
12Volcanoes Along Convergent Plate
Boundaries

12.1 Introduction

This chapter focuses on the tectono-magmatic
relationships along convergent plate boundaries
characterized by subduction: these boundaries
are the sites of the largest earthquakes and
eruptions and constitute the most active, unstable
and hazardous areas on Earth. Volcanic arcs are
the surface manifestation of the magmatic activ-
ity resulting from plate convergence. As antici-
pated in Chap. 10, their structural setting may
vary significantly, mainly depending on the
velocity and angle of convergence between the
subducting and overriding plates. The arc may in
fact be controlled by predominant extensional,
strike-slip, contractional, transtensive or trans-
pressive structures, or any combination of these,
with transient kinematic variations induced by
mega-earthquakes along the plate boundary. As a
result of these variable tectonic and structural
features, the distribution and composition of the
volcanoes, and their erupted styles, volumes and
frequencies may also vary. While a volcanic arc
usually consists of a focused belt of andesite
stratovolcanoes with subordinate calderas, under
specific conditions rhyolitic calderas may pre-
dominate, fuelling a much more voluminous
explosive activity associated with widespread
transcrustal magmatism.

The main aims of this chapter are to:

• describe the tectonic and magmatic features of
representative volcanic arcs experiencing
predominant extensional, contractional and
strike-slip kinematics;

• highlight similarities and differences in the
magmatic activity of the arcs as a function of
their tectonic context, including any transient
variation induced by mega-earthquakes;

• discuss the general role of magmatic activity in
the evolution of convergent plate boundaries.

12.2 Extensional Arcs

Extensional arcs are characterized by dominant
arc-perpendicular extension. As anticipated in
Sect. 10.4, extension may result from a weak
coupling between the two converging plates,
where the downgoing plate does not push tightly
against the overriding plate, with the latter
experiencing local extension in its frontal por-
tion. In addition, arc extension may be the local
expression of a wider area of back-arc opening,
resulting from the different convergence rate
between the frontal and inner portions of the
overriding plate, under the roll-back of the neg-
atively buoyant slab.
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Several magmatic arcs experience predomi-
nant extension, including those in Kamchatka
(Russia), Cascades (western North America),
Marianas, Izu-Bonin (western Pacific), New
Zealand and Central Italy (Table 12.1; Acocella
and Funiciello 2010, and references therein). The
three representative cases described below con-
sider different conditions of extension. These are
exemplified by a volcanic arc with low extension
rate, such as the Cascade Arc (Sect. 12.2.1), an
arc with high extension rate, as the Taupo Vol-
canic Zone of New Zealand (Sect. 12.2.2) and an
arc developed on the margin of an extended
back-arc zone, as the Tyrrhenian margin of
Central Italy (Sect. 12.2.3).

12.2.1 Cascade Arc

The Cascade Arc strikes north–south for
approximately 1200 km from British Columbia
(western Canada) to Northern California (west-
ern USA). The arc lies above a warm slab con-
vergence zone, where the young (less than
10 Ma) oceanic crust of the Juan de Fuca plate
subducts beneath the North American plate north
of the Mendocino Triple Junction. At this junc-
tion, the tectonic environment shifts from
northwest directed shear along the San Andreas
Fault to E-W trending convergence along the
Juan de Fuca plate (Fig. 12.1; Hildreth 2007 and
references therein). Beneath the Cascade Range,

Table 12.1 Tectono-magmatic features of active volcanic arcs

ARC R EC SS Q Vn Vp Qc

Kamchatka 3 ± 0.9 � 10–3 10 ± 5 5 ± 3 0.67 ± 0.2 74 13 0.85 ± 0.03

Alaskapa 2.6 ± 0.5 � 10–4 −1 ± 1 0 ± 1 −1 ± 0.5 58 6 0.91 ± 0.04

Cascades 9.5 ± 0.4 � 10–4 2 ± 1 0 ± 1 1 ± 0.5 24 18 0.57 ± 0.05

North Kuril 3.6 ± 1 � 10–4 −1 ± 1 0.5 ± 0.5 −0.67 ± 0.2 77 12 0.86 ± 0.03

South Kuril 3.6 ± 1 � 10–4 −3 ± 2 2 ± 2 −0.6 ± 0.2 71 39 0.64 ± 0.02

Less. Antillespb 4 ± 0.6 � 10–4 4 ± 1 (ap) 3 ± 2 0.57 ± 0.2 12 3 0.8 ± 0.16

Marianas 1.25 ± 0.5 � 10–3 5 ± 5 0 ± 1 1 ± 0.5 31 21 0.6 ± 0.04

Central Mexico 1.37 ± 0.4 � 10–4 0.4 ± 0.04 0.14 ± 0.01 0.74 ± 0.3 51 10 0.84 ± 0.04

Central Americac 3.1 ± 0.8 � 10–3 12 ± 2 (ap) 11 ± 2 0.52 ± 0.1 73 6 0.92 ± 0.03

NE Japand 1.5 ± 0.4 � 10–4 −5 ± 3 0 ± 1 −1 ± 0.5 96 32 0.75 ± 0.02

New Zealande 2 ± 0.4 � 10–3 6.5 ± 0.2 2.6 ± 0.2 0.71 ± 0.2 41 16 0.72 ± 0.04

Izu-Bonin 4 ± 0.9 � 10–4 1.7 ± 0.3 0.5 ± 0.5 0.77 ± 0.3 55 20 0.73 ± 0.03

Sumatrapf 6.6 ± 2 � 10–3 0 ± 2 23 ± 2 0 41 18 0.69 ± 0.04

East Aleutians 2 ± 0.7 � 10–4 -5 ± 5 0 ± 1 −1 ± 0.5 65 14 0.82 ± 0.03

South Andesg 1.3 ± 0.4 � 10–3 -1 ± 1 10 ± 8 −0.09 ± 0 75 27 0.73 ± 0.02

SW Japanph 3 ± 0.7 � 10–3 4 ± 2(ap) 4 ± 2 0.5 ± 0.1 48 23 0.68 ± 0.03

R = volume of erupted magma (km3) per year per 100 km of length of the arc; EC = amount of arc-normal extension
(E, positive) or compression (C, negative), in mm/year; SS = amount of arc-parallel slip (mm/year); arc motion
Q = EC/(∣EC∣ + SS); Vn = trench-normal component of the convergence vector Vcon (mm/year); Vp = trench-parallel
component of the convergence vector (mm/year); convergence motion Qc = Vn/(Vn + Vp). Mean errors associated with
Vn and Vp are of ±2 mm/year; p = portion of arc; ap = arc-parallel extension; a = Katmai Province; b = central
portion; c = South Guatemala and El Salvador; d = northeast Honshu; e = Taupo Volcanic Zone, North Island;
f = Toba region; g = Puyehue-Cordón Caulle region; h = Kyushu region (modified after Acocella and Funiciello 2010)
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the Juan de Fuca slab is seismically imaged as a
high velocity zone dipping 65°, extending at least
to 200 km of depth. This convergence zone is
one of the best-documented subduction systems
for episodic tremor and slow-slip earthquakes.
The crust beneath the Cascades of Oregon is
40 km thick, thinning to 31 km eastward; the
42–47 km thicker crust beneath the Washington
Cascades, to the north, may result from under-
plating. The magmatically most active Oregon
portion of the arc shows low seismic velocities at
all depths, suggesting widespread melt. The less
active Washington portion shows high seismic
velocities in the upper mantle and upper crust,
possibly due to solidified intrusions. More
localized and shallower low velocity zones sup-
portive of*6% of melt have been imaged below
the volcanoes of Mount St. Helens, Mount
Adams and Mount Rainier, in the southern
Washington Cascades: these are indicative of
large-scale basaltic sill emplacement and silicic
differentiation, representing the primary reservoir
of the region’s arc magmatism (Miller et al.

1997; Parsons et al. 1998; Pollitz et al. 2010; Gao
et al. 2011; Flinders and Shen 2017).

Northeast-directed subduction of the Juan de
Fuca plate results in nearly arc-normal conver-
gence in the northernmost portion of the Cascade
Arc, but oblique convergence elsewhere. This
imparts a dextral component in the forearc
region, from central Washington to California
(Hildreth 2007, and references therein). In par-
ticular, in the northern Cascades the direction of
the maximum principal stress r1 changes from
margin-normal along the coast to margin-parallel
inland. While the former is related to the coupled
interface between the North America and Juan de
Fuca plates, the latter derives from the motion of
the Juan de Fuca plate, which ultimately results
in a northward movement at a few mm/yr of the
forearc. The Cascades also rotate clockwise with
regard to North America at a rate of 0.4–1°/Ma
(Fig. 12.2). A southward increase in rotation
parallels a change in the arc tectonic regime,
from largely contractional in northern Washing-
ton to extensional in Oregon. Concomitant is a

36 Plate motion (mm/yr) with 
regard to North American plate

(McCaffrey et al., 2007)

Slab contours (depth in km; 
McCrory et al., 2012)

Oceanic Ridge

40

Volcano of the Cascade Arc

Fig. 12.1 Tectonic setting of the Cascade Volcanic Arc,
western North America, showing the major plate bound-
aries, the slab contours and the vectors of plate motion

(modified after McCaffrey et al. 2007). Base DEM
provided by GeoMapApp
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Fig. 12.2 Geology (extent of the Western and High
Cascades), structure (late Tertiary and Quaternary faults),
present kinematics (GPS motions between 1991 and
2004) and volcanism (main volcanoes) along the central

and southern portions of the Cascade Volcanic Arc
(Pezzopane and Weldon 1993; Blakely et al. 1997;
McCaffrey et al. 2007). Base DEM provided by
GeoMapApp
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southward increase in the volume of eruptive
rocks along the volcanic arc. Extension across
the southern part of the arc is also promoted by
the buoyant mantle beneath the western Basin
and Range Province (Wells 1990; Hildreth 2007;
McCaffrey et al. 2007; McCrory et al. 2012). As
a result, crustal deformation across Oregon
indicates motion of 0.6 cm/year in a N60°W
direction, resulting from combined horizontal
extension and dextral shear. This motion can
account from 10 to 20% of the total Pacific–
North American transform motion and much of
the lateral component of relative motion between
the Juan de Fuca and North American plates.
However, only a minor portion of this extension,
geodetically undetected (*0.1 cm/year), affects
the volcanic arc (Fig. 12.1; Blakely et al. 1997;
McCaffrey et al. 2007). Active extension is
usually associated with *N-S trending half-
grabens with major offset to the west. In the
southernmost portion of the Cascade Arc, the
active structures shift from *N-S trending nor-
mal faults to *NW–SE trending dextral
transtensive systems reaching the northern Sierra
Nevada (Pezzopane and Weldon 1993; Waldien
et al. 2019).

Two distinct volcanic assemblages character-
ize the central Cascades of Oregon: the Western
Cascades and the High Cascades (Fig. 12.2). The
Western Cascades were active since *40 Ma,
with volcanism younging eastward during Mio-
cene and Pliocene, towards the High Cascades.
The High Cascades have been active since 8–
10 Ma in a focused area of extension (Wells and
McCaffrey 2013). Eruption rate along the Cas-
cade Arc decreased by a factor of 3 from 35 to
7 Ma, probably due to the slowing of the plate
convergence rate and the increase in the obliquity
of subduction. Eruption rate then increased in the
last 7 Ma, likely because of the new extensional
regime promoting mafic volcanism: volcanic
production seems therefore a function of con-
vergence rate and upper plate stress regime
(Priest 1990; Hildreth 2007; Pitcher et al. 2017).

