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Abstract. Artificial Intelligence and Machine Learning are becoming
increasingly present in several aspects of human life, especially, those
dealing with decision making. Many of these algorithmic decisions are
taken without human supervision and through decision making processes
that are not transparent. This raises concerns regarding the potential
bias of these processes towards certain groups of society, which may
entail unfair results and, possibly, violations of human rights. Dealing
with such biased models is one of the major concerns to maintain the
public trust.

In this paper, we address the question of process or procedural fairness.
More precisely, we consider the problem of making classifiers fairer by
reducing their dependence on sensitive features while increasing (or, at
least, maintaining) their accuracy. To achieve both, we draw inspiration
from “dropout” techniques in neural based approaches, and propose a
framework that relies on “feature drop-out” to tackle process fairness.
We make use of “LIME Explanations” to assess a classifier’s fairness and
to determine the sensitive features to remove. This produces a pool of
classifiers (through feature dropout) whose ensemble is shown empirically
to be less dependent on sensitive features, and with improved or no
impact on accuracy.

Keywords: Explainability · Fairness · Feature importance ·
Feature-dropout · Ensemble classifier · LIME

1 Introduction

Machine Learning (ML) tasks often involve the training of a model based on
past experience and data, which are then used for prediction and classification
purposes. The practical applications where such models are used include, e.g.,
loan grants in view of framing laws, detecting terrorism, predicting criminal
recidivism, and similar social and economic issues at a global level [11,12,17].
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These decisions affect human life and may have undesirable impacts on vulnera-
ble groups in society. The widespread use of ML algorithms has raised multiple
concerns regarding user privacy, transparency, fairness, and trustfulness of these
models. In order to make Europe “fit for the digital age”1, in 2016 the European
Union has enforced the GDPR Law2 across all organizations and firms. The
law entitles European citizens the right to have a basic knowledge regarding the
inner workings of automated decision models and to question their results. The
unfair automated decisions not only violate anti-discrimination laws, but they
also undermine public trust in Artificial Intelligence. The unwanted bias in the
machine learning models can be caused due to the following reasons:

– The data Collection [20] may be biased, as certain minority groups of society,
or people living in rural areas do not generate enough data. This leads to an
unfair model because of unbalanced and biased datasets while training.

– The training algorithm may be subject to bias if one chooses an inappropri-
ate model or training set. Additionally, the model may consider sensitive or
discriminatory features while training, which leads to process unfairness.3

Till now, the notions of fairness have focused on the outcomes of the decision
process [21,22], with lesser attention given to the process leading to the out-
come [9,10]. These are inspired by the application of anti-discrimination laws in
various countries, which ensures that the people belonging to sensitive groups
(e.g. race, color, sex etc.) should be treated fairly. This issue can be addressed
through different points of views, which include:

– Individual Fairness or Disparate Treatment [21] considers individuals who
belong to different sensitive groups, yet share similar non-sensitive attributes
and require them to have same decision outcomes. For instance, during job
applications, applicants having same educational qualifications must not be
treated discriminately based on their sex or race.

– Group Fairness or Disparate Impact [21] states that people belonging to dif-
ferent sensitive attribute groups should receive beneficial outcomes in similar
proportions. In other words, it states that “Different sensitive groups should
be treated equally”.

– Disparate Mistreatment or Equal Opportunity [22] proposes different sensitive
groups to achieve similar rates of error in decision outcomes.

– Process or Procedural fairness [9,10] deals with the process leading to the pre-
diction and keeps track of input features used by the decision model. In other
words, the process fairness deals at the algorithmic level and ensures that the
algorithm does not use any sensitive features while making a prediction.

In this study, we aim to deliver a potential solution to deal with the process
fairness in ML Models. The major problem while dealing with process fairness is
1 https://www.zdnet.com/article/gdpr-an-executive-guide-to-what-you-need-to-
know/.

