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Abstract. The growth of federated machine learning in recent times has dramat-
ically leveraged the traditional machine learning technique for intrusion detec-
tion. Keeping the dataset for training at decentralized nodes, federated machine
learning have kept the people’s data private; however, federated machine learn-
ing mechanism still suffers from gradient leakage attacks. Adversaries are now
taking advantage of those gradients and can reconstruct the people’s private data
with greater accuracy. Adversaries are using these private network data later on to
launch more devastating attacks against users. At this time, it becomes essential
to develop a solution that prevents these attacks. This paper has introduced differ-
ential privacy, which uses Gaussian and Laplace mechanisms to secure updated
gradients during the communication. Our result shows that clients can achieve a
significant level of accuracy with differentially private gradients.

Keywords: Federated learning · Machine learning · Intrusion detection ·
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1 Introduction

In the past few years, we can see the massive increment in the computational resources
in smartphones. Modern days smartphones are powered up by high GPU and mem-
ory spaces. Due to this computational infrastructure, researchers and developers have
embedded several smartphone applications, which are fueled up by the machine and
deep learning algorithms. The evolution of machine learning algorithms has extensively
leveraged modern apps intelligence, making people’s life a lot easier. These algorithms
need large amounts of data to be trained to make an intelligent decision. Initially, peo-
ple were not concerned about their data being exported to large organizations, but as
time progressed, several data breaches have occurred, leading to the transfer of peo-
ple’s private data to the adversaries [1, 2]. Adversaries are then using personal data to
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launch phishing attacks and even blackmail the people [3]. In the case of the Intrusion
detection system (IDS), researchers are exporting people’s network traffic datasets to
build an intelligent IDS for early detection of malicious traffic in people’s smartphones
[4]. When these types of network traffic datasets get leaked during a data breach, they
have served as a baseline to launch more devastating attacks to the users [5]. To solve
these problems, and keep people’s data private in 2017, Google introduced federated
machine learning [6]. Federated machine learning does not export the people’s data to
the server and trains the machine learning models in their smartphone with their locally
generated dataset. Results show that federated machine learning provided the same level
of intelligent decision making as with traditional machine learning. Federated machine
learning was introduced to solve people’s privacy issues; however, this approach was
entirely not private. If the adversaries have control over the server where the unencrypted
updated gradients from the clients were sent to be averaged or merely intercepting the
gradients during federated communications, adversaries were able to reconstruct the
dataset present across people’s smartphones. Authors at [7] developed a gradient attack
algorithm that reconstructed the MNIST dataset with significant accuracy. Moreover,
the author at [8] used cosine similarity loss and some optimization methods to rebuild
the images by taking the knowledge of shared gradients to the server during federated
learning.

This paper uses a differential privacy approach to add noise to the gradients being
sharedwith the server for averaging.We have used two noises, i.e., Gaussian and Laplace
noise. In our experimentation, we added three noise levels, i.e., low noise, medium noise,
and high noise to the gradients, and saw their accuracy. We have further compared how a
differential privacy approach affects amodel’s accuracy than the non-differentialmethod.
We have also discussed how our differential privacy approach gives the adversaries no
chance to perform gradient leakage attacks.

The rest of the paper is organized as follows: Sect. 2 gives an overview of work that
has been done to solve gradient leakage attacks in federated machine learning. Section 3
gives the reader an introductory background on differential privacy. Section 4 provides an
overview of our proposed approach. Section 5 and Sect. 6 discusses the experimentation
and results. Finally, Sect. 7 concludes the paper.

2 Related Work

In this paper, we experiment with different possible noise mechanisms that can be used
to achieve differential privacy in a federated machine learning environment; however,
in literature, we can find some amount of work that is being carried out in differen-
tial privacy. Authors at [9] have proposed two mechanisms, i.e., Random sub-sampling
and Distorting, to hide the gradients of each client, which later is sent to the server for
aggregation. They followed the Gaussianmechanism to distort the sum of all the updated
gradients at the client-side. Their proposed differentially private approach achievedmore
than 90% accuracy which was only 5% less than the non-differential privacy approach.
Authors at [9] achieved a reasonable amount of accuracy; however, authors at [10] stated
that the traditional differential privacy approach carried out by [9] led to significantly
decreased accuracy, so they came with a hybrid approach where they combined differ-
ential privacy and secure multiparty computation (SMC) to mask the gradients. Their



380 K. Yadav et al.

proposed approach is more reliable than the author at [9] since combining differential
privacy with SMC will reduce the growth of noise injected during federated training as
the number of clients increases. Authors at [11] realized that the traditional differential
privacy approach creates a lot of noise in the updated gradients in federated training,
which have 10s of digits after a decimal point. To solve this problem they came with a
LDP-Fed mechanism that first provides a differential privacy guarantee to the updated
gradients and then selects andfilters the perturbing gradients in the server. Their approach
is very effective for precision sensitive gradients value; however, filtering the gradients
will require extra effort and computation and may lead to the delay in communication
during federated training. Authors at [12] have used the bayesian differential privacy
mechanism for preserving the gradients. Their proposed mechanism leads to the addi-
tion of a lower amount of noise, which ultimately has increased the accuracy of the
model with reduced communication rounds. Authors at [13] have proposed a differen-
tial privacy mechanism (NbAFL), which adds the artificial noise to the gradients being
updated. They first proved that their proposed mechanism satisfied the principles of dif-
ferential privacy and did various performance analysis of the model after the gradients
were obfuscated with noise.

