®

Check for
updates

Collaborative Learning Based Effective
Malware Detection System

Narendra Singh, Harsh Kasyap®™, and Somanath Tripathy

Department of Computer Science and Engineering,
Indian Institute of Technology Patna, Patna, India
{1811¢cs10,harsh_1921cs01,som}@iitp.ac.in

Abstract. Malware is overgrowing, causing severe loss to different insti-
tutions. The existing techniques, like static and dynamic analysis, fail
to mitigate newly generated malware. Also, the signature, behavior,
and anomaly-based defense mechanisms are susceptible to obfuscation
and polymorphism attacks. With machine learning in practice, several
authors proposed different classification and visualization techniques for
malware detection. Images have proved worth analyzing the behavior of
malware. Deep neural networks extract much information from it with-
out having expert domain knowledge. On the other hand, the scarcity of
diverse malware data available with clients, and their privacy concerns
about sharing data with a centralized curator makes it challenging to
build a more reliable model. This paper proposes a lightweight Convo-
lution Neural Network (CNN) based model extracting relevant features
using call graph, n-gram, and image transformations. Further, Auxiliary
Classifier Generative Adversarial Network (AC-GAN) is used for gen-
erating unseen data for training purposes. The model is extended for
federated setup to build an effective malware detection system. We have
used the Microsoft malware dataset for training and evaluation. The
result shows that the federated approach achieves the accuracy closer
to centralized training while preserving data privacy at an individual
organization.

Keywords: Malware detection - Machine learning - Federated
Learning - Feature extraction - Generative Adversarial Network

1 Introduction

Malware or malicious software has been an evolutionary area of research. It
was initially intended as a software program to test architectural loopholes.
With increasing technologies and money factors involved, programmers started
exploiting those to disrupt the service and gain unauthorized access to another
system. It led to research in this new field coined as malware detection. A variety
of malware exists with different names as worms, viruses, trojans, ransomware,
adware, and spyware. Some malware immediately reveals their presence while

© Springer Nature Switzerland AG 2020
I. Koprinska et al. (Eds.): ECML PKDD 2020 Workshops, CCIS 1323, pp. 205-219, 2020.
https://doi.org/10.1007/978-3-030-65965-3_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-65965-3_13&domain=pdf
https://doi.org/10.1007/978-3-030-65965-3_13

206 N. Singh et al.

others reside inside the machine to steal the identity. In the age of social-
computing, targeted attacks can be more frequent than generalized ones, due
to the exposed profiles and public news of an organization.

Static analysis techniques [1,2] have been used since long to detect malware.
These techniques rely on the signature-based analysis of malicious programs
without running it. They check for the file name, type, and size, checksums or
hashes. On the other hand, malware authors have successfully written intelligent
programs that trick static analysis techniques, with a small change of malware
code and signature. Thus, encrypting and obfuscating the malware code evades
detection. Down the lane, several researchers [2—4] used dynamic analysis tech-
niques for classifying malware. It runs the malware and observes the infected files’
behavior, including traffic analysis, registry keys, etc. These techniques require
a secure and controlled environment like an emulated or virtual sandbox, which
might affect the real-time running host.

With the machine and deep learning in practice, many works have been
proposed which learn characteristics and relations from the malicious program
and classifies them into respective categories. Authors trained different algo-
rithms based on probabilistic and knowledge-based approaches including Hid-
den Markov Model [5], Naive-Bayes [6], Machine learning-based models, and
Multi-layer perceptrons [7]. Unfortunately, these techniques do not suffice against
a different dataset or real-time traffic and fail to mitigate targeted malware
attacks. Meanwhile, deep learning-based approaches [8-10] do not require in-
depth domain knowledge as compared to previous static, dynamic, or machine
learning models.

Deep learning-based approaches require more data sets in order to learn
inherent characteristics. For dynamic analysis, it becomes challenging to
feed large samples, especially from backdoor families. Therefore collaborative
approaches would be suitable, which collects data from different sources. Decen-
tralized and collaborative learning is the current alternative and collects the data
to make intelligent model. However, the data gets moved from its place, which
raises security and privacy concerns. Even with a distributed and decentralized
computing paradigm, the data may be kept or processed parallelly or at different
locations. Federated Learning [11], a new approach where the model is trained,
keeping the data in-place, and a central curator aggregates all the models. It runs
the same process for thousands and millions of iterations. It faces trade-offs of
energy, not independent and identically distributed data, network, and random
participants. However, it preserves the data, which is most crucial for the orga-
nizations. We use Federated Learning with multiple participants contributing
malware data to train an aggregated malware detection model.

