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Abstract. The growing importance of online social networks where peo-
ple share information with others leads to the emergence of viral market-
ing, a new way to promote the sales of products. A derivation of classical
Influence Maximization (IM) problem is the Profit Maximization (PM)
problem that we focus on in this paper. We propose the PM problem with
a cardinality constraint in order to make the problem closer to the real
world. Without a fixed and pre-determined budget for seed selection, the
profit spread metric of PM considers the total benefit and cost. The dif-
ference between influence spread metric and profit spread metric is that
the latter is no longer monotone and lose the property of submodularity
in general. Due to the natural form as the difference between two sub-
modular functions, the profit spread metric admits a DS decomposition.
What matters is that we design a Marginal increment-based Prune and
Search (MPS) algorithm. From the perspective of marginal increment,
MPS algorithm can compute profit spread more directly and accurately.
Extensive experiments demonstrate the effective and outperformance of
our algorithm.
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1 Introduction

Due to their fast development, Online Social Networks (OSNs) become powerful
mediums for spreading innovations. The market of OSNs advertisement is grow-
ing explosively. A managing partner of a consulting firm claimed in [1] that the
e-commerce industry in the U.S. was worth approximately $500 billion in 2018
and had been one of the fastest growing areas of the economy.

In OSNs, users can share their opinions about an event or a promoted prod-
uct with other users, and this kind of information dissemination is in unprece-
dented prosperity nowadays. In the IM problem, a positive integer k is given
and the problem aims to find a set of k seeds which maximizes the total number
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or expected number of active nodes in a social network. In [2], Kempe et al.
firstly consider the issue of choosing influential sets of individuals as a discrete
optimization problem, prove the problem is NP-hard under both Independent
Cascade (IC) model and Linear Threshold (LT) model and propose a greedy
algorithm which yields (1–1/e)-approximation due to the submodularity and
monotone properties of the influence spread. As shown in [3], computing exact
influence in general networks under the LT model is #P-hard. Many follow-up,
such as [4–9], further study IM problem in term of improving efficient implemen-
tation of algorithms, extending the maximization from a practical view and so
on. When an OSN provider is hired to conduct the viral marketing campaign,
it not only receives commission from the advertiser but also pay for the infor-
mation propagation. Therefore, the OSN provider needs to account for both the
benefit and cost of influence spread to maximize its profit. As an extension of
IM, Tang J. et al. propose the PM problem whose aim is to find all the nodes
that can maximize the profit in online social networks and define a general profit
metric that can be expressed as the difference between benefit function and cost
function in [11,12]. Given that the benefit function is the total benefit brought
by all the nodes activated, it is a submodular function. As for cost function,
it is also submodular when it represents the total cost incurred by the whole
active nodes, different from the budget constraint studied by previous works.
Therefore, profit metric is a nonsubmodular and non-monotone function.

A lot of studies in [13–15] focus on submodular optimization while nonsub-
modular optimization has been attracting more scholars’ attention for many
years. As summarized in [16], there are many approaches to solve nonsubmod-
ular optimization problems. One of them is DS decomposition mentioned in
[17–20]. As shown in [17,18], every set function f : 2X → R can be expressed
as the difference of two monotone nondecreasing submodular functions g and h,
i.e., f = g − h, where X is a finite set. Based on the theorem, many algorithms
such as the modular-modular algorithm and iterated sandwich algorithm are
proposed.

We observe some real marketing process and come to the conclusion that
although the vast majority of companies select some users to help them promote
products, the number of selected users is severely limited. The reason may be
that excessive marketing not only bring profit but also incur greater cost. In this
paper, we formulate the profit maximization problem with a cardinality con-
straint and accurately explain the profit function from the marginal increment
perspective. The constrained profit maximization (CPM) problem aims to select
at most k nodes such that the total profit generated by activated nodes is max-
imized. Different from existing common methods, we can obtain the marginal
gain of profit from the perspective of marginal increment. Generally speaking,
the profit spread function is neither submodular or monotone. Hence the CPM
problem is a kind of nonsubmodular optimization problem. Due to its defini-
tion, profit function can be naturally expressed as the difference between two
submodular functions. Therefore, we design a Marginal increment-based Prune
and Search (MPS) algorithm. A algorithm whose goal is reducing the search
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space is devised in the pruning phase and two algorithms inspired by the classic
greedy algorithm and the DS decomposition method respectively are designed
for selecting seed nodes.

