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Abstract. Understanding the structure of dense regions in real-world
networks is an important research area with myriad practical applica-
tions. Using higher-order structures (motifs), such as triangles, had been
shown to be effective to locate the dense subgraphs. However, going
beyond the triangle structure is computationally demanding and mostly
overlooked in the past. In this work, we investigate the use of large cliques
(up to 10 nodes) for dense subgraph discovery. Relying on the nucleus
decomposition framework that finds hierarchical dense subgraphs, we
introduce efficient implementations to instantiate the framework up to
10-cliques. We analyze various real-world networks and discuss the den-
sity pointers, dense subgraph distributions, and also the hierarchical rela-
tionships. We investigate the clique count distributions per vertex and
report surprising behaviors that are not observed in the degree distribu-
tions. Our analysis shows that utilizing larger cliques can yield denser
structures with more interesting hierarchical relations in several net-
works.

1 Introduction

Real-world networks have a sparse structure in the global level and contain dense
regions in local neighborhoods [12]. Dense subgraphs are indicators for unusual
behaviors and functional units. There are various applications, such as identify-
ing the news stories from microblogging streams in real-time [2], finding price
value motifs in the financial networks [8], detecting DNA motifs in biological
networks [10], and locating spam link farms in web [7,11,14]. Dense regions are
also used for visualization of complex graph structure [1,31].

Higher-order structures (or motifs) capture the network dynamics by consid-
ering a small set of nodes together. Triangle is the smallest non-trivial structure
and has been heavily used in several models for network analysis [12]. However,
considering larger structures is computationally expensive and thus mostly over-
looked in the past. Previous works mostly focused on counting such structures by
efficient heuristics [21] and sampling methods [13]. There are also some studies
that finds a single optimum subgraph with respect to a given k-clique [28].

In this work, we analyze the impact of large cliques (up to 10 nodes)
on the dense subgraph structure of networks. We use nucleus decomposition
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Fig. 1. Left depicts the k-core decomposition where core numbers are shown for each
vertex with a hierarchy tree of different k-cores. Orange, blue, and red regions show the
1-, 2-, and 3-cores which are nested subgraphs, thus form the hierarchy by containment
(1-core ⊇ 2-core ⊇ 3-core). Right shows the k-truss decomposition where truss numbers
are shown for each edge with a hierarchy tree of different k-trusses. Entire graph is a
0-truss while five vertices in blue region form a 1-truss. There are also two 2-trusses
and one of them is a subset of the 1-truss. (Color figure online)

[24,25], generalization of k-core [19,26] and k-truss decompositions [6,23,29,30],
to find many subgraphs, of moderate density and with hierarchical relations,
with respect to the large cliques. Informally, k-(r, s) nucleus, for fixed positive
integers r < s, is a maximal subgraph where every r-clique participate in many
s-cliques. Due to the computational challenges, existing implementations are
bounded by (3, 4)-nucleus decomposition. We introduce practical algorithms for
higher-order nucleus decompositions using large cliques and evaluate our algo-
rithms through several experiments on a wide variety of real-world networks.
We analyze various real-world networks and discuss the density pointers, dense
subgraph distributions, and also the hierarchical relationships in a comparative
way. Our statistical analyses of the density pointers and clique counts for the
large (r, s) nuclei yield some interesting patterns. We observe that finer dense
structures that are lost in larger structures can be identified by our algorithms,
and there is an upper bound for higher-order nucleus decompositions where the
results stop improving.

We consider a simple undirected graph G = (V,E) where V is the set of
vertices and E is the set of edges. We define k-clique as a complete graph among
k vertices for k > 0, i.e., every vertex is connected to all other vertices. We first
discuss k-core, k-truss, and nucleus decompositions.

k-core and k-truss Decompositions. k-core decomposition is a threshold-
based hierarchical approach to decompose a network into nested subgraphs where
the threshold k is set on the degree of a vertex to exploit the vertex-edge rela-
tionships. The idea of k-core was first introduced by Erdős and Hajnal [9] and
rediscovered numerous times in different contexts [17,26]. k-core of G is a max-
imal and connected subgraph of G in which all nodes have degree at least k.
The lowest possible value of k is 1 for any network because of the connectivity
constraint. Core number of a node is the highest value of k such that it belongs
to a k-core but not to any (k + 1)-core. Figure 1a shows an example for the core
numbers of vertices and the hierarchy in k-core decomposition.