This paper discusses the properties of malware, existing methods to mitigate
them, and proposes a novel deep learning approach using a federated setup. The
following are the major contributions.

— Features are extracted using call graph from .asm files, image transformations,
and n-gram techniques from .bytes file. Preprocessing and combining these

Collaborative Learning Based Effective Malware Detection System 207

features and feeding to convolutional neural networks showed an improved
accuracy of 99.72%.

— Auxiliary Classifier GAN (AC-GAN) is used for generating unseen data,
preparing the model for targeted attacks.

— We trained the model using a federated setup using the TensorFlow federated
API with data distributed across clients and achieved 97.93% accuracy in a
few iterations with scope for improvement.

The remainder of this paper is organized as follows. Section 2 discusses the
background and related works. Section 3 briefs the concepts of Federated Learn-
ing and Auxiliary Classifier GAN (AC-GAN). Section 4 proposes the framework
with dataset preprocessing, feature extraction, and the use of underlying con-
cepts to run this experiment. Section 5 describes model configuration, experi-
mental setup, result and comparison. Section 6 concludes and briefs the scope
for future work.

2 Related Work

Malware detection is a state of the art to prevent intrusion of malicious software.
The long is the history of malware, that long is the history of its detection and
prevention. They both started all together, tricking and competing with each
other. Every time a more robust defense mechanism comes, malware authors
outsmart them by tweaking something new. In this section, We will discuss the
existing defense techniques to mitigate malware and their drawbacks.

Lu et al. [10] discussed a malware detection method based on the word
embedding technique and LSTM. It automatically learns the correlation between
opcodes and feature representation of the opcode sequence. It achieves an accu-
racy of 95.73% for skip-gram and a continuous bag of words on the Microsoft
malware dataset. Le et al. [12] used a CNN architecture with BiLSTM. They
used a recurrent layer on top of the CNN architecture. It summarizes the content
of the whole file into one feature vector. It achieves an accuracy of 98.8% on the
Microsoft malware dataset.

Zhao et al. [9] proposed MalDeep, a novel deep learning-based malware classi-
fication technique based on texture visualization. They studied this classification
through code mapping, texture partitioning, and texture extracting. The model
works on CNN with two convolutional layers and down-sampling layers, and
many full connection layers. It achieved higher accuracy of 99% on the Microsoft
malware dataset (with nine malware families). The dataset has an uneven dis-
tribution of malware families, and this approach reached a better classification
accuracy for backdoor families.

Azar et al. [8] used an unsupervised feature learning approach for malware
classification and network-based anomaly detection using auto-encoder (AE). It
produces a fixed (ten) size vector for both classification and detection of attacks,
making it more useful for real-time detection. It achieves a classification accuracy
of 96% on the Microsoft malware dataset.

208 N. Singh et al.

Vasan et al. [13] proposed a deep learning model Image-based Malware Clas-
sification using Fine-tuned Convolutional Neural Network (IMCFN), which talks
about the image visualization approach and uses CNN architecture. It is compu-
tationally cost-effective and provides a scalable solution. It incurs low run-time
overhead and proves to be secure against obfuscated malware. It is tested on the
Malimg dataset (with twenty-five malware families) and predicts the resilience
of the obfuscated malware attack. It achieved an accuracy of 98.82%.

Generative Adversarial Network (GAN) [14], has been used to generate
unseen data. It adds noise to the existing data and generates new samples that
can not be distinguished from the real samples. These samples often trick the
model. Therefore, prior training is done with these samples to boost confidence
and be prepared for unknown attacks. Authors in [15,16] have used GAN for
handling malware detection. Kim et al. [15] introduced GAN based approaches
tGAN and tDCGAN, achieving an accuracy of 96.39% and 95.74% respectively.
They compared different deep learning techniques, including multi-layer per-
ceptron, auto-encoder, along with concepts of transfer learning. Authors in [17]
ran multiple experiments using Auto-Encoders, and Deep Neural Networks with
varying layers over Malicia malware dataset achieving an accuracy of 99.21%.
However, they relied on the fact that Deep Learning-based systems are good in
automatically extracting higher conceptual features.

