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Abstract. Internet of Things (IoT) devices, including smartphones and
tablets, are widely deployed in various application domains ranging from
smart homes to industrial environments. Many of these devices rely on
Bluetooth Low Energy (BLE) as a communication protocol for their
control or the transfer of data. Trivial attacks can easily target these
devices to compromise them due to their low security features and inher-
ent vulnerabilities in their software and communication components. In
this paper, we firstly demonstrate a Man-in-the-Middle (MitM) attack
against BLE devices while collecting datasets of network traffic data
exchange with and without the attack. Secondly, we study the use of
machine learning to detect this attack by combining unsupervised and
supervised techniques. We applied and compared two unsupervised tech-
niques to reconstruct the model of BLE communications and detect sus-
picious data batches. We then applied a classification method based on
Text-CNN technique to classify packets as normal or attack inside each
suspicious batch. Our model reconstruction results show that we are able
to discriminate normal and attack models with high precision and our
classification method achieves high accuracy (≈0.99) and low false posi-
tive rate (≈0.03).

Keywords: IoT security · Bluetooth Low Energy · Neural networks ·
Machine learning · Attack detection

1 Introduction

BLE (Bluetooth Low Energy) is a widely used radio technology by connected
devices including smartwatches, smartphones, smart plugs and smart locks, that
are referred as Internet-of-Things (IoT). The number of these devices and their
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deployment in particular for smart homes and industrial environment is grow-
ing, and they are also becoming a subject of potential security issues. They
are vulnerable even to trivial attacks and can be easily compromised due their
limited security features and lacking of secure development practices. Multiple
existing research works have shown real world discovered vulnerabilities [11] in
BLE devices and demonstrated attacks against them [20]. An easy to deploy
and perform attack on BLE devices is the Man-in-the-Middle (MitM) attack
by using several available tools (BTLeJuice, GATTack, Mirage) and with low
cost hardware (few BLE adapters) [7]. This attack could be performed even if
the device is not too close to the attacker by abusing BLE-enabled smartphones
or by remotely controlling a mobile malware. In addition, with special radio
adapters and amplifiers, an attacker can intercept BLE signals up to 1,000 m
while initially the BLE radio range is up to 100 m [20].

Plenty of work has been done to improve the security of IoT devices by pro-
viding detection and protection methods [18]. In particular, several work rely
on machine learning techniques to identify anomalies in network traffic through
offline or online analysis [8]. Nguyen et al. [13] proposed a machine learning based
system for detecting compromised IoT devices. Their system uses devices spe-
cific communication patterns to detect anomalous behaviours deviation caused
by attacks. They applied a federated learning approach using Deep Neural Net-
works (DNN) to train models locally and then update a centralised model. How-
ever, most of existing work focused on volumetric attacks, such as Mirai [2]
and few and rare work interested in attacks with sporadic network activity such
as MitM, in particular for BLE based systems [1]. Oliff et al. [14] proposed a
detection method based on machine learning for spoofing attacks in BLE enabled
occupancy system. Their method uses three classifiers with location labeled BLE
advertising packets and under identity spoofing attacks. The proposed method is
able to detect attack with an accuracy ranging from 80% to 91%. Zuo et al. [20]
have shown that a large number of deployed BLE devices and their companion
mobile app are easy to fingerprint and rely on “Just Works” pairing mode which
allows attackers to hijack their connections using MitM attack. Yaseen et al. [19]
addressed the issue of detecting MitM in BLE based eHealth care systems by
using anomaly detection metrics.

In this paper, we propose a machine learning based method for detecting
MitM attacks by using datasets of a concrete attack scenario on BLE devices.
Our method relies on reconstruction and classification techniques to detect sus-
picious network data batches that have large deviations from benign patterns
of behaviour and then detect inside each of them attack packets. For the recon-
struction technique, we compared the performance of Long Short-Term Memory
(LSTM) and Temporal Convolutional Network (TCN) based auto-encoders to
learn normal models of BLE packets. Our results show that a TCN approach is
more accurate and provides higher temporal memory effect since our datasets
are of small size. The classification technique combines payload bytes embed-
ding and statistical features to learn, by using a Convolutional Neural Network
(CNN) architecture, latent features of packets and in a second stage we use a
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Random Forest algorithm to classify packets. By combining the two techniques,
we were able to detect and classify the BLE packets with high accuracy (≈0.99)
and low false positive rate (≈0.03).