2 General Data Protection Regulation (GDPR): https://gdpr-info.eu/.
3 Terms unfairness and bias are used interchangeably.

https://www.zdnet.com/article/gdpr-an-executive-guide-to-what-you-need-to-know/
https://www.zdnet.com/article/gdpr-an-executive-guide-to-what-you-need-to-know/
https://gdpr-info.eu/
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the opaqueness of ML models. Indeed, this black-box nature of ML models, such
as in deep neural networks and ensemble architectures such as random forests
(RF), makes it difficult to interpret and explain their outputs, and consequently
for users and general public to trust their results. There are several proposals
of explanatory models to make black-box models more interpretable and trans-
parent. Due to the complexity of recent black-box models, it is unreasonable to
ask for explanations that could represent the model as a whole. This fact, lead
to local approaches to derive possible explanations.

The basic idea is to explain the model locally rather than globally. An ideal
model explainer should contain the following desirable properties [18]:

– Model-Interpretability : The model should provide a qualitative understanding
between features and targets. The explanations should be easy to understand.

– Local Fidelity : It is not possible to find an explanation that justifies the
black-box’s results on every single instance. But the explainer must at least
be locally faithful to the instance being predicted.

– Model Agnostic: The explainer should be able to explain all kinds of models.
– Global Perspective: The explainer should explain a representative set to the

user, such that the user has a global understanding of the explainer.

Such local explanatory methods include LIME, Anchors, SHAP and DeepSift
[7,16,18,19]. These are based on “linear explanatory methods” that gained a
lot of attention recently, due to their simplicity and applicability to various
supervised ML scenarios.

In this study, we will mainly use LIME to derive local explanations of black
box classification models. Given a black box model and a target instance, LIME
learns a surrogate linear model to approximate the black-box model in a neigh-
bourhood around the target instance. The coefficients of this linear model corre-
spond to the features’ contributions to the prediction of the target instance. Thus
LIME outputs top features used by the black box locally and their contributions.
In this paper, we propose LIMEGlobal, a method to derive global explanations
from the locally important features obtained from LIME.

The LIMEGlobal explanations can provide an insight into process fairness.
This naturally raises the question of how to guarantee a fairer model given these
explanations, while ensuring minimal impact in accuracy [23]. This motivated
us to seek models Mfinal in which (i) their dependence on sensitive features is
reduced, as compared to the original model, and (ii) their accuracy is improved
(or, at least, maintained).

To achieve both goals, we propose LimeOut4, a framework that relies on
feature dropout to produce a pool of classifiers that are then combined through
an ensemble approach. Feature drop out receives a classifier and a feature a as
input, and produces a classifier that does not take a into account. Essentially,
feature a is removed in both the training and the testing phases.

4 The name comes from drop-out techniques [5,6] in neural networks. The github
repository of LimeOut can be found here:
https://github.com/vaishnavi026/LimeOut.

https://github.com/vaishnavi026/LimeOut
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LimeOut’s workflow can be described as follows. Given the classifier provided
by the user, LimeOut uses LIMEGlobal to assess the fairness of the given classifier
by looking into the contribution of each feature to the classifier’s outcomes. If
the most important features include sensitive ones, the model is unfairly biased.
Otherwise, the model is considered as unbiased. In the former case, LimeOut
applies dropout of these sensitive features, thus producing a pool of classifiers (as
explained earlier). These are then combined into an ensemble classifier Mfinal.
Our empirical study was performed on two families of classifiers (logistic regres-
sion and random forests) and carried out on real-life datasets (Adult and German
Credit Score), and it shows that both families of models become less dependent
on sensitive features (such as sex, race, marital status, foreign worker, etc.) and
show improvements or no impact on accuracy.

The paper is organised as follows. In Sect. 2 we will discuss some substantial
work related to explainability and fairness. We will briefly recall LIME (Local
Interpretable Model Agnostic Explanations) in two distinct settings (for textual
and tabular data) in Subsect. 2.1, and briefly discuss different fairness issues,
some measures proposed in the literature, as well as the main motivation of our
work in Subsect. 2.2. We will then present our approach (LimeOut) in Sect. 3,
and two empirical studies are carried out in Sect. 4 that indicate the feasibility of
LimeOut. Despite the promising results, this preliminary study deserves further
investigations, and in Sect. 5 we will discuss several potential improvements to
be carried out in future work.

