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Abstract. Noise detection algorithms commonly face the problems of
over-cleansing, large computational complexity and long response time.
Preserving the original structure of data is critical for any classifier,
whereas over-cleansing will adversely affect the quality of data. Besides,
the high time complexity remains one of the main defects for most noise
detectors, especially those exhibiting an ensemble structure. Moreover,
numerous studies reported that ensemble-based techniques outperform
other techniques in the accuracy of noisy instances identification. In the
present study, a fast class noise detector called FMF (fast class noise
detector with multi-factor-based learning) was proposed. FMF, three
existing ensemble-based noise detectors and the case with original data
were compared on 10 classification tasks. C5.0 acted as the classifiers to
access the efficiency of these algorithms. As revealed from the results,
the FMF shortened the processing time at least twelve times by three
baselines, and it achieved the highest accuracy in most cases.

Keywords: Noise detection - Over-cleansing - High time complexity -
Multi-factor-based learning - Fast execution

1 Introduction

Noise detection [1] is a preprocessing technique that can be employed in any
given dataset to identify potentially noisy instances. In practice, uncertain or
contaminated training sets are commonly conducted. Besides, some studies esti-
mated that even in controlled environments at least 5% of errors exist in a
dataset [2,3].

It is suggested that some objects can be impacted by feature or class noise,
which offer misleading information and then hinder the learning process of classi-
fiers. Moreover, class noise is potentially more harmful than feature noise, and the
reasons are presented below. First, there are numerous features, whereas there
is only one label. Second, each feature for learning has different importance,
whereas labels always significantly impact learning [4]. Third, the consequences
of class noise detection will impact many feature noise detection techniques (e.g.
feature selection) directly. Thus, detecting class noise prior to the analysis of
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polluted data appears to be necessary. In this study, instances that should be
misclassified are defined as class noise.

In noise detection field, over-cleansing and the high time complexity are pri-
marily difficult to solve. Preserving the original structure of data is uttermost
important for any classifier. Obviously, over-reduction causes information loss,
even the original structural failure may occur and then the quality of data would
be affected adversely. Moreover, large training data size is crucial for supervised
learning tasks. Therefore, though removing noisy instances is considered to be
capable of enhancing the accuracy of learning model, the fact is that applying
noise detectors reduces the accuracy with great potential, especially for the pow-
erful classifiers. [5] proposed the MCIS (multi-class instance selection) and in the
six datasets they used, the accuracies of MCIS are higher than using the entire
training data only two times; the enhancements of both are 0.01. [6] proposed
MOCHC (multi-objective CHC algorithm for instance selection), which achieves
about 50% reduction rates, whereas the accuracies decrease for seven datasets
in the applied eight datasets. EIkMSI (evolutionary local k& with multi-selection
of instance) is superior, as proposed by [7]. In their experiments, a total of 150
datasets were used, and EIkMSI achieves the identical averaged accuracy with
the original data.

As described above, in the field of noise detection, one of recurrent prob-
lems is the trade-off between the reduction rate and the classification quality.
To address this problem, INFFC (an iterative class noise filter based on the
fusion of classifiers with noise sensitivity control) was proposed in [8]. INFFC
focuses more on the removal of those instances that must be deleted (class noise)
instead of the reduction rate. The experiment was based on 25 datasets. ENN
(edited nearest neighbor), All k-NN (all k-nearest neighbors), ME (multiedit),
CF (classifier filter), EF (ensemble filter), NCNE (nearest centroid neighbor edi-
tion), IPF (iterative partitioning filter) seven well-known noise detectors acted
as the comparisons. Furthermore, 1-NN and robust classifiers C4.5 and SVM
were employed to compute the accuracies. As indicated from the experimental
results, INFFC enhances the performance of the other methods as well as the
case with the entire training data.

The high time complexity remains one of the main defects for most noise
detectors; such problem is scaling up [9]. It is a common way to get better
performance at the cost of higher computational complexity. Two representative
examples are ensembles and deep neural networks. In machine learning studies,
the more powerful algorithms should be capable of learning complex nonlinear
relationships. By definition, they are robust to noise, show good balance between
high variance and low bias, and meaning predictions vary with the specific data
used to train them. This added flexibility and power usually come at the cost
of large-scale training data and algorithm which is robust enough to handle the
large-scale training data.

