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Abstract. An approximation method for faster generation of explana-
tions in medical imaging classifications is presented. Previous results in
literature show that generating detailed explanations with LIME, espe-
cially when fine tuning parameters, is very computationally and time
demanding. This is true both for manual and automatic parameter tun-
ing. The alternative here presented can decrease computation times by
several orders of magnitude, while still identifying the most relevant
regions in images. The approximated explanations are compared to pre-
vious results in literature and medical expert segmentations for a dataset
of histopathology images used in a binary classification task. The clas-
sifications of a convolutional neural network trained on this dataset are
explained by means of heatmap visualizations. The results show that it
seems to be possible to achieve much faster computation times by trad-
ing off finer detail in the explanations. This could give more options for
users of artificial intelligence black box systems in the context of med-
ical imaging tasks, in regards to generating insight or auditing decision
systems.
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1 Introduction

In an attempt to increase the transparency of black box models in Artificial
Intelligence (AI) application, recent research has increasingly focused on the
explainability of opaque classifiers such as Neural Networks [1,4].

The potential benefits of this transparency have been frequently discussed in
literature, for areas of application ranging from social good and fairness to legal
use [7].

These developments are especially crucial for Medicine related applications,
where auditing Machine Learning (ML) and Deep Learning (DL) systems is
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seen as essential. Requiring blind trust of these models would be an obstacle for
greater application in clinical settings [4].

Among the explainable AI (XAI) approaches, a frequently applied one
involves training interpretable surrogate models that approximate the more com-
plex black-box model studied. Among these the most known and used method is
that of the Local Explainable Model Agnostic Explanations (LIME), developed
by Ribeiro et al. in 2016 [6].

Such a technique can generate human understandable explanations, and its
model-agnostic nature means it can be applied to any number of classifier sys-
tems, from various neural network architectures to other complex ensembles.

LIME can further be used for various data types, from Natural Language
Processing problems to Image Classifications. The main idea of this technique,
described in greater detail within the next sections, is to explain individual
instances by locally perturbing them. For images, this means generating images
where parts are covered, training a simpler more interpretable model to identify
how much each region contributes to a given classification.

More recently, Palatnik-de-Sousa et al. [8] have employed LIME to generate
explanations for a dataset of lymph-node metastasis images, used in a binary
classification task for presence/absence of metastatic tissue. The explanations of
a Convolutional Neural Network’s (CNN) classifications were then compared to
medical expert segmentations, showing agreement between both.

A recent survey of the state of the art for XAI in digital pathology [5] men-
tions two additional related works dealing with XAI for medical imaging. Tang
et al. [10] developed interpretable classifications of Alzheimer’s disease patholo-
gies, and Huang and Chung [2] describe a method for weakly supervised learning
that can effectively pinpoint cancerous tissue in cancer detection tasks.

However, after the results in [8] some key issues became apparent and
highlighted potential problems of directly applying LIME without fine tuning.
Namely, using this technique with standard parameters might not generate the
best results. The segmentation of the image into meaningful contextual sub-
regions (often called segments or superpixels) is controlled by certain parameters
that were shown to influence the results.

In the case of [8] these parameters were manually tuned. However this demon-
strated other two possible issues. The first is related to computational times.
Since LIME depends on generating sets of perturbed images, and each of these
must be evaluated by the black-box model studied, this can and does create a
computational bottleneck, especially for large CNN models that might take more
time to evaluate each image. This makes the task of fine tuning parameters more
time consuming. Also, due to the random nature of how these perturbed images
are generated, the results of a given LIME explanation could, and generally do
vary, if repeated multiple times for the same instance.

Aiming to solve these issues, Palatnik-de-Sousa et al. [9] developed a
novel explainable methodology, modular in nature, that uses Multi-Objective-
Optimization (MOO) combined with an explainable algorithm (in this case
LIME) to automate parameter fine tuning, and consequently find the best
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explanations. The explanations generated by their EvEx model shows it’s pos-
sible to find explanations that are robust against the random nature of LIME,
improving upon their previous results.