2 Related Work

In this section, we briefly recall LIME and discuss some issues related to model
fairness. There has been substantial work done in the field of “Interpretable
Machine Learning” and “Fairness”. LIME [18] and Anchors [19] are prominently
being used to obtain the explanations of the black box ML models. These meth-
ods provide the top important features that are used by the black box to predict
a particular instance. LIME and Anchors do not provide human like explana-
tions (they provide “feature importance” or contributions), and they have some
limitations [7]. In Sect. 3 we will use LIME to tackle fairness issues based on
relative importance of the features.

2.1 LIME - Explanatory Method

LIME (Local Interpretable Model Agostic Explanations) takes the form of sur-
rogate linear model, which is interpretable and mimics locally the behavior of
a black box. The feature space used by LIME does not need to be the same
as the feature space used by a black box. Examples of representations used by
LIME include [18]: (i) the binary vector representation of textual data that indi-
cates presence/absence of a word, and (ii) the binary vector which represents
presence/absence of contiguous patch of similar pixels, in case of images.
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LIME can be described as follows [18]. Let f : Rd → R be the function learned
by a classification or regression model over training samples. No further infor-
mation about this function f is assumed. Now, let x ∈ R

d be an instance, and
consider its prediction f(x). LIME aims to explain the prediction f(x) locally.
Note that the feature space of LIME need not be the same as the input space of
f . For example, in case of text data interpretable space is used as vectors repre-
senting presence/absence of words, whereas the original space might be the word
embeddings or word2vec representations. Indeed, LIME uses discretized features
of smaller dimension d̂ to build the local model, and aims to learn an explana-
tory model g : Rd̂ → R, which approximates f in the neighborhood of x ∈ R

d.
To get a local explanation, LIME generates neighbourhood points around an
instance x to be explained and assigns a weight vector to these points. The
weight is assigned using πx(z), which denotes the proximity measure of z w.r.t.
x. It then learns the weighted linear surrogate model g by solving the following
optimisation problem:

g = argming∈G L(f, g, πx(z)) + Ω(g)

where L(f, g, πx(z)) is a measure of how unfaithful g is in approximating f in the
locality defined by πx(z), and where Ω(g) measures the complexity of g (LIME
uses the regularization term to measure complexity). In order to ensure both
interpretability and local fidelity, LIME minimizes L(f, g, πx(z)) while enforcing
Ω(g) to be small in order to be interpretable by humans. The coefficients of g
correspond to the contribution of each feature to the prediction f(x) of x. LIME
uses the following weighting function

πx(z) = e(
−D(x,z)2

σ2 ), (1)

where D(x, z) is the Euclidean distance between x and z, and σ is the hyper
parameter (kernel-width). The value of σ impacts the fidelity of explanation [14].

Fig. 1. Depicts the σ’s selection and data distribution, where the red triangles are
negative examples, whereas yellow dots constitute positive examples. (Color figure
online)
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For instance, when σ is too large, all instances are given equal weight, and it
is impossible to derive a linear model which can explain all of them. Similarly
if σ is too small, only a few points are assigned considerable weight and even
a constant model will be able to explain these points, this will result in lower
coverage. Thus we need to choose an optimal σ to ensure coverage as well as
local fidelity (faithfulness). This is illustrated in Fig. 1: it displays the impact of
σ on the explanations. The tuned value used by LIME [18] for tabular data is
σ = 0.75 ∗ n for n columns, whereas for textual data it is σ = 25.

Fig. 2. The explanation for the classification of Great easy to set up. Little difficult
to navigate and the instructions are non-existent, which indicates the contribution of
each word (in red is the contribution to the negative feedback class, and in green to
the positive feedback class). (Color figure online)

LIME for Textual Data [18]. Consider the text classification problem, in
which the goal is to classify an amazon review into positive or negative feedback5.
The model is trained using Naive Bayes Classifier. Let’s discuss the procedure
to get the LIME explanation:

1. Take any instance x for which you need an explanation. Consider the textual
instance Great easy to set up. Little difficult to navigate and the instructions
are non-existent, and suppose that the Naive Bayes prediction is P (pos.) =
0.68 and P (neg.) = 0.32.

2. Perturb your dataset and get their black box predictions. For finding the
perturbation of this example, LIME randomly removes each word from the
original instance (i.e., changes ‘1’ to ‘0’ in the binary representation) one by
one, and considers all thus obtained neighborhood points. LIME then gets
the black box prediction of these neighbour instances.