The rest of the paper is organised as follows. In Sect. 2, we provide an overview
of the BLE protocol and its main features, packets and operations. In Sect. 3, we
detail our experimental set-up of the MitM attack and the process of collecting
the datasets. In Sect. 4, we describe our ML-based detection method by jointly
applying reconstruction and classification techniques. Section 5 concludes the
paper and provides perspectives of this work.

2 BLE Overview

Bluetooth Low Energy (BLE) was introduced by the Bluetooth Special Interest
Group (SIG) in [15] as a variant targeted towards battery-powered Internet of
Things (IoT) applications such as fitness trackers, headphones and smartwatches.
BLE is becoming one of the most common wireless standards used today in IoT
devices. According to the Bluetooth SIG, more than two billion devices sup-
porting BLE have been shipped in 2018 [16]. Likewise, it is also becoming more
commonly used in applications where sensitive information is being transferred.

2.1 BLE Advertising and Connection

BLE uses the same 2.4 GHz ISM band as Bluetooth Classic and Wi-Fi. The
BLE specification divides the band into 40 channels of 1 MHz spaced 2 MHz
apart. Three of these channels are called advertising and are used by devices
exclusively to send beaconing packets called advertising packets.

BLE specification defines two roles: Peripheral and Central. Central devices
are the ones that initiate connection, while Peripherals accept. In this way
a Central devices acts as a master, on which many Peripheral slaves can be
attached. Figure 1 provides an overview of BLE workflow between a peripheral
and a central (smartphone). The Central device will listen for advertisements
from Peripheral devices but once the advertisement from the desired Peripheral
device is received, the Central may connect by entering the initiating state. For
the Peripheral device, the advertising state is also the initial state before the
connection state. The connection state is the final state in which the Peripheral
and Central devices can exchange data.

The BLE Link Layer offers two mechanisms for exchanging data in BLE:
advertising and connections. Advertising allows sending unidirectional but
broadcast data. The Peripheral device sends data using Advertising and Scan
Response packets. Because it is broadcast in nature, multiple devices can listen
to the advertising data. Each advertising packet is configurable by the product
developer and can contain a wealth of information. It is not necessary to con-
nect to a device to get these packets, but the Central cannot send any data back.
Connections allow the Central and Peripheral to exchange data bidirectionally,
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Fig. 1. BLE workflow between peripheral and central devices.

controlling the device and sending it information, as opposed to the unidirec-
tional nature of advertising. So advertising packets serve dual roles: they enable
Central devices to find devices and connect, and also able to convey information.

2.2 Data Exchange

Data is transmitted on 37 data channels which are not used for advertising.
When devices are in a connection, they periodically exchange packets during
connection events. The rate of these events is defined by parameters such as
Connection Interval. The BLE specification allows the peripheral device to skip
connection events if there are no data to exchange.

The logical link control and adaptation protocol (L2CAP) within the BLE
stack fragments and re-assembles packets from other layers. It takes packets
received by the Link Layer and forwards them the Generic Attribute (GATT)
protocol for accessing data or the Security Manager. Data exposed by a Periph-
eral are presented in a GATT profile which is a hierarchical structure of
attributes allowing the transfer of information between a Central device and
a Peripheral device. Within a GATT profile, attributes can be either services or
characteristics and are identified by a universally unique identifier (UUID). In
addition to their UUID, characteristics are made up of an attribute handle, a
set of properties and a value. The handle specifies the position of the charac-
teristic in the profile and the value holds the actual data of the characteristic.
Properties specify which operations (read, write, etc.) can be executed on each
particular attribute and with which specific security requirements (encryption,
authentication).

2.3 BLE Security

A BLE connection is said to operate at a specific security mode for which there
are several security levels. The required security mode and level of a connection
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may change from time to time, leading to procedures to increase that level.
When two devices which initially do not have security, wish to do something
which requires security, the devices must pair first. This process is triggered (for
example) by a Central device (e.g. a smartphone) that is attempting to access a
data value of a characteristic on a Peripheral device that requires authenticated
access. Pairing involves authenticating the identity of two devices, encrypting
the link using a Short-Term Key (STK), and then distributing Long-Term Keys
(LTK) used for encryption. The LTK is saved for faster reconnection in the
future, that is termed Bonding.

