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Abstract. It has been empirically observed that defense mechanisms
designed to protect neural networks against �∞ adversarial examples
offer poor performance against �2 adversarial examples and vice versa.
In this paper we conduct a geometrical analysis that validates this obser-
vation. Then, we provide a number of empirical insights to illustrate the
effect of this phenomenon in practice. Then, we review some of the exist-
ing defense mechanisms that attempt to defend against multiple attacks
by mixing defense strategies. Thanks to our numerical experiments, we
discuss the relevance of this method and state open questions for the
adversarial examples community.

1 Introduction

Deep neural networks achieve state-of-the-art performances in a variety of
domains such as natural language processing [19], image recognition [9] and
speech recognition [10]. However, it has been shown that such neural networks
are vulnerable to adversarial examples, i.e., imperceptible variations of the nat-
ural examples, crafted to deliberately mislead the models [3,7,22]. Since their
discovery, a variety of algorithms have been developed to generate adversarial
examples (a.k.a. attacks), for example FGSM [8], PGD [15] and C&W [5], to
mention the most popular ones.

Because it is difficult to characterize the space of visually imperceptible vari-
ations of a natural image, existing adversarial attacks use surrogates that can
differ from one attack to another. For example, [8] use the �∞ norm to measure
the distance between the original image and the adversarial image whereas [5]
use the �2 norm. When the input dimension is low, the choice of the norm is of
little importance because the �∞ and �2 balls overlap by a large margin, and the
adversarial examples lie in the same space. An important insight in this paper
is to observe that the overlap between the two balls diminishes exponentially
quickly as the dimensionality of the input space increases. For typical image
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datasets with large dimensionality, the two balls are mostly disjoint. As a conse-
quence, the �∞ and the �2 adversarial examples lie in different areas of the space,
and it explains why �∞ defense mechanisms perform poorly against �2 attacks
and vice versa.

Building on this insight, we advocate for designing models that incorporate
defense mechanisms against both �∞ and �2 attacks and review several ways of
mixing existing defense mechanisms. In particular, we evaluate the performance
of Mixed Adversarial Training (MAT) [8] which consists of augmenting training
batches using both �∞ and �2 adversarial examples, and Randomized Adversar-
ial Training (RAT) [20], a solution to benefit from the advantages of both �∞
adversarial training, and �2 randomized defense.

Outline of the Paper. The rest of this paper is organized as follows. In Sect. 2,
we recall the principle of existing attacks and defense mechanisms. In Sect. 3, we
conduct a theoretical analysis to show why the �∞ defense mechanisms cannot
be robust against �2 attacks and vice versa. We then corroborate this analysis
with empirical results using real adversarial attacks and defense mechanisms.
In Sect. 4, we discuss various strategies to mix defense mechanisms, conduct
comparative experiments, and discuss the performance of each strategy.

2 Preliminaries on Adversarial Attacks and Defenses

Let us first consider a standard classification task with an input space X = [0, 1]d

of dimension d, an output space Y = [K] and a data distribution D over X × Y.
We assume the model fθ has been trained to minimize the expectation over D
of a loss function L as follows:

min
θ

E(x,y)∼D [L(fθ(x), y)] . (1)

2.1 Adversarial Attacks

Given an input-output pair (x, y) ∼ D, an adversarial attack is a procedure that
produces a small perturbation τ ∈ X such that fθ(x + τ) �= y. To find the best
perturbation τ , existing attacks can adopt one of the two following strategies:
(i) maximizing the loss L(fθ(x + τ), y) under some constraint on ‖τ‖p

1 (a.k.a.
loss maximization); or (ii) minimizing ‖τ‖p under some constraint on the loss
L(fθ(x + τ), y) (a.k.a. perturbation minimization).