Especially in the era of big data, data are increasing in scale and exhibiting
critical roles in various fields (e.g., text classification, handwritten recognition
and face detection). Furthermore, the quality and size of training data are crucial
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for supervised learning tasks. Accordingly, how to build a noise detection algo-
rithm that exhibits high detection performance and fast execution is of notable
significance.

This study proposed a fast class noise detector with multi-factor-based learn-
ing, which is capable of alleviating the possibility of over-cleansing and perform-
ing favorably to three existing ensemble-based techniques and the original data
in terms of classification accuracy. Moreover, the fast execution makes it possible
to deal with large-scale datasets.

The rest of this article is organized as follows: In Sect. 2, the algorithm is
presented to build FMF. In Sect.3, the characteristics of this method are dis-
cussed. In Sect. 4, this method is empirically compared with three existing noise
detectors and the original data. Lastly, in Sect. 5, conclusions and future research
directions are drawn.

2 Algorithm of FMF

FMF is a three-stage process. Because no method will be efficient for all of data,
the first stage determines the proper similarity index for the applied data. The
second stage exploits the determined similarity index to make a multi-factor-
based learning to yield a noise score for respective instance. In the third stage,
a threshold is given to remove the noisy instances. The workflow of FMF is
illustrated in Fig. 1.

r—> KNN-entropy score ——

Threshold
indexes
Record of best l
similarity index Local density ; q
Dt (Instance label & with label score INEEDRETE e
Similarity value)
— iForest score —

Fig. 1. The workflow of FMF.

2.1 The Determination of the Proper Similarity Index

In this study, KNN was adopted to determine the proper similarity index for
its efficiency and fast execution. It learns very quickly because it reads in the
training data without much further processing. The computational complexity
of KNN is O(n?), which is significantly smaller than most of the recent methods.

For the similarity indexes, Euclidean distance (Euclidean), Canberra distance
(Canberra), Probabilistic symmetric chi-squared measure (Schi), Mahalanobis
distance (MD) and Pearson correlation coefficient (Pearson) were selected. To
make the selection more accurate, the numeric label was adopted to obtain the
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Prediction The squared error
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Fig. 2. An example of the squared error computation.

minimum squared error in the case of binary classification. On the other hand,
the characteristic label was adopted for multi-class classification. An example
of the squared error computation is illustrated in Fig.2 with Euclidean. The
nearest five neighbors of data x with label 1 are 1, 2, 1, 1, 2; thus, the label of
data x is predicted as 1.4, and the squared error will be 0.36. Using this method
to obtain the prediction squared errors of the rest instances, finally the sum is
taken as the squared error of Euclidean. The similarity index that achieves the
minimum squared error will be taken as the proper one; its results (for data x;
(¢ =1, 2,3, ..., n): the labels of the nearest k neighbors, I; (j =1, 2,..., k)
and their similarity values with data x;, s; (j =1, 2,..., k)) are transferred to
the next stage to process multi-factor-based learning. In this study, k is set to 5.

2.2 Multi-factor-based Learning

For a noise detector, the output can be one of two types, i.e., noise scores and
binary labels. This study processed a multi-factor-based learning to output a
noise score for respective instance. The output of noise score was taken because
noise score retains all of information provided by our algorithm and the possibil-
ity of conversion into binary label, besides, it also helps assess the performance
of FMF with visualization methods. Furthermore, though classifier is frequently
employed in noise detectors, several classifiers are even employed to build an
ensemble model, FMF criterion is independent of the classifier(s) in determining
the noise score. Thus, the quality of obtained clean data will not be impacted
by any classifier.
The noise score s of an instance x is defined as:

s(x, k) = weighty, x ke(x, k) + weight; x ldl(x, k) + weight; x iForest(x) (1)

weighty, + weight; + weighty =1 (2)