3 Preliminaries

This section briefs about Federated Learning, Auxiliary Classifier Generative
Adversarial Network (AC-GAN), and illustrates their mathematical description.

3.1 Federated Learning

We are aware of individual organizations’ capabilities in terms of generating data
and training a smart machine learning model. Previous centralized collaborative
approaches were supposed to collect all these data to the central server and train,
which induces a high data leak risk and violates various security principles and
pacts. It does not guarantee security, privacy, and anonymity. Federated Learning
brings the model to the data while keeping the data to the device itself.

Google introduced this concept of Federated Learning back in 2016, a col-
laborative learning approach that makes learning secure by keeping the data
to the device itself. It is an iterative process, and each time the device trains
the model with its data and updates the parameters to the central server. The
server collects the data, computes federated average, and updates the devices
with the latest parameters. This iterative process involves significant communi-
cation overhead, and multiple parameter exchanges make the system vulnerable
and exposed to attackers. The central curator may allow the use of any optimiza-
tion and aggregation algorithm depending on the problem. The whole process is
illustrated in Fig. 1.

Collaborative Learning Based Effective Malware Detection System 209

Wi 7 Wis1
Orgl Org3
vwwl[Wi Wil [wy
Org5 Org4

Fig. 1. Federated setup

FedSGD (a variant of stochastic gradient descent (SGD)) is a widely used
optimization and aggregation algorithm for federated averaging. SGD samples a
subset of summand functions and updates the weight.

w:=w —NVQ;(w) (1)

SGD is effective and scalable for large training sets coupled with complex
gradient calculation formulae. In FedSGD, each participant trains the model in-
place with some random samples chosen in every iteration and sends the delta
change in the gradient to the central aggregator.

k
Zkest ng Awy

ZkESt Nk

(2)

Wiyl = Wy + N

The central aggregator sums up the weighted contribution of the delta
updates received from all the participants and updates the global weight. Let
the system has a total K number of users. In every iteration, a fraction of clients
participate, some may drop out. The set comprising of participating clients be
S: and ny be the number of samples held by client k with the server having a
learning rate of 1. Let w; be the global weight of the previous iteration, server
updates it, and evaluates w41 using distributed approximate Newton method
[18].

210 N. Singh et al.

3.2 Auxiliary Classifier GAN (AC-GAN)

Generative Adversarial Network (GAN) is an advanced deep learning approach
that generates new data from scratch, which does not exist in real-world training
data. It composes of two players, which are also deep learning models called
generator and discriminator. A Generative model G takes latent space, and noise
from the sample distributes. It concatenates them to convert into a complex
distribution, which is similar to the real data. A Discriminator model D is a
binary classification neural network that aims to distinguish between real and
fake samples generated by Generator model G.

AC-GAN is an extension of the conditional GAN (cGAN). cGAN handles the
conditional generation of images, while AC-GAN allows the targeted generation
of images of respective types. It makes the discriminator predict the target of
input and stabilizes the training process allowing the generation of large-high-
quality images. It learns representation in the latent space without knowledge
of the target.

In the AC-GAN, every generated sample has a corresponding class label ¢
and the noise z. The generator uses both ¢ and z to generate images Xyqpe =
G(c, z). The discriminator gives both a probability distribution over sources and
a probability distribution over the class labels.

P(5]X), P(C]X) = D(X) 3)

The objective function has two parts: the log-likelihood of the correct source,
Lg, and the log-likelihood of the correct class, Lo [19]. Discriminator is trained
to maximize Lg + L¢ while Generator is trained to maximize Lo — Lg.

Lgs = Eflog P(S = real | Xea1)] + E [log P (S = fake| Xfake)] 4)
Lo = Ellog P(C = ¢| Xyea)] + Eflog P (C = ¢| X fake)] (5)
f —l (AC-GAN

w 1 Participants

cangroeh (| peature |
prepg:':ssmg — (All > " > 2":4.'?.?23 < FL";;:’,:’; w
Features Features)
LI Local Model
] :;g:::: Convolutional Classified Training
Neural Results

l Network J‘

Fig. 2. Proposed framework

Collaborative Learning Based Effective Malware Detection System 211

4 Proposed Framework

The proposed Malware detection framework facilitates the participants to oper-
ate collaboratively and build an effective machine learning model. Each partic-
ipant and organization hold different data, and the central server acts as an
aggregator. They train the model in-place and send the update to the server.
The whole process is repeated multiple times. The proposed framework compris-
ing of following major components. The rest of the process is finding relevant
features using different transformations and feeding it to a convolutional neural
network that classifies malware. It also uses AC-GAN to generate unseen data
and defend against targeted attacks (Fig. 2).

