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Abstract

Age-related macular degeneration (AMD) is a
multifactorial neurodegenerative disease,
which is a leading cause of vision loss among
the elderly in the developed countries. As one
of the most successful examples of genome-
wide association study (GWAS), a large num-
ber of genetic studies have been conducted to
explore the genetic basis for AMD and its
progression, of which over 30 loci were
identified and confirmed. In this chapter, we
review the recent development and findings of

GWAS for AMD risk and progression. Then,
we present emerging methods and models for
predicting AMD development or its progres-
sion using large-scale genetic data. Finally, we
discuss a set of novel statistical and analytical
methods that were recently developed to tackle
the challenges such as analyzing bilateral
correlated eye-level outcomes that are subject
to censoring with high-dimensional genetic
data. Future directions for analytical studies
of AMD genetics are also proposed.
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7.1 Introduction

Age-related macular degeneration (AMD) is a
heritable neurodegenerative disease and a pri-
mary cause of vision loss among the elderly in
the developed world. AMD is characterized by
the loss of photoreceptor and the reduction of
retinal pigment epithelium function in the macula.
The disease is progressive and irreversible in
affecting central vision. The disease process starts
with appearance of drusen and progresses to
advanced AMD, which is typically classified
into two forms: wet AMD (also called choroidal
neovascularization (CNV)) and dry AMD (also
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called geographic atrophy (GA)) [1–3]. Dry
AMD, characterized by the presence of drusen
and thinning of the macula, is the most common
type of advanced AMD and affects 85–90% of
the AMD patients. Wet AMD, characterized by
bleeding or fluid leaking abnormal blood vessels
grown underneath the retina and macula, is con-
sidered as the more advanced type of AMD.
Although affecting only 10–15% of those who
have AMD, wet AMD accounts for 90% of the
severe vision damage.

7.2 Case–Control Genetic
Association Studies
on AMD Risk

In 1990s, twin studies and family aggregation
studies had shown that genetics played a role in
AMD. In a family aggregation study, the preva-
lence of AMDwas much higher in the first-degree
relatives of AMD patients (23.7%) than in
relatives of healthy individuals (11.6%)
[4]. Twin studies indicated that the heritability
of AMD range from 46% to 71%, estimated
from comparing AMD concordance rates
between monozygotic and dizygotic twins
[5]. In the effort to explore AMD genetics in
early 2000s, association studies and genetic link-
age studies had been conducted to identify candi-
date susceptibility genes. In 2005, a meta-analysis
of linkage scans showed that chromosomes 1q25-
31 and 10q26 were the most replicated genomic
regions [6]. With advances in technology, in addi-
tion to candidate gene studies, genome-wide
association studies (GWAS) were able to be
conducted to examine the association between
AMD status and a genome-wide set of single-
nucleotide polymorphisms (SNPs). In the same
year of 2005, a landmark GWAS revealed an SNP
in an intron of CFH gene was strongly associated
with AMD; the risk allele at the SNP was in
linkage disequilibrium (LD) with a tyrosine–his-
tidine change at amino acid 402 of CFH [7]. This
region of CFH binds heparin and C-reactive pro-
tein. This was the first GWAS performed for
AMD, showing that the effect size was

significantly increased by an odds ratio (OR) of
7.4 (95% confidence interval: 2.9–19) under a
recessive model. This study recruited 96 AMD
patients and 50 controls, and genotyped 116,204
SNPs. Although both the sample size and number
of SNPs were small, this study was the first suc-
cessful GWAS among complex diseases. With its
success, an era for GWAS of complex diseases
started. Specifically, for AMD, subsequent
GWAS identified several susceptibility loci in
complement related genes, including C2/CFB
[8], CFI [9], and C3 [10].

Genes not in the complement pathway had
also been identified to be associated with AMD.
Of them, the ARMS2/HTRA1 locus had a strong
AMD association with an odds ratio (OR) of 5.0
and population attributable risk of 57%
[11, 12]. Since SNPs in both ARMS2 and
HTRA1 genes in this locus are in strong LD,
variants in both genes could be causally relevant
to AMD. This is one of the drawbacks of GWAS
that one cannot draw a causal conclusion from
GWAS results, but a pure association partly due
to the fact of LD among SNPs. Thus, post-GWAS
functional analysis is required to help understand
the biological process. Among other
noncomplement genes associated with AMD,
TGFBR1 and VEGFA are related to angiogenesis;
COL10A1 and COL8A1 are related to extracellu-
lar collagen matrix; APOE, CETP, and LIPC are
related to high-density lipoprotein cholesterol
pathway [13–15].

