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Abstract. In emerging applications of social networks, groups play a
vital role as most decisions are made by groups according to the opin-
ion of the majority therein. This brings the problem of Group Influence
Maximization (GIM) which aims to select k initial active nodes for maxi-
mizing the expected number of influenced groups. In the paper, we study
GIM and focus on activating groups rather than individuals. Observing
the known NP-hardness of GIM and the #P -hardness of computing the
objective function under Independent Cascade (IC) model, we devise an
algorithm called Complementary Maximum Coverage (CMC) based on
analyzing the influence of the nodes over the groups, ensuring the task
of maximizing the number of activated groups. In addition, we also pro-
pose an algorithm called Improved Reverse Influence Sampling (IRIS)
via adjusting the famous Reverse Influence Sampling (RIS) algorithm
for GIM. Lastly, experiments are carried out to demonstrate that our
CMC and IRIS both outperform the known baselines including Max-
imum Coverage and Maximum Out-degree algorithms in the average
number of activated groups under IC model.

Keywords: Complementary Maximum Coverage (CMC) algorithm ·
Improved Reverse Influence Sampling (IRIS) algorithm · Group
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1 Introduction

With the development of the Internet and the continuous improvement of infor-
mation technology, people are more and more inclined to conduct social activ-
ities on the Internet, and express their views or share their daily life on social
software, thus giving rise to social networks mediated by social software. As a
platform, social networks play an important role in the interaction between indi-
viduals and the dissemination of information and ideas. Among the commonly
used social software, Facebook has 2.2 billion users, WeChat has 1 billion users,
and Twitter has 340 million users [1]. People are not lonely in the real life as well
as in social networks. They will form groups based on their common interests
and hobbies or some kind of relationship. The group can be large or small: as
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small as two or three people, such as a family; or as large as a state or even a
country. Because social networks have such important influence, they have great
applications in information dissemination, advertising marketing, public opinion
control and other aspects. We take viral marketing as an example, when advertis-
ing companies want to achieve a good marketing result with limited cost, they
will use the “word-of-mouth” effect to select k users to maximize advertising
audiences through their “mouths”. In addition, individual decisions depend on
group decisions. For example, a company needs to buy pens of a certain brand
for all employees. When a majority of employees are promoted by a certain brand
and decide to buy pens of that brand, the company will buy all pens of that
brand. Another example is the US presidential election. If a presidential candi-
date wins a majority in a state election, he or she will have all the electoral votes
of the state. This is also a practical example of maximizing group influence.

1.1 Related Work

To the best of our knowledge, Domingos and Richardson et al. [2] were the
first to address the issue of Influence Maximization (IM). Kempe et al. [3] were
the first to formulate IM as a discrete optimization problem. They showed the
IM problem is NP-hard under either the Independent Cascade (IC) model or
Linear Threshold (LT) model, while the objective function is submodular. They
proposed a greedy algorithm using Monte Carlo method to simulate the process
of influence propagation, which achieved

(
1 − 1

e − ε
)

approximation solution for
any ε > 0. However, the computation time of the greedy algorithm is expensive.
Subsequently, more and more scholars have dedicated themselves to the study of
IM problem and proposing approximation algorithms based on improved greedy
approach and heuristic algorithms [4–8]. Heuristic algorithms are favored by
scholars because of its fast computation speed, but its approximate quality is
not as good as the approximation algorithms. In particular, the improved greedy
algorithms are faster than the traditional greedy algorithms via making use of
the submodularity of the objective function.

Due to the further study of many scholars, the algorithms for solving IM
problem have also developed rapidly. Among them, Borgs et al. [9] proposed
RIS algorithm, which greatly reduced the computational time of the simulation
propagation process. Based on RIS algorithm, Tang et al. [10,11] proposed TIM,
TIM+ and IMM algorithms, which guaranteed a

(
1 − 1

e − ε
)

approximation ratio
under IC model. Recently, Nguyen et al. [12] proposed the SSA and D-SSA
algorithms, which were the first approximation algorithm which satisfies the
strict theoretical threshold of IM with the minimum sample set.

