
Graph-Based Supervised Clustering
in Vector Space

Lily Schleider1,2(B), Eduardo L. Pasiliao1,2 , and Qipeng P. Zheng1,2

1 University of Central Florida, Orlando, FL 32816, USA
lily.schleider@knights.ucf.edu

2 Air Force Research Laboratory, Munitions Directorate,

Eglin AFB, FL 32542, USA

Abstract. Neural Networks are able to cluster data sets and our goal
was to figure out how well the neural network clustered. The MNIST data
set was ran through a neural network and the distances were extracted
from both the feature and output layer. Five different distances were
used on both layers. K-means clustering was used assess the clustering
performance of each layer in the neural network. Results conveyed that
the feature layer was not as proficient at clustering when compared to the
output layer. The type of distance did not make a significant difference for
clustering. These conclusions can be derived from qualitative observation
of the cluster graphs. By observing the clustering performance of the
different layers in the CNN, we are able to gain insight on the neural
network.

Keywords: Neural networks · Feature layer · Output layer ·
Clustering

1 Introduction

Machine learning allows computers to “learn” from a training data set so it can
make decisions and/or predictions. Neural networks are a fundamental aspect of
machine learning. They work by recognizing patterns. A convolutional network
applies a filter over the images and create a feature map. Convolutional neural
networks (CNN) can have multiple filters and multiple feature maps. A max-
pooling layer is applied in between filter convolutions in order to keep the most
significant features while reducing the dimensions. The feature map created by
the convolutions allow the machine to learn traits in the data set. Once the
convolutions and maxpooling is done, everything is flattened into one dimension
that is fully connected, which is the output layer.

Mao and Jain [3] designed a Linear Discriminant Analysis (LDA) network,
Sammon’s projection network, a Kohonen-Based Nonlinear Projection Network
(NP-SOM), and a Nonlinear Discriminant Analysis Network (NDA). All of these
networks utilize adaptive learning and are ideal for data sets where patterns

c© Springer Nature Switzerland AG 2020
S. Chellappan et al. (Eds.): CSoNet 2020, LNCS 12575, pp. 476–486, 2020.
https://doi.org/10.1007/978-3-030-66046-8_39

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-66046-8_39&domain=pdf
http://orcid.org/0000-0002-6403-6649
http://orcid.org/0000-0002-4597-3426
https://doi.org/10.1007/978-3-030-66046-8_39

Graph-Based Supervised Clustering in Vector Space 477

change over time. They found that the NP-SOM was the best at data visual-
ization while the Sammon’s network was the best at maintaining cluster shape,
data structure, and inter-pattern distances. The NDA was the best at classifying
and the results from this paper were consistent with other analysis.

Research has been done that compares the performance between auto-learned
features from Deep Convolutional Neural Networks (DCNN) and hand-crafted
features. Their goal was to find a noninvasive method for detecting Circulat-
ing Tumor Cells in a wide variety of cancer types. The DCNN is trained from
positive, negative, and false positive data sets. The false positives are classified
into either hard or easy using K-means clustering method. The hard samples are
added to the negative data set. The hard-false positive samples are given more
weight during training in order to allow the classification boundary to get closer
to the hard samples. They use sigmoid activation function in their convolutional
layers. The hand-crafted features are made by using the Histogram of Gradi-
ents and Histogram of Color in the Support Vector Machine. It took the DCNN
longer to run but it also performed better than the hand-crafted features. The
DCNN also reduced the redundancy in the samples [4].

Pradheep and Srinivasan’s [5] paper introduces diagonal based feature extrac-
tion and compares it to horizontal and vertical feature extraction. They used
images of off-line handwritten letters that were written by different people as
their data set. These images were scanned and had to be pre-processed before
feature extraction. The features are extracted by moving across the diagonals in
each zone, which are size 10 × 10 pixels. Each zone gets 19 sub features and they
are averaged to get a single value of the entire zone. Next, a feed forward back
propagation neural network executes the classification. They use log sigmoid
activation function. This paper concluded that the diagonal feature extraction
had a 97.84% accuracy and worked better than vertical or horizontal method.

K-means clustering organizes observations into clusters based on their means.
The k in k-means clusters is the number of clusters you are trying to organize
the data into. The algorithm selects a random 10 data points at first (we can
call these the initial clusters). It then measures the distance between every other
point and the initial cluster and groups it with the nearest of the initial clusters.
It then finds the total variance in each of the clusters. It repeats these steps
until the variation in each cluster is close to each other. If we wanted to find the
best k, then we would plot the reduction in variation using different values of k
and see where there is significant reduction of variance and choose that k. This
is called an elbow plot. In our case, the MNIST data set has its predetermined
clusters so we know k= 10 [2].

