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Abstract. In this paper, we consider the problem of maximizing a non-
submodular set function subject to a matroid constraint with the contin-
uous generic submodularity ratio γ. It quantifies how close a monotone
function is to being submodular. As our main contribution, we propose

a (1 − e−γ2 − O(ε))-approximation algorithm when the submodularity
ratio is sufficiently large. Our work also can be seen as the first extension
of the adaptive sequencing technique in non-submodular case.
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1 Introduction

As a classical problem in submodular optimization, maximization of a monotone
submodular function subject to a single matroid constraint has been intensively
studied in recent years. It is well-known that the standard greedy algorithm [15]
gave a 1/2-approximation ratio for this problem. In previous works, Feige [13]
showed that there exists no polynomial-time algorithm with an approximation
ratio better than (1 − e−1). Also, Nemhauser and Wolsely [20] showed that any
improvement over (1 − e−1) has to make sacrifice for an exponential number of
queries to the value oracle. In recent years, Calinescu et al. [6,22] presented a ran-
domized continuous greedy technique based (1 − e−1)-approximation algorithm
for the above problem. This is a breakthrough result that perfectly matches the
conjecture given by Feige [13] and it also lays a solid foundation for the technique
used in this paper. This approach resembles a common paradigm for designing
approximation algorithms and is composed of two steps. In the first step, a frac-
tional solution is found for a relaxation of the problem. In the second step, the
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fractional solution is rounded to obtain an integral one while incurring only a
small loss in the objective. This approach has been used to obtain improved
approximations to this problem with various cases, including monotone [6], non-
monotone [14] and recently in differencial privacy [21]. Another excellent work of
this problem is done by Filmus and Ward [16]. It gave a non-oblivious local search
algorithm with an approximation ratio of (1 − e−1) utilizing the combinatorial
structure of this problem. Lately, Buchbinder et al. [5] made a step forward from
deterministic perspective. They gave an 0.5008-approximation algorithm based
on greedy-like technique.

However, for many applications in practice, including subset selection [1],
experimental design and sparse Gaussian processes [19], the corresponding set
function is close to submodular, but not strictly submodular [18]. Naturally the
results in submodular function setting do not hold any more. To depict the dif-
ference between submodular and non-submodular, a crucial parameter should be
introduced to describe the characteristics of the non-submodular functions. Das
and Kempe [11] proposed the submodularity ratio, γ̂ = minΩ,S⊆N

∑
j∈Ω\S fS(j)

fS(Ω) .
It is a quantity characterizing how close a set function is to being submodular.

In this context, Bian et al. [4] showed that, under a cardinality constraint, the
standard greedy algorithm enjoys an approximation factor of (1−e−γ̂), where γ̂ is
the submodularity ratio [11] of the set function. Very recently, Harshaw et al. [17]
have also shown that there is no polynomial algorithm with better guarantees.
Moreover, for the same problem subject to a general matroid constraint, it has
only been studied very recently by Chen et al. [10], who offered a randomized
version of the standard greedy algorithm with approximation guarantee of (1 +
1/γ̂)−2.

1.1 Our Contribution

In this paper, we propose an approximation algorithm with low adaptive rounds
for the problem of maximization of a monotone closely submodular function
over matroid constraints. Our technique is based on the adaptive sequencing
algorithm [3]. It is a powerful method and can be applied to several cases like
cardinality constraint, non-monotone set functions, partition matroids and inter-
section of P matroids. Here, we first generalize this algorithm to the weakly
submodular case.

Besides, we also reach the approximation guarantee with the help of generic
submodularity ratio γ′ and its continuous version. It is a quantity characteriz-
ing how close a nonnegative nondecreasing set function is to be submodular.
Compared with γ̂, it is derived from a different equivalent definition of submod-
ular functions and has more flexible properties. Our main theorem is stated as
following.