5 https://www.kaggle.com/bittlingmayer/amazonreviews.

https://www.kaggle.com/bittlingmayer/amazonreviews
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3. Weight the new samples based on their proximity to the original instance.
LIME assigns weights to the neighbourhood instances z based on their prox-
imity to the original instance x using 1.

4. Fit a weighted, interpretable (surrogate) model on the dataset with the vari-
ations. LIME trains a linear weighted model that fits the original and the
obtained neighbourhood instances.

5. Get the explanations by interpreting the local model. The output of LIME
is the list of explanations, reflecting the contribution of each feature to the
prediction of the sample. The resulting explanation is illustrated in Fig. 2.

LIME for Tabular Data [7]. The workflow of LIME on tabular data is sim-
ilar to that on textual data. However, unlike LIME for textual data, it needs
a training set (user defined) to generate neighbourhood points. The following
statistics are computed for each feature depending on their type: (i) for categor-
ical features it computes the frequency of each value, (ii) for numerical features,
it computes the mean and the standard deviation, which are then discretized
into quartiles.

Fig. 3. Local explanation in case of Adult dataset. The orange bar represents the
contribution of feature, to predict salary ≥ 50k dollars and blue bar is for the features
which contributes to the negative class (salary < 50k dollars) (Color figure online)

Suppose that f is the black-box function, and that we want to explain the
prediction f(x) of x = (x1, x2, . . . , xi., xn), where each xi may be a categorical
or a numerical value. Each categorical value is mapped to an integer using Labe-
lEncoder6. Note that the values of each feature in the training set is divided
6 LableEncoder Class is given in the sklearn preprocessing library
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.
LabelEncoder.html.

https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.LabelEncoder.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.LabelEncoder.html
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into p quantiles. These quantile intervals are used for discretizing the original
instance. If xi lies between quantile qj and qj+1, it gets the value j. This is done
for all the features to get the quantile boxes for all xi, i ∈ {1, . . . , n}.
To get the perturbation ŷ in the neighbourhood of x̂, LIME samples discrete val-
ues from {1, . . . , p}, n times. To get the continuous representation y of ŷ, LIME
Tabular uses a normal distribution and the quantile values. The neighbourhood
instance ŷ is represented as binary tuple with the i-th component equal to 1 if
x̂i = ŷi, and 0 if x̂i �= ŷi. In this way LIME Tabular generates all the neighbour-
hood points. The following steps are similar to LIME for textual data. These
points are assigned weights using the exponential kernel (1), and a weighted
linear function is learned over the neighbourhood permutations. To illustrate,
consider an example of the Adult dataset (see Subsect. 4.1). The task is to pre-
dict if a salary of a person is ≥50k dollars. We have trained the model using
Random Forest Classifier. An example of local explanation is given in Fig. 3.

2.2 Model Fairness

Several notions of model fairness have been proposed [3,9,10,21,22] based on
decision outcomes as well as on process fairness. Individual fairness [2] (or dis-
parate treatment, or predictive parity) imposes that the instances/individuals
belonging to different sensitive groups, but similar non-sensitive attributes must
receive equal decision outcomes. The notion of group fairness (or disparate
impact or statistical parity [4]) is rooted in the desire for different sensitive
demographic groups to experience similar rates of errors in decision outcomes.
COMPAS7 is a recidivism detection tool, where the goal is to predict whether a
criminal would re-offend his crime based on a long questionnaire. The popular
algorithm was designed by the commercial company, Northpointe (now Equiv-
ant). A study by ProPublica8 showed that COMPAS has a strong ethnic bias.
Among non-reoffenders, COMPAS is almost twice more likely to signal black
people as high risk. Furthermore in COMPAS, white reoffenders are predicted
as low risk much often than black offenders. In other words, this indicates that
COMPAS has considerable high false positive and lower true negative rates for
black defendants when compared to white defendants. COMPAS is used across
US by judges and parole officers to decide whether to grant or deny probation
to offenders; hence, it is very important to understand how this model reaches
its conclusion and ensure it is fair. If we focus on the decision outcomes, the
fair algorithm in case of COMPAS (if we consider only Race as sensitive fea-
ture) should be such that: (i) black and whites with the same features get the
same output (no disparate treatment and thus non-discriminatory), and (ii) the
proportion of individuals classified as high-risk should be same across both the
groups (statistical parity).