The rest of this paper is organized as follows. In Sect. 2, we propose our
formulation of the nonsubmodular CPM problem. Then, we derive MPS algo-
rithm, a two-phase algorithm based on marginal increment method, in Sect. 3.
Our experiment settings are introduced in Sect. 4 and results confirm the effec-
tiveness of MPS algorithm. Concluding remarks and suggestions on the future
works are given in Sect. 5.

2 Problem Formulation

2.1 Constrained Profit Maximization

In this section, we give CPM problem as follows. It should be emphasized that the
marginal increment and CPM problem is not restricted by the diffusion model,
and we take IC model for example. Given a directed graph G = (V,E, P ), a
constant k, benefit bv and cost cv for each node v ∈ V , CPM problem aims to
find a seed set S which includes at most k nodes to maximize the return profit.

We formulate the profit function from the perspective of marginal increment
and describe the profit function value as accurate as possible. For the given
directed graph G = (V,E, P ), nodes in V represent users and edges in E repre-
sent the connections among users. Each node v is associated with benefit bv and
cost cv. For any directed edge < u, v >∈ E, refer to v as a neighbor of u and refer
to u as an inverse neighbor of v. Denote Nu = {v : v ∈ V,< u, v >∈ E}. Let pu,v,
associated with each edge < u, v >∈ E, represents the activate probability from
node u to node v. The diffusion process starts with a given set S ⊆ V which
includes all the active nodes. When a node u firstly becomes active, for each
node v ∈ Nu, it has a single chance to activate v and succeeds with probability
pu,v. The diffusion process ends when there are no more nodes can be activated.
Denoted φ (S) as the profit generated by a seed node set S. It is obvious that
φ (S) = β (S) − γ (S), where β (S) is the benefit of influence spread generated
by a seed set S and γ (S) is the total spread cost incurred by the whole nodes
activated by S. The goal of constrained profit maximization problem is to find a
seed set S satisfying |S| ≤ k to maximize the profit φ(S). Then, we will discuss
more details about φ(S).

Property 1. φ(S) = β(S)−γ(S) is a non-submodular and non-monotone function
in general.

2.2 Analysis of Profit Function

In this section, we will analyze the property of benefit function and cost function
respectively from the perspective of marginal increment. The analysis will assist
us reacquainting profit function.
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Marginal Increment. Before discussing more details about benefit function
and cost function, we recall some definitions about marginal increment provided
in [21,22] as follows.

Definition 1. Suppose that f : 2V → R is non-negative set function, where V
is the ground set. For any subset A of V , �vf(A) = f(A ∪ {v}) − f(A) is called
the marginal gain of v ∈ V \A at A. In addition, �Bf(A) = f(A ∪ B) − f(A)is
defined as the marginal gain of B ⊆ V \A at A.

It is well-known that for a non-negative set function f : 2V → R+ defined on the
ground set V , f is a monotone function if f(A) ≤ f(B) for any A ⊆ B ⊆ V and is
submodular, if f(A)+f(B) ≥ f(A∪B)+f(A∩B) for any A,B ⊆ V . According
to above definitions, we can easily infer two properties. One is that for a given set
S ⊆ V and any subset A ⊆ S, f(S) = f(S\A)+�Af(S\A) = f(A)+�S\Af(A)
for any given set function f . The other is that when f is monotone, �Af(S\A) ≤
�Bf(S\B) and �S\Af(A) ≥ �S\Bf(B) for any subset A ⊆ B ⊆ S.