The primary focus of this paper is to determine how well the both the feature
layer and the output layer of the CNN is able to cluster using k-means clustering.
This would allow us to see at which stage the clustering is most effective and
can give us an insight as to why it does. We can see how significant different
layers and different distances are for the CNN to cluster. This would give us
more information on CNNs and how they work.

478 L. Schleider et al.

2 Experiment

2.1 Dataset

The specific data set we worked with came from the Modified National Institute
of Standards and Technology (MNIST) database. It consists of 60,000 training
images and 10,000 testing images. The images are black and white and have
handwritten digits 0–9 with a white background. Each image is 28× 28 pixels. We
had to have the images in forms of arrays so we could find the distance between
the images. The arrays had numbers ranging from 0–255 with smaller numbers
representing lighter shades and larger numbers representing darker shades. For
example, the white background of the images would have 0’s. We divided the
numbers by 255 so we could normalize the numbers and have them be between
0–1.

Our goal was the figure out which images have edges in between them. The
edges represent similarities between the images. Once we find the similarities,
we can cluster the images based on their digit (Fig. 1).

Fig. 1. This is a representative diagram. Notice how certain numbers have edges with
other numbers that are a different digit (a 3 has an edge with an 8). This is an example
of false alarms. There are also edges that should exist but do not (two 4’s do not have
an edge). This is an example of missed detection.

Our first step was the run the MNIST data through a CNN so we can extract
the distances in both the feature layer and the output layer. The images were
in the form of an array so we can find the distances easily. We used 5 different
types of distances: dot product, Euclidean distance, Minkowski distance, Man-
hattan distance, and Chebyshev distance. We use these distances to create a
k-means clustering graph. Jupyter Notebook was used for the clustering and
Spyder was used for the CNN and distances. The Scikit-learn library was used
for the clustering and Keras was used for the CNN (Fig. 2).

Graph-Based Supervised Clustering in Vector Space 479

2.2 Distances

vi ← Image vector i (1)

Dp(vi, vj) =

(∑
k

|vik − vjk|p
)1/p

← Minkowski distance (2)

D(vi, vj) =
∑
k

|vik − vjk| ∀i ≤ j ← Manhattan distance

(3)

D(vi, vj) =

(∑
k

|vik − vjk|2
)1/2

∀i > j ← Euclidean distance

(4)
D(vi, vj) = max

k
|vik − vjk| ∀i ≤ j ← Chebyshev distance

(5)

D(vi, vj) =
∑
k

(vik · vjk) ∀i ≤ j ← Dot product distance

(6)

Fig. 2. Visual representation of the different type of distances that were used [1].

480 L. Schleider et al.

The dot product (6), also known as the scalar product, uses the length of two
vectors and the angle between them. The Euclidean distance (4) finds the direct
distance between two points in the vector space. The Manhattan distance (3)
is similar except it only measures along vertical and horizontal axes with right
angles. It is also known as the city block distance because it measures as if it is
traveling across a city block grid. The Chebychev distance (5) calculates either
the x distance or y distance depending on which is greater. It is also known as the
chessboard distance. The Euclidean, Manhattan, and Chebychev distances are
subsets of the Minkowski distance (when p = 2, p = 1 and p =∞, respectively).
The Minkowski distance (2) is determined in a normed vector space and can
take in any p value. For our Minkowski distance, we used p = 3.

2.3 Convolutional Neural Network

Keras was used to create the CNN. The CNN was trained using the MNIST
dataset. The CNN consists of a convolution layer, maxpooling layer, flatten layer,
and two dense layers. The activation function relu was used in the convolutional
and the first dense layer. Relu is a common activation function in neural networks
and is defined as y = max(0, x). The softmax activation was used in the last
dense layer. Softmax is a normalized exponential function. It creates a normalized
probability distribution. The feature layer and output layer were extracted and
the distances were found for both of them. The flatten layer was retrieved from
the flatten layer while the output layer was retrieved from the second dense layer.

3 Data and Results

The output layer distances were able to be clustered much better than the fea-
ture layer distances. We can use qualitative observations to see that the feature
layer muddles the clustering while the output layer does a much better job at
clustering. The clustering can be judged based on the clarity and distinctness of
the clusters in the graph. A more distinct graph indicates better clustering.

The clustering from the feature layer displays errors and shows a lack of accu-
racy (Fig. 3, 4, 5, 6 and 7). There aren’t any definite clusters. From the output layer
clustering we can tell that the clusters are clear and defined (Fig. 7–8). Each digit
has a clear cluster. The clustering is still not perfect. In the dot product distance
metric, you can see that there is still some misclustering. For example, a zero is
being misclustered as a 5 (Fig. 12). Overall the output layer was able to be clus-
tered very well (Figs. 9, 10 and 11).

