
Efficient SDN-Based Traffic Monitoring
in IoT Networks with Double Deep

Q-Network

Tri Gia Nguyen1(B), Trung V. Phan2, Dinh Thai Hoang3, Tu N. Nguyen4,
and Chakchai So-In5

1 Faculty of Information Technology, Duy Tan University, Danang 50206, Vietnam
nguyengiatri@duytan.edu.vn

2 Chair of Communication Networks, Technische Universität Chemnitz,
09126 Chemnitz, Germany

3 School of Electrical and Data Engineering, University of Technology Sydney,
Sydney, NSW 2007, Australia

4 Department of Computer Science, Purdue University Fort Wayne,
Fort Wayne, IN 46805, USA

5 Department of Computer Science, Faculty of Science,
Khon Kaen University, Khon Kaen 40002, Thailand

Abstract. In an Internet of Things (IoT) environment, network traf-
fic monitoring tasks are intractable to achieve due to various IoT traffic
types. Recently, the development of Software-Defined Networking (SDN)
enables outstanding flexibility and scalability abilities in network control
and management, thereby providing a potential approach to mitigate chal-
lenges in monitoring the IoT traffic. In this paper, we propose an IoT
traffic monitoring approach that implements deep reinforcement learning
technique to maximize the fine-grained monitoring capability, i.e., level
of traffic statistics details, for several IoT traffic groups. Specifically, we
first study a flow-rule matching control system constrained by different
expected levels of statistics details and by the flow-table limit of the SDN-
based gateway device. We then formulate our control optimization prob-
lem by employing the Markov decision process (MDP). Afterwards, we
develop Double Deep Q-Network (DDQN) algorithm to quickly obtain
the optimal flow-rule matching control policy. Through the extensive
experiments, the obtained results verify that the proposed approach
yields outstanding improvements in terms of the ability to simultane-
ously provide different required degrees of statistics details while pro-
tecting the gateway devices from being overflowed in comparisons with
those of the conventional Q-learning method and the typical SDN flow
rule setting.

This work was supported in part by Vietnam National Foundation for Science and Tech-
nology Development (NAFOSTED) under Grant 102.01-2019.322, and the Thailand
Science Research and Innovation (TSRI) and National Research Council of Thailand
(NRCT) via the International Research Network Program (IRN61W0006).

c© Springer Nature Switzerland AG 2020
S. Chellappan et al. (Eds.): CSoNet 2020, LNCS 12575, pp. 26–38, 2020.
https://doi.org/10.1007/978-3-030-66046-8_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-66046-8_3&domain=pdf
https://doi.org/10.1007/978-3-030-66046-8_3

Efficient SDN-Based Traffic Monitoring in IoT Networks with DDQN 27

Keywords: Traffic monitoring · Internet of Things · Software-defined
networking · Double Deep Q-Network · Deep reinforcement learning

1 Introduction

Internet of Things (IoT) culminates the interconnection of ubiquitous end-
devices with unique digital identity, e.g., smart devices and industrial systems
[11]. Nevertheless, it exhibits several challenges in the network control and man-
agement tasks, particularly for network traffic monitoring that can provide ben-
eficial information to other crucial applications, e.g., traffic engineering and
anomaly detection. Consequently, it is essential to acquire a solution that can
dynamically afford a fine-grained traffic monitoring capability to aid applications
with high demands about detailed traffic information in the IoT networks. This
primary requirement is challenging to be realized due to the diversity of IoT
traffic types in a ubiquitous context [11].

Recently, Software-Defined Networking (SDN) technology [8] has been draw-
ing a notable breakthrough in Telco industries due to significant improvements
concerning dynamics and flexibility in traffic control and management tasks. In
particular, SDN defines a new design and management strategy for network-
ing. The key innovation of this design is the separation of the control and data
planes. The SDN controller (e.g., ONOS [9]) makes the control decision and
the SDN data plane manages the data forwarding. The communication between
two planes is performed through southbound APIs, e.g., OpenFlow [3]. Hence-
forward, with SDN’s unique features, they enable the IoT networks with the
ability to mitigate network control and management challenges [2]. Ultimately,
it has become a new IoT research area that has been recently attracting the
concentration of researchers [2,7].