Theorem 1.1. For any ε > 0, there is an O
(

log n log k
ε

1
ε2

log n log 1
γ − 1

ε log(1−ε)

)
adaptive

algorithm that, with probability 1−o(1), obtains (1−e−γ2 −O(ε)) approximation
for maximizing a γ-weakly submodular function under matroid constraints when
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γ is near to 1, where n and k are the ground set size and the matroid rank
respectively.

1.2 Technical Overview

The result is inspired by the brilliant work of Balkanski et al. [3] and it can
naturally reduce to their primal conclusions when the set function is strictly
submodular. They obtained a (1 − e−1 − O(ε))-approximation with only requir-
ing O(log n log k) adaptive rounds for maximization of a monotone submodular
set function over a matroid constraint. When designing a new algorithm for
the γ-weakly submodular case, we extend the adaptive sequencing technique.
The crucial challenge is making carefully adjustment thanks to the continuous
generic submodularity ratio γ such that all selected elements in every step in the
algorithm own nearly optimal marginal contribution and satisfy the feasibility
constraints.

1.3 Organization

The remainder of the paper is organized as below: Sect. 2 gives preliminary
definitions of the paper; Sect. 3 presents the new adaptive algorithm for non-
submodular model; Sect. 4 shows the analysis of the algorithms; Sect. 5 finally
concludes the paper. In addition, the formal proofs are omitted due to the length
limitation but are nevertheless given in the appendix.

2 Preliminaries

This section gives the formal definition of the terms and notations used in the
paper. We define the set function f : 2N → R on a ground set N = [n], which
is non-decreasing. Moreover, we say f is monotone if f(S) ≤ f(T ) whenever
S ⊆ T ⊆ N . Given such a function, the marginal profit of adding an element
j ∈ N to S is defined by fS({j}) .= f(S ∪ {j}) − f(S). For simplicity, we
abbreviate fS({j}) and f(S ∪ {j}) as fS(j) and f(S ∪ j), respectively.

Informally, the adaptivity of an algorithm is the number of sequential rounds
of queries it makes, where every round allows for polynomially-many parallel
queries. We present the formal definition here.

Definition 2.1. Given a value oracle f , an algorithm is r-adaptive if every
query f(S) for the value of a set S occurs at a round i ∈ [r] s.t. S is independent
of the values f(S′) of all other queries at round i.

Also, we consider f is weakly submodular characterized by generic submodu-
larity ratio γ′. The generic submodularity ratio of f is the largest scalar γ′ such
that for any subset S ⊆ T ⊆ N and any element j ∈ N\T , fS(j) ≥ γ′ · fT (j). It
measures how close a non-negative increasing set function is to be submodular.
For generic submodularity ratio γ′ we have the following properties.



6 X. Sun et al.

Proposition 2.1. For an increasing set function f : 2N → R≥0 with generic
submodularity ratio γ′, it holds that

(a) γ′ ∈ (0, 1];
(b) f(·) is submodular ⇐⇒ γ′ = 1;
(c)

∑
j∈T\S fS(j) ≥ γ′ · fS(T ), for any set S, T ⊆ N .

A pair M = (N, I) is called a matroid w.r.t. a ground set N , if and only if
the independence system I is a non-empty collection of subsets of N satisfying
the following properties:

(i) If S ⊆ T ⊆ N and T ∈ I, then S ∈ I;
(ii) If S, T ∈ I and |S| < |T |, then there is an element j ∈ T\S such that

S + j ∈ I.

