is different from this paper as the influence
weights are coming solely from their neighbors without incentives. Günneç et al.
[8] and Günneç et al. [9] on the other hand, consider the arc-based formulation
with time index. Finally, Fischetti et al. [6]. adopt this arc-based formulation for
computational performance comparison but the possible values of incentives are
represented by a set of binary variables.

1.2 Main Contribution

Our main contribution can be summarized as follows: We give a class of valid
inequalities derived from the substructure of the model that describes the prop-
agation via deterministic linear threshold model. The substructure can be trans-
formed to the mixed 0-1 knapsack polyhedron with additional binary restric-
tion on partial knapsack size. Hence, it is a relaxation containing known valid
inequalities from mixed 0-1 knapsack set studied by Marchand and Wolsey [13].
We introduce a new class of valid inequalities and give an exact polynomial sep-
aration algorithm for them. We also show that by exploiting the result of our
separation algorithm, the inequalities proposed in [13] with heuristic separation
only, can now be separated exactly as well.
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2 Valid Inequalities in LCIM Based on Mixed 0-1
Knapsack Polyhedron

To develop a strong formulation for LCIM, we study the polyhedral structure of
constraints (1). Assume Ni is nonempty with cardinality ti and

∑
i∈V ti = m.

For i ∈ [n], let

Xi =

⎧
⎨

⎩(xi, y, zi) ∈ R+ × B
ti × B : xi +

∑

j∈Ni

djiyji ≥ hzi

⎫
⎬

⎭ .

The set Xi describes the node propagation in LCIM, which can be regarded as
a mixing set with a binary variable on the right-hand side value. Any inequality
that is facet-defining for conv (Xi) is facet-defining for conv (∩i∈[n]Xi) as well.
Therefore, we now consider a single node propagation by dropping the subscript
i and obtain the following set

X =

⎧
⎨

⎩(x, y, z) ∈ R+ × B
t × B : x +

∑

j∈N

djyj ≥ hz

⎫
⎬

⎭ .

Observe that the set X contains a mixed 0-1 knapsack structure. Let set X be
obtained from X by setting yj = 1 − yj , j ∈ N and z = 1. Then we obtain the
mixed 0-1 knapsack set X with weight dj for each item j ∈ N and the capacity

of knapsack
(∑

j∈N dj − h
)

plus an unbounded continuous variable x in the
following

X =

⎧
⎨

⎩(x, y, z) ∈ R+ × B
t × {1} :

∑

j∈N

djyj ≤
⎛

⎝
∑

j∈N

dj − h

⎞

⎠ + x

⎫
⎬

⎭ .

Such set can be interpreted as a special case of traditional 0-1 knapsack problem
where the knapsack size is expanded with additional capacity. Marchand and
Wolsey [13] propose two classes of valid inequalities for X based on mixed-
integer rounding and lifting function, namely, the continuous cover inequalities
and continuous reverse cover inequalities, and they can immediately be used to
strengthen the formulation of LCIM as X ⊂ X .

Proposition 1 [13]. Let index k, set S ⊆ N and set T ⊆ N be a (k, S, T )
cover pair that satisfies (i) S ∩ T = {k}, S ∪ T = N , (ii) π = h +

∑
j∈S dj −∑

j∈N dj > 0, and h +
∑

j∈S\{k} dj − ∑
j∈N dj < 0, (iii)ρ =

∑
j∈T dj − h > 0,

and
∑

j∈T\{k} dj − h < 0. Note that these conditions also imply π + ρ = dk > 0.
Let rS = min{j ∈ S : dj > π} where dj ∈ S are in non-decreasing order such
that d1 ≥ d2 ≥ · · · ≥ drS

. Similarly, let rT = min{j ∈ T : dj > ρ} where
dj ∈ T are in non-decreasing order such that d1 ≥ d2 ≥ · · · ≥ drT

. In addition,
let DS

0 = DT
0 = 0, DS

j =
∑j

�=1 d�, j ∈ [rS ], DT
j =

∑j
�=1 d�, j ∈ [rT ]. Then the
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following continuous cover and continuous reverse cover inequalities are valid
for X .

x +
∑

j∈S

min{π, dj}yj +
∑

j∈T\{k}
φS(dj)yj ≥

⎛

⎝min{π, dk} +
∑

j∈T\{k}
φS(dj)