1.1 Related Work

In order to avoid overflow problems in flow-tables of the SDN forwarding devices,
Avant-Guard [12] framework is proposed, in which the control plane distributes
intelligence, i.e., a connection migration module, into switches to identify hosts
that unlikely finish TCP connections. Thereby, diminishing abnormal flow rules
that may flood flow-tables in the case of saturation, e.g., TCP SYN flood attack.
A reinforcement learning algorithm [6] is proposed with the primary purpose
of obtaining the long-term intention of diminishing the monitoring overhead
and of being aware of the overflow problem in the forwarding devices. Likewise,
SDN-Mon framework [10] is proposed to improve the traffic monitoring gran-
ularity that promotes many networking applications, in which the monitoring
logic is separated from the forwarding logic by modifying OpenvSwitch and the
Lagopus software switch. Afterwards, additional monitoring/functional tables
are appended to the end of the forwarding pipeline. Nevertheless, one of the
main weaknesses of these proposals is that a comprehensive customisation effort
is required in the data plane devices, which violates the origin of SDN design.

28 T. G. Nguyen et al.

Distinctly, in this study, we investigate a win-win equilibrium1 between dif-
ferent IoT traffic groups concerning their granularity degree demands as one of
the crucial evaluation criteria. Because the monitoring operation should fairly
observe the sufficient statistics details of all IoT traffic groups. Therefore, we
are strongly motivated to develop an innovative approach in the SDN-based IoT
networks to efficiently provide a traffic monitoring capability while protecting
the SDN switches from being overflowed.

1.2 Our Proposal

In this paper, we propose a traffic monitoring approach that employs deep rein-
forcement learning technique to maximize the degree of traffic statistics details
and to provide a win-win equilibrium of the monitoring capability for several traf-
fic groups in the SDN-based IoT environment, as shown in Fig. 1. Specifically, we
study an SDN-based flow matching control system constrained by the required
granularity levels of traffic groups and the capacity of the SDN-based gateway.
We then formulate the control optimization problem by applying the Markov
decision process (MDP), and develop an advanced reinforcement learning tech-
nique, i.e., Double Deep Q-Network (DDQN) algorithm, to quickly obtain the
optimal policy for large-scale systems. The experiment results confirm the effec-
tiveness of our proposed approach in terms of providing a sustainable degree of
IoT traffic granularity while avoiding the gateway overflow issue in comparison
with other traditional methods.

Edge Compu ng

Fog Compu ng

Internet

SDN Applica ons

SDN Controllers

Southbound
APIs

Northbound APIs

……
Cloud Compu ng

Cloud IoT
Apps

Fig. 1. SDN-based IoT networks.

1 Different IoT traffic groups can meet their traffic granularity requirements at the
same time.

Efficient SDN-Based Traffic Monitoring in IoT Networks with DDQN 29

2 System Model

2.1 Basic SDN Packet Forwarding Strategy

As presented in Fig. 2, the basic SDN packet forwarding in a gateway can be
described as follows. Firstly, an incoming packet arrives at the gateway, i.e., step
(1). Next, the searching process of a matched flow rule is performed by checking
the packet header information to match fields in every flow rule, i.e., step (2).
If the header information is suited to all match fields of a flow rule, this means
that a matched flow is determined2 and Instructions supervise the incoming
packet in the matched flow rule, e.g., forward the packet to a particular gateway
port (step (5)) or drop the packet. Contrarily, a table-miss event occurs for the
entered packet, and the gateway creates a packet in message and sends to its
corresponding SDN controller for further guidance, i.e., step (3). Later, the SDN
controller depends on its traffic forwarding plans and installs a new flow rule
into the gateway with a selection of match fields and instructions, i.e., step (4).
Then, a packet out message is delivered out of the gateway, i.e., step (5), and
the sent packet is the first packet of the new flow rule.