Where k is the number of nearest neighbors. The ke(x,k), ldi(z, k) and
iForest(z) represent KNN-entropy score, local density with label score and iFor-
est score, respectively. In this study, weighty, weight; and weights are set to
1/3.
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KNN-Entropy Score. The KNN-entropy score (ke) is defined as:

0 p(z, k) =0
ke(z, k) =<1 p(z, k) =1 (3)
p(x, k) x (1 — entropy(z,k)) 0 < p(x, k) < 1

Where p(x, k) is the proportion of the enemies of instance x in the near-
est k neighbors. The enemy of x refers to the instance from the other classes.
Therefore, the higher p(z, k), the more likely it is noise. The problem is how to
determine the value of k. Considering the possibility of data imbalance (in fact,
most of real-world data in many domains are reported to be imbalanced), in this
study, k is defined as:

k=min(ly,1Is,...,I,) (4)

Where I, is the number of instances in class n and n >= 2. The entropy(zx, k)
measures the complexity of the k£ nearest neighbors of x, which takes the same
value with:

K
H(X) 2 =" p(X = k) log, p(X = k) (5)
k=1

Where X is a random instance label, K is the number of classes, p(X = k)
is the proportion of instances from class k.

Therefore, the instances which enter another class completely will get the
largest KNN-entropy score, followed by the instances around the decision bound-
ary and normal instances.

A drawback of KNN-entropy score is that it ignores the order of k-nearest
neighbors. The local density with label score is designed to alleviate this problem.

Local Density with Label Score. The local density presents the local devia-
tion of density of a given instance with respect to its neighbors. For a given data
point x, let Ly (z) be the set of points within the k-nearest neighbor distance of
x. Note that L (z) will typically contain k points, but may sometimes contains
more than k£ points because of ties in the k-nearest neighbor distance. Then the
local density of x is defined as:

ld(x, k) = (ZyeLk(m dist(z,y) ) B o

k

Based on the consideration that an outlier should have a substantially lower
density than their neighbors, the smaller the local density, the more likely it is
outlier. Inspired by the idea of local density, the local density with label score
(Idl) is defined as:
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0 p(z,k) =0
ldi(z, k) =4 1 plz k) =1 (7)

1-— sigmoid(%) 0<plxk)<l,h+f=k

2 oyem (x) dist(z, y)

dhit(z, h) = - b <k (8)
ddif(z, f) = Zy”f“)fdm(m’y) f<k )

Within the k-nearest neighbor distance of z, Hy(x) is the set of points from
the same class with x and the number is h; Fy(z) is the set of points from
different class(es) and the number is f. in Eq. (7):

when h=0 — f=k — plak)=1 — ldi(z,k)=1
when h=k — f=0 — pxk)=0 — ldz,k)=0 (10)

when 0<h<k — GHEI >0 - 0<ld(z,k) <1

iForest Score. iForest utilizes the isolation trees rather than distance or den-
sity measures to detect outliers. In an isolation tree, the data is recursively
partitioned with axis-parallel cuts at randomly chosen partition points in ran-
domly selected attributes, so as to isolate the instances into nodes with fewer
and fewer instances until the points are isolated into singleton nodes containing
one instance. In such cases, the tree branches containing outliers are noticeably
less deep, because these data points are located in sparse regions. Therefore,
the distance of the leaf to the root is used as the outlier score. An iForest is an
ensemble combination of a set of isolation trees and the final combination step
is performed by averaging the path lengths of the data points in the different
trees of the iForest.

Because the iForest is an unsupervised outlier detector, the iForest score is
calculated in class unit in this study. The iForest score ranges from 0 to 1, and
the higher the score, the higher the potential of being noise.

2.3 Removal of Noisy Instances

As the definition, the final noise score is the average of KNN-entropy score,
local density with label score and iForest score, ranging from 0 to 1. However,
because iForest score has relatively higher value and lower standard deviation,
the min — max normalization was taken for three types of score to avoid any
one leading the average result.