However, although this seems to remedy the reproducibility problem, it still
generates a large computational cost, with the runs of this explainable model
taking between 4 and 8 h for each patch studied. The goal in this manuscript is
to present an alternative solution to this problem, that dramatically reduces the
computation times from the order of magnitude of hours, to minutes.

In order to do this, the detail and quality of the explanations is traded off. By
using very simple square divisions on the image, the idea is to test whether this
simple approach can find the most relevant parts of an image quickly, whenever
this might be necessary or enough for a given image classification problem, or
auditing.

2 Materials and Methods

In this section the main aspects of the methodology are briefly described. A
summary of how LIME and EvEx work, as well as the dataset used for this
study are presented. Then, the proposed approximated model is described.

The experiments here described largely follow the same methodology dis-
cussed in greater detail on [9], with the main difference being the use of the
approximated explanation generation, instead of the EvEx model.

2.1 Patch Camelyon

Patch Camelyon (P-CAM) [3,11] is a dataset derived from the Camelyon 16
Whole Slide Images (WSI). It consists in about 200 thousand 96 by 96 pixel
patches of histopathology images. These images have a binary label represent-
ing the presence or absence (labels 1 or 0 respectively) of at least one pixel of
metastasis in the 32 by 32 pixel center of the image. Furthermore the dataset is
balanced so that the classes are divided in nearly equal splits.

A more detailed discussion of this dataset can be found in [8] and [9]. The
patches selected for this study were true positives, to allow for comparison with
medical expert manual segmentations contained in the dataset.

2.2 LIME

For the case of image classification problems, the computation of LIME explana-
tions involves first separating the images into segments that hold some contextual
information.

In general this means contiguous sub-regions of the image - often called super-
pixels - that have colors or textures in common, and could reasonably represent
a relevant pattern in a human understandable explanation. There are multiple
algorithms that can be used to segment an image into such super-pixels, and it
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has been shown [8,9] that good segmentations can deeply affect the results of
the explanation.

Once a given instance – meaning a given image whose classification is meant
to be explained – is selected and segmented into superpixels, a set of perturbed
images is then generated. This is accomplished by randomly covering superpix-
els (for instance, with a black color). Typically hundreds or thousands of such
perturbed images are created, to generate a varied distribution compared to the
original instance to be explained.

Each perturbed image is then passed through the model being studied, gen-
erating a prediction. From these predictions and the perturbed distribution a
linear model is trained, which finds how much each particular superpixel in the
original segmentation contribute in favor or against a given classification. The
explanation can then be visualized as a heatmap showing how relevant each
super-pixel is.

Additionally, to get a sense of how the linear model fits the perturbed data,
a quantity termed ‘explanation score’ can be defined as the R-squared of the
linear fit [6].

2.3 EvEx

The EvEx model proposed by Palatnik de Sousa et al. [9] essentially expands
upon LIME by using a multi objective genetic algorithm to determine the
instance segmentation parameters. It generates a set of best parameters (and
subsequently best explanations) which are then averaged onto a final heatmap.

Since an MOO is used the best individuals form a Pareto Front of explana-
tions. The model is described in greater length and detail in [9].

2.4 Convolutional Neural Network Model

The same CNN used in [8] and [9] was used in this manuscript to allow for better
comparison. It is a typical convolutional network, consisting in three convolution
blocks of increasing filter sizes with a dense block ending in a softmax output
layer. It is a publically available model from a Kaggle competition, trained on
the P-CAM version used in this paper [3].

2.5 Proposed Method

Instead of using complex segmentation algorithms, the approximation proposed
in this manuscript simply divides the instance to be explained in two “segments”
or regions. A square, and the area surrounding the square. It is clear that such a
simple division typically will not hold as much contextual color/texture informa-
tion as a more precise segmented superpixel, however using this approximation
with only one square creates a simplification of the next step in the process.