4.1 Data Collection

We have used Microsoft Malware data! for analysis. The total train dataset size
is 200 GB, out of which 50 GB is .bytes file, and the remaining 150 GB is .asm
file. It consists of 10,868 .bytes files and 10,868 .asm files with total 21,736 files.
In the dataset, .byte files are a combination of 256 hex numbers (a decimal value
ranging between 0 to 255) and a special character (??). .asm files are the outputs
of the disassembler.

Table 1. Types of Malware in Microsoft Malware dataset

Sr No | Name Samples | Type

1 Ramnit 1541 Worm

2 Lollipop 2478 Adware

3 kelihosver3 2942 Backdoor

4 Vundo 475 Trojan

5 Simda 42 Backdoor

6 Tracur 751 Trojan downloader
7 Kelihosverl 398 Backdoor

8 Obfuscator. ACY | 1228 Obfuscated

9 Gatak 1013 Backdoor

4.2 Data Preprocessing

Data Preprocessing involves Exploratory Data Analysis, Dimensionality Reduc-
tion, and Data Normalization. It identifies the meaning and aspects of feature
engineering and standardizes data features with feature scaling by analyzing
datasets and their examples. After analyzing the data, we observed the uneven

! https://www.kaggle.com/c/malware-classification/data.

https://www.kaggle.com/c/malware-classification/data

212 N. Singh et al.

distribution of target classes, as shown in Table 1. Samples with the label- one
two and three are more than four, five, and six. It helped in useful dynamic
classification to assign the respective families of new malware files encountered
or generated, especially the backdoor families.

4.3 Feature Extraction

Many works discussed above have used n-gram and image transformation tech-
niques to achieve higher accuracy. It incurs a higher computing cost in prepro-
cessing and extraction. Authors in [20] discussed the conversion of the function-
call graph to a vector in low-dimensional feature space for malware detection.
It achieves optimum efficiency with less cost as we aim to propose a lightweight
model that can be easily deployed on a federated setup with resource-constrained
devices. We use call-graph features with 3-gram analysis and less intensive image
operations. Our feature extraction component uses call graphs, n-gram features,
and image transformation.

First, .asm files are transformed to extract call graph features by converting
it into a control flow graph by tracing the flow sequentially. Control flow graph
of an assembly program P is a directed graph G = (V, E), where V is the
set of basic blocks, and F C V x V is the set of edges representing control flow
between basic blocks. A control flow edge from block uto vis e = (u,v) € E. Call
Graph represents the relationship between different subroutines in a program.
The nodes in the graphs denote the subroutines, and the link to them tells how
they call each other. It is of both static and dynamic types. Though, a perfect
static graph is an undecidable problem. It can be generated manually or using
the software. We wrote a small piece of code to make the control flow graph
from the given assembly files. The control flow graph is represented differently
for statements, loops, and function calls. It can be used in extracting features
for malware detection. It identifies uncalled procedures which can be inside a
program for malicious intentions.

We extracted the features like the number of nodes and edges, maximum
degree and density of the graph from the call graph. Table 2 lists some rows of
features extracted from .asm files of the Microsoft malware dataset.

Table 2. Sample call graph features

File nodes | edges | maxDeg | density
01lsAbcXXXX | 274 333 | 137 0.0813
01sUzbxXXXX | 187 196 | 82 0.1813
01kzSrtXXXX | 158 [1533 | 95 0.1409
01kxPcsXXXX | 26 126 | 35 0.6

We can adequately describe malware through an n-gram analysis as a
sequence of hex values. It is a contiguous sequence of n hexadecimal values

Collaborative Learning Based Effective Malware Detection System 213

from a given malware file. Each sequence takes one out of 257 different values,
i.e., the 256-byte range plus the special ‘??’ symbol. For each .bytes file, we have
made an array and added each element to the array. The length of these arrays
is used as a feature. The .asm files consist of various segments, opcodes, and
keywords, registers, etc. We have taken the count of segments as a feature and
considered the bag-of-words representation of .bytes.