To detect univariate extreme values, the box-plot (or box and whisker dia-
gram) was used, which is reported to be a particularly useful approach in the
context of visualizing noise score. In a box-plot, the statistics of a univariate
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distribution are summarized in terms of five quantities, which are the “mini-
mum,/maximum” (whisker), the 25th empirical quartile and 75th empirical quar-
tile (box), and the median (line in the middle of box). The distance between the
25th and 75th quartiles is referred to as the inter — quartile range (IQR). The
“minimum” and “maximum” are enclosed quotations because they are defined
in a non-standard way:

“minimum” = 25th empirical quartile — range X IQR (11)

“mazximum” = T5th empirical quartile + range X IQR (12)

In this study, range is set to 1 and the threshold is equal to “maximum”.
Values more than “maximum” are considered as the extreme cases, which will
be removed as noisy instances.

3 Noise Detection with FMF

This section presents a detail discussion about the noise score of FMF with iris
dataset. Fig.3 presents the distribution of noise scores and the noise score of
each instance. The minimum and maximum of noise scores were 0 and 0.94,
respectively. The reduction rate was about 5.33% (& 100 x 8/150) referring to
threshold 0.63. According to Fig. 3, the detected noisy instances distributed at
the right with higher values and had a distribution different (in location and
distributional form) from the other instances.

Figure 4 presents the result of Principal component analysis (PCA) of iris to
visualize the relationship between the position and noise score. For each class, a
color gradient from blue to red specifics the data points positioned in the center
zone, middle zone and border zone. Three points must be remarked:

1. The instances that completely enter another class (e.g., data points with ID
107 and 120) and the outliers (data point with ID 42) got the maximum
scores, showing the maximum possibility to be the noise.

2. The data points around the decision boundary (e.g., data points with ID 71,
84, 135) got median scores, showing median possibility to be the noise.

3. The central data points of each class get the minimum scores, showing the
maximum possibility to be the normal instances (or representative instances).

4 Comparison Between FMF and the Baselines

In the second experiment, FMF was compared with the case of using the original
data, All k-NN, dynamicCF and INFFC, which showed higher accuracy and
faster processing in the preliminary experiment. To access the accuracy achieved
by the mentioned algorithms, C5.0 was applied. Table1 lists the datasets. All
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Fig. 3. The distribution of noise scores and the noise score of each instance (iris, the
best similarity index: Euclidean).

the datasets were collected from the existing studies of noise detection, including
climate data, biological data, physical data, image data as well as text data.

Because noise detection is a multi-objective optimization problem, the clas-
sification accuracy of C5.0 (Table2), the reduction rate (Table3) and the pro-
cessing time (Table4) are shown to verify the hypothesis of the enhanced per-
formance of FMF statistically.

In Table 2, on average, the increases in accuracy were about 3.0%; The largest
percentage improvement (PI) was 10% and there were no percentage deteriora-
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Table 1. Details of the 10 datasets used in the experiment, including the total number
of instances (#instance), the number of attributes (#attribute) and the number of

classes (#class).

ID | Dataset #instance(per class) | #attribute | #class
1 | automobile | 192(22/23/31/52/64) | 14 5
2 | heart 267(55/212) 44 2
3 |haberman |306(81/225) 2
4 | SAheart | 462(192/270) 2
5 |fircd 500 | 500(216/284) 25 2
6 |climate | 540(46/494) 17 2
7 |isolet 600(300/300) 546 2
8 | halloffame | 1340(57/68/1215) 14 3
9 | segment 2310(330 x 7) 19 7
10 | ozone 2534(160/2374) 72 2
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Table 2. Average macro-Fs and ranks for each algorithm in the case of C5.0 works as
the classifier. These results are averaged over 10-fold cross-validation. The PI column
correspond to the percentage improvement (positive) or percentage deterioration (neg-
ative) score, calculated as: (FMF — All) x 100. The highest macro-F of each data is

shown in bold.