Figure 1 shows an example of this square segmentation. Notably, it is immedi-
ately clear that for such a simple segmentation, there are only 4 possible options
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Fig. 1. Example of square segmentation and perturbed images. The yellow square is
overlaid onto a P-CAM sample patch. The 4 images represent the original (on the
right) and the three possible perturbations. (Color figure online)

regarding perturbed images. Either the image is left intact, as seen on the right-
most part of Fig. 1, or there are three possible perturbations, where the square
is covered, the area outside the square is covered, or the entire image is covered.

It is not immediately trivial whether using such a simple approximation could
generate meaningful explanations with lime, especially since now the linear sur-
rogate model is adjusted on only 4 images, rather than a large distribution of
perturbations with hundreds or thousands of examples.

On the other hand, as seen later in the next section, the approximation
potentially yields useful results while dramatically reducing the computational
costs. The massive reduction in the number of perturbed images means the CNN
also performs less evaluations. The key idea is that the approximation, despite
leading to less detailed explanations, can compensate this trade-off by being
faster by orders of magnitude.

However, to generate the most meaningful explanations possible with this
approximation, it would be interesting to find the most explainable squares.
Typically, making the squares too small would mean the area outside the square
holds most of the contextual information and would yield larger explanation
weights, as seen in similar scenarios where large superpixels dominate explana-
tions [8,9]. As such, it is interesting to try to find the square, of a given size,
that has the highest explanation weights.

It is also expected, by the same reasons, that larger squares will have larger
explanation weights, since they cover a larger area of the image. However, smaller
squares might be able to discern which smaller features in a given patch con-
tribute more towards a given class.

As a preliminary test, all square sizes were tested, for all positions on the
patch. This means that for a given P-CAM patch, explanations were generated
using this square segmentation, using squares with sizes from 1 × 1 pixels to 95
× 95 pixels, in which these explanation squares are swept across the image from
the top left corner down to the lower right corner.

Besides plotting the weights of each square, at each size, to analyze which ones
best explain classifications, a strategy was also devised to create a visualization
heatmap for each size of square:
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– A given square size is selected
– The squares of that size with positive explanation weights (contributing in

favor of the classification) are selected.
– They are added together to create a heatmap
– To compute the average of the added squares, each pixel of the heatmap is

divided by the number of squares that are contributing to it.

In this sense, this visualization heatmap is the pixel-wise weighted average
of the positive weight squares.

This emulates and approximates the final result of EvEx which is the aver-
aged heatmap of the best explanations found. The expectation is that possibly
this square approximation can find similar areas to those identified by EvEx,
although with much less detail. On the other hand, the approximation might
find them in minutes, compared to the 4 8 h it takes for an EvEx run to com-
plete for one P-CAM patch.

For this initial experiment, 95 such heatmaps are generated for each P-CAM
patch (one for each square size).

3 Results and Discussion

The preliminary tests described in the previous section, with varying square
sizes, showed that in general the squares of high explanation weights tend to
focus in on the same regions of the patch as the size decreases from 95 to 1.

Initially the squares are too large and take most of the patch, which causes
them to have high explanation values. However as size decreases these values
diminish until the point where the squares are too small to explain the full
patch, causing the weights to be negligibly small (close to zero or slightly below
zero).

This initial test seems to demonstrate that it is not necessary to generate
all the heatmaps of all square sizes. Rather, for each particular patch one may
generate a few heatmaps at different sizes and observe the regions to which they
converge. Sizes below 30 often are too small to generate explanations, and sizes
above 80 are generally too large. Figure 2 shows an example for two patches,
including the medical segmentation and also the EvEx equivalent explanation.

Notably, the plots in Fig. 2 also highlight the similarities and differences
between the square approximations and the much more detailed EvEx output.
The latter seems to clearly delineate some regions, both within the medical
segmentation, where the averaged explanation weights are much higher than
the surroundings. These regions follow the shape, texture and color contours of
certain cellular structures within the tissue.

