
Large Scale Graph Analytics
for Communities Using Graph Neural

Networks

Asif Ali Banka1,2(B) and Roohie Naaz1

1 National Institute of Technology, Srinagar, India
asifbanka@nitsri.net

2 IUST Awantipora, Awantipora, India

Abstract. One of the challenging research areas in modern day com-
puting is to understand, analyze and model massively connected com-
plex graphs resulting due to highly connected networks because of
newly accepted paradigm of Internet of Things. Patterns of interaction
between nodes reflect a lot of information about nature of underlying
network graph. The connectedness of nodes has been studied by several
researchers to provide near optimal solution about topological structure
of the graphs. This is more commonly known as community detection,
which in mathematical and algorithmic terms is often referred to as
graph partitioning. The study is broadly based on clustering of nodes,
which share similar properties. Lower order connection patterns that
detect communities at node and edge level are extensively studied. A
wide range of algorithms has been studied to identify communities in
large-scale networks. Spectral clustering, hierarchical clustering, Markov
models, modularity maximization methods, etc have shown promising
results in context to application domains under consideration. In this
paper, the authors propose a neural network based method to identify
the communities in large-scale networks. The study is broadly based on
clustering of nodes, which share similar properties. This work is devoted
to identify the efficacy of neural networks in community detection for
large and complex networks in comparison to existing methods. The
approach is motivated by neural network pipeline for data embedding
into lower dimensional space, which is expected to simplify the task of
clustering data into communities with inherent ability to learn between
mapping and predicted communities.

Keywords: Community detection · Graph neural networks · Deep
leaning · Hyper-parameter optimization

1 Introduction

Identifying group of nodes sharing similar properties is active research area
in many disciplines like social science, telecommunication, computer networks,
semantic web, protein networks, social networks etc. [2,4]. Community detection
c© Springer Nature Switzerland AG 2020
S. Chellappan et al. (Eds.): CSoNet 2020, LNCS 12575, pp. 39–47, 2020.
https://doi.org/10.1007/978-3-030-66046-8_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-66046-8_4&domain=pdf
https://doi.org/10.1007/978-3-030-66046-8_4


40 A. A. Banka and R. Naaz

algorithms accept the graph as input dataset and outputs the community label
for each node. Nodes in same community share similar properties with each other
than with nodes outside the community. The community detection term is best
fit for social networks rather than other domains where community is referred
to as clusters or modules.

On the other hand, computer researchers are working day in and day out
to incorporate deep learning into every field of study due to its efficient and
accurate results. Deep learning has shown successful results in domains like image
processing, computer vision and natural language processing etc. Relating deep
learning to graphs seems challenging as graphs are sparse in nature and while
deep learning shows outstanding results with dense matrices. Graphs depicting
complicated relationships among objects have seeked attention from machine
learning researchers to fit deep learning models over graphs that inherently are
not natural fit for such models.

Dynamic nature of graphs with undefined structure and complex intercon-
nections are challenging factors for deep learning engineers. Various supervised
and unsupervised architectures have been proposed and adopted. Graph Neural
Networks (GNN), Graph Convolutional Networks (GCN), Graph Auto-Encoders
(GAE), Graph Recurrent Neural Networks (GRNN) and Graph Reinforcement
Learning are architectures that have evolved in past few years to address graph
related problems. Figure 1 presents a broad classification of deep learning meth-
ods implemented on graphs that have evolved over time. A detailed survey of
these architectures is presented by Ziwei Zhang et al. in their work Deep Learning
on Graphs: A Survey [14].

Fig. 1. GNN Classification

GNN and GCN adopt semi supervised model of machine learning where as
GAE are unsupervised and GRNN and Graph Reinforcement Learning are more
recent advancements in neural networks towards graph based problems. Graphs
are usually studied from graph centric or node centric point of view and this
distinction is emphasized more rigorously by different deep learning models.
Node classification, link prediction and node recommendation are examples of



Large Scale Graph Analytics for Communities Using Graph Neural Networks 41

node centric classification while as graph centric tasks are associated with the
whole graph. Examples include graph classification, estimating certain properties
of the graph and community detection [12].

2 Graph Neural Networks and Graph Convolutional
Networks

Graphs are high dimensional in nature and a simple underlying principle of
Graph Neural Networks (GNNs) is to represent each node as a lower dimensional
state vector si. The state of a node may be represented to assign label to each
node as s : V → {1, k} where k is number of labels.