For a matroid M = (N, I) [12], a subset S of N is called independent if and
only if S belongs to I. The common size of all maximal independent subset is
called the rank of M and denoted by r(M). Also, we assume that the algorithms
have access to matroids only through an independence oracle that for a given set
S ⊆ N answers whether S is independent or not. The matroid polytope P(M)
[12] is the collection of points x = (x1, . . . , xn) ∈ [0, 1]n in the convex hull of the
independent sets of M, or equivalently the points x such that

∑
i∈A xi ≤ r(M)

for all S ∈ N .
The multilinear extension of a set function f is defined as F : [0, 1]n →

R≥0, which maps a point x ∈ [0, 1]n to the expected value of a random set
R ∼ x containing each element j ∈ [n] with probability xj independently, i.e.
F (x) = ER∼x[f(R)]. We note that given an oracle for f , one can estimate F (x)
arbitrarily well in one round by querying in parallel a sufficiently large number
of samples R1, . . . , Rm draw i.i.d from x and taking the average value of f(Ri)
over i ∈ [m] [7,8]. For ease of presentation, we assume throughout the paper
that we are given access to an exact value oracle for F in addition to f . The
results which rely on F then extend to the case where the algorithm is only given
an oracle for f with an arbitrarily small loss in the approximation, no loss in
the adaptivity, and additional O(n log n) factor in the query complexity With
O(2n log n) samples, F (x) is estimated within a (1±ε) multiplicative factor with
high probability [8].

Besides, we also define continuous generic submodularity ratio, which is an
extended version of generic submodularity ratio. It is more flexible in the analysis
of the multilinear extension.

Definition 2.2 (Continuous generic submodularity ratio). Given any
normalized set function f , the continuous generic submodular ratio is defined
as the largest scalar γ ∈ [0, 1] subject to

Fx\i(i) ≥ γFy\i(i), x ≤ y.

It is obvious that γ ≤ γ′ by comparing their definitions.
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In this paper, we are interested in the problem of maximizing a weakly sub-
modular function f : 2N → R≥0 subject to a matroid M = (N, I) constraint
in an adaptive model. The value of the optimal solution O for this problem is
denoted by OPT, i.e. O := arg maxA∈M f(A) and OPT := f(O).

Definition 2.3 (Chernoff bound [2]). Let Xi, i = 1, . . . , k, be mutually inde-
pendent random variables such that E[Xi] = 0 and |Xi| ≤ 1 for any i. Set
S = X1 + . . . + Xk and denote by a positive real number. Then

Pr[|S| > a] ≤ 2e−a2/2k.

3 The Adaptive Algorithm for Non-submodular Set
Function

In this section we show the new adaptive algorithm in the case of weakly-
submodular set function maximization problem over a matroid constraint. This
algorithm is used as a subroutine in the main algorithm which achieves an
approximation arbitrarily close to 1−eγ2

with O (log(n) log(k)) adaptivity when
the continuous generic submodularity ratio γ is sufficiently large. It points out
an update direction 1S for the current continuous solution. Comparing with [3],
the procedure of locating this direction S is more complicated. The cause is how
to make sure that all chosen elements in every rounds preserve nearly optimal
marginal contribution and fulfill the matroid constraints.

For the convenience of readers, we restate an important definition which
defined a random generalized feasible elements set for matroid M.

Definition 3.1 (Random Feasible Sequence [3]). Given a matroid M we
say (a1, . . . , ar(M)) is a random feasible sequence if for all i ∈ [r(M)], ai is
an element chosen u.a.r. from {a : {a1, . . . , ai−1, a} ∈ M}.

And, we put the technical algorithm in [3] below for producing a random
sequence of elements defined above without any adaptive cost.

Algorithm 1. Random Sequence
Input: matroid M
Output: a1, . . . , ar(M)

1: for i = 1 to r(M) do
2: X ← {a : {a1, . . . , ai−1, a} ∈ M}
3: ai ∼ a uniformly random element from X
4: end for

Algorithm 1 selects an element in each iteration uniformly at random on the
condition that the output set constructed by all elements is feasible. Also, it
is noticeable that the adaptivity of this algorithm is zero since the generated
elements set is irrelevant with set function f .
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Algorithm 2. Adaptive Sequencing for Non-submodular Function
Input: function f , feasibility constraint M
Output: S
1: S ← ∅, t ← maxa∈N f(a)
2: for Δ iterations do
3: X ← N
4: while X �= ∅ do
5: a1, . . . , ar(M(S,X)) ← Random Sequence(M(S, X))
6: Xi ← {a ∈ X : S ∪ {a1, . . . , ai, a} ∈ M and fS∪{a1,...,ai} ≥ t}
7: i� ← min{i : |Xi| ≤ (1 − ε)|X|}
8: S ← S ∪ {ai, . . . , ai�}
9: X ← Xi�

10: if X �= ∅ then
11: t → t/γ′

12: end if
13: end while
14: t ← (1 − ε)t
15: end for

The fact that the sequence is randomly generated is very important. It
ensures that the final conclusion of this paper is established with a high proba-
bility.

Similar with the adaptive sequencing algorithm, the new adaptive algorithm
for non-submodular model utilizes the random feasible sequence produced by
Algorithm 1 in each adaptive loop. It verifies which fragment of the sequence
ought to be inserted to the solution and abandons the rest part of the output
automatically. The algorithm starts from a empty set and selects part of random
sequence so as to allocate the chosen elements into the current solution. All
sequence components are invented from a specific set, which is conveyed from last
iteration. We describe an element is good if the following two critical conditions
can be satisfied. One is appending an element a to the current solution and
a portion of the sequence w.r.t. an index i meets the matroid constraint, i.e.
S ∪ {a1, . . . , ai} ∪ a ∈ M; the other is the marginal contribution of the fresh
set above is beyond the threshold. After constructing all good set regarding to
entire index i from 0 to n, we need to find a suitable location i� which ensure
the number of the remaining good elements set X in the next round is over 1−ε
and the rest elements are thrown away certainly. This discarding guarantees that
there are at most logarithmically many iterations until X is empty. As a result,
the algorithm adds {a1, . . . , ai�} to S when we finish this iteration. In fact, the
reason that adding those elements to the current solution S is the marginal profit
of anyone in the set is nearly optimal in expectation. We will characterize this
result in the analysis.

A conspicuous thing in weakly-submodular setting is that the threshold t is
sluggish growth instead of maintaining unchanged in the inner loop. This means
that the threshold no longer drops monotonically throughout the execution of
the algorithm. The reason is the threshold value needs to arbitrarily close to the
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optional marginal contribution all the time and it can not be without submod-
ularity. Therefore we need to give a modification to the algorithm by the aid
of submodularity ratio γ′ after elements appending. This trick makes adaptive
sequencing algorithm possible in the problem of weakly submodular.

Additionally, the term M(S,X) := {T ⊆ X : S ∪ T ∈ M} in Algorithm 2
also denotes a matroid related to sets S and X. A subset of X is feasible in the
new matroid if its union with S is feasible in M.

Now the main algorithm can be unveiled on the stage naturally. Similar with
the standard continuous greedy algorithm [22], the accelerated continuous greedy
algorithm follows a guidance of an output update direction 1S ∈ M too. What
makes this algorithm “accelerated” is the manner of how to choose and use the
direction. The solution x ∈ [0, 1]n moves along 1S given by Algorithm 2 in a
measurement of the surrogate function g. The function g can be seen as the
marginal profit value of the multilinear extension when the solution x marches a
step size λ in the direction 1S . That is, g(S) := Fx(λ1S) = F (x + λ1S) − F (x),
where S actually means 1S . In this way, the continuous solution can be improved
in a constant step size and returned also in a constant rounds. In our setting of
non-submodular set function, the adaptivity of each round is the same comparing
with [3], i.e. O(log(n) log(k)), which is much faster than the linear-time required
by the standard continuous greedy algorithm. Algorithm 3 finally yields a contin-
uous solution whose approximate ratio is with high probability arbitrarily close
to 1 − eγ2

. Then, the technique of dependent rounding [9] or contention resolu-
tion schemes [23] can help it reduce to a feasible discrete solution almost without
any loss in approximation guarantee and any additional burden in adaptivity.