In early 2010, 18 research groups from multi-
ple countries formed the AMD Gene Consortium
in order to facilitate the discovery in AMD genet-
ics, with support from the National Eye Institute
(NEI) of the U.S. National Institutes of Health
(NIH). In 2013, the consortium published a
large GWAS for AMD [13] which included
17,181 cases and 60,074 controls, and 2,442,884
genotyped and imputed SNPs. The study reported
19 loci (Table 7.1) with association of AMD
reaching the genome-wide significance level
(P ¼ 5� 10�8), where seven loci reached signifi-
cance for the first time. The proportion of
variability in the risk of AMD that is due to
heritability had been estimated at 45–70% [5],
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while these 19 loci accounted for 15–65% of the
total genetic contribution to AMD (corresponding
to 7–46% of the total variability in the risk of
AMD). To follow up the candidate AMD genes,
Zhan et al. performed a sequencing study in 2335
cases and 789 controls in 10 regions including
57 gene [16]. They identified two rare variants p.

Arg1210Cys in CFH gene and p.Lys155Gln in
C3 gene. In 2016 [15], the International AMD
Genomics Consortium (IAMDGC) systemati-
cally examined both common and rare variants
of AMD association in >12 million SNPs includ-
ing 163,714 directly genotyped, mostly rare,
protein-altering variants in 16,144 cases and

Table 7.1 Results for AMD risk genes reported in the two consortium case–control studies and/or the GWAS
progression study

SNP Chr Position
Major/minor
allele Gene

Fritsche et al. [15] Yan et al. [32]