Most of the literature’s work introduces the differential privacy on image, text, and
health datasets. Our research work is a pioneer in the literature that applies differential
privacy in the intrusion detection dataset to the best of our knowledge.Detecting intrusion
is a sensitive and rapid process. Unlikemost of thework described in the literature, which
requires higher communication rounds to achieve reasonable accuracy after adding noise
to the updated gradients, our proposed approach does not require higher communication
rounds, perturbing techniques as described in [11] and can achieve a good amount of
accuracy in detecting intrusion.

3 Background

In this section, we introduce the definition of differential privacy, give a brief discussion
about the Gaussian and Laplace mechanism. We further will discuss the use of these
mechanisms in achieving differential privacy.

3.1 Differential Privacy

Differential privacy was introduced to permit statistical analysis of the dataset without
revealing the private information of an individual inside a dataset [14]. For any two
neighboring dataset D1 and D2, a randomized mechanism M is said to be differentially
private if the outcome, i.e., C from a mechanism M such that C ∈ Range(M) and ||D1 −
D2|| ≤ 1 where ||D1 − D2|| is the distance between two datasets D1 and D2. Equation 1
below represents a differentially private equation. Here, D1 is a measure of the dataset’s
size and ||D1 −D2|| gives an idea about the difference in the record between two datasets,
D1, and D2.

Pr
[
M (D1) ∈ C

] ≤ exp(ε)Pr
[
M (D2) ∈ C

] + δ (1)
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In the above equation, δ controls the amount of additive noise. There is a theoretical
difference between (ε, 0) and (ε, δ). (ε, 0) means that for every D1, the output M(D1)
observed is likely to be equally observed for all the data in a dataset. When the observed
output is expected to be the same, an adversary may infer valuable information from the
output, and we will not be able to achieve higher privacy. (ε, δ) for dataset D1 the output
with the mechanism M(D1) is unlikely to be observed for the dataset D2. When δ has a
higher value greater than zero, we may add a significant level of noise, and a reasonable
amount of privacy of the data can be achieved. To keep track of the amount of privacy
one can reach by varying the value of δ, we have a privacy loss parameter. For a given
output , adversaries may produce a dataset D2 such that D1, D2 ∈ D, then the
privacy loss is defined as:

(2)

Privacy loss can also be defined as an essential random variable that keeps track of
noise being added from any random mechanism.

In differential privacy, we can use any Randomized algorithm(M) with dataset D and
range R such that M: D → �(R) such that on input, let’s say, d ∈ D, the randomized
algorithmM produces outputM(d)= r with probability (M(d))r for each r∈R. Random-
ization algorithms such as Gaussian, Laplace, exponential, and Bayesian can be used to
achieve differential privacy, however, in our approach, we have used only two of those
algorithms, i.e., Gaussian and Laplace which is discussed below.

3.2 Laplace Mechanism

Laplace mechanism is derived from Laplace distribution where for a value x, Laplace

distribution isLap(x|μ, b)= 1
2b exp

(−|x−μ|
b

)
. In the equation,μ tells us about the position

of distribution, i.e., whether positive or negative, and b is an exponential scale parameter
which gives an idea about the distribution of a laplacian noise [14]. The parameter b
depends upon two things, i.e., ε and �f. Here �f is a sensitivity, which is the change in
output obtained when the same function is applied for both dataset D1 and D2.

�f = max D1, D2|f (D1) − f (D2)| (3)

For a randomized function f: D → R, the laplace mechanism is defined as: M(d, f(.),
ε) = f(d) + Lap(�f/ε), where Lap(�f/ε) is a laplacian noise.

3.3 Gaussian Mechanism

Let f: D→R be a randomized function with its sensitivity�f. The Gaussian mechanism
with a parameter σ adds noise N(0, Iσ2). Then gaussian mechanics is defined as M(d)

= f(d) + N(0, Iσ2) where σ >�f
√
2 log 1.25

b

/
ε. The noise N(0, Iσ2) is obtained from

a Gaussian distribution. For additional information on the Gaussian mechanism and
Gaussian distribution, we encourage the readers to [14].
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4 Proposed Approach

4.1 Differentially Private SGD Algorithm

Our proposed algorithm is described inAlgorithm1.Our central intuition in the proposed
algorithm was to mask the gradients generated by each device with noise obtained from
differential privacy mechanisms in federated communication. In algorithm 1, initially,
all the nodes receive the global model initialized with some weight to their respective
parameters. In the case of the SGD classifier, the parameter is a learning rate η. The
global dataset D is divided into local datasets across each node, which is denoted by
dn. The received global model is trained on each client’s local dataset, i.e., dn, and the
weight of the parameter, i.e., Wweight is obtained. The obtained weight is then masked
with the noise factor Fnoise produced by mechanisms, such as Gaussian and Laplace.
Each client’s masked weights are then sent to the server for averaging, and Waverage
denotes the average weight. The Waverage is again obfuscated at the server side with
differential privacy mechanisms and sent to different clients. The obfuscation of weight
at the server side will prevent the adversaries from gaining knowledge from the gradients
if they can intercept the gradients during federated communication.