All | All k-NN | DynamicCF | INFFC | FMF | P1 (%)
automobile | 0.75 | 0.57 0.65 0.70 0.76 | +1
heart 0.61|0.57 0.57 0.63 0.67 46
haberman | 0.52|0.59 0.58 0.52 0.62 | +10
SAheart 0.55|0.54 0.57 0.52 0.55
fir ¢c4.500 |0.85|0.82 0.82 0.80 0.87 | +2
climate 0.89/0.91 0.91 0.91 0.91 +2
isolet 0.96 | 0.96 NA 0.97 0.97  +1
halloffame | 0.57|0.60 0.59 0.59 0.63 | +6
segment 0.96 | 0.96 0.96 0.96 0.96
ozone 0.60 | 0.57 0.52 0.59 0.64  +4
Average 0.73/0.71 0.69 0.72 0.76

Table 3. Average reduction rates of all algorithms. These results were averaged over
10-fold cross-validation. The highest reduction rate of each data is shown in bold.

All k-NN | dynamicCF | INFFC | FMF
automobile | 0.32 0.25 0.18 0.05
heart 0.29 0.20 0.07 0.07
haberman | 0.37 0.27 0.21 0.04
SAheart 0.49 0.41 0.35 0.04
fir ¢c4.500 |0.37 0.14 0.17 0.05
climate 0.13 0.09 0.07 0.20
isolet 0.01 0.00 0.00 0.03
halloffame | 0.09 0.07 0.05 0.01
segment 0.04 0.02 0.01 0.01
ozone 0.07 0.06 0.04 0.25
Average 0.22 0.15 0.12 0.08

tion (PD) cases; Additionally, among the 10 datasets applied, the win, tie and
loss of FMF were 8, 2, 0, respectively.

In Table 3, All k-NN achieved a performance in terms of reduction rate that
is better comparable to the performances of the other methods considered in the
assessment, which is 22% on average. Followed by dynamicCF (15%), INFFC
(12%) and FMF (8%). FMF removed the fewest instances.
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Table 4. Average processing time(s) of all algorithms. These results were averaged
over 10-fold cross-validation. The fastest processing of each data is shown in bold.

All k-NN | dynamicCF | INFFC | FMF
automobile | 2.92 5.07 29.03 |0.09
heart 6.68 8.25 29.67 |0.55
haberman 1.40 2.13 30.55 0.53
Saheart 4.02 6.43 297.53 10.30
fir_c4-500 10.22 13.03 242.70 |0.48
climate 10.88 12.07 45.39 |0.42
isolet 286.56 NA 346.12 |8.97
halloffame | 28.54 25.52 160.37 |1.92
segment 98.01 80.41 210.36 |5.15
ozone 227.87 188.08 1293.67 | 8.94
Average 67.71 37.89 268.54 |2.73

In Table4, FMF processed significantly faster than the other methods. On
average, the processing time was 2.73s per run, which was about 1/25, 1/12
and 1/90 of the averaged processing times of All k-NN, dynamicCF and INFFC,
respectively. Note that one important reason for taking All k-NN, dynamicCF
and INFFC as the baselines is because of their faster processing; however, accord-
ing to the results obtained, FMF was the fastest one.

5 Conclusions

Most of the existing noise detectors are very expensive when the size of the
training dataset is large, which was also demonstrated in our preliminary exper-
iment. This study proposed a fast noise detector with fundamentally different
structure that makes a multi-factor-based learning rather than the normal simple
learning (e.g., density-based learning) or ensemble-based learning with classifiers.
Removing the noisy instances which completely enter other classes first and then
smoothing the decision boundary allows FMF to achieve a promising result.

According to the results, (1) removing instances identified by FMF for train-
ing achieved the highest overall classification accuracy compared with the clas-
sifiers trained on the entire training data as well as with noise removed by the
other methods. The classification accuracy was improved up to 10%; (2) FMF
efficiently speeded up the computation. Compared with the second fast dynam-
icCF and the slowest INFFC, its speed was about 12 times and 90 times faster,
respectively; (3) FMF reached the lowest reduction rate. Compared with All k-
NN which achieved the maximum reduction rate, the value of FMF was about
its 1/3. However, the low reduction rate also demonstrates the low possibility of
over-cleansing.
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In the subsequent study, we are interested in detecting the redundant data
points with the noise scores.
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