We can deal with this bias during training (see [22]) by: (i) excluding all
features that may cause the model to create bias, e.g. race, gender etc., or (ii)
7 https://en.wikipedia.org/wiki/COMPAS (software).
8 https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-
sentencing.

https://en.wikipedia.org/wiki/COMPAS_(software)
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing


LimeOut: An Ensemble Approach to Improve Process Fairness 483

including discrimination measures as learning constraints, i.e., the model should
be trained to minimize P (ypred �= ytrue) such that

P (ypred �= ytrue|race = Black) = P (ypred �= ytrue|race = White),

where ypred is the risk predicted by trained ML model (e.g., COMPAS) and ytrue
is the true risk value. This constraint is motivated by the fact that ‘race’ is a
sensitive feature. Such constraints are applied to different sensitive attributes
separately (e.g. sex, race, nationality etc.), it might lead to unfairness for the
groups which lie at the intersection of multiple kinds of discrimination (e.g. black
women), also known as fairness gerrymandering [13]. To avoid this, [25] proposed
constraints for multiple combinations of sensitive features. However, constraints
for multiple combinations of sensitive attributes render model training highly
complex and may lead to overfitting.

Earlier studies in fair ML [23,24] consider individual and group fairness as
conflicting measures, and some studies tried to find an optimal trade-off between
them. In [1] the author argue that, although apparently conflicting, they corre-
spond to the same underlying moral concept. In fact, the author provides a
broader perspective and advocates an individual treatment and assessment on
a case-by-case basis. In [9,10] the author provides another noteworthy perspec-
tive to measure fairness, namely, process fairness. Rather than focusing on the
outcome, it deals with the process leading to the outcome. In [10] the author
provides a key insight to rely on human’s moral judgement or intuition about the
fairness of using an input feature in algorithmic decision making. He also assesses
the impact of removing certain input features on the accuracy of the classifier,
and designs an optimal trade-off between accuracy and the process fairness for
the classifier. However, humans may have different perspectives on whether it is
fair to use a input feature in decision making process. In [8] the authors propose a
framework to understand why people perceive certain features as fair or unfair.
They introduce seven factors on which a user evaluates a feature in terms of
reliability, relevance, privacy, volitionality, causes outcome, causes vicious cycle,
causes disparity in outcomes, caused by sensitive group membership.

We are inspired by the idea of using a combination of classifiers instead of
a single one. For instance, in [9] the authors explore the benefits of replacing
a single classifier with a diverse ensemble of random classifies, regarding the
accuracy as well as individual and group fairness. In this paper, we further
explore this idea and propose a method, that we call LimeOut, to ensure process
fairness while improving (or, at least, maintaining) the model’s accuracy.

3 LimeOut Workflow

In this section, we describe in detail the framework of LimeOut that consists
of two main components: LIMEGlobal and ENSEMBLEOut. It receives as input
both a classifier9 and a dataset. The first component then checks whether the

9 Here we focus on binary classifiers that output the probability for each class label.
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classifier is biased on the dataset in the sense that the predictions depend on
sensitive features. To do this, we make use of LIMEGlobal [18] (see Subsect. 3.1).
This will output the most important features (globally). If sensitive features
are among the most important, then the classifier is considered unfair and the
second component of LimeOut is employed. Otherwise, the classifier is considered
fair and no action is taken. The second component is the core of LimeOut (see
Subsect. 3.2). Given the most important features, ENSEMBLEOut produces a
pool of classifiers using feature-drop. Each of these classifiers does not depend on
the corresponding sensitive features. It then constructs an ensemble using this
pool of classifiers. Following a human and context-centered approach, the choice
of sensitive features is left to the user within the given context. This framework
will be illustrated in Sect. 4.