(i) Loss maximization. In this scenario, the procedure maximizes the loss objec-
tive function, under the constraint that the �p norm of the perturbation remains
bounded by some value ε, as follows:

argmax
‖τ‖p≤ε

L(fθ(x + τ), y). (2)

1 With p ∈ {0, · · · , ∞}.
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The typical value of ε depends on the norm ‖·‖p considered in the problem
setting. In order to compare �∞ and �2 attacks of similar strength, we choose
values of ε∞ and ε2 (for �∞ and �2 norms respectively) which result in �∞ and �2
balls of equivalent volumes. For the particular case of CIFAR-10, this would lead
us to choose ε∞ = 0.03 and ε2 = 0.8 which correspond to the maximum values
chosen empirically to avoid the generation of visually detectable perturbations.
The current state-of-the-art method to solve Problem (2) is based on a projected
gradient descent (PGD) [15] of radius ε. Given a budget ε, it recursively computes

xt+1 =
∏

Bp(x,ε)

(
xt + α argmax

δ s.t. ||δ||p≤1

(
Δt|δ)

)
(3)

where Bp(x, ε) = {x + τ s.t. ‖τ‖p ≤ ε}, Δt = ∇xL (fθ (xt) , y), α is a gradient
step size, and

∏
S is the projection operator on S. Both PGD attacks with p = 2,

and p = ∞ are currently used in the literature as state-of-the-art attacks for the
loss maximization problem.
(ii) Perturbation minimization. This type of procedure search for the perturba-
tion that has the minimal �p norm, under the constraint that L(fθ(x + τ), y) is
bigger than a given bound c:

argmin
L(fθ(x+τ),y)≥c

‖τ‖p. (4)

The value of c is typically chosen depending on the loss function L2. Problem (4)
has been tackled in [5], leading to the following method, denoted C&W attack
in the rest of the paper. It aims at solving the following Lagrangian relaxation
of Problem (4):

argmin
τ

‖τ‖p + λ × g(x + τ) (5)

where g(x + τ) < 0 if and only if L(fθ(x + τ), y) ≥ c. The authors use a change
of variable τ = tanh(w) − x to ensure that −1 ≤ x + τ ≤ 1, a binary search
to optimize the constant c, and Adam or SGD to compute an approximated
solution. The C&W attack is well defined both for p = 2, and p = ∞, but there
is a clear empirical gap of efficiency in favor of the �2 attack.

In this paper, we focus on the Loss Maximization setting using the PGD
attack. However we conduct some of our experiments using Perturbation Mini-
mization algorithms such as C&W to capture more detailed information about
the location of adversarial examples in the vector space3.

2.2 Defense Mechanisms

Adversarial Training (AT). Adversarial Training was introduced in [8] and later
improved in [15] as a first defense mechanism to train robust neural networks.

2 For example, if L is the 0/1 loss, any c > 0 is acceptable.
3 As it has a more flexible geometry than the Loss Maximization attacks.
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It consists in augmenting training batches with adversarial examples generated
during the training procedure. The standard training procedure from Eq. (1) is
thus replaced by the following min max problem, where the classifier tries to
minimize the expected loss under maximum perturbation of its input:

min
θ

E
(x,y)∼D

[
max

‖τ‖p≤ε
L (fθ(x + τ), y)

]
. (6)

In the case where p = ∞, this technique offers good robustness against �∞
attacks [1]. AT can also be used with �2 attacks but as we will discuss in Sect. 3,
AT with one norm offers poor protection against the other. The main weakness
of Adversarial Training is its lack of formal guarantees. Despite some recent work
providing great insights [21,25], there is no worst case lower bound yet on the
accuracy under attack of this method.

Noise Injection Mechanisms (NI). Another important technique to defend
against adversarial examples is to use Noise Injection. In contrast with Adver-
sarial Training, Noise Injection mechanisms are usually deployed after training.
In a nutshell, it works as follows. At inference time, given a unlabeled sample x,
the network outputs

f̃θ(x) := fθ(x + η) (instead of fθ(x)) (7)

where η is a random variable on R
d. Even though, Noise Injection is often less

efficient than Adversarial Training in practice (see e.g., Table 3), it benefits from
strong theoretical background. In particular, recent works [13,14], followed by
[6,18] demonstrated that noise injection from a Gaussian distribution can give
provable defense against �2 adversarial attacks. In this work, besides the classical
Gaussian noises already investigated in previous works, we evaluate the efficiency
of Uniform distributions to defend against �2 adversarial examples.

3 No Free Lunch for Adversarial Defenses

In this Section, we show both theoretically and empirically that defenses mech-
anisms intending to defend against �∞ attacks cannot provide suitable defense
against �2 attacks. Our reasoning is perfectly general; hence we can similarly
demonstrate the reciprocal statement, but we focus on this side for simplicity.