SDN-based IoT gateway

Incoming
packets

Flow-tables

Outgoing
packets

(1)

(2)Flow rules

Match Fields Instruc onsCounters

MAC TCP port

(3) (4)

(5)

(drop)

Car traffic flows Alarm traffic flows Electricity traffic flows

Fig. 2. Typical SDN packet forwarding logic.

To sum up, the determination of match fields in a flow rule represents a
critical position in the SDN packet forwarding and flow matching in the gateway
devices. In addition, the traffic statistics details collected by the control plane [8]
are mainly defined by the number of match fields at the gateway. Accordingly, to
adjust the traffic granularity degree, a flow matching control system controlling
the match fields determination should be examined to obtain an efficient traffic
monitoring capability in the SDN-based networks.

2.2 System Model

As aforementioned, it is essential to correctly and dynamically determine the
right collection of match fields in traffic flows of various IoT devices. Therefore,
we examine a flow matching control system operating as an SDN application
2 For ease of comprehension, we study this simple matching strategy in this paper, more

complex matching designs can be found in [3], e.g., multiple flow-tables searching.

30 T. G. Nguyen et al.

that consists of a statistics collector, a control agent, a database, and a flow
matching policy-maker. In which, the control agent controls the process of flow
matching in flow-tables at an SDN-based IoT gateway i.

As stated in [1], from a macro scale, IoT traffic is realized as heterogeneous
but group-specific from the representation of each local network. Accurately, IoT
devices serving different applications can be attached in separate virtual local
area networks (VLANs), which can be directed at the IoT networks’ edge, i.e., the
SDN-based IoT gateway. Hence, we consider N IoT traffic types traversing the
gateway. For each traffic group, the required granularity for monitoring goals,
i.e., the number of match fields in a flow rule, is denoted as Θn (n ∈ N),
where 0 < Θn ≤ Mmax and Mmax is the maximum value of match fields in a
flow rule. Originally, the control agent implements a policy to change the flow
matching strategy of particular traffic groups into the gateway. Then, by relying
on the collected statistics data, the control agent evaluates the effectiveness of
the performed policy, i.e., the traffic granularity level of all traffic groups in the
gateway, in comparison with the Θn value (first constraint) and the capacity of
flow-tables of the gateway device (second constraint) indicated as Gmax. These
processes are repeated to travel new policies and observations. Therefore, we can
express the objective function of the control system as follows:

max
t

N∑

n=1

θn, s.t.
{

0 < Θn ≤ θn ≤ Mmax, ∀n ∈ N ,
0 ≤ Ft < Gmax,

(1)

where θn is the actual granularity of the traffic group n and Ft is the total
number of flow rules in the gateway at time step t.

3 Problem Formulation

To maximize the granularity degree of traffic while providing a win-win equilib-
rium for N traffic groups at the gateway, we adopt the Markov decision pro-
cess (MDP) model [13] to present the control system operation as illustrated in
Fig. 3. This framework allows the control system dynamically to perform optimal

SDN-based IoT
Gateway

Ac on State Reward

Incoming
packets

Outcoming
packets

Flow Matching
Policy Maker

Sta s cs
Collector

Data
Storage

Control Agent

Data
plane

Applica on
plane

Fig. 3. Reinforcement learning based model.

Efficient SDN-Based Traffic Monitoring in IoT Networks with DDQN 31

actions based on its observations to maximize its average long-term reward. The
MDP is defined by a tuple < S ,A ,R > where S represents the state space,
A expresses the action space, and R signifies the immediate reward function.