k-truss decomposition extends the idea of k-core decomposition by changing
the focus from vertex-edge relationship to edge-triangle relationship. k-truss of
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3-(1,2)
2-(2,3)
1-(3,4)

Fig. 2. Generalization of core and truss decompositions by nucleus decomposition. k-
(1, 2) and k-(2, 3) nucleus decomposition represents k-core and k-truss, respectively.
(1, 2) cannot detect a dense structure and reports the entire graph as a 3-(1, 2) nuclei
while (2, 3) separates the 4-clique on the right and gives two 2-(2, 3) nuclei. However,
(3, 4) can distinguish all the 4-cliques and report each as a 1-(3, 4) nuclei.

G is a maximal and connected subgraph of G in which every edge participates
in at least k triangless [6,23,29,30]. Truss number of an edge is the highest value
of k such that it belongs to a k-truss but not to any (k+1)-truss. Figure 1b shows
an example for the truss numbers and the hierarchy in k-truss decomposition.

Nucleus Decomposition. k-core and k-truss decompositions are generalized
by nucleus decomposition. It unifies the vertex-edge and edge-triangle relation-
ships into r-clique and s-clique relationships where r, s are positive integers such
that r < s. Informally, k-(r, s) nucleus of G is a maximal and s-connected sub-
graph of the r-cliques where each r-clique takes part in at least k s-cliques. We
quote the definition of nucleus decomposition from [25].

Definition 1. Let r < s be positive integers.

– R(G) and S(G) are the set of r-cliques and s-cliques in G, respectively.
– s-degree of R ∈ R(G) is the number of S ∈ S(G) such that S contains R

(R ⊂ S).
– Two r-cliques R,R′ are s-connected if there exists a sequence R =

R1, R2, ..., Rk = R′ in R(G) such that for each i, some S ∈ S(G) contains
Ri ∪ Ri+1.

– Let k, r, and s be positive integers such that r < s. A k-(r, s) nucleus is a
subgraph G′ which contains the edges in the maximal union S(G) of s-cliques
such that
– s-degree of any r-clique R ∈ R(G′) is at least k.
– Any r-clique pair R,R′ ∈ R(G′) are s-connected.

As in the core and truss number definitions, we define the nucleus number of an
r-clique, denoted ks, as the largest ks value such that the r-clique is a part of a
ks-(r, s) nucleus. Note that the values r = 1, s = 2 corresponds to the k-core and
r = 2, s = 3 corresponds to the k-truss definition. Figure 2 shows a comparison
of core, truss, and (3,4) nucleus subgraphs in a toy graph.
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2 Algorithms and Implementation Details

In this section, we present the algorithms to generate nucleus decomposition
using large cliques. Our implementation has two parts. First, we enumerate all k-
cliques (3 ≤ k ≤ 10) of a graph for higher-order nucleus decompositions and save
those cliques in disk. In the second part, we implement (r, s)-nucleus decomposi-
tion where 3 ≤ r ≤ 9 and s = r+1. As our main algorithmic goal is to construct
the forest of nuclei using large cliques, we extend the previous framework of (3,
4)-nucleus decomposition introduced in [25]. But an extension of this framework
for higher-order nucleus decompositions is non-trivial as the number of cliques
grows exponentially for large values and managing those efficiently requires a
careful implementation. Implementations for higher-order decompositions up to
(9, 10) nucleus available at http://sariyuce.com/largeND.zip.

2.1 Large Clique Enumeration

In Algorithm 1, we generate all k-cliques of a graph. We use MACE (MAximal
Clique Enumerator) [18] code to enumerate all maximal cliques. This code takes
O(|V ||E|) time for each maximal clique, where |V | and |E| are the number of
vertices, and the number of edges in the input graph. In practice the code finds
about 100,000 maximal cliques per second in sparse graphs, and the computation
time increases almost linearly with the density of the graph. Finding all k-cliques
from the list of maximal cliques is not trivial as there are many overlapping k-
cliques in those maximal cliques. To solve this issue we initialize a hash table H
(line 1 of Algorithm 1) where the key is generated by the id’s of participating
vertices in a k-clique, and the value is a boolean to show the existence of that k-
clique. So, it will store all the enumerated k-cliques. In line 6, we create a bitmask
of length n with k bits where n is the number of vertices in the maximal clique
M. Instead of generating all permutations of the actual vertex id’s, we generate
all permutations of this bit mask to reduce computation time leveraging bitwise
operations. In line 8, we initialize an empty array C for every permutation of the
bitmask. We add a vertex from the maximal clique M into C if the corresponding
bit value is 1. If C is not in the hash table H (enumerated for the first time),
then we save C in H with value 1. Thus we prevent duplicates of k-cliques.