3.1 LIMEGlobal

LIME is prevalent to get local explanations for the instances. These explanations
can be combined to provide insights into the global process of the classifier [15,
18]. First, LIMEGlobal chooses instances using submodular pick method [18].
The choice of instances can impact the reliability of the global explanation.
The method submodular pick provides a set of instances for which explanations
are diverse and non-redundant. To obtain a global insight into the classifier’s
inner process, we use the instances obtained from submodular pick10. LIMEGlobal

obtains the local explanations (important features and their contributions) for
all these instances. This results in a list of top important features used by the
model globally.

3.2 ENSEMBLEOut

LimeOut uses the globally important features obtained by LIMEGlobal to assess
process fairness of any given ML model. In this way, we can check whether the
model’s predictions depend on sensitive features and measure its dependence.
If sensitive features are ranked within the top 1011 globally important features,
then it is deemed unfair or biased. If the model is deemed unfair, then one easy
solution would be to remove all the sensitive features from the dataset before
training. However, these sensitive features may be highly correlated to non-
sensitive features, thus keeping the undesired bias. To mitigate this drawback,
LimeOut also removes all such correlated features.

Now this could entail a decrease in performance since, after removing all
the sensitive features, the model could become less accurate due to the lack
of training data. To overcome this limitation, LimeOut constructs a pool of

10 In [18] the authors argue that the submodular pick is a better method than random
pick. We still experimented random pick on the datasets of Sect. 4, but the relative
importance of features remained similar.

11 In this study we focused on the top 10 features. However this parameter can be set
by the user and changed according to his use case.
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classifiers each of which corresponding to the removal of a subset of sensitive
features. To avoid the exponential number of such classifiers, in this paper we
only consider those obtained by removing either one or all sensitive features.
LimeOut constructs an ensemble classifier Mfinal through a linear combination
of the pool’s classifiers.

More precisely, given an input (M,D), where M is a classifier and D is the
dataset. Suppose that the globally important features given by LIMEGlobal are
a1, a2,. . . , an, in which aj1 , aj2 , . . . , aji

are sensitive. LimeOut thus trains i + 1
classifiers: Mk after removing ajk

from the dataset, for k = 1, . . . , i, and Mi+1

after removing all sensitive features aj1 , aj2 , . . . , aji
. In this preliminary imple-

mentation of LimeOut, the ensemble classifier Mfinal is defined as the “average”
of these i + 1 classifiers. More precisely, for an instance x and a class C,

PMfinal
(x ∈ C) =

∑k=i+1
k=1 PMk

(x ∈ C)
i + 1

.

As we will see empirically in Sect. 4 over different datasets and classifiers, the
dependence of Mfinal on sensitive features decreases, whereas its accuracy is
maintained and, in some cases, it even improves.

4 Empirical Study

To validate our approach, we applied LimeOut on two different families of clas-
sifiers (Logistic regression and Random Forests) over different datasets. In each
case, the ensemble classifier obtained by LimeOut is fairer than the original
classifiers. The datasets we use, Adult and German credit score, are known to
be biased. These experiments illustrate different possible scenarios, namely, the
case of unfair process (see Subsect. 4.1) and of a fair process (see Subsect. 4.2
for Random Forests).

4.1 Adult Dataset

This dataset comes from the UCI repository of machine learning databases12.
The task is to predict if an individual’s annual income exceeds 50,000 dol-
lars based on census data. An individual’s annual income is the result of var-
ious features such as “Age”, “Workclass”, “fnlwgt”, “Education”, “Education-
Num”, “Marital Status”, “Occupation”, “Relationship”, “Race”, “Sex”, “Cap-
ital Gain”, “Capital Loss”, “Hours per week” and “Country”. Intuitively, the
income of a person should get influenced by the individual’s education level,
age, occupation, number of hours he works, company etc. But it would be unfair
if our model considers race, sex or the marital status of the individual while
making any prediction.

This dataset has 14 features out of which 6 are continuous and 8 are nominal,
and it comprises 45,255 instances. We partitioned the dataset randomly into 80%
12 Adult Dataset: http://archive.ics.uci.edu/ml/datasets/Adult.

http://archive.ics.uci.edu/ml/datasets/Adult
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for training and 20% for testing. However, the class distribution of Adult dataset
is extremely unbalanced and majority of the dataset consists of individuals with
annual income <50,000 dollars. To balance this, we used Synthetic Minority
Oversampling Technique (SMOTE13) over training data. SMOTE generates new
samples from the minority class and includes them in the training set, resulting
to a balanced training dataset. We then perform training on the augmented
(balanced) dataset using: Logistic Regression and Random Forest.