Benefit Spread Function. At first, we formulate the benefit spread function
from the perspective of marginal increment. According to the result of Jiang T.
et al. in [11,12], it is obvious that benefit spread function β(S) of influence spread
generated by a seed set S is the benefit brought by all the nodes activated. Then,
let bX

v ∈ (0, bv] be the benefit spread of v ∈ V with seed node set X, and for any
v ∈ V , b∅

v = 0. Denote �bX
v (u) = b

X∪{u}
v − bX

v as the marginal gain of the profit
on node v when a new node u is selected as seed node. Then following formulas
are proposed to calculate �bX

v (u), the marginal gain of benefit spread function
at node v.

Property 2. The marginal gain �bX
v (u) =

(
bv − bX

v

)
pu,vbX

u for any v ∈ Nu and
for any w ∈ Nv, we have

� bX
w (u) =

bv − bX
w

1 − p(u,v)bX
v

pv,w � bX
v (u) . (1)

Furthermore, if a node can be reachable from node u, we can update the
marginal gain according to the topology order in recursive manner and we define
�bX

w (u) = 0 for node w which is unreachable from node u.
Then, we can conclude that the objective function of benefit spread can be

expressed as

β (X) =
∑

v∈V

bX
v =

∑

v∈V

∑

u∈X

�bXu

v (u) , (2)

where Xu is the set of nodes that have already activated before node u. Denote
X = {v1, v2, . . . , v̂k} as a node set which contains all the nodes that can be
selected as seed, k̂ = |X|, Xk = {v1, v2, . . . , vk}, k = 1, 2, . . . , k̂ and X0 = ∅ for

convenience. Then β (X) can be rewritten as β(X) =
∑̂k

k=1 �kβ
(
Xk−1

)
, where

�kβ
(
Xk−1

)
=

∑
v∈V �bXk−1

v (vk). We also have a property of β(X) as follows.
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Property 3. β(X) =
∑

v∈V

∑
u∈X �bXu

v (u) =
∑̂k

k=1 �kβ
(
Xk−1

)
is submodu-

lar and monotone decrease with bXk−1

v , for any v ∈ V and k = 1, 2, ..., k̂

Cost Function. We have formulated and analyzed the property of benefit
spread function, and it is time to turn to the cost spread function. Generally
speaking, the cost function changes during the spread process. The cost of influ-
ence propagation induced by a seed set X is the total cost incurred by all the
nodes activated. Therefore, from the marginal increment perspective, let cX

v be
the cost spread of v ∈ V with seed node set X. Denote �cX

v (u) = c
X∪{u}
v − cX

v

as the marginal gain of the cost on node v when a new node u is selected as
seed node, and for any v ∈ V , if v /∈ X, c∅

v = 0. We formulate the cost spread
function as

γ (X) =
∑

v∈V

cX
v =

∑

v∈V

∑

u∈X

�cXu

v (u) , (3)

where Xu is the set of nodes that have already activated before node u. Let
X = {v1, v2, . . . , v̂k} represent the node set that includes all the candidate nodes,
k̂ = |X|, Xk = {v1, v2, . . . , vk}, k = 1, 2, . . . , k̂ and X0 = ∅. Then γ (X) =
∑̂k

k=1 �kγ
(
Xk−1

)
, where �kγ

(
Xk−1

)
=

∑
v∈V �cXk−1

v (vk). We can see that
another property of cost function γ (X) can be proposed as follows.

Property 4. γ(X) =
∑̂k

k=1 �kγ
(
Xk−1

)
is submodular and monotone decrease

with cXk−1

v , for v ∈ V , and k = 1, 2, . . . , k̂.

3 Algorithm for Constrained Profit Maximization
Problem

We devise a marginal increment-based two-phase algorithm MPS for CPM prob-
lem. One of the highlights of the MPS algorithm is that benefiting from the
method of marginal increment, we can compute the benefit spread function and
cost spread function more accurately. At the first phase of MPS, we use Modi-
fied Iterative Prune (MIP) algorithm to reduce search space. Then, we can select
seed nodes by one of the two different algorithms proposed in Sect. 3.3.