2.2 Higher-Order Nucleus Decompositions:

The framework of (r, s)-nucleus decomposition adopted a hypergraph version
of classic Matula-Beck [19]. We extend this framework to design a generic (r,
s)-nucleus decomposition. But as the number of cliques increases exponentially
for large cliques in most of the datasets and maintaining these large lists is
memory inefficient and intractable, we implement the algorithm case-by-case
up to (9, 10)-nucleus decomposition to improve the runtime performance. We do
not implement (r, s)-nucleus decomposition where s > 10 for practical purposes.
We also ignore the nucleus decompositions where s − r > 1 since it has been
shown that s − r = 1 is the best combination for the options with equal s [25].

http://sariyuce.com/largeND.zip
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We first get the list of all r-cliques and s-cliques by using Algorithm 1.
Note that both r-cliques and s-cliques can be enumerated at the same time in
Algorithm 1 by simply changing the inner part of the outer-most loop. This way
we reduce the clique enumeration time which has a huge impact on the runtime
when the number of cliques is very large. Also, we only store the r-cliques in a
dynamic array for better scalability in terms of the memory space. The list of
s-cliques is used only for faster s-clique counting (s-degree) for each r-clique. To
save the s-degree of an r-clique, we create an index by using the id’s of participat-
ing vertices in the r-clique. We use a hash table to store the index and s-degree
of an r-clique in order to enable faster lookups. For utilizing the bucket data
structure from the framework of (r, s)-nucleus decomposition we create another
hash table to store the index of an r-clique and its position in the dynamic array
where every r-clique is stored. So, in the bucket, we store the r-clique’s position
in the dynamic array and its s-degree. The bucket data structure uses linked
lists for storing bucket contents and hash maps for finding the link list entry
of any given r-clique. During the peeling process, we use the bucket sort for
updating the s-degrees of r-cliques. In every iteration (line 6 of Algorithm 2), we
choose the unprocessed r-clique with lowest s-degree and assign this value as its
ks-value. Then we find all s-cliques which contain this r-clique, check whether
the neighbor r-cliques in those s-cliques are processed or not. If not processed
and s-degrees of those neighbor r-cliques are greater than the s-degree of the
current r-clique, then s-degrees of the neighbor r-cliques are decremented.

Algorithm 1: k-CliqueGen(G, k)

input : G: graph, k: positive integer
output: list of all k-cliques

1 Initialize a hash table H
2 Enumerate all maximal cliques using MACE [18]
3 foreach maximal clique M do

// M is an array of vertices

4 n ← number of vertices in M
5 if n ≥ k then
6 b ← bitmask of k leading 1’s and (n − k) trailing 0’s
7 for every permutation of b do
8 C ← an empty array

// C stores the clique vertices

9 for i = 0 to n do
10 if b[i] = 1 then add M[i] to C
11 if C is not in the hash table H then
12 save C in the hash table
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Algorithm 2: set-k(G, r, s)

input : G: graph, r < s: positive integers
output: ks(.) : array of ks indices for r-cliques

// fast clique enumeration by Algorithm 1

1 r-cliquesList, s-cliquesList ← list of r-cliques and s-cliques by k-CliqueGen(G,
k)
// initialization

2 foreach r-clique R ∈ r-cliquesList do
// using s-cliquesList for fast counting

3 ds(R) ← number of s-cliques containing R
4 Mark R as unprocessed
5 Save R in a hash table with ds(R) value

// peeling

6 foreach unprocessed r-clique R with min. ds(R) do
7 ks(R) = ds(R) // nucleus number assigned

8 Find set C of s-cliques containing R
9 foreach s-clique S ∈ C do

10 if any r-clique R′ ⊂ S is processed then
11 Continue
12 foreach r-clique R′ ∈ S do
13 if ds(R

′) > ds(R) and R′ �= R then
14 ds(R

′) = ds(R
′) − 1

15 Mark R as processed

3 Experiments

We evaluate our algorithms on various types of undirected simple real-world
networks from different domains such as social networks (Hamsterter, fb-Reed,
fb-Simmons, fb-Caltech36, fb-Haverford76, fb-Swarthmore42, fb-USFCA72),
collaboration networks (Jazz, Erdos992, DBLP ds, DBLP pp, DBLP dm), interac-
tion networks (PGP, Drug), internet networks (Caida), and infrastructure net-
works (PowerGrid). All datasets are collected from SNAP [16], Konect [15],
ICON [5], Network Repository [22], and Facebook100 dataset [27]. Key statis-
tics of our datasets are summarized in Table 1. All experiments are performed
on a Linux operating system (v. Linux 3.10.0-1127) running on a machine with
Intel(R) Xeon(R) Gold 6130 CPU processor at 2.10 GHz with 192 GB memory.