We convert the malware file into binary and take the first eight bits where
four most significant bits map to rows and four least significant bits map to
columns to make pixels. Images converted were of different sizes. So, we used
padding to make them of the same size. The image visualization approach is very
efficient but susceptible to noise. It raises data augmentation and motivates us
to generate new unseen samples. Thus, We used GAN for generating unseen
images and targeted files.

We combined all those different features extracted from .asm and .bytes files
for our model. We extracted a total of 1024 features. After Applying dimension-
ality reduction and normalization techniques, we reduced it to 256 for feeding
into a convolutional neural network of (16 x 16) input vector and 784 for feeding
into GAN of (28 x 28) input vector. As limited data available with individual
clients, it is challenging to model a robust defensive mechanism. So we set up a
federated environment for collaborative learning.

4.4 Model Configuration

Convolutional Neural Network (CNIN): We have used a lightweight model
for running our experiment. It runs with fewer layers than the dense networks
and requires optimal infrastructure to run, which can be easily deployed in any
setting.

The convolutional layer is composed of 32 filters of size 3 x 3. It takes input as
(None, 16, 16, 1). The output of this layer is (None, 14, 14, 32). Next, it is fed to a
max-pooling layer, which takes the convolutional layer’s output as input. It is of
size 2 X 2, reducing the output to 7 x 7 x 32. Then, the pooling layer is followed
by another Flatten layer, which gives (None,1568) output. Another Dense layer
follows that takes the output of the previous Flatten layer as input. Then we
use the Dropout layer with a rate of 0.5, followed by a densely-connected layer
with 256 neurons.

Auxiliary Classifier GAN (AC-GAN): We have used AC-GAN for generat-
ing new unseen malware at the client-side. In centralized training, these samples
are generated at the server end. In Federated Learning, each participant will
train their local data to create new samples that look exactly similar to the
original malware and could have tricked the model.

AC-GAN takes a vector input. It concatenates the point in latent space
(100 dimensions) and categorically encoded (9 dimensions). A fully connected
layer interprets the point in latent space with sufficient activations to generate a
grayscale image with the shape 28 * 28 and pixel values in the range [—1, 1] with

214 N. Singh et al.

tanh activation function. The discriminator predicts the probability of the gen-
erated image belonging to a real or fake class, taking an input of shape 28 * 28 * 1
given by the generator. It is defined using Gaussian weight initialization, batch
normalization, LeakyReL.U, Dropout, and a 2 * 2 stride for downsampling instead
of pooling layers. This architecture constructs the image with a single input and
two outputs. It is trained with two loss functions, binary cross-entropy for the
first output layer, and categorical cross-entropy loss for the second output layer
using the Adam version of stochastic gradient descent with a small learning rate
and modest momentum.

Federated Learning: It is a decentralized collaborative training approach. We
have already discussed its benefits of limiting data exposure. In malware context,
it can be argued that the malware families are already well known and exposed.
So, It may not motivate to go with Federated Learning incurring more cost and
similar accuracy. However, with ever-increasing malware families and in-house
defense techniques developed for mitigating them, the companies can not afford
to make the data public. This study proposes a federated setup for developing
special defense techniques and securely improving a global malware detection
system.

We have tested the above proposed lightweight convolutional network, with
five participants randomly distributing the malware dataset with them. The
section below discusses the implementation and API’s used in detail.

5 Experimental Setup and Evaluation

This section describes the model configuration and setup carried out for running
the proposed framework.

5.1 Setup

This experiment has been run on the federated testbed. The Tensorflow federated
installation guide? lists different installation methods. Docker setup with ubuntu
image has been used to run these experiments. It helps in easy installation and
migration. We configured a host machine with processor Intel® Core™ i7-
7700 CPU @ 3.60 GHz 8, and Memory 8 GB. Data preprocessing and feature
extraction takes significant time due to massive data set.

5.2 Collaborative Training and Evaluation

We evaluated the proposed federated malware detection technique on the
Microsoft malware data set, including 10868 files for model training and the
same number of files for experimental evaluation. Although the data set is huge
and comprises around two hundred fifty gigabytes, the number of samples is

2 https://github.com/tensorflow /federated /blob/master/docs/install.md.

https://github.com/tensorflow/federated/blob/master/docs/install.md

Collaborative Learning Based Effective Malware Detection System 215

smaller. The data set consists of two types of files .bytes and .asm. The .bytes
files contain the address and byte codes in hexadecimal format, while .asm files
contain the address, segments, opcodes, registers, function calls, and APIs.