3.1 State Space

As discussed previously, from the perspective of each local network, there are N
traffic groups carrying traffic through the gateway [1]. Here, we aim to maximize
the total traffic granularity degrees of all groups. Therefore, the state space of
the gateway can be determined as follows:

S � {((θ1, f1), ..., (θn, fn), ..., (θN , fN))}, (2)

where θn (θn ≤ Mmax) and fn (fn ≤ Gmax) show the actual current granularity
levels and the total number of flow rules of the traffic group n, respectively. The
reason for choosing fn is that the higher number of flow rules intimates the more
match fields in a flow rule of the traffic group. Hence, a state of the system can
be defined by s = ((θ1, f1), ..., (θn, fn), ..., (θN , fN)).

3.2 Action Space

Recall the objective function in Eq. (1), one of the essentials is to always hold all
θn values greater or equal to their corresponding Θn ones. Thus, the control agent
should quickly construct actions whenever θn does not meet the requirement.
However, the principal goal is to maximize the total of actual traffic granularity;
hence, the control agent should implement actions even in the case when all θn

values meet the requirement. Furthermore, the strategy is to execute actions for
only the traffic group holding the lowest θn value at a time step. If the flow
matching strategy of all traffic groups changes at the same time, this could lead
to a significant variation in the gateway’s flow-tables and more latency due to
table-miss events and packet in messages.

C = {c1, c2, ..., ck} expresses a list of all feasible match field combinations,
e.g., ck =<matchTcpUdpPorts, matchIpv4Address,...> defined in Reactive For-
warding application of the ONOS SDN controller [9]. Therefore, the action space
for changing the flow matching tactic in the gateway is determined by

A � {a : a ∈ C } . (3)

It is noted that if the executed action is the same in comparison with the current
one of the chosen traffic group, this indicates that the control agent goes to the
sleep mode and waits for the next state observation.

32 T. G. Nguyen et al.

3.3 Immediate Reward Function

Whenever, by executing an action, the total number of current flow entries Ft

in the gateway reaches the limit Gmax, which may lead to either a degradation
of the gateway forwarding performance or a packet in flooding attack to the
SDN controller, the control agent should be immensely punished for this taken
action. Otherwise, the more match fields in a flow rule of a group, the higher
the granularity level the group presents. Moreover, in case there exists a group
getting θn < Θn, a little punishment3 is applied for the immediate reward of
the control agent. Consequently, we formulate the immediate reward function of
the control agent as the total achieved granularity values abstracting the total
punishments for groups not satisfying their requirements, which is described as
follows:

R(s, a) =

⎧
⎨

⎩

∑N
n=1 θn, if θn ≥ Θn, ∀n ∈ N and Ft < Gmax,∑N
n=1 θn − ∑N

n=1 ΔRn
, if θn < Θn and Ft < Gmax,

−Mmax, if Ft = Gmax,

(4)

where Ft is the current total number of flow entries in the gateway, and Mmax

exhibits the maximum number of match fields in a flow rule.

3.4 Optimization Formulation

We formulate an optimization problem to obtain the optimal policy, denoted as
π∗(s), that maximizes the control system’s average long-term reward, i.e., the
traffic granularity level of all groups at the gateway. Hence, the optimization
problem is described as follows:

max
π

R(π) =
∞∑

t=1

E(R(st, π(st)))

s.t.

⎧
⎨

⎩

R ∈ R, st ∈ S , π(st) ∈ A ,
0 < Θn ≤ θn ≤ Mmax, ∀n ∈ N ,
Ft < Gmax,

(5)

where R(π) is the average reward of the control agent under the policy π and
R(st, π(st)) is the immediate reward function under the policy π at time step t.

3 Difference between the gained θn and required Θn values is calculated by ΔR n =
Θn − θn, which is the punishment of the group n.

Efficient SDN-Based Traffic Monitoring in IoT Networks with DDQN 33

Fig. 4. Double Deep Q-Network based model.