We find three types of patterns for k-clique distribution in our datasets. The
first pattern is shown in Figs. 3a and 3b where k-clique (3 ≤ k ≤ 10) count
increases exponentially. This pattern is the most common, observed in 9 net-
works. In Fig. 3c, the second pattern is shown where the clique count shows
some left-skew. In this pattern, the highest clique count is in the range between
1-clique to 10-clique. We observe this pattern in 5 networks (Caida, fb-Reed,
fb-Caltech36, fb-Simmons, and fb-Swarthmore42). The last pattern, shown
in Fig. 3d, is not so common as we find it in only 2 networks (Erdos992 and
PowerGrid). This pattern shows right-skew, and the clique count starts decreas-
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Table 1. k-clique (k ≤ 10) counts for the real-world graphs used in our experiments.
Bold numbers indicate the largest k-clique counts of a dataset.

Dataset |V | |E| | � | |K4| |K5| |K6| |K7| |K8| |K9| |K10|
Jazz 198 2.7K 17.9K 78.4K 273.7K 846K 2.4M 6.3M 14.8M 30.5M

fb-Caltech36 769 16.7K 119.6K 460K 1.3M 2.7M 4.8M 6.9M 8.2M 7.9M

fb-Reed 962 18.8K 97.1K 233.2K 349.5K 398.9K 392.6K 349K 274.7K 181.9K

fb-Haverford76 1.4K 59.6K 627.9K 3.1M 9.5M 21.1M 37.4M 56.2M 74.2M 87.5M

Drug 1.5K 48.5K 569.5K 4.2M 21.8M 86.5M 268.3M 289.7M 288.7M 408.6M

fb-Simmons 1.5K 33K 168.6K 456.9K 962.1K 1.7M 2.6M 3.3M 3.4M 2.8M

fb-Swarthmore42 1.7K 61.1K 552.7K 2.3M 5.9M 10.6M 15.2M 18.4M 19.4M 17.7M

Hamsterster 2.4K 16.6K 53.3K 132.9K 298.1K 619.1K 1.2M 2M 3.2M 4.5M

fb-USFCA72 2.7K 65.3K 371.7K 1.2M 3M 7.6M 19.4M 48.2M 112.0M 233.6M

PowerGrid 4.9K 6.6K 651 90 15 2 0 0 0 0

Erdos992 6.1K 7.5K 1.6K 450 168 55 11 1 0 0

DBLP ds 8.1K 23K 47.2K 148.4K 610.2K 2.5M 9.8M 33.3M 99.9M 263.9M

DBLP PP 8.4K 22.9K 74.2K 436.1K 2.7M 15M 71.6M 300.8M 1.12B 3.76B

PGP 10.7K 24.3K 54.8K 238.6K 1M 3.8M 11.4M 27.9M 56.4M 95.2M

DBLP dm 16.4K 33.9K 39.5K 63.5K 145.1K 342.5K 740.3K 1.4M 2.4M 3.6M

Caida 26.5K 53.4K 36.4K 53.9K 82.2K 102.1K 104.1K 87.5K 60.3K 33.9K

Fig. 3. k-clique (1≤k≤10) distribution for DBLP dm, Hamsterster, fb-Swarthmore42

and Erdos992 networks. x-axis is the value of k and y-axis is the count of k-cliques
with that k value. Clique count increases exponentially in Fig. 3a and 3b which is
the most common pattern observed in 9 networks. In Fig. 3c, we observe left-skewed
distribution, which is found in 5 networks. The right-skewed behavior in Fig. 3d is not
common, observed only in 2 networks.

ing after 2-cliques. Also, it is worth mentioning that there is no correlation
between the clique distribution pattern and the size of a network (i.e., number
of vertices and edges).