3.1 Theoretical Analysis

Let us consider a classifier f∞ that is provably robust against adversarial exam-
ples with maximum �∞ norm of value ε∞. It guarantees that for any input-output
pair (x, y) ∼ D and for any perturbation τ such that ‖τ‖∞ ≤ ε∞, f∞ is not mis-
led by the perturbation, i.e., f∞(x + τ) = f∞(x). We now focus our study on
the performance of this classifier against adversarial examples bounded with a
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(a) (b) (c)

Fig. 1. Left: 2D representation of the �∞ and �2 balls of respective radius ε and ε′.
Middle: a classifier trained with �∞ adversarial perturbations (materialized by the red
line) remains vulnerable to �2 attacks. Right: a classifier trained with �2 adversarial
perturbations (materialized by the blue line) remains vulnerable to �∞ attacks. (Color
figure online)

�2 norm of value ε2. Using Fig. 1(a), we observe that any �2 adversarial example
that is also in the �∞ ball, will not fool f∞. Conversely, if it is outside the ball,
we have no guarantee.

To characterize the probability that such an �2 perturbation fools an �∞
defense mechanism in the general case (i.e., any dimension d), we measure the
ratio between the volume of the intersection of the �∞ ball of radius ε∞ and the �2
ball of radius ε2. As Theorem 1 shows, this ratio depends on the dimensionality d
of the input vector x, and rapidly converges to zero when d increases. Therefore
a defense mechanism that protects against all �∞ bounded adversarial examples
is unlikely to be efficient against �2 attacks.

Theorem 1 (Probability of the intersection goes to 0).
Let B2,d(ε) :=

{
τ ∈ R

d s.t ‖τ‖2 ≤ ε
}
and B∞,d(ε′) :=

{
τ ∈ R

d s.t ‖τ‖∞ ≤ ε′}.
If for all d, we select ε and ε’ such that Vol (B2,d(ε)) = Vol (B∞,d(ε′)), then

Vol (B2,d(ε)
⋂

B∞,d(ε′))
Vol (B∞,d(ε′))

→ 0 when d → ∞.

Proof. Without loss of generality, let us fix ε = 1. One can show that for all d,

Vol

(
B2,d

(
2√
π

Γ

(
d

2
+ 1

)1/d
))

= Vol (B∞,d (1)) (8)

where Γ is the gamma function. Let us denote

r2(d) =
2√
π

Γ

(
d

2
+ 1

)1/d

. (9)

Then, thanks to Stirling’s formula

r2(d) ∼
√

2
πe

d1/2. (10)
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Finally, if we denote US , the uniform distribution on set S, by using Hoeffding
inequality between Eq. 14 and 15, we get:

Vol(B2,d(r2(d))
⋂

B∞,d(1))
Vol(B∞,d(1))

(11)

=Px∼UB∞,d(1) [x ∈ B2,d(r2(d))] (12)

=Px∼UB∞,d(1)

[∑d
i=1 |xi|2 ≤ r22(d)

]
(13)

≤ exp
{

−d−1
(
r22(d) − dE|x1|2

)2}
(14)

≤ exp

{
−

(
2
πe

− 1
3

)2

d + o(d)

}
. (15)

Then the ratio between the volume of the intersection of the ball and the volume
of the ball converges towards 0 when d goes to ∞. �

Theorem 1 states that, when d is large enough, �2 bounded perturbations
have a null probability of being also in the �∞ ball of the same volume. As a
consequence, for any value of d that is large enough, a defense mechanism that
offers full protection against �∞ adversarial examples is not guaranteed to offer
any protection against �2 attacks4.

Table 1. Bounds of Theorem 1 on the volume of the intersection of �2 and �∞ balls
at equal volume for typical image classification datasets. When d = 2, the bound is
10−0.009 ≈ 0.98.