Table 1. Top 10 important features used by MLR (left) and (MLR)final (right).

Features Contribution

Capital Gain −23.792107

Capital Loss −6.469338

Hours per week −2.496092

Marital Status 2.116016

Race 1.927533

Sex 1.804058

Education-Num −1.573597

Age 0.698024

Education 0.667795

Relationship 0.235550

Features Contribution

Capital Gain −23.543842

Capital Loss −5.767617

Education-Num −1.673827

Hours per week −1.541263

Country 0.802061

Education 0.547427

Sex 0.477145

Workclass 0.426351

Age −0.242858

Relationship 0.065351

Logistic Regression: We trained a logistic regression model over the obtained
training set. In binary classification problems, logistic regression often uses a
default threshold value of 0.5, i.e. if predicted value ≥0.5, then the predicted
class will be positive, and negative, otherwise. However, this threshold may lead
to poor results, especially, in the case of unbalanced datasets. We used threshold
tuning14 in order to improve the performance of our classifier. The threshold is
chosen to be optimal for Precision Recall Curve and the ROC Curve (to ensure
maximum F1-score). The classifier M obtained after threshold tuning had an
accuracy of 82.65%. To assess the process fairness of M , we used LIMEGlobal to
get the 10 most important features used by M .

From Table 1, it is evident that Race, sex and marital status are among
the top 10 features used by model M with contributions 1.93, 1.80 and 2.11
respectively. We know that it’s unfair to use these features while predicting

13 https://imbalanced-learn.readthedocs.io/en/stable/generated/imblearn.over
sampling.SMOTE.html.

14 https://machinelearningmastery.com/threshold-moving-for-imbalanced-
classification/.

https://imbalanced-learn.readthedocs.io/en/stable/generated/imblearn.over_sampling.SMOTE.html
https://imbalanced-learn.readthedocs.io/en/stable/generated/imblearn.over_sampling.SMOTE.html
https://machinelearningmastery.com/threshold-moving-for-imbalanced-classification/
https://machinelearningmastery.com/threshold-moving-for-imbalanced-classification/
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someone’s income. And as these are among the top 10 features, we can deem
the model to be unfair. Now we train four models by dropping out sensitive
features: Race, Sex and Marital status. Note that all the classifiers are trained
using Logistic Regression with threshold tuning. Through feature dropout, we
thus obtain 4 classifiers: M1 trained without “Sex”, M2 trained without “Race”,
M3 trained without “Marital Status”, and M4 trained without the 3 (Accuracy
= 81.97%).

We can infer that M4 is fairer because it has not used any sensitive feature
while training. But the accuracy is reduced from 82.65% to 81.9%. The ensemble
Mfinal of models M1, M2, M3 and M4 achieved an accuracy of 84.18%. The
statistical test15 showed that this improved accuracy is significant. The global
impact of the sensitive features is also reduced (see the explanations in Table 1).

Table 2. Top 10 important features used by MRF (left) and (MRF )final (right).

Features Contribution

Capital Gain −10.218573

Capital Loss −3.109039

Hours per week −1.332370

Sex 1.244931

Marital Status 0.744446

Race 0.456074

Occupation −0.256388

Age −0.249529

Country 0.249083

Relationship 0.215706

Features Contribution

Capital Gain −10.304901

Capital Loss −3.436587

Hours per week −1.362630

Education-Num 0.574524

Relationship 0.413276

Sex 0.306334

Marital Status 0.243644

Workclass 0.137123

Country 0.091939

Occupation 0.078968

Random Forest: We also used Random Forest and checked its fairness. This
model MRF has accuracy = 83.49%. The global explanations for MRF LimeOut’s
ensemble model (MRF )final are given in Table 2. From the Table 2 we see that
the impact of sensitive features decreased for (MRF )final, and that its accuracy
increased to 83.86%. While when we removed all three sensitive features Race,
Sex and Marital status, the accuracy was 81.6%. Again we observe a significant
improvement in the accuracy of the LimeOut’s ensemble classifier, while ensuring
a fairer model.