The security level of the connection is based on the method of pairing per-
formed and this is selected based on the I/O capabilities of each device. The
security level of any subsequent reconnection is based on the level achieved dur-
ing the initial pairing. When pairing, the method chosen determines if the pairing
performs a strong authentication or not. Unauthenticated pairing occurs in sit-
uations where the device could not authenticate itself, for example if it has no
Input/Output (I/O) capabilities. Pairing involves authenticating the identity of
the two devices to be paired, usually through a secret-sharing process. Once
authenticated, the link is encrypted and keys distributed to allow security to be
restarted on a reconnection much more quickly. If these keys are saved for a future
time, the devices are said to be Bonded. A pairing procedure involves an exchange
of Security Manager protocol packets to generate a temporary encryption key
called the Short Term Key (STK). During the packet exchange, the two peers
negotiate one of the following STK generation methods: ‘Just Works’ where the
STK is generated on both sides, based on the packets exchanged in plain-text,
‘Passkey Display’ where one of the peers displays a randomly generated 6-digit
passkey and the other side is asked to enter it, ‘Out of Band (OOB)’ where addi-
tional data is transferred by means other than the BLE radio, such as another
wireless technology like Near Field Communication (NFC), ‘Numeric Compari-
son’ (Low Energy Secure Connections Pairing) which is only available with BLE
4.2 and it uses an algorithm called Elliptic Curve Diffie-Hellman (ECDH) for key
generation, and a new pairing procedure for the key exchange. However, many
BLE devices rely on the Just Works pairing method which is insecure and the
devices become vulnerable to MitM attacks.

3 Experimental Set-Up

In this work, we consider the scenario of a BLE-enabled torque wrench device
controlled remotely by a user through an App running on a smartphone to adjust
and calibrate with high precision the torque settings (angle and force) as depicted
in Fig. 1 of Sect. 2. In this case study, the attacker could be located nearby the
device or it could act remotely by compromising the smartphone with a malware.
In the second situation, attacks made by a malware could be broad, and they
require the exploitation of specific vulnerabilities to the smartphone, its OS or
the running App that controls the torque wrench. In this work, we focus more
on nearby attackers that perform Man-in-the-Middle (MitM) attacks to connect,
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pair, read, and even write to the device. This attack does not require specific
vulnerabilities. The only constraint is that the attacker has to be within the
communication range of BLE which is at most 100 m which could be extended
to 1,000 m by using long range BLE sniffers [20].

We performed the MitM attack with a cloned BLE device identical to the
torque wrench. The clone is realised by using 2 USB dongles Bluetooth 4.0
Cambridge Silicon Radio (CSR) and the Mirage tool [5]. The attacker uses this
clone to read, modify and write the settings of the torque wrench which may alter
its accuracy and the quality of operations. In particular, when the operator is
adjusting the settings of the torque wrench with the desired values, the attacker
will modify them and the applied torque will be different from the expected. In
our experimental environment, we used the following devices and tools:

– Two devKits nRF52840. One is used by the torque wrench device, and the
second is used as a sniffing interface for BLE packets.

– A smartphone with the nRFConnect installed and running to control remotely
the torque wrench device.

– Two USB dongles to perform the MitM attack.
– Two hosts: one is used to perform the MitM attack by using the Mirage tool,

and the second is running Wireshark tool for packets capture using the BLE
sniffer.

3.1 Experimental Methodology

In our case study, we define two main scenarios. The first is a nominal scenario
without any attack, and in a second scenario we introduced the MitM attack.
For each scenario, using the experimental environment described above, we col-
lect the BLE packets exchanged between the device and the smartphone while
varying the distance between them. The distance as explained in Sect. 4 will be
used as a feature for detecting the attack and allows us to measure the detection
accuracy according to the closeness of the attacker to the device.

(a) Normal scenario (b) MitM scenario

Fig. 2. Experimental Set-up for normal and MitM scenarios.

Normal Scenario. In this scenario, as depicted in Fig. 2a, we collect the BLE
packets exchanged between the BLE device and the App while performing these
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operations over time: from 0 to 1 min the App reads 4 values, from 1 to 5 min
the App activates and receives notifications, at 5 min the App deactivates the
notifications, from 5 to 6 min the App writes 4 values, from 6 to 10 min the
App activates and receives the notifications, at 10 min the App deactivates the
notifications and reads the Device Name characteristic. These operations allows
us to simulate a behaviour of the App running on the smartphone and generate
different BLE packets including reading, writing and notifications.

MitM Scenario. In this attack scenario, as depicted in Fig. 2b, the attacker
will modify values written by the smartphone App on the BLE device. From
5 to 6 min, the values written by the App are inverted by the attacker before
being sent to the BLE device. From 6 to 10 min, the notifications sent by the
BLE device to smartphone are modified. The timing of the modifications and the
different operations are used for labelling the captured packets with “normal”
and “attack” labels.