In the following, we present our analysis of higher-order nucleus decomposi-
tions with respect to various aspects. We first analyze the s-degree and ks-value
distributions and explain different behaviors observed in real-world networks.
Then we investigate how the densest parts found by each higher-order nucleus
decomposition change. Last, we look at the hierarchical relationships among
nuclei in higher-order decompositions.

3.1 Analysis of s-degrees and ks-values

Here we discuss the empirical patterns related to s-degrees and ks-values that we
find in our diverse datasets for higher-order nucleus decompositions. We analyze
the large (r, s) nuclei and give comparisons for different r, s values.
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s-degree Distributions. One of the most common macroscopic structural
properties that are found in real-world networks is the heavy-tailed degree distri-
bution [3,20]. There are very few highly connected nodes coexisting with a large
number of lowly connected nodes. According to the clique definition, vertex is
1-clique and edge is 2-clique. So, vertex-edge relationships can be represented
by (1, 2)-nucleus, and degree distribution of vertices can be thought of 2-clique
frequency distribution of 1-cliques. Similarly, in (r, s)-nucleus decomposition, s-
clique frequency of an r-clique is defined as the s-degree, i.e., the number of
s-cliques containing the r-clique. We explore s-degree distribution of r-cliques
from (3, 4) to (9, 10)-nucleus decompositions.

One interesting finding is that we do not observe any heavy-tailed s-degree
distribution in the collaboration networks for higher-order nucleus decomposi-
tions (Figs. 4 and 5). In all other networks (except PGP), the heavy-tail pattern
is observed up to (5, 6)-nucleus decompositions. After that, we observe Poisson
distribution for most of the networks. We present Caida in Fig. 4 and DBLP-dm
in Fig. 5 as a representative sample. In both figures, x-axis (binned) and y-axis
represent s-degrees and the number of r-cliques, respectively. Other higher-order
nucleus decompositions are not shown due to space constraints.

ks-value Distributions. In (r, s)-nucleus decomposition, ks-value is an impor-
tant property of an r-clique encoding local structural information. ks-values pro-
vide a more regular structure and distribution than the s-degrees. We analyze
the ks-values for all higher-order nucleus decompositions. At first, we explore
the distribution of ks-values concerning r-cliques from (3, 4) to (9, 10)-nucleus
decomposition. Figure 6 presents the distributions for Drug network. Although
the ks-value distribution does not reveal any potential structural information, we
notice that for most of the networks the range of ks-values decreases gradually
with larger r, s values, and the mass of the histogram is shifted to the right in
the nucleus decompositions with larger r and s values. This indicates that most
r-cliques have a large ks-value in higher-order nucleus decompositions.

We also perform a vertex-centric analysis. The number of r-cliques that a
vertex is a part of is an important measure. Figures 7 presents the results for
PGP network. We discover that there are very few vertices with large r-clique

(a) (3, 4) nucleus dec. (b) (6, 7) nucleus dec. (c) (8, 9) nucleus dec.

Fig. 4. s-degree distribution of r-cliques for caida network, for r, s as (3, 4), (6, 7)
and (8, 9). x-axis shows the s-degrees and y-axis denotes the counts of r-cliques in
log scale. The histogram shows that there is a heavy-tail pattern up to (5, 6)-nucleus
decomposition.
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(a) (3, 4) nucleus d. (b) (5, 6) nucleus d. (c) (7, 8) nucleus d. (d) (9, 10) nucleus d.

Fig. 5. s-degree distribution of r-cliques for DBLP dm network, for r, s as (3, 4), (5, 6),
(7, 8) and (9, 10). x-axis shows the s-degrees and y-axis denotes the counts of r-cliques
in log scale. The histogram shows that there is no heavy-tail pattern (similar behaviors
observed for other collaboration networks).

(a) (3, 4) nucleus d. (b) (5, 6) nucleus d. (c) (7, 8) nucleus d. (d) (9, 10) nucleus d.

Fig. 6. ks-value distribution of r-cliques for Drug network. The x-axis (binned) is ks-
value and the y-axis is the number of r-cliques. We use logarithmic scale in y-axis
to handle the skewness. The mass of the histogram is shifted to right in higher-order
nucleus decompositions.

counts in nine networks. These vertices reflect the dense structure in the networks
and number of such vertices remains constant in higher-order decompositions.
But there is a huge decrease in the total number of vertices which are part of
r-cliques in higher-order because of vertices that do not participate in any r-
clique. Another interesting pattern that we uncover is the two distinct groups
of the vertices in higher-order. One group has very high r-clique counts while
the other group has very low r-clique counts. This indicates the existence of
core-periphery structure in DBLP dm, DBLP ds, Drug, Erdos992, Hamsterster,
and Jazz networks [4].