Algorithm 1. Federated averaging along with the addition of noise

Procedure Server()
Wall_nodes= Receive_weight()
Waverage ← 1 ∑ Wk 

Set weight of Mglobal ← Waverage + Fnoise
Send(Mglobal) 

Procedure Node()
← Local dataset divided into mini datasets

Mglobal=Receive(global_model)
for all each node in K in parallel do

Train Mglobal with their respective dataset dn 

weight = Wweight - η∆l(Wweight, dn) 

D

W
Wupdated_weight← Wweight + Fnoise 
Send_weight(Wupdated_weight) 

5 Experimentation

Our experimentationwas performed on amachine having a core i5 processorwith a clock
speed of 3.4 GHz, 8 GB of RAM, and 2 GB of the graphics card. The experimentation
was fully performed in Python.We have used theDiffprivlib library developed by IBM to
implement differentially private mechanisms [15]. To validate our approach, we take the
NSL-KDD dataset for federated machine learning. NSL-KDD dataset is considered as a
benchmark dataset for building an intrusion detection system [16]. NSL-KDD contains
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125,973 records in KDDTrain+ file. We divided records in this file among ten nodes,
and the distribution of our dataset was performed in a Non-IID manner. The distribution
of the dataset among ten nodes is described in Table 1. We only made ten nodes in
our experimentation and went up to 100 communication rounds due to computational
infrastructure limitations. However, the result obtained is very reliable.

Table 1. Distribution of KDDTrain+ among 10 nodes.

Dataset Attack type Number of instances

Node1 Neptune, smurf 40466

Node2 Land, teardrop 6107

Node3 Pod, back 6315

Node4 Portsweep, nmap 8938

Node5 Ipsweep, satan 11135

Node6 Imap, warezmaster 5420

Node7 Ftp_write, guess_passwd 5442

Node8 Multihop, spy 5402

Node9 Phf, warezclient, buffer_overflow 6135

Node10 Loadmodule, perl, rootkit 5411

6 Result and Discussion

We added three levels of noise during federated communication, i.e., low, medium, and
high to achieve differential privacy. The epsilon value was set to 0.05, 0.01, 0.005 to
achieve low, medium, and high noise levels. The obtained accuracy with two different
noise mechanisms is presented in Table 1. As gaussian noise depends upon three param-
eters, i.e., sensitivity(�f), delta(δ), and epsilon(ε), we set the�f= 1 and threshold value
to δ = 0.7. For Laplace noise and gaussian noise, the experiment was conducted without
any change in parameter value mentioned above. Table 1 shows that we can achieve the
highest accuracy of 96.37% by adding a sufficiently adequate amount of noise to the
gradients. We also see that to achieve the highest level of privacy, we can use a high
amount of noise to the gradients, but it will significantly decrease the accuracy and even
requires a large communication round for loss function to be converged. The addition
of the low or high amount of noise to the gradients depends upon the type of machine
learning problem we are dealing with. A medical health record in federated machine
learning may need the highest amount of differential privacy. In contrast, privacy will
not be the highest preference in a movie or text recommendation system. Table 2 rep-
resents the differential privacy result obtained with the Laplace mechanism; however,
there was no significant difference in accuracy and communication round for these two
mechanisms, i.e., Laplace and Gaussian. Hence, we can choose any noise mechanism
to achieve differential privacy in a federated environment.
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Table 2. Accuracy of nodes under different level of noise

Noise Communication round Accuracy

Gaussian mechanism

Low 29 96.37

Medium 64 92.24

High 95 86.39

Laplace mechanism

Low 26 95.64

Medium 60 92.01

High 89 86.08

We also experimented with the Gaussian mechanism with different epsilon(ε) values
to get knowledge about the obtained accuracy by varying noise levels. We set the range
ε = {10−3, 10−2, 110−1, 1}, and the accuracy obtained is shown in Fig. 1. Figure 1
depicts the lower value of ε leads to higher differential privacy, but lower accuracy and
increase in the value of ε compromises the differential privacy; however, we can get
sufficient accuracy. Figure 1 also gives a comparison of the variation of accuracy with
differentially private and non-private approaches.

Fig. 1. Accuracy versus epsilon(ε) for a differentially private and non-private approach.
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7 Conclusion

In this paper, we discussed two differentially private mechanisms, i.e., Gaussian and
Laplace, to achieve differential privacy in a federated environment. The result shows
that the mechanisms used produces a significant amount of accuracy without giving the
adversaries the chance to share the gradients during federated communication. However,
in an intrusion detection system built using a federated approach for smartphones, a false
negative of even 5% can lead to a huge loss. In this type of system where accuracy is
an utmost preference, in the coming future, we are planning to develop a sophisticated
technique that can solve the gradient leakage attack without compromising the accuracy
during federated communication.
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