A social network is divided into multiple communities by community discov-
ery algorithms. The nodes within communities are closely connected while the
nodes among communities are sparsely connected, so the influence within com-
munities spreads quickly in a wide range. The two most commonly used commu-
nity discovery algorithms are OASNET (Optimal Allocation in a Social NET-
work) algorithm and CGA (Community-based Greedy Algorithm) algorithm.
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The OASNET algorithm was proposed by Cao et al. [13] to solve the IM prob-
lem by using the optimal dynamic allocation of resources. CGA algorithm [14]
combined the dynamic programming method and the greedy algorithm to allo-
cate the optimal number of seed nodes for each community so as to maximize the
influence. Ji et al. [15] proposed a new algorithm, which found out the hidden
community structure in the network and then selected k nodes with the largest
number of community coverage as seed nodes. Moreover, many researchers are
committed to studying the property of community to solve IM aiming to max-
imize the number of eventually activated nodes, while the task of GIM is to
activate maximum groups rather than individuals [16–22].

In terms of research on GIM, Zhu et al. [23] proposed a sandwich approxima-
tion framework based on D-SSA method to obtain seed nodes, which achieved an
approximation guarantee of

(
1 − 1

e − ε
)
. In addition, Zhu et al. [24] also proposed

a sandwich approximation framework based on ED-SSA method, which approxi-
mated the upper and lower bounds of the objective function and compared them
with the Group Coverage Maximization Algorithm (GCMA) to obtain the seed
nodes. Although great breakthroughs have been made in GIM, many scholars
are still working on more efficient algorithms.

1.2 Our Contribution

Our results can be summarized as in the following:

– We devise a heuristic algorithm called Complementary Maximum Coverage
(CMC), which emphasizes the influence of the nodes over groups to solve
GIM.

– We also propose the Improved Reverse Influence Sampling (IRIS) algorithm
by adjusting the famous Reverse Influence Sampling (RIS) algorithm for GIM.

– Compared with Maximum Coverage (MC) algorithm and Maximum Out-
degree (MO) algorithm by experiments, our proposed algorithms outperform
both MC and MO regarding the average number of eventually activated
groups under the IC model.

1.3 Organization

The remainder of the paper is organized as below: Sect. 2 gives the social network
model, and formally introduces the GIM problem; Sect. 3 presents the CMC
algorithm and IRIS algorithm; Sect. 4 evaluates the four algorithms under IC
model through numerical experiments; Sect. 5 concludes the paper.

2 Problem Description

2.1 Network Model

We model the social network as G = (V, E, P, U).
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V represents the set of nodes which represent users in a social network.
Assume that the social network has n users, then V = {v1, v2, . . . , vn}. The
node can have influence on other nodes or be influenced by other nodes, which
form edges. If there’s an edge between two nodes, we could say that the two
nodes are neighbors to each other.

E represents the set of edges which represent the influence between nodes.
Assume that the social network has m edges, then E = {e1, e2, . . . , em}. The
edge can be directed or undirected. For example, in the directed graph, (u, v)
means that node u has influence on node v, but node v has no influence on node
u, u is the source node and v is the target node. The edge taking u as the source
node is u’s outgoing edge, and the edge taking u as the target node is u’s entry
edge. The sum of the number of u’s outgoing edges is the out-degree of u, and
the sum of the number of u’s entry edges is the in-degree of u.

P represents the set of probabilities which are the weights of the edges,
then P = {p1, p2, . . . , pm}, and ∀pi ∈ [0, 1] , 1 ≤ i ≤ m, i is a positive integer.
The higher the probability is, the more likely the source node is to successfully
activate the target node.

U represents the set of groups. Assume that the social network has l groups,
then U = {u1, u2, ..., ul}, and uj is a subset of V , 1 ≤ j ≤ l, j is a positive
integer. In a social network, each node can be an individual or belong to one or
more groups. When β% of the members in a group are affected, we assume that
the group is successfully affected.