For running this experiment, the dataset is split with an approximate 60:20:20
ratio for training, validation, and test sets. We did data processing on the dataset
and extracted features, as mentioned in the above section. We picked a thou-
sand features from the images and twenty features using the n-gram technique.
Using the above-discussed call graph technique, four features, i.e., no. of nodes,
number of edges, max degree of a graph, and density of graph, were extracted
by converting .asm files to control flow graph. Combining all features, we have
a total of 1024 features to train our model.

We build our lightweight deep learning model using a convolutional neural
network on a federated testbed with the setup mentioned above. The training
model’s structure derives from CNN with the Input layer followed by Conv lay-
ers, Maxpool, Fully Connected, Densely Connected, Dropout, and then Densely
Connected layers. We implemented AC-GAN for generating adversarial samples
for targeted training and enriching our sample space.

For running on the federated testbed, the data set has been randomly split
into six equal-sized subsets. One subset is assigned to the central aggregator to
initialize the model and its weights. It is also known as dummy data set and
needs to be given iteratively. More help for the same can be found in Tensorflow
federated documentation®. The rest five subsets are assigned to five participants.
While training the model locally, participants use a batch size of twenty and run
ten epochs for training a local model in one iteration. We trained the global
model by running a different number of iterations to see improvement in model
accuracy. We ran from 50 to 100 iterations denoted as F-50, F-60, F-70, F-80,
F-90, and F-100 to see an increasing graph of model accuracy. The setup above
failed to run more iterations. We expect an improved accuracy on a slightly
higher configuration by running more number of iterations.

5.3 Result

Using Auxiliary Classifier GAN (AC-GAN), the central server generated 6200
new malware samples and confidently classified 35.2% of them as malware assign-
ing corresponding class labels. These samples were used along with the (origi-
nal/collected) training data and prove helpful in improving model accuracy of
99.72%. However, running the experiment with the only participant holding data
in silos dips the accuracy to 96.34%. The confusion matrix for the centralized
lightweight model is illustrated in Table 3. Precision, Recall, and F1-score are
also shown for every malware family. The macro-avg for precision and recall
comes 99% and 98%, respectively. It even shows high accuracy for backdoor
malware families.

3 Tensorflow federated. https://www.tensorflow.org/federated.

https://www.tensorflow.org/federated

216 N. Singh et al.

model accuracy

model loss

150

125

100

accuracy
loss

0.75

050

0.25

epoch epoch

Fig. 3. Model accuracy Fig. 4. Model loss

Table 3. Confusion matrix

Malware Family | Ramnit|Lollipop | kelihosver3|Vundo|Simda | Tracur | Kelihosverl|O.ACY |Gatak
Ramnit 0.9936 |0.0004 |0 0 0 0 0 0 0
Lollipop 0 1 0 0 0 0 0 0 0
kelihosver3 0 0 1 0 0 0 0 0 0
Vundo 0 0 0 1 0 0 0 0 0
Simda 0 0 0 0 1 0 0 0 0
Tracur 0.0032 |0 0.0105 0 0 0.9933 |0 0 0
Kelihosverl 0 0 0 0 0 0 1 0 0
O.ACY 0.0032 |0 0 0 0 0 0.0067 0.9756 |0.0197
Gatak 0 0 0 0 0 0 0 0 1
Precision 0.99 1 1 0.98 1 0.96 0.99 1 1
Recall 0.99 1 1 1 0.88 10.99 0.97 0.99 1
F1l-score 0.99 1 1 0.99 10.93 |0.98]0.98 0.99 1

In federated setup, with five clients and a central curator, it slightly reduced
to 94.66% with 50 iterations. It gained and started showing significant improve-
ment with an increasing number of iterations and reached to 97.93% with 100
iterations. Model accuracy and loss are plotted in Fig. 3 and Fig. 4. It illustrates
the gain in accuracy with more local stochastic training at the client-side. It is
expected to gain significant improvement with more global and local iterations.
Table 4 lists the comparison of proposed architecture with and without federated
setup along with previous works. The central setup has slightly higher accuracy
compared to the federated setup but is not privacy-preserving in nature.