Recursively the states can be represented as

si =
∑

j∈N (i)

F (
si, sj ,FV

i ,FV
j ,FE

i,j

)

To obtain the objective function which is to minimize loss and improve accu-
racy between ground-truth and predicted values, an iterative algorithm like the
Jacobi method [9] followed by gradient descend is performed [1,8] until conver-
gence. GNN unifies the recursive nature neural networks and markov chains to
take advantage of states in learning parameters. GNN formalizes the basis for
GCN wherein each layer reaches a stable state. Since many iterations are required
for gradient descent step and all previous states are maintained, GNN becomes
computationally expensive. GCN replaces the recursive nature of neural network
by convolution operation. GCN is an advancement of GNN focusing on training
based on learning parameter. Underlying principle of GCN is convolution, which
cannot be directly used in graph due to lack of dense matrix representing graphs
[11]. Convolution on graphs Laplacian L for first time was introduced by Bruna
et al. [3,10]. Typical convolution over a graph can be defined as

u1 ∗G u2 = Q
((
QTu1

) � (
QTu2

))
(1)

where Q are eigen vectors of L and u1 and u2 are signals defined on nodes.
Filter operation u′ on signal can therefore be defined as u′ = QΘQTu where u′

is output signal and Θ is diagonal matrix of learnable filters. Convolution can
thus be defined by applying different filters on different input and output signals.
Passing the input through filters that can learn and aggregate the information
after transformation is underlying idea of convolution. By using node features
as the input layer and stacking multiple convolutional layers, the overall archi-
tecture becomes similar to CNNs.

3 Methodology

In this study, the authors are interested in employing graph convolutional net-
works to detect communities using neural networks, compare the overlap with



42 A. A. Banka and R. Naaz

ground truth (or true community structures) and improve the accuracy. Since
the neural networks are data driven and provide flexibility of learning by gradi-
ent descent and hyper-parameter optimization which make model efficient and
robust against wrong heuristics. More formally, a GCN model is a neural net-
work that operates on graphs. Given a graph G = (V,E), a GCN takes as input,
an input feature matrix X and an adjacency matrix A. X is a N × FV

i feature
matrix, where N is the number of nodes and FV represents the features for each
node. Adjacency matrix A is an N ×N matrix representation of the graph struc-
ture of graph G. At each layer input β is transformed via convolution applied to
the array of operators[15]. The hidden layer of a neural network is represented
as function of previous layer and adjacency matrix governed by a propagation
rule. Hi = f (Hi−1, A) [6].

Fig. 2. GNN architecture [6]

Figure 2 is a pictorial representation of algorithm proposed in [6] for graph
neural networks. Input to the first layer of model is a feature matrix X and
adjacency matrix A. Features are aggregated using propagation rule f which
enhances the abstraction in consecutive layers. The propagation rule may vary
and one of simplest is one where weighted matrix and activation function is
considered. This can be written as f (Hi, A) = ρ (AHiWj) where Wi is the
weight matrix for layer i and ρ is an activation function. This is similar to
filtering operation as these weights are shared across nodes in the network. Nodes
with higher degree will have larger values for their feature representation. This
will explode the gradient which is typically used to train networks as they are
sensitive to scale of input features. Similarly, nodes with smaller degree have
diminishing effects on gradient descent which is typically used to train networks.
Each node in network is represented as aggregate of features of neighbouring
nodes, however, its own features are not considered if there is not any self loop.
Identity matrix I is used to address self loops, as the features of node get summed
to its own features before applying propagation rule. Since the feature space gets



Large Scale Graph Analytics for Communities Using Graph Neural Networks 43

exploded, multiplying adjacency matrix with inverse degree matrix can be used
to normalize the features as the weights in each row are divided by degree of
each node [5]. The propagation rule is modified as f(X,A) = D−1AX.

Algorithm 1. Graph Neural Network for Community Detection
Input: Graph G = (V, E)
Output: A clustering of the vertices v into k clusters. This can be encoded as a function
F : V → {1, 2, ..., k}.

1: procedure GNN
2: Input feature matrix X and an adjacency matrix A. X is a N × FV

i feature
matrix, where N is the number of nodes and FV represents the features for each
node. Adjacency matrix A is an N ×N matrix representation of the graph structure
of graph G

3: Hidden layer is Hi = f (Hi−1, A)
4: f (Hi, A) = ρ (AHiWj) where Wi is the weight matrix for layer i and ρ is an

activation function.
5: Identity matrix I is used address self loops
6: The propagation rule is modified as f(X, A) = D−1AX

If β ∈ R
v×k is input where V is the number of vertices and k is the number

of communities we want to detect. Rn×k is a one-hot encoding of the clustering.
The output of final layer is one hot encoding of the community labels. Finally,
we divide the train and test sets by enforcing test examples to contain disjoint
communities from those in the training set. Input at each layer can be represented
as

βV+1 = βV+1
1 + βV+2

2

where
βV+1
1 = μ(I · βV , A · βV ,D−1 · βV )

and
βV+1
2 = ρ ◦ μ(I · βV , A · βV ,D−1 · βV )

4 Experimentation and Results

Our performance measure is the overlap between predicted and true labels, which
quantifies how much better than random guessing, a predicted labelling is. The
GNNs were all trained with 10, 20, 30 and 40 layers, 10 feature maps and J =
3 in the middle layers. We varied the optimization parameter and evaluated the
performance for Adamax and rmsprop [5]. The learning rate was changed from
0.001 to 0.00001 with varying decay between 0 and 0.01. The effect of variation
of epoches was also measured. The experimentation was performed on intel i7
processor with 32 GB RAM and 1070 GPU. All the trainings were performed
on GPU.