2.2 Group Influence Maximization

The IM problem is to study the maximum number of nodes that will be activated
with k initial active nodes under the given information diffusion model. Figure 1a
is a simple social network graph without groups. Each edge is directed, indicating
that the influence flows from the source node to the target node, and each edge
is probabilistic.

Fig. 1. Examples of simple social networks with vs without groups (Color figure online)
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The GIM aims to seek k nodes to maximize the expected number of eventu-
ally activated groups. Each node in GIM can be independent or belong to one
or more groups, and a group will be activated only if the β% members of the
group are activated. The larger the value of β is, the more difficult it is for the
group to be activated.

The IM problem is a special example of the GIM problem. Each group in
GIM represents each node in IM, and β% = 100%. The IM problem is NP-
hard. Obviously, the GIM problem is also NP-hard. For a given graph G =
(V, E, P, U), the mathematical description of GIM is:

max ρ (S)
s.t. |S| ≤ k

where S is the set of seed nodes, k is the number of initial seed nodes, and
ρ (S) is the expected number of groups activated by initial seed nodes under a
given propagation model. It is difficult to calculate ρ (S) because the activation
is probabilistic and random. In the IM problem, computing ρ (S) under IC model
is #P-hard, likewise, in the GIM problem, computing ρ (S) under IC model is
also #P-hard [24].

Obviously, activating more nodes is not the same as activating more groups.
As shown in Fig. 1b, there are three groups in the social network, that is U =
{u1, u2, u3}, u1 is the yellow one, u2 is the pink one, u3 is the orange one.
u1 = {13, 15}, u2 = {2, 4, 5, 6, 15}, u3 = {9, 11}. The group activation threshold
is assumed to be 50%, meaning that the group will be activated only when at
least half of members of the group are active. For example, it is assumed that
the seed node {2} finally activates {2, 4, 15}, three nodes are activated, so u1

and u2 are activated, ρ (S) = 2. Another case is that seed node {2} successfully
influences {2, 4, 5, 6}, four nodes are activated, but only u2 is activated, ρ (S) = 1.
Therefore, activating more nodes is not the same as activating more groups. But
the more nodes are activated, the more likely groups are to be activated.

3 The Algorithms for Solving GIM

In this section we discuss the algorithms to solve Group Influence Maximiza-
tion (GIM) in the paper, including Complementary Maximum Coverage (CMC)
algorithm and Improved Reverse Influence Sampling (IRIS) algorithm.

3.1 Complementary Maximum Coverage Algorithm

The CMC algorithm is the complementary of MC algorithm. MC algorithm aims
to seek k seed nodes with maximum group coverage. However, MC algorithm
does not take the contribution of nodes over groups into account. If a node covers
maximum groups, but those groups require β% active members to be activated,
and this node is only a member of the large groups. In case the node does not
activate other members of the groups, then the node makes little contribution to
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Algorithm 1. The Complementary Maximum Coverage algorithm
Input: An instance of GIM G = (V, E, P, U), the number of seed nodes k, the acti-
vation threshold of groups β.
Output: the seed set S.
1: Set S :=Φ;
2: Calculate the fc of each node following Equality 1.
3: Sort the nodes according to the computed fc.
4: Add k nodes with maximum fc into S.
5: return S.

the groups. The idea of CMC algorithm is to treat all the nodes as seed nodes,
then remove n − k seed nodes with the least influence over groups, and finally
obtain k seed nodes. The influence of a node on a group is not only reflected in
whether deleting the node has an impact on activating the group, but also in
whether it can activate other members in the group. We use fc (vi) to calculate
the influence of vi over groups which it covers. If a node does not belong to any
group, its fc = 0. If a node covers more than one group, then fc equals the sum
of its influence on groups. If the node has maximum group coverage, the fc of
the node may be larger. We have fc (vi)

fc(vi) =
∑

j

avi

|uj | − Huj
+ 1

(1)

where j is the group number, uj is the group covered by vi, avi
is the number

of members that vi activates successfully in uj , including vi itself. All the nodes
activated by vi are obtained by breadth first search (BFS) method, then calculate
the number of these nodes in uj , the result is avi