⎞

⎠ z

(5)

and x +
∑

j∈T

max{0, dj − ρ}yj +
∑

j∈S\{k}
ψT (dj)yj ≥

(
∑

j∈T

max{0, dj − ρ}
)

z (6)

where

φS(g) =

⎧
⎪⎨

⎪⎩

(j − 1)π DS
j−1 ≤ g ≤ DS

j − π, j ∈ [rS ]
(j − 1)π + g − DS

j + π DS
j − π ≤ g ≤ DS

j , j ∈ [rS − 1]
(rS − 1)π + g − DS

rS
+ π DS

rS
− π ≤ g,

(7)

and

ψT (g) =

⎧
⎪⎨

⎪⎩

g − jρ DT
j ≤ g ≤ DT

j+1 − ρ, j ∈ [rT − 1] ∪ {0}
DT

j − jρ DT
j − ρ ≤ g ≤ DT

j , j ∈ [rT − 1]
DT

rT
− ρrT DT

rT
− ρ ≤ g.

(8)

Proof. If z = 0, both inequalities (5) and (6) are trivially satisfied. Otherwise,
the validity and facet proof of both inequalities directly follows from [13].

Example 1. Let d = (7, 6, 5, 4) and h = 8, we list the facet-defining inequalities
from each (k, S, T ) pair of inequality (5) and (6) in Table 1. For example, for
k = 1, S = {1, 2, 4} and T = {1, 3}, we have π = 3, ρ = 4, rS = 3, and rT = 2.
Then the lifting function φS is given by

φS(g) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 0 ≤ g ≤ 4
g − 4 4 ≤ g ≤ 7
3 7 ≤ g ≤ 10
g − 7 10 ≤ g ≤ 13
6 13 ≤ g ≤ 14
g − 8 14 ≤ g

Hence the coefficient of y3 is φS(d3) = φS(5) = 5 − 4 = 1.

Essentially, the continuous cover inequalities (5) and continuous reverse cover
inequalities (6) are not sufficient to describe conv (X ), as the additional binary
variable z creates new extreme points. Furthermore, no exact separation algo-
rithm for inequalities (5) and (6) has been proposed yet. Next we introduce a
new class of valid inequalities for X that utilizes the concept of minimal influenc-
ing set. We use the similar definition of minimal influencing set from [6], which
we include here for the reader’s convenience:
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Table 1. Continuous cover and continuous reverse cover inequalities of Example 1

x + 7y1 + 6y2 + 5y3 + 4y4 ≥ 8z

Index k Set Facet-defining inequality

2 S = {2, 3, 4}, T = {1, 2} x + y1 + y2 + y3 + y4 ≥ 2z

1 S = {1, 3, 4}, T = {1, 2} x + 2y1 + y2 + 2y3 + 2y4 ≥ 3z

1 S = {1, 2, 4}, T = {1, 3} x + 3y1 + 3y2 + y3 + 3y4 ≥ 4z

1 S = {1, 2, 3}, T = {1, 4} x + 4y1 + 4y2 + 4y3 + y4 ≥ 5z

2 S = {1, 2, 4}, T = {2, 3} x + 4y1 + 3y2 + 2y3 + 3y4 ≥ 5z

2 S = {1, 2, 3}, T = {2, 4} x + 5y1 + 4y2 + 4y3 + 2y4 ≥ 6z

3 S = {1, 2, 3}, T = {3, 4} x + 6y1 + 5y2 + 4y3 + 3y4 ≥ 7z

Definition 1 [6]. Let pi ∈ [hi − 1] ∪ {0} be an incentive payment to node i ∈
V and M ⊆ Ni be a set of active neighbors of node i ∈ V , such that pi +∑

j∈M dji = hi. We say M is a minimal influencing set for node i ∈ V if and
only if for a fixed incentive payment pi, it satisfies pi +

∑
j∈M dji = hi and

pi +
∑

j∈M\{k} dji < hi for any k ∈ M . In other words, a strict subset of M
with the same incentive payment are not sufficient to activate node i. For each
node i ∈ V , let Ωi ⊆ Ni be the superset of all minimal influencing sets.

Theorem 1. Let M ⊆ N be a minimum influencing subset with an incentive
payment p > 0. The minimal influencing subset inequality

x +
∑

j∈N\M

min{dj , p}yj ≥ pz (9)

is valid for X .