By qualitative observations of the graph, we can see that once we reach the
output layer, the neural network was very good at clustering the MNIST data set,
but it was not 100% accurate. As we saw, the output layer still made a couple of
errors. The main difference between the layers is that there is a softmax function
in the output layer, which was the key difference in improved clustering. There
was only a significant difference in clustering when using dot product with the
output layer. That was the only distance that made a couple of clustering errors.
Other than that, the distance did not make a overwhelming difference.

Graph-Based Supervised Clustering in Vector Space 481

Fig. 3. Dot product on feature layer

Fig. 4. Euclidean distances on feature layer

Fig. 5. Minkowski distances on feature layer

482 L. Schleider et al.

Fig. 6. Manhattan distances on feature layer

Fig. 7. Chebyshev distances on feature layer

Fig. 8. Dot product on output layer

Graph-Based Supervised Clustering in Vector Space 483

Fig. 9. Euclidean distances on output layer

Fig. 10. Minkowski distances on output layer

Fig. 11. Manhattan distances on output layer

484 L. Schleider et al.

Fig. 12. Chebyshev distances on output layer

4 Discussion and Conclusion

We can accredit some of the errors due to the fact that the quality of handwriting
varies greatly depending on each person and sometimes it is unclear which digit
was written. For example, someone’s 9 might look like a 4. Even with this varied
data set, the neural network was still able to cluster considerably accurately. We
did some preliminary experiments a tougher data set that is harder to cluster.
The data set is from the Canadian Institute For Advanced Research (CIFAR).
We used the CIFAR-10 which are colored images that are 32 × 32 pixels. Since
the images are colored in RGB, the image arrays have 3 times as many layers
as the MNIST image arrays. The CIFAR-10 data set has 10 classes (categories).
Some examples of the classes are cats, fish, trucks, etc. (Figs. 13 and 14).

Unlike MNIST, these data sets are not center oriented meaning the objects
are not always in the center of the image, so it is harder to classify and clus-
ter. Neural networks have low accuracy rates on CIFAR compared to MNIST.
MNIST had an accuracy rate of 98% while the CIFAR-10 data set had an accu-
racy rate around 45%. A high accuracy rate means the model is able to correctly
identify images which means it should be able to cluster them accurately as well.
From the picture it seems that the output layer distances does cluster the data
better than the distances from the feature layer. There is still significant mud-
dling in the output layer which means out neural network isn’t doing a good job.
We used the exact same procedure we did on the MNIST data set. It would be
interesting to do more experimentation on the CIFAR-10 data set and see if it
follows a similar trend as the MNIST when other distances are applied. Perhaps
we can try to improve the neural network and see how the clustering improves.
It would also be beneficial to get quantitative measures on the clustering charts
so we can do a deeper comparison. We also want to include optimization models
to find the best metric for clustering. Our current ideas involve using Gurobi
optimizer to minimize false positives and missed detection.

Graph-Based Supervised Clustering in Vector Space 485

Fig. 13. Minkowski distances on flatten layer CIFAR10

Fig. 14. Minkowski distances on output layer CIFAR10

References

1. Measuring distance or similarity. Packt Subscription
2. Likas, A., Vlassis, N., Verbeek, J.J.: The global k-means clustering algorithm. Pat-

tern Recogn. 36(2), 451–461 (2003). https://doi.org/10.1016/S0031-3203(02)00060-
2. http://www.sciencedirect.com/science/article/pii/S0031320302000602. Biomet-
rics

https://doi.org/10.1016/S0031-3203(02)00060-2
https://doi.org/10.1016/S0031-3203(02)00060-2
http://www.sciencedirect.com/science/article/pii/S0031320302000602

486 L. Schleider et al.

3. Mao, J., Jain, A.K.: Artificial neural networks for feature extraction and multivariate
data projection. IEEE Trans. Neural Netw. 6(2), 296–317 (1995)

4. Mao, Y., Yin, Z., Schober, J.: A deep convolutional neural network trained on
representative samples for circulating tumor cell detection. In: 2016 IEEE Winter
Conference, pp. 1–6. IEEE (2016)

5. Pradeep, J., Srinivasan, E., Himavathi, S.: Diagonal based feature extraction for
handwritten character recognition system using neural network. In: 2011 3rd Inter-
national Conference on Electronics, vol. 4, pp. 364–368. IEEE (2011)

	Graph-Based Supervised Clustering in Vector Space
	1 Introduction
	2 Experiment
	2.1 Dataset
	2.2 Distances
	2.3 Convolutional Neural Network

	3 Data and Results
	4 Discussion and Conclusion
	References