4 Efficient SDN-Based IoT Traffic Monitoring
with Double Deep Q-Network

The considering MDP model is with a large number of states due to the com-
binations between N traffic groups, as represented in Eq. (2). In this section,
we develop the DDQN algorithm [14] to quickly obtain the optimal policy for
the control agent. Specifically, the DDQN algorithm is developed to improve the
performance of the Deep Q-Network (DQN) algorithm [5] that employs a deep
neural network as a nonlinear function approximator to find the approximated
values of Q∗(b, a). The original intention of the DDQN is to determine an action
according to an online or primary neural network Qnet (primary Q-network),
and it uses a target neural network Q̂net (target Q-network) to estimate the
target Q-value of the executed action, as shown in Fig. 4. In our approach, an
experience replay mechanism and a target Q-network are implemented as fol-
lows:

Experience Replay Mechanism: We deploy a replay memory pool, E , to store
the control agent’s experience at each time step, et = [st, at,R(st, at), st+1],
over many episodes, and E = {e1, ..., et}. The collected samples of experiences
from E are picked up at random to execute the neural network updates. This
approach allows achieving a high data usage efficiency since each experience
is trained many times by the neural networks. Additionally, the randomizing
technique reduces the correlations between the observed samples and therefore
lessening the variance of the neural network updates.

Target Q-Network: During the learning period, the Q-values will be corrected
resulting in changes of the value calculations if the shifting set of values is applied
for refurbishing the primary Q-network Qnet, and this destabilizes the learning

34 T. G. Nguyen et al.

algorithm. Hence, to improve the stability of the algorithm with neural networks,
we employ a separate network Q̂net, called target Q-network, for generating the
target Q-values in the update process of the primary Q-network Qnet. More
precisely, after every C time steps, we clone the Qnet and replace the Q̂net by
the cloned Qnet, then the renewed Q̂net is used for the following C steps to the
Qnet. This modification addresses divergence or oscillations, thereby stabilising
the learning algorithm.

The details of the DDQN algorithm for the control system are explained in
Algorithm 1. Specifically, the learning process contains many episodes, and in
each episode, the control agent conducts an action according to the ε-greedy
policy, and it then observes a new state and determines an immediate reward.
Next, an experience is stored in the experience replay memory E for the training
process at the next episodes. During the learning process, the control agent
acquires a random minibatch of experience to update the primary Q-networks
by minimising the following lost function [14].

Lφ(θφ) = E(s,a,R (s,a),s′)∼U(M)[R(s, a)

+ γQ̂net(s
′
, arg max

a′
Qnet(s

′
, a

′
; θ); θ−) − Qnet(s, a; θφ)]2, (6)

where γ indicates the discount factor, θφ are parameters of the primary network
Qnet at episode φ, and θ− are the parameters of the target network Q̂net.

A fundamental innovation in [5] was to freeze the parameters of the Q̂net for a
fixed number of time steps C while updating the Qnet by gradient descent, which
strengthens the stability of the algorithm. Furthermore, we hence differentiate
the loss function in Eq. (6) concerning the weight parameters of Qnet and Q̂net,
and then we can obtain the gradient update as follows:

∇θφ
Lφ(θφ) = E(s,a,R (s,a),s′)[(R(s, a) + γQ̂net(s

′
, arg max

a′
Qnet(s

′
, a

′
; θ); θ−)

− Qnet(s, a; θφ))∇θφ
Qnet(s, a; θφ)].

(7)
Rather than calculating the full expectations in the gradient in Eq. (7), the loss
function in Eq. (6) can be minimized by the gradient descent algorithm, which
is the essential engine of most deep learning algorithms.

It is noted that the target network parameters θ− are used by the primary
network parameters θφ for every C time steps and are settled fixed between
different updates. In addition, the learning process of the DDQN algorithm is
conducted by updating the neural network parameters utilizing prior experiences
in an online manner.

Efficient SDN-Based Traffic Monitoring in IoT Networks with DDQN 35

Algorithm 1. Efficient IoT traffic granularity acquisition with Double Deep
Q-Network
1: Initialize replay memory E with a buffer size N.