Of the 2339 Quaternary volcanoes identified
in the current Cascade Arc, 37 are andesite-dacite
stratovolcanoes and major silicic dome com-
plexes, 110 are shield volcanoes, 340 are lava

domes and more than 1850 are monogenic vents.
The main Cascade stratovolcanoes exhibit spac-
ings that range from 35 to 170 km. The com-
position of the erupted products ranges widely
and continuously, and includes olivine tholeiites,
intraplate basalts, calcalkaline basalts, basaltic
andesites, potassic shoshonites, andesites, rhyo-
lites, rhyodacites and dacites. Primitive basalts
produce scoria cones, small shields and discrete
lava fields, but virtually never erupt centrally at
stratovolcanoes, where more evolved composi-
tions dominate as a result of large fractionating
reservoirs (Hildreth 2007). The different age of
the subducted plate also influences the depth of
melting in the mantle wedge beneath the arc and
the general composition of the magmas. Younger
and hotter oceanic crust undergoes dehydration
with minor amount of heating during subduction.
The slab may lose much of its volatiles trench-
ward of the arc, with a lower volatile budget
beneath the arc. This occurs in the northern
Cascades, where the contribution of the slab
fluids in driving arc magmatism is limited and
alkali basalts are frequent. Conversely, dehydra-
tion reactions are delayed in older oceanic
lithosphere and a greater amount of volatiles are
released beneath the central-southern Cascade
Arc; this results in higher degrees of melting,
producing calkalkaline basalt magmas (Green
and Harry 1999).

The Quaternary Cascade Arc is 25–100 km
wide and its continuity is interrupted by several
gaps containing few or no volcanoes. Assuming
that the slab dehydrates and the wedge convects
and melts continuously along the whole sub-
duction margin suggests that sectors experienc-
ing lower crustal extension locally stall and
suppress the intrusion of mantle melts, likely
explaining the gaps. On the other hand, higher
extension promotes the eruption of the mafic
melts. The gaps also define several segments
(four to six, depending on the studies) with dis-
tinct direction, structure, geochemical composi-
tion and melting regimes at depth, reflecting
differences not only in tectonic setting, but also
in subduction geometry and mantle heterogene-
ity. While the degree of melting and fluxing is
greatest in the southernmost segment, enhanced
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by a slab window, the central segments show
higher and focused extension and heat flow, as
well as most of the eruptive vents (Fig. 12.2;
Guffanti and Weaver 1988; Pezzopane and
Weldon 1993; Hildreth 2007; Schmidt et al.
2008; Pitcher and Kent 2019).

In addition to Mount St. Helens, several vol-
canoes in the southern part of the arc, including
Lassen, Shasta, McLoughlin, seem to lie in
localized zones of E-W trending extension con-
trolled by the activity of offset NW–SE trending
dextral faults (see also Fig. 6.20a; Weaver et al.
1987; Hildreth 2007). Many volcanoes and vol-
canic complexes have been recently active in the
Cascades. Among these, Lassen Peak (northern
California) erupted in 1915, whereas Mount St.
Helens (described in Sect. 6.8.2) has been
erupting since 1980. In the last decades, defor-
mation studies have identified surface displace-
ments at five of the 13 major Cascade Arc
volcanoes (Mount Baker, Mount St. Helens,
South Sister, Medicine Lake, and Lassen). No
deformation has been detected at five volcanoes

(Mount Rainier, Mount Hood, Newberry Vol-
cano, Crater Lake, and Mount Shasta), and there
are not sufficient data for a rigorous assessment at
the remaining three (Glacier Peak, Mount
Adams, and Mount Jefferson; Poland et al.
2017).

12.2.2 Taupo Volcanic Zone of New
Zealand

Taupo Volcanic Zone (TVZ) lies in the North
Island of New Zealand and is probably the best-
known volcanic arc undergoing sustained
extension. The NNE-SSW trending TVZ results
from convergence between the Australian plate
and the westward subducting Pacific plate. The
plate interface is offshore and to the east of the
North Island of New Zealand, along the Hiku-
rangi Trough (Fig. 12.3; e.g., Stern et al. 2006).
The northern offshore continuation of the TVZ
arc is the Havre Trough, a young back-arc basin
where the original arc occupied a narrow area,

Fig. 12.3 Tectonic setting and main features of Taupo
Volcanic Zone (TVZ), New Zealand. a Schematic rela-
tionship of TVZ to the boundary between the Pacific and
Australian plates and fore-arc structures, including the
NIDFB (North Island Dextral Fault Belt). b Overview of

the TVZ, showing the major caldera complexes and
stratovolcanoes. Blue arrows show GPS movement of the
Australian plate with regard to the fixed Axial Range to
the east of TVZ (Wallace et al. 2004). Base DEM
provided by GeoMapApp
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10–15 km wide, followed by seafloor spreading
at *5.0 Ma, after which arc magmatism domi-
nated again. This rapid sequence of tectono-
magmatic regimes is related to the roll-back of
the Pacific slab, which may have diverted the arc
flux outside the region of seafloor spreading of
the back-arc and induced the vertical realignment
of surface volcanism with the source of arc melts
above the slab (Caratori Tontini et al. 2019).
Considered together, the TVZ-Havre Trough
system shows an overall northward transition
from arc to back-arc magmatism.

At the latitude of TVZ, the mean convergence
vector of *4.5 cm/year between the Australian
and Pacific plates is partly oblique, oriented at
*263°. As a result, the area between the trench
and the volcanic arc is characterized by an
overall constant component of dextral shear,
estimated at *0.25 cm/year. This shear domi-
nates along the North Island Dextral Fault Belt
(NIDFB), as the convergence-parallel component
passes from dominant contraction in the trench
area to negligible contraction along the NIDFB
and to dominant extension in the TVZ (Acocella
et al. 2003, and references therein).

The current TVZ consists of a rift zone
associated with crustal thinning of up to 15 km.
Lower crust underplating is significant, with
partial melt between 1 and 4%. These features
may be related to abundant dehydration fluids
coming off the slab at specific locations and
migrating upward to the highly fractured vol-
canic zone. The high mantle flux and rifting are
responsible for a remarkably thin (*16 km) and
extended crust highly permeable to magma,
accounting for the extremely high erupted vol-
umes (Wilson 1996; Bertrand et al. 2012; Grav-
ley et al. 2016; Eberhart-Phillips et al. 2020).
Volcanic activity in the last *2 Ma focused in
short periods (25–50 ka) of intense volcanism
bracketed by longer periods (100–130 ka) of
quiescence, rapidly and asymmetrically narrow-
ing via inward and eastward migration of faulting
and also propagating southward. The eastward
migration of volcanic activity and faulting fol-
lowed the roll-back of the Pacific slab at the
Hikurangi subduction zone: the correlation in
time and space of the loci of voluminous

volcanic eruptions and active faulting suggests
that a controlling factor in rapid rift narrowing
are large shallow crustal heterogeneities, as rhy-
olitic magma bodies generated by the subduction
weakening the crust and localizing deformation
(Villamor et al. 2017).

The present site of active volcanism focuses in
a NNE-SSW trending narrow zone (20–30 km
wide), referred to here as the modern TVZ
(Fig. 12.3) and mainly developed in the last
*300 ka, although limited evidence of off-rift
magmatism is suggested by seismicity and uplift
(Wilson et al. 1995; Hamling et al. 2016). The
modern TVZ consists of five main segments
displaying an overall graben structure. Each
segment shows a variable extension direction,
with minor dextral shear resulting from the
slightly oblique convergence. GPS measure-
ments and fault slip data suggest a current
spreading rate of 0.6–0.8 cm/year across central
TVZ, at times with significant transient varia-
tions. This extension is associated, in the central
portion of TVZ, with overall subsidence of up to
2 cm/year, probably resulting from the cooling
and subsequent contraction of shallow magma.
This subsidence is confined by a wider zone
which coincides with the area of the wider and
older TVZ and that is being uplifted of
0.1 cm/year by basaltic melts being injected at
depth (Cole 1990; Darby and Meertens 1995;
Villamor and Berryman 2001; Hamling et al.
2015; Holden et al. 2015; Houlie and Stern
2017). Seismic activity has been accompanying
extension along TVZ, with the most recent sig-
nificant earthquake (magnitude M6.5, in 1987)
occurring in the northern part. Shallow micro-
earthquakes may represent up to *30% of the
geodetic deformation, suggesting that the asso-
ciated small-scale faulting records strains not
geologically measured, possibly explaining the
disparity between geological and GPS rates of
extension across TVZ (Begg and Mouslopoulou
2010; Mouslopoulou et al. 2013).

From a volcanological point of view, the
modern TVZ is divided into three parts along its
length. (a) The two lateral parts with andesite-
dacite stratovolcanoes (Ruapehu-Ngauruhoe-
Tongariro volcanoes to the south and
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Whakatane-White Island volcanoes to the north).
(b) A central part with rhyolitic caldera systems
(from Okataina to Taupo calderas) and plutons at
depth. This is an extraordinarily productive
region of rhyolitic volcanism (*8800 km3/Ma)
and geothermal fluxes (*4200 MW), enhanced
by vertical low resistivity zones connecting to
magmatic sources below the brittle-ductile tran-
sition, at 6–7 km. Here the two largest rhyolitic
magmatic systems, Taupo and Okataina, erupted
thousands of km3 of ignimbrites in the last
300 ka. Okataina caldera produced the largest
historic eruption, a basaltic Plinian, in TVZ along
the NE-SW trending 1886 Tarawera fissure,
which is still geodetically extending (Fig. 12.4;
Nairn and Cole 1981; Spinks et al. 2005; Holden
et al. 2015). Taupo caldera has the capability to
generate and erupt very rapidly, within 1–
100 years, large crustal melts of *100 km3 in
volume (Barker et al. 2016). The andesitic-
rhyolitic-andesitic composition of TVZ is prob-
ably related to different water contents in the
lower crust (Heise et al. 2007; Deering et al.
2008). Rhyolites derive from diorites accumu-
lated in the mid crust resulting from the differ-
entiation of hot and water rich basaltic magmas

produced in the mantle wedge and intruded as
sills within the lower metasedimentary crust.

The relationships between regional tectonic
extension and magmatic activity have been
repeatedly addressed at TVZ. In the lower crust,
fast seismic wave speeds suggest that magma has
partially filled the stretched crust, with the
extended zone coinciding with an area of intru-
ded magma located between 4 and 15 km depth.
This implies a feedback relationship influencing
the locations of faults and magma: while exten-
sion helps magma to rise, the intruded magma
heats and weakens the crust to assist more rifting.
At the surface, there is an overall along- and
across-strike partitioning of extension and vol-
canism, with the most productive sectors located
along the rift axis, feeding polygenetic calderas
controlled by the highest amount of regional
extension orthogonal to the rift segment
(Fig. 12.5; Acocella et al. 2003; Spinks et al.
2005; Gase et al. 2019). Extension at the surface
may result from regional tectonics and/or shallow
magmatic processes (i.e., diking). The prevalence
of one process or the other within a portion of
TVZ mainly depends on the availability of
magma. While diking assists extension along the

NW SE

Fig. 12.4 View of part of the *NE-SW trending 1886 Tarawera eruptive fissure, on the southern portion of Okataina
caldera, Taupo Volcanic Zone
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most active magmatic portions, regional exten-
sion dominates along the magmatically less
active portions. For example, field and modelling
data across the southern andesitic part of TVZ
suggest that the 0.7 cm/year extension is mostly
tectonic: here regional faulting accommodates

78–95% of the total extension, while the remin-
der is accommodated by diking. On the other
hand, the 1886 Tarawera event, at Okataina cal-
dera, shows how diking assists extension along
the most active magmatic portions. These beha-
viours imply some complementarity between

Fig. 12.5 a Map of Taupo Volcanic Zone, showing the
main volcanoes and the along-rift variations in the
dextral component of extension along the rift segments
(proportional to the angle b between the opening
direction of the rift segment and the perpendicular to
the segment strike). The diagram in the inset shows that
the magmatically most productive portions undergo

orthogonal extension (b * 0°). b Across-rift difference
in caldera structure: the more productive in-axis poly-
genetic calderas are deeper and shaped by regional
tectonics (see also map view above), whereas off-axis
monogenic calderas are less developed and subcircu-
lar (Spinks et al. 2005). Base DEM provided by
GeoMapApp
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regional tectonic faulting and diking, although
the two processes may be often coupled. In fact,
in some parts of TVZ a correlation between
increased slip along regional faults and activity
from nearby andesitic volcanoes (Ruapehu) or
calderas (Rotorua and Ohakuri) has been recog-
nized (Gravley et al. 2007; Villamor et al. 2007,
2011; Seebeck and Nicol 2009; Rowland et al.
2010; Allan et al. 2012; Gomez-Vasconcelos
et al. 2017).