Algorithm 3. Accelerated Continuous Greedy
Input: matroid M, step size λ
Output: x
1: for 1/λ iterations do
2: define g : 2N → R to be g(T ) = Fx(λT )
3: S ← Adaptive Sequencing For Non-submodular (g, M)
4: x ← x + λS
5: end for

4 Analysis

Using the above denotations, we can now give the formal analysis for Algorithm 2
and Algorithm 3. The following lemma proves that at any time the threshold t in
AdaptiveSequencingForNon-submodular is a good imitator to the optimal
marginal profit of the current solution S.

Lemma 4.1. Assume that f is weakly submodular with submodularity ratio γ′.
Then, at any iteration of the algorithm, the lower bound of the threshold value
is close to the near-optimal marginal profit of the current solution, i.e. t ≥
(1 − ε)maxa:S∪a∈M fS(a).
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Now we prove the conclusion that for any element in the returned solution
S = {a1, . . . , al}, the marginal profit of inserting ai for i ≤ l to {a1, . . . , ai−1} is
close to optimal in expectation comparing with all possible element a such that
{a1, . . . , ai−1, a} ∈ M. Before given the next lemma, we denote that XM

i :=
{a ∈ X : S ∪ {a1, . . . , ai} ∪ a ∈ M}.

Lemma 4.2. Assume that a1, . . . , ar(M(S,X)) is a generated random feasible
sequence, then for all i ≤ i∗, the expectation value of the marginal profits for
each element is nearly optimal

Eai
[fS∪{a1,...,ai−1}(ai)] ≥ (1 − ε)2 max

a:S∪{a1,...,ai−1}∪a∈M
fS∪{a1,...,ai−1}(ai).

Then we give the analysis of the approximate ratio of Algorithm 2.

Lemma 4.3. Assume that the output S = {a1, . . . , ak} of Algorithm 2 gives the
result Eai

[fSi
(ai)] ≥ (1 − ε)maxa:Si−1∪a∈M fSi−1(a) where Si = {a1, . . . , ai}.

Then, for the expectation value of S, we have E[f(S)] ≥
(
1 − 1

1+(1−ε)γ′2

)
OPT.

At the end, we give the analysis of the adaptivity of this algorithm.

Theorem 4.1. With Δ = O
(

log k
ε

1
ε log n log 1

γ −log(1−ε)

)
, Adaptive Sequencing

For Non-submodular has adaptivity O
(

log n log k
ε

1
ε2

log n log 1
γ − 1

ε log(1−ε)

)
.

Therefore, we have the following similar result of Adaptive Sequencing
For Non-submodular and the proof can be adopted the same approach in [3]

Theorem 4.2. For any ε > 0, Algorithm 2 is an O
(

log n log k
ε

1
ε2

log n log 1
γ − 1

ε log(1−ε)

)

adaptive algorithm that has 1 − 1
1+(1−ε)γ′2 approximation guarantee with proba-

bility 1 − o(1) for maximizing a monotone weakly submodular function under a
matroid constraint.

In [3], they discussed the relationship between the value g(S) and the residual
value OPT − F (x) on the premise F (x) < (1 − e−1)OPT. This bound is the tight
approximation ratio for the problem of maximizing submodular function over
matroid constraints. Then, they derived that OPT ≤ e(OPT − F (x))). Therefore,
in Lemma 7 of [3] they can have such assumption of the direction value on the
surrogate function and the residual value. However, for the problem of maximiz-
ing a weakly submodular set function subject to a matroid constraint, there is
no such bound found yet. Instead, we assume F (x) ≤ (1 − 1/ζ) · OPT for weakly
submodular case. Then

OPT ≤ ζ · (OPT − F (x)).

So we could make assumption like [3] and have the following functional
lemma, which concludes the sum of the whole marginal profits on g of the optimal
elements to S is arbitrarily close to γλ(1 − λ) · (OPT − F(x)).
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Lemma 4.4. Assume that g(S) ≤ λ(OPT − F (x)), then
∑

i

gS\Oi:k(oi) ≥ γλ(1 − λ) · (OPT − F(x)).