Collaborative Learning Based Effective Malware Detection System 217

Table 4. Comparison Report with previous works

Sr No | Authors Approach Description Accuracy

1 Lu et al. [10] LSTM Based on natural language processing, the |95.73%
word embedding technique, and LSTM

2 Kim et al. [15] tDCGAN Deep Autoencoder-based GAN 95.74%

3 Kim et al. [15] tGAN Pre-train the generator of GAN using the |96.39%

transfer learning and Detection Using
Deep Transferred GAN

4 Le et al. [12] CNN-BiLSTM | Classifies the one dimensional 98.8%
representation of the binary file using local
patterns of each malware class

5 Azar et al. [8] AE-SVM Autoencoder-based feature learning 96.3%
6 Zhao et al. [9] CNN Conversion from binary file to gray images |99%
including code mapping, texture
partitioning, and texture extracting
7 Centralized Model |CNN Feature Extraction using call graph, Image | 99.72%
features and training CNN model,
generating unseen data with AC-GAN

8 Federated Learning | CNN Five clients and a central curator running |97.93%
above model in 100 iterations, expecting
improved performance with more
iterations

6 Conclusion

The existing malware detection techniques are sufficient to mitigate against
known attacks. However, targeted attacks against companies and individuals
pose a severe threat as they model in-house defense techniques and can not
publicize them due to privacy threats. In a federated setting, every participant
can develop its own model and helps to improve the global model keeping their
data private. We presented such a collaborative learning approach to model a
malware detection system. The proposed approach transformed, extracted, and
merged relevant features from Microsoft malware data and modeled a light con-
volutional network. Using Auxiliary Classifier GAN (AC-GAN), 6200 generated
samples helped to mitigate targeted and adversarial attacks. With the Federated
setting, five clients, and a central curator, the accuracy is found to be degraded
gracefully, while the privacy of each participant is preserved.

Though, Federated Learning is privacy-preserving in nature, but, it poses
issues of significant communication overhead and inference attack with presence
of malicious server or adversarial participants. There is a scope to study poison-
ing attacks in a similar direction and handle the latency trade-offs. Introducing
anomalies in networks will result in a dropout of clients. It may introduce error
in synchronization of updates, which will affect the results. Any model does not
suffice without heterogeneous data and makes a scope for improvement to work
with, not ITD malware data.

Acknowledgement. We acknowledge the Ministry of Human Resource Development,
Government of India, for providing fellowship to complete this work.

218

N. Singh et al.

References

1.

10.

11.

12.

13.

14.

15.

16.

Moser, A., Kruegel, C., Kirda, E.: Limits of static analysis for malware detection.
In: Twenty-Third Annual Computer Security Applications Conference, ACSAC
2007, pp. 421-430, December 2007

. Shijo, P., Salim, A.: Integrated static and dynamic analysis for malware detection.

Proc. Comput. Sci. 46, 804-811 (2015)

. Carlin, D., Cowan, A., O’Kane, P., Sezer, S.: The effects of traditional anti-virus

labels on malware detection using dynamic runtime opcodes. IEEE Access 5, 17
742-17 752 (2017)

. Harel, D. (ed.): First-Order Dynamic Logic. LNCS, vol. 68. Springer, Heidelberg

(1979). https://doi.org/10.1007/3-540-09237-4

. Pechaz, B., Jahan, M.V., Jalali, M.: Malware detection using hidden Markov model

based on Markov blanket feature selection method. In: 2015 International Congress
on Technology, Communication and Knowledge (ICTCK), pp. 558-563, November
2015

. Liu, C., Zhang, Z., Wang, S.: An android malware detection approach using

Bayesian inference. In: 2016 IEEE International Conference on Computer and
Information Technology (CIT), pp. 476-483, December 2016

. Rathore, H., Agarwal, S., Sahay, S.K., Sewak, M.: Malware detection using machine

learning and deep learning. CoRR, vol. abs/1904.02441 (2019). http://arxiv.org/
abs/1904.02441

. Yousefi-Azar, M., Varadharajan, V., Hamey, L., Tupakula, U.: Autoencoder-based

feature learning for cyber security applications. In: 2017 International Joint Con-
ference on Neural Networks (IJCNN), pp. 3854-3861, May 2017

. Zhao, Y., Xu, C., Bo, B., Feng, Y.: MalDeep: a deep learning classification frame-

work against malware variants based on texture visualization. Secur. Commun.
Netw. 2019, 1-12 (2019)