12.2.3 Tyrrhenian Margin of Central
Italy

The Tyrrhenian margin of Central Italy hosts a
volcanic arc located on the northeastern extended
portion, or margin, of the back-arc basin of the
Tyrrhenian Sea, characterized by significant
crustal thinning and incipient oceanization in the
southern part. Extensional processes have been
affecting the northeastern Tyrrhenian margin
since late Miocene as a consequence of back-arc
opening. Extension occurred at the back of the
eastward migrating Apennine fold and thrust
belt, due to the progressive eastward shift of the
Apennine subduction (Fig. 12.6a; Malinverno
and Ryan 1986; Royden et al. 1987; Patacca
et al. 1990). The eastward migration of subduc-
tion, and of the associated extension to its rear, is
related to the roll-back of the slab. The active
slab is currently limited to the portion of the
oceanic Ionian lithosphere subducting below
Calabria, with the sides below Sicily and the
northern and central Apennines experiencing
collision between the African and Eurasian con-
tinental plates. The product of this collision-
subduction-collision configuration is a conver-
gence front that is strongly arcuate and migrating
towards the oceanic subducting lithosphere. As a
result of this southeastward migration, the
southern Tyrrhenian area has been experiencing
larger amounts of back-arc extension (5–
6 cm/year), associated with incipient oceaniza-
tion, with regard to the northern Tyrrhenian area
(1–2 cm/year; Patacca et al. 1990; Benoit et al.
2011; Savelli and Ligi 2017). Seismic tomogra-
phy data show gaps within the previously

subducted lithosphere below the Tyrrhenian
margin of Central Italy, which are interpreted as
deep (100–500 km) subvertical tear faults driv-
ing post-collision slab breakoff. These tear faults
are inferred to control the presence of magmatic
activity along the northeastern Tyrrhenian mar-
gin (Wortel and Spakman 2000; Rosenbaum
et al. 2008; Giacomuzzi et al. 2012).

In Central Italy, the overall NE-SW directed
extension associated with NW–SE trending nor-
mal faults has migrated eastward from the
Tyrrhenian area during Miocene-Pliocene to the
Apennines divide during Quaternary, where
extension currently manifests through seismo-
genic faults. Although geodetic or seismological
evidence of active extension has not been
detected along the northeastern Tyrrhenian mar-
gin, here the minimum horizontal stress is cur-
rently mainly NE-SW oriented, and locally NW–

SE oriented. Extension has produced a thinner
crust (*25 km) in the eastern side of the
Apennines with regard to the western part
(*35 km). Associated with crustal thinning is a
high heat flux, which reaches 400 mW m2 in
some volcanic areas along the northeastern
Tyrrhenian margin and in the Southern Tyrrhe-
nian area (Jolivet et al. 1998; Serpelloni et al.
2005; Di Stefano et al. 2011; Montone et al.
2012; D’Agostino 2014).

The variable amount of stretching along the
northeastern Tyrrhenian margin is highlighted by
the different width of the extended area and the
morphotectonic variations in the lateral continu-
ity of the extensional basins. In fact, the NW–SE
trending normal faults extending the margin
formed several Plio-Quaternary basins, partly
reactivating pre-existing thrust planes generated
during the build up of the Apennines orogen.
Transverse NE-SW trending faults often interrupt
the continuity of these basins, also forming
transverse extensional basins, 1–3 km deep, fil-
led by Plio-Quaternary sedimentary and volcanic
deposits. The frequency of the transverse struc-
tures decreases northeastward, following more
limited extension (Fig. 12.6; Mariani and Prato
1988; Faccenna et al. 1994). Surface and sub-
surface data show that these orthogonal fault
systems crosscut each other, suggesting a coeval
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and joint eastward migration. While the margin-
parallel faults accommodate crustal extension,
the transverse systems may result from two dif-
ferent processes. With predominant transtension,
these may be transfer systems of the NW–SE
striking normal faults, accommodating the dif-
ferential extension along the margin. With pre-
dominant extension, as in the southern part, these
may accommodate the NW–SE oriented exten-
sion induced by the retreat of the Ionian slab
beneath Calabria, in the southern Tyrrhenian area
(Acocella and Funiciello 2006).

Potassic volcanism associated with slab tear-
ing and breakoff beneath the Apennines followed
extension along the margin, with compositional
signatures transitional between arc type and OIB
type magmas. Indeed, the slab breakoff related
potassic volcanism of the margin appears distinct
from the back-arc basaltic volcanism in the
oceanic patches within the Tyrrhenian Sea and
from the ongoing calcalkaline volcanism of the
Aeolian Arc, which results from the subduction
of the Ionian slab (Rosenbaum et al. 2008; Gia-
comuzzi et al. 2012; Peccerillo 2017). Several
volcanic districts are found along the margin:
these are NW–SE aligned, parallel to the main
normal faults, and have been mostly erupting
between *0.6 and *0.1 Ma, with the exception
of the southernmost area, active from *0.4 Ma
to Present. There is a cyclic behaviour of vol-
canic activity through the margin, with climax of
each major eruptive cycle occurring simultane-
ously at the different districts every *48 ka,
with most eruptions focusing between 450 and
200 ka (Marra et al. 2004). The northern region,
hosting the volcanoes from the Amiata to the
Sabatini areas, experienced widespread late
Pliocene–Quaternary uplift of a few hundred of
metres, probably resulting from repeated magma
emplacement (Barberi et al. 1994). The volca-
noes mainly consist of caldera complexes with
minor relief (Vulsini, Sabatini, Campi Flegrei) or
stratovolcanoes with summit calderas (Vico,
Colli Albani, Roccamonfina and Vesuvio). Their
mean spacing of 42 ± 13 km implies a quite
regular distribution. However, this does not cor-
respond to an uniform distribution of the erupted

volumes, with most magma being usually erup-
ted at calderas (Vulsini, Sabatini and Campi
Flegrei; Fig. 12.6c). In addition, minor volcanic
activity occurred from scattered dike-fed mono-
genic vents between major volcanoes and also
within the Central Apennines chain. For exam-
ple, the emplacement of a dike at *15 km depth
a few tens of kilometres to the east of Rocca-
monfina volcano in 2013–2014 suggests ongoing
magma intrusion also within the mountain chain
(Acocella and Funiciello 2006; Peccerillo 2017;
Di Luccio et al. 2018). Despite recent minor
unrest at Colli Albani, active volcanism focuses
to the south, in the Campi Flegrei and Somma-
Vesuvio districts. The NE-SW elongated Campi
Flegrei District includes the Campi Flegrei Cal-
dera and Procida and Ischia islands, mainly
erupting trachytes from *0.15 Ma to Present.
Somma-Vesuvio, active between *0.3 Ma to
Present, mainly erupted phonolites and trachy-
basalts at the intersection of orthogonal fault
systems (Fig. 12.7). Petrological data suggest
that, rather than deriving from the extinct sub-
duction below the Central Apennines, these
active volcanoes are related to the ongoing sub-
duction of the oceanic Ionian lithosphere below
the southern Tyrrhenian area (Rosi and Sbrana
1987; Santacroce 1987; Vezzoli 1988; Passaro
et al. 2016; Peccerillo 2017).

Analysis of the fracture systems in the vol-
canic areas along the margin suggests that the
main volcanoes lie at the intersection between the
orthogonal fault systems, with the transverse
structures predominating over the NW–SE
trending structures. This also holds for the major
eruptive fissures, which commonly have a
transverse direction and moreover erupt the most
primitive products (Fig. 12.6). Volcanoes with
smaller erupted budget are usually associated
with isolated transverse systems (Vico, Vesuvio),
whereas volcanoes with higher erupted budget
are usually associated with diffuse transverse
structures, controlling the shape of calderas and
bordering transverse basins usually to the west of
the volcano (as at Vulsini, Sabatini, Colli Albani,
Campi Flegrei). The onset of sedimentation in
these transverse basins is 2–3 Ma older than the
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onset of the nearby volcanic activity, suggesting
localized pre-volcanic thinning and decompres-
sion (e.g., Mariani and Prato 1988; Faccenna
et al. 1994).

In synthesis, despite the overall NW–SE ori-
entation of the volcanic arc, there is limited
evidence for the activity of NW–SE trending
structures controlling magmatism. This is also
supported by the fact that active extension due to
the NW–SE structures is currently detected
within the Apennines *100 km to the east, and
it is likely that such extension already migrated
to the east of the volcanic arc during the climax
of volcanism between 450 and 200 ka (Devoti
et al. 2011; D’Agostino 2014). Therefore, the
activity of the NW–SE striking faults along the
northeastern Tyrrhenian margin predated vol-
canic activity, promoting magmatism by thinning

the crust and inducing decompression melting.
The transverse structures are more closely related
to volcanic activity: these may have controlled
volcanism in a three-fold way (Fig. 12.8). With a
dominant extensional component, as in trans-
verse basins, the transverse structures may
localize crustal thinning and decompression,
focusing magmatism below the main volcanoes.
In addition, any local NW–SE trending extension
(especially towards the south) may control dike
propagation along a transverse trend. Finally,
with a dominant strike-slip component, the
transverse structures may provide preferred sub-
vertical crustal paths reactivated by the dikes
feeding the major fissure eruptions. The Tyrrhe-
nian case shows how slab breakoff and regional
extension promote the overall generation and rise
of magma along the margin, but transverse

Fig. 12.7 View from the west of the Somma-Vesuvio
Volcanic Complex, the last erupting volcano (in 1944)
along the Tyrrhenian margin of Central Italy. Mount
Somma (to the left) identifies the relict volcano, devel-
oped before *18 ka, separated by the younger arcuate

caldera scarp from the active Vesuvio cone (right),
developed in the last *2 ka; the last 1944 lava flow
(light colour) lies against part of the caldera scarp. Image
courtesy of Giuseppe Vilardo and Laboratorio Geomatica
e Cartografia, Osservatorio Vesuviano-INGV
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structures, due to a complex tectonic setting,
focus shallower magma rise, emplacement and
eruption (Acocella and Funiciello 2006).

12.3 Strike-Slip Arcs

Strike-slip volcanic arcs are characterized by
predominant horizontal motion, usually expres-
sed through a principal displacement zone. As
described in Sect. 10.4, this condition results
from the strain partitioning generated by the
oblique convergence between the two plates,
with the sense of motion of the trench-parallel
component of the convergence vector coinciding
with the sense of motion of the strike-slip fault
zone along the arc. Strain partitioning, and thus
strike-slip arcs, may develop with variable
obliquity of the convergence vector: this is
expressed by the angle ɸ between the conver-
gence vector and the trench-perpendicular com-
ponent: the higher the angle, the higher the
obliquity (Fig. 10.12). Some strike-slip arcs are
related to minor obliquity (of a few tens of
degrees), whereas others are related to higher
obliquity (several tens of degrees; Table 12.1).

While obliquely convergent arcs show a pre-
dominant strike-slip motion, a non-negligible
contractional or extensional arc-orthogonal
component is also commonly found, frequently
giving the arc an overall transtensive or trans-
pressive kinematics.

Below two representative cases of strike-slip
arcs experiencing minor obliquity (the South
Andean Volcanic Zone; Sect. 12.3.1) and major
obliquity (Sumatra, Indonesia; Sect. 12.3.2) are
described.