Proof. If z = 0 then inequality (9) is trivially satisfied. If yj = 0 for all j ∈ N \M ,
then either x = 0 for z = 0 or x = p for z = 1. Assume that none of these cases
hold, given a p > 0, rewrite the left term of the inequality in X in the following
form

x +
∑

j∈N

djyj

= x +
∑

j∈N\M :dj≤p

djyj + p
∑

j∈N\M :dj>p

yj +
∑

j∈M

djyj ≥ h,

which implies

x +
∑

j∈N\M :dj≤p

djyj + p
∑

j∈N\M :dj>p

yj ≥ h −
∑

j∈M

djyj ≥ h −
∑

j∈M

dj = p.
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Theorem 2. Inequality (9) is facet-defining for conv (X ) if and only if p >
0. Moreover, for a given i ∈ V and a set Ni, for each M ⊆ Ni such that
hi − ∑

j∈M dji = pi > 0, the minimal influencing subset inequality

xi +
∑

j∈Ni\M

min{dji, pi}yji ≥ pizi (10)

is facet-defining for conv (∩i∈[n]Xi).

Proof. Note that X is full-dimensional and contains the origin. If p = 0, the
inequality (9) reduces to x ≥ 0, therefore p > 0 is a necessary and sufficient
facet condition. To show that inequalities (9) is facet-defining for X , we exhibit
t + 1 linearly independent points on the face defined by inequality (9). Consider
the two feasible points where x0 = z0 = 0, x1 = h − dj , z1 = 1, y0

j = y1
j =

1 if j ∈ M and y0
j = y1

j = 0 otherwise. Next, for a fixed j ∈ M and for
each k ∈ N\M , consider the feasible points (xk, yk

j , zk) = (0, y0
j + ek, 1). It

is straightforward to verify that these t + 1 points are linearly independent and
satisfy inequality (9) at equality. The second part of this theorem directly follows
the above by considering (x0

i , y
0
ji, z

0
i ) = (0, ej , 0) and (x1

i , y
1
ji, z

1
i ) = (hi − dji, 1, 1)

if j ∈ M , y0
ji = y1

ji = 0 otherwise, there are 2n points in this form for i ∈ V .
Also, consider the m − 1 points (xk

i , yk
ji, z

k
i ) = (0, y0

ji + ek, 1) for i ∈ V , a fixed
j ∈ M and for each k ∈ Ni\M . These 2n + m − 1 points on the face defined
by inequality (10) are linearly independent, therefore inequality (10) is facet-
defining for conv (∩i∈[n]Xi).

Example 1 (Continued). The facet-defining inequalities of (9) for Example
1 are listed in Table 2

Table 2. Minimal influencing subset inequalities of Example 1

x + 7y1 + 6y2 + 5y3 + 4y4 ≥ 8z

Set Facet-defining inequality

M = {1} x + y2 + y3 + y4 ≥ z

M = {2} x + 2y1 + 2y3 + 2y4 ≥ 2z

M = {3} x + 3y1 + 3y2 + 3y4 ≥ 3z

M = {4} x + 4y1 + 4y2 + 4y3 ≥ 4z

Although inequalities (5), (6) and (9) define a large number of facets for conv (X ),
they are not sufficient to completely describe conv (X ) in its original space of
variables. Particularly, the following inequality is valid and facet-defining for this
example but cannot be obtained through inequalities (5), (6) or (9):

x + 3y1 + 2y2 + 2y3 + 2y4 ≥ 4z.
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2.1 Separation of Minimal Influencing Subset Inequalities

In this section, we give an exact polynomial time separation algorithm for find-
ing the most violated minimal influencing subset inequality. From inequality
(10), we observe that finding the most violated inequality for a given fractional
solution (x∗, y∗, z∗) ∈ R

2n+m
+ consists of choosing a set M ⊆ Ni such that

pizi − ∑
j∈Ni\M min{dji, pi}yji is maximized. Let t := max{|Ni| : i ∈ V }.

Theorem 3. Given a fractional solution (x∗, y∗, z∗) ∈ R
2n+m
+ from solving

LCIM, there exists an O(nt log t) separation algorithm for inequality (10).