Being part of many r-cliques, a vertex has many ks-values from those r-
cliques. The ks-value of a vertex in higher-order nucleus decompositions can be
defined by the average, max, or min values of those ks-values. We examine the
distribution of those measure but there is no common pattern overall, neither
for datasets nor for the varying r, s values.

3.2 Degeneracy Core

In the classic k-core decomposition, every vertex gets a ks-value (core number)
which reflects its significance in the network. The degeneracy of a graph is the
maximum k-value such that the graph has a non-empty k-core. The core sub-
graph with maximum k-value is called the degeneracy core. As degeneracy core
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(a) # vertices: 2530 (b) # vertices: 1223 (c) # vertices: 673 (d) # vertices: 403

Fig. 7. Frequency distribution of r-cliques for vertices in PGP network. A few vertices
have large r-clique counts and it remains constant in higher orders. There is a significant
decrease in the number of vertices that are part of an r-clique in higher orders.

is a significant dense subgraph, we analyze it for higher-order nucleus decompo-
sitions. In (r, s)-nucleus decomposition, the ks-value of an r-clique denotes that
its s-degree is at least ks. The r-cliques with the maximum ks-value form the
degeneracy core. We locate those cores by taking the induced subgraph of vertices
that are part of those r-cliques. We uncover some interesting structural patterns
in the degeneracy cores of higher-order nucleus decompositions. The expected
behavior is that the size (vertex count) of the degeneracy core will decrease, and
the density (fraction of internal edges with respect to the total possible edges)
will increase with higher orders as fine-grained subgraphs will be found in a
higher order which are lost in the larger structure. Surprisingly, the degeneracy
core with the highest density is found in (3, 4)-nucleus decomposition for eight
networks in our dataset. The size and density of the degeneracy core remain
unchanged in higher orders for these networks. Table 2 presents the statistics of
the densest degeneracy cores for all nucleus decompositions in each network. We
only show the nucleus decompositions where going to larger r, s values yields a
denser degeneracy core, i.e., the higher-order decompositions that do not results
in denser degeneracy cores are not shown. We get the best degeneracy core in (4,
5)-nucleus decomposition for 5 facebook networks. Figure 8 presents the density
and size behavior of all the k-cores in fb-Haverford76. In several cases, it is
possible to find denser structures with higher-order nucleus decom-
positions where r, s is larger than 3, 4. In fb-Reed network, for instance,
the size of the degeneracy core reduces from 33 to 19 and density increases from
0.6326 to 0.9766 when we go from (3, 4) to (4, 5)-nucleus decomposition. In
PGP and fb-USFCA72 networks, the best result is found in (5, 6)-nucleus decom-
positions. In Drug network, it is possible to find denser structures until the (8,
9)-nucleus decomposition.

3.3 Hierarchy Analysis

Nucleus decomposition summarizes the network as a forest of nuclei that shows
a global hierarchical snapshot of dense subgraphs with containment relations.
We analyze the forest of nuclei in higher-order nucleus decompositions to under-
stand the hierarchical structure of a network for large r, s values. We use circle
packing diagrams to visualize the forest of nuclei where each circle denotes a
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Table 2. Vital statistics of the degeneracy cores. The quality of the degeneracy core
is measured both in terms of size and density. For a network, size and density of the
degeneracy core in higher-order decompositions are shown until the best degeneracy
core is found. The smallest and densest degeneracy core is found in (3, 4)-nucleus
decomposition for eight real-world networks.