12.3.1 The South Andean Volcanic
Zone

The N-S trending South Andean Volcanic Zone
results from the subduction of the Nazca plate
beneath the South American plate in central and
southern Chile. To the south of this volcanic
zone, after a volcanic gap nearby the Chilean
Triple Junction where the spreading Chile Ridge
enters the Chile Trench, begins the Austral
Volcanic Zone, a young arc related to the Qua-
ternary subduction of the Antarctic plate beneath
South America (e.g., Stern 2004).
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At the latitude of the South Andean Volcanic
Zone, the 0–45 Ma old Nazca plate is being
subducted below the continent at 6–9 cm/year in
a northeast direction. The dip of the slab
increases from *20° at the northern end of the
volcanic zone to >25° further to the south. As a
consequence, the distance between the trench and
the volcanic arc decreases from more than
290 km in the north to less than 270 km in the
south. In addition, the depth to the slab below the
arc decreases southwards, from 120 to 90 km

(Stern 2004). The convergence between the
Nazca and South American plates associated
with the South Andean Volcanic Zone is mod-
erately oblique, as the angle between the con-
vergence vector and the trench-perpendicular
direction is *22°. This obliquity is partly parti-
tioned into a contractional forearc and a *N-S
striking domain along the volcanic arc that hosts
a large fault system, the Liquine-Ofqui Fault
Zone, or LOFZ (Fig. 12.9). This, active since late
Oligocene at least, is nearly 1200 km long and,
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in addition to its poorly detected Quaternary
dextral movement, displays a significant con-
tractional displacement, resulting in overall
transpression. The current activity of the LOFZ
derives from a Quaternary NE-SW oriented
maximum principal stress r1, with r2 and r3
mutually alternating along-strike because of local
or regional factors (inherited discontinuities,
variations in the convergence angle, topography)
and locally producing transpressional or even
contractional tectonics and seismicity (Lavenu
and Cembrano 1999; Rosenau et al. 2006;
Cembrano and Lara 2009; Lara et al. 2010;
Legrand et al. 2011). Crustal thickness under-
neath the volcanic arc decreases steadily from
*50 km at 33 °S to *35 km at 46 °S, with an
accompanying decrease in the average altitude of
the orogen, from 5000 m to less than 2000 m
(Tassara and Yánez 2003). Seismicity occurs at
depths down to 40 km in the forearc and shal-
lower than 12 km beneath the volcanic arc. Focal
mechanisms indicate overall strike‐slip faulting
consistent with ENE‐WSW shortening. More in
detail, three distinctive latitudinal domains show
seismicity consistent with splay faulting along
branches of the LOFZ (at its northern termina-
tion), along ENE-WSW and ESE-WNW trans-
verse faults (in the central portion) and focused
along the master branch of the LOFZ (at its
southern part). This indicates a complex strain
compartmentalization pattern within the arc,
where variable strike‐slip faulting dominates
over dip‐slip motions (Sielfeld et al. 2019).

Magmatic activity focuses along the LOFZ
and its intersection with inherited oblique struc-
tures, developing the *N-S trending volcanic
arc. The average magma extrusion is here close
to 10–13 km3/km/Ma, although the productivity
appears discontinuous (e.g., Volker et al. 2011).
The South Andean Volcanic Zone includes at
least 60 historically and potentially active main
stratovolcanoes, as well as three large silicic
caldera systems and numerous minor eruptive
centres. The erupted magmas include basalts,
basaltic andesites, andesites, dacites and rhyo-
lites. The more evolved rocks have the same
isotopic composition of the more primitive rocks,
indicating that they formed either by crystal-

liquid fractionation without assimilation, or
assimilated young, isotopically similar crust,
such as Miocene plutonic rocks (Stern 2004, and
references therein). At the arc-scale, regional
tectonics would control whether basaltic magmas
reach the surface or evolve to more differentiated
products. In particular, NE-SW striking volcanic
alignments contain mainly basaltic to basaltic
andesite compositions. Conversely, NW–SE
striking alignments contain a wide range of
compositions, including rhyolites (Cembrano and
Lara 2009).

The central part of the LOFZ, at *41 °S,
displays interesting structural and volcanic fea-
tures that may be representative of the more
general tectono-magmatic relationships along the
arc. This area includes the Carrán–Los Venados
volcanic field and the neighbour polygenetic
Puyehue–Cordón Caulle volcanic complex
(Fig. 12.9; Lara et al. 2006; Singer et al. 2008;
Bucchi et al. 2015). The Carrán–Los Venados
volcanic field is a basaltic to basaltic andesitic
volcanic field composed of 65 post-glacial scoria
cones and maars and a stratovolcano. The NE-
SW elongation of its feeding system, subparallel
to the current maximum principal stress r1,
suggests a zone of local extension. Petrologic
data indicate that here magmas differentiate in
low crustal reservoirs, followed by rapid ascent
to the surface, with a post-glacial magma flux of
*3.1 km3/ka. The Puyehue–Cordón Caulle
volcanic complex consists of a NW–SE elon-
gated 13 � 6 km wide depression hosting the
NW–SE trending Cordón–Caulle area of rhy-
olitic fissure volcanism and the Puyehue strato-
volcano to the east. The Cordón Caulle area
experienced notable uplift between 2012 and
2015, partly overlapping with the 2011–2012
rhyolitic eruption (Jay et al. 2014; Delgado et al.
2016, 2019). The NW–SE elongation of the
feeding system of the Puyehue–Cordón Caulle
volcanic complex, perpendicular to the maxi-
mum principal stress r1, suggests a zone of local
contraction. Here the magmas stagnate and dif-
ferentiate in lower and upper crustal reservoirs,
with an average magma flux similar to that of
Carrán–Los Venados, although reaching more
than twice its value (*9 km3/ka) during peak
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eruptive periods. Therefore, at Carrán–Los
Venados monogenetic volcanism results from an
extensional/transtensional regime that favours
rapid magma rise without storage and differen-
tiation in upper crustal reservoirs. Conversely, at
Puyehue–Cordón Caulle, contractional deforma-
tion and transient high magma flux developed
stable upper crustal silicic magma reservoirs
feeding polygenic evolved volcanism
(Fig. 12.10; Bucchi et al. 2015).

The tectono-magmatic features described for
Carrán–Los Venados and Puyehue–Cordón
Caulle may be applicable also to other volcanoes
along the LOFZ (Folguera et al. 2004). For
example, at the northern termination of the
Liquine-Ofqui Fault Zone lies the Caviahue-
Copahue Volcanic Complex, active within a
20 � 15 km wide depression in the last *4 Ma.
Here magmatic centres and hydrothermal paths
have a preferred ENE-WSE alignment, parallel to
the direction of the maximum principal stress r1.
A similar structural setting is found also in the
nearby ENE-WSE elongated Callaqui stratovol-
cano, to the west, and the NE-SW elongated
Llaima stratovolcano, to the south (Melnick et al.
2006; De Maisonneuve et al. 2012; Sielfeld et al.

2017). Conversely, other nearby stratovolcanoes
are aligned along a NW–SE direction, as for
example Villarrica, Quetrupillan and Lanin
(Fig. 12.11). All these features suggest recurrent
convergence-parallel and convergence-
orthogonal structural controls on the volcanoes
along the South Andean Volcanic Zone, although
more data are needed to generalize any behaviour.

The different tectono-magmatic conditions
shown by Carrán–Los Venados and by Puyehue–
Cordón Caulle may be explained by the transient
variations imposed by seismic cycles associated
with mega-earthquakes along the convergent
plate boundary. In particular, in the inter-seismic
period, the ENE-WSW trending maximum prin-
cipal stress r1 deriving from the convergence is
subparallel to the plumbing systems of the NE-
SW trending volcanic alignments; this promotes
local extension and rapid magma ascent through
NE-SW trending feeder dikes. The maximum
principal stress r1 is also perpendicular to the
plumbing system of the NW–SE trending vol-
canic complexes, promoting local contraction
and thus magma stagnation in sills. In the co- and
post-seismic periods, that is during and imme-
diately after mega-earthquakes, the situation may
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Fig. 12.10 Schematic diagram summarizing the tectono-
magmatic features of the Cordón Caulle-Puyehue and
Carran-Los Venados volcanic complexes in the South
Andean Volcanic Zone (location in Fig. 12.9). The former

lies along a NW–SE trending thrust zone, in whose flat
parts magma accumulates at depth. The latter lies along a
NE-SW extensional zone along the LOFZ, which pro-
motes the rise of magma to the surface (Bucchi et al. 2015)
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be reversed, with the upper plate moving
trenchward and inducing an overall arc-
orthogonal (E-W to NE-SW trending) extension
(Walter and Amelung 2007). As a result of this
transient extension, a general increase in the
eruption rate along the South Andean Volcanic
Zone has been recognized in the last centuries
soon after major thrust earthquakes along the
plate boundary. Eruption locations imply that
these effects may manifest up to several hundreds
of kilometres beyond the limits of the earthquake
rupture zone, with both dynamic and static stress
changes affecting eruption-triggering processes
over timescales of several months (Watt et al.
2009). This increase in the eruptive rate is
explained by the co- and post-seismic transient
extension enhancing magma ascent through
NW–SE trending dikes feeding NW–SE elon-
gated or aligned volcanoes. The latter condition
may justify the Quaternary extension locally
experienced by the Puyehue–Cordón Caulle
Complex (Sepulveda et al. 2005). Also, the NW-
SE trending 1960 rhyodacitic fissure eruption in
the Cordón Caulle Complex was activated by the
greatest recorded subduction zone earthquake
(M9.5), starting 38 h after the main shock,
240 km inland (Lara et al. 2004). More recently,
the 2010 M8.8 Maule mega-earthquake induced
subsidence of up to 15 cm in five volcanic areas

in the South Andean Volcanic Zone within
weeks of the earthquake, without detectable
thermal changes. This deformation may be rela-
ted to the co-seismic release of fluids from
hydrothermal systems documented at three of the
five subsiding volcanic areas. Among these is the
Nevados de Chillan Volcanic Complex, which
erupted in 2015 along a NW–SE trending fissure,
perhaps reactivating a pre-existing basement
structure unclamped by the Maule earthquake
(Pritchard et al. 2013; Bonali et al. 2015; Lupi
et al. 2020).

The northern termination of the transpressive
Liquine-Ofqui Fault Zone is connected through a
transfer zone to a major N-S trending back-arc
thrust system. This contractional back-arc zone is
characterized, at a latitude of *37°, by several
polygenic volcanoes. Among these is Tromen
volcano, with the nearby intrusive complex of
Cerro Negro de Tricao Malal. While the former
is E-W elongated, parallel to the local direction
of compression, the latter has an overall N-S
elongation, parallel to the axis of the folds in the
basement. In both cases, the location of the fee-
der dikes at the anticlinal hinges of the N-S
trending basement folds suggests that dike
propagation was controlled by local and shallow
stresses related to the stretching of the outer
portion of the folds; this mechanism may be

NE SWFig. 12.11 View of a portion
of the South Andean Volcanic
Zone showing the
Quetrupillan and Lanin
(background) volcanoes seen
from the top of Villarrica
volcano. These three
stratovolcanoes form a
second-order NW–SE
trending alignment within the
N–S trending volcanic arc
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responsible for the vertical partitioning of
igneous plumbing systems in contractional set-
tings (Galland et al. 2007; Gurer et al. 2016).

Finally, recent studies also consider the pos-
sible effect of the climate change-driven
deglaciation after the last glacial maximum
along the South Andean Volcanic Zone (Mora
and Tassara 2019). The resulting changes in
pressure at upper crustal levels (<10 km depth) at
the scale of several hundred years are of the order
of 10–100 MPa. This large decompression may
easily surpass the tensile strength of rocks
(5–20 MPa), promoting the failure of the reser-
voir walls, dike propagation and the collapse of
the reservoirs accompanying explosive eruptions.