3.2 Datasets Building

Using the two experiments described above, we collect different datasets of BLE
packets exchanged between the device and the smartphone. We build multiple
datasets by varying the distance between the smartphone and the BLE device
for the normal scenario, and between the attacker and the smartphone for the
attack scenario. As depicted in Fig. 3, at time t = 0, the first seen packets are
advertising messages. Then a connection is established between the smartphone
and the device at t = 2.792896 with packet number 200.

Fig. 3. BLE advertising and connection packets exchanged between the device and the
smartphone in a normal scenario with a distance of 1 m between them.

We vary the distance between the devices in the set of values {30 cm, 1 m,
5 m, 7.5 m, 10 m}. In total we obtain 10 datasets that we merge in a single
dataset with the distance value as a feature and each sample is labeled as attack
or normal. The obtained dataset has a size of 19 MB and 77680 samples. We use
80% of this dataset for the training phase of ML algorithms and 20% for testing.

4 Detection Approach

Our detection approach of the attack described in Sect. 3 relies on two machine
learning techniques: reconstruction and classification. This first technique aims



156 A. Lahmadi et al.

at building a baseline model of normal patterns by using a machine learning algo-
rithm and then we measure deviations and errors from that model [6]. Recon-
struction is applied on batches of data and when one of them has a significative
reconstruction error, it is considered as abnormal. The second technique applies
a classification method to classify packets marked with attack features. The two
techniques are applied jointly to detect respectively suspicious data and iden-
tify attacks in these suspicious packets. Figure 4 depicts the processing steps of
our detection approach where reconstruction and classification techniques are
applied jointly.

Fig. 4. Our MitM attack detection approach by using jointly reconstruction and clas-
sification techniques.

4.1 Features Extraction and Analysis

In this section, we describe our analysis of features extracted from BLE packets to
select among them the most important for the reconstruction and classification
techniques. We used the following 4 feature selection methods to identify an
optimal set of features:

– Variance: this method applies a variance threshold to remove all low-variance
features.

– Chi2: this method selects the features with the highest values of the chi-
squared test.

– Recursive Feature Elimination (RFE): this method selects the features by
recursively considering smaller and smaller sets of features while computing
their importance.

– Extra trees: this method applies ensemble learning technique using decision
tree provided with a random sample of k features and then select from them
the most important features by using the Gini index.

Let F = (f1, f2, ..., fn) the set of features extracted from a BLE packet, with
n = 250. Each method i provides a subset of features Fk,i composed of k features.
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We apply then the intersection operator on the subsets Fk to obtain Ffinal with
Ffinal =

⋂4
i=1 Fk,i. We applied the 4 methods while computing the performance

of the machine learning algorithms until we obtain the optimal set of features.
Our analysis shows that the following 4 features in a BLE packets dataset are
the most important:

– Channel numbers: the channels used during the exchange of the BLE packets.
– Delta time: the difference of time between two successive packets.
– Received Signal Strength Indication (RSSI): the signal-to-noise ratio value

available in BLE packets.
– Distance: it denotes the distance between the mobile and the BLE device.

After selecting this set of optimal features, we analysed the stationarity and the
seasonality of datasets. The stationarity denotes that the statistical properties of
a feature are all constant over time. The seasonality denotes periodic patterns in
the datasets that should be eliminated prior to building reconstruction models.
To guarantee that our selected features represented as time series are stationary,
we applied the following tests: Augmented Dickey-Fuller test, and Kwiatkowsk-
Phillips-Schimdt-Shin test [4]. Our tests show that the 4 selected features are
stationary and we eliminated from them the seasonality patterns.

4.2 LSTM Based Model Reconstruction

The reconstruction method consists in learning the normal behaviour of the
BLE packets exchange. In the training phase we are looking to minimise the
error between the learned data and the original dataset. In the testing phase,
if the data contains an abnormal behaviour, the reconstruction will decrease
which allows us to detect such behaviour in the observed packets. A technique
to realise a model construction is to rely on a neural network of type Long
Short-Term Memory (LSTM) [9]. In this way, we are able to approximate the
BLE applications behaviour while considering their temporal patterns. By using
this technique, we applied the following steps:

– Train the neural network on the dataset Xtrain;
– Evaluate the obtained model on the Xvalidation part while computing the

reconstruction error;
– Set a detection threshold to determine the presence of anomalies. We can

set, for instance, this threshold to 3 standard deviations of the mean value of
the error, which is an empirical choice and a widely used threshold value for
anomaly and outliers detection.