Dataset Dim. (d) Vol. of the intersection

– 2 10−0.009 (≈ 0.98)

MNIST 784 10−144

CIFAR 3072 10−578

ImageNet 150528 10−28946

Note that this result defeats the 2-dimensional intuition: if we consider a 2
dimensional problem setting, the �∞ and the �2 balls have an important overlap
(as illustrated in Fig. 1(a)) and the probability of sampling at the intersection
of the two balls is bounded by approximately 98%. However, as we increase the
dimensionality d, this probability quickly becomes negligible, even for very simple
image datasets such as MNIST. An instantiation of the bound for classical image
datasets is presented in Table 1. The probability of sampling at the intersection
of the �∞ and �2 balls is close to zero for any realistic image setting. In large
dimensions, the volume of the corner of the �∞ ball is much bigger than it
appears in Fig. 1(a).
4 Theorem 1 can easily be extended to any two balls with different norms. For clarity,

we restrict to the case of �∞ and �2 norms.
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3.2 No Free Lunch in Practice

Our theoretical analysis shows that if adversarial examples were uniformly dis-
tributed in a high-dimensional space, then any mechanism that perfectly defends
against �∞ adversarial examples has a null probability of protecting against
�2-bounded adversarial attacks. Although existing defense mechanisms do not
necessarily assume such a distribution of adversarial examples, we demonstrate
that whatever distribution they use, it offers no favorable bias with respect to
the result of Theorem 1. As we discussed in Sect. 2, there are two distinct attack
settings: loss maximization (PGD) and perturbation minimization (C&W). Our
analysis is mainly focusing on loss maximization attacks. However, these attacks
have a very strict geometry5. This is why, to present a deeper analysis of the
behavior of adversarial attacks and defenses, we also present a set of experiments
that use perturbation minimization attacks.

Table 2. Average norms of PGD-�2 and PGD-�∞ adversarial examples with and with-
out �∞ adversarial training on CIFAR-10 (d = 3072).

Attack PGD-�2 Attack PGD-�∞
Unprotected AT-�∞ Unprotected AT-�2

Average �2 norm 0.830 0.830 1.400 1.640

Average �∞ norm 0.075 0.200 0.031 0.031

Adversarial Training vs. Loss Maximization Attacks. To demonstrate that �∞
adversarial training is not robust against PGD-�2 attacks we measure the evo-
lution of �2 norm of adversarial examples generated with PGD-�∞ between an
unprotected model and a model trained with AT-�∞, i.e., AT where adversarial
examples are generated with PGD-�∞6. Results are presented in Table 2.7

The analysis is unambiguous: the average �∞ norm of a bounded �2 perturba-
tion more than double between an unprotected model and a model trained with
AT PGD-�∞. This phenomenon perfectly reflects the illustration of Fig. 1(c). The
attack will generate an adversarial example on the corner of the �∞ ball thus
increasing the �∞ norm while maintaining the same �2 norm. We can observe
the same phenomenon with AT-�2 against PGD-�∞ attack (see Fig. 1(b) and
Table 2). PGD-�∞ attack increases the �2 norm while maintaining the same �∞
perturbation thus generating the perturbation in the upper area.

As a consequence, we cannot expect adversarial training �∞ to offer any
guaranteed protection against �2 adversarial examples .
5 Due to the projection operator, all PGD attacks saturate the constraint, which makes

them all lies in a very small part of the ball.
6 To do so, we use the same experimental setting as in Sect. 4 with ε∞ and ε2 such

that the volumes of the two balls are equal.
7 All experiments in this section are conducted on CIFAR-10, and the experimental

setting is fully detailed in Sect. 4.1.
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Adversarial Training vs. Perturbation Minimization Attacks. To better capture
the behavior of �2 adversarial examples, we now study the performances of an
�2 perturbation minimization attack (C&W) with and without AT-�∞. It allows
us to understand in which area C&W discovers adversarial examples and the
impact of AT-�∞. In high dimensions, the red corners (see Fig. 1(a)) are very far
away from the �2 ball. Therefore, we hypothesize that a large proportion of the
�2 adversarial examples will remain unprotected. To validate this assumption, we
measure the proportion of adversarial examples inside of the �2 ball before and
after �∞ adversarial training. The results are presented in Fig. 2 (left: without
adversarial training, right: with adversarial training).