12.3.2 Sumatra, Indonesia

The island of Sumatra (Western Indonesia)
exposes part of the highly oblique (ɸ > 45°)
convergence resulting from the Indian plate
subducting northward below the Eurasian plate
along the NW–SE trending trench. The conver-
gence velocity along the boundary increases
towards southeast, from *5 to *6 cm/year
(Fig. 12.12). This configuration results from the
Cenozoic collision of India with Asia, which
induced the progressive clockwise rotation of the
western portion of the former Sunda subduction
zone, whose non-rotational portion remains cur-
rently preserved in the island of Java (central

0°

5°S

95°E 100°E

S
u

m
a

t
r

a

45

29

J a v a

Toba 
caldera

52

55

57

60

Indo-Australian

plate

Wharton 

Ridge

South-East Asian

plate

GSF

GSF

GSF

GSF
24
26

24

23

23
23

27

Geodetic slip rate across 
GSF (mm/yr)

Main volcano

Dextral GSF

Convergence velocity
(fixed SE Asia, mm/yr)

52 

23
Geologic slip rate across 

GSF (mm/yr)11

11

11

10.4
6.8

Inset

50 mm/yr
relative to SE Asia

500 km

Andaman Sea

M9.2 2004 
Sumatra-Andaman 
mega-earthquake

Sarulla 
graben

Taratung 
basin

Fig. 12.12 Tectonic setting of Sumatra, Indonesia, with
the geologic and geodetic slip rates along the Great
Sumatra Fault (GSF) from Natawidja and Triyoso (2007);
location and focal mechanism of the 2004 Sumatra–

Andaman mega-earthquake are also reported. Inset shows
the inter-seismic motion from GPS data between 1989 and
1996 in the central-northern part of the island (McCaffrey
et al. 2000). Base DEM provided by GeoMapApp

12.3 Strike-Slip Arcs 467



Indonesia). The rotation increased both the
obliquity of convergence and the rate of strike-
slip motion along the plate boundary in western
Indonesia. The Indo-Australian plate currently
subducts beneath Sumatra with a complex
geometry. This is highlighted by the steepening
of the slab from the north (with a slab dip <60°),
where it lies on the 660 km deep upper mantle
discontinuity, to the south (dip >70°), where the
slab pierces through the upper mantle disconti-
nuity. Also, the slab shows a marked bend in
map view in northern Sumatra, approximately
below Toba caldera (Pesicek et al. 2008).

While contraction dominates in the offshore
portion of the convergent plate boundary, the
NW–SE trending dextral Great Sumatra Fault
(GSF) focuses most of the inland deformation.
The dip-slip motion towards the trench side of
the overriding plate and the strike-slip motion
along the arc highlight an almost full partitioning
of the strain (Fig. 12.12; Bellier et al. 1999;
McCaffrey et al. 2000; Bradley et al. 2017).
The GSF separates the eastern basin, a region
that is part of the Sunda Shelf and undergoes
little internal deformation, from the western
coastal areas of the forearc sliver. Analysis of
well borehole breakouts, focal mechanisms of
earthquakes and geologic stress indicators indi-
cates that the regional maximum principal stress
r1 adjacent to the GSF is oriented at a high angle
to the fault (Mount and Suppe 1992). The GSF
propagated southwards, in central-southern
Sumatra, from *2 Ma and it is usually active
as a vertical plane down to depths of*15 km, as
revealed by the associated seismicity arriving
nearly to the base of the brittle crust. The fault
zone is segmented and consists of at least 19
major NW–SE trending subparallel branches,
also forming strike-slip duplexes, with a north-
ward increase in segment length and in slip rate,
from 0.5 to 2.6 cm/year. Overall, most (>80%) of
the GSF consists of a narrow (a very few km
wide) zone of deformation along a main dextral

segment. Limited parts (<20%) of the GSF may
show offset segments, at times overlapping.
Geomorphic offsets along the fault range as high
as 20 km and may represent only the most recent
displacement, with other unidentified structures
having accommodated the dextral component of
oblique convergence in the past. Interaction
between dextral segments offset in an en-echelon
dextral configuration creates repeated areas of
localized extension along the GSF in a context of
overall NNE-SSW trending maximum compres-
sion (Duquesnoy et al. 1996; Genrich et al. 2000;
Prawirodirdjo et al. 2000; Sieh and Natawidjaja
2000; Natawidjaja and Triyoso 2007; Weller
et al. 2012; Ito et al. 2016). As mentioned, the
activity of the GSF is accompanied by seismicity,
locally interrupted in volcanic areas. For exam-
ple, a narrow seismic gap highlighted the vol-
canic areas during the aftershock sequence of the
1994 M6.8 Liwa earthquake, in southern Suma-
tra, suggesting that the rupture process is also
controlled by the presence of magma (Widiwi-
jayanti et al. 1996). More in general, seismicity
predominates along the plate boundary, with
important effects on the overriding plate. In fact,
GPS data in the northern part of Sumatra show
that the co- and post-seismic displacement after
the 2004 M9.2 Sumatra–Andaman mega-
earthquake, occurred offshore, was character-
ized by the southwest motion of the volcanic arc
region, consisting of several tens of centimetres
of co-seismic displacement, plus tens of cen-
timetres in the first year after the earthquake. The
2004 mega-earthquake was followed, one month
later, by a seismic swarm and a submarine
eruption in the Andaman Sea, along the northern
continuation of the Sumatra arc. This seismicity
is consistent with the regional tectonic setting
and the involvement of fluids, also magmatic,
producing arc-parallel normal faults (Subarya
et al. 2006; Gahalaut et al. 2008; Shearer and
Burgmann 2010; Kamesh Raju et al. 2012;
Kundu et al. 2012).
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Arc volcanism has been accompanying con-
vergence at least from the Mesozoic. While the
late Miocene volcanism in northern Sumatra is
scattered, in the southern part it generally over-
laps with the Quaternary volcanism, although the
latter may be slightly more shifted to the west.
Part of the Quaternary volcanism focuses along
the GSF (Fig. 12.12). Quaternary volcanics are
mainly calcalkaline andesites, dacites and rhyo-
lites, with genetically homogeneous overall
composition; relatively primitive rocks, as
basalts, are rare, with even the most primitive
lavas suffering crustal contamination (Gasparon
2005). The volcanic arc consists of approxi-
mately 50 major volcanoes. Most of these are
stratovolcanoes or composite volcanic edifices
between 600 and 3800 m high, with monogenic
vents on their flanks. At times, calderas are pre-
sent: Toba caldera is the largest and most rep-
resentative volcanic complex, located above a
tear in the bent subducting plate. Toba is the site
of Earth’s largest Quaternary eruption, ejecting
*3000 km3 of magma at *75 ka (Fig. 5.5;
Chesner 2012; de Silva et al. 2015; Koulakov
et al. 2016). The caldera has a pronounced NW–

SE elongation, parallel to the nearby GSF seg-
ment, and this configuration has been interpreted
as due to a presently inactive stepover between
dextral segments. However, the structural rela-
tionships between the GSF segment and the
caldera structure are not obvious. In fact, the
GSF segment lies *10 km to the southwest of
the western caldera rim, and geodetic modelling
shows that slip of the GSF segment currently
focuses several kilometres southwest of the
geologic fault plane. The magma reservoir below
the caldera consists of stacked sills down to a
depth of 7 km, lying on top of a low velocity
anomaly almost extending down to the slab
(Detourbet et al. 1993; Genrich et al. 2000;
Stankiewicz et al. 2010; Chesner 2012; Jaxybu-
latov et al 2014). Other volcanic areas, in addi-
tion to stratovolcanoes and calderas, host domes
and geothermal activity. In the geothermal areas
of the Sarulla graben and the Tarutung Basin the
fluid pathways are related to pull-apart structures,
negative flowers and subvertical splays of the
GSF. In the latter case, the geothermal reservoirs

are centred along the fault zone, where the highly
fractured and hydrothermally altered rocks serve
as main conduits for vertical fluid flow from
deeper magmatic sources (e.g., Moore et al.
2001).

Despite the apparent spatial coincidence
between most volcanoes and the Great Sumatra
Fault (Fig. 12.12), closer inspection suggests that
the location and the eruption rate of many vol-
canoes are not really controlled by the activity of
the dextral GSF (Fig. 12.13). Rather, the volca-
noes mainly lie above a consistent depth of the
slab below, at 130 ± 20 km. Indeed, the slab-
derived fluid-rich portion of the asthenospheric
wedge seems to control the location of both the
volcanic arc, through partial melting, and of the
GSF, through magma-induced thermal weaken-
ing able to localize faulting in the upper crust.
The latter feature is supported by the different
timing in the development of the GSF along
Sumatra. In fact, the more recent central-southern
portion of the GSF formed in the last 2 Ma,
postdating the older Miocene volcanism. The fact
that the latter is found in the same location as the
Quaternary volcanism indicates that the Miocene
arc was not controlled by the activity of the GSF
and suggests that a similar condition applies also
to the Quaternary arc. Overall, this implies that
the magmatic arc controls the location of plate
deformation, although once a major fault zone is
established its activity may further promote the
rise and shallow emplacement of magma
(McCaffrey et al. 2000; Sieh and Natawidjaja
2000; Acocella et al. 2018).

Even though not particularly related to the
activity of the GSF, the current volcanic arc also
experiences a convergence-orthogonal direction
of extension, which is kinematically compatible
with the dextral systems of the GSF and explains
the common *NNE-SSW elongation and/or
alignment of many volcanoes (Fig. 12.14).
However, there is also evidence of subordinate
arc-normal extension, as suggested by structural
data and volcano elongations, which may be
related to a transient co- and post-seismic stress
field inversion induced by mega-earthquakes, as
observed for the 2004 event. Also, volcanic
activity is largely confined within the volcanic
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edifices, with limited evidence of monogenic
volcanism between the main polygenic volca-
noes. This suggests the lack of elongated mag-
matic systems, implying a central, and not linear
(as for example in the Taupo Volcanic Zone),
mode of rise of the magma in the crust.

Overall, there is a limited control of the strike-
slip structures on volcanism at Sumatra. This
supports only in part previous evidence from the
deeper structure of extinct and eroded magmatic
arcs, where pluton emplacement has been widely
associated with local extension created by strike-
slip systems (see Sect. 4.5.2). This partial
agreement may result from several possibilities:

among these, a variable role of the arc structure
at depth and at the surface, with a stronger con-
trol on magma emplacement at depth and a
weaker control on the rise of the magma towards
the surface. A similar behaviour has been pos-
tulated for the central Aeolian Volcanic Arc of
southern Italy. However, conversely to Sumatra,
along the central Aeolian Arc there is evidence of
magmatism continuing, through eruptive fis-
sures, outside the main volcanoes, suggesting the
activity of magmatic systems; these may be
induced by a variation in the shallower tectonic
regime, which becomes extensional (Ruch et al.
2016; Acocella et al. 2018).
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12.4 Contractional Arcs

Contractional volcanic arcs are characterized by
dominant shortening, resulting from overall arc-
orthogonal compression, a condition imparted by
orthogonal convergence. As most plate bound-
aries do not experience pure orthogonal conver-
gence, a frequent and non-negligible strike-slip
component is often associated with contractional
arcs. Indeed, only very few volcanic arcs expe-
rience evident and dominant contraction, and
negligible strike-slip motion: among these are the
eastern Aleutian Arc, the northeast Japan Arc
and, for much of its late Cenozoic-Quaternary
evolution, the more complex arc of the Central
Andes (Table 12.1; Acocella and Funiciello
2010). Below the focus is on the most-studied

and representative volcanic arcs of northeast
Honshu (Japan; Sect. 12.4.1) and the Central
Andes (Sect. 12.4.2).