. avi
measures the active degree

of vi in the group. The larger avi
is, the more members of the group can be

activated, which also increases the possibility of activating the group. |uj | is
the total number of members of uj , Huj

is the activation threshold of uj , and
Huj

= β% × |uj |. |uj | − Huj
means that uj allows |uj | − Huj

nodes to be
deleted, and the larger |uj | − Huj

is, the less influence vi has on uj . Due to the
denominator can’t be zero, we define the denominator to be |uj | − Huj

+ 1.

Lemma 1 The runtime of Algorithm 1 is O (nl + n + m).

CMC performs the following operations on the nodes numbered from 1 to n:
traverse l groups and find out the groups covered by each node. The runtime
of the step is O (nl). Then compute the number of activated members within
the groups covered by each node via BFS method, so the runtime is O (n + m).
Hence, the runtime of the CMC algorithm is O (nl + n + m).

3.2 Improved Reverse Influence Sampling Algorithm

The Improved Reverse Influence Sampling (IRIS) algorithm is improved on
the basis of Reverse Influence Sampling (RIS) algorithm. The RIS algorithm
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Fig. 2. An example of a RR set generation

Algorithm 2. get RRS algorithm
Input: An instance of GIM G = (V, E, P, U).
Output: RR set.
1: RR set, new nodes := Φ.
2: Get a random graph g from G.
3: Choose node v from g uniformly at random.
4: Add v into new nodes.
5: repeat
6: Simulate influence spread, starting from new nodes.
7: Add source nodes of new nodes into RR set.
8: Update new nodes.
9: until new nodes is empty.
10: return RR set.

is divided into two steps: the process of generating RR (Reverse Reachable) sets
and the process of selecting seed nodes. The first step is to randomly select node v
in the original graph and traverse the entry edge of v. Each edge is inverted with
the probability of p, or remains unchanged with the probability of 1−p. Finally, a
sparse reverse graph is generated. This helps to keep the high-probability edges,
allowing a wider range of propagation. Simply speaking, the set of nodes that
can reach node v with high probability is the RR set of node v. To take a simple
example, Fig. 2a is the original social network graph, and there are 5 nodes and
10 directed edges. Figure 2b is the sparse graph of Fig. 2a, leaving 7 edges with
high probability. The RR set of node v2 is {v2, v1, v4, v5}, where each node has
high probability to activate v2.
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Fig. 3. Comparison of CMC, MC and MO under IC model for Dataset1

The second step of the RIS algorithm is to select the seed nodes covering
maximum RR sets. Because covering more RR sets means affecting more nodes.
The k nodes that cover most RR sets are the seed nodes we are looking for. But
now the task is to activate maximum groups, not most nodes, and activating
more nodes does not mean activating more groups. So we propose IRIS in order
to solve GIM, we change the second step of RIS to choose k nodes that have
maximum group coverage. In this way, the selected seed nodes can not only have
certain propagation influence to activate more nodes, but also can activate more
groups.

Lemma 2 The runtime of Algorithm 3 is O (Γ (n + m) + knl).

The IRIS algorithm first forms Γ random sparse graphs of G, then randomly
selects a node to generate a RR set in each subgraph. The runtime of the first
step is O (Γ (n + m)). Secondly iterate k times to select the node that covers the
most groups in the RR sets. The runtime of the second step is O (knl). Thus the
runtime of the IRIS algorithm is O (Γ (n + m) + knl).