OR P-value HR P-value

rs10922109 1 196,704,632 C/A CFH 0.38 9.6 � 10�618 0.43 3.5 � 10�37

rs62247658 3 64,715,155 T/C ADAMTS9-AS2 1.14 1.8 � 10�14

rs140647181 3 99,180,668 T/C COL8A1 1.59 1.4 � 10�11

rs10033900 4 110,659,067 C/T CFI 1.15 5.4 � 10�17

rs62358361 5 39,327,888 G/T C9 1.80 1.3 � 10�14

rs116503776 6 31,930,462 G/A C2-CFB-
SKIV2L

0.57 1.2 � 10�103 0.56 8.1 � 10�10

rs943080 6 43,826,627 T/C VEGFA 0.88 1.1 � 10�14

rs79037040 8 23,082,971 T/G TNFRSF10A 0.90 4.5 � 10�11

rs1626340 9 101,923,372 G/A TGFBR1 0.88 3.8 � 10�10

rs3750846 10 124,215,565 T/C ARMS2-HTRA1 2.81 6.5 � 10�735 2.04 5.3 � 10�42

rs9564692 13 31,821,240 C/T B3GALTL 0.89 3.3 � 10�10

rs61985136 14 68,769,199 T/C RAD51B 0.90 1.6 � 10�10

rs2043085 15 58,680,954 T/C LIPC 0.87 4.3 � 10�15

rs5817082 16 56,997,349 C/CA CETP 0.84 3.6 � 10�19

rs2230199 19 6,718,387 C/G C3 1.43 3.8 � 10�69 1.45 1.2 � 10�9

rs429358 19 45,411,941 T/C APOE 0.70 2.4 � 10�42

rs5754227 22 33,105,817 T/C SYN3-TIMP3 0.77 1.1 � 10�24

rs8135665 22 38,476,276 C/T SLC16A8 1.14 5.5 � 10�11

rs11884770 2 228,086,920 C/T COL4A3 0.90 2.9 � 10�8

rs114092250 5 35,494,448 G/A PRLR-SPEF2 0.70 2.1 � 10�8

rs7803454 7 99,991,548 C/T PILRB-PILRA 1.13 4.8 � 10�9

rs1142 7 104,756,326 C/T KMT2E-SRPK2 1.11 1.4 � 10�9

rs71507014 9 73,438,605 GC/G TRPM3 1.10 3.0 � 10�8

rs10781182 9 76,617,720 G/T MIR6130-
RORB

1.11 2.6 � 10�9

rs2740488 9 107,661,742 A/C ABCA1 0.90 1.2 � 10�8

rs12357257 10 24,999,593 G/A ARHGAP21 1.11 4.4 � 10�8

rs3138141 12 56,115,778 C/A RDH5-CD63 1.16 4.3 � 10�9

rs61941274 12 112,132,610 G/A ACAD10 1.51 1.1 � 10�9

rs72802342 16 75,234,872 C/A CTRB2-CTRB1 0.79 5.0 � 10�12

rs11080055 17 26,649,724 C/A TMEM97-VTN 0.91 1.0 � 10�8

rs6565597 17 79,526,821 C/T NPLOC4-
TSPAN10

1.13 1.5 � 10�11

rs67538026 19 1,031,438 C/T CNN2 0.90 2.6 � 10�8

rs142450006 20 44,614,991 TTTTC/T MMP9 0.85 2.4 � 10�10

rs201459901 20 56,653,724 T/TA C20orf85 0.76 3.1 � 10�16

HR, hazard ratio relative to the minor allele (minor allele/major allele); OR, odds ratio
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17,832 controls. This study identified 52 indepen-
dent AMD-associated SNPs (P < 5 � 10�8)
including both common and rare variants across
34 loci (Table 7.1). Rare variants were identified
in the complement pathway genes, CFH and CFI,
and noncomplement pathway genes, TIMP3 and
SLC16A8. In addition, this study was the first
study that examined the genetics of advanced
AMD subtypes (wet and dry). It reported that
MMP9 was specific to the risk of wet AMD, but
not dry AMD (Table 7.2).

A number of studies implied that the same
AMD susceptibility loci have different effects in
different ethnic groups. A study showed that the
frequency of C allele at CFH Y402H variant is
~30% in a group of residents of Northern and
Western European ancestry from Utah, but only
~5% in Japanese and Chinese individuals [17]. A
study in 2014 examined AMD risk across diverse
populations and showed both rs1061170 (CFH
Y402H) and rs10490924 (ARMS2 A69S) were
associated with AMD in European Americans
but not in other populations, including Mexican
Americans, African Americans, or Singaporeans
[18]. In addition, another study showed that the
common ARMS2 A69S variant was associated
with increased risk of AMD in non-Hispanic
whites (OR ¼ 2.1) and Mexican Americans
(OR ¼ 2.45), but the direction of the effect was
surprisingly reversed in non-Hispanic black
individuals (OR ¼ 0.43) [19]. The T allele of
the ARMS2 variant was the test allele and its
frequency was approximately 13% lower in
non-Hispanic black patients compared with
non-Hispanic black controls. On the contrary,
non-Hispanic white and Mexican American
patients have a T allele frequency 10% higher
than their controls. A recent paper emphasized
the importance of protective alleles and their
roles in AMD, particularly in the population with
low prevalence of AMD (e.g., Timor-Leste) [20].

7.3 Genetic Studies on AMD
Progression

To date, most AMD genetic studies focused on
cross-sectional studies of advanced AMD (wet or

dry). AMD is known to be a progressive disease,
particularly in elderly population. It starts with a
mild AMD condition with small drusen and no
vision loss. It then progresses to intermediate
AMD with medium sized drusen and minimal
vision loss. Then, the disease progresses to the
large drusen stage with pigment changes in the
retina and some vision loss. Finally, the condition
progresses to the advanced AMD stage with sig-
nificant vision loss. Some AMD patients maintain
a good vision for a long time with little disease
progression, while others quickly progress to
advanced AMD with significant vision loss.
Patients can progress to one or both forms of
advanced AMD. The genetic effects of disease
progression were largely unexplored until recent
years. The NEI-sponsored Age-Related Eye Dis-
ease Study (AREDS) was designed to assess risk
factors for the development and progression of
AMD and to evaluate the effects of different oral
supplements of minerals and antioxidants in
delaying the AMD progression [1]. Then, a
subsequent clinical trial, AREDS2, evaluated
some modified formulations of oral supplements
on AMD progression on a cohort of population
with more severe AMD [21, 22]. Both studies
collected DNA samples of consented patients
and performed genome-wide genotyping.