12.4.1 Northeast Honshu, Japan

Honshu is the largest island in Japan. The
northeast Honshu volcanic arc lies to the west of
the N-S trending Japan trench, where the west-
ward Pacific plate subducts with a N115° motion
of *8 cm/year. To the north, the Japan trench is
connected to the NE-SW trending Kuril trench.
Here the oblique convergence of the Pacific plate
induces the arc-parallel southwest motion of the
Kuril forearc sliver, colliding in east Hokkaido.
To the south, the Japan trench is connected to the
N-S trending Izu-Bonin trench, where the Pacific

Indo-Australian plate

a) b)

Convergence 
vector Structurally controlled volcano

Non-structurally controlled volcano 

Extension direction

Volcano 
elongation/alignment

Inter-seismic Co- and post-seismic

Mega-
earthquake

Indo-Australian plate

Dextral fault

Normal fault

South-East
Asian plate

South-East
Asian plate

Fig. 12.14 Tectono-magmatic relationships along the
Sumatra obliquely convergent volcanic arc. a During the
inter-seismic period the arc is characterized by the activity
of dextral structures associated with strain partitioning.
Part of these structures may control the location of the
volcanoes (“structurally controlled volcano”). The loca-
tion of other volcanoes (“non-structurally controlled
volcano”) away from the strike-slip zone may be
explained by other factors, as slab depth or

convergence-orthogonal extension, controlling also vol-
cano alignment and elongation. b During transient
conditions (as in co- and post-seismic periods due to the
activity of mega-earthquakes) the arc may undergo arc-
normal extension, with the local reactivation of the strike-
slip faults as normal faults; the alignment and elongation
of volcanoes may partly reflect these transient conditions,
becoming subparallel to the arc (modified after Acocella
et al. 2018)
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plate subducts below the Philippine Sea plate. To
the west lies the Japan Sea, a Miocene back-arc
basin associated with widespread basaltic vol-
canism (Fig. 12.15; Kimura 1986; De Mets
1992; Kimura 1996; Yoshida et al. 2013).

The *400 km long, N-S trending volcanic
arc of northeast Honshu focuses along the
uplifted central mountainous range (Ou Back-
bone Range; Hasegawa et al. 1991). Here during
Middle Miocene to Pliocene the regional stress
field related to the convergence of the Pacific
plate was neutral and not responsible for any

distinct structural pattern. However, the south-
west indentation of the Kuril sliver, resulting
from the oblique convergence with dextral
component along the Kuril Arc, imposed a
southwest oriented maximum compression and
major arc-parallel dextral faults in northeast
Honshu. The Kuril sliver indentation may have
begun at 10–12 Ma, as a consequence of a
change in motion of the Pacific plate. The Middle
Miocene to Pliocene northeast Honshu Arc pro-
duced bimodal volcanism, with rhyolites and
subordinate low K basalts focusing along the Ou

Plate boundary

Inferred
plate boundary

8 cm/yr
Plate motion

at specific 
plate boundary

Volcanoes erupting
 after 1900 AD

Active volcanoes 
erupting before 

1900 AD

Fig. 12.15 Tectonic setting of northeast Honshu (Japan),
with the major active volcanoes. Solid lines: subduction
front; dashed lines: inferred boundaries of minor plates.
MTL = Median Tectonic Line in southwest Japan. Plate

motions from Gripp and Gordon (2002). Location and
focal mechanism of the March 11, 2011 Tohoku mega-
earthquake are also reported. Base DEM provided by
GeoMapApp
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Backbone Range, where nearly eighty calderas
were fed by felsic plutons following crustal
heating and re-melting. The volcanic productiv-
ity was approximately 210 km3 per Ma per
200 km of length of the arc (Fig. 12.16; Sato
1994; Kimura 1996; Yoshida 2001; Acocella
et al. 2008; Yoshida et al. 2013). In this period,
magma rose and erupted mainly along NE-SW
trending areas parallel to the direction of com-
pression imposed by the Kuril sliver. These areas
where probably associated in location and ori-
entation with localized extension created by the
active arc-parallel dextral faults. These exten-
sional areas also had a different orientation, and
were thus uncoupled, from the *E-W trending
paths which have been focusing the rise of melts
from the slab in the mantle below the arc in the
last 13 Ma (Tamura et al. 2002).

A change in the stress field around the Plio-
cene–Quaternary boundary resulted in an *E-W
oriented direction of maximum compression,
possibly related to the increase in the motion of
the Pacific plate (Pollitz 1986). This developed
two N-S trending uplifted zones, bounded by
reverse faults, in northeast Honshu: the Ou
Backbone Range (to the east) and the Dewa Hills
(to the west). N-S trending reverse faults become
active, also bordering the thermally anomalous
part of the crust coinciding with the magmatic
arc. The present *E-W oriented arc-
perpendicular compression at crustal levels is
supported by various geophysical and geodetic
data. This compression is evident also below the
arc, were the direction of mantle shear-wave
polarization anisotropy is *E-W oriented, con-
sistent with finger-like mantle diapirs. During
Quaternary, the composition of volcanism lar-
gely consisted of calcalkaline andesite, erupted
from approximately 60 stratovolcanoes, with
more evolved compositions being restricted to
approximately ten calderas. These stratovolca-
noes are also *E-W aligned and elongated,
forming a distinct subpattern with regard to the
*N-S trending one observed at the arc-scale
(Fig. 12.16; Ito et al. 2000; Igarashi et al. 2001;
Tamura et al. 2002; Nakajima and Hasegawa
2004; Kato et al. 2006; Loveless and Meade

2010). A few of these volcanoes, as Zao, show in
the last 2 ka much lower intrusive to extrusive
ratios than those estimated for other volcanoes of
northeast Honshu, probably following a different
thermal and rheological state of the crust (Zell-
mer et al. 2019).

The Quaternary deformation pattern associ-
ated with the volcanoes mostly consists of arc-
parallel thrust faults and subordinate arc-
perpendicular normal faults, extension fractures
and eruptive fissures. These arc-perpendicular
extensional structures may result from: a) the
shallow propagation and emplacement of E-W
trending dikes, parallel to the regional maximum
principal stress r1; (b) the accumulation of
stacked sills, locally increasing the vertical
component of the principal stress, which passes
from r3 to r2 and r1, and with the arc-parallel
oriented r2 becoming r3 (Fig. 10.24b). Condi-
tion b promotes the accumulation of large vol-
umes of magma and is consistent with crustal
thickening and the widespread magma-driven
uplift along the magmatic arc (Acocella et al.
2008; Yoshida et al. 2013; George et al. 2016).
The Quaternary E-W trending structures and the
E-W elongation and alignment of volcanoes may
be thus considered as the shallowest expression
of the*E–W trending hot mantle fingers imaged
at depth, suggesting a Quaternary coupling in the
rise of magma from the upper mantle to the upper
crust. This possibility is supported by the spatial
coincidence between the distribution of the vol-
canic areas along the Ou Backbone Range and
the Dewa Hills and the local negative Bouguer
gravity anomalies along the Japan Sea side of the
volcanic arc and the low velocity regions in the
mantle wedge. The connection between these
areas at different depth is confirmed by distinct
low velocity regions indicative of partial melting
that are continuously distributed from the mantle
wedge to the middle crust just below the Ou
Backbone Range (Fig. 12.16; Tamura et al.
2002; Acocella et al. 2008; Okada et al. 2010;
Yoshida et al. 2013). This coupling leads to a
two-dimensional mantle wedge flow, ensuring
higher temperatures in the shallow part of the
wedge and higher productivity of mafic magma.
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At crustal levels, the mixing between the deeper
mafic and the shallower felsic magma generates
the andesites. The Quaternary andesites are
associated with larger erupted volumes (approx-
imately 310 km3 per Ma per 200 km of length of
the arc) than the volumes of rhyolites erupted
during Miocene-Pliocene. This feature, ulti-
mately attributed to major changes in plate
interactions, indicates that pure convergence
does not hinder volcanic activity. Rather, under
conditions of mantle-crust coupling, magmatic

and volcanic activity may be even enhanced
(Acocella et al. 2008; Yoshida et al. 2013; Wada
et al. 2015; Mahony et al. 2016).

The 2011 M9.0 Tohoku mega-earthquake
caused impressive crustal deformation in north-
east Honshu, with significant co-seismic, as well
as post-seismic, arc-perpendicular extension
across the volcanic arc, reversing the inter-
seismic arc-perpendicular contraction
(Fig. 12.17). This motion is the transient
expression of the trenchward movement of the
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overriding plate during and after the mega-
earthquake and has been also confirmed by
structural field data, which highlight the coexis-
tence of arc-parallel normal faults and thrust
faults along the arc during Quaternary, with the
normal faults likely resulting from older seismic

events. Despite the sharp co-seismic kinematic
reversal in northeast Honshu, a minor inter-
seismic component of accelerated trenchward
motion was also detected in the decades before
the 2011 Tohoku earthquake and related to the
increased slip rate on the Japan trench plate

50 mm

138° 140°

a) b) c)

d) e) f)

g) h) i)

Fig. 12.17 Inter-seismic (a, 1997–2001 period), co-
seismic (b, 10–11 March 2011) and post-seismic (c, 12–
25 March 2011) GPS motions along the northeast
Honshu Arc relative to the March 11, 2011 M9.0 Tohoku
mega-earthquake (Miura et al. 2004; Ozawa et al. 2011).

d Overview of the subsidence occurred in several
volcanic areas (e–l) in northeast Honshu in the
February-April 2011 period, detected from InSAR data
(Takada and Fukushima 2013)
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interface (Miura et al. 2004; Acocella et al. 2008;
Ozawa et al. 2011; Mavrommatis et al. 2014). In
the portion of the arc perturbed by the mega-
earthquake several volcanoes subsided by 5–
15 cm, forming elliptical depressions up to 15–
20 km wide and N-S elongated, perpendicularly
to the maximum co-seismic extension. The
magmatic bodies beneath may have deformed
and subsided in response to crustal stress changes
or, alternatively, the enhanced crustal perme-
ability may have promoted the escape of fluids
from the overlying hydrothermal systems, simi-
larly to what inferred after the 2010 Maule mega-
earthquake in southern Chile (Takada and
Fukushima 2013; Pritchard et al. 2013).

12.4.2 The Central Andes

The Central Andes provide a case of widespread
and exceptional magmatism in an arc experi-
encing a complex evolution under dominant
contraction. The Andes result from the subduc-
tion, since late Proterozoic, of the Nazca plate
below the South American plate. Magmatism has
been accompanying the evolution of the Andes
with variable productivity, testified by the evi-
dence that increased regional contraction (as in
the Mesozoic) was associated with increase in
volcanism, whereas oblique convergence with
strike-slip motion (as in the Miocene) enhanced
plutonism. Andean volcanism currently focuses
above moderately to steeply dipping slabs
(dip >25°), delimited by flat slabs portions
underlying the non-volcanic parts of the orogen
(Jordan et al. 1983; Grocott et al. 1994; McNulty
et al. 1998).