15 We performed the t-test.
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4.2 German Credit Score Dataset

The data was initially prepared by Prof. Hoffman and is available publicly as
‘german.data’ on UCI Machine Learning Repository16. If a bank receives a loan
application based on the applicant’s profile it can decide whether it can approve
the loan. Two types of risk are associated with the bank’s decision: (i) if an
applicant is at good credit risk, he is likely to pay back his loan, and (ii) if an
applicant is at bad credit risk, he is unlikely to pay back.

The dataset set has information about 1000 individuals on the basis of which
they have been classified as good or bad risk. The goal is to use applicant’s
demographic and socio-economic profiles to assess the risk of lending loan to the
customer. The dataset consists of 20 features and a classification label (1: Good
Risk, 2: Bad Risk). We split the dataset into 80% training set and 20% testing.
As the dataset is highly imbalanced, we used SMOTE Oversampling to generate
the samples synthetically.

Table 3. Top 10 important features used by MLR (left) and (MLR)final (right).

Features Contribution

peopleliable −6.410473

foreignworker 5.398807

otherinstallmentplans −1.769830

savings 1.769533

telephone 1.349587

statussex −1.263993

creditamount 0.899089

existingchecking 0.798037

duration 0.691543

employmentsince −0.619419

Features Contribution

peopleliable −5.210576

foreignworker 2.586505

otherinstallmentplans −1.858603

credithistory 1.418544

installmentrate 1.185539

savings 1.087709

purpose 0.570004

duration −0.427534

employmentsince −0.385297

creditamount 0.354635

Logistic Regression: For training we used Logistic Regression along with
threshold tuning. The obtained accuracy of M was 74.67% with the explanations
from LIMEGlobal given in Table 3. Here, we see the sensitive features “statussex”
(sex of the customer), “telephone17” and “foreign worker” appear in the top 10,
thus showing that M is process unfair. Hence, LimeOut trains M1, M2 and M3

16 https://archive.ics.uci.edu/ml/datasets/statlog+(german+credit+data).
17 It depicts if a person gave aphone number. Due to privacy reasons, the number may

not be given. Thus it should not be considered important.

https://archive.ics.uci.edu/ml/datasets/statlog+(german+credit+data)
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by removing each one of them, and M4 after removing all 3. Despite being fairer,
M4 suffered a drastic accuracy decrease to 69%.

LimeOut then trained the ensemble Mfinal and output the explanations given
in Table 3. Again, the impact of sensitive features decreased in case of Mfinal. In
addition, the accuracy of Mfinal is 74.67%, same as M . Again, a fairer classifier
without compromising accuracy.

Random Forest: We trained the model using Random Forest, and the accuracy
was found to be 59%. In this case, LIMEGlobal showed a single sensitive feature
in the top 10 and no action was taken18. We will further discuss this case below.

5 Conclusion and Future Work

We demonstrated the idea of using LIME to determine model fairness, and inte-
grated it in LimeOut that receives as input a pair (M,D) of a classifier M and
a dataset D, and outputs a classifier Mfinal less dependent on sensitive features
without compromising accuracy.

This preliminary study shows the feasibility and the flexibility of the simple
idea of feature dropout followed by an ensemble approach. This opens into several
potential improvements and further investigations. First, we only experimented
LimeOut on two classes of classifiers, but LimeOut can be easily adapted to
different ML models and data types, as well as different explanatory models. An
improvised approach to get the global explanation like [15] can be used, and this
should be thoroughly explored.

Also, the workflow can be further improved, e.g., the classifier ensembles
could take into account classifier weighting and other classifiers resulting from
the removal of different subsets of sensitive features (here we only considered
the removal of one or all features). In this study, we took a human and context-
centered approach that requires domain expertise (for identifying sensitive fea-
tures in a given use-case). However, there is room for automating this task,
possibly through a metric or utility-based approach to assess sensitivity that
takes into account domain knowledge.

We also identified some limitations as that illustrated in the last scenario.
Indeed, despite providing insights on process fairness, LimeOut seems of little
use when only one sensitive feature is detected in the top k important features.
In this case, an alternative method should be employed, for instance, to consider
the model obtained by removing this feature. These are some of the issues to be
tackled in future work.
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