Recently, multiple research groups studied the
AMD progression using the AREDS and/or
AREDS2 data. For example, Seddon et al.
[23, 24] and Perlee et al. [25] studied the effects
of some known AMD risk variants on progression
to advanced AMD using one eye per subject, i.e.,
the faster-progressed eye. Some other studies
analyzed the genetic effects on progression status
(e.g., no progression, early progression, or late
progression) instead of progression time [26]. Fur-
thermore, some studies analyzed the genetics
effects on AMD progression to different stages
of the disease. For example, Yu et al. [27] used
multistate Markov models to assess the effects of
12 AMD risk loci on the AMD multistate pro-
gression from normal to intermediate drusen, then
to largen drusen, and eventually to wet AMD or
dry AMD. They found those known AMD risk
genes were associated with progression within
certain but not all stages. For example, genes
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CFH, C3, CFB, and ARMS2/HTRA1 were found
to be associated with progression from intermedi-
ate to large drusen and from large drusen to
advanced AMD, but not from normal to interme-
diate drusen. It is well known that the presence
and progression of AMD in one eye is strongly
correlated with the disease in its fellow eye. For
example, Gangnon et al. [28] used the Beaver
Dam Eye study to investigate the effects of the
AMD severity in one eye on the incidence and
progression of AMD in the fellow eye. They
found that more severe AMD in one eye was
associated with increased incidence of AMD
and accelerated progression in its fellow eye.
Therefore, to better analyze the AMD progres-
sion, more recently, researchers included the pro-
gression times of both eyes with appropriate
models to account for the between-eye correlation
when analyzing the genetic effects on AMD pro-
gression. For example, Sardell et al. [29] analyzed
the effects of seven SNPs from four known AMD
risk regions on AMD progression. Ding et al. [30]
evaluated the effects of the top SNPs from the
34 known AMD risk loci on disease progression.
In both papers, the progression time was modeled
at eye level and the between-eye correlation was
incorporated through a Cox proportional hazards
(PH) model with the robust variance covariance.

From all the aforementioned studies that inves-
tigate a small set of variants on AMD progres-
sion, they found that some, but not all of those
AMD risk variants are associated with progres-
sion. Most reported risk variants associated AMD
progression are in the CFH and ARMS regions
[23, 24, 26, 30, 31]. Additional loci such as C3,
COL8A1, CFB, and RAD51B have also been
reported to be associated with AMD progression
[24, 30].

In 2018, a first GWAS analysis was conducted
using the similar robust Cox PH model to test for

association of progression to advanced AMD
with ~nine million variants on 2721 Caucasians
from the AREDS [32]. Four susceptibility loci
showed genome-wide significant association
(P< 5� 10�8) with AMD progression, including
ARMS2-HTRA1, CFH, C2-CFB-SKIV2L, and C3
(Table 7.1 and Fig. 7.1). All four loci were also
previously reported in AMD case–control studies.
Furthermore, variants near TNR and ATF7IP2
were detected to be associated with progression
to wet AMD but not dry AMD (Table 7.2). The
variants in these two loci are common variants
and these two loci were not reported in any AMD
case–control genetics study. Moreover, variants
inMMP9were associated with progression of wet
AMD but not dry AMD (Table 7.2). The same
locus was reported to be specific to the risk of wet
AMD but not dry AMD in a case–control study as
well. In the secondary analysis focusing only on
the 34 known AMD risk variants, the previously
reported LIPC and CTRB2–CTRB1 were also
associated with AMD progression under a less
stringent P cutoff than the GWAS P value cutoff
(Table 7.1).

Very recently, Sun et al. [33] proposed a novel
copula-based bivariate statistical analysis
approach to analyze genetic effects on AMD pro-
gression using data from both eyes. They specifi-
cally analyzed chromosome 10 using AREDS
participants with at least one eye at moderate
AMD since study enrollment. Besides the
ARMS2-HTRA1 region, they reported a few
other regions on chromosome 10 such as
LOC101928913 and C10orf11 exhibiting poten-
tial association with AMD progression. Those
regions have not been reported before in previous
case–control or progression studies of AMD.
Then, Sun and Ding [34] proposed a more flexi-
ble copula approach to account for the interval-
censoring and performed a GWAS on analyzing

Table 7.2 Results for risk loci specific to wet AMD but not dry AMD reported in the consortium case–control study and
the progression study

Genes Case–control, 2013 Case–control, 2016 Progression, 2018

MMP9 Not reported Reported Reported
TNR Not reported Not reported Reported
ATF7IP2 Not reported Not reported Reported
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time-to-late-AMD using AREDS data. Besides
confirming the CFH and ARMS2-HTRA1 regions,
they also identified the ATF7IP2 region on chro-
mosome 16 to be associated with AMD
progression.