Lu, R.: Malware detection with LSTM using opcode language. ArXiv, vol.
abs/1906.04593 (2019)

McMahan, H.B., Moore, E., Ramage, D., y Arcas, B.A.: Federated learning of deep
networks using model averaging. CoRR, vol. abs/1602.05629 (2016). http://arxiv.
org/abs/1602.05629

Le, Q., Boydell, O., Namee, B.M., Scanlon, M.: Deep learning at the shallow end:
malware classification for non-domain experts. CoRR, vol. abs/1807.08265 (2018).
http://arxiv.org/abs/1807.08265

Vasan, D., Alazab, M., Wassan, S., Naeem, H., Safaei, B., Zheng, Q.: IMCFN:
image-based malware classification using fine-tuned convolutional neural net-
work architecture. Comput. Netw. 107138 (2020). http://www.sciencedirect.com/
science/article/pii/S1389128619304736

Goodfellow, 1., et al.: Generative adversarial nets. In: Ghahramani, Z., Welling, M.,
Cortes, C., Lawrence, N.D., Weinberger, K.Q. (eds.) Advances in Neural Informa-
tion Processing Systems 27, pp. 2672-2680. Curran Associates Inc. (2014). http://
papers.nips.cc/paper/5423-generative-adversarial-nets.pdf

Kim, J.Y., Bu, S.J., Cho, S.B.: Malware detection using deep transferred generative
adversarial networks. In: Liu, D., Xie, S., Li, Y., Zhao, D., El-Alfy, E.S. (eds.)
ICONIP 2017. LNCS, vol. 10634, pp. 556-564. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-70087-8_58

Hu, W., Tan, Y.: Generating adversarial malware examples for black-box attacks
based on GAN. CoRR, vol. abs/1702.05983 (2017). http://arxiv.org/abs/1702.
05983

https://doi.org/10.1007/3-540-09237-4
http://arxiv.org/abs/1904.02441
http://arxiv.org/abs/1904.02441
http://arxiv.org/abs/1602.05629
http://arxiv.org/abs/1602.05629
http://arxiv.org/abs/1807.08265
http://www.sciencedirect.com/science/article/pii/S1389128619304736
http://www.sciencedirect.com/science/article/pii/S1389128619304736
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
https://doi.org/10.1007/978-3-319-70087-8_58
https://doi.org/10.1007/978-3-319-70087-8_58
http://arxiv.org/abs/1702.05983
http://arxiv.org/abs/1702.05983

17.

18.

19.

20.

Collaborative Learning Based Effective Malware Detection System 219

Sewak, M., Sahay, S.K., Rathore, H.: An investigation of a deep learning based
malware detection system. CoRR, vol. abs/1809.05888 (2018). http://arxiv.org/
abs/1809.05888

Shamir, O., Srebro, N., Zhang, T.: Communication efficient distributed optimiza-
tion using an approximate newton-type method. CoRR, vol. abs/1312.7853 (2013).
http://arxiv.org/abs/1312.7853

Odena, A., Olah, C., Shlens, J.: Conditional image synthesis with auxiliary classifier
GANS. In: Precup, D., Teh, Y.W. (eds.) Proceedings of the 34th International Con-
ference on Machine Learning, Series Proceedings of Machine Learning Research,
06-11 Aug 2017, vol. 70, pp. 2642-2651. International Convention Centre. PMLR,
Sydney, Australia. http://proceedings.mlr.press/v70/odenal7a.html

Jiang, H., Turki, T., Wang, J.T.L.: DLGraph: malware detection using deep learn-
ing and graph embedding. In: 2018 17th IEEE International Conference on Machine
Learning and Applications (ICMLA), pp. 1029-1033 (2018)

http://arxiv.org/abs/1809.05888
http://arxiv.org/abs/1809.05888
http://arxiv.org/abs/1312.7853
http://proceedings.mlr.press/v70/odena17a.html

	Collaborative Learning Based Effective Malware Detection System
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Federated Learning
	3.2 Auxiliary Classifier GAN (AC-GAN)

	4 Proposed Framework
	4.1 Data Collection
	4.2 Data Preprocessing
	4.3 Feature Extraction
	4.4 Model Configuration

	5 Experimental Setup and Evaluation
	5.1 Setup
	5.2 Collaborative Training and Evaluation
	5.3 Result

	6 Conclusion
	References