2: Initialize the primary Q-network Qnet with arbitrary weights θ.

3: Initialize the target Q-network Q̂net with arbitrary weights θ− = θ, C (the target network

replacement frequency), and T (terminal step in an episode).

4: for episode φ ∈ {1, 2, ..., φmax} do

5: for t ∈ {1, 2, ..., T} do

6: Select a random action at with probability ε, otherwise select at =

arg maxa∈A Q∗(st, at; θ).

7: Perform action at at the gateway and observe a new state st+1 and calculate an

immediate reward R(st, at).

8: Store experience et = (st, at,R(st, at), st+1) in E and replace st by st+1.

9: Sample random minibatch of experience (sj , aj ,R(sj , aj), sj+1) from E as

yj = R(sj , aj) +γQ̂net

(
sj+1, arg maxaj+1∈A Qnet(sj+1, aj+1; θ); θ−

)
.

10: Execute a gradient descent step on ‖yj − Qnet(sj , aj ; θ)‖2 with respect to the θ.

11: Replace Q̂net ← Qnet every C time steps.

12: Go to next episode if t = T .

13: end for

14: end for

5 Performance Evaluation

5.1 Experiment Setup

To evaluate the proposed approach, we emulate an SDN-based IoT network fol-
lowing the architecture shown in Fig. 1, which consists of 6 OvS (Open vSwitch)
running as SDN-based IoT gateway devices and several contained-based hosts
(24 hosts/OvS), and it is under control by an ONOS controller (v.1.3) [9]. The
emulation operates on the machine with Intel(R) Core(TM) i7-7700 computer
with clock speed 3.60 GHz, 64 GB RAM, and NVIDIA GeForce GTX 1080 Ti.
Initially, two out of six OvS gateways OvS1 and OvS2 are chosen for the super-
vision of associated control Agent1 and Agent2, respectively, residing in another
machine. To show the improvements of the deep reinforcement learning algo-
rithm, we implement the same setup but apply the Q-learning algorithm [13] to
solve our optimization problem.

5.2 Parameter Setting

For Q-learning algorithm, the learning rate α and the discount factor γ are
empirically set at 0.6. For the DDQN algorithm, we apply parameters based on
the common settings for designing neural networks [5], i.e., two-fully connected
hidden layers are used together with input and output layers (as shown in Fig. 4),
the size of the hidden layers is 128, the size of the output layer is 10 (which indi-
cates 10 flow matching strategies), the mini-batch size is 32, the replay memory
E holds a size N of 10,000, the target network replacement frequency C is 100

36 T. G. Nguyen et al.

iterations, and the discount factor γ is 0.6. In the learning process of two algo-
rithms, ε-greedy algorithm is employed with the initial value of 1.0 and its final
value of 0.1 [5], the duration of an iteration is 5 s, and the maximum iterations
in an episode T is 100. We let the capacity of flow-tables of the gateway device
Gmax = 3000. Note that we perform 10 different flow matching tactics and 11
primary match fields provided by the ONOS controller [9], that indicates |C | =
10, and Mmax = 11.

As discussed previously in Sect. 2, we can generalize three common traffic
groups, i.e., sensor traffic, monitor traffic, and alarm traffic. Sensor traffic: IoT
sensor devices generate traffic in a particular period with a low number of packets
per flow. Monitor traffic: identify by a small number of flows but a significant
number of packets per flow. Alarm traffic: we assume this traffic group contains
a moderate amount regarding both the number of flows and packets per flow.
Besides, Hping3 tool [4] is utilized to randomly generate TCP/UDP traffic flows
between hosts.

From the above classification, it indicates that N ={sensor,monitor,
alarm}, and experiments are performed with two settings of required granu-
larity levels as follows: Diverse: Θsensor = 3, Θmonitor = 6, Θalarm = 9; and
High: Θsensor = Θmonitor = Θalarm = 9.