7.4 Prediction Models for AMD
Development and Progression

It is known that there are both strong genetic
components and important environmental
influences on the development and progression
of the AMD. Prediction models using demo-
graphic, environmental, and genetic factors have
been established for AMD prevalence and inci-
dence [35]. Recently, multiple research groups
established different prediction models for AMD
progression using combination of demographic,
environmental, and genetic variables. For exam-
ple, Seddon et al. [36, 37] established and
validated a multivariable prediction model with
six variants (in five genes) and other baseline
nongenetic variables to predict the progression
risk to advanced AMD. Later, the same group
expanded their prediction model by adding three
new genetic loci and evaluated the effects of those
new variants on progression [24]. All these

studies used one progression time per subject
when developing their prediction models.

Recently, Ding et al. [30] established predic-
tion models with different combinations of non-
genetic and genetic factors based on AREDS data
and evaluated the model performance using the
independent AREDS2 data. Different from the
previous approaches, their approach took advan-
tage of all available data by using the progression
times from both eyes. They also derived a genetic
risk score (GRS) for AMD progression, based on
the effects of 34 known AMD risk variants
reported from Fritsche et al. [15], and instead of
using a set of individual AMD risk variants, they
used this composite GRS as a single predictor in
the prediction models. They thoroughly evaluated
the performance of their prediction models within
the AREDS data (using cross-validations) and in
an independent cohort from AREDS2 using
appropriate measures such as the c-index and
Brier score. They found that the prediction
model with baseline AMD severity score, age,
education level (<¼ high school or > high
school), smoking status (never, former, or cur-
rent), and the GRS produced satisfactory predic-
tion performance (c-index ¼ 0.89 in AREDS,
and ¼ 0.73 in AREDS2). Moreover, adding this
GRS to the demographic information alone
showed significant improvement in the prediction
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Fig. 7.1 Manhattan plots of GWAS results of AMD
progression from Yan et al. [32]. The robust Cox PH
model adjusted for baseline AMD severity score (continu-
ous variable), age, smoking status (never, former, and

current), and education level (�high school and >high
school). The first two principal components were included
to account for population stratification
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performance (c-index increased from 0.62 to 0.75
in AREDS). This work demonstrates the utility
and validity of the GRS for AMD prediction.

Fritsche et al. [15] had uploaded ~12 million
genetic variants and 35,358 subjects to dbGaP
(phs001039.v1.p1) and most of them are
Caucasians (32,637). This is by far the largest
publicly available AMD genotype dataset,
which could be used for predicting AMD risk.
Given the large number of sample size and
genetic variants, appropriate prediction tools
need to be selected. The artificial neural network
(NN) method could be a good candidate, since it
can learn complex relationship between large
number of predictors and outcomes. Several
recent developments using NN methods for
predicting AMD risks or its progression profiles
with large-scale genetics data have seen found in
the literature. Furthermore, AMD severity is
mainly diagnosed by color fundus images and
recent studies have shown the success of machine
learning methods in predicting AMD progression
using image data [38–45]. Very recently, Yan
et al. [46] jointly used large-scale genotypes and
fundus images to dynamically predict AMD pro-
gression risks with a novel two-stage deep neural
network (Fig. 7.2). The results showed that the
color fundus photos coupled with genotypes
could predict late AMD progression with an aver-
aged area under the curve (AUC) value of 0.85
(95%CI: 0.83–0.86).

7.5 Beyond GWAS

Despite the success of GWAS of AMD, the anal-
ysis of other types of omics data beyond DNA has
been limited possibly due to the lack of tissue
accessibility. Several studies have shown that
mitochondrial genetics [47–49], microRNAs
[50, 51], and epigenetics [52–54] play roles in
AMD pathobiology but they all have small sam-
ple size and findings require further investigation.
A recent report [55] generated transcriptional
profiles of postmortem retinas from 453 controls
and AMD cases. The locally expression quantita-
tive trait loci (cis-eQTL) analysis revealed 10,474
genetic regulated genes, which include 4541

retina specific eQTLs. They further conducted a
transcriptome-wide association study (TWAS)
and found three additional AMD-related genes,
RLBP1, HIC1, and PARP12. This study indicates
that the retina-specific gene expressions could
help us understand the genes involved in AMD
pathobiology.