Algorithm 3. The Improved Reverse Influence Sampling algorithm
Input: An instance of GIM G = (V, E, P, U), the number of seed nodes k, Monte
Carlo times t.
Output: the seed set S.
1: Set S :=Φ;
2: R←generate t RR sets by Algorithm 2
3: for i = 1 to k do
4: Add the node that has the maximum group coverage in R into S.
5: Delete RR sets that contain S in R.
6: end for
7: return S.
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4 Numerical Experiments

4.1 Experimental Setting

We used two data sets to perform experiments under the Independent Cas-
cade (IC) model, including the undirected graph Dataset1 and directed graph
Dataset2. Dataset1 collected in March 2020 is a social network of users from
Asian (e.g. Philippines, Malaysia, Singapore) countries [25]. Nodes represent
users of the music streaming service LastFM and links among them are friend-
ships. Dataset2 consists of 9 snapshots of the Gnutella peer-to-peer file sharing
network from August 2002 from SNAP. Nodes represent hosts in the Gnutella
network topology and edges represent connections between the Gnutella hosts.
For the convenience of the experiments, groups were randomly generated, and
the probability of each edge was randomly generated. The Improved Reverse
Influence Sampling (IRIS) algorithm is applied to directed graphs, so Dataset2
is available for the four algorithms, while Dataset1 is suitable to other algorithms
except IRIS. Table 1 is the information of data sets used in our experiments.

Table 1. Datasets information

Type Nodes Edges Groups Average group size

Dataset1 Undirected 7624 27806 198 34.01

Dataset2 Directed 6301 20777 234 33.84

Because k and β affect the objective function. Therefore we set the value of
k from 5 to 80 at an interval of 5 for Dataset1 and Dataset2. Set the value of β
to 10 and 20 for Dataset1, set the value of β to 5, 8, 10, 12, 15, 18 respectively
for Dataset2. All programs were written in python3.7.

4.2 Experimental Results

As can be seen from Fig. 3, when the size of k grows, the number of acti-
vated nodes increases and hence does the number of activated groups. Besides,
the number of groups activated decreases when β grows. For the undirected
graph Dataset1, CMC outperforms MC and MO in general. MO performs worst,
because MO aiming to seek k nodes with maximum out-degree does not focus
on group activation. The performances of CMC and MC have little difference
when β = 10, because the activation threshold is small, the two algorithms can
find the key nodes to activate the majority of the groups. When β = 20, the
difference between the experimental results of the two algorithms is widened,
because the activation threshold increases, group activation becomes difficult,
and the shortcomings of MC algorithm are also revealed.

As for the directed graph Dataset2, we can find that CMC and IRIS have
better performance than MC and MO in average. From Fig. 4a CMC performs
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Fig. 4. Comparison of CMC, IRIS, MC and MO under IC model for Dataset2
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best, IRIS is closer to MC, but slightly better than MC. While in Fig. 4b, the
gap between IRIS and MC is widening, and IRIS is closer to CMC. Because
IRIS not only focuses on seeking nodes which can cover more groups, but also
attaches importance to propagation influence.

As demonstrated in Fig. 4c, our CMC algorithm has the best performance
among all the algorithms in almost every instance except for some rare ones. The
exceptional cases happen mainly because seed nodes obtained by IRIS differ in
each time and the Reverse Reachable (RR) sets computed by IRIS focus on the
influence of nodes outside the group, while CMC emphasizes the influence of
nodes on members within the group.

5 Conclusion

In this paper, we proposed a heuristic algorithm called Complementary Maxi-
mum Coverage (CMC) based on analyzing the influence of the nodes over the
groups to ensure the task of maximizing the number of groups activated. In addi-
tion, we also presented an algorithm called Improved Reverse Influence Sampling
(IRIS) which is derived via improving the famous algorithm called Reverse Influ-
ence Sampling (RIS). Through experiments, we demonstrated that both CMC
and IRIS outperform Maximum Coverage (MC) and Maximum Out-degree (MO)
algorithms regarding the average number of activated groups under Independent
Cascade model. Further, the CMC algorithm has better performance than IRIS
in most cases besides the case when β ≥ 15, while it runs significantly faster
than IRIS in all instances. This indicates that CMC is the best among all the
four algorithms. However, the deficiencies of CMC algorithm are that the effect
is not significant when β is low and CMC is the third fast that it is slightly slower
than MO and MC. We are currently analyzing the theoretical performance of
CMC so as to provide an approximation ratio for the algorithm.
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