The Central Andes magmatism includes the
diffuse and voluminous late Cenozoic to Qua-
ternary volcanism that reaches a width of
*300 km in the most thickened portion of the
orogen. This volcanism is often defined as flare-
up, referring to a phase in continental arc evo-
lution characterized by episodic higher flux
magmatism producing a large province of cal-
deras and ignimbrites dominated by dacite to
rhyolite compositions. Ignimbrite flare-up,

observed also in various parts of the western
United States and Mexico, requires an elevated
heat supply from the mantle to generate a tran-
scrustal magma system fuelling some of the lar-
gest silicic eruptions on Earth (Best et al. 2016;
de Silva and Kay 2018, and references therein).
In the Central Andes, the switch from steady
state volcanism (dominantly andesite–dacite
composite cones) to flare-up volcanism (domi-
nantly large-scale ignimbrites and caldera com-
plexes) is related to the southward migration and
subduction of the oceanic Juan Fernandez Ridge,
on the Nazca plate, in the last 25 Ma. The sub-
ducting warm and buoyant ridge determined the
flattening of the slab below the Central Andes
and the temporary lack of volcanism at the sur-
face (Fig. 12.18). This condition coincided with
an early Miocene acceleration in the rate of
westward drift of South America over the Nazca
plate. Both the flat subduction and the acceler-
ated plate motion contributed to the contractional
tectonic environment that produced over 300 km
of Central Andean shortening, with a 50–70 km
thick crust. While the southward migration of the
ridge determining the flat slab correlates with a
space–time gap in volcanic activity, soon after
the passage of the ridge the slab increased its dip,
from flat to shallow dipping, finally sweeping
volcanism eastward and defining a broad vol-
canic footprint in the Central Andes (Oncken
et al. 2006; Best et al. 2016; de Silva and Kay
2018). The steepening slab then started to roll-
back, promoting decompression melting in the
overlying enlarging mantle wedge, lowering its
viscosity. This condition focused an elevated
thermal input, encouraging crustal melting and
generating a significant amount of magma. This
resulted in the appearance and westward migra-
tion of volcanism from *24 Ma, concurrent
with an ignimbrite flare-up, in the Central Andes.
In the southern portion of the Central Andes, the
flare-up created the Altiplano-Puna Volcanic
Complex, active in the last *10 Ma and char-
acterized by a mantle magma production rate of
nearly 20 km3/km/Ma. This complex, hosted
within the Andean plateau at altitudes above
3000 m, is bordered to the west by the Andean
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forearc and to the east by the Eastern Cordillera
and the Subandean foreland (Fig. 12.19). Epi-
sodic piecemeal delamination from late Miocene
to Quaternary produced peaks in volcanic output
of the Altiplano–Puna Volcanic Complex.
Delamination may have affected the lower con-
tinental crust and the mantle lithosphere, both
sinking into and replaced by the underlying
hotter and less viscous mantle (Kay and Kay
1993; Kay and Coira 2009; Gioncada et al.
2010). Tomography has repeatedly highlighted
high velocity structures beneath the Puna, inter-
preted as detached continental lithosphere, pre-
viously thickened and weakened by orogenic
processes. The delamination may have also
contributed to the uplift of the Central Andes
(Schurr et al. 2006; Bianchi et al. 2013; Liang
et al. 2014). Therefore, the exceptional and
widespread late Cenozoic volcanic activity in the
Central Andes, including the development of the
Altiplano–Puna Volcanic Complex, results from
decompression melting induced by slab steep-
ening following ridge subduction and a hotter

mantle wedge fuelled by warmer asthenosphere
following piecemeal delamination. This complex
sequence of events is responsible for the
*70 km thick crust supporting a plateau above
3000 m and the exceptional magmatism feeding
the Altiplano–Puna Volcanic Complex
(Fig. 12.20). Both features are described in more
detail below.

The shortening, thickening and uplift of the
crust in the Altiplano region began at approxi-
mately 25 Ma, following the shallowing of the
slab and the increased convergence rate. The
latter promoted shortening in the Eastern Cor-
dillera and, subsequently, thrusting in the
Subandean foreland to the east. Shortening and
uplift in the Puna commenced 5–10 million years
later and continued until Quaternary. Known
shortening at the surface accounts for only 70–
80% of the observed crustal thickening, sug-
gesting that magmatic addition and other pro-
cesses, such as lower crustal flow or tectonic
underplating may contribute significantly to the
thickening of the Central Andes (Allmendinger
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Fig. 12.18 a Simplified tectonic setting of the Central
Andes, showing also the current location of the southward
migrating Juan Fernandez Ridge; base DEM provided by
GeoMapApp. b–d Main stages of evolution of the Central
Andes in the last 25 Ma along an ideal E-W oriented
lithospheric section. b The subduction of the Juan
Fernandez Ridge induces a flat slab underlying a volcanic
gap. c After the subduction of the ridge the steepening of

the slab induces decompression melting in the overlying
mantle wedge, promoting volcanism over a broad area.
d Piecemeal delamination of the lithosphere of the
southern part of the Central Andes produces a warmer
asthenosphere above the slab, promoting sustained mag-
matic activity and ignimbrite flare-up of the Altiplano-
Puna Volcanic Complex (modified after de Silva and Kay
2018)
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et al. 1997; Hindle et al. 2005). Since 10 Ma, the
southern Puna portion of the plateau underwent
pure shear deformation, whereas the northern
Altiplano portion underwent simple shear. These
modes of crustal thickening correlate with
changes in lithospheric thickness, modes of iso-
static compensation, broad wavelength topogra-
phy, magmatism and slab steepening (Kay and
Kay 1993; Allmendinger and Gubbels 1996;
Gioncada et al. 2010).

The Puna and Eastern Cordillera regions
experienced NW–SE and NE-SW trending
shortening directions during Miocene-Pliocene
and during the Pliocene to Quaternary, respec-
tively. The change in the shortening direction has
been related to the change in the direction and
rate of motion of the South American plate, or to
the variation in the orientation and kinematics of

prominent fault zones. Neogene deformation also
shows orogen-parallel extension propagating
southward and eastward, likely induced by mid
to lower crustal orogen-parallel channel flow
(Marrett and Strecker 2000; Riller et al. 2001).
On the Puna, the *N-S trending high angle
reverse faults responsible for a Cenozoic short-
ening of 10–15% have been reactivated, from
late Miocene to Quaternary, with predominant
dextral and minor normal motion. Also, much of
the Puna has been dominated for the last 1–2 Ma
by strike-slip and extensional faulting, in contrast
to the protracted earlier history of thrust faulting
(Cladouhos et al 1994; Tibaldi et al. 2009).
However, there is evidence of ongoing Quater-
nary contraction along the western and eastern
borders of the Puna: while to the west magma
intrudes along active reverse faults, the foreland
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Fig. 12.19 Tectonic setting of the Altiplano–Puna Vol-
canic Complex (APVC), showing the current slab contours,
the major fault systems, including the transverse Lipez-
Coranzuli (LC) andCalama-Olacapato-El Toro (COT) fault
zones, the major calderas and stratovolcanoes and the

3000 m contour of the Andean plateau (after de Silva and
Gosnold 2007). BaseDEMprovided byGeoMapApp. Inset
shows the cumulative volume versus time of major
ignimbrite eruptions of the Altiplano-Puna Volcanic Com-
plex (modified after de Silva and Gosnold 2007)
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to the east is experiencing *E-W trending
compression (Coutand et al 2001; Gonzalez et al.
2009).

Within this tectonic context, a distinct flare-up
within the Neogene Central Andean ignimbrite
province produced the most voluminous ign-
imbrite plateau in the southern half of the pro-
vince from 22 to 24 °S, that is the Altiplano-
Puna Volcanic Complex. Approximately
15,000 km3 of magma were erupted in the last
*10 Ma, focusing in pulses every *2 Ma, at 8,
6 and 4 Ma, with eruption rates one order of
magnitude higher than the average rate for the
flare-up of continental silicic provinces The
composition of the ignimbrites includes dacites
and rhyolites with minor trachydacites, andesites
and latites (Fig. 12.19; Best et al 2016, and ref-
erences therein). Elevated input from the mantle
induced crustal melting and assimilation, devel-
oping crustal-scale intrusive complexes ther-
mally softening the lower crust (de Silva and
Gosnold 2007). A low velocity zone at a depth
between 15 and 30 km has been interpreted as a
sill-like magma body due to partial melting
(*20%) and responsible for magmatic
intraplating. This area lies above a 100 to 200 km
deep zone of P-wave attenuation, connecting the
volcanic areas of the plateau to the seismic zone
within the slab: the connecting zone is inter-
preted as ascent pathway for metamorphic fluids

and partial melts (ANCORP Working Group
2003; Schurr et al. 2003; Schilling et al. 2006).
More recent seismic images identify a � 200 km
wide and � 11 km thick low velocity zone at 4–
25 km depth below sea level, interpreted as the
plutonic complex that sourced the voluminous
volcanics. These images show that the
� 500,000 km3 volume of this plutonic com-
plex, or crustal-scale batholith, is one order of
magnitude larger than previous estimates,
retaining a significant percentage (up to 25%) of
partial melt, most likely in a mush state. These
images also allow making one of the best-
constrained calculations of a plutonic to volcanic
ratio, which is between 20 and 35 (Ward et al.
2014). Geodetic data from the last decades reveal
a regional uplift of the entire Altiplano-Puna
Volcanic Complex at an average of
*1.0 cm/year, whose fluctuations suggest a non-
steady supply of melt and/or volatiles from the
partially molten magma body below. Superim-
posed are more local uplifts over specific vol-
canic complexes, as Uturuncu and Lazufre,
revealing prolonged unrest (Lau et al. 2018;
Pritchard et al. 2018; Reath et al. 2019).

Magma emission in the Altiplano-Puna Vol-
canic Complex focused in *20 large and com-
plex calderas, along five NW–SE trending
transverse magmatic belts, largely recognized
from the alignment of magmatic centres,

a) b)

Fig. 12.20 Examples of current volcanic activity in the
Altiplano-Puna Volcanic Complex of the Central Andes.
a View of Aracar stratovolcano, in the southern Puna of
Argentina, from the east. The active volcano, 6095 m

high, may have last erupted in 1993. b View of the Sol de
la Manana geothermal area in southern Bolivia, charac-
terized by bubbling mud pots and geysers
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lineaments identified from remote sensing and
field analysis (Matteini et al. 2002; Trumbull
et al. 2006). These belts are first-order fault zones
of the Altiplano-Puna plateau, whose formation
and left-lateral transtensive motion results from
the gradient in transverse shortening from the
central part of the plateau to its southern extent
(Fig. 12.21). In addition, there appears to be a
local control of pre-existing upper crustal weak-
nesses, with different orientation and kinematics,
on the distribution and activity of polygenic and
monogenic volcanoes (Riller et al. 2001; Aco-
cella et al. 2011; Tibaldi et al. 2017).

The largest and best-studied transverse linea-
ment is the *300 km long Calama-Olacapato-El
Toro fault zone. It consists of *21 major mag-
matic centres, including explosive vents, cal-
deras, composite stratovolcanoes, monogenetic
cones, lava domes and plutons, active since
Miocene. The Neogene left-lateral displacement
of the Calama-Olacapato-El Toro fault zone is
estimated as of *20 km; in addition, the fault
zone is associated with N-S trending extension
(Fig. 12.22; Schurr et al. 1999; Riller et al.

2001). Overall left-lateral transtension has facil-
itated the ascent of magma and caldera forma-
tion. The SiO2 content and

87Sr/86Sr ratio of the
magmatic rocks suggest that the most evolved
products, with upper crustal imprint, focus on the
more intensively deformed central fault zone.
Conversely, the more primitive, mantle-derived
mafic to moderately evolved products focus
toward the termini. This points to a genetic
relationship between upper-crustal deformation
and magmatic activity, leading to encouraged
magma storage in the central fault zone (Riller
et al. 2001; Petrinovic et al. 2006; Acocella et al.
2011).

12.5 A Synthetic Model
for Convergent Plate
Boundaries

As presented above, the structural control on arc
volcanoes may vary significantly, involving
extensional, strike-slip, contractional and oblique
systems. The overall structure of the arc is highly
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dependent upon its tectonic setting, as imposed
by relative plate motion (Table 12.2). A strike-
slip motion along the arc results from a non-
negligible trench-parallel component between the
converging plates, whereas a dip-slip motion,
responsible for extension or contraction, depends
on the dominant trench-normal convergence (or
subduction) velocity. Extensional conditions
along the arc are usually associated with the
highest magmatic output (as in the Taupo Vol-
canic Zone). However, the magmatic output can
be important also in contractional arcs, as magma
generation above slabs is a steady process.

Indeed, contractional arcs may be associated with
shallow magma accumulation via stacked sills
capable of increasing the vertical stress compo-
nent, ultimately producing significant volcanism,
as in northeast Honshu. Following specific pro-
cesses (slab steepening and lithospheric delami-
nation, as in the Central Andes) contractional
arcs may even produce exceptional amounts of
magma.