7.6 New Statistical Methods
Motivated by AMD Data
and Research

The wealthy genotype data generated from AMD
research, as well as the bilateral nature of the
phenotype have motivated comprehensive statis-
tical methodology development in the past few
years, which has successfully produced or is pro-
ducing novel and rigorous statistical methods and
software packages for addressing different
research objectives.

The newly developed and emerging methods
include: (1) Novel copula-based methods and R
package (“CopulaCenR”) for modeling and test-
ing the bivariate/multivariate data that are subject
to right or interval censoring. This is motivated by
studying the genetic effects on AMD progression
where the outcome data are bivariate time-to-
advanced-AMD [33]; (2) Gene-based association
tests through functional linear model on (bivari-
ate) time-to-event outcomes [56]; (3) New and
robust predictive models for predicting AMD
development or progression. In addition to pre-
diction models using genetic risk scores (based on
a small group of variants) with traditional logistic
model or (robust) Cox PH model [30], new
machine-learning-based approaches, such as the
random (survival) forest, penalized Lasso regres-
sion, and deep neural network using GWAS data
are being investigated [46, 57]; (4) Subgroup
identification and inference methods for treatment
efficacy with time-to-event outcomes. This is
highly motivated by the AREDS and AREDS2
studies where the treatment (antioxidant and min-
eral supplement) showed positive trend in
slowing down the AMD progression but did not
reach statistical significance level in the entire
population. Using various tree-based approaches
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and a novel simultaneous inference approach,
subgroups (defined by SNPs) with enhanced
treatment efficacy have been identified [58];
(5) Other new statistical methods focusing on
estimating the association or dependence between
two censored variables have been also proposed
with motivation from and application on the
AMD study [59]. The massive amount and
unique features of AMD data become such
important assets to statisticians for motivating
and applying their novel analytical methods.

7.7 Discussion and Future
Direction

Genetic studies of AMD have gained a huge
success in the past two decades. Several dozens
of AMD-susceptible loci and several pathways
have been discovered through GWAS and
sequencing studies with international efforts
from many countries. However, because classic
animal models are not available for AMD and
retina tissues are not widely available, the func-
tional roles of discovered loci in AMD biology
are still largely unknown. Further collaborations
among AMD researches are needed to character-
ize known AMD variants and to understand the
underlying mechanism at transcriptomic or
proteomic level. Handa et al. presented a nice
perspective to use a system biology approach
toward understanding AMD [60]. In addition to
the biology research, GWAS of AMD has

provided risk factors for disease prediction,
which has been shown very accurate in above
described studies. To achieve the ultimate goal
for personalized medicine, integrative analysis of
multilevel data including various omics, environ-
mental, and clinical data with advanced statistical
methods is likely to be performed down the road.
For example, in the recent two years, several
studies have used the AREDS fundus images to
perform automated AMD grading by applying
convolutional deep learning methods [42, 43,
61]. However, it is more crucial to predict AMD
progression profiles over time. In addition to the
available genotype data, the AREDS project also
includes longitudinal fundus images over
12 years, which allow researchers to collectively
use genotypes and fundus images to predict
dynamic AMD progression profiles. Besides fun-
dus images, it would be also desirable to have a
coherent prediction using multiple types of
images (e.g., optical coherence tomography and
fundus autofluorescence images). Since late
AMD is irreversible, a model that can accurately
predict progression profiles over time could urge
potential patients to start preventative care early
and slow down the disease progression. In the
next decade, the genetic studies of AMD will
continue growing, likely integrated with many
other types of data. With the advance of
biological and analytic technology, we anticipate
that more genetic variants will be discovered and
the functional roles of known loci will be better

Fig. 7.2 The architecture of the two-stage deep neural network using both fundus image and genetic data for predicting
AMD progression risk
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understood, leading new therapeutic targets and
better diagnosis tools for AMD.
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