3.1 Marginal Increment Computation

First of all, we consider φ (X) = β (X) − γ (X), where β(X) and γ (X) is the
total benefit and cost of all the nodes activated respectively. From the perspec-
tive of marginal increment, for any X ⊆ V only containing seed nodes, the ben-
efit and cost can be expressed as β (X) =

∑
v∈V bX

v =
∑

v∈V

∑
u∈X �bXu

v (u),
γ (X) =

∑
v∈V cX

v =
∑

v∈V

∑
u∈X �cXu

v (u). We design two algorithms to com-
pute β(X) and �βX (u) respectively. And the method for computing γ(X) and
�γX (u) is the same as that for computing β(X) and �βX (u). Inspired by some
existing studies of nonsubmodular optimization, there are several ways to deal
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with φ (X). It should be emphasized that this profit spread metric can be viewed
as the difference between two submodular functions. Therefore, algorithm based
on DS decomposition can be used naturally. We propose a two-phase framework
to solve the CPM problem, which includes pruning phase and search phase.

Algorithm 1. Marginal Increment for computing β (X)

Input: G (V, E), IC model and candidate set X = {u1, u2, . . . , uk}, bXi

v for any v ∈ V
Output: function value β (X)

Initialize i = 0 and bXi

= {..., bXi

v , ...}
for ui ∈ X do

update bXi

= {..., bXi

v , ...} with bXi

v = bXi−1

v +
(
1 − bXi−1

v

)
pui,vbXi−1

ui
for each

v ∈ V according to the topological order
end for
β (X) =

∑
v∈V bXk

v

return β (X)

Algorithm 2. Marginal Increment for computing �βX (u)
Input: a reference set X ⊆ V and a node u ∈ V \X
Output: marginal gain �βX (u)

for v ∈ V do
compute �bX (u) = {..., �bX

v (u) , ...} with �bX
v (u) =

(
1 − bX

v

)
pu,vbX

u according
to the topological order
end for
�βX (u) =

∑
v∈V �bX

v (u)

return �βX (u)

3.2 Pruning Phase

Considering the constraints of PM problem mentioned in [12], the marginal profit
gain is bounded below by the smallest benefit gain less the largest cost gain and
bounded above by the largest benefit gain less the smallest cost gain. Apparently,
for any node v ∈ V , if the lower bound of marginal profit gain is positive, v may
be selected in an optimal solution of PM. Similarly, a node v cannot be selected
in an optimal solution when its marginal profit gain is bounded up by a negative
number. Starting with A0 = ∅, B0 = V , t = 0, algorithm mentioned in [12]
extends the idea in an iterative manner and return At as A∗, Bt as B∗ when they
are converged. It is proved that for any global maximizer S∗ of a unconstrained
profit problem, it holds that At ⊆ At+1 ⊆ A∗ ⊆ S∗ ⊆ B∗ ⊆ Bt+1 ⊆ Bt for any
t ≤ 0. Therefore, only the nodes in B∗\A∗ need to be further examined for seed
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Algorithm 3. Modified Iterative Prune (MIP)
start with A0 ← ∅, B0 ← B and t = 0
repeat

At+1 ← At ∪ {u : �βBt\{u} (u) − �γAt (u) > 0 and u ∈ Bt\At}
Bt+1 ← Bt\{u : �βAt (u) − �γBt\{u} (u) < 0 and u ∈ Bt\At}
t ← t + 1

until At = At+1 and Bt = Bt+1

return At as A∗, Bt as B∗

selection. However, when a cardinality constraint is added, the problem becomes
more difficult. In order to make the computation easier, we remove some nodes
in V to obtain a node set B ⊂ V satisfying the condition that the size of S∗\B is
as small as possible. And based on it, we design Modified Iterative Prune (MIP)
algorithm. It requires skill to choose an appropriate start baseline B. Many
methods mentioned in [23] can be studied further more. In the experiments, we
adopt two different strategies and compare their performance.