ε′ = ε ε′ = ε × √
d

0

0.5

0.1

·104

ε′ = ε ε′ = ε × √
d

0

0.5

0.1

·104

Fig. 2. Comparison of the number of adversarial examples found by C&W, inside the
�∞ ball (lower, blue area), outside the �∞ ball but inside the �2 ball (middle, red area)
and outside the �2 ball (upper gray area). ε is set to 0.3 and ε′ varies along the x-axis.
Left: without adversarial training, right: with adversarial training. Most adversarial
examples have shifted from the �∞ ball to the cap of the �2 ball, but remain at the
same �2 distance from the original example. (Color figure online)

On both charts, the blue area represents the proportion of adversarial exam-
ples that are inside the �∞ ball. The red area represents the adversarial examples
that are outside the �∞ ball but still inside the �2 ball (valid �2 adversarial exam-
ples). Finally, the brown-beige area represents the adversarial examples that are
beyond the �2 bound. The radius ε′ of the �2 ball varies along the x-axis from
ε′ to ε′√d. On the left chart (without adversarial training) most �2 adversarial
examples generated by C&W are inside both balls. On the right chart most of the
adversarial examples have been shifted out the �∞ ball. This is the expected con-
sequence of �∞ adversarial training. However, these adversarial examples remain
in the �2 ball, i.e., they are in the cap of the �2 ball. These examples are equally
good from the �2 perspective. This means that even after adversarial training,
it is still easy to find good �2 adversarial examples, making the �2 robustness of
AT-�∞ almost null.

4 Reviewing Defenses Against Multiple Attacks

Adversarial attacks have been an active topic in the machine learning community
since their discovery [3,7,22]. Many attacks have been developed. Most of them
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Table 3. This table shows a comprehensive list of results consisting of the accuracy
of several defense mechanisms against �2 and �∞ attacks. This table main objective
is to compare the overall performance of ‘single’ norm defense mechanisms (AT and
NI presented in the Sect. 2.2) against mixed norms defense mechanisms (MAT & RAT
mixed defenses presented in Sect. 4).

Baseline AT MAT NI RAT-�∞ RAT-�2

– �∞ �2 Max Rand N U N U N U
Natural 0.94 0.85 0.85 0.80 0.80 0.79 0.87 0.74 0.80 0.79 0.87

PGD-�∞ 0.00 0.43 0.37 0.37 0.40 0.23 0.22 0.35 0.40 0.23 0.22

PGD-�2 0.00 0.37 0.52 0.50 0.55 0.34 0.36 0.43 0.39 0.34 0.37

solve a loss maximization problem with either �∞ [8,12,15], �2 [5,12,15], �1 [23]
or �0 [16] surrogate norms. As we showed, these norms are really different in high
dimension. Hence, defending against one norm-based attack is not sufficient to
protect against another one. In order to solve this problem, we review several
strategies to build defenses against multiple adversarial attacks. These strategies
are based on the idea that both types of defense must be used simultaneously
in order for the classifier to be protected against multiple attacks. The detailed
description of the experimental setting is described in Sect. 4.1.

4.1 Experimental Setting

To compare the robustness provided by the different defense mechanisms, we
use strong adversarial attacks and a conservative setting: the attacker has a
total knowledge of the parameters of the model (white-box setting) and we only
consider untargeted attacks (a misclassification from one target to any other will
be considered as adversarial). To evaluate defenses based on Noise Injection, we
use Expectation Over Transformation (EOT), the rigorous experimental protocol
proposed by [2] and later used by [1,4] to identify flawed defense mechanisms.

To attack the models, we use state-of-the-art algorithms PGD. We run PGD
with 20 iterations to generate adversarial examples and with 10 iterations when
it is used for adversarial training. The maximum �∞ bound is fixed to 0.031
and the maximum �2 bound is fixed to 0.83. As discussed in Sect. 2, we chose
these values so that the �∞ and the �2 balls have similar volumes. Note that 0.83
is slightly above the values typically used in previous publications in the area,
meaning the attacks are stronger, and thus more difficult to defend against.

All experiments are conducted on CIFAR-10 with the Wide-Resnet 28-10
architecture. We use the training procedure and the hyper-parameters described
in the original paper by [24]. Training time varies from 1 day (AT) to 2 days
(MAT) on 4 GPUs-V100 servers.