Dataset ND SizeDensity

Caida (3, 4) 17 0.9926

DBLP ds (3, 4) 36 1.0

DBLP pp (3, 4) 45 1.0

DBLP dm (3, 4) 25 1.0

Jazz (3, 4) 30 1.0

Hamster. (3, 4) 25 1.0

Erdos992 (3, 4) 8 1.0

fb-USF. (3, 4) 35 0.9832

(4, 5) 35 0.9832

(5, 6) 32 0.9940

Dataset ND SizeDensity

fb-Simmons (3, 4) 25 0.9633

(4, 5) 24 0.9710

fb-Haverf. (3, 4) 37 0.9309

(4, 5) 30 0.9747

fb-Caltech36 (3, 4) 26 0.9661

(4, 5) 23 0.9841

fb-Reed (3, 4) 33 0.6326

(4, 5) 19 0.9766

fb-Swarth. (3, 4) 78 0.3876

(4, 5) 51 0.5152

Dataset ND SizeDensity

PGP (3, 4) 35 0.9546

(4, 5) 62 0.5124

(5, 6) 29 0.9877

Drug (3, 4) 59 0.8843

(4, 5) 78 0.6417

(5, 6) 42 0.9268

(6, 7) 42 0.9268

(7, 8) 42 0.9268

(8, 9) 38 0.9445

PowerG. (3, 4) 12 0.5455

(a) (3, 4), # nuclei: 46 (b) (4, 5), # nuclei: 82 (c) (5, 6), # nuclei: 137

Fig. 8. Size vs density plot of the nuclei (having more than 10 vertices) for
fb-Haverford76 network, for (3, 4), (4, 5) and (5, 6)-nucleus decompositions. In addi-
tion to the degeneracy core, we also show the leaf subgraphs and internal non-leaf
ones in the nuclei hierarchy. The size of the degeneracy core reduces from 37 to 30
and its density increases from 0.9309 to 0.9747 for moving from (3, 4) to (4, 5)-nucleus
decomposition. The degeneracy core remains unchanged for larger higher-order nucleus
decompositions.

nucleus subgraph in the forest and the containment relationships are captured
with nested circles. The size of the circle is proportional to the number of ver-
tices in the corresponding nucleus, and the color of the circle represents the
density (blue and red show density 0 and 1, respectively). Containment within
each circle represents a level in the hierarchy. Any nucleus with less than 10
vertices are ignored. For most networks, we observe that denser structures can
be obtained in higher-order decompositions with larger r, s values. However, this
comes at the cost of losing hierarchical relationships. Figure 9 presents the visu-
alizations for fb-Simmons network for all higher-order decompositions. Forest of
(r, s)-nuclei can present the hierarchical structure at a finer granularity up to a
certain higher-order decomposition. For most of the networks in our experiments,
the hierarchical structure disappears after (7, 8)-nucleus decomposition.
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(a) fb-Simmons-34 (b) fb-Simmons-45 (c) fb-Simmons-56 (d) fb-Simmons-67

(e) fb-Simmons-78 (f) fb-Simmons-89 (g) fb-Simmons-910

DENSITY: 0.0

Fig. 9. (r, s)-nuclei forest in higher-order nucleus decompositions for fb-Simmons. The
density is color coded. Each circle denotes a nucleus subgraph in the forest and the con-
tainment relationships are captured with nested circles. Any nucleus with less than 10
vertices are ignored. The leaves are mostly red with high densities. Finer dense structures
that are lost in larger structures become visible in higher-order decompositions.

4 Conclusion

In this paper, we introduced an analysis for using large cliques in dense subgraph
discovery. Relying on the nucleus decomposition, we implemented higher-order
decompositions that can use up to 10-cliques and analyzed the resulting dense
subgraphs and hierarchical relations for various real-world networks. Our anal-
ysis suggests that utilizing larger cliques can yield denser structures with more
interesting hierarchical relations. For future work, we plan to investigate faster
algorithms for large (r, s) nucleus decompositions.
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28. Tsourakakis, C.: The k-clique densest subgraph problem. In: International Confer-
ence on World Wide Web, WWW, pp. 1122–1132 (2015)

29. Verma, A., Butenko, S.: Network clustering via clique relaxations: A community
based. Graph Partitioning and Graph Clustering 588, 129 (2013)

30. Zhang, Y., Parthasarathy, S.: Extracting analyzing and visualizing triangle k-core
motifs within networks. In: IEEE ICDE, pp. 1049–1060 (2012)

31. Zhao, F., Tung, A.: Large scale cohesive subgraphs discovery for social network
visual analysis. In: PVLDB, pp. 85–96 (2013)


	Using Large Cliques for Hierarchical Dense Subgraph Discovery
	1 Introduction
	2 Algorithms and Implementation Details
	2.1 Large Clique Enumeration
	2.2 Higher-Order Nucleus Decompositions:

	3 Experiments
	3.1 Analysis of s-degrees and ks-values
	3.2 Degeneracy Core
	3.3 Hierarchy Analysis

	4 Conclusion
	References