Combining Lemma 4.2, that all elements picked into the direction S have
near-optimal marginal profits, with Lemma 4.4, we can obtain the following
result. It characterizes the relationship between the expectation value of g(S)
and the residual value OPT − F (x) in every iteration.

Lemma 4.5. Let Δ = O
(

log k
ε

1
ε log n log 1

γ −log(1−ε)

)
and λ = O(ε). For any x s.t.

OPT ≤ ζ(OPT− F (x)), the set S returned by Adaptive Sequencing(g,M) has
the following result when γ is near to 1:

E[Fx(λS)] ≥ (
γ2 − O(ε)ζ

) · λ(OPT − F(x)).

So far, we get the lower bound in expectation of the marginal contribution
for current solution x of the main algorithm in the update direction S. The
lower bound is portrayed by the residual value OPT − F (x). Therefore, we can
use inductive method in greedy-like algorithms to obtain the approximate ratio
in expectation.

Lemma 4.6. Assume that Adaptive Sequencing For Non-submodular
outputs S ∈ M s.t.

E[Fx(λS)] ≥ Φ · λ(OPT − F (x)),

where Φ = γ2 − O(ε)ζ at every iteration of Accelerated Continuous
Greedy. Then Accelerated Continuous Greedy outputs x ∈ P (M) s.t.

E[F (x)] ≥ (
1 − e−Φ

)
OPT.

At last we also need a technical lemma which exists for proving that the
guarantee of Accelerated Continuous Greedy holds with high probability
in the very end. The statement is below and it can be easily followed with the
same idea in [3].

Lemma 4.7. Assume that Adaptive Sequencing For Non-submodular
outputs S ∈ M s.t. Fx(λS) ≥ αiλ(OPT − F (x)) at every iteration i of Accel-

erated Continuous Greedy and that λ
∑λ−1

i=1 αi ≥ Φ, where Φ = γ2 −O(ε)ζ.
Then Accelerated Continuous Greedy outputs x ∈ P (M) s.t. F (x) ≥(
1 − e−Φ

)
OPT.

Finally we can present the proof of Theorem 1.1.

Proof (Proof of Theorem 1.1). The adaptivity can be easily obtained due to
Theorem 4.1. For the approximation result, from Lemma 4.5 we have Fx(δS) ≥
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αiλ(OPT− F (x)) at every iteration i with E[αi] ≥ Φ. By a Chernoff bound with
E[λ

∑
i∈[λ−1] αi] ≥ Φ,

Pr

⎡
⎣λ

∑
i∈[λ−1]

αi < (1 − ε)Φ

⎤
⎦ ≤ e−ε2Φλ−1/2.

Thus, with probability p = 1−e−ε2Φλ−1/2, λ−1αi ≥ Φ−ε. By Lemma 4.7, we
conclude that w.p. p, F (x ≥ (1 − e−Φ))OPT. With step size λ = O(ε2/ log(1/δ)),
we get that with probability 1 − δ,

F (x) ≥ (
1 − e−Φ

)
OPT ≥

(
(1 − eγ2

) − O(ε)
)
OPT,

where Φ = γ2 − O(ε)ζ. ��

5 Conclusions

In this paper, we first generalize the adaptive sequencing algorithm in the prob-
lem of maximizing a weakly submodular set function subject to a matroid con-
straint. This technique provides a continuous solution with 1−eγ2−O(ε) approxi-
mation guarantee when the continuous generic submodularity ratio is sufficiently
large. This result can be easily rounded to a feasible discrete solution almost
without any loss by using either dependent rounding [9] or contention resolu-
tion schemes [23]. Besides, the generalized algorithm maintains few set function
evaluations like [3] and the adaptivity is O

(
log n log k

ε
1

ε2
log n log 1

γ − 1
ε log(1−ε)

)
.
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