Proof. Recall that a violated cut can be found if

pi

⎛

⎝z∗
i −

∑

j∈Ni\M :dji>pi

y∗
ji

⎞

⎠ −
∑

j∈Ni\M :dji≤pi

djiy
∗
ji > x∗

i ,

which implies that it suffices to consider y∗
ji for some j ∈ Ni such that z∗

i −∑
j∈Ni

y∗
ji > 0 and pi > 0. To do so, we sort y∗

ji in a non-decreasing order
for j ∈ Ni with indices j1, j2, · · · , jt such that y∗

j1i ≤ y∗
j2i ≤ · · · ≤ y∗

jti
. For

j1 ≤ jr ≤ jt, we sum up first r elements, then we check if z∗
i −∑r

�=1 y∗
j�i > 0 and

p′
i = hi −∑t

�=r+1 dj�i > 0, until z∗
i −∑r+1

�=1 y∗
j�i < 0. These r elements constitute

the subset M and Ni\M simultaneously and ensure z∗
i − ∑

j∈Ni\M y∗
ji > 0 and

pi > 0 in order to generate a violated cut. The set M that corresponds to the
most violated cut can be determined by evaluating max

{
0, p′

i(z
∗
i − ∑r

�=1 y∗
j�i) :

r ∈ [1, t]
}

. If max
{

0, p′
i(z

∗
i − ∑r

�=1 y∗
j�i) : r ∈ [1, t]

}
= 0, then there are no

violated cuts. The sorting process runs in O(t log t) time and the evaluation
takes O(t) time, since we have to check for every node i ∈ V ; thus, overall the
separation algorithm runs in O(nt log t) time.

Example 2. Consider a directed tree graph where V = {1, 2, 3, 4, 5} and A =
{(1, 5), (2, 5), (3, 5), (4, 5)}. Assume the influence weight vector d = 〈7, 6, 5, 4〉
and h5 = 8. Let τ = 0.2, the linear programming relaxation solution is
x∗ = 〈0.53, 0, 0, 0, 0〉, z∗ = 〈0.53, 0, 0, 0, 0.47〉 and y∗ = 〈0.53, 0, 0, 0〉. To generate
inequality (10) for node 5, we sort y∗ in a non-decreasing order and compute
z∗
5 − ∑r

�=1 y∗
j�5

for r ∈ [4]. In this example, when r = 3, we have M = {2, 3, 4}
and p5 = 8 − 7 = 1, therefore

x5 + y25 + y35 + y45 ≥ z5

cut off this fractional solution.

2.2 Separation for Continuous Cover and Continuous Reverse
Cover Inequalities

Until now we give an exact polynomial separation algorithm for inequalities (10).
Next, we show that a violated continuous cover inequality for conv (∩i∈[n]Xi)
can be identified by the result of Theorem 3. First, we establish the relationship
between sets S and M formally.
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Lemma 1. Given p = h − ∑
j∈M dj > 0, if there exists k ∈ N\M such that∑

j∈M∪{k} dj > h, then p = π, S = N\M ,
∑

j∈M∪{k} dj − h = ρ and T =
M ∪ {k}.
Proof. First we arrange the term in the definition of p, let

p = h −
∑

j∈M

dj = h +
∑

j∈N\M

dj −
∑

j∈N

dj .

Now, suppose there exists an element k ∈ N\M such that
∑

j∈M∪{k} dj > h.
Since we have {M ∪ {k}} ∩ N\M = {k} and {M ∪ {k}} ∪ N\M = N , it is
clear that S = N\M and T = M ∪ {k} from Proposition 1. Note that p is not
necessary equal to π as the range of p contains 0.

Following Lemma 1, we give a theorem on how to determine a violated con-
tinuous cover inequality efficiently by using the information of the set M . Let
t̂ = max{|S| : S ⊂ Ni, i ∈ V }.

Theorem 4. Given a fractional solution (x∗, y∗, z∗) ∈ R
2n+m
+ from solving

LCIM and a set M corresponding to a violated inequality (10) for a fixed node
i ∈ V , the most violated continuous cover inequality can be separated in O(nt̂)
time, if there exists any.

Proof. Note that here we add an index i to inequalities (5) similar to (10) for
LCIM. Recall that inequality (10) is violated if

pi

⎛

⎝z∗
i −

∑

j∈Ni\M :dji>pi

y∗
ji

⎞

⎠ −
∑

j∈Ni\M :dji≤pi

djiy
∗
ji > x∗

i ,

or equivalently by Lemma 1,

πiz
∗
i − πi

∑

j∈S:dji>πi

y∗
ji −

∑

j∈S:dji≤πi

djiy
∗
ji > x∗

i .