4.2 MAT – Mixed Adversarial Training

Earlier results have shown that AT-�p improves the robustness against corre-
sponding �p-bounded adversarial examples, and the experiments we present in
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this section corroborate this observation (See Table 3, column: AT). Building
on this, it is natural to examine the efficiency of Mixed Adversarial Training
(MAT) against mixed �∞ and �2 attacks. MAT is a variation of AT that uses
both �∞-bounded adversarial examples and �2-bounded adversarial examples as
training examples. As discussed in [23], there are several possible strategies to
mix the adversarial training examples. The first strategy (MAT-Rand) consists
in randomly selecting one adversarial example among the two most damaging
�∞ and �2, and to use it as a training example, as described in Eq. (16):

MAT-Rand:

min
θ

E
(x,y)∼D

[
E

p∼U({2,∞})
max

‖τ‖p≤ε
L (fθ(x + τ), y)

]
. (16)

An alternative strategy is to systematically train the model with the most dam-
aging adversarial example (�∞ or �2). As described in Eq. (17):

MAT-Max:

min
θ

E
(x,y)∼D

[
max

p∈{2,∞}
max

‖τ‖p≤ε
L (fθ(x + τ), y)

]
. (17)

The accuracy of MAT-Rand and MAT-Max are reported in Table 3 (Column:
MAT). As expected, we observe that MAT-Rand and MAT-Max offer better
robustness both against PGD-�2 and PGD-�∞ adversarial examples than the
original AT does. More generally, we can see that AT is a good strategy against
loss maximization attacks, and thus it is not surprising that MAT is a good strat-
egy against mixed loss maximization attacks. However efficient in practice, MAT
(for the same reasons as AT) lacks theoretical arguments. In order to get the best
of both worlds, [20] proposed to mix adversarial training with randomization.

4.3 RAT – Randomized Adversarial Training

We now examine the performance of Randomized Adversarial Training (RAT)
first introduced in [20]. This technique mixes Adversarial Training with Noise
Injection. The corresponding loss function is defined as follows:

min
θ

E
(x,y)∼D

[
max

‖τ‖p≤ε
L

(
f̃θ(x + τ), y)

)]
. (18)

where f̃θ is a randomized neural network with noise injection as described in
Sect. 2.2, and ‖·‖p define which kind of AT is used. For each setting, we con-
sider two noise distributions, Gaussian and Uniform as we did with NI. We also
consider two different Adversarial training AT-�∞ as well as AT-�2.

The results of RAT are reported in Table 3 (Columns: RAT-�∞ and RAT-�2).
We can observe that RAT-�∞ offers the best extra robustness with both noises,
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which is consistent with previous experiments, since AT is generally more effec-
tive against �∞ attacks whereas NI is more effective against �2-attacks. Overall,
RAT-�∞ and a noise from uniform distribution offers the best performances but
is still weaker than MAT-Rand. These results are also consistent with the lit-
erature, since adversarial training (and its variants) is the best defense against
adversarial examples so far.

5 Conclusion and Perspective

In this paper, we tackled the problem of protecting neural networks against
multiple attacks crafted from different norms. We demonstrated and gave a geo-
metrical interpretation to explain why most defense mechanisms can only protect
against one type of attack. Then we reviewed existing strategies that mix defense
mechanisms in order to build models that are robust against multiple adversarial
attacks. We conduct a rigorous and full comparison of Randomized Adversarial
Training and Mixed Adversarial Training as defenses against multiple attacks.

We could argue that both techniques offer benefits and limitations. We have
observed that MAT offers best empirical robustness against multiple adversarial
attacks but this technique is computationally expensive which hinders its use
in large-scale applications. Randomized techniques have the important advan-
tage of providing theoretical guarantees of robustness and being computationally
cheaper. However, the certificate provided by such defenses is still too small for
strong attacks. Furthermore, certain Randomized defenses also suffer from the
curse of dimensionality as recently shown by [11].

Although, randomized defenses based on noise injection seem limited in terms
of accuracy under attack and scalability, they could be improved either by Learn-
ing the best distribution to use or by leveraging different types of randomization
such as discrete randomization first proposed in [17]. We believe that these certi-
fied defenses are the best solution to ensure the robustness of classifiers deployed
into real-world applications.
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