44 A. A. Banka and R. Naaz

Diverse datasets from SNAP were used to train the GNN with community
labels provided. These datasets used vary from social networks to hierarchical
co-purchasing networks [7]. Different dataset with known community structures
enable us to understand how well the model behaves. Top 5000 quality commu-
nities provided in dataset were used. These were used to identify those edges
(i, j) that cross at least two different communities. For each of such edges, we
consider the two largest communities C1,C2 such that i /∈ C2 and j /∈ C1, i ∈
C1,j ∈ C2, and extract the subgraph determined by C1 ∪ C2, which is connected
since all the communities are connected. Finally, we divide the train and test
sets by enforcing test examples to contain disjoint communities from those in
the training set. Table 1 lists the datasets used for experimentation.

Table 1. Datasets used for Graph Neural Networks.

Dataset Number of vertices Number of edges Diameter Average Degree

Amazon 334,863 925,872 44 3.4576

DBLP 317,080 1,049,866 21 6.6221

Youtube 1,134,890 2,987,624 20 5.8167

Multiple experiments were performed to realize the performance of model
and performance achieved was compared with the Community-Affiliation Graph
Model (AGM). The AGM is a generative model defined in [13] that allows for
overlapping communities where over-lapping area have higher density. This is
a statistical property observed in many real datasets with ground truth com-
munities. The hyper-parameters like learning rate, number of layers, number
of ephocs were studied. Effect of changing optimizer and batch size was also
explored. Table 2 list the results for AGM experiment carried over datasets.
Among the three datasets Amazon dataset showed the best results with 73.32%
overlap.

Table 2. Accuracy of Community-Affiliation Graph Model

Dataset Training size Test size AGMFIT overlap

Amazon 359 34 72.32

DBLP 7751 1274 64.01

Youtube 211678 33290 57.01

Figure 3(a) depicts the results for ten layer hundred ephocs and ten layer
two hundred ephocs carried over datasets. DBLP dataset showed best results
with 83.0724% overlap compared to Amazon and YouTube dataset on 10 layer
hundred ephoc configuration, however, the accuracy of Amazon and YouTube



Large Scale Graph Analytics for Communities Using Graph Neural Networks 45

Fig. 3. Effect of variation of hyper-parameters on Community Detection.

dataset decreased on ten layer hundred ephoc configuration. DBLP dataset
showed best results for twenty layers hundred configuration with 79.9042% over-
lap. The effect of variation of number of layers with constant ephocs was also
studied. The results of variation of ten layers and twenty layers with hundred
ephocs is depicted in Fig. 3(b). The overlap for ten layer configuration showed



46 A. A. Banka and R. Naaz

best results for DBLP dataset whereas, for twenty layer configuration Amazon
dataset showed better results compared to DBLP and Youtube datasets.

Again, the experimentation was carried to study the effect of variation of
number of layers on accuracy. It was observed Amazon dataset showed accu-
racy of 82.1791% for twenty layer whereas, it showed accuracy of 75.0693 and
77.7470% for thirty layer and forty layer neural networks respectively. For
twenty layer configuration best results were obtained for DBLP dataset with
79.9042%. For thirty and forty layer configuration best results were obtained for
DBLP (877.1397) and Amazon (77.7470) datasets respectively. Best accuracy
for Youtube dataset was achieved with thirty layer neural network configura-
tion. The reults are shown in Fig. 3(c).

Results for variation is change of gradient optimization technique were
also studied. Among the datasets rmsprop with two hundred ephocs showed
best results with 77.6961% accuracy for DBLP. Amazon dataset showed better
results with rmsprop among datasets when trained with hundred ephocs only.
Figure 3(d) list the results for variation in optimization technique.

The learning rate was modified and its effect was studied. The effect was stud-
ied with hundred and two hundred ephocs configurations. In general modifying
learning rate with hundred ephocs showed better results that modified learning
rate over two hundred ephocs. Figure 3(e) depicts the results for varying learning
rate hyper-parameter.

Figure 3(f) shows the results for variarion in minibatch size hyper-parameter.
The results were best obtained for Amazon dataset with an accuracy of 79.4090%
in two hundred ephocs configuration.