Now, a continuous cover inequality for a fixed node i ∈ V and k ∈ S ∩ T is
violated if

min{πi, dki}z∗
i +

∑

j∈T\{k}
φS(dji)(z∗

i − y∗
ji) −

∑

j∈S

min{πi, dji}y∗
ji > x∗

i .

Suppose dki ≥ πi, then the left term of the continuous cover inequality can be
further written as

πiz
∗
i +

∑

j∈N\S

φS(dji)(z∗
i − y∗

ji) − πi

∑

j∈S:dji>πi

y∗
ji −

∑

j∈S:dji≤πi

djiy
∗
ji.

Since (z∗
i − y∗

ji) ≥ 0 holds and the lifting function φS is nonnegative, the left
term of the continuous cover inequality clearly violates the current solution
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(x∗, y∗, z∗) when inequality (10) is violated. Otherwise, we need to compute
dkiz

∗
i +

∑
j∈N\S φS(dji)(z∗

i − y∗
ji) to determine if it violates the current frac-

tional solution. It takes O(t̂) steps to compare dki and πi for some k ∈ S and
for a fixed i ∈ V , hence, overall the complexity is O(nt̂) to evaluate every node.
In addition, the proof also suggests that πi < dki for k ∈ S is necessary and
sufficient to generate a violated continuous cover inequality.

Corollary 1. Using the result of Theorem 3, the most violated continuous
reverse cover inequality can be separated in O(nt̂) time, if there exists any.

3 Preliminary Computational Results

In this section, we report the preliminary computational results obtained
by applying the aforementioned techniques on network instances from Fis-
chetti et al. [6]. In particular, the data instances are generated based on
directed small-world (SW) graphs [16], with node set V ∈ {50, 75, 100}
and average node degree k ∈ {4, 8, 12, 16}. The influence factor dij

for all (i, j) ∈ A are generated uniformly randomly in {1, · · · , 10}.
For each node i ∈ V , the threshold hi = max{1,min{ηi,

∑
j∈Ni

dji}},
where ηi is a random variable follows normal distribution with mean
0.7

∑
j∈Ni

dji and variance
∑

j∈Ni
dji

|Ni| . The data instances are available at
http://mario.ruthmair.at/wp-content/uploads/2020/04/socnet-instances-v2.zip.
Here, we take five SW instances with n = 50, m = 200, where the average node
degree is 4 and the connection probability between nodes is 0.1. We let τ be
0.1. The experiments are performed on a Quad-Core Intel Core i7 machine with
3.1 GHz and the memory limit is 16 GB. The computation time limit is set to
3600 s. The model and branch-and-cut algorithm are implemented in Python 3
with the Python-MIP package [1]. Gurobi 9.0.1 is used as the optimization solver.
The minimum subset inequalities are separated and added to the branch-and-
bound nodes dynamically, while the generalized cycle elimination constraints are
implemented as lazy constraints. In Table 3, we report the final gap, number of
user cuts and lazy constraints added, overall computational time, and time spent
on the separation routine. Based on these small-scale computations, the results

Table 3. Computational results for SW-50-200 instances from [6].

Instance # User cuts Lazy constraints Overall time (sec) SEP time (sec) Gap

1 3 1101 2.44 2.14 0

2 72 5734 29.21 21.31 0

3 29 174 34.65 23.54 0

4 195 6857 26.6 15.78 0

5 192 623 1.59 1.24 0

http://mario.ruthmair.at/wp-content/uploads/2020/04/socnet-instances-v2.zip
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appear encouraging in the sense that the application of the proposed techniques
allows one to find solutions with zero gap in a reasonable time. Thus, we believe
that these approaches should be further addressed in larger-scale computational
experiments.

4 Conclusion

We study the polyhedral structure of least cost influence maximization prob-
lem where the influence propagation is based on deterministic linear threshold
model. In the process we exploit existing results on mixed 0-1 knapsack polyhe-
dron and present a new class of valid inequalities for the influence propagation
constraint in a single-node relaxation. We show that even for a small instance,
these facet-defining inequalities are not sufficient to describe the convex hull. We
propose an exact separation for the new valid inequalities and take advantage of
the result to separate the inequalities proposed by [13]. The preliminary compu-
tations demonstrate the separation routine does not consume too much time in
the experiments. Promising future research works include the development of a
branch-and-cut algorithm that utilizes our proposed inequalities together with
some pre-processing enhancements to reduce the computational burden on large
social network instances.
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