However, one may note that these EvEx highlighted regions roughly coin-
cide with the regions highlighted by the square approximation, as seen both by
sub-panels E and F of Fig. 2, for both patches. Both the squares with highest
explanation weights and heatmaps seem to be able to at least approximate the
position of the most relevant areas of the patch.
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Fig. 2. Results for two different patches. (A) – original patches; (B) – medical segmen-
tation as green overlay; (C) – EvEx heatmap; (D) weights of all squares generated, by
size, sorted by increasing values. Sizes (30, 40, and 50) indicated above each plot; (E) –
square with the largest weight overlaid on patch; (F) – averaged heatmap as described
in Sect. 2. Note that the EvEx heatmaps have a color scale from −1 to 1, while the
approximated square heatmaps range from −0.3 to 0.3. (Color figure online)

Another important difference is in regards to the absolute values of the expla-
nation weights. Typically the highest weights found in the EvEx explanation
reach values around 0.6 to 0.9, while the square approximation did not yield
values above 0.3 in any of the patches studied. This is expected to a degree,
as the squares hold much less contextual information than the more detailed
EvEx optimized segments. It is also the reason why the color scale of the bot-
tom panels in Fig. 2 was adjusted to a smaller range than the top panels. This
seems to mean that lower explanation weights could be expected in the square
approximation, but it still manages to roughly delineate relevant regions.

Another key difference, and perhaps the central one to this approach, is
in computation times. Figure 3 shows the amount of time taken to generate
heatmaps at each square size, in seconds. For the sizes of 30, 40 and 50 used in
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Fig. 2, the times were respectively of about 5 min, of about 3 min and 42 s, and
of 2 min and 31 s. The largest times observed, for 1 by 1 pixel squares, was of
about 10 min. As a comparison, the top and bottom heatmaps of Fig. 2, sub-
panel C, took about 4 h and 7 h, respectively. This constitutes a computation
time decrease of many orders of magnitude.

Fig. 3. Time, in seconds, taken to generate heatmaps for each square size, from 1 by
1 to 95 by 95 pixel squares.

Figure 4 shows a side by side comparison of two heatmaps. The first, to
the left, corresponds to a high scoring EvEx Pareto front individual used to
generate the averaged heatmap in Fig. 2, topmost row of column C. The second,
to the right, corresponds to the approximated square of highest explanation
weight, size 40, for the same image. Besides the already noted and discussed
difference in weights, it seems the explanation score is also lower for the square
approximation. As previously mentioned, this score corresponds to the R-squared
of the surrogate linear model fit.

However it is worth remembering that the EvEx pareto front individual,
in this case, is an explanation generated with 200 perturbations, whereas the
square approximation only uses 4. This most likely affects the R-squared metric
and contributes to the observed result. Importantly, despite these lower metrics,
the heatmaps seem to highlight the same areas.

As such, these results seem to indicate that, while more computationally
efficient versions of LIME and EvEx are created, these square approximations
can be used to generate faster insights on what might be the key areas of an
image the CNN is focusing on.

Future studies could also focus on developing criteria for selecting best square
sizes in order to create combined heatmaps.
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Fig. 4. Side by side comparison of heatmap explanations generated by both methods
analyzed in this work, for the same patch (Fig. 2, topmost row of column A), with
corresponding explanation scores. Panel A shows an EvEx Pareto Front Individual,
while panel B shows the square approximation with highest explanation weight for
squares of size 40.

4 Conclusion

In this manuscript an approximation method was presented, in order to generate
faster explanations for a medical imaging classification task.

The trade-off between the level of detail of explanations (such as the ones
generated with EvEx) and the time it takes to generate such explanations was
highlighted. In this way, aiming at reaching much faster computational times
and by accepting less detailed explanations, an alternative was presented where
simple square segmentations are used.

This, in turn, means that the LIME explanations would be generated from
only 4 perturbed images, which is a very rough approximation. However the
results seem to show that this rough approximation can still be used to deter-
mine, even if with less detail, which areas of an image are most relevant. The
gain of several orders of magnitude in computation times might be interest-
ing for some applications, however. Furthermore, results showed that this new
method reduce computational times from several hours [9] to a few minutes or
less, depending on the square size.

Future projects might focus on further testing this concept in other medical
imaging datasets, as well as datasets from other computer vision areas.
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