3.3 Search Phase

Considering the natural DS decomposition form of profit function, we propose
two algorithms in the search phase. One practical algorithm is the Marginal
Increment Greedy Algorithm shown as Algorithm4. The other available method
is the Improved Modular-Modular algorithm given as Algorithm5.

Marginal Increment Greedy Algorithm. Given a directed graph G(V,E)
where V represents the whole user and E is the set of their relations. After con-
ducting MIP algorithm, we can obtain A∗ and B∗. As above discussion reveals,
all the nodes in A∗ has a non-negative marginal profit gain and may be selected
as seed node for CPM problem while every v ∈ V \B cannot be contained in
any optimal seed node set. If |A∗| ≤ k, the seed node set X is initialized as A,
else X = ∅. In each iteration, MIGA algorithm selects node u which has the
largest marginal profit gain �φX(u) = �βX (u) − �γX (u) and adds it into X.
Repeat the process until no node left has positive marginal gain or |X| > k. In
the meanwhile, we propose another algorithm, which is based on the ModMod
procedure and also be combined with MIP algorithm to solve the CPM problem.

Improved Modular-Modular Algorithm. The ModMod procedure intro-
duced by Iyer and Bilmes in [17] aims to optimize set function expressed as
the difference between submodular functions. And given that only nodes in B∗

should be considered for CPM, we can obtain two modular upper bounds of
γ (Y ) which are both tight at a given set Xt for any Y ⊆ V as
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Algorithm 4. Marginal Increment Greedy Algorithm (MIGA)
Input: G (V, E), a constant k, A∗, B∗

Output: a set of k nodes X ⊆ B∗

if |A∗| ≤ k then
X = A∗

else
X = ∅

end if
while |X| ≤ k do

u ← arg maxu∈B∗
(�βX (u) − �γX (u)

)
update �βX (u) and �γX (u)
if �βX (u) − �γX (u) ≤ 0 then

return X
end if
X ← X ∪ {u}

end while
return X

γ (Y ) ≤ m1
Xt (Y ) = γ

(
Xt

) −
∑

u∈Xt\Y

�γB∗\{u} (u) +
∑

u∈Y \Xt

�γXt

(j) , (4)

γ (Y ) ≤ m2
Xt (Y ) = γ

(
Xt

) −
∑

u∈Xt\Y

�γXt\{u} (u) +
∑

u∈Y \Xt

�γ∅ (j) . (5)

For convenience, we denote mXt (Y ) represent above two tight upper bound,
i.e., mXt (Y ) can be explained as m1

Xt (Y ) or m2
Xt (Y ). Let π be any per-

mutation of V that places all the nodes in Xt ⊆ V before the nodes in
V \Xt. Let Sπ

i = {π (1) , π (2) , . . . , π (i)} be a chain formed by the permuta-
tion, where Sπ

0 = ∅ and Sπ
|Xt| = Xt. Define hπ

Xt (π (i)) = β (Sπ
i ) − β

(
Sπ

i−1

)
.

Then, hπ
Xt (Y ) =

∑
v∈Y hπ

Xt (v) is a lower bound of β (Y ) for any Y ⊆ V tight
at Xt.

Algorithm 5. Improved Modular-Modular Algorithm (IMM)
Initialize t ← 0
if |A∗| ≤ k then

X0 = A∗

else
X0 = ∅

end if
repeat

choose the permutations of X0, Xt\X0, B∗\Xt and concatenate them as π
Xt+1 ← arg maxY ⊆B∗ hπ

Xt (Y ) − mXt (Y )
t ← t + 1

until
∣∣Xt

∣∣ > k or Xt = Xt−1

Return Xt
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4 Experiments

In this section, we conduct experiments on three data sets to test the effec-
tiveness of MPS algorithm for optimizing φ, and compare it with other differ-
ent algorithms. When cost function represents the total cost of seed nodes, i.e.
φ (X) =

∑
v∈V bX

v − ∑
u∈X c (u), we can view it as a special case of φ (X).