The type and composition of arc volcanoes
are broadly related to their structural setting.
While calderas are usually related to felsic (rhy-
olite) compositions, stratovolcanoes are
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associated with intermediate (andesite) compo-
sitions. Also, while calderas predominate in
highly productive and extensional arcs (as TVZ
and the Tyrrhenian margin), stratovolcanoes are
more frequent in poorly extending (Cascades),
strike-slip (Sumatra) and contractional arcs
(northeast Honshu). This suggests that arc
extension is a requisite to develop the large and
long-lived rhyolitic reservoirs below felsic cal-
deras. The Central Andes show a distinct beha-
viour, as hosting large felsic calderas in an
overall contractional arc. Their extremely high
eruption rate is roughly equivalent to that of the
extensional TVZ, albeit lasting much longer
(Houghton et al. 1995). This indicates that in a
contractional setting a sequence of external
regional conditions (promoting slab steepening
and lithospheric delamination), can be equally
effective as sustained extension in producing
significant volumes of arc volcanism.

The structure of a volcanic arc is not neces-
sarily continuous, with a first-order tectono-
magmatic segmentation evident in the distribu-
tion of the surface deformation and of monogenic
and polygenic volcanoes, as well as their output
rates. This segmentation may result from regio-
nal stress gradients, associated with microplates,
forearc slivers and torn slabs. At a more local
scale, the segmentation may also result from the
presence of any magmatic system, defined by the
continuation of magmatic activity outside a main
polygenic volcano, suggesting enhanced condi-
tions for the shallow intrusion of magma.

Magmatic systems show a variability depending
on the structural setting. Volcanic arcs undergo-
ing evident extension, as TVZ, show a similar
architecture to that of mature continental diver-
gent plate boundaries. In fact, volcanic and tec-
tonic activity in both settings is segmented and
focused in magmatic systems with similar
extension rate and geometry. Major rifting epi-
sodes may result from the emplacement of kilo-
metres long mafic dikes, as during the 1886
Tarawera eruption in TVZ or in the early nine-
teenth century in the northern Main Ethiopian
Rift. A small-scale example of volcanic arc
experiencing dominant extension and similarly
associated with magmatic systems is the Central
Aeolian Arc (Italy). Here extension occurs at
shallow crustal levels and appears magma-
induced, while strike-slip structures are proba-
bly active at deeper levels (Ruch et al. 2016).
Magmatic systems in volcanic arcs experiencing
minor extension (� 0.1 cm/year; as the Cas-
cades, Izu-Bonin or the Trans-Mexican Volcanic
Belt, Mexico) are less developed or not evident.
For example, in 2000 a tens of kilometres long
dike propagated laterally out of Miyakejima
Island, in the weakly extending Izu-Bonin Arc,
suggesting that magmatic activity continues
outside the central volcano, although the direc-
tion of propagation was subparallel to the direc-
tion of convergence (Toda et al. 2002). These
features suggest that an extension rate of a few
mm/year marks the threshold between arcs with
magmatic systems, structurally similar to

Table 12.2 Summary of the relations between the tectonic setting, the structure of the volcanic arc and the amount of
erupted magma along the arc (modified after Acocella and Funiciello 2010)
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continental divergent plate boundaries, and arcs
with poor or no evidence of magmatic systems.
In any case, the structure of extensional arcs is
complicated by the fact that the volcanic seg-
mentation, as related to the arc-normal tension,
may also result from the stress regime related to
the changing dip of the slab and the breadth of
the zone coupling with the overriding plate, as
highlighted for the Marianas (Andikagumi et al.
2020). Arcs undergoing predominant strike-slip
motion also lack evident or recurrent magmatic
systems. In the South Andean Volcanic Zone, a
few volcanic complexes (as Puyehue–Cordón
Caulle, Nevados de Chillan and Laguna del
Maule) may resemble magmatic systems,
although most polygenic volcanoes lack evi-
dence of volcanic activity continuing outside the
edifice. In Sumatra, magmatic systems are lack-
ing and volcanic activity remains, with the
exception of Toba caldera, largely punctiform or
central. Arc volcanoes undergoing contraction
elongate and align parallel to the direction of
maximum principal stress r1, as in northeast
Honshu. Here the Quaternary arc-orthogonal
alignment and elongation of volcanoes mimics
the direction of “hot mantle fingers” at the

sublithospheric scale. However, being volcanic
activity restricted to the polygenic volcano, there
is no evidence of magmatic systems. Therefore,
the linear mode of magmatic accretion of diver-
gent plate boundaries and, partly, extensional
arcs is gradually replaced by a dominant central
mode of accretion in strike-slip arcs, where
magmatic systems are very limited, and an
exclusively central mode in contractional arcs,
where magmatic systems are absent (Acocella
2014). The Central Andes provide a distinct
behaviour, as, for their specific evolution, the
predominant central mode of magmatic accretion
feeds areal volcanism.

The general transition from linear to central
magmatic accretion may be partly reconciled
with the average depth of the magma plumbing
systems below polygenic arc volcanoes
(Fig. 12.23; e.g., Chaussard and Amelung 2012).
In fact, the development of a magmatic system,
being promoted by shallower magma chambers
and dike swarms, depends also upon the average
depth of its magma plumbing system. In arc
volcanoes, this depth depends upon the arc
structure. Arcs undergoing extension and strike-
slip motion usually have shallower magma
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reservoirs and dike systems, whereas arcs
undergoing contraction have deeper reservoirs
and dike systems. These structural conditions
determine different possibilities for magma to
accumulate at shallow crustal levels, propagate
vertically and laterally and rise towards the sur-
face, ultimately developing a magmatic system.
Therefore, the lack of magmatic systems in
contractional arcs may be explained by their
deeper magma plumbing systems, which impose
a more focused (central) volcanic activity.

Similarly to divergent plate boundaries,
magma also affects the evolution of convergent
plate boundaries: this may occur through very
different mechanisms, which depend on the arc
structure. The tectono-magmatic behaviour of
some extensional arcs (TVZ) resembles that of
continental divergent plate boundaries, where
dikes promote shallow opening and magma
assists rifting at depth. At the extreme, magma-
induced extension may even mask surface evi-
dence of strike-slip structures active in the arc
roots, as in the Central Aeolian Arc. In addition,
in several arcs the emplacement of magma at
depth determines the thermal weakening of the
crust, localizing the shallow deformation. This
occurs in extensional arcs (Taupo Volcanic
Zone) and in strike-slip arcs (Sumatra and South
Andean Volcanic Zone), where the fault zones
coincide with the core of the volcanic arc (Ken-
dall et al. 2005; Ruch et al. 2016; Villamor et al.
2017; Acocella et al. 2018; Gase et al. 2019). In
some arcs with strike-slip component (Kuril Arc
and Trans Mexican Volcanic Belt), the weaken-
ing may induce an effective decoupling between
forearc and back-arc, developing a forearc sliver.
Nevertheless, under certain conditions the high
thermal state of the crust may locally inhibit
faulting: for example, propagating regional faults
and related seismicity repeatedly arrested in
correspondence of magma chambers, as observed
in 1994 after the Liwa earthquake (southern
Sumatra) and in 2016 at Aso caldera (western
Japan; Widiwijayanti et al. 1996; Lin et al.
2016).

While in obliquely-convergent arcs magma
may focus crustal deformation, the produced
strike-slip zone may in turn influence magmatic

and volcanic activity. In fact, studies on the
plutons constituting the roots of eroded volcanic
arcs show that pluton growth is promoted by
oblique convergence conditions, when strain
partitioning activates strike-slip faults creating
localised extensional zones, as pull-apart struc-
tures, releasing bends and dilational jogs able to
promote the rise, emplacement and accumulation
of magma (see Fig. 4.20). Similar processes are
expected to promote the rise and emplacement of
magma and assist the development of magma
chambers also below the active volcanoes of
Sumatra or the South Andean Volcanic Zone.
This may lead to a feedback between magmatic
activity and strike-slip faulting along volcanic
arcs, where the former localizes the site of active
deformation and the latter assists the develop-
ment of the magma reservoirs constituting the
roots of the arcs. Nevertheless, at the surface the
control of strike-slip structures on the location
and activity of the volcanoes is less evident, as
observed at Sumatra or the South Andean Vol-
canic Zone. In fact, in both cases the location of
only a part of the volcanoes may be related to the
activity of the strike-slip structures, with another
part simply compliant with the responsible
regional stress field. Despite the working
hypothesis presented in Sect. 12.3.2 of a variable
role of the arc structure at depth and at the sur-
face, the limited agreement between these deeper
and shallower tectono-magmatic relationships
along strike-slip arcs remains poorly understood.

Contractional arcs also show an active role of
magma, at times assisted by regional tectonics. In
northeast Honshu, pressurized stacked sills may
locally increase the vertical component of the
principal stress from r3 to r2 and even to r1,
promoting arc-parallel extension and arc-
perpendicular alignment and elongation of vol-
canoes. In addition, the co- and post-seismic
deformation induced by mega-earthquakes may
induce transient stress variations, promoting
extension in contractional and strike-slip arcs.
This may enhance diking, gas nucleation, magma
mixing and ultimately the rise of magma,
increasing the eruptive frequency in the post-
seismic period. In this case, assisted by regional
tectonics, dikes may also intrude and feed
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volcanic activity along otherwise non-favourable
orientations, as parallel to the arc (northeast
Honshu) or perpendicular to the oblique con-
vergence vector (southern Andes; Fig. 12.24;
Walter and Amelung 2007; Jonsson 2013).

These different cases from extensional, strike-
slip and contractional arcs indicate that magma-
driven variations in the stress state or in the
structure of a volcanic arc are feasible and
common. Therefore, magma may play a domi-
nant role in controlling the evolution of conver-
gent plate boundaries through diking, sill
stacking, heat-induced strain localization and
stress transients. This implies that a significant
part of the structure of a volcanic arc may be
magma-induced or assisted, with magmatic pro-
cesses being largely self-sustained and requiring
limited external tectonic contribution.

12.6 Summary

Arc volcanoes may be controlled by extensional,
strike-slip, contractional or oblique structures,
depending upon the tectonic setting imposed by
the converging plates. In particular, the structure
of the arc determines the distribution of its vol-
canism and ultimately the presence and devel-
opment of the magmatic systems. Arcs
experiencing evident extension (several mm/yr,
as TVZ) have magmatic systems similar to those
of mature continental divergent plate boundaries.
Arcs experiencing strike-slip motion (as the
South Andean Volcanic Zone or Sumatra) lack
dominant magmatic systems, although these may
be locally identified. Contractional arcs (as
northeast Honshu) lack any evidence of

S e i s m i c  z o n e

Trenchward motion (extension)

Overriding plate

Subducting plate

Trench
Volcanic arc

F o r e a r c

25 km

25 km

a) Inter-seismic period

b) Co-seismic phase

Contraction

Displacement 
vector (cm/yr)

Displacement 
vector (m/yr)

Fig. 12.24 a Schematic cross section of a subduction
zone in the inter-seismic period, where the overall
compressive stress field generates progressively decreas-
ing displacement vectors (blue arrows) pointing towards
the inner part of the overriding plate. The volcanoes and
their plumbing systems (in orange) experience contraction
(purple arrows). b Cross section of a subduction zone in

the co-seismic phase. The co-seismic displacement field
(blue arrows) associated with a megathrust earthquake (red
arrows) induces a trenchward movement of the overriding
plate. This kinematic inversion extends this portion of the
upper plate, promoting volumetric expansion (purple
arrows) in the plumbing systems of the volcanoes (orange;
modified after Walter and Amelung 2007)
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magmatic systems. Therefore, the linear mode of
magmatic accretion of divergent plate boundaries
and extending arcs is replaced by a dominant
central mode of accretion in strike-slip arcs and a
completely central mode in contractional arcs.
This feature may be a consequence of the shal-
lower magma plumbing systems in volcanic arcs
experiencing extension. A distinct behaviour is
observed in the contractional arc of the Central
Andes, characterized by an areal mode of mag-
matic accretion resulting from its exceptional
productivity.

The structure of a volcanic arc in turn also
determines the dominant mechanism(s) through
which magma affects the evolution of the con-
vergent plate boundary. These mechanisms
include diking, sill stacking, heat-induced
weakening and transient stresses induced by
mega-earthquakes, suggesting that a significant
part of the development of a volcanic arc is
magma-induced, with magmatic processes being
largely self-sustained, though not insensitive to
regional tectonics.
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