5.3 Results

Convergence Rate of Reinforcement Learning Algorithms. As illus-
trated in Fig. 5, the average reward value is acquired after every 1,000 iterations
during the training period of the Agent1 that controls the gateway OvS1. The
convergence rate of the DDQN algorithm is considerably higher than that of
the Q-learning algorithm. In particular, the DDQN algorithm requires around
40,000 iterations to achieve the significant average value, i.e., approximately
25.0, for the total actual granularity in both the Diverse and High settings. This
is because the higher required degree of granularity regularly demands actions
that give a higher number of match fields in a flow rule, resulting in the higher
probability of overflowing the gateway (i.e., more flow rules installed) and in the
more critical penalty to the control agent.

(a) Diverse required granularity level (b) High required granularity level

Fig. 5. Average reward derived from Agent1 during the training.

Efficient SDN-Based Traffic Monitoring in IoT Networks with DDQN 37

(a) Diverse required granularity level (b) High required granularity level

Fig. 6. Average number of match fields in a flow rule derived from OvS1 during the
testing.

Reliable and Win-Win Equilibrium Traffic Granularity. As demon-
strated in Fig. 6), one can see that all traffic groups applying the DDQN based
solution outperform those utilizing the Q-learning algorithm in terms of the
average number of match fields in a flow rule during the testing phase. Accu-
rately, in the case of Diverse scenario (Fig. 6 (a)), the traffic groups under the
supervision of the DDQN algorithm usually account for a substantial number
of match fields in a flow rule that varies from 7.0 to 11.0 (Mmax), and these
degrees all satisfy the prerequisites. For the High setting (Fig. 6 (b)), due to a
very high precondition of granularity (Θ = 9.0) and a highly dynamic traffic
behaviour, the DDQN based control agent cannot satisfy that the requirements
all the time. However, in overall, it keeps a significant total degree of the gained
granularity.

Data Plane Overflow Avoidance. Next, we measure the overflow frequency
caused by different mechanisms during the testing phase with the High setting at
gateways including OvS1 and OvS2, and reinforcement learning based solutions
are compared with the typical ONOS flow setting that uses the MAC address,
IP address, and port number. Results presented in Fig. 7 show that no overflow
events are observed at two gateways in the DDQN based solution. Accordingly,
the DDQN outperforms the regular ONOS flow matching and the Q-learning
based mechanism in terms of the ability of data overflow avoidance.

Fig. 7. Overflow frequency derived from (a) OvS1, (b) OvS2.

6 Conclusion

In this paper, we have developed the efficient IoT traffic monitoring solution
employing the advances of SDN and deep reinforcement learning technique. Specif-
ically, we first have introduced the MDP-based flow matching control system

38 T. G. Nguyen et al.

supervising a particular SDN-based IoT gateway. Next, the DDQN algorithm has
been developed to maximize the average long-term traffic granularity level of all
traffic groups while avoiding the overflow problem. Results obtained from exten-
sive experiments have confirmed that the proposed monitoring approach using the
DDQN algorithm can not only provide a reliable and win-win equilibrium traffic
granularity level for all groups, but also completely avoid the data plane overflow
issue. To the best of our knowledge, this is the first monitoring system in IoT net-
works, which can efficiently provide a network traffic monitoring capability in an
equilibratory manner for different IoT traffic types, and the proposed approach
can be applied to various IoT networks with the SDN integration.