4.1 Experiment Setup

A synthetic graph and two real-world social graphs are used in our experiment.
We will describe them more precisely in the following. We can see a wide variety
of relationship can be represented by these social graphs.

Synthetic: This is a relatively small acyclic directed graph randomly generated
with 2708 nodes and 5278 edges.

Facebook: The Facebook data set consists of 4039 users and 88234 edges col-
lected from survey participants and has been anonymized.

Wikipedia: The Wikipedia data set is generated by a voting activity, containing
7115 nodes and 103689 edges. Nodes in the network represent wikipedia users
and a directed edge from node i to node j represents that user i voted on user
j.

All the data sets come from Stanford Large Network Dataset Collection and
only have the relationship between two nodes. We use the Independent Cascade
propagation model. For ease of comparison, we have some assumption as follows.
For the propagation probability, we use a trivalency model in [21], selecting a
value from (0.1, 0.01, 0.001) at random. And the profit of each node is set to be
1. The strategies we use in the experiment include:

Random: It randomly selects k nodes. We run the algorithm 10 times and take
their average value as the expected profit.

MaxDegree: We select top k nodes according to their degree.

MGIA: We conduct the MIGA algorithm where A∗ = ∅ and B∗ = V .

MPS with B1: It includes two phases. MIP algorithm is conducted and the
MIGA is carried out subsequently. In the pruning phase, all the nodes are sorted
according to their degree and top 500 nodes is included in B.

MPS with B2: This algorithm is similar to MPS with B1 mentioned above
while each node in the start baseline B has at least two adjacent edges.

The algorithms are all implemented in MATLAB and the experiments are
carried out on a machine with an Inter Core i5-6200U 2.30 GHz CPU and 8 GB
memory. The running time of MPS algorithm is greatly sensitive to the choice
of B and under above setup the MPS algorithm takes several hours in average.
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4.2 Exprement Result

In this section, we value the effectiveness of MPS. First of all, we compare the
effect of two different start baseline. Then, we show the relation of cost and
profit spread value. The last but not least is the comparison with other seed
nodes selection algorithms.

In Fig. 1, we can see that different start baselines can produce different effect
on the effectiveness of MPS algorithm. Due to the different definitions of B1 and
B2, it is inevitable that more potential seed nodes are excluded from B1, resulting
in a small profit spread value in Facebook and Wikipedia. And in Fig. 2, it is obvi-
ous that the change speed of profit spread value decreases with the increasing cost.
Judging from this result, the constraint of seed node set’s size is important when
the cost is not small. The Fig. 3 illustrates that MPS outperforms other algorithms
excluding MIGA. And the difference between MIGA and MPS with B2 is small. It
should be noted that the difference is smaller in Wikipedia network than in Face-
book network. Therefore, MPS may perform better in a network which contains
more nodes and edges. We can also arrive at a conclusion that MPS will perform
better with the a more ideal start baseline B0.
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Fig. 1. Profit spread value versus different prune start baseline
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Fig. 3. Comparison with other methods

5 Conclusion and Future Works

In this paper, we have studied the CPM problem and formulate it from an
incremental marginal gain perspective. Given that the objective function of CPM
problem lacks submodularity in general, we design MPS algorithm to optimize
the profit function. In the first phase, MIP algorithm is used to reduce the search
space. The MIGA and IMM algorithm are devised in the second phase to select
at most k seed nodes. Based on the marginal increment method, these algorithms
calculate the profit function as accurate as possible. Experimental results show
that our MPS algorithm substantially outperform some other algorithms, and it
is also perform well with submodular profit metric after a few adjustments.

Several research directions of CPM problem deserve further study. The first
and most problem is how to select the baseline of MIP algorithm. We can see
that B in MIP algorithm directly affects the algorithm’s efficiency and perfor-
mance and MPS algorithm is feasible in large-scale social networks with a ideal
B. Therefore, the property of a ideal baseline B need to be studied. Beyond
that, more efforts on study whether MPS algorithm can generate a constant
approximation is significant.
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