We realised this technique by using an LSTM auto-encoder which is a neural
network with an Encode-Decoder LSTM architecture [17]. The hyperparameters
of the used LSTM neural network are presented in Table 1. To set the detection
threshold, we compute the residual defined as R(X, X̂) = |X−X̂| with X̂ = f(X)
and f represents the transformation of our auto-encoder. At the end of the
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Table 1. The hyperparameters of the LSTM neural network.

Hyperparameter Value

Optimizer Adam

Learning rate 0.001

Batch size 40

Epoch number 150

Loss function MSE

Validation metric Accuracy

Validation split 0.2

DL framework Tensorflow 1.13.1, Keras 2.2.4, Keras-tcn 2.6.7

training phase, we compute the mean and the standard-deviation of the residual
R(Xtrain, X̂train).

In the testing phase, we evaluate the residual R(Xtest, X̂test) to determine
for each data batch its anomaly score α defined as following:

α =
{

0 if |R(Xtest, X̂test) − μ(R(Xtrain, X̂train))| ≤ 3 ∗ σ(R(Xtrain, X̂train))
1 otherwise.

We used the score α to detect the presence of an anomaly in a data batch
if the residual is greater than 3 standard-deviations of the average. We obtain
thus Xtrain ∈ MT,F (R) which is the dataset of the nominal communication
patterns of BLE with T = 28918 the number of samples, and F = 4 the number
of features. We obtain in total: T ∗F = 115672 values. Then, as shown in Fig. 5,
we convert our training dataset to a tensor T s,t,F with s = 4819 the number
of samples, t = 6 the time-step (empirical choice) and F = 4 the number of
features. Indeed, we obtain in total s ∗ t ∗ F = T ∗ F .

In a first step, during the training phase we build a normal model of BLE
communications from a subset of the training dataset. If the model is close to
the normal behaviour of these communications, the reconstruction error should
be low. Figure 6a shows the details of this phase. We observe that the real values
fit well the predicted values with a very low reconstruction error (close to 0).

In a second step, we tested the reconstruction model obtained from Xtrain

on Xtest which contains the MitM attack packets. Figure 6b shows the details of
the reconstruction of the attack model. We clearly observe large reconstruction
errors and the testing data does not fit with the training model which indicates
the presence of anomalies.

To measure the reconstruction error between the normal and attack models,
we compared several error metrics which are BIAS (Bias of an estimator), MSE
(Mean Squared Error), RMSE (Root Mean Squared Error) and MAE (Mean
Absolute Error) [3]. The construction errors using these metrics are shown in
Fig. 7. We observe that the metric MSE measures with high precision the recon-
struction error of the MitM attack traffic from the normal traffic. We observe
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Fig. 5. Transformation of time series into training samples with a time-step = 3.

(a) Training of the normal model (b) Testing of the MitM attack model

Fig. 6. Training and testing of models reconstruction using LSTM.

also that all the metrics provide a low reconstruction error when predicting the
same normal traffic as input.

A major drawback when applying the LSTM based auto-encoder technique
in our case is the low value of the time-step, which is equal to 6 used for building
the input sequences. We have thus a low memory effect in the training neural
network. We can hardly increase this value, since our dataset is small and the
training phase will face the gradient vanishing or exploding problem where the
gradient becomes vanishingly small which prevents the neural network weights
from changing their values during the training phase with.

4.3 TCN Based Model Reconstruction

Another technique for model reconstruction is using a Temporal Convolutional
Network (TCN) [10] instead of a LSTM based auto-encoder. A TCN is a class
of time-series model that employs a hierarchy of temporal convolutional with an
encoder-decoder architecture. It has the advantage of obtaining better results
with less samples which allows us to increase the time-step when building the
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Fig. 7. Reconstruction error between normal and attack patterns using LSTM.

input sequences. The hyperparameter values of the TCN neural network are
similar to those used for the LSTM neural network, as presented in Table 1.

As input to the TCN, we used the Xtrain ∈ MT,F (R) dataset which contains
normal communication patterns of BLE, with T = 28918 the number of temporal
samples and F = 4 the number of features. We convert these time series to a
tensor T s,t,F with s = 963 the number of samples, t = 30 the time-step and
F = 4 the number of features. Using this model the time-step is 5 times higher
than the LSTM based model. The prediction results of the normal behaviour
of BLE communications using TCN are depicted in Fig. 8a. We mainly observe
that the predicted values fit well the real values and the reconstruction error is
close to 0.