5 Discussion

A significant contribution of this work is the study of multiple hyper-parameters
and their effect on accuracy. We began the experimentation with 10 layers and
model was studied with 20, 30 and 40 layers as well. The effect of variation of
number of layers was also studied along with the effect of selection of optimizer.
The combined effect of variation of ephocs and variation in number of layers
was also studied. Learning rate and batch size were also changed to study the
corresponding effect. The complexity of running time varied exponentially with
respect to depth of neural network which is a function of addition and multi-
plication operations in neural network. The DBLP dataset showed promising
results for 10 layered 100 ephoc configuration with 83.0724 overlap percent-
age, however it decreased as we increased the number of ephocs to 200. The
decrease in accuracy is result of over-fitting of data. Amazon dataset showed
82.1791% overlap for 20 layer 200 ephoc configuration and Youtube dataset
showed 77.5156% overlap with 20 layer 200 ephoc configuration. Among 10, 20,
30 and 40 layers with 200 ephocs our model showed 82.1791 % over lap for Ama-
zon dataset for 20 layer 200 ephocs, DBLP showed 79.9042 % overlap for 10
layers and Youtube showed 73.7482% overlap for 30 layers. When the choice of
optimizer was varied to rmsprop with 100 and 200 ephocs the Amazon dataset



Large Scale Graph Analytics for Communities Using Graph Neural Networks 47

showed overlap of 75.0693 on 100 ephocs and DBLP and Youtube showed ove-
lap of 77.6951 and 74.0590% respectively. Change of learning rate performed
better with 100 ephocs only with overlap of 76.6390, 77.3466 and 75.8534 for
Amazon, DBLP and Youtube datasets respectively. Only DBLP showed overlap
of 78.3441 on 100 ephocs when batch size was varied. Amazon and Youtube
showed overlap of 79.4090 and 68.7747 respectively on 200 ephocs settings. The
results obtained with the proposed model in all configurations outperformed the
accuracy achieved by AGM model.

References

1. Almeida, L.B.: A learning rule for asynchronous perceptrons with feedback in a
combinatorial environment. In: Proceedings, 1st First International Conference on
Neural Network, Vol. 2, pp. 609–618. IEEE (1987)

2. Aridhi, S., Nguifo, E.M.: Big graph mining: frameworks and techniques. Big Data
Res. 6, 1–10 (2016)

3. Bruna, J., Zaremba, W., Szlam, A., LeCun, Y.: Spectral networks and locally
connected networks on graphs (2013). arXiv preprint: arXiv:1312.6203

4. Han, M., Daudjee, K., Ammar, K., Özsu, M.T., Wang, X., Jin, T.: An experimental
comparison of pregel-like graph processing systems. Proc. VLDB Endow. 7(12),
1047–1058 (2014)

5. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization (2014). arXiv
preprint: arXiv:1412.6980

6. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks (2016). arXiv preprint: arXiv:1609.02907

7. Leskovec, J., Krevl, A.: SNAP Datasets: Stanford large network dataset collection.
http://snap.stanford.edu/data (Jun 2014)

8. Pineda, F.J.: Generalization of back-propagation to recurrent neural networks.
Phys. Rev. Lett. 59(19), 2229 (1987)

9. Powell, M.J.: An efficient method for finding the minimum of a function of several
variables without calculating derivatives. Comput. J. 7(2), 155–162 (1964)

10. Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The graph
neural network model. IEEE Trans. Neural Netw. 20(1), 61–80 (2009)

11. Shuman, D.I., Narang, S.K., Frossard, P., Ortega, A., Vandergheynst, P.:
The emerging field of signal processing on graphs: Extending high-dimensional
data analysis to networks and other irregular domains (2012). arXiv preprint:
arXiv:1211.0053

12. Wang, X., Cui, P., Wang, J., Pei, J., Zhu, W., Yang, S.: Community preserving
network embedding. In: Thirty-First AAAI Conference on Artificial Intelligence
(2017)

13. Yang, J., Leskovec, J.: Community-affiliation graph model for overlapping net-
work community detection. In: 2012 IEEE 12th International Conference on Data
Mining, pp. 1170–1175. IEEE (2012)

14. Zhang, Z., Cui, P., Zhu, W.: Deep learning on graphs: a survey (2018). CoRR
abs/1812.04202: http://arxiv.org/abs/1812.04202

15. Zhou, Z., Li, X.: Graph convolution: a high-order and adaptive approach (2017).
arXiv preprint: arXiv:1706.09916

http://arxiv.org/abs/1312.6203
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1609.02907
http://snap.stanford.edu/data
http://arxiv.org/abs/1211.0053
http://arxiv.org/abs/1812.04202
http://arxiv.org/abs/1706.09916

	Large Scale Graph Analytics for Communities Using Graph Neural Networks
	1 Introduction
	2 Graph Neural Networks and Graph Convolutional Networks
	3 Methodology
	4 Experimentation and Results
	5 Discussion
	References