References

1. Alam, F., Mehmood, R., Katib, I., Albogami, N.N., Albeshri, A.: Data fusion and
IoT for smart ubiquitous environments: a survey. IEEE Access 5, 9533–9554 (2017).
https://doi.org/10.1109/ACCESS.2017.2697839

2. Bera, S., Misra, S., Vasilakos, A.V.: Software-defined networking for internet of
things: a survey. IEEE Internet Things J. 4(6), 1994–2008 (2017). https://doi.org/
10.1109/JIOT.2017.2746186

3. Open Networking Foundation: Openflow switch specification version 1.5.1 (2020)
4. Hping3: Description of the hping3 tool, October 2020. www.hping.org
5. Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature

518, 529–533 (2015)
6. Mu, T.Y., Al-Fuqaha, A., Shuaib, K., Sallabi, F.M., Qadir, J.: SDN flow entry

management using reinforcement learning. ACM Trans. Auton. Adapt. Syst. 13(2),
11:1–11:23 (2018). https://doi.org/10.1145/3281032

7. Nguyen, T.G., Phan, T.V., Nguyen, B.T., So-In, C., Baig, Z.A., Sanguanpong,
S.: SeArch: a collaborative and intelligent NIDS architecture for SDN-based cloud
IoT networks. IEEE Access 7, 107678–107694 (2019). https://doi.org/10.1109/
ACCESS.2019.2932438

8. Nunes, B.A.A., Mendonca, M., Nguyen, X., Obraczka, K., Turletti, T.: A survey of
software-defined networking: Past, present, and future of programmable networks.
IEEE Commun. Surv. Tutor. 16(3), 1617–1634 (Third Quarter 2014). https://doi.
org/10.1109/SURV.2014.012214.00180

9. ONOS: Description of the ONOS controller, October 2020
10. Phan, X.T., Fukuda, K.: SDN-Mon: fine-grained traffic monitoring framework in

software-defined networks. J. Inf. Process. 25, 182–190 (2017). https://doi.org/10.
2197/ipsjjip.25.182

11. Qiu, T., Chen, N., Li, K., Atiquzzaman, M., Zhao, W.: How can heterogeneous
internet of things build our future: a survey. IEEE Commun. Surv. Tutor. 20(3),
2011–2027 (2018). https://doi.org/10.1109/COMST.2018.2803740

12. Shin, S., Yegneswaran, V., Porras, P., Gu, G.: Avant-guard: scalable and vigilant
switch flow management in software-defined networks. In: Proceedings of the 2013
ACM SIGSAC Conference on Computer & Communications Security, pp. 413–424.
ACM, NY, USA (2013). https://doi.org/10.1145/2508859.2516684

13. Sutton, R.S., Barto, A.G.: Introduction to Reinforcement Learning, 1st edn. MIT
Press, Cambridge (1998)

14. Van Hasselt, H., Guez, A., Silver, D.: Deep reinforcement learning with double
q-learning. In: Thirtieth AAAI Conference on Artificial Intelligence (2016)

https://doi.org/10.1109/ACCESS.2017.2697839
https://doi.org/10.1109/JIOT.2017.2746186
https://doi.org/10.1109/JIOT.2017.2746186
www.hping.org
https://doi.org/10.1145/3281032
https://doi.org/10.1109/ACCESS.2019.2932438
https://doi.org/10.1109/ACCESS.2019.2932438
https://doi.org/10.1109/SURV.2014.012214.00180
https://doi.org/10.1109/SURV.2014.012214.00180
https://doi.org/10.2197/ipsjjip.25.182
https://doi.org/10.2197/ipsjjip.25.182
https://doi.org/10.1109/COMST.2018.2803740
https://doi.org/10.1145/2508859.2516684

	Efficient SDN-Based Traffic Monitoring in IoT Networks with Double Deep Q-Network
	1 Introduction
	1.1 Related Work
	1.2 Our Proposal

	2 System Model
	2.1 Basic SDN Packet Forwarding Strategy
	2.2 System Model

	3 Problem Formulation
	3.1 State Space
	3.2 Action Space
	3.3 Immediate Reward Function
	3.4 Optimization Formulation

	4 Efficient SDN-Based IoT Traffic Monitoring with Double Deep Q-Network
	5 Performance Evaluation
	5.1 Experiment Setup
	5.2 Parameter Setting
	5.3 Results

	6 Conclusion
	References