(a) Training of the normal model (b) Testing of the MitM attack model

Fig. 8. Training and testing of models reconstruction using TCN.

The results of the testing phase by comparing the real and predicted val-
ues are shown in Fig. 8b. Similar to the LSTM based models, we observe that
the predicted values do not fit the real values and we obtain large reconstruc-
tion errors. The reconstruction errors using different metrics when comparing
normal and attack enabled BLE traffic are depicted in Fig. 9. The TCN model
has more accurate and lower reconstruction error with high memory effect com-
pared to LSTM architecture (Fig. 7) when predicting attack traffic behaviour
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from normal traffic behaviour. Using the same anomaly score α, we are able to
discriminate data batches containing suspicious packets. However, both LSTM
and TCN models are only able to detect suspicious batches, without detecting
packets involved in the attack.

Fig. 9. Reconstruction error between normal and attack patterns using TCN.

4.4 Classification of BLE Packets

After detecting suspicious batches of traffic with attack packets, the next step
of our detection process is to classify these packets according to their class:
“normal” or “attack”. In our work, we applied the technique developed in [12]
by jointly using Text-Convolutional Neural Network (Text-CNN) for feature
extraction and a Random Forest algorithm for classification. In [12], the authors
show that combining Text-CNN for payload feature extraction and a Random
Forest algorithm for final packets classification outperforms a CNN model with
a softmax classifier. For BLE packets available in the dataset, we extract from
them their traffic statistics and we convert their payload into word embedding to
extract salient features with Text-CNN. The hyperparameters of the Text-CNN
neural network are presented in Table 2.

The statistical features that we extracted from the BLE traffic data are
presented in Table 3.

The payload based features are extracted by converting packet payload bytes
to low dimensional vectors using Word2Vec technique and then provide these
vectors as an input to a Text-CNN neural network. The extracted features are
then concatenated with the statistical features and provided as input to a Ran-
dom Forest algorithm using a number of estimators equal to 200 to classify the
packets. Our classification results are shown in the confusion matrix of Table 4.
We observe that mostly all the packets are classified correctly with only 2 normal
packets misclassified as attack and 12 attack packets misclassified as normal.
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Table 2. The hyperparameters of the Text-CNN neural network.

Hyperparameter Value

Optimizer Adam

Learning rate 0.0001

Batch size 50

Epoch number 50

Loss function Binary cross-entropy

Validation metric Accuracy

Validation split 0.2

DL framework Tensorflow 1.13.1, Keras 2.2.4, Gensim (Word2Vec) 3.7.1

Table 3. Statistical features of BLE traffic data.

Features

Number of packets per second

Number of bytes per second

Max, min and average packets length

Max, min and average time interval between 2 packets

Number of packets for each BLE packets type (ADV, DATA, etc.)

Table 4. Confusion matrix of the classification of BLE packets.

Predicted labels

Normal Attack

Actual label
Normal 100% (9541/9543) 0% (2)

Attack 0.3% (12) 99.7% (4207/4219)

Fig. 10. ROC curve of the BLE packets classifier.
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The ROC curve of our classifier is depicted in Fig. 10 with an Area Under the
Curve (AUC) close to 1 which confirms that our classification model has a good
measurement of separability between “normal” and “attack” packets. However,
we have to note that our obtained results with high classification performance,
are limited to the collected datasets within our experimental setup environment,
and it is still difficult to generalise the learned models on new datasets with
different settings.

5 Conclusion and Future Work

In this paper, we presented a study on the use of machine learning techniques
to detect MitM attack targeting BLE enabled IoT devices. This attack is trivial
to deploy and may be used easily by attackers to stole users private informa-
tion or alter control data exchanged between a companion mobile app and the
device. We demonstrated the feasibility of the attack in a real-world deploy-
ment while varying the distance between the BLE mobile and devices and col-
lecting datasets of exchanged BLE packets. We applied jointly reconstruction
and classification models based on neural networks to detect suspicious network
data traffic batches and then identify from them attack packets. Our evalua-
tion results show high detection accuracy (≈0.99) and low false positive rate
(≈0.03). In future work, we will extend the proposed method for detecting more
classes of BLE attacks including DoS and connection hijacking within various
BLE environments. We will also study efficient protection mechanisms for BLE
networks.
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